
Developer Guide

Amazon CloudFront

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon CloudFront Developer Guide

Amazon CloudFront: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon CloudFront Developer Guide

Table of Contents

What is Amazon CloudFront? ... 1
How you set up CloudFront to deliver content ... 2
Pricing ... 4
Use cases .. 4

Accelerate static website content delivery .. 4
Serve video on demand or live streaming video .. 5
Encrypt specific fields throughout system processing .. 5
Customize at the edge ... 5
Serve private content by using Lambda@Edge customizations .. 6

How CloudFront delivers content ... 6
How CloudFront delivers content to your users ... 7
How CloudFront works with regional edge caches .. 8

CloudFront edge servers ... 10
Use the CloudFront managed prefix list .. 11

Accessing CloudFront .. 11
Working with AWS SDKs .. 12

Getting started .. 14
Setting up .. 14

Sign up for an AWS account .. 14
Create an administrative user .. 15
Set up the AWS Command Line Interface or AWS Tools for Windows PowerShell 16
Download an AWS SDK ... 16

Getting started with a basic distribution .. 16
Prerequisites ... 17
Step 1: Create bucket .. 17
Step 2: Upload content ... 18
Step 3: Create distribution ... 18
Step 4: Access the content ... 19
Step 5: Clean up ... 20
Tips ... 20

Getting started with a secure static website .. 21
Solution overview ... 22
Deploying the solution .. 23

Working with distributions ... 28

iii

Amazon CloudFront Developer Guide

Overview of distributions ... 28
Actions you can use with distributions .. 29
Required API fields for creating and updating distributions .. 30

Creating, updating, and deleting distributions .. 33
Steps for creating a distribution ... 34
Creating a distribution ... 36
Values that you specify ... 37
Values that are displayed .. 72
Testing a distribution ... 73
Updating a distribution ... 74
Tagging a distribution .. 75
Deleting a distribution ... 77

Using continuous deployment to safely test changes .. 79
Workflow for using CloudFront continuous deployment ... 81
Working with a staging distribution and continuous deployment policy 82
Monitoring a staging distribution ... 91
Understanding how continuous deployment works .. 91
Quotas and other considerations for continuous deployment .. 94

Using various origins ... 94
Using an Amazon S3 bucket .. 95
Using a MediaStore container or a MediaPackage channel ... 106
Using an Application Load Balancer ... 107
Using a Lambda function URL ... 107
Using Amazon EC2 (or another custom origin) .. 108
Using CloudFront origin groups .. 109

Using custom URLs .. 110
Adding an alternate domain name ... 110
Moving an alternate domain name to a different distribution ... 114
Removing an alternate domain name ... 120
Using wildcards in alternate domain names .. 121
Requirements for using alternate domain names ... 122
Restrictions on using alternate domain names .. 123

Using WebSockets .. 125
How the WebSocket protocol works .. 125
WebSocket requirements .. 126
Recommended settings ... 126

iv

Amazon CloudFront Developer Guide

Working with policies ... 128
Controlling the cache key .. 129

Creating cache policies .. 129
Understanding cache policies .. 133
Using the managed cache policies ... 140
Understanding the cache key .. 144

Controlling origin requests .. 148
Creating origin request policies ... 149
Understanding origin request policies ... 153
Using the managed origin request policies .. 156
Adding CloudFront request headers ... 161
Understanding how origin request policies and cache policies work together 165

Adding or removing response headers ... 168
Creating response headers policies .. 169
Using the managed response headers policies .. 176
Understanding response headers policies ... 182

Adding, removing, or replacing content .. 197
Adding and accessing content .. 197
Updating existing content ... 198

Updating existing files using versioned file names ... 198
Updating existing content using the same file names ... 199

Removing content so CloudFront won’t distribute it ... 199
Customizing file URLs ... 200

Using your own domain name (example.com) ... 200
Using a trailing slash (/) in URLs .. 201
Creating signed URLs for restricted content .. 201

Specifying a default root object ... 201
How to specify a default root object ... 202
How default root object works ... 203
How CloudFront works if you don’t define a root object .. 205

Invalidating files ... 205
Choosing between invalidating files and using versioned file names 206
Determining which files to invalidate .. 207
Specifying the files to invalidate .. 207
Invalidating files using the console .. 211
Invalidating files using the CloudFront API .. 214

v

Amazon CloudFront Developer Guide

Concurrent invalidation request maximum ... 214
Paying for file invalidation ... 214

Serving compressed files .. 215
Configuring CloudFront to compress objects ... 216
How CloudFront compression works .. 216
Notes about CloudFront compression .. 217
File types that CloudFront compresses .. 219
ETag header conversion ... 221

Generating custom error responses ... 222
Configuring error response behavior .. 222
Creating a custom error page for specific HTTP status codes .. 224
Storing objects and custom error pages in different locations ... 226
Changing response codes returned by CloudFront ... 226
Controlling how long CloudFront caches errors .. 227

Using AWS WAF protections ... 229
Enabling AWS WAF for new distributions .. 230

Using an existing web ACL ... 231
Enabling AWS WAF for existing distributions .. 231

Using an existing web ACL ... 232
Disabling AWS WAF security protections .. 232
Setting up rate limiting .. 233
Using CloudFront security dashboards .. 234

Enabling AWS WAF .. 235
Understanding trend data .. 236
Enabling bot control .. 236
Understanding logs .. 238
Managing CloudFront geographic restrictions ... 239
Security dashboard pricing ... 240

Configuring secure access and restricting access to content .. 241
Using HTTPS with CloudFront .. 241

Requiring HTTPS between viewers and CloudFront .. 243
Requiring HTTPS to a custom origin .. 245
Requiring HTTPS to an Amazon S3 origin .. 248
Supported protocols and ciphers between viewers and CloudFront 250
Supported protocols and ciphers between CloudFront and the origin 255
Charges for HTTPS connections .. 257

vi

Amazon CloudFront Developer Guide

Using alternate domain names and HTTPS ... 258
Choosing how CloudFront serves HTTPS requests .. 258
Requirements for using SSL/TLS certificates with CloudFront ... 261
Quotas on using SSL/TLS certificates with CloudFront (HTTPS between viewers and
CloudFront only) ... 266
Configuring alternate domain names and HTTPS ... 268
Determining the size of the public key in an SSL/TLS RSA certificate 272
Increasing the quotas for SSL/TLS certificates .. 272
Rotating SSL/TLS certificates .. 274
Reverting from a custom SSL/TLS certificate to the default CloudFront certificate 275
Switching from a custom SSL/TLS certificate with dedicated IP addresses to SNI 276

Restricting content with signed URLs and signed cookies .. 277
Overview of serving private content .. 278
Task list for serving private content .. 280
Specifying signers ... 281
Choosing between signed URLs and signed cookies ... 290
Using signed URLs .. 291
Using signed cookies ... 314
Using Linux commands and OpenSSL for base64 encoding and encryption 336
Code examples for signed URLs .. 337

Restricting access to an AWS origin .. 365
Restricting access to an AWS Elemental MediaPackage v2 origin .. 366
Restricting access to an AWS Elemental MediaStore origin .. 372
Restricting access to an AWS Lambda function URL origin ... 380
Restricting access to an Amazon Simple Storage Service origin .. 386

Restricting access to Application Load Balancers ... 400
Configuring CloudFront to add a custom HTTP header to requests .. 401
Configuring an Application Load Balancer to only forward requests that contain a specific
header ... 403
(Optional) Improve the security of this solution .. 408
(Optional) Limit access to origin by using the AWS-managed prefix list for CloudFront 409

Geographically restricting content ... 409
Using CloudFront geographic restrictions ... 410
Using a third-party geolocation service .. 412

Using field-level encryption to help protect sensitive data .. 413
Overview of field-level encryption ... 415

vii

Amazon CloudFront Developer Guide

Setting up field-level encryption .. 416
Decrypting data fields at your origin ... 421

Optimizing caching and availability .. 425
Caching with edge locations ... 425
Improving your cache hit ratio ... 426

Specifying how long CloudFront caches your objects .. 426
Using Origin Shield .. 426
Caching based on query string parameters .. 427
Caching based on cookie values ... 427
Caching based on request headers ... 428
Remove Accept-Encoding header when compression is not needed 429
Serving media content by using HTTP .. 430

Using Origin Shield ... 430
Use cases for Origin Shield .. 431
Choosing the AWS Region for Origin Shield .. 435
Enabling Origin Shield .. 437
Estimating Origin Shield costs ... 439
Origin Shield high availability ... 440
How Origin Shield interacts with other CloudFront features .. 440

Increasing availability with origin failover .. 441
Creating an origin group .. 443
Controlling origin timeouts and attempts .. 444
Use origin failover with Lambda@Edge functions .. 445
Use custom error pages with origin failover .. 446

Managing cache expiration .. 447
Using headers to control cache duration for individual objects ... 448
Serving stale (expired) content ... 449
Specifying the amount of time that CloudFront caches objects .. 451
Adding headers to your objects using the Amazon S3 console .. 457

Caching and query string parameters ... 457
Console and API settings for query string forwarding and caching ... 459
Optimizing caching .. 460
Query string parameters and CloudFront standard logs (access logs) 461

Caching content based on cookies ... 462
Caching content based on request headers ... 465

Headers and distributions – overview .. 465

viii

Amazon CloudFront Developer Guide

Selecting the headers to base caching on .. 466
Configuring CloudFront to respect CORS settings .. 468
Configuring caching based on the device type .. 468
Configuring caching based on the language of the viewer ... 469
Configuring caching based on the location of the viewer ... 469
Configuring caching based on the protocol of the request ... 469
Configuring caching for compressed files ... 469
How caching based on headers affects performance ... 469
How the case of headers and header values affects caching .. 470
Headers that CloudFront returns to the viewer ... 470

Troubleshooting ... 471
Troubleshooting distribution issues ... 471

CloudFront returns an InvalidViewerCertificate error when I try to add an alternate domain
name .. 471
I can't view the files in my distribution ... 473
Error message: Certificate: <certificate-id> is being used by CloudFront 474

Troubleshooting error responses from your origin ... 475
HTTP 400 status code (Bad Request) ... 475
HTTP 502 status code (Bad Gateway) ... 476
HTTP 502 status code (Lambda validation error) .. 479
HTTP 502 status code (DNS error) ... 479
HTTP 503 status code (function execution error) .. 480
HTTP 503 status code (Lambda limit exceeded) ... 481
HTTP 503 status code (Service Unavailable) .. 481
HTTP 504 status code (Gateway Timeout) ... 482

Load testing CloudFront ... 486
Request and response behavior .. 488

Request and response behavior for Amazon S3 origins .. 488
How CloudFront processes HTTP and HTTPS requests .. 488
How CloudFront processes and forwards requests to your Amazon S3 origin 489
How CloudFront processes responses from your Amazon S3 origin .. 495

Request and response behavior for custom origins ... 498
How CloudFront processes and forwards requests to your custom origin 498
How CloudFront processes responses from your custom origin ... 515

Request and response behavior for origin groups .. 519
Adding custom headers to origin requests .. 520

ix

Amazon CloudFront Developer Guide

Use cases for origin custom headers ... 521
Configuring CloudFront to add custom headers to origin requests ... 522
Custom headers that CloudFront can’t add to origin requests ... 522
Configuring CloudFront to forward the Authorization header .. 523

How range GETs are processed .. 524
Use range requests to cache large objects ... 525

How CloudFront processes HTTP 3xx status codes from your origin .. 525
How CloudFront processes and caches HTTP 4xx and 5xx status codes from your origin 526

How CloudFront processes errors when you have configured custom error pages 527
How CloudFront processes errors when you have not configured custom error pages 529
HTTP 4xx and 5xx status codes that CloudFront caches .. 531

Video on demand (VOD) and live streaming video ... 533
About streaming video: video on demand and live streaming ... 533
Delivering video on demand (VOD) ... 534

Configuring video on demand for Microsoft Smooth Streaming ... 535
Delivering live streaming video .. 537

Serving video using AWS Elemental MediaStore as the origin ... 538
Serving live video formatted with AWS Elemental MediaPackage .. 539

Functions at the edge ... 546
Which functions type to use ... 546
CloudFront Functions .. 549

Tutorial: A simple function ... 550
Tutorial: A function with key values ... 552
Writing function code .. 555
Managing functions ... 636
Using CloudFront KeyValueStore .. 652

Customizing with Lambda@Edge .. 665
Getting started .. 667
Setting IAM permissions and roles ... 676
Writing and creating functions .. 682
Adding triggers ... 688
Testing and debugging .. 695
Deleting functions and replicas ... 703
Event structure .. 704
Working with requests and responses ... 720
Example functions .. 726

x

Amazon CloudFront Developer Guide

Restrictions on edge functions ... 765
Restrictions on all edge functions .. 765
Restrictions on CloudFront Functions .. 771
Restrictions on Lambda@Edge .. 772

Reports, metrics, and logs .. 777
AWS billing and usage reports for CloudFront .. 777

AWS billing report for CloudFront .. 778
AWS usage report for CloudFront .. 779
Interpreting your AWS bill and the AWS usage report for CloudFront 780

CloudFront console reports ... 785
CloudFront cache statistics reports .. 788
CloudFront popular objects report ... 793
CloudFront top referrers report .. 799
CloudFront usage reports ... 802
CloudFront viewers reports .. 809

Monitoring CloudFront metrics with Amazon CloudWatch ... 820
Viewing CloudFront and edge function metrics .. 821
Creating alarms ... 829
Downloading metrics data ... 830
Getting metrics using the API ... 833

CloudFront and edge function logging ... 839
Logging requests .. 839
Logging edge functions .. 839
Logging service activity ... 840
Using standard logs (access logs) ... 840
Real-time logs ... 860
Edge function logs ... 880
CloudTrail logs .. 883

Tracking configuration changes with AWS Config .. 896
Set up AWS Config with CloudFront .. 896
View CloudFront configuration history .. 897

Security .. 899
Data protection .. 899

Encryption in transit .. 901
Encryption at rest ... 901
Restrict access to content ... 902

xi

Amazon CloudFront Developer Guide

Identity and Access Management .. 903
Audience ... 903
Authenticating with identities ... 904
Managing access using policies ... 907
How Amazon CloudFront works with IAM .. 910
Identity-based policy examples ... 917
AWS managed policies .. 927
Troubleshooting .. 932

Logging and monitoring .. 934
Compliance validation .. 935

CloudFront compliance best practices ... 936
Resilience ... 937

CloudFront origin failover ... 938
Infrastructure security ... 938

Quotas .. 940
General quotas ... 940
General quotas on distributions ... 941
General quotas on policies .. 943
Quotas on CloudFront Functions ... 945
Quotas on key value stores ... 945
Quotas on Lambda@Edge ... 946
Quotas on SSL certificates ... 948
Quotas on invalidations ... 948
Quotas on key groups .. 948
Quotas on WebSocket connections ... 949
Quotas on field-level encryption ... 949
Quotas on cookies (legacy cache settings) ... 950
Quotas on query strings (legacy cache settings) .. 951
Quotas on headers .. 951

Code examples ... 953
Actions .. 954

CreateDistribution ... 954
CreateFunction .. 965
CreateInvalidation ... 968
CreateKeyGroup .. 970
CreatePublicKey .. 972

xii

Amazon CloudFront Developer Guide

DeleteDistribution ... 974
GetCloudFrontOriginAccessIdentity ... 978
GetCloudFrontOriginAccessIdentityConfig .. 979
GetDistribution .. 981
GetDistributionConfig ... 984
ListCloudFrontOriginAccessIdentities ... 989
ListDistributions ... 990
UpdateDistribution .. 1000

Scenarios .. 1012
Delete signing resources ... 1013
Sign URLs and cookies .. 1015

Related information .. 1019
Additional Amazon CloudFront documentation ... 1019
Getting support ... 1019
CloudFront developer tools and SDKs .. 1020
Tips from the Amazon Web Services blog ... 1020

Document history .. 1021
Updates before 2022 .. 1027

AWS Glossary ... 1035

xiii

Amazon CloudFront Developer Guide

What is Amazon CloudFront?

Amazon CloudFront is a web service that speeds up distribution of your static and dynamic web
content, such as .html, .css, .js, and image files, to your users. CloudFront delivers your content
through a worldwide network of data centers called edge locations. When a user requests content
that you're serving with CloudFront, the request is routed to the edge location that provides the
lowest latency (time delay), so that content is delivered with the best possible performance.

• If the content is already in the edge location with the lowest latency, CloudFront delivers it
immediately.

• If the content is not in that edge location, CloudFront retrieves it from an origin that you've
defined—such as an Amazon S3 bucket, a MediaPackage channel, or an HTTP server (for
example, a web server) that you have identified as the source for the definitive version of your
content.

As an example, suppose that you're serving an image from a traditional web server, not from
CloudFront. For example, you might serve an image, sunsetphoto.png, using the URL https://
example.com/sunsetphoto.png.

Your users can easily navigate to this URL and see the image. But they probably don't know
that their request is routed from one network to another—through the complex collection of
interconnected networks that comprise the internet—until the image is found.

CloudFront speeds up the distribution of your content by routing each user request through the
AWS backbone network to the edge location that can best serve your content. Typically, this is a
CloudFront edge server that provides the fastest delivery to the viewer. Using the AWS network
dramatically reduces the number of networks that your users' requests must pass through, which
improves performance. Users get lower latency—the time it takes to load the first byte of the file—
and higher data transfer rates.

You also get increased reliability and availability because copies of your files (also known as objects)
are now held (or cached) in multiple edge locations around the world.

Topics

• How you set up CloudFront to deliver content

• Pricing

1

Amazon CloudFront Developer Guide

• CloudFront use cases

• How CloudFront delivers content

• Locations and IP address ranges of CloudFront edge servers

• Accessing CloudFront

• Using CloudFront with an AWS SDK

How you set up CloudFront to deliver content

You create a CloudFront distribution to tell CloudFront where you want content to be delivered
from, and the details about how to track and manage content delivery. Then CloudFront uses
computers—edge servers—that are close to your viewers to deliver that content quickly when
someone wants to see it or use it.

How you set up CloudFront to deliver content 2

Amazon CloudFront Developer Guide

How you configure CloudFront to deliver your content

1. You specify origin servers, like an Amazon S3 bucket or your own HTTP server, from which
CloudFront gets your files which will then be distributed from CloudFront edge locations all
over the world.

An origin server stores the original, definitive version of your objects. If you're serving content
over HTTP, your origin server is either an Amazon S3 bucket or an HTTP server, such as a web
server. Your HTTP server can run on an Amazon Elastic Compute Cloud (Amazon EC2) instance
or on a server that you manage; these servers are also known as custom origins.

2. You upload your files to your origin servers. Your files, also known as objects, typically include
web pages, images, and media files, but can be anything that can be served over HTTP.

If you're using an Amazon S3 bucket as an origin server, you can make the objects in your
bucket publicly readable, so that anyone who knows the CloudFront URLs for your objects can
access them. You also have the option of keeping objects private and controlling who accesses
them. See Serving private content with signed URLs and signed cookies.

3. You create a CloudFront distribution, which tells CloudFront which origin servers to get your
files from when users request the files through your web site or application. At the same time,
you specify details such as whether you want CloudFront to log all requests and whether you
want the distribution to be enabled as soon as it's created.

4. CloudFront assigns a domain name to your new distribution that you can see in the CloudFront
console, or that is returned in the response to a programmatic request, for example, an API
request. If you like, you can add an alternate domain name to use instead.

5. CloudFront sends your distribution's configuration (but not your content) to all of its edge
locations or points of presence (POPs)— collections of servers in geographically-dispersed data
centers where CloudFront caches copies of your files.

As you develop your website or application, you use the domain name that CloudFront provides for
your URLs. For example, if CloudFront returns d111111abcdef8.cloudfront.net as the domain
name for your distribution, the URL for logo.jpg in your Amazon S3 bucket (or in the root directory
on an HTTP server) is https://d111111abcdef8.cloudfront.net/logo.jpg.

Or you can set up CloudFront to use your own domain name with your distribution. In that case,
the URL might be https://www.example.com/logo.jpg.

How you set up CloudFront to deliver content 3

Amazon CloudFront Developer Guide

Optionally, you can configure your origin server to add headers to the files, to indicate how long
you want the files to stay in the cache in CloudFront edge locations. By default, each file stays in
an edge location for 24 hours before it expires. The minimum expiration time is 0 seconds; there
isn't a maximum expiration time. For more information, see Managing how long content stays in
the cache (expiration).

Pricing

CloudFront charges for data transfers out from its edge locations, along with HTTP or HTTPS
requests. Pricing varies by usage type, geographical region, and feature selection.

The data transfer from your origin to CloudFront is always free when using AWS origins like
Amazon Simple Storage Service (Amazon S3), Elastic Load Balancing, or Amazon API Gateway.
You are only billed for the outbound data transfer from CloudFront to the viewer when using AWS
origins.

For more information, see CloudFront pricing and the Billing and Savings Bundle FAQs.

CloudFront use cases

Using CloudFront can help you accomplish a variety of goals. This section lists just a few, together
with links to more information, to give you an idea of the possibilities.

Topics

• Accelerate static website content delivery

• Serve video on demand or live streaming video

• Encrypt specific fields throughout system processing

• Customize at the edge

• Serve private content by using Lambda@Edge customizations

Accelerate static website content delivery

CloudFront can speed up the delivery of your static content (for example, images, style sheets,
JavaScript, and so on) to viewers across the globe. By using CloudFront, you can take advantage
of the AWS backbone network and CloudFront edge servers to give your viewers a fast, safe, and
reliable experience when they visit your website.

Pricing 4

https://aws.amazon.com/cloudfront/pricing/
https://aws.amazon.com/cloudfront/faqs/

Amazon CloudFront Developer Guide

A simple approach for storing and delivering static content is to use an Amazon S3 bucket. Using
S3 together with CloudFront has a number of advantages, including the option to use origin access
control to easily restrict access to your S3 content.

For more information about using S3 together with CloudFront, including a AWS CloudFormation
template to help you get started quickly, see Amazon S3 + Amazon CloudFront: A Match Made in
the Cloud.

Serve video on demand or live streaming video

CloudFront offers several options for streaming your media to global viewers—both pre-recorded
files and live events.

• For video on demand (VOD) streaming, you can use CloudFront to stream in common formats
such as MPEG DASH, Apple HLS, Microsoft Smooth Streaming, and CMAF, to any device.

• For broadcasting a live stream, you can cache media fragments at the edge, so that multiple
requests for the manifest file that delivers the fragments in the right order can be combined, to
reduce the load on your origin server.

For more information about how to deliver streaming content with CloudFront, see Video on
demand and live streaming video with CloudFront.

Encrypt specific fields throughout system processing

When you configure HTTPS with CloudFront, you already have secure end-to-end connections
to origin servers. When you add field-level encryption, you can protect specific data throughout
system processing in addition to HTTPS security, so that only certain applications at your origin can
see the data.

To set up field-level encryption, you add a public key to CloudFront, and then specify the set of
fields that you want to be encrypted with the key. For more information, see Using field-level
encryption to help protect sensitive data.

Customize at the edge

Running serverless code at the edge opens up a number of possibilities for customizing the
content and experience for viewers, at reduced latency. For example, you can return a custom
error message when your origin server is down for maintenance, so viewers don't get a generic

Serve video on demand or live streaming video 5

https://aws.amazon.com/blogs/networking-and-content-delivery/amazon-s3-amazon-cloudfront-a-match-made-in-the-cloud/
https://aws.amazon.com/blogs/networking-and-content-delivery/amazon-s3-amazon-cloudfront-a-match-made-in-the-cloud/

Amazon CloudFront Developer Guide

HTTP error message. Or you can use a function to help authorize users and control access to your
content, before CloudFront forwards a request to your origin.

Using Lambda@Edge with CloudFront enables a variety of ways to customize the content that
CloudFront delivers. To learn more about Lambda@Edge and how to create and deploy functions
with CloudFront, see Customizing at the edge with Lambda@Edge. To see a number of code
samples that you can customize for your own solutions, see Lambda@Edge example functions.

Serve private content by using Lambda@Edge customizations

Using Lambda@Edge can help you configure your CloudFront distribution to serve private content
from your own custom origin, in addition to using signed URLs or signed cookies.

To serve private content using CloudFront, you do the following:

• Require that your users (viewers) access content using signed URLs or signed cookies.

• Restrict access to your origin so that it's only available from CloudFront's origin-facing servers. To
do this, you can do one of the following:

• For an Amazon S3 origin, you can use an origin access control (OAC).

• For a custom origin, you can do the following:

• If the custom origin is protected by an Amazon VPC security group or AWS Firewall Manager,
you can use the CloudFront managed prefix list to allow inbound traffic to your origin from
only CloudFront's origin-facing IP addresses.

• Use a custom HTTP header to restrict access to only requests from CloudFront. For more
information, see the section called “ Restricting access to files on custom origins” and the
section called “Adding custom headers to origin requests”. For an example that uses a
custom header to restrict access to an Application Load Balancer origin, see the section
called “Restricting access to Application Load Balancers”.

• If the custom origin requires custom access control logic, you can use Lambda@Edge to
implement that logic, as described in this blog post: Serving Private Content Using Amazon
CloudFront & Lambda@Edge.

How CloudFront delivers content

After some initial setup, CloudFront works together with your website or application and speeds up
delivery of your content. This section explains how CloudFront serves your content when viewers
request it.

Serve private content by using Lambda@Edge customizations 6

https://aws.amazon.com/blogs/networking-and-content-delivery/serving-private-content-using-amazon-cloudfront-aws-lambdaedge/
https://aws.amazon.com/blogs/networking-and-content-delivery/serving-private-content-using-amazon-cloudfront-aws-lambdaedge/

Amazon CloudFront Developer Guide

Topics

• How CloudFront delivers content to your users

• How CloudFront works with regional edge caches

How CloudFront delivers content to your users

After you configure CloudFront to deliver your content, here’s what happens when users request
your objects:

1. A user accesses your website or application and sends a request for an object, such as an image
file or an HTML file.

2. DNS routes the request to the CloudFront POP (edge location) that can best serve the request,
typically the nearest CloudFront POP in terms of latency.

3. CloudFront checks its cache for the requested object. If the object is in the cache, CloudFront
returns it to the user. If the object is not in the cache, CloudFront does the following:

a. CloudFront compares the request with the specifications in your distribution and forwards the
request to your origin server for the corresponding object—for example, to your Amazon S3
bucket or your HTTP server.

b. The origin server sends the object back to the edge location.

c. As soon as the first byte arrives from the origin, CloudFront begins to forward the object to
the user. CloudFront also adds the object to the cache for the next time someone requests it.

How CloudFront delivers content to your users 7

Amazon CloudFront Developer Guide

How CloudFront works with regional edge caches

CloudFront points of presence (also known as POPs or edge locations) make sure that popular
content can be served quickly to your viewers. CloudFront also has regional edge caches that bring
more of your content closer to your viewers, even when the content is not popular enough to stay
at a POP, to help improve performance for that content.

Regional edge caches help with all types of content, particularly content that tends to become less
popular over time. Examples include user-generated content, such as video, photos, or artwork;
e-commerce assets such as product photos and videos; and news and event-related content that
might suddenly find new popularity.

How regional caches work

Regional edge caches are CloudFront locations that are deployed globally, close to your viewers.
They’re located between your origin server and the POPs—global edge locations that serve
content directly to viewers. As objects become less popular, individual POPs might remove those
objects to make room for more popular content. Regional edge caches have a larger cache than an
individual POP, so objects remain in the cache longer at the nearest regional edge cache location.

How CloudFront works with regional edge caches 8

Amazon CloudFront Developer Guide

This helps keep more of your content closer to your viewers, reducing the need for CloudFront to
go back to your origin server, and improving overall performance for viewers.

When a viewer makes a request on your website or through your application, DNS routes the
request to the POP that can best serve the user’s request. This location is typically the nearest
CloudFront edge location in terms of latency. In the POP, CloudFront checks its cache for the
requested object. If the object is in the cache, CloudFront returns it to the user. If the object is
not in the cache, the POP typically goes to the nearest regional edge cache to fetch it. For more
information about when the POP skips the regional edge cache and goes directly to the origin, see
the following note.

In the regional edge cache location, CloudFront again checks its cache for the requested object.
If the object is in the cache, CloudFront forwards it to the POP that requested it. As soon as the
first byte arrives from regional edge cache location, CloudFront begins to forward the object to the
user. CloudFront also adds the object to the cache in the POP for the next time someone requests
it.

For objects not cached at either the POP or the regional edge cache location, CloudFront compares
the request with the specifications in your distributions and forwards the request to the origin
server. After your origin server sends the object back to the regional edge cache location, it is
forwarded to the POP, and then CloudFront forwards it to the user. In this case, CloudFront also
adds the object to the cache in the regional edge cache location in addition to the POP for the
next time a viewer requests it. This makes sure that all of the POPs in a region share a local cache,
eliminating multiple requests to origin servers. CloudFront also keeps persistent connections with
origin servers so objects are fetched from the origins as quickly as possible.

Note

• Regional edge caches have feature parity with POPs. For example, a cache invalidation
request removes an object from both POP caches and regional edge caches before it
expires. The next time a viewer requests the object, CloudFront returns to the origin to
fetch the latest version of the object.

• Proxy HTTP methods (PUT, POST, PATCH, OPTIONS, and DELETE) go directly to the origin
from the POPs and do not proxy through the regional edge caches.

• Dynamic requests, as determined at request time, do not flow through regional edge
caches, but go directly to the origin.

How CloudFront works with regional edge caches 9

Amazon CloudFront Developer Guide

• When the origin is an Amazon S3 bucket and the request’s optimal regional edge cache
is in the same AWS Region as the S3 bucket, the POP skips the regional edge cache and
goes directly to the S3 bucket.

The following diagram illustrates how requests and responses flow through CloudFront edge
locations and regional edge caches.

Locations and IP address ranges of CloudFront edge servers

For a list of the locations of CloudFront edge servers, see the Amazon CloudFront Global Edge
Network page.

Amazon Web Services (AWS) publishes its current IP address ranges in JSON format. To view the
current ranges, download ip-ranges.json. For more information, see AWS IP address ranges in the
Amazon Web Services General Reference.

To find the IP address ranges that are associated with CloudFront edge servers, search ip-
ranges.json for the following string:

"region": "GLOBAL",

CloudFront edge servers 10

https://aws.amazon.com/cloudfront/features/#Global_Edge_Network
https://aws.amazon.com/cloudfront/features/#Global_Edge_Network
https://ip-ranges.amazonaws.com/ip-ranges.json
https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html

Amazon CloudFront Developer Guide

"service": "CLOUDFRONT"

Alternatively, you can view only the CloudFront IP ranges at https://d7uri8nf7uskq.cloudfront.net/
tools/list-cloudfront-ips.

Use the CloudFront managed prefix list

The CloudFront managed prefix list contains the IP address ranges of all of CloudFront's globally
distributed origin-facing servers. If your origin is hosted on AWS and protected by an Amazon VPC
security group, you can use the CloudFront managed prefix list to allow inbound traffic to your
origin only from CloudFront's origin-facing servers, preventing any non-CloudFront traffic from
reaching your origin. CloudFront maintains the managed prefix list so it's always up to date with
the IP addresses of all of CloudFront's global origin-facing servers. With the CloudFront managed
prefix list, you don't need to read or maintain a list of IP address ranges yourself.

For example, imagine that your origin is an Amazon EC2 instance in the Europe (London) Region
(eu-west-2). If the instance is in a VPC, you can create a security group rule that allows inbound
HTTPS access from the CloudFront managed prefix list. This allows all of CloudFront's global
origin-facing servers to reach the instance. If you remove all other inbound rules from the security
group, you prevent any non-CloudFront traffic from reaching the instance.

The CloudFront managed prefix list is named com.amazonaws.global.cloudfront.origin-facing.
For more information, see Use an AWS-managed prefix list in the Amazon VPC User Guide.

Important

The CloudFront managed prefix list is unique in how it applies to Amazon VPC quotas. For
more information, see AWS-managed prefix list weight in the Amazon VPC User Guide.

Accessing CloudFront

You can access Amazon CloudFront in the following ways:

• AWS Management Console – The procedures throughout this guide explain how to use the AWS
Management Console to perform tasks.

• AWS SDKs – If you're using a programming language that AWS provides an SDK for, you can
use an SDK to access CloudFront. SDKs simplify authentication, integrate easily with your

Use the CloudFront managed prefix list 11

https://d7uri8nf7uskq.cloudfront.net/tools/list-cloudfront-ips
https://d7uri8nf7uskq.cloudfront.net/tools/list-cloudfront-ips
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-aws-managed-prefix-lists.html#use-aws-managed-prefix-list
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-aws-managed-prefix-lists.html#aws-managed-prefix-list-weights

Amazon CloudFront Developer Guide

development environment, and provide access to CloudFront commands. For more information,
see Tools for Amazon Web Services.

• CloudFront API – If you're using a programming language that an SDK isn't available for, see the
Amazon CloudFront API Reference for information about API actions and about how to make API
requests.

• AWS Command Line Interface – For more information, see Getting Set Up with the AWS
Command Line Interface in the AWS Command Line Interface User Guide.

• AWS Tools for Windows PowerShell – For more information, see Setting up the AWS Tools for
Windows PowerShell in the AWS Tools for Windows PowerShell User Guide.

Using CloudFront with an AWS SDK

AWS software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

SDK documentation Code examples

AWS SDK for C++ AWS SDK for C++ code examples

AWS SDK for Go AWS SDK for Go code examples

AWS SDK for Java AWS SDK for Java code examples

AWS SDK for JavaScript AWS SDK for JavaScript code examples

AWS SDK for Kotlin AWS SDK for Kotlin code examples

AWS SDK for .NET AWS SDK for .NET code examples

AWS SDK for PHP AWS SDK for PHP code examples

AWS SDK for Python (Boto3) AWS SDK for Python (Boto3) code examples

AWS SDK for Ruby AWS SDK for Ruby code examples

AWS SDK for Rust AWS SDK for Rust code examples

Working with AWS SDKs 12

https://aws.amazon.com/tools
https://docs.aws.amazon.com/cloudfront/latest/APIReference/
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/powershell/latest/userguide/
https://docs.aws.amazon.com/powershell/latest/userguide/
https://docs.aws.amazon.com/sdk-for-cpp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp
https://docs.aws.amazon.com/sdk-for-go
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2
https://docs.aws.amazon.com/sdk-for-java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2
https://docs.aws.amazon.com/sdk-for-javascript
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3
https://docs.aws.amazon.com/sdk-for-kotlin
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin
https://docs.aws.amazon.com/sdk-for-net
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3
https://docs.aws.amazon.com/sdk-for-php
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php
https://docs.aws.amazon.com/pythonsdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python
https://docs.aws.amazon.com/sdk-for-ruby
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby
https://docs.aws.amazon.com/sdk-for-rust
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rust_dev_preview

Amazon CloudFront Developer Guide

SDK documentation Code examples

AWS SDK for SAP ABAP AWS SDK for SAP ABAP code examples

AWS SDK for Swift AWS SDK for Swift code examples

Example availability

Can't find what you need? Request a code example by using the Provide feedback link at
the bottom of this page.

Working with AWS SDKs 13

https://docs.aws.amazon.com/sdk-for-sapabap
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap
https://docs.aws.amazon.com/sdk-for-swift
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift

Amazon CloudFront Developer Guide

Getting started with Amazon CloudFront

Get started with the basic steps to deliver your content with CloudFront by creating a basic
distribution or a secure static website.

Topics

• Setting up

• Getting started with a basic CloudFront distribution

• Getting started with a secure static website

Setting up

This topic describes preliminary steps, such as creating an AWS account, to prepare you to use
Amazon CloudFront.

Topics

• Sign up for an AWS account

• Create an administrative user

• Set up the AWS Command Line Interface or AWS Tools for Windows PowerShell

• Download an AWS SDK

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign

Setting up 14

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html

Amazon CloudFront Developer Guide

administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Create an administrative user 15

https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

Amazon CloudFront Developer Guide

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Set up the AWS Command Line Interface or AWS Tools for Windows
PowerShell

The AWS Command Line Interface (AWS CLI) is a unified tool for managing AWS services. For
information about how to install and configure the AWS CLI, see Getting Set Up with the AWS
Command Line Interface in the AWS Command Line Interface User Guide.

If you have experience with Windows PowerShell, you might prefer to use AWS Tools for Windows
PowerShell. For more information, see Setting up the AWS Tools for Windows PowerShell in the
AWS Tools for Windows PowerShell User Guide.

Download an AWS SDK

If you're using a programming language that AWS provides an SDK for, we recommend that
you use an SDK instead of the Amazon CloudFront API. The SDKs make authentication simpler,
integrate easily with your development environment, and provide easy access to CloudFront
commands. For more information, see Tools to Build on AWS.

Getting started with a basic CloudFront distribution

The procedures in this section show you how to use CloudFront to set up a basic configuration that
does the following:

• Creates a bucket to use as your distribution origin.

• Stores the original versions of your objects in an Amazon Simple Storage Service (Amazon S3)
bucket.

• Uses origin access control (OAC) to send authenticated requests to your Amazon S3 origin. OAC
sends requests through CloudFront to prevent viewers from accessing your S3 bucket directly.
For more information about OAC, see Restricting access to an Amazon Simple Storage Service
origin.

Set up the AWS Command Line Interface or AWS Tools for Windows PowerShell 16

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/powershell/latest/userguide/pstools-getting-set-up.html
https://aws.amazon.com/tools/

Amazon CloudFront Developer Guide

• Uses the CloudFront domain name in URLs for your objects (for example, https://
d111111abcdef8.cloudfront.net/index.html).

• Keeps your objects in CloudFront edge locations for the default duration of 24 hours (the
minimum duration is 0 seconds).

Most of these options are customizable. For information about how to customize your CloudFront
distribution options, see Steps for creating a distribution (overview).

Topics

• Prerequisites

• Step 1: Create an Amazon S3 bucket

• Step 2: Upload the content to the bucket

• Step 3: Create a CloudFront distribution that uses an Amazon S3 origin with OAC

• Step 4: Access your content through CloudFront

• Step 5: Clean up

• Tips

Prerequisites

Before you begin, make sure that you’ve completed the steps in Setting up.

Step 1: Create an Amazon S3 bucket

An Amazon S3 bucket is a container for files (objects) or folders. CloudFront can distribute almost
any type of file for you when an S3 bucket is the source. For example, CloudFront can distribute
text, images, and videos. There is no maximum for the amount of data that you can store on
Amazon S3.

For this tutorial, you create an S3 bucket with the provided sample hello world files that you
will use to create a basic webpage.

To create a bucket

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

Prerequisites 17

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon CloudFront Developer Guide

2. We recommend that you use our Hello World sample for this Getting started. Download the
hello world webpage: hello-world-html.zip. Unzip it and save the css folder and index file in
a convenient location, such as the desktop where you are running your browser.

3. Choose Create bucket.

4. Enter a unique Bucket name that conforms to the General purpose buckets naming rules in
the Amazon Simple Storage Service User Guide.

5. For Region, we recommend choosing an AWS Region that is geographically close to you. (This
reduces latency and costs.)

• Choosing a different Region works, too. You might do this to address regulatory
requirements, for example.

6. Leave all other settings at their defaults, and then choose Create bucket.

Step 2: Upload the content to the bucket

After you create your Amazon S3 bucket, upload the contents of the unzipped hello world file
to it. (You downloaded and unzipped this file in Step 1: Create an Amazon S3 bucket.)

To upload the content to Amazon S3

1. In the General purpose buckets section, choose the name of your new bucket.

2. Choose Upload.

3. On the Upload page, drag the css folder and index file into the drop area.

4. Leave all other settings at their defaults, and then choose Upload.

Step 3: Create a CloudFront distribution that uses an Amazon S3 origin
with OAC

For this tutorial, you will create a CloudFront distribution that uses an Amazon S3 origin with
origin access control (OAC). OAC helps you securely send authenticated requests to your Amazon
S3 origin. For more information about OAC, see Restricting access to an Amazon Simple Storage
Service origin.

To create a CloudFront distribution with an Amazon S3 origin that uses OAC

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

Step 2: Upload content 18

samples/hello-world-html.zip
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html#general-purpose-bucket-names
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

2. Choose Create distribution.

3. For Origin, Origin domain, choose the S3 bucket that you created for this tutorial.

4. For Origin, Origin access, select Origin access control settings (recommended).

5. For Origin access control, choose Create new OAC.

6. In the Create new OAC pane, keep the default settings and choose Create.

7. For Web Application Firewall (WAF), select one of the options.

8. For all other sections and settings, accept the default values. For more information about
these options, see Distribution settings.

9. Choose Create distribution.

10. In The S3 bucket policy needs to be updated banner, read the message and choose Copy
policy.

11. In the same banner, choose the link to Go to S3 bucket permissions to update policy. (This
takes you to your bucket detail page in the Amazon S3 console.)

12. For Bucket policy, choose Edit.

13. In the Edit statement field, paste the policy that you copied in step 10.

14. Choose Save changes.

15. Return to the CloudFront console and review the Details section for your new distribution.
When your distribution is done deploying, the Last modified field changes from Deploying to
a date and time.

16. Record the domain name that CloudFront assigns to your distribution. It looks similar to the
following: d111111abcdef8.cloudfront.net.

Before using the distribution and S3 bucket from this tutorial in a production environment, make
sure to configure it to meet your specific needs. For information about configuring access in a
production environment, see Configuring secure access and restricting access to content.

Step 4: Access your content through CloudFront

To access your content through CloudFront, combine the domain name for your CloudFront
distribution with the main page for your content. (You recorded your distribution domain name in
Step 3: Create a CloudFront distribution that uses an Amazon S3 origin with OAC.)

• Your distribution domain name might look like this: d111111abcdef8.cloudfront.net.

• The path to the main page of a website is typically /index.html.

Step 4: Access the content 19

Amazon CloudFront Developer Guide

Therefore, the URL to access your content through CloudFront might look like this:

https://d111111abcdef8.cloudfront.net/index.html.

If you followed the previous steps and used the hello world webpage, you should see the following
content:

When you upload more content to this S3 bucket, you can access the content through CloudFront
by combining the CloudFront distribution domain name with the path to the object in the S3
bucket. For example, if you upload a new file named new-page.html to the root of your S3
bucket, the URL looks like this:

https://d111111abcdef8.cloudfront.net/new-page.html.

Step 5: Clean up

If you created your distribution and S3 bucket only as a learning exercise, delete them so that you
no longer accrue charges. Delete the distribution first. For more information, see the following
links:

• Deleting a distribution

• Deleting a bucket

Tips

This Getting started tutorial provides a minimal framework for creating a distribution. We
recommend that you explore the following enhancements:

• By default, the files (objects) in the Amazon S3 bucket are set up as private. Only the AWS
account that created the bucket has permission to read or write the files. If you want to allow

Step 5: Clean up 20

https://docs.aws.amazon.com/AmazonS3/latest/userguide/delete-bucket.html

Amazon CloudFront Developer Guide

anyone to access the files in your Amazon S3 bucket using CloudFront URLs, you must grant
public read permissions to the objects.

• You can use the CloudFront private content feature to restrict access to the content in the
Amazon S3 buckets. For more information about distributing private content, see Serving private
content with signed URLs and signed cookies.

• You can configure your CloudFront distribution to use a custom domain name (for example,
www.example.com instead of d111111abcdef8.cloudfront.net). For more information,
see Using custom URLs.

• This tutorial uses an Amazon S3 origin with origin access control (OAC). However, you can't
use OAC if your origin is an S3 bucket configured as a website endpoint. If that's the case, you
must set up your bucket with CloudFront as a custom origin. For more information, see Using an
Amazon S3 bucket that's configured as a website endpoint. For more information about OAC, see
Restricting access to an Amazon Simple Storage Service origin.

Getting started with a secure static website

You can get started with Amazon CloudFront by using the solution described in this topic to create
a secure static website for your domain name. A static website uses only static files—like HTML,
CSS, JavaScript, images, and videos—and doesn’t need servers or server-side processing. With this
solution, your website gets the following benefits:

• Uses the durable storage of Amazon Simple Storage Service (Amazon S3) – This solution
creates an Amazon S3 bucket to host your static website’s content. To update your website, just
upload your new files to the S3 bucket.

• Is sped up by the Amazon CloudFront content delivery network – This solution creates a
CloudFront distribution to serve your website to viewers with low latency. The distribution is
configured with an origin access identity to make sure that the website is accessible only through
CloudFront, not directly from S3.

• Is secured by HTTPS and additional security headers – This solution creates an SSL/TLS
certificate in AWS Certificate Manager (ACM), and attaches it to the CloudFront distribution. This
certificate enables the distribution to serve your domain’s website securely with HTTPS.

This solution also uses Lambda@Edge to add security headers to every server response. Security
headers are a group of headers in the web server response that tell web browsers to take
extra security precautions. For more information, refer to this blog post: Adding HTTP Security
Headers Using Lambda@Edge and Amazon CloudFront.

Getting started with a secure static website 21

https://docs.aws.amazon.com/AmazonS3/latest/userguide/WebsiteEndpoints.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/acm/latest/userguide/acm-overview.html
https://aws.amazon.com/blogs/networking-and-content-delivery/adding-http-security-headers-using-lambdaedge-and-amazon-cloudfront/
https://aws.amazon.com/blogs/networking-and-content-delivery/adding-http-security-headers-using-lambdaedge-and-amazon-cloudfront/

Amazon CloudFront Developer Guide

• Is configured and deployed with AWS CloudFormation – This solution uses an AWS
CloudFormation template to set up all the components, so you can focus more on your website’s
content and less on configuring components.

This solution is open source on GitHub. To view the code, submit a pull request, or open an issue,
go to https://github.com/aws-samples/amazon-cloudfront-secure-static-site.

Topics

• Solution overview

• Deploying the solution

Solution overview

The following diagram shows an overview of how this static website solution works:

1. The viewer requests the website at www.example.com.

2. If the requested object is cached, CloudFront returns the object from its cache to the viewer.

3. If the object is not in CloudFront’s cache, CloudFront requests the object from the origin (an S3
bucket).

4. S3 returns the object to CloudFront, which triggers the Lambda@Edge origin response event.

5. The object, including the security headers added by the Lambda@Edge function, is added to
CloudFront’s cache.

Solution overview 22

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://github.com/aws-samples/amazon-cloudfront-secure-static-site

Amazon CloudFront Developer Guide

6. (Not shown) The objects is returned to the viewer. Subsequent requests for the object that come
to the same CloudFront edge location are served from the CloudFront cache.

Deploying the solution

To deploy this secure static website solution, you can choose from either of the following options:

• Use the AWS CloudFormation console to deploy the solution with default content, then upload
your website content to Amazon S3.

• Clone the solution to your computer to add your website content. Then, deploy the solution with
the AWS Command Line Interface (AWS CLI).

Note

You must use the US East (N. Virginia) Region to deploy the CloudFormation template.

Topics

• Prerequisites

• Using the AWS CloudFormation console

• Cloning the solution locally

• Finding access logs

Prerequisites

To use this solution, you must have the following prerequisites:

• A registered domain name, such as example.com, that’s pointed to an Amazon Route 53 hosted
zone. The hosted zone must be in the same AWS account where you deploy this solution. If
you don’t have a registered domain name, you can register one with Route 53. If you have a
registered domain name but it’s not pointed to a Route 53 hosted zone, configure Route 53 as
your DNS service.

• AWS Identity and Access Management (IAM) permissions to launch CloudFormation templates
that create IAM roles, and permissions to create all the AWS resources in the solution.

Deploying the solution 23

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/registrar.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-configuring.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-configuring.html

Amazon CloudFront Developer Guide

You are responsible for the costs incurred while using this solution. For more information about
costs, see the pricing pages for each AWS service.

Using the AWS CloudFormation console

To deploy using the CloudFormation console

1. Choose Launch on AWS to open this solution in the AWS CloudFormation console. If
necessary, sign in to your AWS account.

2. The Create stack wizard opens in the CloudFormation console, with prepopulated fields that
specify this solution’s CloudFormation template.

At the bottom of the page, choose Next.

3. On the Specify stack details page, enter values for the following fields:

• SubDomain – Enter the subdomain to use for your website. For example, if the subdomain
is www, your website is available at www.example.com. (Replace example.com with your
domain name, as explained in the following bullet.)

• DomainName – Enter your domain name, such as example.com. This domain must be
pointed to a Route 53 hosted zone.

• HostedZoneId – The Route 53 hosted zone ID of your domain name.

When finished, choose Next.

4. (Optional) On the Configure stack options page, add tags and other stack options.

When finished, choose Next.

5. On the Review page, scroll to the bottom of the page, then select the two boxes in the
Capabilities section. These capabilities allow AWS CloudFormation to create an IAM role that
allows access to the stack’s resources, and to name the resources dynamically.

6. Choose Create stack.

7. Wait for the stack to finish creating. The stack creates some nested stacks, and can take several
minutes to finish. When it’s finished, the Status changes to CREATE_COMPLETE.

Deploying the solution 24

https://aws.amazon.com/pricing/
https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new?stackName=amazon-cloudfront-secure-static-site-templates-main&templateURL=https://s3.amazonaws.com/solution-builders-us-east-1/amazon-cloudfront-secure-static-site/latest/main.yaml
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-add-tags.html

Amazon CloudFront Developer Guide

When the status is CREATE_COMPLETE, go to https://www.example.com to view your
website (replace www.example.com with the subdomain and domain name that you specified
in step 3). You should see the website’s default content:

To replace the website’s default content with your own

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the bucket whose name begins with amazon-cloudfront-secure-static-site-
s3bucketroot-.

Note

Make sure to choose the bucket with s3bucketroot in its name, not s3bucketlogs.
The bucket with s3bucketroot in its name contains the website content. The one with
s3bucketlogs contains only log files.

3. Delete the website’s default content, then upload your own.

Note

If you viewed your website with this solution’s default content, then it’s likely that
some of the default content is cached in a CloudFront edge location. To make sure that
viewers see your updated website content, invalidate the files to remove the cached
copies from CloudFront edge locations. For more information, see Invalidating files.

Cloning the solution locally

Prerequisites

Deploying the solution 25

https://console.aws.amazon.com/s3/

Amazon CloudFront Developer Guide

To add your website content before deploying this solution, you must package the solution’s
artifacts locally, which requires Node.js and npm. For more information, see https://
www.npmjs.com/get-npm.

To add your website content and deploy the solution

1. Clone or download the solution from https://github.com/aws-samples/amazon-cloudfront-
secure-static-site. After you clone or download it, open a command prompt or terminal and
navigate to the amazon-cloudfront-secure-static-site folder.

2. Run the following command to install and package the solution’s artifacts:

make package-static

3. Copy your website’s content into the www folder, overwriting the default website content.

4. Run the following AWS CLI command to create an Amazon S3 bucket to store the solution’s
artifacts. Replace example-bucket-for-artifacts with your own bucket name.

aws s3 mb s3://example-bucket-for-artifacts --region us-east-1

5. Run the following AWS CLI command to package the solution’s artifacts as an AWS
CloudFormation template. Replace example-bucket-for-artifacts with the name of the
bucket that you created in the previous step.

aws cloudformation package \
 --region us-east-1 \
 --template-file templates/main.yaml \
 --s3-bucket example-bucket-for-artifacts \
 --output-template-file packaged.template

6. Run the following command to deploy the solution with AWS CloudFormation, replacing the
following values:

• your-CloudFormation-stack-name – Replace with a name for the AWS CloudFormation
stack.

• example.com – Replace with your domain name. This domain must be pointed to a
Route 53 hosted zone in the same AWS account.

• www – Replace with the subdomain to use for your website. For example, if the subdomain is
www, your website is available at www.example.com.

Deploying the solution 26

https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://github.com/aws-samples/amazon-cloudfront-secure-static-site
https://github.com/aws-samples/amazon-cloudfront-secure-static-site

Amazon CloudFront Developer Guide

aws cloudformation deploy \
 --region us-east-1 \
 --stack-name your-CloudFormation-stack-name \
 --template-file packaged.template \
 --capabilities CAPABILITY_NAMED_IAM CAPABILITY_AUTO_EXPAND \
 --parameter-overrides DomainName=example.com SubDomain=www

7. Wait for the AWS CloudFormation stack to finish creating. The stack creates some nested
stacks, and can take several minutes to finish. When it’s finished, the Status changes to
CREATE_COMPLETE.

When the status changes to CREATE_COMPLETE, go to https://www.example.com to view
your website (replace www.example.com with the subdomain and domain name that you
specified in the previous step). You should see your website’s content.

Finding access logs

This solution enables access logs for the CloudFront distribution. Complete the following steps to
locate the distribution’s access logs.

To locate the distribution’s access logs

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the bucket whose name begins with amazon-cloudfront-secure-static-site-
s3bucketlogs-.

Note

Make sure to choose the bucket with s3bucketlogs in its name, not s3bucketroot. The
bucket with s3bucketlogs in its name contains log files. The one with s3bucketroot
contains the website content.

3. The folder named cdn contains the CloudFront access logs.

Deploying the solution 27

https://console.aws.amazon.com/s3/

Amazon CloudFront Developer Guide

Working with distributions

You create an Amazon CloudFront distribution to tell CloudFront from where you want content to
be delivered, and the details about how to track and manage content delivery. The following topics
explain some basics about CloudFront distributions and provide detailed information about the
settings you can choose to configure your distributions to meet your business needs.

Topics

• Overview of distributions

• Creating, updating, and deleting distributions

• Using CloudFront continuous deployment to safely test CDN configuration changes

• Using various origins with CloudFront distributions

• Using custom URLs by adding alternate domain names (CNAMEs)

• Using WebSockets with CloudFront distributions

Overview of distributions

When using CloudFront to distribute your content, you create a distribution and choose from the
following configuration settings:

• Your content origin—The Amazon S3 bucket, AWS Elemental MediaPackage channel, AWS
Elemental MediaStore container, Elastic Load Balancing load balancer, or HTTP server from
which CloudFront gets the files to distribute. You can specify any combination of up to 25 origins
for a single distribution.

• Access—Whether you want access to the files to be available to everyone or restricted to some
users.

• Security—Whether you want to enable AWS WAF protection and require users to use HTTPS to
access your content.

• Cache key—Which values, if any, you want to include in the cache key. The cache key uniquely
identifies each file in the cache for a given distribution.

• Origin request settings—Whether you want CloudFront to include HTTP headers, cookies, or
query strings in requests that it sends to your origin.

• Geographic restrictions—Whether you want CloudFront to prevent users in selected countries
from accessing your content.

Overview of distributions 28

Amazon CloudFront Developer Guide

• Logs—Whether you want CloudFront to create standard logs or real-time logs that show viewer
activity.

For the current maximum number of distributions that you can create for each AWS account, see
General quotas on distributions. There is no maximum number of files that you can serve per
distribution.

You can use distributions to serve the following content over HTTP or HTTPS:

• Static and dynamic download content, such as HTML, CSS, JavaScript, and image files, using
HTTP or HTTPS.

• Video on demand in different formats, such as Apple HTTP Live Streaming (HLS) and Microsoft
Smooth Streaming. For more information, see Delivering video on demand (VOD) with
CloudFront.

• A live event, such as a meeting, conference, or concert, in real time. For live streaming, you
can create the distribution automatically by using an AWS CloudFormation stack. For more
information, see Delivering live streaming video with CloudFront and AWS Media Services.

For information about creating a distribution, see Steps for creating a distribution (overview).

Actions you can use with distributions

The following table lists the CloudFront actions that you can take to work with distributions.
The table provides links to the corresponding documentation on how to do the actions with the
CloudFront console and the CloudFront APIs.

Action Using the CloudFront
console

Using the CloudFront API

Create a distribution See Steps for creating a
distribution (overview)

Go to CreateDistribution

List your distributions See Updating a distribution Go to ListDistributions

See Updating a distribution Go to GetDistribution

Actions you can use with distributions 29

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_ListDistributions.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_GetDistribution.html

Amazon CloudFront Developer Guide

Action Using the CloudFront
console

Using the CloudFront API

Get all information about a
distribution

Get the distribution configura
tion

See Updating a distribution Go to GetDistributionConfig

Update a distribution See Updating a distribution Go to UpdateDistribution

Delete a distribution See Deleting a distribution Go to DeleteDistribution

Required API fields for creating and updating distributions

When you update a distribution by using the UpdateDistribution CloudFront API action, there are
more required fields than when you create a distribution by using CreateDistribution. To update a
distribution, complete the following steps:

1. Use GetDistribution to get the current configuration of the distribution that you want to update.

2. Modify the fields in the distribution configuration that you want to update. Also, rename the
ETag field to IfMatch, but don’t change the field’s value.

3. Use UpdateDistribution to update the distribution, providing the entire distribution
configuration, including the fields that you modified and those that you didn’t.

The following tables summarizes the fields that are required for creating and for updating a
distribution.

DistributionConfig

Members Required in CreateDis
tribution API call

Required in UpdateDis
tribution API call

CallerReference Yes
Yes

Required API fields for creating and updating distributions 30

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_GetDistributionConfig.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_DeleteDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_GetDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html

Amazon CloudFront Developer Guide

Members Required in CreateDis
tribution API call

Required in UpdateDis
tribution API call

Aliases - Yes (this field is required, but
a quantity of 0 with no items
is valid)

DefaultRootObject -
Yes (this field is required, but
an empty string is a valid val
ue)

Origins Yes Yes

OriginGroups - -

DefaultCacheBehavior Yes Yes

CacheBehaviors -
Yes (this field is required, but
a quantity of 0 with no items
is valid)

CustomErrorResponses -
Yes (this field is required, but
a quantity of 0 with no items
is valid)

Comment Yes (this field is required, but
an empty string is a valid
value)

Yes (this field is required, but
an empty string is a valid val
ue)

Logging - Yes

PriceClass - Yes

Enabled Yes Yes

ViewerCertificate - Yes

Required API fields for creating and updating distributions 31

Amazon CloudFront Developer Guide

Members Required in CreateDis
tribution API call

Required in UpdateDis
tribution API call

Restrictions -
Yes (this field is required, but
a RestrictionsType of
none and a quantity of 0
with no items is valid)

WebACLId -
Yes (this field is required, but
an empty string is a valid val
ue)

HttpVersion - Yes

IsIPV6Enabled - -

CacheBehavior (including DefaultCacheBehavior)

Members Required in CreateDis
tribution API call

Required in UpdateDis
tribution API call

PathPattern (this field does
not apply to DefaultCa
cheBehavior)

Yes Yes

TargetOriginId Yes Yes

TrustedSigners - -

TrustedKeyGroups - -

ViewerProtocolPolicy Yes Yes

AllowedMethods - Yes

SmoothStreaming - Yes

Required API fields for creating and updating distributions 32

Amazon CloudFront Developer Guide

Members Required in CreateDis
tribution API call

Required in UpdateDis
tribution API call

Compress - Yes

LambdaFunctionAssociations -
Yes (this field is required, but
a quantity of 0 with no items
is valid)

FunctionAssociations - -

FieldLevelEncryptionId -
Yes (this field is required, but
an empty string is a valid val
ue)

RealtimeLogConfigArn - -

CachePolicyId Yes (CachePolicyId is not
required when you use the
following deprecated fields,
which is not recommend
ed: ForwardedValues ,
 MinTTL, DefaultTTL , and
 MaxTTL)

Yes (CachePolicyId is not
required when you use the
following deprecated fields,
which is not recommend
ed: ForwardedValues ,
 MinTTL, DefaultTTL , and
 MaxTTL)

OriginRequestPolicyId - -

ResponseHeadersPolicyId - -

Creating, updating, and deleting distributions

The following topics explain how to create, update, or delete an Amazon CloudFront distribution.

Creating, updating, and deleting distributions 33

Amazon CloudFront Developer Guide

Topics

• Steps for creating a distribution (overview)

• Creating a distribution

• Values that you specify when you create or update a distribution

• Values that CloudFront displays in the console

• Testing a distribution

• Updating a distribution

• Tagging Amazon CloudFront distributions

• Deleting a distribution

Steps for creating a distribution (overview)

The following task list summarizes the process for creating a distribution.

To create a distribution

1. Create one or more Amazon S3 buckets, or configure HTTP servers as your origin servers. An
origin is the location where you store the original version of your content. When CloudFront
gets a request for your files, it goes to the origin to get the files that it distributes at edge
locations. You can use any combination of Amazon S3 buckets and HTTP servers as your origin
servers.

If you use Amazon S3, the name of your bucket must be all lowercase and cannot contain
spaces.

If you use an Amazon EC2 server or another custom origin, review Using Amazon EC2 (or
another custom origin).

For the current maximum number of origins that you can create for a distribution, or to
request a higher quota, see General quotas on distributions.

2. Upload your content to your origin servers. You make your objects publicly readable, or you
can use CloudFront signed URLs to restrict access to your content.

Steps for creating a distribution 34

Amazon CloudFront Developer Guide

Important

You are responsible for ensuring the security of your origin server. You must ensure
that CloudFront has permission to access the server and that the security settings
safeguard your content.

3. Create your CloudFront distribution:

• For more information about using the CloudFront console to create a distribution, see
Creating a distribution.

• For information about creating a distribution using the CloudFront APIs, go to
CreateDistribution in the Amazon CloudFront API Reference.

4. (Optional) If you use the CloudFront console to create your distribution, create more cache
behaviors or origins for the distribution. For more information about behaviors and origins, see
To update a CloudFront distribution.

5. Test your distribution. For more information about testing, see Testing a distribution.

6. Develop your website or application to access your content using the domain name that
CloudFront returned after you created your distribution in Step 3. For example, if CloudFront
returns d111111abcdef8.cloudfront.net as the domain name for your distribution, the URL
for the file image.jpg in an Amazon S3 bucket or in the root directory on an HTTP server is
https://d111111abcdef8.cloudfront.net/image.jpg.

If you specified one or more alternate domain names (CNAMEs) when you created your
distribution, you can use your own domain name. In that case, the URL for image.jpg might
be https://www.example.com/image.jpg.

Note the following:

• If you want to use signed URLs to restrict access to your content, see Serving private content
with signed URLs and signed cookies.

• If you want to serve compressed content, see Serving compressed files.

• For information about CloudFront request and response behavior for Amazon S3 and
custom origins, see Request and response behavior.

Steps for creating a distribution 35

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateDistribution.html

Amazon CloudFront Developer Guide

Creating a distribution

This topic explains how to use the CloudFront console to create a distribution.

For information about using the CloudFront APIs to create a distribution, see Create Distribution in
the Amazon CloudFront API Reference.

For information about updating distributions, see Updating a distribution, later in this section.

To see the current maximum number of distributions that you can create for each AWS account, or
to request a higher quota (formerly known as limit), see General quotas on distributions.

To create a distribution (console)

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. In the navigation pane, choose Distributions, then choose Create distribution.

3. Specify settings for the distribution. For more information, see Values that you specify when
you create or update a distribution.

4. Save your changes.

5. After CloudFront creates your distribution, the value of the Status column for your distribution
will change from Deploying to the date and time that the distribution is deployed. If you chose
to enable the distribution, it will be ready to process requests at this time.

The domain name that CloudFront assigns to your distribution appears in the list of
distributions. (It also appears on the General tab for a selected distribution.)

Tip

You can use an alternate domain name, instead of the name assigned to you by
CloudFront; by following the steps in Using custom URLs by adding alternate domain
names (CNAMEs).

6. When your distribution is deployed, confirm that you can access your content using your new
CloudFront URL or CNAME. For more information, see Testing a distribution.

To update a distribution (for example, to add or change cache behaviors), see Updating a
distribution.

Creating a distribution 36

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateDistribution.html
https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

Values that you specify when you create or update a distribution

When you use the CloudFront console to create a new distribution or update an existing
distribution, you specify the following values:

the section called “Origin settings”

• the section called “Origin domain”

• the section called “Protocol (custom origins only)”

• the section called “Origin path”

• the section called “Name”

• the section called “Origin access (Amazon S3 origins only)”

• the section called “Add custom header”

• the section called “Enable Origin Shield”

• the section called “Connection attempts”

• the section called “Connection timeout”

• the section called “Response timeout (custom origins only)”

• the section called “Keep-alive timeout (custom origins only)”

Cache behavior settings

The following values apply to the Default Cache Behavior Settings when you create a distribution.
They also apply to other cache behaviors that you create later.

• Path pattern

• Origin or origin group (Applies only when you create or update a cache behavior for an existing
distribution)

• Viewer protocol policy

• Allowed HTTP methods

• Field-level encryption config

• Cached HTTP methods

• Cache based on selected request headers

• Allowlist headers (Applies only when you choose Allowlist for Cache Based on Selected Request
Headers)

Values that you specify 37

https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

• Object caching

• Minimum TTL

• Maximum TTL

• Default TTL

• Forward cookies

• Allowlist cookies (Applies only when you choose Allowlist for Forward Cookies)

• Query string forwarding and caching

• Query string allowlist (Applies only when you choose Forward all, cache based on allowlist for
Query String Forwarding and Caching)

• Smooth Streaming

• Restrict viewer access (use signed URLs or signed cookies)

• Trusted signers (Applies only when you choose Yes for Restrict Viewer Access (Use Signed URLs
or Signed Cookies)

• AWS account numbers (Applies only when you choose Specify Accounts for Trusted Signers)

• Compress objects automatically

The following values apply to Lambda Function Associations.

• CloudFront event

• Lambda function ARN

• Include body

Distribution settings

• Price class

• AWS WAF web ACL

• Alternate domain names (CNAMEs)

• SSL certificate

• Custom SSL client support (Applies only when you choose Custom SSL Certificate
(example.com) for SSL Certificate)

• Security policy (Minimum SSL/TLS version)

Values that you specify 38

Amazon CloudFront Developer Guide

• Supported HTTP versions

• Default root object

• Logging

• Bucket for logs

• Log prefix

• Cookie logging

• Enable IPv6

• Comment

• Distribution state

Custom error pages and error caching

• HTTP error code

• Response page path

• HTTP response code

• Error caching minimum TTL (seconds)

Geographic restrictions

For more information about creating or updating a distribution by using the CloudFront console,
see the section called “Creating a distribution” or the section called “Updating a distribution”.

Origin settings

When you use the CloudFront console to create or update a distribution, you provide information
about one or more locations, known as origins, where you store the original versions of your
web content. CloudFront gets your web content from your origins and serves it to viewers via a
worldwide network of edge servers.

For the current maximum number of origins that you can create for a distribution, or to request a
higher quota, see the section called “General quotas on distributions”.

If you want to delete an origin, you must first edit or delete the cache behaviors that are associated
with that origin.

Values that you specify 39

Amazon CloudFront Developer Guide

Important

If you delete an origin, confirm that files that were previously served by that origin are
available in another origin and that your cache behaviors are now routing requests for
those files to the new origin.

When you create or update a distribution, you specify the following values for each origin.

Origin domain

The origin domain is the DNS domain name of the Amazon S3 bucket or HTTP server from which
you want CloudFront to get objects for this origin, for example:

• Amazon S3 bucket – DOC-EXAMPLE-BUCKET.s3.us-west-2.amazonaws.com

Note

If you recently created the S3 bucket, the CloudFront distribution might return HTTP
307 Temporary Redirect responses for up to 24 hours. It can take up to 24 hours for
the S3 bucket name to propagate to all AWS Regions. When the propagation is complete,
the distribution automatically stops sending these redirect responses; you don't need to
take any action. For more information, see Why am I getting an HTTP 307 Temporary
Redirect response from Amazon S3? and Temporary Request Redirection.

• Amazon S3 bucket configured as a website – DOC-EXAMPLE-BUCKET.s3-website.us-
west-2.amazonaws.com

• MediaStore container – examplemediastore.data.mediastore.us-
west-1.amazonaws.com

• MediaPackage endpoint – examplemediapackage.mediapackage.us-
west-1.amazonaws.com

• Amazon EC2 instance – ec2-203-0-113-25.compute-1.amazonaws.com

• Elastic Load Balancing load balancer – example-load-balancer-1234567890.us-
west-2.elb.amazonaws.com

• Your own web server – https://www.example.com

Values that you specify 40

https://aws.amazon.com/premiumsupport/knowledge-center/s3-http-307-response/
https://aws.amazon.com/premiumsupport/knowledge-center/s3-http-307-response/
https://docs.aws.amazon.com/AmazonS3/latest/dev/Redirects.html#TemporaryRedirection

Amazon CloudFront Developer Guide

Choose the domain name in the Origin domain field, or type the name. The domain name is not
case-sensitive.

If your origin is an Amazon S3 bucket, note the following:

• If the bucket is configured as a website, enter the Amazon S3 static website hosting endpoint
for your bucket; don’t select the bucket name from the list in the Origin domain field. The static
website hosting endpoint appears in the Amazon S3 console, on the Properties page under
Static website hosting. For more information, see the section called “Using an Amazon S3
bucket that's configured as a website endpoint”.

• If you configured Amazon S3 Transfer Acceleration for your bucket, do not specify the s3-
accelerate endpoint for Origin domain.

• If you're using a bucket from a different AWS account and if the bucket is not configured as a
website, enter the name, using the following format:

bucket-name.s3.region.amazonaws.com

If your bucket reside in a US Region, and you want Amazon S3 to route requests to a facility in
northern Virginia, use the following format:

bucket-name.s3.us-east-1.amazonaws.com

• The files must be publicly readable unless you secure your content in Amazon S3 by using a
CloudFront origin access control. For more information about access control, see the section
called “Restricting access to an Amazon Simple Storage Service origin”.

Important

If the origin is an Amazon S3 bucket, the bucket name must conform to DNS naming
requirements. For more information, go to Bucket restrictions and limitations in the
Amazon Simple Storage Service User Guide.

When you change the value of Origin domain for an origin, CloudFront immediately begins
replicating the change to CloudFront edge locations. Until the distribution configuration is updated
in a given edge location, CloudFront continues to forward requests to the previous origin. As soon
as the distribution configuration is updated in that edge location, CloudFront begins to forward
requests to the new origin.

Values that you specify 41

https://docs.aws.amazon.com/AmazonS3/latest/userguide/BucketRestrictions.html

Amazon CloudFront Developer Guide

Changing the origin does not require CloudFront to repopulate edge caches with objects from
the new origin. As long as the viewer requests in your application have not changed, CloudFront
continues to serve objects that are already in an edge cache until the TTL on each object expires or
until seldom-requested objects are evicted.

Origin path

If you want CloudFront to request your content from a directory in your origin, enter the directory
path, beginning with a slash (/). CloudFront appends the directory path to the value of Origin
domain, for example, cf-origin.example.com/production/images. Do not add a slash (/) at
the end of the path.

For example, suppose you’ve specified the following values for your distribution:

• Origin domain – An Amazon S3 bucket named DOC-EXAMPLE-BUCKET

• Origin path – /production

• Alternate domain names (CNAME) – example.com

When a user enters example.com/index.html in a browser, CloudFront sends a request to
Amazon S3 for DOC-EXAMPLE-BUCKET/production/index.html.

When a user enters example.com/acme/index.html in a browser, CloudFront sends a request to
Amazon S3 for DOC-EXAMPLE-BUCKET/production/acme/index.html.

Name

A name is a string that uniquely identifies this origin in this distribution. If you create cache
behaviors in addition to the default cache behavior, you use the name that you specify here to
identify the origin that you want CloudFront to route a request to when the request matches the
path pattern for that cache behavior.

Add custom header

If you want CloudFront to add custom headers whenever it sends a request to your origin, specify
the header name and its value. For more information, see the section called “Adding custom
headers to origin requests”.

For the current maximum number of custom headers that you can add, the maximum length of a
custom header name and value, and the maximum total length of all header names and values, see
Quotas.

Values that you specify 42

Amazon CloudFront Developer Guide

Enable Origin Shield

Choose Yes to enable CloudFront Origin Shield. For more information about Origin Shield, see the
section called “Using Origin Shield”.

Connection attempts

You can set the number of times that CloudFront attempts to connect to the origin. You can specify
1, 2, or 3 as the number of attempts. The default number (if you don’t specify otherwise) is 3.

Use this setting together with Connection timeout to specify how long CloudFront waits before
attempting to connect to the secondary origin or returning an error response to the viewer. By
default, CloudFront waits as long as 30 seconds (3 attempts of 10 seconds each) before attempting
to connect to the secondary origin or returning an error response. You can reduce this time by
specifying fewer attempts, a shorter connection timeout, or both.

If the specified number of connection attempts fail, CloudFront does one of the following:

• If the origin is part of an origin group, CloudFront attempts to connect to the secondary origin.
If the specified number of connection attempts to the secondary origin fail, then CloudFront
returns an error response to the viewer.

• If the origin is not part of an origin group, CloudFront returns an error response to the viewer.

For a custom origin (including an Amazon S3 bucket that’s configured with static website hosting),
this setting also specifies the number of times that CloudFront attempts to get a response from the
origin. For more information, see the section called “Response timeout (custom origins only)”.

Connection timeout

The connection timeout is the number of seconds that CloudFront waits when trying to establish
a connection to the origin. You can specify a number of seconds between 1 and 10 (inclusive). The
default timeout (if you don’t specify otherwise) is 10 seconds.

Use this setting together with Connection attempts to specify how long CloudFront waits before
attempting to connect to the secondary origin or before returning an error response to the
viewer. By default, CloudFront waits as long as 30 seconds (3 attempts of 10 seconds each) before
attempting to connect to the secondary origin or returning an error response. You can reduce this
time by specifying fewer attempts, a shorter connection timeout, or both.

Values that you specify 43

Amazon CloudFront Developer Guide

If CloudFront doesn’t establish a connection to the origin within the specified number of seconds,
CloudFront does one of the following:

• If the specified number of Connection attempts is more than 1, CloudFront tries again to
establish a connection. CloudFront tries up to 3 times, as determined by the value of Connection
attempts.

• If all the connection attempts fail and the origin is part of an origin group, CloudFront attempts
to connect to the secondary origin. If the specified number of connection attempts to the
secondary origin fail, then CloudFront returns an error response to the viewer.

• If all the connection attempts fail and the origin is not part of an origin group, CloudFront
returns an error response to the viewer.

Response timeout (custom origins only)

Note

This applies only to custom origins.

The origin response timeout, also known as the origin read timeout or origin request timeout,
applies to both of the following values:

• How long (in seconds) CloudFront waits for a response after forwarding a request to the origin.

• How long (in seconds) CloudFront waits after receiving a packet of a response from the origin
and before receiving the next packet.

The default timeout is 30 seconds. You can change the value to be from 1 to 60 seconds. If you
need a timeout value outside that range, create a case in the AWS Support Center Console.

Tip

If you want to increase the timeout value because viewers are experiencing HTTP 504
status code errors, consider exploring other ways to eliminate those errors before changing
the timeout value. See the troubleshooting suggestions in the section called “HTTP 504
status code (Gateway Timeout)”.

Values that you specify 44

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase

Amazon CloudFront Developer Guide

CloudFront behavior depends on the HTTP method in the viewer request:

• GET and HEAD requests – If the origin doesn’t respond or stops responding within the duration
of the response timeout, CloudFront drops the connection. CloudFront tries again to connect
according to the value of the section called “Connection attempts”.

• DELETE, OPTIONS, PATCH, PUT, and POST requests – If the origin doesn’t respond for the
duration of the read timeout, CloudFront drops the connection and doesn’t try again to contact
the origin. The client can resubmit the request if necessary.

Keep-alive timeout (custom origins only)

Note

This applies only to custom origins.

The keep-alive timeout is how long (in seconds) CloudFront tries to maintain a connection to
your custom origin after it gets the last packet of a response. Maintaining a persistent connection
saves the time that is required to re-establish the TCP connection and perform another TLS
handshake for subsequent requests. Increasing the keep-alive timeout helps improve the request-
per-connection metric for distributions.

Note

For the Keep-alive timeout value to have an effect, your origin must be configured to allow
persistent connections.

The default timeout is 5 seconds. You can change the value to a number from 1 to 60 seconds. If
you need a keep-alive timeout longer than 60 seconds, create a case in the AWS Support Center
Console.

Origin access (Amazon S3 origins only)

Note

This applies only to Amazon S3 bucket origins (those that are not using the S3 static
website endpoint).

Values that you specify 45

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase

Amazon CloudFront Developer Guide

Choose Origin access control settings (recommended) if you want to make it possible to restrict
access to an Amazon S3 bucket origin to only specific CloudFront distributions.

Choose Public if the Amazon S3 bucket origin is publicly accessible.

For more information, see the section called “Restricting access to an Amazon Simple Storage
Service origin”.

For information about how to require users to access objects on a custom origin by using only
CloudFront URLs, see the section called “ Restricting access to files on custom origins”.

Protocol (custom origins only)

Note

This applies only to custom origins.

The protocol policy that you want CloudFront to use when fetching objects from your origin.

Choose one of the following values:

• HTTP only: CloudFront uses only HTTP to access the origin.

Important

HTTP only is the default setting when the origin is an Amazon S3 static website hosting
endpoint, because Amazon S3 doesn’t support HTTPS connections for static website
hosting endpoints. The CloudFront console does not support changing this setting for
Amazon S3 static website hosting endpoints.

• HTTPS only: CloudFront uses only HTTPS to access the origin.

• Match viewer: CloudFront communicates with your origin using HTTP or HTTPS, depending on
the protocol of the viewer request. CloudFront caches the object only once even if viewers make
requests using both HTTP and HTTPS protocols.

Important

For HTTPS viewer requests that CloudFront forwards to this origin, one of the domain
names in the SSL/TLS certificate on your origin server must match the domain name

Values that you specify 46

Amazon CloudFront Developer Guide

that you specify for Origin domain. Otherwise, CloudFront responds to the viewer
requests with an HTTP status code 502 (Bad Gateway) instead of returning the requested
object. For more information, see the section called “Requirements for using SSL/TLS
certificates with CloudFront”.

HTTP port

Note

This applies only to custom origins.

(Optional) You can specify the HTTP port on which the custom origin listens. Valid values include
ports 80, 443, and 1024 to 65535. The default value is port 80.

Important

Port 80 is the default setting when the origin is an Amazon S3 static website hosting
endpoint, because Amazon S3 only supports port 80 for static website hosting endpoints.
The CloudFront console does not support changing this setting for Amazon S3 static
website hosting endpoints.

HTTPS port

Note

This applies only to custom origins.

(Optional) You can specify the HTTPS port on which the custom origin listens. Valid values include
ports 80, 443, and 1024 to 65535. The default value is port 443. When Protocol is set to HTTP
only, you cannot specify a value for HTTPS port.

Values that you specify 47

Amazon CloudFront Developer Guide

Minimum origin SSL protocol

Note

This applies only to custom origins.

Choose the minimum TLS/SSL protocol that CloudFront can use when it establishes an HTTPS
connection to your origin. Lower TLS protocols are less secure, so we recommend that you choose
the latest TLS protocol that your origin supports. When Protocol is set to HTTP only, you cannot
specify a value for Minimum origin SSL protocol.

If you use the CloudFront API to set the TLS/SSL protocol for CloudFront to use, you cannot set a
minimum protocol. Instead, you specify all of the TLS/SSL protocols that CloudFront can use with
your origin. For more information, see OriginSslProtocols in the Amazon CloudFront API Reference.

Cache behavior settings

By setting the cache behavior, you can configure a variety of CloudFront functionality for a given
URL path pattern for files on your website. For example, one cache behavior might apply to
all .jpg files in the images directory on a web server that you're using as an origin server for
CloudFront. The functionality that you can configure for each cache behavior includes:

• The path pattern

• If you have configured multiple origins for your CloudFront distribution, the origin to which you
want CloudFront to forward your requests

• Whether to forward query strings to your origin

• Whether accessing the specified files requires signed URLs

• Whether to require users to use HTTPS to access those files

• The minimum amount of time that those files stay in the CloudFront cache regardless of the
value of any Cache-Control headers that your origin adds to the files

When you create a new distribution, you specify settings for the default cache behavior, which
automatically forwards all requests to the origin that you specify when you create the distribution.
After you create a distribution, you can create additional cache behaviors that define how
CloudFront responds when it receives a request for objects that match a path pattern, for example,

Values that you specify 48

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_OriginSslProtocols.html

Amazon CloudFront Developer Guide

*.jpg. If you create additional cache behaviors, the default cache behavior is always the last
to be processed. Other cache behaviors are processed in the order in which they're listed in the
CloudFront console or, if you're using the CloudFront API, the order in which they're listed in the
DistributionConfig element for the distribution. For more information, see Path pattern.

When you create a cache behavior, you specify the one origin from which you want CloudFront to
get objects. As a result, if you want CloudFront to distribute objects from all of your origins, you
must have at least as many cache behaviors (including the default cache behavior) as you have
origins. For example, if you have two origins and only the default cache behavior, the default cache
behavior causes CloudFront to get objects from one of the origins, but the other origin is never
used.

For the current maximum number of cache behaviors that you can add to a distribution, or to
request a higher quota (formerly known as limit), see General quotas on distributions.

Path pattern

A path pattern (for example, images/*.jpg) specifies to which requests you want this cache
behavior to apply. When CloudFront receives an end-user request, the requested path is compared
with path patterns in the order in which cache behaviors are listed in the distribution. The first
match determines which cache behavior is applied to that request. For example, suppose you have
three cache behaviors with the following three path patterns, in this order:

• images/*.jpg

• images/*

• *.gif

Note

You can optionally include a slash (/) at the beginning of the path pattern, for example,
/images/*.jpg. CloudFront behavior is the same with or without the leading /. If you
don't specify the / at the beginning of the path, this character is automatically implied;
CloudFront treats the path the same with or without the leading /. For example, CloudFront
treats /*product.jpg the same as *product.jpg

A request for the file images/sample.gif doesn't satisfy the first path pattern, so the associated
cache behaviors are not applied to the request. The file does satisfy the second path pattern, so the

Values that you specify 49

Amazon CloudFront Developer Guide

cache behaviors associated with the second path pattern are applied even though the request also
matches the third path pattern.

Note

When you create a new distribution, the value of Path Pattern for the default cache
behavior is set to * (all files) and cannot be changed. This value causes CloudFront to
forward all requests for your objects to the origin that you specified in the Origin domain
field. If the request for an object does not match the path pattern for any of the other
cache behaviors, CloudFront applies the behavior that you specify in the default cache
behavior.

Important

Define path patterns and their sequence carefully or you may give users undesired access
to your content. For example, suppose a request matches the path pattern for two cache
behaviors. The first cache behavior does not require signed URLs and the second cache
behavior does require signed URLs. Users are able to access the objects without using a
signed URL because CloudFront processes the cache behavior associated with the first
match.

If you're working with a MediaPackage channel, you must include specific path patterns for the
cache behavior that you define for the endpoint type for your origin. For example, for a DASH
endpoint, you type *.mpd for Path Pattern. For more information and specific instructions, see
Serving live video formatted with AWS Elemental MediaPackage.

The path you specify applies to requests for all files in the specified directory and in subdirectories
below the specified directory. CloudFront does not consider query strings or cookies when
evaluating the path pattern. For example, if an images directory contains product1 and
product2 subdirectories, the path pattern images/*.jpg applies to requests for any .jpg file
in the images, images/product1, and images/product2 directories. If you want to apply
a different cache behavior to the files in the images/product1 directory than the files in the
images and images/product2 directories, create a separate cache behavior for images/
product1 and move that cache behavior to a position above (before) the cache behavior for the
images directory.

Values that you specify 50

Amazon CloudFront Developer Guide

You can use the following wildcard characters in your path pattern:

• * matches 0 or more characters.

• ? matches exactly 1 character.

The following examples show how the wildcard characters work:

Path pattern Files that match the path pattern

*.jpg All .jpg files.

images/*.
jpg

All .jpg files in the images directory and in subdirectories under the
images directory.

a*.jpg •
All .jpg files for which the file name begins with a, for example,
 apple.jpg and appalachian_trail_2012_05_21.jpg .

•
All .jpg files for which the file path begins with a, for example, abra/
cadabra/magic.jpg .

a??.jpg All .jpg files for which the file name begins with a and is followed by exactly
two other characters, for example, ant.jpg and abe.jpg.

.doc All files for which the file name extension begins with .doc, for example,
.doc, .docx, and .docm files. You can't use the path pattern *.doc? in
 this case, because that path pattern wouldn't apply to requests for .doc
files; the ? wildcard character replaces exactly one character.

The maximum length of a path pattern is 255 characters. The value can contain any of the
following characters:

• A-Z, a-z

Values that you specify 51

Amazon CloudFront Developer Guide

Path patterns are case-sensitive, so the path pattern *.jpg doesn't apply to the file LOGO.JPG

• 0-9

• _ - . * $ / ~ " ' @ : +

• &, passed and returned as &

Path normalization

CloudFront normalizes URI paths consistent with RFC 3986 and then matches the path with the
correct cache behavior. Once the cache behavior is matched, CloudFront sends the raw URI path to
the origin. If they don't match, requests are instead matched to your default cache behavior.

Some characters are normalized and removed from the path, such as multiple slashes (//) or
periods (..). This can alter the URL that CloudFront uses to match the intended cache behavior.

Example Example

You specify the /a/b* and /a* paths for your cache behavior.

• A viewer sending the /a/b?c=1 path will match the /a/b* cache behavior.

• A viewer sending the /a/b/..?c=1 path will match the /a* cache behavior.

To work around the paths being normalized, you can update your request paths or the path pattern
for the cache behavior.

Origin or origin group

Enter the value of an existing origin or origin group. This identifies the origin or origin group to
which you want CloudFront to route requests when a request (such as https://example.com/
logo.jpg) matches the path pattern for a cache behavior (such as *.jpg) or for the default cache
behavior (*).

Viewer protocol policy

Choose the protocol policy that you want viewers to use to access your content in CloudFront edge
locations:

• HTTP and HTTPS: Viewers can use both protocols.

Values that you specify 52

https://datatracker.ietf.org/doc/html/rfc3986#section-6

Amazon CloudFront Developer Guide

• Redirect HTTP to HTTPS: Viewers can use both protocols, but HTTP requests are automatically
redirected to HTTPS requests.

• HTTPS Only: Viewers can only access your content if they're using HTTPS.

For more information, see Requiring HTTPS for communication between viewers and CloudFront.

Allowed HTTP methods

Specify the HTTP methods that you want CloudFront to process and forward to your origin:

• GET, HEAD: You can use CloudFront only to get objects from your origin or to get object headers.

• GET, HEAD, OPTIONS: You can use CloudFront only to get objects from your origin, get object
headers, or retrieve a list of the options that your origin server supports.

• GET, HEAD, OPTIONS, PUT, POST, PATCH, DELETE: You can use CloudFront to get, add,
update, and delete objects, and to get object headers. In addition, you can perform other POST
operations such as submitting data from a web form.

Note

CloudFront caches responses to GET and HEAD requests and, optionally, OPTIONS
requests. Responses to OPTIONS requests are cached separately from responses to GET
and HEAD requests (the OPTIONS method is included in the cache key for OPTIONS
requests). CloudFront does not cache responses to requests that use other methods.

Important

If you choose GET, HEAD, OPTIONS or GET, HEAD, OPTIONS, PUT, POST, PATCH, DELETE,
you might need to restrict access to your Amazon S3 bucket or to your custom origin to
prevent users from performing operations that you don't want them to perform. The
following examples explain how to restrict access:

• If you're using Amazon S3 as an origin for your distribution: Create a CloudFront origin
access control to restrict access to your Amazon S3 content, and give permissions to the
origin access control. For example, if you configure CloudFront to accept and forward
these methods only because you want to use PUT, you must still configure Amazon S3

Values that you specify 53

Amazon CloudFront Developer Guide

bucket policies to handle DELETE requests appropriately. For more information, see
Restricting access to an Amazon Simple Storage Service origin.

• If you're using a custom origin: Configure your origin server to handle all methods. For
example, if you configure CloudFront to accept and forward these methods only because
you want to use POST, you must still configure your origin server to handle DELETE
requests appropriately.

Field-level encryption config

If you want to enforce field-level encryption on specific data fields, in the dropdown list, choose a
field-level encryption configuration.

For more information, see Using field-level encryption to help protect sensitive data.

Cached HTTP methods

Specify whether you want CloudFront to cache the response from your origin when a viewer
submits an OPTIONS request. CloudFront always caches the response to GET and HEAD requests.

Cache based on selected request headers

Specify whether you want CloudFront to cache objects based on the values of specified headers:

• None (improves caching) – CloudFront doesn't cache your objects based on header values.

• Allowlist – CloudFront caches your objects based only on the values of the specified headers.
Use Allowlist Headers to choose the headers that you want CloudFront to base caching on.

• All – CloudFront doesn't cache the objects that are associated with this cache behavior. Instead,
CloudFront sends every request to the origin. (Not recommended for Amazon S3 origins.)

Regardless of the option that you choose, CloudFront forwards certain headers to your origin
and takes specific actions based on the headers that you forward. For more information about
how CloudFront handles header forwarding, see HTTP request headers and CloudFront behavior
(custom and Amazon S3 origins).

For more information about how to configure caching in CloudFront by using request headers, see
Caching content based on request headers.

Values that you specify 54

Amazon CloudFront Developer Guide

Allowlist headers

Specify the headers that you want CloudFront to consider when caching your objects. Select
headers from the list of available headers and choose Add. To forward a custom header, enter the
name of the header in the field, and choose Add Custom.

For the current maximum number of headers that you can allowlist for each cache behavior, or to
request a higher quota (formerly known as limit), see Quotas on headers.

Object caching

If your origin server is adding a Cache-Control header to your objects to control how long the
objects stay in the CloudFront cache and if you don't want to change the Cache-Control value,
choose Use Origin Cache Headers.

To specify a minimum and maximum time that your objects stay in the CloudFront cache regardless
of Cache-Control headers, and a default time that your objects stay in the CloudFront cache
when the Cache-Control header is missing from an object, choose Customize. Then specify
values in the Minimum TTL, Default TTL, and Maximum TTL fields.

For more information, see Managing how long content stays in the cache (expiration).

Minimum TTL

Specify the minimum amount of time, in seconds, that you want objects to stay in the CloudFront
cache before CloudFront sends another request to the origin to determine whether the object has
been updated.

For more information, see Managing how long content stays in the cache (expiration).

Maximum TTL

Specify the maximum amount of time, in seconds, that you want objects to stay in CloudFront
caches before CloudFront queries your origin to see whether the object has been updated. The
value that you specify for Maximum TTL applies only when your origin adds HTTP headers such
as Cache-Control max-age, Cache-Control s-maxage, or Expires to objects. For more
information, see Managing how long content stays in the cache (expiration).

To specify a value for Maximum TTL, you must choose the Customize option for the Object
Caching setting.

Values that you specify 55

Amazon CloudFront Developer Guide

The default value for Maximum TTL is 31536000 seconds (one year). If you change the value
of Minimum TTL or Default TTL to more than 31536000 seconds, then the default value of
Maximum TTL changes to the value of Default TTL.

Default TTL

Specify the default amount of time, in seconds, that you want objects to stay in CloudFront caches
before CloudFront forwards another request to your origin to determine whether the object has
been updated. The value that you specify for Default TTL applies only when your origin does not
add HTTP headers such as Cache-Control max-age, Cache-Control s-maxage, or Expires
to objects. For more information, see Managing how long content stays in the cache (expiration).

To specify a value for Default TTL, you must choose the Customize option for the Object Caching
setting.

The default value for Default TTL is 86400 seconds (one day). If you change the value of Minimum
TTL to more than 86400 seconds, then the default value of Default TTL changes to the value of
Minimum TTL.

Forward cookies

Note

For Amazon S3 origins, this option applies to only buckets that are configured as a website
endpoint.

Specify whether you want CloudFront to forward cookies to your origin server and, if so, which
ones. If you choose to forward only selected cookies (an allowlist of cookies), enter the cookie
names in the Allowlist Cookies field. If you choose All, CloudFront forwards all cookies regardless
of how many your application uses.

Amazon S3 doesn't process cookies, and forwarding cookies to the origin reduces cache ability. For
cache behaviors that are forwarding requests to an Amazon S3 origin, choose None for Forward
Cookies.

For more information about forwarding cookies to the origin, go to Caching content based on
cookies.

Values that you specify 56

Amazon CloudFront Developer Guide

Allowlist cookies

Note

For Amazon S3 origins, this option applies to only buckets that are configured as a website
endpoint.

If you chose Allowlist in the Forward Cookies list, then in the Allowlist Cookies field, enter the
names of cookies that you want CloudFront to forward to your origin server for this cache behavior.
Enter each cookie name on a new line.

You can specify the following wildcards to specify cookie names:

• * matches 0 or more characters in the cookie name

• ? matches exactly one character in the cookie name

For example, suppose viewer requests for an object include a cookie named:

userid_member-number

Where each of your users has a unique value for member-number. You want CloudFront to cache
a separate version of the object for each member. You could accomplish this by forwarding all
cookies to your origin, but viewer requests include some cookies that you don't want CloudFront
to cache. Alternatively, you could specify the following value as a cookie name, which causes
CloudFront to forward to the origin all of the cookies that begin with userid_:

userid_*

For the current maximum number of cookie names that you can allowlist for each cache behavior,
or to request a higher quota (formerly known as limit), see Quotas on cookies (legacy cache
settings).

Query string forwarding and caching

CloudFront can cache different versions of your content based on the values of query string
parameters. Choose one of the following options:

Values that you specify 57

Amazon CloudFront Developer Guide

None (Improves Caching)

Choose this option if your origin returns the same version of an object regardless of the values
of query string parameters. This increases the likelihood that CloudFront can serve a request
from the cache, which improves performance and reduces the load on your origin.

Forward all, cache based on allowlist

Choose this option if your origin server returns different versions of your objects based on one
or more query string parameters. Then specify the parameters that you want CloudFront to use
as a basis for caching in the Query string allowlist field.

Forward all, cache based on all

Choose this option if your origin server returns different versions of your objects for all query
string parameters.

For more information about caching based on query string parameters, including how to improve
performance, see Caching content based on query string parameters.

Query string allowlist

If you chose Forward all, cache based on allowlist for Query string forwarding and caching,
specify the query string parameters that you want CloudFront to use as a basis for caching.

Smooth Streaming

Choose Yes if you want to distribute media files in the Microsoft Smooth Streaming format and
you do not have an IIS server.

Choose No if you have a Microsoft IIS server that you want to use as an origin to distribute media
files in the Microsoft Smooth Streaming format, or if you are not distributing Smooth Streaming
media files.

Note

If you specify Yes, you can still distribute other content using this cache behavior if that
content matches the value of Path Pattern.

For more information, see Configuring video on demand for Microsoft Smooth Streaming.

Values that you specify 58

Amazon CloudFront Developer Guide

Restrict viewer access (use signed URLs or signed cookies)

If you want requests for objects that match the PathPattern for this cache behavior to use public
URLs, choose No.

If you want requests for objects that match the PathPattern for this cache behavior to use signed
URLs, choose Yes. Then specify the AWS accounts that you want to use to create signed URLs;
these accounts are known as trusted signers.

For more information about trusted signers, see Specifying the signers that can create signed URLs
and signed cookies.

Trusted signers

Choose which AWS accounts you want to use as trusted signers for this cache behavior:

• Self: Use the account with which you're currently signed into the AWS Management Console as a
trusted signer. If you're currently signed in as an IAM user, the associated AWS account is added
as a trusted signer.

• Specify Accounts: Enter account numbers for trusted signers in the AWS Account Numbers field.

To create signed URLs, an AWS account must have at least one active CloudFront key pair.

Important

If you're updating a distribution that you're already using to distribute content, add trusted
signers only when you're ready to start generating signed URLs for your objects. After you
add trusted signers to a distribution, users must use signed URLs to access the objects that
match the PathPattern for this cache behavior.

AWS account numbers

If you want to create signed URLs using AWS accounts in addition to or instead of the current
account, enter one AWS account number per line in this field. Note the following:

• The accounts that you specify must have at least one active CloudFront key pair. For more
information, see Creating key pairs for your signers.

• You can't create CloudFront key pairs for IAM users, so you can't use IAM users as trusted signers.

Values that you specify 59

Amazon CloudFront Developer Guide

• For information about how to get the AWS account number for an account, see Your AWS
account identifiers in the Amazon Web Services General Reference.

• If you enter the account number for the current account, CloudFront automatically checks the
Self check box and removes the account number from the AWS Account Numbers list.

Compress objects automatically

If you want CloudFront to automatically compress files of certain types when viewers support
compressed content, choose Yes. When CloudFront compresses your content, downloads are
faster because the files are smaller, and your web pages render faster for your users. For more
information, see Serving compressed files.

CloudFront event

You can choose to run a Lambda function when one or more of the following CloudFront events
occur:

• When CloudFront receives a request from a viewer (viewer request)

• Before CloudFront forwards a request to the origin (origin request)

• When CloudFront receives a response from the origin (origin response)

• Before CloudFront returns the response to the viewer (viewer response)

For more information, see How to decide which CloudFront event to use to trigger a
Lambda@Edge function.

Lambda function ARN

Specify the Amazon Resource Name (ARN) of the Lambda function that you want to add a trigger
for. To learn how to get the ARN for a function, see step 1 of the procedure Adding Triggers by
Using the CloudFront Console.

Distribution settings

The following values apply to the entire distribution.

Values that you specify 60

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-edge-add-triggers.html#lambda-edge-add-triggers-cf-console
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-edge-add-triggers.html#lambda-edge-add-triggers-cf-console

Amazon CloudFront Developer Guide

Price class

Choose the price class that corresponds with the maximum price that you want to pay for
CloudFront service. By default, CloudFront serves your objects from edge locations in all
CloudFront Regions.

For more information about price classes and about how your choice of price class affects
CloudFront performance for your distribution, see CloudFront pricing.

AWS WAF web ACL

You can protect your CloudFront distribution with AWS WAF, a web application firewall that allows
you to secure your web applications and APIs to block requests before they reach your servers. You
can Enabling AWS WAF for new distributions when creating or editing a CloudFront distribution.

Optionally, you can later configure additional security protections for other threats specific to your
application in the AWS WAF console at https://console.aws.amazon.com/wafv2/.

For more information about AWS WAF, see the AWS WAF Developer Guide.

Alternate domain names (CNAMEs)

Optional. Specify one or more domain names that you want to use for URLs for your objects
instead of the domain name that CloudFront assigns when you create your distribution. You must
own the domain name, or have authorization to use it, which you verify by adding an SSL/TLS
certificate.

For example, if you want the URL for the object:

/images/image.jpg

To look like this:

https://www.example.com/images/image.jpg

Instead of like this:

https://d111111abcdef8.cloudfront.net/images/image.jpg

Add a CNAME for www.example.com.

Values that you specify 61

https://aws.amazon.com/cloudfront/pricing/
https://docs.aws.amazon.com/waf/latest/developerguide/what-is-aws-waf
https://console.aws.amazon.com/wafv2/
https://docs.aws.amazon.com/waf/latest/developerguide/

Amazon CloudFront Developer Guide

Important

If you add a CNAME for www.example.com to your distribution, you also must do the
following:

• Create (or update) a CNAME record with your DNS service to route queries for
www.example.com to d111111abcdef8.cloudfront.net.

• Add a certificate to CloudFront from a trusted certificate authority (CA) that covers the
domain name (CNAME) that you add to your distribution, to validate your authorization
to use the domain name.

You must have permission to create a CNAME record with the DNS service provider for
the domain. Typically, this means that you own the domain, or that you're developing an
application for the domain owner.

For the current maximum number of alternate domain names that you can add to a distribution, or
to request a higher quota (formerly known as limit), see General quotas on distributions.

For more information about alternate domain names, see Using custom URLs by adding alternate
domain names (CNAMEs). For more information about CloudFront URLs, see Customizing the URL
format for files in CloudFront.

SSL certificate

If you specified an alternate domain name to use with your distribution, choose Custom SSL
Certificate, and then, to validate your authorization to use the alternate domain name, choose
a certificate that covers it. If you want viewers to use HTTPS to access your objects, choose the
settings that support that.

Note

Before you can specify a custom SSL certificate, you must specify a valid alternate domain
name. For more information, see Requirements for using alternate domain names and
Using alternate domain names and HTTPS.

Values that you specify 62

Amazon CloudFront Developer Guide

• Default CloudFront Certificate (*.cloudfront.net) – Choose this option if you want
to use the CloudFront domain name in the URLs for your objects, such as https://
d111111abcdef8.cloudfront.net/image1.jpg.

• Custom SSL Certificate – Choose this option if you want to use your own domain name in
the URLs for your objects as an alternate domain name, such as https://example.com/
image1.jpg. Then choose a certificate to use that covers the alternate domain name. The list of
certificates can include any of the following:

• Certificates provided by AWS Certificate Manager

• Certificates that you purchased from a third-party certificate authority and uploaded to ACM

• Certificates that you purchased from a third-party certificate authority and uploaded to the
IAM certificate store

If you choose this setting, we recommend that you use only an alternate domain name in your
object URLs (https://example.com/logo.jpg). If you use your CloudFront distribution domain
name (https://d111111abcdef8.cloudfront.net/logo.jpg) and a client uses an older viewer that
doesn't support SNI, how the viewer responds depends on the value that you choose for Clients
Supported:

• All Clients: The viewer displays a warning because the CloudFront domain name doesn't match
the domain name in your SSL/TLS certificate.

• Only Clients that Support Server Name Indication (SNI): CloudFront drops the connection
with the viewer without returning the object.

Custom SSL client support

If you specified one or more alternate domain names and a custom SSL certificate for the
distribution, choose how you want CloudFront to serve HTTPS requests:

• Clients that Support Server Name Indication (SNI) - (Recommended) – With this setting,
virtually all modern web browsers and clients can connect to the distribution, because they
support SNI. However, some viewers might use older web browsers or clients that don’t support
SNI, which means they can’t connect to the distribution.

To apply this setting using the CloudFront API, specify sni-only in the SSLSupportMethod
field. In AWS CloudFormation, the field is named SslSupportMethod (note the different
capitalization).

Values that you specify 63

Amazon CloudFront Developer Guide

• Legacy Clients Support – With this setting, older web browsers and clients that don’t support
SNI can connect to the distribution. However, this setting incurs additional monthly charges. For
the exact price, go to the Amazon CloudFront Pricing page, and search the page for Dedicated IP
custom SSL.

To apply this setting using the CloudFront API, specify vip in the SSLSupportMethod field. In
AWS CloudFormation, the field is named SslSupportMethod (note the different capitalization).

For more information, see Choosing how CloudFront serves HTTPS requests.

Security policy

Specify the security policy that you want CloudFront to use for HTTPS connections with viewers
(clients). A security policy determines two settings:

• The minimum SSL/TLS protocol that CloudFront uses to communicate with viewers.

• The ciphers that CloudFront can use to encrypt the content that it returns to viewers.

For more information about the security policies, including the protocols and ciphers that each one
includes, see Supported protocols and ciphers between viewers and CloudFront.

The security policies that are available depend on the values that you specify for SSL Certificate
and Custom SSL Client Support (known as CloudFrontDefaultCertificate and
SSLSupportMethod in the CloudFront API):

• When SSL Certificate is Default CloudFront Certificate (*.cloudfront.net) (when
CloudFrontDefaultCertificate is true in the API), CloudFront automatically sets the
security policy to TLSv1.

• When SSL Certificate is Custom SSL Certificate (example.com) and Custom SSL Client
Support is Clients that Support Server Name Indication (SNI) - (Recommended) (when
CloudFrontDefaultCertificate is false and SSLSupportMethod is sni-only in the
API), you can choose from the following security policies:

• TLSv1.2_2021

• TLSv1.2_2019

• TLSv1.2_2018

• TLSv1.1_2016

• TLSv1_2016

Values that you specify 64

https://aws.amazon.com/cloudfront/pricing/

Amazon CloudFront Developer Guide

• TLSv1

• When SSL Certificate is Custom SSL Certificate (example.com) and Custom SSL Client
Support is Legacy Clients Support (when CloudFrontDefaultCertificate is false and
SSLSupportMethod is vip in the API), you can choose from the following security policies:

• TLSv1

• SSLv3

In this configuration, the TLSv1.2_2021, TLSv1.2_2019, TLSv1.2_2018, TLSv1.1_2016, and
TLSv1_2016 security policies aren’t available in the CloudFront console or API. If you want to use
one of these security policies, you have the following options:

• Evaluate whether your distribution needs Legacy Clients Support with dedicated IP addresses.
If your viewers support server name indication (SNI), we recommend that you update your
distribution’s Custom SSL Client Support setting to Clients that Support Server Name
Indication (SNI) (set SSLSupportMethod to sni-only in the API). This enables you to use
any of the available TLS security policies, and it can also reduce your CloudFront charges.

• If you must keep Legacy Clients Support with dedicated IP addresses, you can request one of
the other TLS security policies (TLSv1.2_2021, TLSv1.2_2019, TLSv1.2_2018, TLSv1.1_2016, or
TLSv1_2016) by creating a case in the AWS Support Center.

Note

Before you contact AWS Support to request this change, consider the following:

• When you add one of these security policies (TLSv1.2_2021, TLSv1.2_2019,
TLSv1.2_2018, TLSv1.1_2016, or TLSv1_2016) to a Legacy Clients Support
distribution, the security policy is applied to all non-SNI viewer requests for all
Legacy Clients Support distributions in your AWS account. However, when viewers
send SNI requests to a distribution with Legacy Clients Support, the security policy
of that distribution applies. To make sure that your desired security policy is applied
to all viewer requests sent to all Legacy Clients Support distributions in your AWS
account, add the desired security policy to each distribution individually.

• By definition, the new security policy doesn’t support the same ciphers and protocols
as the old one. For example, if you chose to upgrade a distribution’s security policy
from TLSv1 to TLSv1.1_2016, that distribution will no longer support the DES-
CBC3-SHA cipher. For more information about the ciphers and protocols that each

Values that you specify 65

https://en.wikipedia.org/wiki/Server_Name_Indication
https://console.aws.amazon.com/support/home

Amazon CloudFront Developer Guide

security policy supports, see Supported protocols and ciphers between viewers and
CloudFront.

Supported HTTP versions

Choose the HTTP versions that you want your distribution to support when viewers communicate
with CloudFront.

For viewers and CloudFront to use HTTP/2, viewers must support TLSv1.2 or later, and Server
Name Indication (SNI). CloudFront does not offer native support for gRPC over HTTP/2.

For viewers and CloudFront to use HTTP/3, viewers must support TLSv1.3 and Server Name
Indication (SNI). CloudFront supports HTTP/3 connection migration to allow the viewer to switch
networks without losing connection. For more information about connection migration, see
Connection Migration at RFC 9000.

Note

For more information about supported TLSv1.3 ciphers, see Supported protocols and
ciphers between viewers and CloudFront.

Default root object

Optional. The object that you want CloudFront to request from your origin (for example,
index.html) when a viewer requests the root URL of your distribution (https://
www.example.com/) instead of an object in your distribution (https://www.example.com/
product-description.html). Specifying a default root object avoids exposing the contents of
your distribution.

The maximum length of the name is 255 characters. The name can contain any of the following
characters:

• A-Z, a-z

• 0-9

• _ - . * $ / ~ " '

• &, passed and returned as &

Values that you specify 66

https://www.rfc-editor.org/rfc/rfc9000.html#name-connection-migration

Amazon CloudFront Developer Guide

When you specify the default root object, enter only the object name, for example, index.html.
Do not add a / before the object name.

For more information, see Specifying a default root object.

Logging

Whether you want CloudFront to log information about each request for an object and store
the log files in an Amazon S3 bucket. You can enable or disable logging at any time. There is
no extra charge if you enable logging, but you accrue the usual Amazon S3 charges for storing
and accessing the files in an Amazon S3 bucket. You can delete the logs at any time. For more
information about CloudFront access logs, see Configuring and using standard logs (access logs).

Bucket for logs

If you chose On for Logging, the Amazon S3 bucket that you want CloudFront to store access logs
in, for example, myLogs-DOC-EXAMPLE-BUCKET.s3.amazonaws.com.

Important

Don't choose an Amazon S3 bucket in any of the following Regions, because CloudFront
doesn't deliver standard logs to buckets in these Regions:

• Africa (Cape Town)

• Asia Pacific (Hong Kong)

• Asia Pacific (Hyderabad)

• Asia Pacific (Jakarta)

• Asia Pacific (Melbourne)

• Canada West (Calgary)

• Europe (Milan)

• Europe (Spain)

• Europe (Zurich)

• Israel (Tel Aviv)

• Middle East (Bahrain)

• Middle East (UAE)

Values that you specify 67

Amazon CloudFront Developer Guide

If you enable logging, CloudFront records information about each end-user request for an object
and stores the files in the specified Amazon S3 bucket. You can enable or disable logging at any
time. For more information about CloudFront access logs, see Configuring and using standard logs
(access logs).

Note

You must have the permissions required to get and update Amazon S3 bucket ACLs, and
the S3 ACL for the bucket must grant you FULL_CONTROL. This allows CloudFront to
give the awslogsdelivery account permission to save log files in the bucket. For more
information, see Permissions required to configure standard logging and to access your log
files.

Log prefix

Optional. If you chose On for Logging, specify the string, if any, that you want CloudFront to prefix
to the access log file names for this distribution, for example, exampleprefix/. The trailing slash
(/) is optional but recommended to simplify browsing your log files. For more information about
CloudFront access logs, see Configuring and using standard logs (access logs).

Cookie logging

If you want CloudFront to include cookies in access logs, choose On. If you choose to include
cookies in logs, CloudFront logs all cookies regardless of how you configure the cache behaviors for
this distribution: forward all cookies, forward no cookies, or forward a specified list of cookies to
the origin.

Amazon S3 doesn't process cookies, so unless your distribution also includes an Amazon EC2 or
other custom origin, we recommend that you choose Off for the value of Cookie Logging.

For more information about cookies, go to Caching content based on cookies.

Enable IPv6

IPv6 is a new version of the IP protocol. It's the eventual replacement for IPv4 and uses a larger
address space. CloudFront always responds to IPv4 requests. If you want CloudFront to respond
to requests from IPv4 IP addresses (such as 192.0.2.44) and requests from IPv6 addresses (such as
2001:0db8:85a3::8a2e:0370:7334), select Enable IPv6.

Values that you specify 68

Amazon CloudFront Developer Guide

In general, you should enable IPv6 if you have users on IPv6 networks who want to access your
content. However, if you're using signed URLs or signed cookies to restrict access to your content,
and if you're using a custom policy that includes the IpAddress parameter to restrict the IP
addresses that can access your content, do not enable IPv6. If you want to restrict access to some
content by IP address and not restrict access to other content (or restrict access but not by IP
address), you can create two distributions. For information about creating signed URLs by using
a custom policy, see Creating a signed URL using a custom policy. For information about creating
signed cookies by using a custom policy, see Setting signed cookies using a custom policy.

If you're using a Route 53 alias resource record set to route traffic to your CloudFront distribution,
you need to create a second alias resource record set when both of the following are true:

• You enable IPv6 for the distribution

• You're using alternate domain names in the URLs for your objects

For more information, see Routing traffic to an Amazon CloudFront distribution by using your
domain name in the Amazon Route 53 Developer Guide.

If you created a CNAME resource record set, either with Route 53 or with another DNS service, you
don't need to make any changes. A CNAME record routes traffic to your distribution regardless of
the IP address format of the viewer request.

If you enable IPv6 and CloudFront access logs, the c-ip column includes values in IPv4 and IPv6
format. For more information, see Configuring and using standard logs (access logs).

Note

To maintain high customer availability, CloudFront responds to viewer requests by using
IPv4 if our data suggests that IPv4 will provide a better user experience. To find out what
percentage of requests CloudFront is serving over IPv6, enable CloudFront logging for your
distribution and parse the c-ip column, which contains the IP address of the viewer that
made the request. This percentage should grow over time, but it will remain a minority of
traffic as IPv6 is not yet supported by all viewer networks globally. Some viewer networks
have excellent IPv6 support, but others don't support IPv6 at all. (A viewer network is
analogous to your home internet or wireless carrier.)
For more information about our support for IPv6, see the CloudFront FAQ. For information
about enabling access logs, see the fields Logging, Bucket for logs, and Log prefix.

Values that you specify 69

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-cloudfront-distribution.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-cloudfront-distribution.html
https://aws.amazon.com/cloudfront/faqs/

Amazon CloudFront Developer Guide

Comment

Optional. When you create a distribution, you can include a comment of up to 128 characters. You
can update the comment at any time.

Distribution state

Indicates whether you want the distribution to be enabled or disabled once it's deployed:

• Enabled means that as soon as the distribution is fully deployed you can deploy links that use the
distribution's domain name and users can retrieve content. Whenever a distribution is enabled,
CloudFront accepts and handles any end-user requests for content that use the domain name
associated with that distribution.

When you create, modify, or delete a CloudFront distribution, it takes time for your changes
to propagate to the CloudFront database. An immediate request for information about a
distribution might not show the change. Propagation usually completes within minutes, but a
high system load or network partition might increase this time.

• Disabled means that even though the distribution might be deployed and ready to use, users
can't use it. Whenever a distribution is disabled, CloudFront doesn't accept any end-user requests
that use the domain name associated with that distribution. Until you switch the distribution
from disabled to enabled (by updating the distribution's configuration), no one can use it.

You can toggle a distribution between disabled and enabled as often as you want. Follow
the process for updating a distribution's configuration. For more information, see Updating a
distribution.

Custom error pages and error caching

You can have CloudFront return an object to the viewer (for example, an HTML file) when your
Amazon S3 or custom origin returns an HTTP 4xx or 5xx status code to CloudFront. You can also
specify how long an error response from your origin or a custom error page is cached in CloudFront
edge caches. For more information, see Creating a custom error page for specific HTTP status
codes.

Note

The following values aren't included in the Create Distribution wizard, so you can configure
custom error pages only when you update a distribution.

Values that you specify 70

Amazon CloudFront Developer Guide

HTTP error code

The HTTP status code for which you want CloudFront to return a custom error page. You can
configure CloudFront to return custom error pages for none, some, or all of the HTTP status codes
that CloudFront caches.

Error caching minimum TTL (seconds)

The minimum amount of time that you want CloudFront to cache error responses from your origin
server.

Response page path

The path to the custom error page (for example, /4xx-errors/403-forbidden.html) that
you want CloudFront to return to a viewer when your origin returns the HTTP status code that
you specified for Error Code (for example, 403). If you want to store your objects and your custom
error pages in different locations, your distribution must include a cache behavior for which the
following is true:

• The value of Path Pattern matches the path to your custom error messages. For example,
suppose you saved custom error pages for 4xx errors in an Amazon S3 bucket in a directory
named /4xx-errors. Your distribution must include a cache behavior for which the path
pattern routes requests for your custom error pages to that location, for example, /4xx-errors/*.

• The value of Origin specifies the value of Origin ID for the origin that contains your custom error
pages.

HTTP response code

The HTTP status code that you want CloudFront to return to the viewer along with the custom
error page.

Geographic restrictions

If you need to prevent users in selected countries from accessing your content, you can configure
your CloudFront distribution with an Allowlist or a Block list. There is no additional charge
for configuring geographic restrictions. For more information, see Restricting the geographic
distribution of your content.

Values that you specify 71

Amazon CloudFront Developer Guide

Values that CloudFront displays in the console

When you create a new distribution or update an existing distribution, CloudFront displays the
following information in the CloudFront console.

Note

Active trusted signers, the AWS accounts that have an active CloudFront key pair and can
be used to create valid signed URLs, are currently not visible in the CloudFront console.

Distribution ID

When you perform an action on a distribution using the CloudFront API, you use the distribution
ID to specify which distribution to use, for example, EDFDVBD6EXAMPLE. You can't change a
distribution's distribution ID.

Deploying and status

When you deploy a distribution, you see the Deploying status under the Last modified column.
Wait for the distribution to finish deploying and make sure the Status column shows Enabled. For
more information, see Distribution state.

Last modified

The date and time that the distribution was last modified, using ISO 8601 format, for example,
2012-05-19T19:37:58Z. For more information, see https://www.w3.org/TR/NOTE-datetime.

Domain name

You use the distribution's domain name in the links to your objects. For example, if your
distribution's domain name is d111111abcdef8.cloudfront.net, the link to /images/
image.jpg would be https://d111111abcdef8.cloudfront.net/images/image.jpg.
You can't change the CloudFront domain name for your distribution. For more information about
CloudFront URLs for links to your objects, see Customizing the URL format for files in CloudFront.

If you specified one or more alternate domain names (CNAMEs), you can use your own domain
names for links to your objects instead of using the CloudFront domain name. For more
information about CNAMEs, see Alternate domain names (CNAMEs).

Values that are displayed 72

https://www.w3.org/TR/NOTE-datetime

Amazon CloudFront Developer Guide

Note

CloudFront domain names are unique. Your distribution's domain name was never used for
a previous distribution and will never be reused for another distribution in the future.

Testing a distribution

After you've created your distribution, CloudFront knows where your origin server is, and you know
the domain name associated with the distribution. You can create links to your objects using the
CloudFront domain name, and CloudFront will serve the objects to your webpage or application.

Note

You must wait until the status of the distribution changes to Deployed before you can test
your links.

To create links to objects in a web distribution

1. Copy the following HTML code into a new file, replace domain-name with your distribution's
domain name, and replace object-name with the name of your object.

<html>
<head>My CloudFront Test</head>
<body>
<p>My text content goes here.</p>
<p><img src="https://domain-name/object-name" alt="my test image"
</body>
</html>

For example, if your domain name were d111111abcdef8.cloudfront.net and your object
were image.jpg, the URL for the link would be:

https://d111111abcdef8.cloudfront.net/image.jpg.

If your object is in a folder on your origin server, then the folder must also be included in the
URL. For example, if image.jpg were located in the images folder on your origin server, then
the URL would be:

Testing a distribution 73

Amazon CloudFront Developer Guide

https://d111111abcdef8.cloudfront.net/images/image.jpg

2. Save the HTML code in a file that has an .html file name extension.

3. Open your webpage in a browser to ensure that you can see your object.

The browser returns your page with the embedded image file, served from the edge location that
CloudFront determined was appropriate to serve the object.

Updating a distribution

In the CloudFront console, you can see the CloudFront distributions that are associated with your
AWS account, view the settings for a distribution, and update most settings. Be aware that settings
changes that you make won't take effect until the distribution has propagated to the AWS edge
locations.

To update a CloudFront distribution

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. Select the ID of a distribution. The list includes all of the distributions associated with the AWS
account that you used to sign in to the CloudFront console.

3. To edit settings for a distribution, choose the Distribution Settings tab.

4. To update general settings, choose Edit. Otherwise, choose the tab for the settings that you
want to update: Origins or Behaviors.

5. Make the updates, and then, to save your changes, choose Yes, Edit. For information about the
fields, see the following topics:

• General settings: Distribution settings

• Origin settings: Origin settings

• Cache behavior settings: Cache behavior settings

6. If you want to delete an origin in your distribution, do the following:

a. Choose Behaviors, and then make sure you have moved any default cache behaviors
associated with the origin to another origin.

b. Choose Origins, and then select an origin.

c. Choose Delete.

Updating a distribution 74

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

You can also update a distribution by using the CloudFront API:

• To update a distribution, see UpdateDistribution in the Amazon CloudFront API Reference.

Important

When you update your distribution, be aware that a number of additional fields are
required that are not required to create a distribution. For a summary of the fields required
for when you create or update a distribution, see Required API fields for creating and
updating distributions. To help make sure that all of the required fields are included
when you use the CloudFront API to update a distribution, follow the steps described in
UpdateDistribution in the Amazon CloudFront API Reference.

When you save changes to your distribution configuration, CloudFront starts to propagate the
changes to all edge locations. Successive configuration changes propagate in their respective order.
Until your configuration is updated in an edge location, CloudFront continues to serve your content
from that location based on the previous configuration. After your configuration is updated in an
edge location, CloudFront immediately starts to serve your content from that location based on
the new configuration.

Your changes don't propagate to every edge location instantaneously. When propagation is
complete, the status of your distribution changes from InProgress to Deployed. While CloudFront
is propagating your changes, we can't determine whether a given edge location is serving your
content based on the previous configuration or the new configuration.

Tagging Amazon CloudFront distributions

Tags are words or phrases that you can use to identify and organize your AWS resources. You can
add multiple tags to each resource, and each tag includes a key and a value that you define. For
example, the key might be "domain" and the value might be "example.com". You can search and
filter your resources based on the tags you add.

The following are two examples of how it can be useful to work with tags in CloudFront:

• Use tags to track billing information in different categories. When you apply tags to CloudFront
distributions or other AWS resources (such as Amazon EC2 instances or Amazon S3 buckets) and
activate the tags, AWS generates a cost allocation report as a comma-separated value (CSV file)

Tagging a distribution 75

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html

Amazon CloudFront Developer Guide

with your usage and costs aggregated by your active tags. You can apply tags that represent
business categories (such as cost centers, application names, or owners) to organize your costs
across multiple services. For more information about using tags for cost allocation, see Using
Cost Allocation Tags in the AWS Billing User Guide.

• Use tags to enforce tag-based permissions on CloudFront distributions. For more information,
see ABAC with CloudFront.

Note the following:

• You can tag distributions, but you can't tag origin access identities or invalidations.

• Tag Editor and Resource groups are currently not supported for CloudFront.

For the current maximum number of tags that you can add to a distribution, see Quotas. To request
a higher quota (formerly known as limit), create a case with the AWS Support Center.

You can also apply tags to resources by using the CloudFront API, AWS CLI, SDKs, and AWS Tools
for Windows PowerShell. For more information, see the following documentation:

• CloudFront API – See the following operations in the Amazon CloudFront API Reference:

• ListTagsForResource

• TagResource

• UntagResource

• AWS CLI – See cloudfront in the AWS CLI Command Reference

• SDKs – See the applicable SDK documentation on the AWS Documentation page

• Tools for Windows PowerShell – See Amazon CloudFront in the AWS Tools for PowerShell
Cmdlet Reference

Topics

• Tag restrictions

• Adding, editing, and deleting tags for distributions

Tag restrictions

The following basic restrictions apply to tags:

Tagging a distribution 76

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/ARG/latest/userguide/tag-editor.html
https://docs.aws.amazon.com/ARG/latest/userguide/resource-groups.html
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UntagResource.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudfront/index.html
https://docs.aws.amazon.com/index.html
https://docs.aws.amazon.com/powershell/latest/reference/items/CloudFront_cmdlets.html
https://docs.aws.amazon.com/powershell/latest/reference/
https://docs.aws.amazon.com/powershell/latest/reference/

Amazon CloudFront Developer Guide

• Maximum number of tags per resource – 50

• Maximum key length – 128 Unicode characters

• Maximum value length – 256 Unicode characters

• Valid values for key and value – a-z, A-Z, 0-9, space, and the following characters: _ . : / = + - and
@

• Tag keys and values are case sensitive

• Don't use aws: as a prefix for keys; it's reserved for AWS use

Adding, editing, and deleting tags for distributions

The following procedure explains how to add, edit, and delete tags for your distributions in the
CloudFront console.

To add tags, edit, or delete tags for a distribution

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. Choose the ID for the distribution that you want to update.

3. Choose the Tags tab.

4. Choose Manage tags.

5. On the Manage tags page, you can do the following:

• To add a tag, type a key and, optionally, a value for the tag. Choose the Add new tag button
to add more tags.

• To edit a tag, change the tag’s key or its value, or both. You can delete the value for a tag,
but the key is required.

• To delete a tag, choose the Remove button next to the tag.

6. Choose Save changes.

Deleting a distribution

If you no longer want to use a distribution, you can delete it by using the CloudFront console or by
using the CloudFront API.

Deleting a distribution 77

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

Be aware that before you can delete a distribution, you must disable it, which requires permission
to update the distribution.

If you need to delete a distribution with an OAC attached to an S3 bucket, see Deleting a
distribution with an OAC attached to an S3 bucket for important details.

Note

If you disable a distribution that has an alternate domain name associated with it,
CloudFront stops accepting traffic for that domain name (such as www.example.com), even
if another distribution has an alternate domain name with a wildcard (*) that matches the
same domain (such as *.example.com).

To delete a CloudFront distribution

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. In the right pane of the CloudFront console, find the distribution that you want to delete.

• If the Status column shows Disabled, skip to Step 6.

• If the Status shows Enabled but the distribution still shows Deploying in the Last modified
column, wait for deployment to finish before continuing to step 3.

3. In the right pane of the CloudFront console, select the check box for the distribution that you
want to delete.

4. Choose Disable to disable the distribution, and choose Yes, Disable to confirm. Then choose
Close.

Note

Because CloudFront must propagate this change to all edge locations, it might take a
few minutes before the update is complete and you can delete your distribution.

5. The value of the Status column immediately changes to Disabled. Wait until the new
timestamp appears under the Last modified column.

6. Select the check box for the distribution that you want to delete.

7. Choose Delete, Delete.

Deleting a distribution 78

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

Note

If you have just marked your distribution as disabled, CloudFront might still need a few
more minutes to propagate that change to the edge locations. Until propagation is
complete, the Delete option isn't available.

You can also delete a distribution using the CloudFront API. For more information, see
DeleteDistribution in the Amazon CloudFront API Reference.

Using CloudFront continuous deployment to safely test CDN
configuration changes

With Amazon CloudFront continuous deployment you can safely deploy changes to your CDN
configuration by testing first with a subset of production traffic. You can use a staging distribution
and a continuous deployment policy to send some traffic from real (production) viewers to the new
CDN configuration and validate that it works as expected. You can monitor the performance of
the new configuration in real time, and promote the new configuration to serve all traffic via the
primary distribution when you're ready.

The following diagram shows the benefit of using CloudFront continuous deployment. Without
it, you would have to test CDN configuration changes with simulated traffic. With continuous
deployment you can test the changes with a subset of production traffic, then promote the
changes to the primary distribution when you're ready.

Using continuous deployment to safely test changes 79

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_DeleteDistribution.html

Amazon CloudFront Developer Guide

Using continuous deployment to safely test changes 80

Amazon CloudFront Developer Guide

Topics

• Workflow for using CloudFront continuous deployment

• Working with a staging distribution and continuous deployment policy

• Monitoring a staging distribution

• Understanding how continuous deployment works

• Quotas and other considerations for continuous deployment

Workflow for using CloudFront continuous deployment

The following high-level workflow explains how to safely test and deploy configuration changes
with CloudFront continuous deployment.

1. Choose the distribution that you want to use as the primary distribution. The primary
distribution is one that currently serves production traffic.

2. From the primary distribution, create a staging distribution. A staging distribution starts as a
copy of the primary distribution.

3. Create a traffic configuration inside a continuous deployment policy, and attach it to the primary
distribution. This determines how CloudFront routes traffic to the staging distribution. For more
information about routing requests to a staging distribution, see the section called “Routing
requests to the staging distribution”.

4. Update the configuration of the staging distribution. For more information about the settings
that you can update, see the section called “Updating primary and staging distributions”.

5. Monitor the staging distribution to determine whether the configuration changes perform as
expected. For more information about monitoring a staging distribution, see the section called
“Monitoring a staging distribution”.

As you monitor the staging distribution, you can:

• Update the configuration of the staging distribution again, to continue testing configuration
changes.

• Update the continuous deployment policy (traffic configuration) to send more or less traffic to
the staging distribution.

6. When you're satisfied with the performance of the staging distribution, promote the staging
distribution's configuration to the primary distribution, which copies the staging distribution's
configuration to the primary distribution. This also disables the continuous deployment policy
which means that CloudFront routes all traffic to the primary distribution.

Workflow for using CloudFront continuous deployment 81

Amazon CloudFront Developer Guide

You can build automation that monitors the performance of the staging distribution (step 5) and
promotes the configuration automatically (step 6) when certain criteria are met.

After you promote a configuration, you can reuse the same staging distribution the next time you
want to test a configuration change.

For more information about working with staging distributions and continuous deployment
policies in the CloudFront console, the AWS CLI, or the CloudFront API, see the following section.

Working with a staging distribution and continuous deployment policy

You can create, update, and modify staging distributions and continuous deployment policies in
the CloudFront console, with the AWS Command Line Interface (AWS CLI), or with the CloudFront
API.

Console

To work with a staging distribution and a continuous deployment policy with the AWS
Management Console, use the following procedures.

To create a staging distribution and continuous deployment policy (console)

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. In the navigation pane, choose Distributions.

3. Choose the distribution that you want to use as the primary distribution. The primary
distribution is one that currently serves production traffic, the one from which you will
create the staging distribution.

4. In the Continuous deployment section, choose Create staging distribution. This opens the
Create staging distribution wizard.

5. In the Create staging distribution wizard, do the following:

a. (Optional) Type a description for the staging distribution.

b. Choose Next.

c. Modify the configuration of the staging distribution. For more information about the
settings that you can update, see the section called “Updating primary and staging
distributions”.

When you are finished modifying the staging distribution's configuration, choose Next.

Working with a staging distribution and continuous deployment policy 82

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

d. Use the console to specify the Traffic configuration. This determines how CloudFront
routes traffic to the staging distribution. (CloudFront stores the traffic configuration in
a continuous deployment policy.)

For more information about the options in a Traffic configuration, see the section
called “Routing requests to the staging distribution”.

When you are finished with the Traffic configuration, choose Next.

e. Review the configuration for the staging distribution, including the traffic
configuration, then choose Create staging distribution.

When you finish the Create staging distribution wizard in the CloudFront console, CloudFront
does the following:

• Creates a staging distribution with the settings that you specified (in step 5c)

• Creates a continuous deployment policy with the traffic configuration that you specified (in
step 5d)

• Attaches the continuous deployment policy to the primary distribution that you created the
staging distribution from

When the primary distribution's configuration, with the attached continuous deployment policy,
deploys to edge locations, CloudFront begins sending the specified portion of traffic to the
staging distribution based on the traffic configuration.

To update a staging distribution (console)

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

2. In the navigation pane, choose Distributions.

3. Choose the primary distribution. This is the distribution that currently serves production
traffic, the one from which you created the staging distribution.

4. Choose View staging distribution.

5. Use the console to modify the configuration of the staging distribution. For more
information about the settings that you can update, see the section called “Updating
primary and staging distributions”.

Working with a staging distribution and continuous deployment policy 83

https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

As soon as the staging distribution's configuration deploys to edge locations it takes effect for
incoming traffic that's routed to the staging distribution.

To update a continuous deployment policy (console)

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

2. In the navigation pane, choose Distributions.

3. Choose the primary distribution. This is the distribution that currently serves production
traffic, the one from which you created the staging distribution.

4. In the Continuous deployment section, choose Edit policy.

5. Modify the traffic configuration in the continuous deployment policy. When you are
finished, choose Save changes.

When the primary distribution's configuration with the updated continuous deployment policy
deploys to edge locations, CloudFront begins sending traffic to the staging distribution based
on the updated traffic configuration.

To promote a staging distribution's configuration (console)

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

2. In the navigation pane, choose Distributions.

3. Choose the primary distribution. This is the distribution that currently serves production
traffic, the one from which you created the staging distribution.

4. In the Continuous deployment section, choose Promote.

5. Type confirm and then choose Promote.

When you promote a staging distribution, CloudFront copies the configuration from the staging
distribution to the primary distribution. CloudFront also disables the continuous deployment
policy and routes all traffic to the primary distribution.

After you promote a configuration, you can reuse the same staging distribution the next time
you want to test a configuration change.

CLI

To work with a staging distribution and a continuous deployment policy with the AWS CLI, use
the following procedures.

Working with a staging distribution and continuous deployment policy 84

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

To create a staging distribution (CLI)

1. Use the aws cloudfront get-distribution and grep commands together to get the ETag
value of the distribution that you want to use as the primary distribution. The primary
distribution is one that currently serves production traffic, from which you will create the
staging distribution.

The following command shows an example. In the following example, replace
primary_distribution_ID with the ID of the primary distribution.

aws cloudfront get-distribution --id primary_distribution_ID | grep 'ETag'

Copy the ETag value because you need it for the following step.

2. Use the aws cloudfront copy-distribution command to create a staging distribution. The
following example command uses escape characters (\) and line breaks for readability, but
you should omit these from the command. In the following example command:

• Replace primary_distribution_ID with the ID of the primary distribution.

• Replace primary_distribution_ETag with the ETag value of the primary distribution
(that you got in the previous step).

• (Optional) Replace CLI_example with the desired caller reference ID.

aws cloudfront copy-distribution --primary-distribution-
id primary_distribution_ID \
 --if-match primary_distribution_ETag \
 --staging \
 --caller-reference 'CLI_example'

The command's output shows information about the staging distribution and its
configuration. Copy the staging distribution's CloudFront domain name because you need it
for a following step.

Working with a staging distribution and continuous deployment policy 85

Amazon CloudFront Developer Guide

To create a continuous deployment policy (CLI with input file)

1. Use the following command to create file named continuous-deployment-
policy.yaml that contains all of the input parameters for the create-continuous-
deployment-policy command. The following command uses escape characters (\) and line
breaks for readability, but you should omit these from the command.

aws cloudfront create-continuous-deployment-policy --generate-cli-skeleton yaml-
input \
 > continuous-deployment-
policy.yaml

2. Open the file named continuous-deployment-policy.yaml that you just created. Edit
the file to specify the continuous deployment policy settings that you want, then save the
file. When you edit the file:

• In the StagingDistributionDnsNames section:

• Change the value of Quantity to 1.

• For Items, paste the CloudFront domain name of the staging distribution (that you
saved from a previous step).

• In the TrafficConfig section:

• Choose a Type, either SingleWeight or SingleHeader.

• Remove the settings for the other type. For example, if you want a weight-
based traffic configuration, set Type to SingleWeight and then remove the
SingleHeaderConfig settings.

• To use a weight-based traffic configuration, set the value of Weight to a decimal
number between .01 (one percent) and .15 (fifteen percent).

For more information about the options in TrafficConfig, see the section called
“Routing requests to the staging distribution” and the section called “Session stickiness
for weight-based configurations”.

3. Use the following command to create the continuous deployment policy using input
parameters from the continuous-deployment-policy.yaml file.

Working with a staging distribution and continuous deployment policy 86

Amazon CloudFront Developer Guide

aws cloudfront create-continuous-deployment-policy --cli-input-yaml file://
continuous-deployment-policy.yaml

Copy the Id value in the command's output. This is the continuous deployment policy ID,
and you need it in a following step.

To attach a continuous deployment policy to a primary distribution (CLI with input file)

1. Use the following command to save the primary distribution's configuration to a file named
primary-distribution.yaml. Replace primary_distribution_ID with the primary
distribution's ID.

aws cloudfront get-distribution-config --id primary_distribution_ID --output
 yaml > primary-distribution.yaml

2. Open the file named primary-distribution.yaml that you just created. Edit the file,
making the following changes:

• Paste the continuous deployment policy ID (that you copied from a previous step) into
the ContinuousDeploymentPolicyId field.

• Rename the ETag field to IfMatch, but don't change the field's value.

Save the file when finished.

3. Use the following command to update the primary distribution to use the continuous
deployment policy. Replace primary_distribution_ID with the primary distribution's
ID.

aws cloudfront update-distribution --id primary_distribution_ID --cli-input-yaml
 file://primary-distribution.yaml

When the primary distribution's configuration, with the attached continuous deployment policy,
deploys to edge locations, CloudFront begins sending the specified portion of traffic to the
staging distribution based on the traffic configuration.

Working with a staging distribution and continuous deployment policy 87

Amazon CloudFront Developer Guide

To update a staging distribution (CLI with input file)

1. Use the following command to save the staging distribution's configuration to a file named
staging-distribution.yaml. Replace staging_distribution_ID with the staging
distribution's ID.

aws cloudfront get-distribution-config --id staging_distribution_ID --output
 yaml > staging-distribution.yaml

2. Open the file named staging-distribution.yaml that you just created. Edit the file,
making the following changes:

• Modify the configuration of the staging distribution. For more information about the
settings that you can update, see the section called “Updating primary and staging
distributions”.

• Rename the ETag field to IfMatch, but don't change the field's value.

Save the file when finished.

3. Use the following command to update the staging distribution's configuration. Replace
staging_distribution_ID with the staging distribution's ID.

aws cloudfront update-distribution --id staging_distribution_ID --cli-input-yaml
 file://staging-distribution.yaml

As soon as the staging distribution's configuration deploys to edge locations it takes effect for
incoming traffic that's routed to the staging distribution.

To update a continuous deployment policy (CLI with input file)

1. Use the following command to save the continuous deployment policy's
configuration to a file named continuous-deployment-policy.yaml. Replace
continuous_deployment_policy_ID with the continuous deployment policy's ID.
The following command uses escape characters (\) and line breaks for readability, but you
should omit these from the command.

Working with a staging distribution and continuous deployment policy 88

Amazon CloudFront Developer Guide

aws cloudfront get-continuous-deployment-policy-config --
id continuous_deployment_policy_ID \
 --output yaml >
 continuous-deployment-policy.yaml

2. Open the file named continuous-deployment-policy.yaml that you just created. Edit
the file, making the following changes:

• Modify the configuration of the continuous deployment policy as desired. For example,
you can change from using a header-based to a weight-based traffic configuration, or
you can change the percentage of traffic (weight) for a weight-based configuration. For
more information, see the section called “Routing requests to the staging distribution”
and the section called “Session stickiness for weight-based configurations”.

• Rename the ETag field to IfMatch, but don't change the field's value.

Save the file when finished.

3. Use the following command to update the continuous deployment policy. Replace
continuous_deployment_policy_ID with the continuous deployment policy's ID.
The following command uses escape characters (\) and line breaks for readability, but you
should omit these from the command.

aws cloudfront update-continuous-deployment-policy --
id continuous_deployment_policy_ID \
 --cli-input-yaml file://
continuous-deployment-policy.yaml

When the primary distribution's configuration with the updated continuous deployment policy
deploys to edge locations, CloudFront begins sending traffic to the staging distribution based
on the updated traffic configuration.

To promote a staging distribution's configuration (CLI)

• Use the aws cloudfront update-distribution-with-staging-config command to promote
the staging distribution's configuration to the primary distribution. The following example
command uses escape characters (\) and line breaks for readability, but you should omit
these from the command. In the following example command:

Working with a staging distribution and continuous deployment policy 89

Amazon CloudFront Developer Guide

• Replace primary_distribution_ID with the ID of the primary distribution.

• Replace staging_distribution_ID with the ID of the staging distribution.

• Replace primary_distribution_ETag and staging_distribution_ETag with
the ETag values of the primary and staging distributions. Make sure the primary
distribution's value is first, as shown in the example.

aws cloudfront update-distribution-with-staging-config --
id primary_distribution_ID \
 --staging-distribution-
id staging_distribution_ID \
 --if-match
 'primary_distribution_ETag,staging_distribution_ETag'

When you promote a staging distribution, CloudFront copies the configuration from the staging
distribution to the primary distribution. CloudFront also disables the continuous deployment
policy and routes all traffic to the primary distribution.

After you promote a configuration, you can reuse the same staging distribution the next time
you want to test a configuration change.

API

To create a staging distribution and continuous deployment policy with the CloudFront API, use
the following API operations:

• CopyDistribution

• CreateContinuousDeploymentPolicy

For more information about the fields that you specify in these API calls, see the following:

• the section called “Routing requests to the staging distribution”

• the section called “Session stickiness for weight-based configurations”

• The API reference documentation for your AWS SDK or other API client

Working with a staging distribution and continuous deployment policy 90

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CopyDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateContinuousDeploymentPolicy.html

Amazon CloudFront Developer Guide

After you create a staging distribution and a continuous deployment policy, use
UpdateDistribution (on the primary distribution) to attach the continuous deployment policy to
the primary distribution.

To update the configuration of a staging distribution, use UpdateDistribution (on the staging
distribution) to modify the configuration of the staging distribution. For more information
about the settings that you can update, see the section called “Updating primary and staging
distributions”.

To promote a staging distribution's configuration to the primary distribution, use
UpdateDistributionWithStagingConfig.

For more information about the fields that you specify in these API calls, see the API reference
documentation for your AWS SDK or other API client.

Monitoring a staging distribution

To monitor the performance of a staging distribution, you can use the same metrics, logs, and
reports that CloudFront provides for all distributions. For example:

• You can view the default CloudFront distribution metrics (such as total requests and error rate) in
the CloudFront console, and you can turn on additional metrics (such as cache hit rate and error
rate by status code) for an additional cost. You can also create alarms based on these metrics.

• You can view standard logs and real-time logs to get detailed information about the requests
that are received by the staging distribution. Standard logs contain the following two fields
that help you identify the primary distribution that the request was originally sent to before
CloudFront routed it to the staging distribution: primary-distribution-id and primary-
distribution-dns-name.

• You can view and download reports in the CloudFront console, for example the cache statistics
report.

Understanding how continuous deployment works

The following topics explain how CloudFront continuous deployment works.

Topics

• Routing requests to the staging distribution

Monitoring a staging distribution 91

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistributionWithStagingConfig.html

Amazon CloudFront Developer Guide

• Session stickiness for weight-based configurations

• Updating primary and staging distributions

• Primary and staging distributions don't share a cache

Routing requests to the staging distribution

When you use CloudFront continuous deployment, you don't need to change anything about
the viewer requests. Viewers cannot send requests directly to a staging distribution using a
DNS name, IP address, or CNAME. Instead, viewers send requests to the primary (production)
distribution, and CloudFront routes some of those requests to the staging distribution based on the
traffic configuration settings in the continuous deployment policy. There are two types of traffic
configurations:

Weight-based

A weight-based configuration routes the specified percentage of viewer requests to the staging
distribution. When you use a weight-based configuration, you can also enable session stickiness,
which helps make sure that CloudFront treats requests from the same viewer as part of a single
session. For more information, see the section called “Session stickiness for weight-based
configurations”.

Header-based

A header-based configuration routes requests to the staging distribution when the viewer
request contains a specific HTTP header (you specify the header and the value). Requests
that don't contain the specified header and value are routed to the primary distribution. This
configuration is useful for local testing, or when you have control over the viewer requests.

Note

Headers routed to your staging distribution must contain the prefix aws-cf-cd-.

Session stickiness for weight-based configurations

When you use a weight-based configuration to route traffic to a staging distribution, you can also
enable session stickiness, which helps make sure that CloudFront treats requests from the same
viewer as a single session. When you enable session stickiness, CloudFront sets a cookie so that all

Understanding how continuous deployment works 92

Amazon CloudFront Developer Guide

requests from the same viewer in a single session are served by one distribution, either the primary
or staging.

When you enable session stickiness, you can also specify the idle duration. If the viewer is idle
(sends no requests) for this amount of time, the session expires and CloudFront treats future
requests from this viewer as a new session. You specify the idle duration as a number of seconds,
from 300 (five minutes) to 3600 (one hour).

In the following cases, CloudFront resets all sessions (even active ones) and considers all requests
to be a new session:

• You disable or enable the continuous deployment policy

• You disable or enable the session stickiness setting

Updating primary and staging distributions

When a primary distribution has an attached continuous deployment policy, the following
configuration changes are available for both primary and staging distributions:

• All cache behavior settings, including the default cache behavior

• All origin settings (origins and origin groups)

• Custom error responses (error pages)

• Geographic restrictions

• Default root object

• Logging settings

• Description (comment)

You can also update external resources that are referenced in a distribution's configuration—such
as a cache policy, a response headers policy, a CloudFront function, or a Lambda@Edge function.

Primary and staging distributions don't share a cache

The primary and staging distributions don't share a cache. When CloudFront sends the first request
to a staging distribution, its cache is empty. As requests arrive at the staging distribution, it begins
caching responses (if configured to do so).

Understanding how continuous deployment works 93

Amazon CloudFront Developer Guide

Quotas and other considerations for continuous deployment

CloudFront continuous deployment is subject to the following quotas and other considerations.

Quotas

• Maximum number of staging distributions per AWS account: 20

• Maximum number of continuous deployment policies per AWS account: 20

• Maximum percentage of traffic you can send to a staging distribution in a weight-based
configuration: 15%

• Minimum and maximum values for session stickiness idle duration: 300–3600 seconds

For more information, see Quotas.

Note

When using continuous deployment and your primary distribution is set with OAC for S3
bucket access, update your S3 bucket policy to allow access for the staging distribution.
For example S3 bucket policies, see the section called “Giving the origin access control
permission to access the S3 bucket”.

HTTP/3

You cannot use continuous deployment with a distribution that supports HTTP/3.

Cases when CloudFront sends all requests to the primary distribution

In certain cases, such as periods of high resource utilization, CloudFront might send all requests to
the primary distribution regardless of what's specified in the continuous deployment policy.

CloudFront sends all requests to the primary distribution during peak traffic hours, regardless
of what's specified in the continuous deployment policy. Peak traffic refers to the traffic on the
CloudFront service, and not the traffic on your distribution.

Using various origins with CloudFront distributions

When you create a distribution, you specify the origin where CloudFront sends requests for the
files. You can use several different kinds of origins with CloudFront. For example, you can use an

Quotas and other considerations for continuous deployment 94

Amazon CloudFront Developer Guide

Amazon S3 bucket, a MediaStore container, a MediaPackage channel, an Application Load Balancer,
or an AWS Lambda function URL.

Topics

• Using an Amazon S3 bucket

• Using a MediaStore container or a MediaPackage channel

• Using an Application Load Balancer

• Using a Lambda function URL

• Using Amazon EC2 (or another custom origin)

• Using CloudFront origin groups

Using an Amazon S3 bucket

The following topics describe the different ways that you can use an Amazon S3 bucket as the
origin for a CloudFront distribution.

Topics

• Using a standard Amazon S3 bucket

• Using Amazon S3 Object Lambda

• Using Amazon S3 Access Point

• Using an Amazon S3 bucket that's configured as a website endpoint

• Adding CloudFront to an existing Amazon S3 bucket

• Moving an Amazon S3 bucket to a different AWS Region

Using a standard Amazon S3 bucket

When you use Amazon S3 as an origin for your distribution, you place the objects that you want
CloudFront to deliver in an Amazon S3 bucket. You can use any method that is supported by
Amazon S3 to get your objects into Amazon S3. For example, you can use the Amazon S3 console
or API, or a third-party tool. You can create a hierarchy in your bucket to store the objects, just as
you would with any other standard Amazon S3 bucket.

Using an existing Amazon S3 bucket as your CloudFront origin server doesn't change the bucket
in any way; you can still use it as you normally would to store and access Amazon S3 objects at
the standard Amazon S3 price. You incur regular Amazon S3 charges for storing the objects in the

Using an Amazon S3 bucket 95

Amazon CloudFront Developer Guide

bucket. For more information about the charges to use CloudFront, see Amazon CloudFront Pricing.
For more information about using CloudFront with an existing S3 bucket, see the section called
“Adding CloudFront to an existing Amazon S3 bucket”.

Important

For your bucket to work with CloudFront, the name must conform to DNS naming
requirements. For more information, go to Bucket naming rules in the Amazon Simple
Storage Service User Guide.

When you specify an Amazon S3 bucket as an origin for CloudFront, we recommend that you use
the following format:

bucket-name.s3.region.amazonaws.com

When you specify the bucket name in this format, you can use the following CloudFront features:

• Configure CloudFront to communicate with your Amazon S3 bucket using SSL/TLS. For more
information, see the section called “Using HTTPS with CloudFront”.

• Use an origin access control to require that viewers access your content using CloudFront URLs,
not by using Amazon S3 URLs. For more information, see the section called “Restricting access to
an Amazon Simple Storage Service origin”.

• Update the content of your bucket by submitting POST and PUT requests to CloudFront. For
more information, see the section called “HTTP methods” in the topic the section called “How
CloudFront processes and forwards requests to your Amazon S3 origin”.

Don't specify the bucket using the following formats:

• The Amazon S3 path style: s3.amazonaws.com/bucket-name

• The Amazon S3 CNAME

Using Amazon S3 Object Lambda

When you create an Object Lambda Access Point, Amazon S3 automatically generates a unique
alias for your Object Lambda Access Point. You can use this alias instead of an Amazon S3 bucket
name as an origin for your CloudFront distribution.

Using an Amazon S3 bucket 96

https://aws.amazon.com/cloudfront/pricing/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/olap-create.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/olap-use.html#ol-access-points-alias

Amazon CloudFront Developer Guide

When you use an Object Lambda Access Point alias as an origin for CloudFront, we recommend
that you use the following format:

alias.s3.region.amazonaws.com

For more information about finding the alias, see How to use a bucket-style alias for your S3
bucket Object Lambda Access Point in the Amazon S3 User Guide.

Important

When you use an Object Lambda Access Point as an origin for CloudFront, you must use
origin access control.

For an example use case, see Use Amazon S3 Object Lambda with Amazon CloudFront to Tailor
Content for End Users.

CloudFront treats an Object Lambda Access Point origin the same as a standard Amazon S3 bucket
origin.

If you're using Amazon S3 Object Lambda as an origin for your distribution, you must configure the
following four permissions.

Object Lambda Access Point

To add permissions for the Object Lambda Access Point

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. In the navigation pane, choose Object Lambda Access Points.

3. Choose the Object Lambda Access Point that you want to use.

4. Choose the Permissions tab.

5. Choose Edit in the Object Lambda Access Point policy section.

6. Paste the following policy into the Policy field.

{
 "Version": "2012-10-17",
 "Statement": [

Using an Amazon S3 bucket 97

https://docs.aws.amazon.com/AmazonS3/latest/userguide/olap-use.html#ol-access-points-alias
https://docs.aws.amazon.com/AmazonS3/latest/userguide/olap-use.html#ol-access-points-alias
https://aws.amazon.com/blogs/aws/new-use-amazon-s3-object-lambda-with-amazon-cloudfront-to-tailor-content-for-end-users/
https://aws.amazon.com/blogs/aws/new-use-amazon-s3-object-lambda-with-amazon-cloudfront-to-tailor-content-for-end-users/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon CloudFront Developer Guide

 {
 "Effect": "Allow",
 "Principal": {
 "Service": "cloudfront.amazonaws.com"
 },
 "Action": "s3-object-lambda:Get*",
 "Resource": "arn:aws:s3-object-lambda:region:AWS-account-
ID:accesspoint/Object-Lambda-Access-Point-name",
 "Condition": {
 "StringEquals": {
 "aws:SourceArn": "arn:aws:cloudfront::AWS-account-
ID:distribution/CloudFront-distribution-ID"
 }
 }
 }
]
}

7. Choose Save changes.

Amazon S3 Access Point

To add permissions for the Amazon S3 Access Point

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. In the navigation pane, choose Access Points.

3. Choose the Amazon S3 Access Point that you want to use.

4. Choose the Permissions tab.

5. Choose Edit in the Access Point policy section.

6. Paste the following policy into the Policy field.

{
 "Version": "2012-10-17",
 "Id": "default",
 "Statement": [
 {
 "Sid": "s3objlambda",
 "Effect": "Allow",
 "Principal": {

Using an Amazon S3 bucket 98

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon CloudFront Developer Guide

 "Service": "cloudfront.amazonaws.com"
 },
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:region:AWS-account-ID:accesspoint/Access-Point-
name",
 "arn:aws:s3:region:AWS-account-ID:accesspoint/Access-Point-name/
object/*"
],
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:CalledVia": "s3-object-lambda.amazonaws.com"
 }
 }
 }
]
}

7. Choose Save.

Amazon S3 bucket

To add permissions to the Amazon S3 bucket

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. In the navigation pane, choose Buckets.

3. Choose the Amazon S3 bucket that you want to use.

4. Choose the Permissions tab.

5. Choose Edit in the Bucket policy section.

6. Paste the following policy into the Policy field.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },

Using an Amazon S3 bucket 99

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon CloudFront Developer Guide

 "Action": "*",
 "Resource": [
 "arn:aws:s3:::bucket-name",
 "arn:aws:s3:::bucket-name/*"
],
 "Condition": {
 "StringEquals": {
 "s3:DataAccessPointAccount": "AWS-account-ID"
 }
 }
 }
]
}

7. Choose Save changes.

AWS Lambda function

To add permissions to the Lambda function

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. In the navigation pane, choose Functions.

3. Choose the AWS Lambda function that you want to use.

4. Choose the Configuration tab, then choose Permissions.

5. Choose Add permissions in the Resource-based policy statements section.

6. Choose AWS account.

7. Enter a name for Statement ID.

8. Enter cloudfront.amazonaws.com for Principal.

9. Choose lambda:InvokeFunction from the Action dropdown menu.

10. Choose Save.

Using Amazon S3 Access Point

When you use an S3 Access Point, Amazon S3 automatically generates a unique alias for you.
You can use this alias instead of an Amazon S3 bucket name as an origin for your CloudFront
distribution.

Using an Amazon S3 bucket 100

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-access-points.html

Amazon CloudFront Developer Guide

When you use an Amazon S3 Access Point alias as an origin for CloudFront, we recommend that
you use the following format:

alias.s3.region.amazonaws.com

For more information about finding the alias, see Using a bucket-style alias for your S3 bucket
access point in the Amazon S3 User Guide.

Important

When you use an Amazon S3 Access Point as an origin for CloudFront, you must use origin
access control.

CloudFront treats an Amazon S3 Access Point origin the same as a standard Amazon S3 bucket
origin.

If you're using Amazon S3 Object Lambda as an origin for your distribution, you must configure the
following two permissions.

Amazon S3 Access Point

To add permissions for the Amazon S3 Access Point

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. In the navigation pane, choose Access Points.

3. Choose the Amazon S3 Access Point that you want to use.

4. Choose the Permissions tab.

5. Choose Edit in the Access Point policy section.

6. Paste the following policy into the Policy field.

{
 "Version": "2012-10-17",
 "Id": "default",
 "Statement": [
 {
 "Sid": "s3objlambda",
 "Effect": "Allow",

Using an Amazon S3 bucket 101

https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-points-alias.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-points-alias.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon CloudFront Developer Guide

 "Principal": {"Service": "cloudfront.amazonaws.com"},
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:region:AWS-account-ID:accesspoint/Access-Point-
name",
 "arn:aws:s3:region:AWS-account-ID:accesspoint/Access-Point-name/
object/*"
],
 "Condition": {
 "StringEquals": {"aws:SourceArn": "arn:aws:cloudfront::AWS-
account-ID:distribution/CloudFront-distribution-ID"}
 }
 }
]
}

7. Choose Save.

Amazon S3 bucket

To add permissions to the Amazon S3 bucket

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. In the navigation pane, choose Buckets.

3. Choose the Amazon S3 bucket that you want to use.

4. Choose the Permissions tab.

5. Choose Edit in the Bucket policy section.

6. Paste the following policy into the Policy field.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": "*",
 "Resource": [

Using an Amazon S3 bucket 102

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon CloudFront Developer Guide

 "arn:aws:s3:::bucket-name",
 "arn:aws:s3:::bucket-name/*"
],
 "Condition": {
 "StringEquals": {
 "s3:DataAccessPointAccount": "AWS-account-ID"
 }
 }
 }
]
}

7. Choose Save changes.

Using an Amazon S3 bucket that's configured as a website endpoint

You can use an Amazon S3 bucket that's configured as a website endpoint as a custom origin with
CloudFront. When you configure your CloudFront distribution, for the origin, enter the Amazon S3
static website hosting endpoint for your bucket. This value appears in the Amazon S3 console, on
the Properties tab, in the Static website hosting pane. For example:

http://bucket-name.s3-website-region.amazonaws.com

For more information about specifying Amazon S3 static website endpoints, see Website endpoints
in the Amazon Simple Storage Service User Guide.

When you specify the bucket name in this format as your origin, you can use Amazon S3 redirects
and Amazon S3 custom error documents. For more information, see Configuring a custom error
document and Configuring a redirect in the Amazon Simple Storage Service User Guide. (CloudFront
also provides custom error pages. For more information, see the section called “Creating a custom
error page for specific HTTP status codes”.)

Using an Amazon S3 bucket as your CloudFront origin server doesn't change the bucket in any
way. You can still use it as you normally would and you incur regular Amazon S3 charges. For more
information about the charges to use CloudFront, see Amazon CloudFront Pricing.

Note

If you use the CloudFront API to create your distribution with an Amazon S3 bucket that is
configured as a website endpoint, you must configure it by using CustomOriginConfig,
even though the website is hosted in an Amazon S3 bucket. For more information about

Using an Amazon S3 bucket 103

https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/WebsiteEndpoints.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/CustomErrorDocSupport.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/CustomErrorDocSupport.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/how-to-page-redirect.html
https://aws.amazon.com/cloudfront/pricing/

Amazon CloudFront Developer Guide

creating distributions by using the CloudFront API, see CreateDistribution in the Amazon
CloudFront API Reference.

Adding CloudFront to an existing Amazon S3 bucket

If you store your objects in an Amazon S3 bucket, you can either have users get your objects
directly from S3, or you can configure CloudFront to get your objects from S3 and then distribute
them to your users. Using CloudFront can be more cost effective if your users access your objects
frequently because, at higher usage, the price for CloudFront data transfer is lower than the price
for Amazon S3 data transfer. In addition, downloads are faster with CloudFront than with Amazon
S3 alone because your objects are stored closer to your users.

Note

If you want CloudFront to respect Amazon S3 cross-origin resource sharing settings,
configure CloudFront to forward the Origin header to Amazon S3. For more information,
see the section called “Caching content based on request headers”.

If you currently distribute content directly from your Amazon S3 bucket using your own domain
name (such as example.com) instead of the domain name of your Amazon S3 bucket (such as DOC-
EXAMPLE-BUCKET.s3.us-west-2.amazonaws.com), you can add CloudFront with no disruption by
using the following procedure.

To add CloudFront when you're already distributing your content from Amazon S3

1. Create a CloudFront distribution. For more information, see the section called “Steps for
creating a distribution”.

When you create the distribution, specify the name of your Amazon S3 bucket as the origin
server.

Important

For your bucket to work with CloudFront, the name must conform to DNS naming
requirements. For more information, go to Bucket naming rules in the Amazon Simple
Storage Service User Guide.

Using an Amazon S3 bucket 104

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateDistribution.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html

Amazon CloudFront Developer Guide

If you're using a CNAME with Amazon S3, specify the CNAME for your distribution, too.

2. Create a test webpage that contains links to publicly readable objects in your Amazon S3
bucket, and test the links. For this initial test, use the CloudFront domain name of your
distribution in the object URLs, for example, https://d111111abcdef8.cloudfront.net/
images/image.jpg.

For more information about the format of CloudFront URLs, see the section called
“Customizing file URLs”.

3. If you're using Amazon S3 CNAMEs, your application uses your domain name (for example,
example.com) to reference the objects in your Amazon S3 bucket instead of using the name
of your bucket (for example, DOC-EXAMPLE-BUCKET.s3.amazonaws.com). To continue using
your domain name to reference objects instead of using the CloudFront domain name for your
distribution (for example, d111111abcdef8.cloudfront.net), you need to update your settings
with your DNS service provider.

For Amazon S3 CNAMEs to work, your DNS service provider must have a CNAME resource
record set for your domain that currently routes queries for the domain to your Amazon S3
bucket. For example, if a user requests this object:

https://example.com/images/image.jpg

The request is automatically rerouted, and the user sees this object:

https://DOC-EXAMPLE-BUCKET.s3.amazonaws.com/images/image.jpg

To route queries to your CloudFront distribution instead of your Amazon S3 bucket, you need
to use the method provided by your DNS service provider to update the CNAME resource
record set for your domain. This updated CNAME record redirects DNS queries from your
domain to the CloudFront domain name for your distribution. For more information, see the
documentation provided by your DNS service provider.

Note

If you're using Route 53 as your DNS service, you can use either a CNAME resource
record set or an alias resource record set. For information about editing resource record
sets, see Editing records. For information about alias resource record sets, see Choosing

Using an Amazon S3 bucket 105

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-editing.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-choosing-alias-non-alias.html

Amazon CloudFront Developer Guide

between alias and non-alias records. Both topics are in the Amazon Route 53 Developer
Guide.

For more information about using CNAMEs with CloudFront, see the section called “Using
custom URLs”.

After you update the CNAME resource record set, it can take up to 72 hours for the change to
propagate throughout the DNS system, although it usually happens faster. During this time,
some requests for your content will continue to be routed to your Amazon S3 bucket, and
others will be routed to CloudFront.

Moving an Amazon S3 bucket to a different AWS Region

If you're using Amazon S3 as the origin for a CloudFront distribution and you move the bucket to
a different AWS Region, CloudFront can take up to an hour to update its records to use the new
Region when both of the following are true:

• You're using a CloudFront origin access identity (OAI) to restrict access to the bucket.

• You move the bucket to an Amazon S3 Region that requires Signature Version 4 for
authentication.

When you're using OAIs, CloudFront uses the Region (among other values) to calculate the
signature that it uses to request objects from your bucket. For more information about OAIs, see
the section called “Using an origin access identity (legacy, not recommended)”. For a list of AWS
Regions that support Signature Version 2, see Signature Version 2 signing process in the Amazon
Web Services General Reference.

To force a faster update to CloudFront's records, you can update your CloudFront distribution,
for example, by updating the Description field on the General tab in the CloudFront console.
When you update a distribution, CloudFront immediately checks the Region that your bucket is in.
Propagation of the change to all edge locations should take only a few minutes.

Using a MediaStore container or a MediaPackage channel

To stream video using CloudFront, you can set up an Amazon S3 bucket that is configured as a
MediaStore container, or create a channel and endpoints with MediaPackage. Then you create and
configure a distribution in CloudFront to stream the video.

Using a MediaStore container or a MediaPackage channel 106

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-choosing-alias-non-alias.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-2.html

Amazon CloudFront Developer Guide

For more information and step-by-step instructions, see the following topics:

• the section called “Serving video using AWS Elemental MediaStore as the origin”

• the section called “Serving live video formatted with AWS Elemental MediaPackage”

Using an Application Load Balancer

If your origin is one or more HTTP servers (web servers) hosted on one or more Amazon EC2
instances, you can use an Application Load Balancer to distribute traffic to the instances. For more
information about using an Application Load Balancer as your origin for CloudFront, including
how to make sure that viewers can only access your web servers through CloudFront and not by
accessing the load balancer directly, see the section called “Restricting access to Application Load
Balancers”.

Using a Lambda function URL

A Lambda function URL is a dedicated HTTPS endpoint for an AWS Lambda function. You can use
a Lambda function URL to build a serverless web application entirely within AWS Lambda. You can
invoke the Lambda web application directly through the function URL, with no need to integrate
with API Gateway or an Application Load Balancer.

If you build a serverless web application using Lambda functions with function URLs, you can add
CloudFront to get the following benefits:

• Speed up your application by caching content closer to viewers

• Use a custom domain name for your web application

• Route different URL paths to different Lambda functions using CloudFront cache behaviors

• Block specific requests using CloudFront geographic restrictions or AWS WAF (or both)

• Use AWS WAF with CloudFront to help protect your application from malicious bots, help
prevent common application exploits, and enhance protection from DDoS attacks

To use a Lambda function URL as the origin for a CloudFront distribution, specify the full domain
name of the Lambda function URL as the origin domain. A Lambda function URL domain name
uses the following format:

function-URL-ID.lambda-url.AWS-Region.on.aws

Using an Application Load Balancer 107

https://docs.aws.amazon.com/lambda/latest/dg/lambda-urls.html

Amazon CloudFront Developer Guide

When you use a Lambda function URL as the origin for a CloudFront distribution, you must make
sure that the function URL is publicly accessible. To do this, you set the AuthType parameter of
the function URL to NONE and allow the lambda:InvokeFunctionUrl permission in a resource-
based policy. For more information, see Using the NONE AuthType in the AWS Lambda Developer
Guide. However, you can also add a custom origin header to the requests that CloudFront sends
to the origin, and write function code to return an error response if the header is not present in
the request. This helps to make sure that users can only access your web application through
CloudFront, not directly using the Lambda function URL.

For more information about Lambda function URLs, see the following topics in the AWS Lambda
Developer Guide:

• Lambda function URLs – A general overview of the Lambda function URLs feature

• Invoking Lambda function URLs – Includes details about the request and response payloads to
use for coding your serverless web application

Using Amazon EC2 (or another custom origin)

A custom origin is an HTTP server, for example, a web server. The HTTP server can be an Amazon
EC2 instance or an HTTP server that you host somewhere else. An Amazon S3 origin configured as
a website endpoint is also considered a custom origin.

When you use your own HTTP server as a custom origin, you specify the DNS name of the server,
along with the HTTP and HTTPS ports and the protocol that you want CloudFront to use when
fetching objects from your origin.

Most CloudFront features are supported when you use a custom origin with the exception of
private content. Although you can use a signed URL to distribute content from a custom origin,
for CloudFront to access the custom origin, the origin must remain publicly accessible. For more
information, see the section called “Restricting content with signed URLs and signed cookies”.

Follow these guidelines for using Amazon EC2 instances and other custom origins with CloudFront.

• Host and serve the same content on all servers that are serving content for the same CloudFront
origin. For more information, see the section called “Origin settings” in the the section called
“Values that you specify” topic.

• Log the X-Amz-Cf-Id header entries on all servers in case you need AWS Support or CloudFront
to use this value for debugging.

Using Amazon EC2 (or another custom origin) 108

https://docs.aws.amazon.com/lambda/latest/dg/urls-auth.html#urls-auth-none
https://docs.aws.amazon.com/lambda/latest/dg/lambda-urls.html
https://docs.aws.amazon.com/lambda/latest/dg/urls-invocation.html

Amazon CloudFront Developer Guide

• Restrict requests to the HTTP and HTTPS ports that your custom origin listens on.

• Synchronize the clocks of all servers in your implementation. Note that CloudFront uses
Coordinated Universal Time (UTC) for signed URLs and signed cookies, for logs, and reports. In
addition, if you monitor CloudFront activity using CloudWatch metrics, note that CloudWatch
also uses UTC.

• Use redundant servers to handle failures.

• For information about using a custom origin to serve private content, see the section called “
Restricting access to files on custom origins”.

• For information about request and response behavior and about supported HTTP status codes,
see Request and response behavior.

If you use Amazon EC2 for a custom origin, we recommend that you do the following:

• Use an Amazon Machine Image that automatically installs the software for a web server. For
more information, see the Amazon EC2 documentation.

• Use an Elastic Load Balancing load balancer to handle traffic across multiple Amazon EC2
instances and to isolate your application from changes to Amazon EC2 instances. For example,
if you use a load balancer, you can add and delete Amazon EC2 instances without changing your
application. For more information, see the Elastic Load Balancing documentation.

• When you create your CloudFront distribution, specify the URL of the load balancer for the
domain name of your origin server. For more information, see the section called “Creating a
distribution”.

Using CloudFront origin groups

You can specify an origin group for your CloudFront origin if, for example, you want to configure
origin failover for scenarios when you need high availability. Use origin failover to designate a
primary origin for CloudFront plus a second origin that CloudFront automatically switches to when
the primary origin returns specific HTTP status code failure responses.

For more information, including the steps for setting up an origin group, see the section called
“Increasing availability with origin failover”.

Using CloudFront origin groups 109

https://docs.aws.amazon.com/ec2/index.html
https://docs.aws.amazon.com/elasticloadbalancing/index.html

Amazon CloudFront Developer Guide

Using custom URLs by adding alternate domain names
(CNAMEs)

When you create a distribution, CloudFront provides a domain name for it, such as
d111111abcdef8.cloudfront.net. Instead of using this provided domain name, you can use an
alternate domain name (also known as a CNAME).

To use your own domain name, such as www.example.com, see the following sections:

Topics

• Adding an alternate domain name

• Moving an alternate domain name to a different distribution

• Removing an alternate domain name

• Using wildcards in alternate domain names

• Requirements for using alternate domain names

• Restrictions on using alternate domain names

Adding an alternate domain name

The following task list describes how to use the CloudFront console to add an alternate domain
name to your distribution so that you can use your own domain name in your links instead of the
CloudFront domain name. For information about updating your distribution using the CloudFront
API, see Working with distributions.

Note

If you want viewers to use HTTPS with your alternate domain name, see Using alternate
domain names and HTTPS.

Before you begin: Make sure that you do the following before you update your distribution to add
an alternate domain name:

• Register the domain name with Route 53 or another domain registrar.

Using custom URLs 110

Amazon CloudFront Developer Guide

• Get an SSL/TLS certificate from an authorized certificate authority (CA) that covers the domain
name. Add the certificate to your distribution to validate that you are authorized to use the
domain. For more information, see Requirements for using alternate domain names.

Adding an alternate domain name

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. Choose the ID for the distribution that you want to update.

3. On the General tab, choose Edit.

4. Update the following values:

Alternate Domain Names (CNAMEs)

Add your alternate domain names. Separate domain names with commas, or type each
domain name on a new line.

SSL Certificate

Choose the following setting:

• Use HTTPS – Choose Custom SSL Certificate, and then choose a certificate from the list.
The list includes certificates provisioned by AWS Certificate Manager (ACM), certificates
that you purchased from another CA and uploaded to ACM, and certificates that you
purchased from another CA and uploaded to the IAM certificate store.

If you uploaded a certificate to the IAM certificate store but it doesn’t appear in the list,
review the procedure Importing an SSL/TLS certificate to confirm that you correctly
uploaded the certificate.

If you choose this setting, we recommend that you use only an alternate domain name
in your object URLs (https://www.example.com/logo.jpg). If you use your CloudFront
distribution domain name (https://d111111abcdef8.cloudfront.net.cloudfront.net/
logo.jpg), a viewer might behave as follows, depending on the value that you choose for
Clients Supported:

• All Clients: If the viewer doesn’t support SNI, it displays a warning because the
CloudFront domain name doesn’t match the domain name in your TLS/SSL certificate.

• Only Clients that Support Server Name Indication (SNI): CloudFront drops the
connection with the viewer without returning the object.

Adding an alternate domain name 111

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

Clients Supported

Choose an option:

• All Clients: CloudFront serves your HTTPS content using dedicated IP addresses. If
you select this option, you incur additional charges when you associate your SSL/
TLS certificate with a distribution that is enabled. For more information, see Amazon
CloudFront Pricing.

• Only Clients that Support Server Name Indication (SNI) (Recommended): Older
browsers or other clients that don't support SNI must use another method to access your
content.

For more information, see Choosing how CloudFront serves HTTPS requests.

5. Choose Yes, Edit.

6. On the General tab for the distribution, confirm that Distribution Status has changed to
Deployed. If you try to use an alternate domain name before the updates to your distribution
have been deployed, the links that you create in the following steps might not work.

7. Configure the DNS service for the alternate domain name (such as www.example.com)
to route traffic to the CloudFront domain name for your distribution (such as
d111111abcdef8.cloudfront.net). The method that you use depends on whether you’re using
Route 53 as the DNS service provider for the domain or another provider.

Note

If your DNS record already points to a distribution that is not the distribution that
you are updating, then you only add the alternate domain name to your distribution
after you update your DNS. For more information, see Restrictions on using alternate
domain names.

Route 53

Create an alias resource record set. With an alias resource record set, you don’t pay for
Route 53 queries. In addition, you can create an alias resource record set for the root
domain name (example.com), which DNS doesn’t allow for CNAMEs. For more information,
see Routing traffic to an Amazon CloudFront web distribution by using your domain name
in the Amazon Route 53 Developer Guide.

Adding an alternate domain name 112

https://aws.amazon.com/cloudfront/pricing/
https://aws.amazon.com/cloudfront/pricing/
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-cloudfront-distribution.html

Amazon CloudFront Developer Guide

Another DNS service provider

Use the method provided by your DNS service provider to add a CNAME record for
your domain. This new CNAME record will redirect DNS queries from your alternate
domain name (for example, www.example.com) to the CloudFront domain name for your
distribution (for example, d111111abcdef8.cloudfront.net). For more information, see the
documentation provided by your DNS service provider.

Important

If you already have an existing CNAME record for your alternate domain name,
update that record or replace it with a new one that points to the CloudFront
domain name for your distribution.

8. Using dig or a similar DNS tool, confirm that the DNS configuration that you created in the
previous step points to the domain name for your distribution.

The following example shows a dig request on the www.example.com domain, as well as the
relevant part of the response.

PROMPT> dig www.example.com

; <<> DiG 9.3.3rc2 <<> www.example.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 15917
;; flags: qr rd ra; QUERY: 1, ANSWER: 9, AUTHORITY: 2, ADDITIONAL: 0

;; QUESTION SECTION:
;www.example.com. IN A

;; ANSWER SECTION:
www.example.com. 10800 IN CNAME d111111abcdef8.cloudfront.net.
...

The answer section shows a CNAME record that routes queries for www.example.com to the
CloudFront distribution domain name d111111abcdef8.cloudfront.net. If the name on the
right side of CNAME is the domain name for your CloudFront distribution, the CNAME record
is configured correctly. If it’s any other value, for example, the domain name for your Amazon

Adding an alternate domain name 113

Amazon CloudFront Developer Guide

S3 bucket, then the CNAME record is configured incorrectly. In that case, go back to step 7 and
correct the CNAME record to point to the domain name for your distribution.

9. Test the alternate domain name by visiting URLs with your domain name instead of the
CloudFront domain name for your distribution.

10. In your application, change the URLs for your objects to use your alternate domain name
instead of the domain name of your CloudFront distribution.

Moving an alternate domain name to a different distribution

When you try to add an alternate domain name to a distribution but the alternate domain name is
already in use on a different distribution, you get a CNAMEAlreadyExists error (One or more of
the CNAMEs you provided are already associated with a different resource). For example, you get
this error when you attempt to add www.example.com to a distribution, but www.example.com is
already associated with a different distribution.

In that case, you might want to move the existing alternate domain name from one distribution
(the source distribution) to another (the target distribution). The following steps are an overview of
the process. For more information, follow the link at each step in the overview.

To move an alternate domain name

1. Set up the target distribution. This distribution must have an SSL/TLS certificate that covers
the alternate domain name that you are moving. For more information, see Set up the target
distribution.

2. Find the source distribution. You can use the AWS Command Line Interface (AWS CLI) to find
the distribution that the alternate domain name is associated with. For more information, see
Find the source distribution.

3. Move the alternate domain name. The way you do this depends on whether the source and
target distributions are in the same AWS account. For more information, see the section called
“Move the alternate domain name”.

Set up the target distribution

Before you can move an alternate domain name, you must set up the target distribution (the
distribution that you are moving the alternate domain name to).

Moving an alternate domain name to a different distribution 114

Amazon CloudFront Developer Guide

To set up the target distribution

1. Get an SSL/TLS certificate that includes the alternate domain name that you are moving. If
you don’t have one, you can request one from AWS Certificate Manager (ACM), or get one from
another certificate authority (CA) and import it into ACM. Make sure that you request or import
the certificate in the US East (N. Virginia) (us-east-1) Region.

2. If you haven’t created the target distribution, create one now. As part of creating the target
distribution, associate your certificate (from the previous step) with the distribution. For more
information, see Creating a distribution.

If you already have a target distribution, associate your certificate (from the previous step)
with the target distribution. For more information, see Updating a distribution.

3. Create a DNS TXT record that associates the alternate domain name with the distribution
domain name of the target distribution. Create your TXT record with an underscore (_) in front
of the alternate domain name. The following shows an example TXT record in DNS:

_www.example.com TXT d111111abcdef8.cloudfront.net

CloudFront uses this TXT record to validate your ownership of the alternate domain name.

Find the source distribution

Before you move an alternate domain name from one distribution to another, you should find the
source distribution (the distribution where the alternate domain name is currently in use). When
you know the AWS account ID of both the source and target distributions, you can determine how
to move the alternate domain name.

To find the source distribution for the alternate domain name

1. Use the CloudFront list-conflicting-aliases command in the AWS Command Line Interface
(AWS CLI) as shown in the following example. Replace www.example.com with the alternate
domain name, and EDFDVBD6EXAMPLE with the ID of the target distribution that you set
up previously. Run this command using credentials that are in the same AWS account as the
target distribution. To use this command, you must have cloudfront:GetDistribution
and cloudfront:ListConflictingAlias permissions on the target distribution.

Moving an alternate domain name to a different distribution 115

https://console.aws.amazon.com/acm
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudfront/list-conflicting-aliases.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudfront/list-conflicting-aliases.html

Amazon CloudFront Developer Guide

aws cloudfront list-conflicting-aliases --alias www.example.com --distribution-
id EDFDVBD6EXAMPLE

The command’s output shows a list of all the alternate domain names that conflict or overlap
with the provided one. For example:

• If you provide www.example.com to the command, the command’s output includes
www.example.com and the overlapping wildcard alternate domain name (*.example.com) if
it exists.

• If you provide *.example.com to the command, the command’s output includes
*.example.com and any alternate domain names covered by that wildcard (for example,
www.example.com, test.example.com, dev.example.com, and so on).

For each alternate domain name in the command’s output, you can see the ID of the
distribution that it’s associated with, and the AWS account ID that owns the distribution. The
distribution and account IDs are partially hidden, which allows you to identify the distributions
and accounts that you own, but helps to protect the information of ones that you don’t own.

2. In the command’s output, find the distribution for the alternate domain name that you are
moving, and note the source distribution’s AWS account ID. Compare the source distribution’s
account ID with the account ID where you created the target distribution, and determine
whether these two distribution are in the same AWS account. This helps you determine how to
move the alternate domain name.

To move the alternate domain name, see the following topic.

Move the alternate domain name

Depending on your situation, choose from the following ways to move the alternate domain name:

If the source and target distributions are in the same AWS account

Use the associate-alias command in the AWS CLI to move the alternate domain name. This
method works for all same-account moves, including when the alternate domain name is an
apex domain (also called a root domain, like example.com). For more information, see the
section called “Use associate-alias to move an alternate domain name”.

Moving an alternate domain name to a different distribution 116

Amazon CloudFront Developer Guide

If the source and target distributions are in different AWS accounts

If you have access to the source distribution, the alternate domain name is not an apex domain
(also called a root domain, like example.com), and you are not already using a wildcard that
overlaps with that alternate domain name, use a wildcard to move the alternate domain name.
For more information, see the section called “Use a wildcard to move an alternate domain
name”.

If you don’t have access to the source distribution’s AWS account, you can try using the
associate-alias command in the AWS CLI to move the alternate domain name. If the source
distribution is disabled, you can move the alternate domain name. For more information,
see the section called “Use associate-alias to move an alternate domain name”. If the
associate-alias command doesn’t work, contact AWS Support. For more information, see the
section called “Contact AWS Support to move an alternate domain name”.

Use associate-alias to move an alternate domain name

If the source distribution is in the same AWS account as the target distribution, or if it’s in a
different account but disabled, you can use the CloudFront associate-alias command in the AWS CLI
to move the alternate domain name.

To use associate-alias to move an alternate domain name

1. Use the AWS CLI to run the CloudFront associate-alias command, as shown in the
following example. Replace www.example.com with the alternate domain name, and
EDFDVBD6EXAMPLE with the target distribution ID. Run this command using credentials that
are in the same AWS account as the target distribution. Note the following restrictions for
using this command:

• You must have cloudfront:AssociateAlias and cloudfront:UpdateDistribution
permissions on the target distribution.

• If the source and target distributions are in the same AWS account, you must have
cloudfront:UpdateDistribution permission on the source distribution.

• If the source and target distributions are in different AWS accounts, the source distribution
must be disabled.

• The target distribution must be set up as described in the section called “Set up the target
distribution”.

Moving an alternate domain name to a different distribution 117

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudfront/associate-alias.html

Amazon CloudFront Developer Guide

aws cloudfront associate-alias --alias www.example.com --target-distribution-
id EDFDVBD6EXAMPLE

This command updates both distributions by removing the alternate domain name from the
source distribution and adding it to the target distribution.

2. After the target distribution is fully deployed, update your DNS configuration to point
the alternate domain name’s DNS record to the distribution domain name of the target
distribution.

Use a wildcard to move an alternate domain name

If the source distribution is in a different AWS account than the target distribution, and the source
distribution is enabled, you can use a wildcard to move the alternate domain name.

Note

You can’t use a wildcard to move an apex domain (like example.com). To move an apex
domain when the source and target distributions are in different AWS accounts, contact
AWS Support. For more information, see the section called “Contact AWS Support to move
an alternate domain name”.

To use a wildcard to move an alternate domain name

Note

This process involves multiple updates to your distributions. Wait for each distribution to
fully deploy the latest change before proceeding to the next step.

1. Update the target distribution to add a wildcard alternate domain name that covers the
alternate domain name that you are moving. For example, if the alternate domain name
that you’re moving is www.example.com, add the alternate domain name *.example.com to
the target distribution. To do this, the SSL/TLS certificate on the target distribution must

Moving an alternate domain name to a different distribution 118

Amazon CloudFront Developer Guide

include the wildcard domain name. For more information, see the section called “Updating a
distribution”.

2. Update the DNS settings for the alternate domain name to point to the domain name of
the target distribution. For example, if the alternate domain name that you’re moving is
www.example.com, update the DNS record for www.example.com to route traffic to the
domain name of the target distribution (for example d111111abcdef8.cloudfront.net).

Note

Even after you update the DNS settings, the alternate domain name is still served by
the source distribution because that’s where the alternate domain name is currently
configured.

3. Update the source distribution to remove the alternate domain name. For more information,
see Updating a distribution.

4. Update the target distribution to add the alternate domain name. For more information, see
Updating a distribution.

5. Use dig (or a similar DNS query tool) to validate that the DNS record for the alternate domain
name resolves to the domain name of the target distribution.

6. (Optional) Update the target distribution to remove the wildcard alternate domain name.

Contact AWS Support to move an alternate domain name

If the source and target distributions are in different AWS accounts, and you don’t have access to
the source distribution’s AWS account or can’t disable the source distribution, you can contact AWS
Support to move the alternate domain name.

To contact AWS Support to move an alternate domain name

1. Set up a target distribution, including the DNS TXT record that points to the target
distribution. For more information, see Set up the target distribution.

2. Contact AWS Support to request that they verify that you own the domain, and move the
domain to the new CloudFront distribution for you.

3. After the target distribution is fully deployed, update your DNS configuration to point
the alternate domain name’s DNS record to the distribution domain name of the target
distribution.

Moving an alternate domain name to a different distribution 119

https://console.aws.amazon.com/support/home

Amazon CloudFront Developer Guide

Removing an alternate domain name

If you want to stop routing traffic for a domain or subdomain to a CloudFront distribution, follow
the steps in this section to update both the DNS configuration and the CloudFront distribution.

It’s important that you remove the alternate domain names from the distribution as well as update
your DNS configuration. This helps prevent issues later if you want to associate the domain name
with another CloudFront distribution. If an alternate domain name is already associated with one
distribution, it can’t be set up with another.

Note

If you want to remove the alternate domain name from this distribution so you can add
it to another one, follow the steps in Moving an alternate domain name to a different
distribution. If you follow the steps here instead (to remove a domain) and then add the
domain to another distribution, there will be a period of time during which the domain
won’t link to the new distribution because CloudFront is propagating to the updates to
edge locations.

To remove an alternate domain name from a distribution

1. To start, route internet traffic for your domain to another resource that isn’t your CloudFront
distribution, such as an Elastic Load Balancing load balancer. Or you can delete the DNS record
that’s routing traffic to CloudFront.

Do one of the following, depending on the DNS service for your domain:

• If you’re using Route 53, update or delete alias records or CNAME records. For more
information, see Editing records or Deleting records.

• If you’re using another DNS service provider, use the method provided by the DNS service
provider to update or delete the CNAME record that directs traffic to CloudFront. For more
information, see the documentation provided by your DNS service provider.

2. After you update your domain’s DNS records, wait until the changes have propagated and DNS
resolvers are routing traffic to the new resource. You can check to see when this is complete by
creating some test links that use your domain in the URL.

Removing an alternate domain name 120

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-editing.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-deleting.html

Amazon CloudFront Developer Guide

3. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home, and update your CloudFront distribution to
remove the domain name by doing the following:

a. Choose the ID for the distribution that you want to update.

b. On the General tab, choose Edit.

c. In Alternate Domain Names (CNAMEs), remove the alternate domain name (or domain
names) that you no longer want to use for your distribution.

d. Choose Yes, Edit.

Using wildcards in alternate domain names

When you add alternate domain names, you can use the * wildcard at the beginning of a domain
name instead of adding subdomains individually. For example, with an alternate domain name of
*.example.com, you can use any domain name that ends with example.com in your URLs, such as
www.example.com, product-name.example.com, marketing.product-name.example.com, and so
on. The path to the object is the same regardless of the domain name, for example:

• www.example.com/images/image.jpg

• product-name.example.com/images/image.jpg

• marketing.product-name.example.com/images/image.jpg

Follow these requirements for alternate domain names that include wildcards:

• The alternate domain name must begin with an asterisk and a dot (*.).

• You cannot use a wildcard to replace part of a subdomain name, like this: *domain.example.com.

• You cannot replace a subdomain in the middle of a domain name, like this:
subdomain.*.example.com.

• All alternate domain names, including alternate domain names that use wildcards, must be
covered by the subject alternative name (SAN) on the certificate.

A wildcard alternate domain name, such as *.example.com, can include another alternate domain
name that’s in use, such as example.com.

Using wildcards in alternate domain names 121

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

Requirements for using alternate domain names

When you add an alternate domain name, such as www.example.com, to a CloudFront distribution,
the following are requirements:

Alternate domain names must be lowercase

All alternate domain names (CNAMEs) must be lowercase.

Alternate domain names must be covered by a valid SSL/TLS certificate

To add an alternate domain name (CNAME) to a CloudFront distribution, you must attach to
your distribution a trusted, valid SSL/TLS certificate that covers the alternate domain name.
This ensures that only people with access to your domain’s certificate can associate with
CloudFront a CNAME related to your domain.

A trusted certificate is one that is issued by AWS Certificate Manager (ACM) or by another valid
certificate authority (CA). You can use a self-signed certificate to validate an existing CNAME,
but not for a new CNAME. CloudFront supports the same certificate authorities as Mozilla. For
the current list, see Mozilla Included CA Certificate List.

To verify an alternate domain name by using the certificate that you attach, including alternate
domain names that include wildcards, CloudFront checks the subject alternative name (SAN) on
the certificate. The alternate domain name that you’re adding must be covered by the SAN.

Note

Only one certificate can be attached to a CloudFront distribution at a time.

You prove that you are authorized to add a specific alternate domain name to your distribution
by doing one of the following:

• Attaching a certificate that includes the alternate domain name, like product-
name.example.com.

• Attaching a certificate that includes a * wildcard at the beginning of a domain name, to cover
multiple subdomains with one certificate. When you specify a wildcard, you can add multiple
subdomains as alternate domain names in CloudFront.

The following examples illustrate how using wildcards in domain names in a certificate work to
authorize you to add specific alternate domain names in CloudFront.

Requirements for using alternate domain names 122

https://wiki.mozilla.org/CA/Included_Certificates

Amazon CloudFront Developer Guide

• You want to add marketing.example.com as an alternate domain name. You list in your
certificate the following domain name: *.example.com. When you attach this certificate to
CloudFront, you can add any alternate domain name for your distribution that replaces the
wildcard at that level, including marketing.example.com. You can also, for example, add the
following alternate domain names:

• product.example.com

• api.example.com

However, you can’t add alternate domain names that are at levels higher or lower than
the wildcard. For example, you can’t add the alternate domain names example.com or
marketing.product.example.com.

• You want to add example.com as an alternate domain name. To do this, you must list the
domain name example.com itself on the certificate that you attach to your distribution.

• You want to add marketing.product.example.com as an alternate domain name.
To do this, you can list *.product.example.com on the certificate, or you can list
marketing.product.example.com itself on the certificate.

Permission to change DNS configuration

When you add alternate domain names, you must create CNAME records to route DNS queries
for the alternate domain names to your CloudFront distribution. To do this, you must have
permission to create CNAME records with the DNS service provider for the alternate domain
names that you’re using. Typically, this means that you own the domains, but you might be
developing an application for the domain owner.

Alternate domain names and HTTPS

If you want viewers to use HTTPS with an alternate domain name, you must complete some
additional configuration. For more information, see Using alternate domain names and HTTPS.

Restrictions on using alternate domain names

Note the following restrictions on using alternate domain names:

Maximum number of alternate domain names

For the current maximum number of alternate domain names that you can add to a
distribution, or to request a higher quota (formerly known as limit), see General quotas on
distributions.

Restrictions on using alternate domain names 123

Amazon CloudFront Developer Guide

Duplicate and overlapping alternate domain names

You cannot add an alternate domain name to a CloudFront distribution if the same alternate
domain name already exists in another CloudFront distribution, even if your AWS account owns
the other distribution.

However, you can add a wildcard alternate domain name, such as *.example.com, that includes
(that overlaps with) a non-wildcard alternate domain name, such as www.example.com. If you
have overlapping alternate domain names in two distributions, CloudFront sends the request to
the distribution with the more specific name match, regardless of the distribution that the DNS
record points to. For example, marketing.domain.com is more specific than *.domain.com.

Domain fronting

CloudFront includes protection against domain fronting occurring across different AWS
accounts. Domain fronting is a scenario in which a non-standard client creates a TLS/SSL
connection to a domain name in one AWS account, but then makes an HTTPS request for an
unrelated name in another AWS account. For example, the TLS connection might connect to
www.example.com, and then send an HTTP request for www.example.org.

To prevent cases where domain fronting crosses different AWS accounts, CloudFront makes sure
that the AWS account that owns the certificate that it serves for a specific connection always
matches the AWS account that owns the request that it handles on that same connection.

If the two AWS account numbers do not match, CloudFront responds with an HTTP 421
Misdirected Request response to give the client a chance to connect using the correct domain.

Adding an alternate domain name at the top node (zone apex) for a domain

When you add an alternate domain name to a distribution, you typically create a CNAME
record in your DNS configuration to route DNS queries for the domain name to your
CloudFront distribution. However, you can’t create a CNAME record for the top node of a DNS
namespace, also known as the zone apex; the DNS protocol doesn’t allow it. For example, if
you register the DNS name example.com, the zone apex is example.com. You can’t create a
CNAME record for example.com, but you can create CNAME records for www.example.com,
newproduct.example.com, and so on.

If you’re using Route 53 as your DNS service, you can create an alias resource record set, which
has two advantages over CNAME records. You can create an alias resource record set for a
domain name at the top node (example.com). In addition, when you use an alias resource record
set, you don’t pay for Route 53 queries.

Restrictions on using alternate domain names 124

Amazon CloudFront Developer Guide

Note

If you enable IPv6, you must create two alias resource record sets: one to route
IPv4 traffic (an A record) and one to route IPv6 traffic (an AAAA record). For more
information, see Enable IPv6 in the topic Values that you specify when you create or
update a distribution.

For more information, see Routing traffic to an Amazon CloudFront web distribution by using
your domain name in the Amazon Route 53 Developer Guide.

Using WebSockets with CloudFront distributions

Amazon CloudFront supports using WebSocket, a TCP-based protocol that is useful when you need
long-lived bidirectional connections between clients and servers. A persistent connection is often a
requirement with real-time applications. The scenarios in which you might use WebSockets include
social chat platforms, online collaboration workspaces, multi-player gaming, and services that
provide real-time data feeds like financial trading platforms. Data over a WebSocket connection
can flow in both directions for full-duplex communication.

WebSocket functionality is automatically enabled to work with any distribution. To use
WebSockets, configure one of the following in the cache behavior that's attached to your
distribution:

• Forward all viewer request headers to your origin. (You can use the AllViewer managed origin
request policy.)

• Specifically forward the Sec-WebSocket-Key and Sec-WebSocket-Version request headers
in your origin request policy.

How the WebSocket protocol works

The WebSocket protocol is an independent, TCP-based protocol that allows you to avoid some of
the overhead—and potentially increased latency—of HTTP.

To establish a WebSocket connection, the client sends a regular HTTP request that uses HTTP's
upgrade semantics to change the protocol. The server can then complete the handshake. The

Using WebSockets 125

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-cloudfront-distribution.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-cloudfront-distribution.html

Amazon CloudFront Developer Guide

WebSocket connection remains open and either the client or server can send data frames to each
other without having to establish new connections each time.

By default, the WebSocket protocol uses port 80 for regular WebSocket connections and port 443
for WebSocket connections over TLS/SSL. The options that you choose for your CloudFront Viewer
protocol policy and Protocol (custom origins only) apply to WebSocket connections as well as to
HTTP traffic.

WebSocket requirements

WebSocket requests must comply with RFC 6455 in the following standard formats.

Sample client request:

GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Origin: https://example.com
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13

Sample server response:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
Sec-WebSocket-Protocol: chat

If the WebSocket connection is disconnected by the client or server, or by a network disruption,
client applications are expected to re-initiate the connection with the server.

Recommended settings

In order to avoid unexpected compression-related issues when using WebSockets, we recommend
that you include the following headers in an origin request policy:

• Sec-WebSocket-Key

WebSocket requirements 126

https://datatracker.ietf.org/doc/html/rfc6455

Amazon CloudFront Developer Guide

• Sec-WebSocket-Version

• Sec-WebSocket-Protocol

• Sec-WebSocket-Accept

• Sec-WebSocket-Extensions

Recommended settings 127

Amazon CloudFront Developer Guide

Working with policies

Amazon CloudFront offers three different kinds of policies that you can use to customize
CloudFront in the following ways:

Specify cache and compression settings

With a CloudFront cache policy, you can specify the HTTP headers, cookies, and query strings
that CloudFront includes in the cache key. The cache key determines whether a viewer's HTTP
request results in a cache hit (the object is served to the viewer from the CloudFront cache).
Including fewer values in the cache key increases the likelihood of a cache hit.

You can also use the cache policy to specify time to live (TTL) settings for objects in the
CloudFront cache, and enable CloudFront to request and cache compressed objects.

Specify values to include in origin requests (but not in the cache key)

With a CloudFront origin request policy, you can specify the HTTP headers, cookies, and query
strings that CloudFront includes in origin requests. These are the requests that CloudFront sends
to the origin when there's a cache miss.

All of the values in the cache policy are automatically included in origin requests, but with an
origin request policy you can include additional values in origin requests without including them
in the cache key.

Specify HTTP headers to remove or add in viewer responses

With a CloudFront response headers policy, you can control the HTTP headers that CloudFront
includes in HTTP responses that it sends to viewers (web browsers or other clients). You can
remove headers from the origin's HTTP response, or add HTTP headers to the responses that
CloudFront sends to viewers, without making any changes to your origin or writing any code.

For more information, see the following topics.

Topics

• the section called “Controlling the cache key”

• the section called “Controlling origin requests”

• Adding or removing response headers

128

Amazon CloudFront Developer Guide

Controlling the cache key

With Amazon CloudFront, you can control the cache key for objects that are cached at CloudFront
edge locations. The cache key is the unique identifier for every object in the cache, and it
determines whether a viewer request results in a cache hit. A cache hit occurs when a viewer
request generates the same cache key as a prior request, and the object for that cache key is in the
edge location's cache and valid. When there's a cache hit, the object is served to the viewer from a
CloudFront edge location, which has the following benefits:

• Reduced load on your origin server

• Reduced latency for the viewer

You can get better performance from your website or application when you have a higher cache hit
ratio (a higher proportion of viewer requests result in a cache hit). One way to improve your cache
hit ratio is to include only the minimum necessary values in the cache key. For more information,
see Understanding the cache key.

To control the cache key, you use a CloudFront cache policy. You attach a cache policy to one or
more cache behaviors in a CloudFront distribution.

Topics

• Creating cache policies

• Understanding cache policies

• Using the managed cache policies

• Understanding the cache key

Creating cache policies

You can use a cache policy to improve your cache hit ratio by controlling the values (URL query
strings, HTTP headers, and cookies) that are included in the cache key. You can create a cache
policy in the CloudFront console, with the AWS Command Line Interface (AWS CLI), or with the
CloudFront API.

After you create a cache policy, you attach it to one or more cache behaviors in a CloudFront
distribution.

Controlling the cache key 129

Amazon CloudFront Developer Guide

Console

To create a cache policy (console)

1. Sign in to the AWS Management Console and open the Policies page in the CloudFront
console at https://console.aws.amazon.com/cloudfront/v4/home?#/policies.

2. Choose Create cache policy.

3. Choose the desired setting for this cache policy. For more information, see Understanding
cache policies.

4. When finished, choose Create.

After you create a cache policy, you can attach it to a cache behavior.

To attach a cache policy to an existing distribution (console)

1. Open the Distributions page in the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home#/distributions.

2. Choose the distribution to update, then choose the Behaviors tab.

3. Choose the cache behavior to update, then choose Edit.

Or, to create a new cache behavior, choose Create behavior.

4. In the Cache key and origin requests section, make sure that Cache policy and origin
request policy is chosen.

5. For Cache policy, choose the cache policy to attach to this cache behavior.

6. At the bottom of the page, choose Save changes.

To attach a cache policy to a new distribution (console)

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

2. Choose Create distribution.

3. In the Cache key and origin requests section, make sure that Cache policy and origin
request policy is chosen.

4. For Cache policy, choose the cache policy to attach to this distribution's default cache
behavior.

Creating cache policies 130

https://console.aws.amazon.com/cloudfront/v4/home?#/policies
https://console.aws.amazon.com/cloudfront/v4/home#/distributions
https://console.aws.amazon.com/cloudfront/v4/home#/distributions
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

5. Choose the desired settings for the origin, default cache behavior, and other distribution
settings. For more information, see Values that you specify when you create or update a
distribution.

6. When finished, choose Create distribution.

CLI

To create a cache policy with the AWS Command Line Interface (AWS CLI), use the aws
cloudfront create-cache-policy command. You can use an input file to provide the command's
input parameters, rather than specifying each individual parameter as command line input.

To create a cache policy (CLI with input file)

1. Use the following command to create a file named cache-policy.yaml that contains all
of the input parameters for the create-cache-policy command.

aws cloudfront create-cache-policy --generate-cli-skeleton yaml-input > cache-
policy.yaml

2. Open the file named cache-policy.yaml that you just created. Edit the file to specify
the cache policy settings that you want, then save the file. You can remove optional fields
from the file, but don't remove the required fields.

For more information about the cache policy settings, see Understanding cache policies.

3. Use the following command to create the cache policy using input parameters from the
cache-policy.yaml file.

aws cloudfront create-cache-policy --cli-input-yaml file://cache-policy.yaml

Make note of the Id value in the command's output. This is the cache policy ID, and you
need it to attach the cache policy to a CloudFront distribution's cache behavior.

To attach a cache policy to an existing distribution (CLI with input file)

1. Use the following command to save the distribution configuration for the CloudFront
distribution that you want to update. Replace distribution_ID with the distribution's ID.

Creating cache policies 131

Amazon CloudFront Developer Guide

aws cloudfront get-distribution-config --id distribution_ID --output yaml >
 dist-config.yaml

2. Open the file named dist-config.yaml that you just created. Edit the file, making the
following changes to each cache behavior that you are updating to use a cache policy.

• In the cache behavior, add a field named CachePolicyId. For the field's value, use the
cache policy ID that you noted after creating the policy.

• Remove the MinTTL, MaxTTL, DefaultTTL, and ForwardedValues fields from the
cache behavior. These settings are specified in the cache policy, so you can't include these
fields and a cache policy in the same cache behavior.

• Rename the ETag field to IfMatch, but don't change the field's value.

Save the file when finished.

3. Use the following command to update the distribution to use the cache policy. Replace
distribution_ID with the distribution's ID.

aws cloudfront update-distribution --id distribution_ID --cli-input-yaml file://
dist-config.yaml

To attach a cache policy to a new distribution (CLI with input file)

1. Use the following command to create a file named distribution.yaml that contains all
of the input parameters for the create-distribution command.

aws cloudfront create-distribution --generate-cli-skeleton yaml-input >
 distribution.yaml

2. Open the file named distribution.yaml that you just created. In the default cache
behavior, in the CachePolicyId field, enter the cache policy ID that you noted after
creating the policy. Continue editing the file to specify the distribution settings that you
want, then save the file when finished.

Creating cache policies 132

Amazon CloudFront Developer Guide

For more information about the distribution settings, see Values that you specify when you
create or update a distribution.

3. Use the following command to create the distribution using input parameters from the
distribution.yaml file.

aws cloudfront create-distribution --cli-input-yaml file://distribution.yaml

API

To create a cache policy with the CloudFront API, use CreateCachePolicy. For more information
about the fields that you specify in this API call, see Understanding cache policies and the API
reference documentation for your AWS SDK or other API client.

After you create a cache policy, you can attach it to a cache behavior, using one of the following
API calls:

• To attach it to a cache behavior in an existing distribution, use UpdateDistribution.

• To attach it to a cache behavior in a new distribution, use CreateDistribution.

For both of these API calls, provide the cache policy's ID in the CachePolicyId field, inside a
cache behavior. For more information about the other fields that you specify in these API calls,
see Values that you specify when you create or update a distribution and the API reference
documentation for your AWS SDK or other API client.

Understanding cache policies

You can use a cache policy to improve your cache hit ratio by controlling the values (URL query
strings, HTTP headers, and cookies) that are included in the cache key. CloudFront provides some
predefined cache policies, known as managed policies, for common use cases. You can use these
managed policies, or you can create your own cache policy that's specific to your needs. For more
information about the managed policies, see Using the managed cache policies.

A cache policy contains the following settings, which are categorized into policy information, time
to live (TTL) settings, and cache key settings.

Understanding cache policies 133

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateCachePolicy.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateDistribution.html

Amazon CloudFront Developer Guide

Policy information

Name

A name to identify the cache policy. In the console, you use the name to attach the cache policy
to a cache behavior.

Description

A comment to describe the cache policy. This is optional, but it can help you identify the
purpose of the cache policy.

Time to live (TTL) settings

The time to live (TTL) settings work together with the Cache-Control and Expires HTTP
headers (if they're in the origin response) to determine how long objects in the CloudFront cache
remain valid.

Minimum TTL

The minimum amount of time, in seconds, that you want objects to stay in the CloudFront
cache before CloudFront checks with the origin to see if the object has been updated. For more
information, see Managing how long content stays in the cache (expiration).

Maximum TTL

The maximum amount of time, in seconds, that objects stay in the CloudFront cache before
CloudFront checks with the origin to see if the object has been updated. CloudFront uses this
setting only when the origin sends Cache-Control or Expires headers with the object. For
more information, see Managing how long content stays in the cache (expiration).

Default TTL

The default amount of time, in seconds, that you want objects to stay in the CloudFront cache
before CloudFront checks with the origin to see if the object has been updated. CloudFront uses
this setting's value as the object's TTL only when the origin does not send Cache-Control or
Expires headers with the object. For more information, see Managing how long content stays
in the cache (expiration).

Understanding cache policies 134

Amazon CloudFront Developer Guide

Note

If the Minimum TTL, Maximum TTL, and Default TTL settings are all set to 0, this disables
CloudFront caching.

Cache key settings

Cache key settings specify the values in viewer requests that CloudFront includes in the cache key.
The values can include URL query strings, HTTP headers, and cookies. The values that you include
in the cache key are automatically included in requests that CloudFront sends to the origin, known
as origin requests. For information about controlling origin requests without affecting the cache
key, see Controlling origin requests.

Cache key settings include:

• Headers

• Cookies

• Query strings

• Compression support

Headers

The HTTP headers in viewer requests that CloudFront includes in the cache key and in origin
requests. For headers, you can choose one of the following settings:

• None – The HTTP headers in viewer requests are not included in the cache key and are not
automatically included in origin requests.

• Include the following headers – You specify which of the HTTP headers in viewer requests
are included in the cache key and automatically included in origin requests.

When you use the Include the following headers setting, you specify HTTP headers by their
name, not their value. For example, consider the following HTTP header:

Accept-Language: en-US,en;q=0.5

Understanding cache policies 135

Amazon CloudFront Developer Guide

In this case, you specify the header as Accept-Language, not as Accept-Language: en-
US,en;q=0.5. However, CloudFront includes the full header, including its value, in the cache
key and in origin requests.

You can also include certain headers generated by CloudFront in the cache key. For more
information, see the section called “Adding CloudFront request headers”.

Cookies

The cookies in viewer requests that CloudFront includes in the cache key and in origin requests.
For cookies, you can choose one of the following settings:

• None – The cookies in viewer requests are not included in the cache key and are not
automatically included in origin requests.

• All – All cookies in viewer requests are included in the cache key and are automatically
included in origin requests.

• Include specified cookies – You specify which of the cookies in viewer requests are included
in the cache key and automatically included in origin requests.

• Include all cookies except – You specify which of the cookies in viewer requests are not
included in the cache key and are not automatically included in origin requests. All other
cookies, except for the ones you specify, are included in the cache key and automatically
included in origin requests.

When you use the Include specified cookies or Include all cookies except setting, you specify
cookies by their name, not their value. For example, consider the following Cookie header:

Cookie: session_ID=abcd1234

In this case, you specify the cookie as session_ID, not as session_ID=abcd1234. However,
CloudFront includes the full cookie, including its value, in the cache key and in origin requests.

Query strings

The URL query strings in viewer requests that CloudFront includes in the cache key and in origin
requests. For query strings, you can choose one of the following settings:

• None – The query strings in viewer requests are not included in the cache key and are not
automatically included in origin requests.

• All – All query strings in viewer requests are included in the cache key and are also
automatically included in origin requests.

Understanding cache policies 136

Amazon CloudFront Developer Guide

• Include specified query strings – You specify which of the query strings in viewer requests
are included in the cache key and automatically included in origin requests.

• Include all query strings except – You specify which of the query strings in viewer requests
are not included in the cache key and are not automatically included in origin requests.
All other query strings, except for the ones you specify, are included in the cache key and
automatically included in origin requests.

When you use the Include specified query strings or Include all query strings except setting,
you specify query strings by their name, not their value. For example, consider the following
URL path:

/content/stories/example-story.html?split-pages=false

In this case, you specify the query string as split-pages, not as split-pages=false.
However, CloudFront includes the full query string, including its value, in the cache key and in
origin requests.

Compression support

These settings enable CloudFront to request and cache objects that are compressed in the
Gzip or Brotli compression formats, when the viewer supports it. These settings also allow
CloudFront compression to work. Viewers indicate their support for these compression formats
with the Accept-Encoding HTTP header.

Note

The Chrome and Firefox web browsers support Brotli compression only when the
request is sent using HTTPS. These browsers do not support Brotli with HTTP requests.

Enable these settings when any of the following are true:

• Your origin returns Gzip compressed objects when viewers support them (requests contain
the Accept-Encoding HTTP header with gzip as a value). In this case, use the Gzip
enabled setting (set EnableAcceptEncodingGzip to true in the CloudFront API, AWS
SDKs, AWS CLI, or AWS CloudFormation).

• Your origin returns Brotli compressed objects when viewers support them (requests contain
the Accept-Encoding HTTP header with br as a value). In this case, use the Brotli enabled

Understanding cache policies 137

Amazon CloudFront Developer Guide

setting (set EnableAcceptEncodingBrotli to true in the CloudFront API, AWS SDKs,
AWS CLI, or AWS CloudFormation).

• The cache behavior that this cache policy is attached to is configured with CloudFront
compression. In this case, you can enable caching for either Gzip or Brotli, or both. When
CloudFront compression is enabled, enabling caching for both formats can help to reduce
your costs for data transfer out to the internet.

Note

If you enable caching for one or both of these compression formats, do not include the
Accept-Encoding header in an origin request policy that's associated with the same
cache behavior. CloudFront always includes this header in origin requests when caching
is enabled for either of these formats, so including Accept-Encoding in an origin
request policy has no effect.

If your origin server does not return Gzip or Brotli compressed objects, or the cache behavior is
not configured with CloudFront compression, don't enable caching for compressed objects. If
you do, it might cause a decrease in your cache hit ratio.

The following explains how these settings affect a CloudFront distribution. All of the following
scenarios assume that the viewer request includes the Accept-Encoding header. When the
viewer request does not include the Accept-Encoding header, CloudFront doesn't include this
header in the cache key and doesn't include it in the corresponding origin request.

When caching compressed objects is enabled for both compression formats

If the viewer supports both Gzip and Brotli—that is, if the gzip and br values are both in
the Accept-Encoding header in the viewer request—CloudFront does the following:

• Normalizes the header to Accept-Encoding: br,gzip and includes the normalized
header in the cache key. The cache key doesn't include other values that were in the
Accept-Encoding header sent by the viewer.

• If the edge location has a Brotli or Gzip compressed object in the cache that matches the
request and is not expired, the edge location returns the object to the viewer.

• If the edge location doesn't have a Brotli or Gzip compressed object in the cache that
matches the request and is not expired, CloudFront includes the normalized header
(Accept-Encoding: br,gzip) in the corresponding origin request. The origin request

Understanding cache policies 138

Amazon CloudFront Developer Guide

doesn't include other values that were in the Accept-Encoding header sent by the
viewer.

If the viewer supports one compression format but not the other—for example, if gzip is
a value in the Accept-Encoding header in the viewer request but br is not—CloudFront
does the following:

• Normalizes the header to Accept-Encoding: gzip and includes the normalized header
in the cache key. The cache key doesn't include other values that were in the Accept-
Encoding header sent by the viewer.

• If the edge location has a Gzip compressed object in the cache that matches the request
and is not expired, the edge location returns the object to the viewer.

• If the edge location doesn't have a Gzip compressed object in the cache that matches
the request and is not expired, CloudFront includes the normalized header (Accept-
Encoding: gzip) in the corresponding origin request. The origin request doesn't include
other values that were in the Accept-Encoding header sent by the viewer.

To understand what CloudFront does if the viewer supports Brotli but not Gzip, replace the
two compression formats with each other in the preceding example.

If the viewer does not support Brotli or Gzip—that is, the Accept-Encoding header in the
viewer request does not contain br or gzip as values—CloudFront:

• Doesn't include the Accept-Encoding header in the cache key.

• Includes Accept-Encoding: identity in the corresponding origin request. The origin
request doesn't include other values that were in the Accept-Encoding header sent by
the viewer.

When caching compressed objects is enabled for one compression format, but not the other

If the viewer supports the format for which caching is enabled—for example, if caching
compressed objects is enabled for Gzip and the viewer supports Gzip (gzip is one of the
values in the Accept-Encoding header in the viewer request)—CloudFront does the
following:

• Normalizes the header to Accept-Encoding: gzip and includes the normalized header
in the cache key.

• If the edge location has a Gzip compressed object in the cache that matches the request
and is not expired, the edge location returns the object to the viewer.

Understanding cache policies 139

Amazon CloudFront Developer Guide

• If the edge location doesn't have a Gzip compressed object in the cache that matches
the request and is not expired, CloudFront includes the normalized header (Accept-
Encoding: gzip) in the corresponding origin request. The origin request doesn't include
other values that were in the Accept-Encoding header sent by the viewer.

This behavior is the same when the viewer supports both Gzip and Brotli (the Accept-
Encoding header in the viewer request includes both gzip and br as values), because in
this scenario, caching compressed objects for Brotli is not enabled.

To understand what CloudFront does if caching compressed objects is enabled for Brotli but
not Gzip, replace the two compression formats with each other in the preceding example.

If the viewer does not support the compression format for which caching is enabled (the
Accept-Encoding header in the viewer request doesn't contain the value for that format),
CloudFront:

• Doesn't include the Accept-Encoding header in the cache key.

• Includes Accept-Encoding: identity in the corresponding origin request. The origin
request doesn't include other values that were in the Accept-Encoding header sent by
the viewer.

When caching compressed objects is disabled for both compression formats

When caching compressed objects is disabled for both compression formats, CloudFront
treats the Accept-Encoding header the same as any other HTTP header in the viewer
request. By default, it's not included in the cache key and it's not included in origin requests.
You can include it in the headers list in a cache policy or an origin request policy the same as
any other HTTP header.

Using the managed cache policies

CloudFront provides a set of managed cache policies that you can attach to any of your
distribution's cache behaviors. With a managed cache policy, you don't need to write or maintain
your own cache policy. The managed policies use settings that are optimized for specific use cases.

Topics

• Attaching a managed cache policy

• Available managed cache policies

Using the managed cache policies 140

Amazon CloudFront Developer Guide

Attaching a managed cache policy

To use a managed cache policy, you attach it to a cache behavior in your distribution. The process
is the same as when you create a cache policy, but instead of creating a new one, you just attach
one of the managed cache policies. You attach the policy either by name (with the console) or by ID
(with the AWS CLI or SDKs). The names and IDs are listed in the following section.

For more information, see Creating cache policies.

Available managed cache policies

The following topics describe the managed cache policies that you can use.

Topics

• Amplify

• CachingDisabled

• CachingOptimized

• CachingOptimizedForUncompressedObjects

• Elemental-MediaPackage

Amplify

View this policy in the CloudFront console

This policy is designed for use with an origin that is an AWS Amplify web app.

When using AWS CloudFormation, the AWS CLI, or the CloudFront API, the ID for this policy is:

2e54312d-136d-493c-8eb9-b001f22f67d2

This policy has the following settings:

• Minimum TTL: 2 seconds

• Maximum TTL: 600 seconds (10 minutes)

• Default TTL: 2 seconds

• Headers included in cache key:

• Authorization

• CloudFront-Viewer-Country

Using the managed cache policies 141

https://console.aws.amazon.com/cloudfront/v4/home#/policies/cache/2e54312d-136d-493c-8eb9-b001f22f67d2
https://aws.amazon.com/amplify/

Amazon CloudFront Developer Guide

• Host

The normalized Accept-Encoding header is also included because the cache compressed
objects setting is enabled. For more information, see Compression support.

• Cookies included in cache key: All cookies are included.

• Query strings included in cache key: All query strings are included.

• Cache compressed objects setting: Enabled. For more information, see Compression support.

CachingDisabled

View this policy in the CloudFront console

This policy disables caching. This policy is useful for dynamic content and for requests that are not
cacheable.

When using AWS CloudFormation, the AWS CLI, or the CloudFront API, the ID for this policy is:

4135ea2d-6df8-44a3-9df3-4b5a84be39ad

This policy has the following settings:

• Minimum TTL: 0 seconds

• Maximum TTL: 0 seconds

• Default TTL: 0 seconds

• Headers included in the cache key: None

• Cookies included in the cache key: None

• Query strings included in the cache key: None

• Cache compressed objects setting: Disabled

CachingOptimized

View this policy in the CloudFront console

This policy is designed to optimize cache efficiency by minimizing the values that CloudFront
includes in the cache key. CloudFront doesn't include any query strings or cookies in the cache
key, and only includes the normalized Accept-Encoding header. This enables CloudFront to
separately cache objects in the Gzip and Brotli compressions formats when the origin returns them
or when CloudFront edge compression is enabled.

Using the managed cache policies 142

https://console.aws.amazon.com/cloudfront/v4/home#/policies/cache/4135ea2d-6df8-44a3-9df3-4b5a84be39ad
https://console.aws.amazon.com/cloudfront/v4/home#/policies/cache/658327ea-f89d-4fab-a63d-7e88639e58f6

Amazon CloudFront Developer Guide

When using AWS CloudFormation, the AWS CLI, or the CloudFront API, the ID for this policy is:

658327ea-f89d-4fab-a63d-7e88639e58f6

This policy has the following settings:

• Minimum TTL: 1 second.

• Maximum TTL: 31,536,000 seconds (365 days).

• Default TTL: 86,400 seconds (24 hours).

• Headers included in the cache key: None are explicitly included. The normalized Accept-
Encoding header is included because the cache compressed objects setting is enabled. For more
information, see Compression support.

• Cookies included in the cache key: None.

• Query strings included in the cache key: None.

• Cache compressed objects setting: Enabled. For more information, see Compression support.

CachingOptimizedForUncompressedObjects

View this policy in the CloudFront console

This policy is designed to optimize cache efficiency by minimizing the values included in the cache
key. No query strings, headers, or cookies are included. This policy is identical to the previous one,
but it disables the cache compressed objects setting.

When using AWS CloudFormation, the AWS CLI, or the CloudFront API, the ID for this policy is:

b2884449-e4de-46a7-ac36-70bc7f1ddd6d

This policy has the following settings:

• Minimum TTL: 1 second

• Maximum TTL: 31,536,000 seconds (365 days)

• Default TTL: 86,400 seconds (24 hours)

• Headers included in the cache key: None

• Cookies included in the cache key: None

• Query strings included in the cache key: None

• Cache compressed objects setting: Disabled

Using the managed cache policies 143

https://console.aws.amazon.com/cloudfront/v4/home#/policies/cache/b2884449-e4de-46a7-ac36-70bc7f1ddd6d

Amazon CloudFront Developer Guide

Elemental-MediaPackage

View this policy in the CloudFront console

This policy is designed for use with an origin that is an AWS Elemental MediaPackage endpoint.

When using AWS CloudFormation, the AWS CLI, or the CloudFront API, the ID for this policy is:

08627262-05a9-4f76-9ded-b50ca2e3a84f

This policy has the following settings:

• Minimum TTL: 0 seconds

• Maximum TTL: 31,536,000 seconds (365 days)

• Default TTL: 86,400 seconds (24 hours)

• Headers included in the cache key:

• Origin

The normalized Accept-Encoding header is also included because the cache compressed
objects setting is enabled for Gzip. For more information, see Compression support.

• Cookies included in the cache key: None

• Query strings included in the cache key:

• aws.manifestfilter

• start

• end

• m

• Cache compressed objects setting: Enabled for Gzip. For more information, see Compression
support.

Understanding the cache key

The cache key determines whether a viewer request to a CloudFront edge location results in a cache
hit. The cache key is the unique identifier for an object in the cache. Each object in the cache has a
unique cache key.

A cache hit occurs when a viewer request generates the same cache key as a prior request, and the
object for that cache key is in the edge location’s cache and valid. When there’s a cache hit, the

Understanding the cache key 144

https://console.aws.amazon.com/cloudfront/v4/home#/policies/cache/08627262-05a9-4f76-9ded-b50ca2e3a84f

Amazon CloudFront Developer Guide

requested object is served to the viewer from a CloudFront edge location, which has the following
benefits:

• Reduced load on your origin server

• Reduced latency for the viewer

You can get better performance from your website or application when you have a higher cache
hit ratio (a higher proportion of viewer requests that result in a cache hit). One way to improve
your cache hit ratio is to include only the minimum necessary values in the cache key. For more
information, see the following sections.

You can modify the values (URL query strings, HTTP headers, and cookies) in the cache key by
using a cache policy. (You can also modify the cache key using a Lambda@Edge function.) Before
modifying the cache key, it’s important to understand how your application is designed and when
and how it might serve different responses based on characteristics of the viewer request. When a
value in the viewer request determines the response that your origin returns, you should include
that value in the cache key. But if you include a value in the cache key that doesn’t affect the
response that your origin returns, you might end up caching duplicate objects.

The default cache key

By default, the cache key for a CloudFront distribution includes the following information:

• The domain name of the CloudFront distribution (for example, d111111abcdef8.cloudfront.net)

• The URL path of the requested object (for example, /content/stories/example-
story.html)

Note

The OPTIONS method is included in the cache key for OPTIONS requests. This means that
responses to OPTIONS requests are cached separately from responses to GET and HEAD
requests.

Other values from the viewer request are not included in the cache key, by default. Consider the
following HTTP request from a web browser.

Understanding the cache key 145

Amazon CloudFront Developer Guide

 GET /content/stories/example-story.html?ref=0123abc&split-pages=false
 HTTP/1.1
 Host: d111111abcdef8.cloudfront.net
 User-Agent: Mozilla/5.0 Gecko/20100101 Firefox/68.0
 Accept: text/html,*/*
 Accept-Language: en-US,en
 Cookie: session_id=01234abcd
 Referer: https://news.example.com/

When a viewer request like this example comes in to a CloudFront edge location, CloudFront
uses the cache key to determine if there’s a cache hit. By default, only the following components
of the request are included in the cache key: /content/stories/example-story.html
and d111111abcdef8.cloudfront.net. If the requested object is not in the cache (a cache
miss), then CloudFront sends a request to the origin to get the object. After getting the object,
CloudFront returns it to the viewer and stores it in the edge location’s cache.

When CloudFront receives another request for the same object, as determined by the cache key,
CloudFront serves the cached object to the viewer immediately, without sending a request to the
origin. For example, consider the following HTTP request that comes in after the previous request.

 GET /content/stories/example-story.html?ref=xyz987&split-pages=true
 HTTP/1.1
 Host: d111111abcdef8.cloudfront.net
 User-Agent: Mozilla/5.0 AppleWebKit/537.36 Chrome/83.0.4103.116
 Accept: text/html,*/*
 Accept-Language: en-US,en
 Cookie: session_id=wxyz9876
 Referer: https://rss.news.example.net/

This request is for the same object as the previous request, but is different from the previous
request. It has a different URL query string, different User-Agent and Referer headers, and a
different session_id cookie. However, none of these values are part of the cache key by default,
so this second request results in a cache hit.

Understanding the cache key 146

Amazon CloudFront Developer Guide

Customizing the cache key

In some cases, you might want to include more information in the cache key, even though doing
so might result in fewer cache hits. You specify what to include in the cache key by using a cache
policy.

For example, if your origin server uses the Accept-Language HTTP header in viewer requests to
return different content based on the viewer’s language, you might want to include this header in
the cache key. When you do that, CloudFront uses this header to determine cache hits, and includes
the header in origin requests (requests that CloudFront sends to the origin when there’s a cache
miss).

One potential consequence of including additional values in the cache key is that CloudFront might
end up caching duplicate objects because of the variation that can occur in viewer requests. For
example, viewers might send any of the following values for the Accept-Language header:

• en-US,en

• en,en-US

• en-US, en

• en-US

All of these different values indicate that the viewer’s language is English, but the variation can
cause CloudFront to cache the same object multiple times. This can reduce cache hits and increase
the number of origin requests. You could avoid this duplication by not including the Accept-
Language header in the cache key, and instead configuring your website or application to use
different URLs for content in different languages (for example, /en-US/content/stories/
example-story.html).

For any given value that you intend to include in the cache key, you should make sure that you
understand how many different variations of that value might appear in viewer requests. For
certain request values, it rarely makes sense to include them in the cache key. For example,
the User-Agent header can have thousands of unique variations, so it’s generally not a good
candidate for including in the cache key. Cookies that have user-specific or session-specific values
and are unique across thousands (or even millions) of requests are also not good candidates for
cache key inclusion. If you do include these values in the cache key, each unique variation results
in another copy of the object in the cache. If these copies of the object are not unique, or if you
end up with such a large number of slightly different objects that each object only gets a small

Understanding the cache key 147

Amazon CloudFront Developer Guide

number of cache hits, you might want to consider a different approach. You can exclude these
highly variable values from the cache key, or you can mark objects as non-cacheable.

Use caution when customizing the cache key. Sometimes it’s desirable, but it can have unintended
consequences such as caching duplicate objects, lowering your cache hit ratio, and increasing the
number of origin requests. If your origin website or application needs to receive certain values from
viewer requests for analytics, telemetry, or other uses, but these values don’t change the object
that the origin returns, use an origin request policy to include these values in origin requests but
not include them in the cache key.

Controlling origin requests

When a viewer request to CloudFront results in a cache miss (the requested object is not cached
at the edge location), CloudFront sends a request to the origin to retrieve the object. This is called
an origin request. The origin request always includes the following information from the viewer
request:

• The URL path (the path only, without URL query strings or the domain name)

• The request body (if there is one)

• The HTTP headers that CloudFront automatically includes in every origin request, including
Host, User-Agent, and X-Amz-Cf-Id

Other information from the viewer request, such as URL query strings, HTTP headers, and cookies,
is not included in the origin request by default. (Exception: With legacy cache settings, CloudFront
forwards the headers to your origin by default.) However, you might want to receive some of this
other information at the origin, for example to collect data for analytics or telemetry. You can use
an origin request policy to control the information that's included in an origin request.

Origin request policies are separate from cache policies, which control the cache key. This
separation enables you to receive additional information at the origin and also maintain a good
cache hit ratio (the proportion of viewer requests that result in a cache hit). You do this by
separately controlling which information is included in origin requests (using the origin request
policy) and which is included in the cache key (using the cache policy).

Although the two kinds of policies are separate, they are related. All URL query strings, HTTP
headers, and cookies that you include in the cache key (using a cache policy) are automatically
included in origin requests. Use the origin request policy to specify the information that you want

Controlling origin requests 148

Amazon CloudFront Developer Guide

to include in origin requests, but not include in the cache key. Just like a cache policy, you attach an
origin request policy to one or more cache behaviors in a CloudFront distribution.

You can also use an origin request policy to add additional HTTP headers to an origin request that
were not included in the viewer request. These additional headers are added by CloudFront before
sending the origin request, with header values that are determined automatically based on the
viewer request. For more information, see the section called “Adding CloudFront request headers”.

Topics

• Creating origin request policies

• Understanding origin request policies

• Using the managed origin request policies

• Adding CloudFront request headers

• Understanding how origin request policies and cache policies work together

Creating origin request policies

You can use an origin request policy to control the values (URL query strings, HTTP headers, and
cookies) that are included in requests that CloudFront sends to your origin. You can create an origin
request policy in the CloudFront console, with the AWS Command Line Interface (AWS CLI), or with
the CloudFront API.

After you create an origin request policy, you attach it to one or more cache behaviors in a
CloudFront distribution.

Origin request policies are not required. When a cache behavior does not have an origin request
policy attached, the origin request includes all the values that are specified in the cache policy, but
nothing more.

Note

To use an origin request policy, the cache behavior must also use a cache policy. You cannot
use an origin request policy in a cache behavior without a cache policy.

Creating origin request policies 149

Amazon CloudFront Developer Guide

Console

To create an origin request policy (console)

1. Sign in to the AWS Management Console and open the Policies page in the CloudFront
console at https://console.aws.amazon.com/cloudfront/v4/home?#/policies.

2. Choose Origin request, then choose Create origin request policy.

3. Choose the desired setting for this origin request policy. For more information, see
Understanding origin request policies.

4. When finished, choose Create.

After you create an origin request policy, you can attach it to a cache behavior.

To attach an origin request policy to an existing distribution (console)

1. Open the Distributions page in the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home#/distributions.

2. Choose the distribution to update, then choose the Behaviors tab.

3. Choose the cache behavior to update, then choose Edit.

Or, to create a new cache behavior, choose Create behavior.

4. In the Cache key and origin requests section, make sure that Cache policy and origin
request policy is chosen.

5. For Origin request policy, choose the origin request policy to attach to this cache behavior.

6. At the bottom of the page, choose Save changes.

To attach an origin request policy to a new distribution (console)

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

2. Choose Create distribution.

3. In the Cache key and origin requests section, make sure that Cache policy and origin
request policy is chosen.

4. For Origin request policy, choose the origin request policy to attach to this distribution's
default cache behavior.

Creating origin request policies 150

https://console.aws.amazon.com/cloudfront/v4/home?#/policies
https://console.aws.amazon.com/cloudfront/v4/home#/distributions
https://console.aws.amazon.com/cloudfront/v4/home#/distributions
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

5. Choose the desired settings for the origin, default cache behavior, and other distribution
settings. For more information, see Values that you specify when you create or update a
distribution.

6. When finished, choose Create distribution.

CLI

To create an origin request policy with the AWS Command Line Interface (AWS CLI), use the aws
cloudfront create-origin-request-policy command. You can use an input file to provide the
command's input parameters, rather than specifying each individual parameter as command
line input.

To create an origin request policy (CLI with input file)

1. Use the following command to create a file named origin-request-policy.yaml that
contains all of the input parameters for the create-origin-request-policy command.

aws cloudfront create-origin-request-policy --generate-cli-skeleton yaml-input >
 origin-request-policy.yaml

2. Open the file named origin-request-policy.yaml that you just created. Edit the
file to specify the origin request policy settings that you want, then save the file. You can
remove optional fields from the file, but don't remove the required fields.

For more information about the origin request policy settings, see Understanding origin
request policies.

3. Use the following command to create the origin request policy using input parameters
from the origin-request-policy.yaml file.

aws cloudfront create-origin-request-policy --cli-input-yaml file://origin-
request-policy.yaml

Make note of the Id value in the command's output. This is the origin request policy ID, and
you need it to attach the origin request policy to a CloudFront distribution's cache behavior.

Creating origin request policies 151

Amazon CloudFront Developer Guide

To attach an origin request policy to an existing distribution (CLI with input file)

1. Use the following command to save the distribution configuration for the CloudFront
distribution that you want to update. Replace distribution_ID with the distribution's ID.

aws cloudfront get-distribution-config --id distribution_ID --output yaml >
 dist-config.yaml

2. Open the file named dist-config.yaml that you just created. Edit the file, making the
following changes to each cache behavior that you are updating to use an origin request
policy.

• In the cache behavior, add a field named OriginRequestPolicyId. For the field's
value, use the origin request policy ID that you noted after creating the policy.

• Rename the ETag field to IfMatch, but don't change the field's value.

Save the file when finished.

3. Use the following command to update the distribution to use the origin request policy.
Replace distribution_ID with the distribution's ID.

aws cloudfront update-distribution --id distribution_ID --cli-input-yaml file://
dist-config.yaml

To attach an origin request policy to a new distribution (CLI with input file)

1. Use the following command to create a file named distribution.yaml that contains all
of the input parameters for the create-distribution command.

aws cloudfront create-distribution --generate-cli-skeleton yaml-input >
 distribution.yaml

2. Open the file named distribution.yaml that you just created. In the default cache
behavior, in the OriginRequestPolicyId field, enter the origin request policy ID that
you noted after creating the policy. Continue editing the file to specify the distribution
settings that you want, then save the file when finished.

Creating origin request policies 152

Amazon CloudFront Developer Guide

For more information about the distribution settings, see Values that you specify when you
create or update a distribution.

3. Use the following command to create the distribution using input parameters from the
distribution.yaml file.

aws cloudfront create-distribution --cli-input-yaml file://distribution.yaml

API

To create an origin request policy with the CloudFront API, use CreateOriginRequestPolicy. For
more information about the fields that you specify in this API call, see Understanding origin
request policies and the API reference documentation for your AWS SDK or other API client.

After you create an origin request policy, you can attach it to a cache behavior, using one of the
following API calls:

• To attach it to a cache behavior in an existing distribution, use UpdateDistribution.

• To attach it to a cache behavior in a new distribution, use CreateDistribution.

For both of these API calls, provide the origin request policy's ID in the
OriginRequestPolicyId field, inside a cache behavior. For more information about the other
fields that you specify in these API calls, see Values that you specify when you create or update
a distribution and the API reference documentation for your AWS SDK or other API client.

Understanding origin request policies

CloudFront provides some predefined origin request policies, known as managed policies, for
common use cases. You can use these managed policies, or you can create your own origin request
policy that's specific to your needs. For more information about the managed policies, see Using
the managed origin request policies.

An origin request policy contains the following settings, which are categorized into policy
information and origin request settings.

Understanding origin request policies 153

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateOriginRequestPolicy.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateDistribution.html

Amazon CloudFront Developer Guide

Policy information

Name

A name to identify the origin request policy. In the console, you use the name to attach the
origin request policy to a cache behavior.

Description

A comment to describe the origin request policy. This is optional.

Origin request settings

Origin request settings specify the values in viewer requests that are included in requests that
CloudFront sends to the origin (known as origin requests). The values can include URL query
strings, HTTP headers, and cookies. The values that you specify are included in origin requests, but
are not included in the cache key. For information about controlling the cache key, see Controlling
the cache key.

Headers

The HTTP headers in viewer requests that CloudFront includes in origin requests. For headers,
you can choose one of the following settings:

• None – The HTTP headers in viewer requests are not included in origin requests.

• All viewer headers – All HTTP headers in viewer requests are included in origin requests.

• All viewer headers and the following CloudFront headers – All HTTP headers in viewer
requests are included in origin requests. Additionally, you specify which of the CloudFront
headers you want to add to origin requests. For more information about the CloudFront
headers, see the section called “Adding CloudFront request headers”.

• Include the following headers – You specify which HTTP headers are included in origin
requests.

Note

Do not specify a header that is already included in your Origin Custom Headers
settings. For more information, see Configuring CloudFront to add custom headers to
origin requests.

Understanding origin request policies 154

Amazon CloudFront Developer Guide

• All viewer headers except – You specify which HTTP headers are not included in origin
requests. All other HTTP headers in viewer requests, except for the ones specified, are
included.

When you use the All viewer headers and the following CloudFront headers, Include the
following headers, or All viewer headers except setting, you specify HTTP headers by the
header name only. CloudFront includes the full header, including its value, in origin requests.

Note

When you use the All viewer headers except setting to remove the viewer's Host
header, CloudFront adds a new Host header with the origin's domain name to the origin
request.

Cookies

The cookies in viewer requests that CloudFront includes in origin requests. For cookies, you can
choose one of the following settings:

• None – The cookies in viewer requests are not included in origin requests.

• All – All cookies in viewer requests are included in origin requests.

• Include the following cookies – You specify which cookies in viewer requests are included in
origin requests.

• All cookies except – You specify which cookies in viewer requests are not included in origin
requests. All other cookies in viewer requests are included.

When you use the Include the following cookies or All cookies except setting, you specify
cookies by their name only. CloudFront includes the full cookie, including its value, in origin
requests.

Query strings

The URL query strings in viewer requests that CloudFront includes in origin requests. For query
strings, you can choose one of the following settings:

• None – The query strings in viewer requests are not included in origin requests.

• All – All query strings in viewer requests are included in origin requests.

• Include the following query strings – You specify which query strings in viewer requests are
included in origin requests.

Understanding origin request policies 155

Amazon CloudFront Developer Guide

• All query strings except – You specify which query strings in viewer requests are not included
in origin requests. All other query strings are included.

When you use the Include the following query strings or All query strings except setting, you
specify query strings by their name only. CloudFront includes the full query string, including its
value, in origin requests.

Using the managed origin request policies

CloudFront provides a set of managed origin request policies that you can attach to any of your
distribution's cache behaviors. With a managed origin request policy, you don't need to write or
maintain your own origin request policy. The managed policies use settings that are optimized for
specific use cases.

Topics

• Attaching a managed origin request policy

• Available managed origin request policies

Attaching a managed origin request policy

To use a managed origin request policy, you attach it to a cache behavior in your distribution. The
process is the same as when you create an origin request policy, but instead of creating a new
one, you just attach one of the managed origin request policies. You attach the policy either by
name (with the console) or by ID (with the AWS CLI or SDKs). The names and IDs are listed in the
following section.

For more information, see Creating origin request policies.

Available managed origin request policies

The following topics describe the managed origin request policies that you can use.

Topics

• AllViewer

• AllViewerAndCloudFrontHeaders-2022-06

• AllViewerExceptHostHeader

• CORS-CustomOrigin

Using the managed origin request policies 156

Amazon CloudFront Developer Guide

• CORS-S3Origin

• Elemental-MediaTailor-PersonalizedManifests

• UserAgentRefererHeaders

AllViewer

View this policy in the CloudFront console

This policy includes all values (headers, cookies, and query strings) from the viewer request.

When using AWS CloudFormation, the AWS CLI, or the CloudFront API, the ID for this policy is:

216adef6-5c7f-47e4-b989-5492eafa07d3

This policy has the following settings:

• Headers included in origin requests: All headers in the viewer request

• Cookies included in origin requests: All

• Query strings included in origin requests: All

AllViewerAndCloudFrontHeaders-2022-06

View this policy in the CloudFront console

This policy includes all values (headers, cookies, and query strings) from the viewer request, and all
CloudFront headers that were released through June 2022 (CloudFront headers released after June
2022 are not included).

When using AWS CloudFormation, the AWS CLI, or the CloudFront API, the ID for this policy is:

33f36d7e-f396-46d9-90e0-52428a34d9dc

This policy has the following settings:

• Headers included in origin requests: All headers in the viewer request, and the following
CloudFront headers:

• CloudFront-Forwarded-Proto

• CloudFront-Is-Android-Viewer

• CloudFront-Is-Desktop-Viewer

Using the managed origin request policies 157

https://console.aws.amazon.com/cloudfront/v4/home#/policies/origin/216adef6-5c7f-47e4-b989-5492eafa07d3
https://console.aws.amazon.com/cloudfront/v4/home#/policies/origin/33f36d7e-f396-46d9-90e0-52428a34d9dc

Amazon CloudFront Developer Guide

• CloudFront-Is-IOS-Viewer

• CloudFront-Is-Mobile-Viewer

• CloudFront-Is-SmartTV-Viewer

• CloudFront-Is-Tablet-Viewer

• CloudFront-Viewer-Address

• CloudFront-Viewer-ASN

• CloudFront-Viewer-City

• CloudFront-Viewer-Country

• CloudFront-Viewer-Country-Name

• CloudFront-Viewer-Country-Region

• CloudFront-Viewer-Country-Region-Name

• CloudFront-Viewer-Http-Version

• CloudFront-Viewer-Latitude

• CloudFront-Viewer-Longitude

• CloudFront-Viewer-Metro-Code

• CloudFront-Viewer-Postal-Code

• CloudFront-Viewer-Time-Zone

• CloudFront-Viewer-TLS

• Cookies included in origin requests: All

• Query strings included in origin requests: All

AllViewerExceptHostHeader

View this policy in the CloudFront console

This policy does not include the Host header from the viewer request, but does include all others
values (headers, cookies, and query strings) from the viewer request.

This policy also includes additional CloudFront request headers for HTTP protocol, HTTP version,
TLS version, and all device type and viewer location headers.

This policy is intended for use with Amazon API Gateway and AWS Lambda function URL origins.
These origins expect the Host header to contain the origin domain name, not the domain name of Using the managed origin request policies 158

https://console.aws.amazon.com/cloudfront/v4/home#/policies/origin/b689b0a8-53d0-40ab-baf2-68738e2966ac

Amazon CloudFront Developer Guide

the CloudFront distribution. Forwarding the Host header from the viewer request to these origins
can prevent them from working.

Note

When you use this managed origin request policy to remove the viewer's Host header,
CloudFront adds a new Host header with the origin's domain name to the origin request.

When using AWS CloudFormation, the AWS CLI, or the CloudFront API, the ID for this policy is:

b689b0a8-53d0-40ab-baf2-68738e2966ac

This policy has the following settings:

• Headers included in origin requests: All headers in the viewer request except for the Host
header

• Cookies included in origin requests: All

• Query strings included in origin requests: All

CORS-CustomOrigin

View this policy in the CloudFront console

This policy includes the header that enables cross-origin resource sharing (CORS) requests when
the origin is a custom origin.

When using AWS CloudFormation, the AWS CLI, or the CloudFront API, the ID for this policy is:

59781a5b-3903-41f3-afcb-af62929ccde1

This policy has the following settings:

• Headers included in origin requests:

• Origin

• Cookies included in origin requests: None

• Query strings included in origin requests: None

Using the managed origin request policies 159

https://console.aws.amazon.com/cloudfront/v4/home#/policies/origin/59781a5b-3903-41f3-afcb-af62929ccde1

Amazon CloudFront Developer Guide

CORS-S3Origin

View this policy in the CloudFront console

This policy includes the headers that enable cross-origin resource sharing (CORS) requests when
the origin is an Amazon S3 bucket.

When using AWS CloudFormation, the AWS CLI, or the CloudFront API, the ID for this policy is:

88a5eaf4-2fd4-4709-b370-b4c650ea3fcf

This policy has the following settings:

• Headers included in origin requests:

• Origin

• Access-Control-Request-Headers

• Access-Control-Request-Method

• Cookies included in origin requests: None

• Query strings included in origin requests: None

Elemental-MediaTailor-PersonalizedManifests

View this policy in the CloudFront console

This policy is intended for use with an origin that is an AWS Elemental MediaTailor endpoint.

When using AWS CloudFormation, the AWS CLI, or the CloudFront API, the ID for this policy is:

775133bc-15f2-49f9-abea-afb2e0bf67d2

This policy has the following settings:

• Headers included in origin requests:

• Origin

• Access-Control-Request-Headers

• Access-Control-Request-Method

• User-Agent

• X-Forwarded-For

Using the managed origin request policies 160

https://console.aws.amazon.com/cloudfront/v4/home#/policies/origin/88a5eaf4-2fd4-4709-b370-b4c650ea3fcf
https://console.aws.amazon.com/cloudfront/v4/home#/policies/origin/775133bc-15f2-49f9-abea-afb2e0bf67d2

Amazon CloudFront Developer Guide

• Cookies included in origin requests: None

• Query strings included in origin requests: All

UserAgentRefererHeaders

View this policy in the CloudFront console

This policy includes only the User-Agent and Referer headers. It doesn't include any query
strings or cookies.

When using AWS CloudFormation, the AWS CLI, or the CloudFront API, the ID for this policy is:

acba4595-bd28-49b8-b9fe-13317c0390fa

This policy has the following settings:

• Headers included in origin requests:

• User-Agent

• Referer

• Cookies included in origin requests: None

• Query strings included in origin requests: None

Adding CloudFront request headers

You can configure CloudFront to add specific HTTP headers to the requests that CloudFront
receives from viewers and forwards on to your origin or edge function. The values of these HTTP
headers are based on characteristics of the viewer or the viewer request. The headers provide
information about the viewer's device type, IP address, geographic location, request protocol (HTTP
or HTTPS), HTTP version, TLS connection details, and JA3 fingerprint.

With these headers, your origin or your edge function can receive information about the viewer
without the need for you to write your own code to determine this information. If your origin
returns different responses based on the information in these headers, you can include them in
the cache key so that CloudFront caches the responses separately. For example, your origin might
respond with content in a specific language based on the country that the viewer is in, or with
content tailored to a specific device type. Your origin might also write these headers to log files,
which you can use to determine information about where your viewers are, which device types
they're on, and more.

Adding CloudFront request headers 161

https://console.aws.amazon.com/cloudfront/v4/home#/policies/origin/acba4595-bd28-49b8-b9fe-13317c0390fa
https://github.com/salesforce/ja3

Amazon CloudFront Developer Guide

To include these headers in the cache key, use a cache policy. For more information, see the section
called “Controlling the cache key” and the section called “Understanding the cache key”.

To receive these headers at your origin but not include them in the cache key, use an origin request
policy. For more information, see the section called “Controlling origin requests”.

Topics

• Headers for determining the viewer's device type

• Headers for determining the viewer's location

• Headers for determining the viewer's header structure

• Other CloudFront headers

Headers for determining the viewer's device type

You can add the following headers to determine the viewer's device type. Based on the value of
the User-Agent header, CloudFront sets the value of these headers to true or false. If a device
falls into more than one category, more than one value can be true. For example, for some tablet
devices, CloudFront sets both CloudFront-Is-Mobile-Viewer and CloudFront-Is-Tablet-
Viewer to true.

• CloudFront-Is-Android-Viewer – Set to true when CloudFront determines that the viewer
is a device with the Android operating system.

• CloudFront-Is-Desktop-Viewer – Set to true when CloudFront determines that the viewer
is a desktop device.

• CloudFront-Is-IOS-Viewer – Set to true when CloudFront determines that the viewer is
a device with an Apple mobile operating system, such as iPhone, iPod touch, and some iPad
devices.

• CloudFront-Is-Mobile-Viewer – Set to true when CloudFront determines that the viewer
is a mobile device.

• CloudFront-Is-SmartTV-Viewer – Set to true when CloudFront determines that the viewer
is a smart TV.

• CloudFront-Is-Tablet-Viewer – Set to true when CloudFront determines that the viewer
is a tablet.

Adding CloudFront request headers 162

Amazon CloudFront Developer Guide

Headers for determining the viewer's location

You can add the following headers to determine the viewer's location. CloudFront determines
the values for these headers based on the viewer's IP address. For non-ASCII characters in these
headers' values, CloudFront percent-encodes the character according to section 1.2 of RFC 3986.

• CloudFront-Viewer-Address – Contains the IP address of the viewer and the source port
of the request. For example, a header value of 198.51.100.10:46532 means the viewer's IP
address is 198.51.100.10 and the request source port is 46532.

• CloudFront-Viewer-ASN – Contains the autonomous system number (ASN) of the viewer.

Note

CloudFront-Viewer-Address and CloudFront-Viewer-ASN can be added in an
origin request policy, but not in a cache policy.

• CloudFront-Viewer-Country – Contains the two-letter country code for the viewer's country.
For a list of country codes, see ISO 3166-1 alpha-2.

When you add the following headers, CloudFront applies them to all requests except those that
originate from the AWS network:

• CloudFront-Viewer-City – Contains the name of the viewer's city.

• CloudFront-Viewer-Country-Name – Contains the name of the viewer's country.

• CloudFront-Viewer-Country-Region – Contains a code (up to three characters) that
represent the viewer's region. The region is the first-level subdivision (the broadest or least
specific) of the ISO 3166-2 code.

• CloudFront-Viewer-Country-Region-Name – Contains the name of the viewer's region. The
region is the first-level subdivision (the broadest or least specific) of the ISO 3166-2 code.

• CloudFront-Viewer-Latitude – Contains the viewer's approximate latitude.

• CloudFront-Viewer-Longitude – Contains the viewer's approximate longitude.

• CloudFront-Viewer-Metro-Code – Contains the viewer's metro code. This is present only
when the viewer is in the United States.

• CloudFront-Viewer-Postal-Code – Contains the viewer's postal code.

• CloudFront-Viewer-Time-Zone Contains the viewer's time zone, in IANA time zone database
format (for example, America/Los_Angeles).

Adding CloudFront request headers 163

https://tools.ietf.org/html/rfc3986#section-2.1
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_3166-2
https://en.wikipedia.org/wiki/ISO_3166-2
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Amazon CloudFront Developer Guide

Headers for determining the viewer's header structure

You can add the following headers to help identify the viewer based on the headers that it sends.
For example, different browsers may send HTTP headers in a certain order. If the browser specified
in the User-Agent header doesn’t match that browser’s expected header order, you can deny
the request. Additionally, if the CloudFront-Viewer-Header-Count value does not match the
number of headers in CloudFront-Viewer-Header-Order, you can deny the request.

• CloudFront-Viewer-Header-Order – Contains the viewer's header names in the order
requested, separated by a colon. For example: CloudFront-Viewer-Header-Order:
Host:User-Agent:Accept:Accept-Encoding. Headers beyond the character limit of 7,680
are truncated.

• CloudFront-Viewer-Header-Count – Contains the total number of the viewer's headers.

Other CloudFront headers

You can add the following headers to determine the viewer's protocol, version, JA3 fingerprint, and
TLS connection details:

• CloudFront-Forwarded-Proto – Contains the protocol of the viewer's request (HTTP or
HTTPS).

• CloudFront-Viewer-Http-Version – Contains the HTTP version of the viewer's request.

• CloudFront-Viewer-JA3-Fingerprint – Contains the JA3 fingerprint of the viewer. The JA3
fingerprint can help you determine whether the request comes from a known client, whether
that's malware or a malicious bot, or an expected (allow-listed) application. This header relies on
the viewer's SSL/TLS Client Hello packet and is only present for HTTPS requests.

Note

You can add CloudFront-Viewer-JA3-Fingerprint in an origin request policy, but
not in a cache policy.

• CloudFront-Viewer-TLS – Contains the SSL/TLS version, the cipher, and information about
the SSL/TLS handshake that was used for the connection between the viewer and CloudFront.
The header value is in the following format:

SSL/TLS_version:cipher:handshake_information

Adding CloudFront request headers 164

https://github.com/salesforce/ja3

Amazon CloudFront Developer Guide

For handshake_information, the header can contain the following values:

• fullHandshake – A full handshake was performed for the SSL/TLS session.

• sessionResumed – A previous SSL/TLS session was resumed.

• connectionReused – A previous SSL/TLS connection was reused.

The following are some example values for this header:

TLSv1.3:TLS_AES_128_GCM_SHA256:sessionResumed

TLSv1.2:ECDHE-ECDSA-AES128-GCM-SHA256:connectionReused

TLSv1.1:ECDHE-RSA-AES128-SHA256:fullHandshake

TLSv1:ECDHE-RSA-AES256-SHA:fullHandshake

For the full list of possible SSL/TLS versions and ciphers that can be in this header value, see the
section called “Supported protocols and ciphers between viewers and CloudFront”.

Note

You can add CloudFront-Viewer-TLS in an origin request policy, but not in a cache
policy.

Understanding how origin request policies and cache policies work
together

You can use a CloudFront origin request policy to control the requests that CloudFront sends to
the origin, which are called origin requests. To use an origin request policy, you must attach a cache
policy to the same cache behavior. You cannot use an origin request policy in a cache behavior
without a cache policy. For more information, see the section called “Controlling origin requests”.

Origin request policies and cache policies work together to determine the values that CloudFront
includes in origin requests. All URL query strings, HTTP headers, and cookies that you specify in the
cache key (using a cache policy) are automatically included in origin requests. Any additional query

Understanding how origin request policies and cache policies work together 165

Amazon CloudFront Developer Guide

strings, headers, and cookies that you specify in an origin request policy are also included in origin
requests (but not in the cache key).

Origin request policies and cache policies have settings that might appear to conflict with each
other. For example, one policy might allow certain values while another policy blocks them. The
following table explains which values CloudFront includes in origin requests when you use the
settings of an origin request policy and a cache policy together. These settings generally apply to
all types of values (query strings, headers, and cookies), with the exception that you cannot specify
all headers or use a header block list in a cache policy.

 Origin request policy

 None All Allow list Block list

Cache policy

None No values from
the viewer
request are
included in the
origin request,
except for the
defaults that
are included
in every origin
request. For
more informati
on, see the
section called
“Controlling
origin requests”.

All values from
the viewer
request are
included in the
origin request.

Only the values
specified in the
origin request
policy are
included in the
origin request.

All values from
the viewer
request except
those specified
in the origin
request policy
are included
in the origin
request.

All

Note: You
cannot specify
all headers in a
cache policy.

All query strings
and cookies
from the viewer
request are
included in the
origin request.

All values from
the viewer
request are
included in the
origin request.

All query strings
and cookies
from the viewer
request, and
any headers
specified in the

All query strings
and cookies
from the viewer
request are
included in the
origin request,

Understanding how origin request policies and cache policies work together 166

Amazon CloudFront Developer Guide

 Origin request policy

 None All Allow list Block list

origin request
policy, are
included in the
origin request.

even those
specified in the
origin request
policy block
list. The cache
policy setting
overrides the
origin request
policy block list.

Allow list Only the
specified values
from the viewer
request are
included in the
origin request.

All values from
the viewer
request are
included in the
origin request.

All values
specified in the
cache policy
or the origin
request policy
are included
in the origin
request.

The values
specified in the
cache policy are
included in the
origin request,
even if those
same values are
specified in the
origin request
policy block
list. The cache
policy allow list
overrides the
origin request
policy block list.

Understanding how origin request policies and cache policies work together 167

Amazon CloudFront Developer Guide

 Origin request policy

 None All Allow list Block list

Block list

Note: You
cannot specify
headers in a
cache policy
block list.

All query strings
and cookies
from the viewer
request except
those specified
are included
in the origin
request.

All values from
the viewer
request are
included in the
origin request.

The values
specified in the
origin request
policy are
included in the
origin request,
even if those
same values are
specified in the
cache policy
block list. The
origin request
policy allow list
overrides the
cache policy
block list.

All values from
the viewer
request except
those specified
 in the cache
policy or the
origin request
policy are
included in the
origin request.

Adding or removing HTTP headers in CloudFront responses

You can configure CloudFront to modify the HTTP headers in the responses that it sends to
viewers. CloudFront can remove headers that it received from the origin, or add headers to the
response, before sending the response to viewers. Making these changes doesn't require writing
code or changing the origin.

For example, you can remove headers such as X-Powered-By and Vary so that CloudFront doesn't
include these headers in the responses that it sends to viewers. Or, you can add HTTP headers such
as the following:

• A Cache-Control header to control browser caching.

• An Access-Control-Allow-Origin header to enable cross-origin resource sharing (CORS).
You can also add other CORS headers.

Adding or removing response headers 168

Amazon CloudFront Developer Guide

• A set of common security headers, such as Strict-Transport-Security, Content-
Security-Policy, and X-Frame-Options.

• A Server-Timing header to see information that's related to the performance and routing of
both the request and response through CloudFront.

To specify the headers that CloudFront adds or removes in HTTP responses, you use a response
headers policy. You attach a response headers policy to one more cache behaviors, and CloudFront
modifies the headers in the responses that it sends to requests that match the cache behavior.
CloudFront modifies the headers in the responses that it serves from the cache and the ones that it
forwards from the origin. If the origin response includes one or more of the headers that are added
in a response headers policy, the policy can specify if CloudFront uses the header it received from
the origin or overwrites that header with the one in the response headers policy.

CloudFront provides predefined response headers policies, known as managed policies, for common
use cases. You can use these managed policies or create your own policies. You can attach a single
response headers policy to multiple cache behaviors in multiple distributions in your AWS account.

For more information, see the following topics.

Topics

• Creating response headers policies

• Using the managed response headers policies

• Understanding response headers policies

Creating response headers policies

You can use a response headers policy to specify the HTTP headers that Amazon CloudFront adds
or removes in HTTP responses. For more information about response headers policies and reasons
to use them, see the section called “Adding or removing response headers”.

You can create a response headers policy in the CloudFront console. Or you can create one by using
AWS CloudFormation, the AWS Command Line Interface (AWS CLI), or the CloudFront API. After
you create a response headers policy, you attach it to one or more cache behaviors in a CloudFront
distribution.

Creating response headers policies 169

Amazon CloudFront Developer Guide

Before you create a custom response headers policy, check if one of the managed response headers
policies fits your use case. If one does, you can attach it to your cache behavior. That way, you don't
need to create or manage your own response headers policy.

Console

To create a response headers policy (console)

1. Sign in to the AWS Management Console, then go to the Response headers tab on the
Policies page in the CloudFront console at https://console.aws.amazon.com/cloudfront/
v4/home#/policies/responseHeaders.

2. Choose Create response headers policy.

3. In the Create response headers policy form, do the following:

a. In the Details panel, enter a Name for the response headers policy and (optionally) a
Description that explains what the policy is for.

b. In the Cross-origin resource sharing (CORS) panel, choose the Configure CORS toggle
and configure any CORS headers that you want to add to the policy. If you want the
configured headers to override the headers that CloudFront receives from the origin,
select the Origin override check box.

For more information about the CORS headers settings, see the section called “CORS
headers”.

c. In the Security headers panel, choose the toggle and configure each of the security
headers that you want to add to the policy.

For more information about the security headers settings, see the section called
“Security headers”.

d. In the Custom headers panel, add any custom headers that you want to include in the
policy.

For more information about the custom headers settings, see the section called
“Custom headers”.

e. In the Remove headers panel, add the names of any headers that you want CloudFront
to remove from the origin's response and not include in the response that CloudFront
sends to viewers.

Creating response headers policies 170

https://console.aws.amazon.com/cloudfront/v4/home#/policies/responseHeaders
https://console.aws.amazon.com/cloudfront/v4/home#/policies/responseHeaders

Amazon CloudFront Developer Guide

For more information about the remove headers settings, see the section called
“Remove headers”.

f. In the Server-Timing header panel, choose the Enable toggle and enter a sampling
rate (a number between 0 and 100, inclusive).

For more information about the Server-Timing header, see the section called
“Server-Timing header”.

4. Choose Create to create the policy.

After you create a response headers policy, you can attach it to a cache behavior in a CloudFront
distribution.

To attach a response headers policy to an existing distribution (console)

1. Open the Distributions page in the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home#/distributions.

2. Choose the distribution to update, then choose the Behaviors tab.

3. Select the cache behavior to update, then choose Edit.

Or, to create a new cache behavior, choose Create behavior.

4. For Response headers policy, choose the policy to add to the cache behavior.

5. Choose Save changes to update the cache behavior. If you're creating a new cache
behavior, choose Create behavior.

To attach a response headers policy to a new distribution (console)

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

2. Choose Create distribution.

3. For Response headers policy, choose the policy to add to the cache behavior.

4. Choose the other settings for your distribution. For more information, see the section
called “Values that you specify”.

5. Choose Create distribution to create the distribution.

Creating response headers policies 171

https://console.aws.amazon.com/cloudfront/v4/home#/distributions
https://console.aws.amazon.com/cloudfront/v4/home#/distributions
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

AWS CloudFormation

To create a response headers policy with AWS CloudFormation, use the
AWS::CloudFront::ResponseHeadersPolicy resource type. The following example shows
the AWS CloudFormation template syntax, in YAML format, for creating a response headers
policy.

Type: AWS::CloudFront::ResponseHeadersPolicy
Properties:
 ResponseHeadersPolicyConfig:
 Name: EXAMPLE-Response-Headers-Policy
 Comment: Example response headers policy for the documentation
 CorsConfig:
 AccessControlAllowCredentials: false
 AccessControlAllowHeaders:
 Items:
 - '*'
 AccessControlAllowMethods:
 Items:
 - GET
 - OPTIONS
 AccessControlAllowOrigins:
 Items:
 - https://example.com
 - https://docs.example.com
 AccessControlExposeHeaders:
 Items:
 - '*'
 AccessControlMaxAgeSec: 600
 OriginOverride: false
 CustomHeadersConfig:
 Items:
 - Header: Example-Custom-Header-1
 Value: value-1
 Override: true
 - Header: Example-Custom-Header-2
 Value: value-2
 Override: true
 SecurityHeadersConfig:
 ContentSecurityPolicy:
 ContentSecurityPolicy: default-src 'none'; img-src 'self'; script-src
 'self'; style-src 'self'; object-src 'none'; frame-ancestors 'none'
 Override: false

Creating response headers policies 172

Amazon CloudFront Developer Guide

 ContentTypeOptions: # You don't need to specify a value for 'X-Content-Type-
Options'.
 # Simply including it in the template sets its value to
 'nosniff'.
 Override: false
 FrameOptions:
 FrameOption: DENY
 Override: false
 ReferrerPolicy:
 ReferrerPolicy: same-origin
 Override: false
 StrictTransportSecurity:
 AccessControlMaxAgeSec: 63072000
 IncludeSubdomains: true
 Preload: true
 Override: false
 XSSProtection:
 ModeBlock: true # You can set ModeBlock to 'true' OR set a value for
 ReportUri, but not both
 Protection: true
 Override: false
 ServerTimingHeadersConfig:
 Enabled: true
 SamplingRate: 50
 RemoveHeadersConfig:
 Items:
 - Header: Vary
 - Header: X-Powered-By

For more information, see AWS::CloudFront::ResponseHeadersPolicy in the AWS CloudFormation
User Guide.

CLI

To create a response headers policy with the AWS Command Line Interface (AWS CLI), use the
aws cloudfront create-response-headers-policy command. You can use an input file to provide
the input parameters for the command, rather than specifying each individual parameter as
command line input.

Creating response headers policies 173

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudfront-responseheaderspolicy.html

Amazon CloudFront Developer Guide

To create a response headers policy (CLI with input file)

1. Use the following command to create a file that's named response-headers-
policy.yaml. This file contains all of the input parameters for the create-response-
headers-policy command.

aws cloudfront create-response-headers-policy --generate-cli-skeleton yaml-input
 > response-headers-policy.yaml

2. Open the response-headers-policy.yaml file that you just created. Edit the file to
specify a policy name and the desired response headers policy configuration, then save the
file.

For more information about the response headers policy settings, see the section called
“Understanding response headers policies”.

3. Use the following command to create the response headers policy. The policy that you
create uses the input parameters from the response-headers-policy.yaml file.

aws cloudfront create-response-headers-policy --cli-input-yaml file://response-
headers-policy.yaml

Make note of the Id value in the command output. This is the response headers policy ID.
You need it to attach the policy to the cache behavior of a CloudFront distribution.

To attach a response headers policy to an existing distribution (CLI with input file)

1. Use the following command to save the distribution configuration for the CloudFront
distribution that you want to update. Replace distribution_ID with the distribution ID.

aws cloudfront get-distribution-config --id distribution_ID --output yaml >
 dist-config.yaml

2. Open the file that's named dist-config.yaml that you just created. Edit the file, making
the following changes to the cache behavior to make it use the response headers policy.

Creating response headers policies 174

Amazon CloudFront Developer Guide

• In the cache behavior, add a field that's named ResponseHeadersPolicyId. For the
field's value, use the response headers policy ID that you noted after creating the policy.

• Rename the ETag field to IfMatch, but don't change the field's value.

Save the file when finished.

3. Use the following command to update the distribution to use the response headers policy.
Replace distribution_ID with the distribution ID.

aws cloudfront update-distribution --id distribution_ID --cli-input-yaml file://
dist-config.yaml

To attach a response headers policy to a new distribution (CLI with input file)

1. Use the following command to create a file that's named distribution.yaml. This file
contains all of the input parameters for the create-distribution command.

aws cloudfront create-distribution --generate-cli-skeleton yaml-input >
 distribution.yaml

2. Open the distribution.yaml file that you just created. In the default cache behavior,
in the ResponseHeadersPolicyId field, enter the response headers policy ID that you
noted after creating the policy. Continue editing the file to specify the distribution settings
that you want, then save the file when finished.

For more information about the distribution settings, see Values that you specify when you
create or update a distribution.

3. Use the following command to create the distribution using input parameters from the
distribution.yaml file.

aws cloudfront create-distribution --cli-input-yaml file://distribution.yaml

Creating response headers policies 175

Amazon CloudFront Developer Guide

API

To create a response headers policy with the CloudFront API, use CreateResponseHeadersPolicy.
For more information about the fields that you specify in this API call, see the section called
“Understanding response headers policies” and the API reference documentation for your AWS
SDK or other API client.

After you create a response headers policy, you can attach it to a cache behavior, using one of
the following API calls:

• To attach it to a cache behavior in an existing distribution, use UpdateDistribution.

• To attach it to a cache behavior in a new distribution, use CreateDistribution.

For both of these API calls, provide the response headers policy ID in the
ResponseHeadersPolicyId field, inside a cache behavior. For more information about the
other fields that you specify in these API calls, see Values that you specify when you create
or update a distribution and the API reference documentation for your AWS SDK or other API
client.

Using the managed response headers policies

With a CloudFront response headers policy, you can specify the HTTP headers that Amazon
CloudFront removes or adds in responses that it sends to viewers. For more information about
response headers policies and reasons to use them, see the section called “Adding or removing
response headers”.

CloudFront provides managed response headers policies that you can attach to cache behaviors in
your CloudFront distributions. With a managed response headers policy, you don't need to write
or maintain your own policy. The managed policies contain sets of HTTP response headers for
common use cases.

Topics

• Attaching a managed response headers policy

• Available managed response headers policies

Using the managed response headers policies 176

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateResponseHeadersPolicy.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateDistribution.html

Amazon CloudFront Developer Guide

Attaching a managed response headers policy

To use a managed response headers policy, you attach it to a cache behavior in your distribution.
The process is the same as when you create a custom response headers policy. However, instead
of creating a new policy, you attach one of the managed policies. You attach the policy either by
name (with the console) or by ID (with AWS CloudFormation, the AWS CLI, or the AWS SDKs). The
names and IDs are listed in the following section.

For more information, see the section called “Creating response headers policies”.

Available managed response headers policies

The following topics describe the managed response headers policies that you can use.

Topics

• CORS-and-SecurityHeadersPolicy

• CORS-With-Preflight

• CORS-with-preflight-and-SecurityHeadersPolicy

• SecurityHeadersPolicy

• SimpleCORS

CORS-and-SecurityHeadersPolicy

View this policy in the CloudFront console

Use this managed policy to allow simple CORS requests from any origin. This policy also adds a set
of security headers to all responses that CloudFront sends to viewers. This policy combines the the
section called “SimpleCORS” and the section called “SecurityHeadersPolicy” policies into one.

When using AWS CloudFormation, the AWS CLI, or the CloudFront API, the ID for this policy is:

e61eb60c-9c35-4d20-a928-2b84e02af89c

Policy settings

 Header name Header value Override
origin?

CORS headers: Access-Control-Allow-
Origin

* No

Using the managed response headers policies 177

https://console.aws.amazon.com/cloudfront/v4/home#/policies/responseHeaders/e61eb60c-9c35-4d20-a928-2b84e02af89c

Amazon CloudFront Developer Guide

 Header name Header value Override
origin?

Referrer-Policy strict-origin-
when-cross-or
igin

No

Strict-Transport-S
ecurity

max-age=3
1536000

No

X-Content-Type-Options nosniff Yes

X-Frame-Options SAMEORIGIN No

Security
headers:

X-XSS-Protection 1; mode=block No

CORS-With-Preflight

View this policy in the CloudFront console

Use this managed policy to allow CORS requests from any origin, including preflight requests. For
preflight requests (using the HTTP OPTIONS method), CloudFront adds all three of the following
headers to the response. For simple CORS requests, CloudFront adds only the Access-Control-
Allow-Origin header.

If the response that CloudFront receives from the origin includes any of these headers, CloudFront
uses the received header (and its value) in its response to the viewer. CloudFront doesn't use the
header in this policy.

When using AWS CloudFormation, the AWS CLI, or the CloudFront API, the ID for this policy is:

5cc3b908-e619-4b99-88e5-2cf7f45965bd

Using the managed response headers policies 178

https://console.aws.amazon.com/cloudfront/v4/home#/policies/responseHeaders/5cc3b908-e619-4b99-88e5-2cf7f45965bd

Amazon CloudFront Developer Guide

Policy settings

 Header name Header value Override
origin?

Access-Control-Allow-
Methods

DELETE, GET, HEAD,
OPTIONS, PATCH,
POST, PUT

Access-Control-Allow-
Origin

*

CORS headers:

Access-Control-Expose-
Headers

*

No

CORS-with-preflight-and-SecurityHeadersPolicy

View this policy in the CloudFront console

Use this managed policy to allow CORS requests from any origin. This includes preflight requests.
This policy also adds a set of security headers to all responses that CloudFront sends to viewers.
This policy combines the the section called “CORS-With-Preflight” and the section called
“SecurityHeadersPolicy” policies into one.

When using AWS CloudFormation, the AWS CLI, or the CloudFront API, the ID for this policy is:

eaab4381-ed33-4a86-88ca-d9558dc6cd63

Policy settings

 Header name Header value Override
origin?

Access-Control-Allow-
Methods

DELETE, GET, HEAD,
OPTIONS, PATCH,
POST, PUT

CORS headers:

Access-Control-Allow-
Origin

*

No

Using the managed response headers policies 179

https://console.aws.amazon.com/cloudfront/v4/home#/policies/responseHeaders/eaab4381-ed33-4a86-88ca-d9558dc6cd63

Amazon CloudFront Developer Guide

 Header name Header value Override
origin?

Access-Control-Expose-
Headers

*

Referrer-Policy strict-origin-
when-cross-or
igin

No

Strict-Transport-S
ecurity

max-age=3
1536000

No

X-Content-Type-Options nosniff Yes

X-Frame-Options SAMEORIGIN No

Security
headers:

X-XSS-Protection 1; mode=block No

SecurityHeadersPolicy

View this policy in the CloudFront console

Use this managed policy to add a set of security headers to all responses that CloudFront sends to
viewers. For more information about these security headers, see Mozilla's web security guidelines.

With this response headers policy, CloudFront adds X-Content-Type-Options: nosniff to all
responses. This is the case when the response that CloudFront received from the origin included
this header and when it didn't. For all other headers in this policy, if the response that CloudFront
receives from the origin includes the header, CloudFront uses the received header (and its value) in
its response to the viewer. It doesn't use the header in this policy.

When using AWS CloudFormation, the AWS CLI, or the CloudFront API, the ID for this policy is:

67f7725c-6f97-4210-82d7-5512b31e9d03

Using the managed response headers policies 180

https://console.aws.amazon.com/cloudfront/v4/home#/policies/responseHeaders/67f7725c-6f97-4210-82d7-5512b31e9d03
https://infosec.mozilla.org/guidelines/web_security

Amazon CloudFront Developer Guide

Policy settings

 Header name Header value Override
origin?

Referrer-Policy strict-origin-
when-cross-or
igin

No

Strict-Transport-S
ecurity

max-age=3
1536000

No

X-Content-Type-Options nosniff Yes

X-Frame-Options SAMEORIGIN No

Security
headers:

X-XSS-Protection 1; mode=block No

SimpleCORS

View this policy in the CloudFront console

Use this managed policy to allow simple CORS requests from any origin. With this policy,
CloudFront adds the header Access-Control-Allow-Origin: * to all responses for simple
CORS requests.

If the response that CloudFront receives from the origin includes the Access-Control-
Allow-Origin header, CloudFront uses that header (and its value) in its response to the viewer.
CloudFront doesn't use the header in this policy.

When using AWS CloudFormation, the AWS CLI, or the CloudFront API, the ID for this policy is:

60669652-455b-4ae9-85a4-c4c02393f86c

Policy settings

 Header name Header value Override
origin?

CORS headers: Access-Control-Allow-
Origin

* No

Using the managed response headers policies 181

https://console.aws.amazon.com/cloudfront/v4/home#/policies/responseHeaders/60669652-455b-4ae9-85a4-c4c02393f86c
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS#simple_requests

Amazon CloudFront Developer Guide

Understanding response headers policies

You can use a response headers policy to specify the HTTP headers that Amazon CloudFront
removes or adds in responses that it sends to viewers. For more information about response
headers policies and reasons to use them, see the section called “Adding or removing response
headers”.

The following topics explain the settings in a response headers policy. The settings are grouped
into categories, which are represented in the following topics.

Topics

• Policy details (metadata)

• CORS headers

• Security headers

• Custom headers

• Remove headers

• Server-Timing header

Policy details (metadata)

The policy details settings contain metadata about a response headers policy.

• Name – A name to identify the response headers policy. In the console, you use the name to
attach the policy to a cache behavior.

• Description (optional) – A comment to describe the response headers policy. This is optional, but
it can help you identify the purpose of the policy.

CORS headers

The cross-origin resource sharing (CORS) settings allow you to add and configure CORS headers in
a response headers policy.

This list focuses on how to specify settings and valid values in a response headers policy. For more
information about each of these headers and how they're used for real-world CORS requests and
responses, see cross-origin resource sharing in the MDN Web Docs and the CORS protocol spec.

Understanding response headers policies 182

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://fetch.spec.whatwg.org/#http-cors-protocol

Amazon CloudFront Developer Guide

Access-Control-Allow-Credentials

This is a Boolean setting (true or false) that determines if CloudFront adds the Access-
Control-Allow-Credentials header in responses to CORS requests. When this setting is
set to true, CloudFront adds the Access-Control-Allow-Credentials: true header in
responses to CORS requests. Otherwise, CloudFront doesn't add this header to responses.

Access-Control-Allow-Headers

Specifies the header names that CloudFront uses as values for the Access-Control-Allow-
Headers header in responses to CORS preflight requests. Valid values for this setting include
HTTP header names or the wildcard character (*), which indicates that all headers are allowed.
Note that the Authorization header can't be wildcarded and always needs to be listed
explicitly.

Examples of valid use of the wildcard character are shown in this table:

Example Will match Will not match

x-amz-* x-amz-test

x-amz-

x-amz

x-*-amz x-test-amz

x--amz

* All headers except
Authorization

Authorization

Access-Control-Allow-Methods

Specifies the HTTP methods that CloudFront uses as values for the Access-Control-Allow-
Methods header in responses to CORS preflight requests. Valid values are GET, DELETE, HEAD,
OPTIONS, PATCH, POST, PUT, and ALL. ALL is a special value that includes all of the listed HTTP
methods.

Access-Control-Allow-Origin

Specifies the values that CloudFront can use in the Access-Control-Allow-Origin
response header. Valid values for this setting include a specific origin (such as http://

Understanding response headers policies 183

Amazon CloudFront Developer Guide

www.example.com) or the wildcard character (*), which indicates that all origins are allowed.
See the following table for examples:

Note

The wildcard character (*) is allowed as the leftmost part of the domain
(*.example.org).
The wildcard character (*) is not allowed in the following positions:

• Top-level domains (example.*)

• To the right of sub-domains (test.*.example.org)

• Inside of terms (exa*mple.org)

Examples of valid use of the wildcard character are shown in this table:

Example Will match Will not match

http://*.example.org http://www.example
.org

http://test.exampl
e.org

http://test.exampl
e.org:123

https://test.e
xample.org

https://test.e
xample.org:123

*.example.org test.example.org

test.test.example.
org

.example.org

http://test.exampl
e.org

https://test.examp
le.org

Understanding response headers policies 184

Amazon CloudFront Developer Guide

Example Will match Will not match

http://test.exampl
e.org:123

https://test.examp
le.org:123

example.org http://example.org

https://example.org

http://example.org https://example.org

http://example.org
:123

http://example.org:* http://example.org
:123

http://example.org

http://example.org
:1*3

http://example.org
:123

http://example.org
:1893

http://example.org
:13

.example.org:1 test.example.org:123

Access-Control-Expose-Headers

Specifies the header names that CloudFront uses as values for the Access-Control-Expose-
Headers header in responses to CORS requests. Valid values for this setting include HTTP
header names or the wildcard character (*).

Understanding response headers policies 185

Amazon CloudFront Developer Guide

Access-Control-Max-Age

A number of seconds, which CloudFront uses as the value for the Access-Control-Max-Age
header in responses to CORS preflight requests.

Origin override

This is a Boolean setting (true or false) that determines how CloudFront behaves when the
response from the origin contains one of the CORS headers that's also in the policy.

When this setting is set to true and the origin response contains a CORS header that's also in
the policy, CloudFront adds the CORS header in the policy to the response that it sends to the
viewer. It ignores the header that it received from the origin.

When this setting is false and the origin response contains a CORS header that's also in the
policy, CloudFront includes the CORS header it received from the origin in the response it sends
to the viewer.

When the origin response doesn't contain a CORS header that's in the policy, CloudFront adds
the CORS header in the policy to the response it sends to the viewer. CloudFront does this when
this setting is set to true or false.

Security headers

You can use the security headers settings to add and configure several security-related HTTP
response headers in a response headers policy.

This list describes how you can specify settings and valid values in a response headers policy. For
more information about each of these headers and how they're used in real-world HTTP responses,
see the links to the MDN Web Docs.

Content-Security-Policy

Specifies the content security policy directives that CloudFront uses as values for the Content-
Security-Policy response header.

For more information about this header and valid policy directives, see Content-Security-Policy
in the MDN Web Docs.

Understanding response headers policies 186

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

Amazon CloudFront Developer Guide

Note

The Content-Security-Policy header value is limited to 1783 characters.

Referrer-Policy

Specifies the referrer policy directive that CloudFront uses as the value for the Referrer-
Policy response header. Valid values for this setting are no-referrer, no-referrer-
when-downgrade, origin, origin-when-cross-origin, same-origin, strict-origin,
strict-origin-when-cross-origin, and unsafe-url.

For more information about this header and these directives, see Referrer-Policy in the MDN
Web Docs.

Strict-Transport-Security

Specifies the directives and settings that CloudFront uses as the value for the Strict-
Transport-Security response header. For this setting, you separately specify:

• A number of seconds, which CloudFront uses as the value for the max-age directive of this
header

• A Boolean setting (true or false) for preload, which determines whether CloudFront
includes the preload directive in the value of this header

• A Boolean setting (true or false) for includeSubDomains, which determines whether
CloudFront includes the includeSubDomains directive in the value of this header

For more information about this header and these directives, see Strict-Transport-Security in
the MDN Web Docs.

X-Content-Type-Options

This is a Boolean setting (true or false) that determines if CloudFront adds the X-Content-
Type-Options header to responses. When this setting is true, CloudFront adds the X-
Content-Type-Options: nosniff header to responses. Otherwise CloudFront doesn't add
this header.

For more information about this header, see X-Content-Type-Options in the MDN Web Docs.

Understanding response headers policies 187

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options

Amazon CloudFront Developer Guide

X-Frame-Options

Specifies the directive that CloudFront uses as the value for the X-Frame-Options response
header. Valid values for this setting are DENY or SAMEORIGIN.

For more information about this header and these directives, see X-Frame-Options in the MDN
Web Docs.

X-XSS-Protection

Specifies the directives and settings that CloudFront uses as the value for the X-XSS-
Protection response header. For this setting, you separately specify:

• An X-XSS-Protection setting of 0 (disables XSS filtering) or 1 (enables XSS filtering)

• A Boolean setting (true or false) for block, which determines whether CloudFront includes
the mode=block directive in the value for this header

• A reporting URI, which determines whether CloudFront includes the report=reporting
URI directive in the value for this header

You can specify true for block, or you can specify a reporting URI, but you can't specify both
together. For more information about this header and these directives, see X-XSS-Protection in
the MDN Web Docs.

Origin override

Each of these security headers settings contains a Boolean setting (true or false) that
determines how CloudFront behaves when the response from the origin contains that header.

When this setting is set to true and the origin response contains the header, CloudFront adds
the header in the policy to the response that it sends to the viewer. It ignores the header that it
received from the origin.

When this setting is set to false and the origin response contains the header, CloudFront
includes the header that it received from the origin in the response that it sends to the viewer.

When the origin response doesn't contain the header, CloudFront adds the header in the policy
to the response that it sends to the viewer. CloudFront does this when this setting is set to true
or false.

Understanding response headers policies 188

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection

Amazon CloudFront Developer Guide

Custom headers

You can use custom headers settings to add and configure custom HTTP headers in a response
headers policy. CloudFront adds these headers to every response that it returns to viewers. For
each custom header, you also specify the value for the header, though specifying a value is
optional. This is because CloudFront can add a response header with no value.

Each custom header also has its own Origin override setting:

• When this setting is set to true and the origin response contains the custom header that's in
the policy, CloudFront adds the custom header in the policy to the response that it sends to the
viewer. It ignores the header that it received from the origin.

• When this setting is false and the origin response contains the custom header that's in the
policy, CloudFront includes the custom header that it received from the origin in the response
that it sends to the viewer.

• When the origin response doesn't contain the custom header that's in the policy, CloudFront
adds the custom header in the policy to the response that it sends to the viewer. CloudFront does
this when this setting is set to true or false.

Remove headers

You can specify headers that you want CloudFront to remove from the responses it receives from
the origin so the headers are not included in the responses that CloudFront sends to viewers.
CloudFront removes the headers from every response it sends to viewers, whether the objects is
served from CloudFront's cache or from the origin. For example, you can remove headers that are
of no use to browsers, such as X-Powered-By or Vary, so that CloudFront removes these headers
from the responses that it sends to viewers.

When you specify headers to remove using a response headers policy, CloudFront removes the
headers first and then adds any headers that are specified in other sections of the response
headers policy (CORS headers, security headers, custom headers, etc.). If you specify a header to
remove but also add the same header in another section of the policy, CloudFront includes the
header in the responses that it sends to viewers.

Note

You can use a response headers policy to remove the Server and Date headers that
CloudFront received from the origin, so that these headers (as received from the origin) are

Understanding response headers policies 189

Amazon CloudFront Developer Guide

not included in the responses that CloudFront sends to viewers. However, if you do that,
CloudFront adds its own version of these headers to responses that it sends to viewers. For
the Server header that CloudFront adds, the header's value is CloudFront.

Headers that you can't remove

You cannot remove the following headers using a response headers policy. If you
specify these headers in the Remove headers section of a response headers policy
(ResponseHeadersPolicyRemoveHeadersConfig in the API), you receive an error.

• Connection

• Content-Encoding

• Content-Length

• Expect

• Host

• Keep-Alive

• Proxy-Authenticate

• Proxy-Authorization

• Proxy-Connection

• Trailer

• Transfer-Encoding

• Upgrade

• Via

• Warning

• X-Accel-Buffering

• X-Accel-Charset

• X-Accel-Limit-Rate

• X-Accel-Redirect

• X-Amz-Cf-.*

• X-Amzn-Auth

Understanding response headers policies 190

Amazon CloudFront Developer Guide

• X-Amzn-Cf-Billing

• X-Amzn-Cf-Id

• X-Amzn-Cf-Xff

• X-Amzn-ErrorType

• X-Amzn-Fle-Profile

• X-Amzn-Header-Count

• X-Amzn-Header-Order

• X-Amzn-Lambda-Integration-Tag

• X-Amzn-RequestId

• X-Cache

• X-Edge-.*

• X-Forwarded-Proto

• X-Real-Ip

Server-Timing header

Use the Server-Timing header setting to enable the Server-Timing header in HTTP responses
sent from CloudFront. You can use this header to view metrics that can help you gain insights
about the behavior and performance of CloudFront and your origin. For example, you can see
which cache layer served a cache hit. Or, you can see the first byte latency from the origin if there's
a cache miss. The metrics in the Server-Timing header can help you troubleshoot issues or test
the efficiency of your CloudFront or origin configuration.

For more information about using the Server-Timing header with CloudFront, see the following
topics.

To enable the Server-Timing header, create (or edit) a response headers policy.

Topics

• Sampling rate and Pragma request header

• Server-Timing header from the origin

• Server-Timing header metrics

• Server-Timing header examples

Understanding response headers policies 191

Amazon CloudFront Developer Guide

Sampling rate and Pragma request header

When you enable the Server-Timing header in a response headers policy, you also specify the
sampling rate. The sampling rate is a number 0–100 (inclusive) that specifies the percentage of
responses that you want CloudFront to add the Server-Timing header to. When you set the
sampling rate to 100, CloudFront adds the Server-Timing header to the HTTP response for
every request that matches the cache behavior that the response headers policy is attached to.
When you set it to 50, CloudFront adds the header to 50% of the responses for requests that
match the cache behavior. You can set the sampling rate to any number 0–100 with up to four
decimal places.

When the sampling rate is set to a number lower than 100, you can't control which responses
CloudFront adds the Server-Timing header to, only the percentage. However, you can add the
Pragma header with a value set to server-timing in an HTTP request to receive the Server-
Timing header in the response to that request. This works no matter what the sampling rate is set
to. Even when the sampling rate is set to zero (0), CloudFront adds the Server-Timing header to
the response if the request contains the Pragma: server-timing header.

Server-Timing header from the origin

When there is a cache miss and CloudFront forwards the request to the origin, the origin might
include a Server-Timing header in its response to CloudFront. In this case, CloudFront adds
its metrics to the Server-Timing header that it received from the origin. The response that
CloudFront sends to the viewer contains a single Server-Timing header that includes the value
that came from the origin and the metrics that CloudFront added. The header value from the origin
might be at the end, or in between two sets of metrics that CloudFront adds to the header.

When there is a cache hit, the response that CloudFront sends to the viewer contains a single
Server-Timing header that includes only the CloudFront metrics in the header value (the value
from the origin is not included).

Server-Timing header metrics

When CloudFront adds the Server-Timing header to an HTTP response, the value of the header
contains one or more metrics that can help you gain insights about the behavior and performance
of CloudFront and your origin. The following list contains all the metrics and their potential values.
A Server-Timing header contains only some of these metrics, depending on the nature of the
request and response through CloudFront.

Understanding response headers policies 192

Amazon CloudFront Developer Guide

Some of these metrics are included in the Server-Timing header with a name only (no value).
Others are a name and a value. When a metric has a value, the name and value are separated by
a semicolon (;). When the header contains more than one metric, the metrics are separated by a
comma (,).

cdn-cache-hit

CloudFront provided a response from the cache without making a request to the origin.

cdn-cache-refresh

CloudFront provided a response from the cache after sending a request to the origin to verify
that the cached object is still valid. In this case, CloudFront didn't retrieve the full object from
the origin.

cdn-cache-miss

CloudFront didn't provide the response from the cache. In this case, CloudFront requested the
full object from the origin before returning the response.

cdn-pop

Contains a value that describes which CloudFront point of presence (POP) handled the request.

cdn-rid

Contains a value with the CloudFront unique identifier for the request. You can use this request
identifier (RID) when troubleshooting issues with AWS Support

cdn-hit-layer

This metric is present when CloudFront provides a response from the cache without making a
request to the origin. It contains one of the following values:

• EDGE – CloudFront provided the cached response from a POP location.

• REC – CloudFront provided the cached response from a regional edge cache (REC) location.

• Origin Shield – CloudFront provided the cached response from the REC that's acting as Origin
Shield.

cdn-upstream-layer

When CloudFront requests the full object from the origin, this metric is present and contains
one of the following values:

• EDGE – A POP location sent the request directly to the origin.

Understanding response headers policies 193

Amazon CloudFront Developer Guide

• REC – A REC location sent the request directly to the origin.

• Origin Shield – The REC that's acting as Origin Shield sent the request directly to the origin.

cdn-upstream-dns

Contains a value with the number of milliseconds that were spent retrieving the DNS record for
the origin. A value of zero (0) indicates that CloudFront used a cached DNS result or reused an
existing connection.

cdn-upstream-connect

Contains a value with the number of milliseconds between when the origin DNS request
completed and a TCP (and TLS, if applicable) connection to the origin completed. A value of
zero (0) indicates that CloudFront reused an existing connection.

cdn-upstream-fbl

Contains a value with the number of milliseconds between when the origin HTTP request
is completed and when the first byte is received in the response from the origin (first byte
latency).

cdn-downstream-fbl

Contains a value with the number of milliseconds between when the edge location finished
receiving the request and when it sent the first byte of the response to the viewer.

Server-Timing header examples

The following are examples of a Server-Timing header that a viewer might receive from
CloudFront when the Server-Timing header setting is enabled.

Example – cache miss

The following example shows a Server-Timing header that a viewer might receive when the
requested object is not in the CloudFront cache.

Server-Timing: cdn-upstream-layer;desc="EDGE",cdn-upstream-dns;dur=0,cdn-upstream-
connect;dur=114,cdn-upstream-fbl;dur=177,cdn-cache-miss,cdn-pop;desc="PHX50-C2",cdn-
rid;desc="yNPsyYn7skvTzwWkq3Wcc8Nj_foxUjQUe9H1ifslzWhb0w7aLbFvGg==",cdn-downstream-
fbl;dur=436

This Server-Timing header indicates the following:

Understanding response headers policies 194

Amazon CloudFront Developer Guide

• The origin request was sent from a CloudFront point of presence (POP) location (cdn-
upstream-layer;desc="EDGE").

• CloudFront used a cached DNS result for the origin (cdn-upstream-dns;dur=0).

• It took 114 milliseconds for CloudFront to complete the TCP (and TLS, if applicable) connection
to the origin (cdn-upstream-connect;dur=114).

• It took 177 milliseconds for CloudFront to receive the first byte of the response from the origin,
after completing the request (cdn-upstream-fbl;dur=177).

• The requested object wasn't in CloudFront's cache (cdn-cache-miss).

• The request was received at the edge location identified by the code PHX50-C2 (cdn-
pop;desc="PHX50-C2").

• The CloudFront unique ID for this request was
yNPsyYn7skvTzwWkq3Wcc8Nj_foxUjQUe9H1ifslzWhb0w7aLbFvGg== (cdn-
rid;desc="yNPsyYn7skvTzwWkq3Wcc8Nj_foxUjQUe9H1ifslzWhb0w7aLbFvGg==").

• It took 436 milliseconds for CloudFront to send the first byte of the response to the viewer, after
receiving the viewer request (cdn-downstream-fbl;dur=436).

Example – cache hit

The following example shows a Server-Timing header that a viewer might receive when the
requested object is in CloudFront's cache.

Server-Timing: cdn-cache-hit,cdn-pop;desc="SEA19-C1",cdn-
rid;desc="nQBz4aJU2kP9iC3KHEq7vFxfMozu-VYBwGzkW9diOpeVc7xsrLKj-g==",cdn-hit-
layer;desc="REC",cdn-downstream-fbl;dur=137

This Server-Timing header indicates the following:

• The requested object was in the cache (cdn-cache-hit).

• The request was received at the edge location identified by the code SEA19-C1 (cdn-
pop;desc="SEA19-C1").

• The CloudFront unique ID for this request was nQBz4aJU2kP9iC3KHEq7vFxfMozu-
VYBwGzkW9diOpeVc7xsrLKj-g== (cdn-rid;desc="nQBz4aJU2kP9iC3KHEq7vFxfMozu-
VYBwGzkW9diOpeVc7xsrLKj-g==").

• The requested object was cached in a regional edge cache (REC) location (cdn-hit-
layer;desc="REC").

Understanding response headers policies 195

Amazon CloudFront Developer Guide

• It took 137 milliseconds for CloudFront to send the first byte of the response to the viewer, after
receiving the viewer request (cdn-downstream-fbl;dur=137).

Understanding response headers policies 196

Amazon CloudFront Developer Guide

Adding, removing, or replacing content that CloudFront
distributes

This section explains how to make sure CloudFront can access the content that you want to be
served to your viewers, how to specify the objects in your website or in your application, and how
to remove or replace content.

Topics

• Adding and accessing content that CloudFront distributes

• Updating existing content with a CloudFront distribution

• Removing content so CloudFront won’t distribute it

• Customizing the URL format for files in CloudFront

• Specifying a default root object

• Invalidating files

• Serving compressed files

• Generating custom error responses

Adding and accessing content that CloudFront distributes

When you want CloudFront to distribute content (objects), you add files to one of the origins that
you specified for the distribution, and you expose a CloudFront link to the files. A CloudFront edge
location doesn't fetch the new files from an origin until the edge location receives viewer requests
for them. For more information, see How CloudFront delivers content.

When you add a file that you want CloudFront to distribute, make sure that you add it to one of
the Amazon S3 buckets specified in your distribution or, for a custom origin, to a directory in the
specified domain. In addition, confirm that the path pattern in the applicable cache behavior sends
requests to the correct origin.

For example, suppose the path pattern for a cache behavior is *.html. If you don't have any
other cache behaviors configured to forward requests to that origin, CloudFront will only forward
*.html files. In this scenario, for example, CloudFront will never distribute .jpg files that you
upload to the origin, because you haven't created a cache behavior that includes .jpg files.

Adding and accessing content 197

Amazon CloudFront Developer Guide

CloudFront servers don't determine the MIME type for the objects that they serve. When you
upload a file to your origin, we recommend that you set the Content-Type header field for it.

Updating existing content with a CloudFront distribution

There are two ways to update existing content that CloudFront is set up to distribute for you:

• Update files by using the same name

• Update by using a version identifier in the file name

We recommend that you use a version identifier in file names or in folder names, to help give you
more control over managing the content that CloudFront serves.

Updating existing files using versioned file names

When you update existing files in a CloudFront distribution, we recommend that you include some
sort of version identifier either in your file names or in your directory names to give yourself better
control over your content. This identifier might be a date-time stamp, a sequential number, or
some other method of distinguishing two versions of the same object.

For example, instead of naming a graphic file image.jpg, you might call it image_1.jpg. When you
want to start serving a new version of the file, you'd name the new file image_2.jpg, and you'd
update the links in your web application or website to point to image_2.jpg. Alternatively, you
might put all graphics in an images_v1 directory and, when you want to start serving new versions
of one or more graphics, you'd create a new images_v2 directory, and you'd update your links
to point to that directory. With versioning, you don't have to wait for an object to expire before
CloudFront begins to serve a new version of it, and you don't have to pay for object invalidation.

Even if you version your files, we still recommend that you set an expiration date. For more
information, see Managing how long content stays in the cache (expiration).

Note

Specifying versioned file names or directory names is not related to Amazon S3 object
versioning.

Updating existing content 198

Amazon CloudFront Developer Guide

Updating existing content using the same file names

Although you can update existing files in a CloudFront distribution and use the same file names,
we don't recommend it. CloudFront distributes files to edge locations only when the files are
requested, not when you put new or updated files in your origin. If you update an existing file in
your origin with a newer version that has the same name, an edge location won't get that new
version from your origin until both of the following occur:

• The old version of the file in the cache expires. For more information, see Managing how long
content stays in the cache (expiration).

• There's a user request for the file at that edge location.

If you use the same names when you replace files, you can't control when CloudFront starts to
serve the new files. By default, CloudFront caches files in edge locations for 24 hours. (For more
information, see Managing how long content stays in the cache (expiration).) For example, if you're
replacing all of the files on an entire website:

• Files for the less popular pages may not be in any edge locations. The new versions of these files
will start being served on the next request.

• Files for some pages may be in some edge locations and not in others, so your end users will see
different versions depending on which edge location they're served from.

• New versions of the files for the most popular pages might not be served for up to 24 hours
because CloudFront might have retrieved the files for those pages just before you replaced the
files with new versions.

Removing content so CloudFront won’t distribute it

You can remove files from your origin that you no longer want to be included in your CloudFront
distribution. However, CloudFront will continue to show viewers content from the edge cache until
the files expire.

If you want to remove a file right away, you must do one of the following:

• Invalidate the file. For more information, see Invalidating files.

• Use file versioning. When you use versioning, different versions of a file have different names
that you can use in your CloudFront distribution, to change which file is returned to viewers. For
more information, see Updating existing files using versioned file names.

Updating existing content using the same file names 199

Amazon CloudFront Developer Guide

Customizing the URL format for files in CloudFront

After you set up your origin with the objects (content) that you want CloudFront to serve to your
viewers, you must use the correct URLs to reference those objects in your website or application
code so that CloudFront can serve it.

The domain name that you use in the URLs for objects on your web pages or in your web
application can be either of the following:

• The domain name, such as d111111abcdef8.cloudfront.net, that CloudFront automatically
assigns when you create a distribution

• Your own domain name, such as example.com

For example, you might use one of the following URLs to return the file image.jpg:

https://d111111abcdef8.cloudfront.net/images/image.jpg

https://example.com/images/image.jpg

You use the same URL format whether you store the content in Amazon S3 buckets or at a custom
origin, like one of your own web servers.

Note

The URL format depends in part on the value that you specify for Origin Path in your
distribution. This value gives CloudFront a top directory path for your objects. For more
information about setting the origin path when you create a distribution, see Origin path.

For more information about URL formats, see the following sections.

Using your own domain name (example.com)

Instead of using the default domain name that CloudFront assigns for you when you create a
distribution, you can add an alternate domain name that's easier to work with, like example.com.
By setting up your own domain name with CloudFront, you can use a URL like this for objects in
your distribution:

https://example.com/images/image.jpg

Customizing file URLs 200

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html#DownloadDistValuesCNAME

Amazon CloudFront Developer Guide

If you plan to use HTTPS between viewers and CloudFront, see Using alternate domain names and
HTTPS.

Using a trailing slash (/) in URLs

When you specify URLs for directories in your CloudFront distribution, choose either to always
use a trailing slash or to never use a trailing slash. For example, choose only one of the following
formats for all of your URLs:

https://d111111abcdef8.cloudfront.net/images/

https://d111111abcdef8.cloudfront.net/images

Why does it matter?

Both formats work to link to CloudFront objects, but being consistent can help prevent issues
when you want to invalidate a directory later. CloudFront stores URLs exactly as they are defined,
including trailing slashes. So if your format is inconsistent, you'll need to invalidate directory URLs
with and without the slash, to ensure that CloudFront removes the directory.

It’s inconvenient to have to invalidate both URL formats, and it can lead to additional costs. That’s
because if you must double up invalidations to cover both types of URLs, you might exceed the
maximum number of free invalidations allowed for the month. And if that happens, you'll have to
pay for all the invalidations, even if only one format for each directory URL exists in CloudFront.

Creating signed URLs for restricted content

If you have content that you want to restrict access to, you can create signed URLs. For example,
if you want to distribute your content only to users who have authenticated, you can create URLs
that are valid only for a specified time period or that are available only from a specified IP address.
For more information, see Serving private content with signed URLs and signed cookies.

Specifying a default root object

You can configure CloudFront to return a specific object (the default root object) when a user
requests the root URL for your distribution instead of requesting an object in your distribution.
Specifying a default root object lets you avoid exposing the contents of your distribution.

Topics

• How to specify a default root object

Using a trailing slash (/) in URLs 201

Amazon CloudFront Developer Guide

• How default root object works

• How CloudFront works if you don’t define a root object

How to specify a default root object

To avoid exposing the contents of your distribution or returning an error, specify a default root
object for your distribution by completing the following steps.

To specify a default root object for your distribution

1. Upload the default root object to the origin that your distribution points to.

The file can be any type supported by CloudFront. For a list of constraints on the file name, see
the description of the DefaultRootObject element in DistributionConfig.

Note

If the file name of the default root object is too long or contains an invalid
character, CloudFront returns the error HTTP 400 Bad Request -
InvalidDefaultRootObject. In addition, CloudFront caches the code for 10
seconds (by default) and writes the results to the access logs.

2. Confirm that the permissions for the object grant CloudFront at least read access.

For more information about Amazon S3 permissions, see Identity and access management in
Amazon S3 in the Amazon Simple Storage Service User Guide.

3. Update your distribution to refer to the default root object using the CloudFront console or the
CloudFront API.

To specify a default root object using the CloudFront console:

a. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

b. In the list of distributions in the top pane, select the distribution to update.

c. In the Settings pane, on the General tab, choose Edit.

d. In the Edit settings dialog box, in the Default root object field, enter the file name of the
default root object.

How to specify a default root object 202

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_DistributionConfig.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-access-control.html
https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

Enter only the object name, for example, index.html. Do not add a / before the object
name.

e. Choose Save changes.

To update your configuration using the CloudFront API, you specify a value for the
DefaultRootObject element in your distribution. For information about using the
CloudFront API to specify a default root object, see UpdateDistribution in the Amazon
CloudFront API Reference.

4. Confirm that you have enabled the default root object by requesting your root URL. If your
browser doesn't display the default root object, perform the following steps:

a. Confirm that your distribution is fully deployed by viewing the status of your distribution
in the CloudFront console.

b. Repeat steps 2 and 3 to verify that you granted the correct permissions and that you
correctly updated the configuration of your distribution to specify the default root object.

How default root object works

Suppose the following request points to the object image.jpg:

https://d111111abcdef8.cloudfront.net/image.jpg

In contrast, the following request points to the root URL of the same distribution instead of to a
specific object, as in the first example:

https://d111111abcdef8.cloudfront.net/

When you define a default root object, an end-user request that calls the root of your distribution
returns the default root object. For example, if you designate the file index.html as your default
root object, a request for:

https://d111111abcdef8.cloudfront.net/

Returns:

https://d111111abcdef8.cloudfront.net/index.html

How default root object works 203

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html

Amazon CloudFront Developer Guide

Note

CloudFront does not determine whether a URL with multiple trailing slashes
(https://d111111abcdef8.cloudfront.net///) is equivalent to https://
d111111abcdef8.cloudfront.net/. Your origin server makes that comparison.

If you define a default root object, an end-user request for a subdirectory of your distribution
does not return the default root object. For example, suppose index.html is your default root
object and that CloudFront receives an end-user request for the install directory under your
CloudFront distribution:

https://d111111abcdef8.cloudfront.net/install/

CloudFront does not return the default root object even if a copy of index.html appears in the
install directory.

If you configure your distribution to allow all of the HTTP methods that CloudFront supports, the
default root object applies to all methods. For example, if your default root object is index.php
and you write your application to submit a POST request to the root of your domain (https://
example.com), CloudFront sends the request to https://example.com/index.php.

The behavior of CloudFront default root objects is different from the behavior of Amazon S3
index documents. When you configure an Amazon S3 bucket as a website and specify the index
document, Amazon S3 returns the index document even if a user requests a subdirectory in the
bucket. (A copy of the index document must appear in every subdirectory.) For more information
about configuring Amazon S3 buckets as websites and about index documents, see the Hosting
Websites on Amazon S3 chapter in the Amazon Simple Storage Service User Guide.

Important

Remember that a default root object applies only to your CloudFront distribution. You
still need to manage security for your origin. For example, if you are using an Amazon S3
origin, you still need to set your Amazon S3 bucket ACLs appropriately to ensure the level
of access you want on your bucket.

How default root object works 204

https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html

Amazon CloudFront Developer Guide

How CloudFront works if you don’t define a root object

If you don't define a default root object, requests for the root of your distribution pass to your
origin server. If you are using an Amazon S3 origin, any of the following might be returned:

• A list of the contents of your Amazon S3 bucket – Under any of the following conditions, the
contents of your origin are visible to anyone who uses CloudFront to access your distribution:

• Your bucket is not properly configured.

• The Amazon S3 permissions on the bucket associated with your distribution and on the objects
in the bucket grant access to everyone.

• An end user accesses your origin using your origin root URL.

• A list of the private contents of your origin – If you configure your origin as a private
distribution (only you and CloudFront have access), the contents of the Amazon S3 bucket
associated with your distribution are visible to anyone who has the credentials to access your
distribution through CloudFront. In this case, users are not able to access your content through
your origin root URL. For more information about distributing private content, see the section
called “Restricting content with signed URLs and signed cookies”.

• Error 403 Forbidden—CloudFront returns this error if the permissions on the Amazon S3
bucket associated with your distribution or the permissions on the objects in that bucket deny
access to CloudFront and to everyone.

Invalidating files

If you need to remove a file from CloudFront edge caches before it expires, you can do one of the
following:

• Invalidate the file from edge caches. The next time a viewer requests the file, CloudFront returns
to the origin to fetch the latest version of the file.

• Use file versioning to serve a different version of the file that has a different name. For more
information, see Updating existing files using versioned file names.

To invalidate files, you can specify either the path for individual files or a path that ends with the *
wildcard, which might apply to one file or to many, as shown in the following examples:

• /images/image1.jpg

How CloudFront works if you don’t define a root object 205

Amazon CloudFront Developer Guide

• /images/image*

• /images/*

Note

If you use the AWS Command Line Interface (AWS CLI) for invalidating files and you specify
a path that includes the * wildcard, you must use quotes (") around the path.
For example: aws cloudfront create-invalidation --distribution-id
distribution_ID --paths "/*"

You can submit a certain number of invalidation paths each month for free. If you submit more
than the allotted number of invalidation paths in a month, you pay a fee for each invalidation
path that you submit. For more information about the charges for invalidation, see Paying for file
invalidation.

Topics

• Choosing between invalidating files and using versioned file names

• Determining which files to invalidate

• Specifying the files to invalidate

• Invalidating files using the console

• Invalidating files using the CloudFront API

• Concurrent invalidation request maximum

• Paying for file invalidation

Choosing between invalidating files and using versioned file names

To control the versions of files that are served from your distribution, you can either invalidate files
or give them versioned file names. If you want to update your files frequently, we recommend that
you primarily use file versioning for the following reasons:

• Versioning enables you to control which file a request returns even when the user has a version
cached either locally or behind a corporate caching proxy. If you invalidate the file, the user
might continue to see the old version until it expires from those caches.

Choosing between invalidating files and using versioned file names 206

Amazon CloudFront Developer Guide

• CloudFront access logs include the names of your files, so versioning makes it easier to analyze
the results of file changes.

• Versioning provides a way to serve different versions of files to different users.

• Versioning simplifies rolling forward and back between file revisions.

• Versioning is less expensive. You still have to pay for CloudFront to transfer new versions of your
files to edge locations, but you don't have to pay for invalidating files.

For more information about file versioning, see Updating existing files using versioned file names.

Determining which files to invalidate

If you want to invalidate multiple files such as all of the files in a directory or all files that begin
with the same characters, you can include the * wildcard at the end of the invalidation path. For
more information about using the * wildcard, see Invalidation paths.

If you want to invalidate selected files but your users don’t necessarily access every file on your
origin, you can determine which files viewers have requested from CloudFront and invalidate only
those files. To determine which files viewers have requested, enable CloudFront access logging. For
more information about access logs, see Configuring and using standard logs (access logs).

Specifying the files to invalidate

Note the following about specifying the files that you want to invalidate.

Case sensitivity

Invalidation paths are case sensitive, so /images/image.jpg and /images/Image.jpg
specify two different files.

Changing the URI using a Lambda function

If your CloudFront distribution triggers a Lambda function on viewer request events, and if the
function changes the URI of the requested file, we recommend that you invalidate both URIs to
remove the file from CloudFront edge caches:

• The URI in the viewer request

• The URI after the function changed it

For example, suppose your Lambda function changes the URI for a file from this:

https://d111111abcdef8.cloudfront.net/index.html

Determining which files to invalidate 207

Amazon CloudFront Developer Guide

to a URI that includes a language directory:

https://d111111abcdef8.cloudfront.net/en/index.html

To invalidate the file, you must specify the following paths:

• /index.html

• /en/index.html

For more information, see Invalidation paths.

 Default root object

To invalidate the default root object (file), specify the path the same way that you specify the
path for any other file. For more information, see How default root object works.

 Forwarding cookies

If you configured CloudFront to forward cookies to your origin, CloudFront edge caches might
contain several versions of the file. When you invalidate a file, CloudFront invalidates every
cached version of the file regardless of its associated cookies. You can’t selectively invalidate
some versions and not others based on the associated cookies. For more information, see
Caching content based on cookies.

 Forwarding headers

If you configured CloudFront to forward a list of headers to your origin and to cache based on
the values of the headers, CloudFront edge caches might contain several versions of the file.
When you invalidate a file, CloudFront invalidates every cached version of the file regardless
of the header values. You can’t selectively invalidate some versions and not others based on
header values. (If you configure CloudFront to forward all headers to your origin, CloudFront
doesn't cache your files.) For more information, see Caching content based on request headers.

 Forwarding query strings

If you configured CloudFront to forward query strings to your origin, you must include the
query strings when invalidating files, as shown in the following examples:

• /images/image.jpg?parameter1=a

• /images/image.jpg?parameter1=b

If client requests include five different query strings for the same file, you can either invalidate
the file five times, once for each query string, or you can use the * wildcard in the invalidation
path, as shown in the following example:

Specifying the files to invalidate 208

Amazon CloudFront Developer Guide

/images/image.jpg*

For more information about using wildcards in the invalidation path, see Invalidation paths. For
more information about query strings, see Caching content based on query string parameters.
To determine which query strings are in use, you can enable CloudFront logging. For more
information, see Configuring and using standard logs (access logs).

Maximum allowed

For information about the maximum number of invalidations allowed, see Concurrent
invalidation request maximum.

 Microsoft Smooth Streaming files

You cannot invalidate media files in the Microsoft Smooth Streaming format when you have
enabled Smooth Streaming for the corresponding cache behavior.

 Non-ASCII or unsafe characters in the path

If the path includes non-ASCII characters or unsafe characters as defined in RFC 1738, URL-
encode those characters. Do not URL-encode any other characters in the path, or CloudFront
will not invalidate the old version of the updated file.

 Invalidation paths

The path is relative to the distribution. For example, to invalidate the file at https://
d111111abcdef8.cloudfront.net/images/image2.jpg, you would specify the following:

/images/image2.jpg

Note

In the CloudFront console, you can omit the leading slash in the path, like this: images/
image2.jpg. When you use the CloudFront API directly, invalidation paths must begin
with a leading slash.

You can also invalidate multiple files simultaneously by using the * wildcard. The *, which
replaces 0 or more characters, must be the last character in the invalidation path. Also, if you
use the AWS Command Line Interface (AWS CLI) for invalidating files and you specify a path
that includes the * wildcard, you must use quotes (") around the path (like this: "/*").

Specifying the files to invalidate 209

https://tools.ietf.org/html/rfc1738
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

The following are some examples:

• To invalidate all of the files in a directory:

/directory-path/*

• To invalidate a directory, all of its subdirectories, and all of the files in the directory and
subdirectories:

/directory-path*

• To invalidate all files that have the same name but different file name extensions, such as
logo.jpg, logo.png, and logo.gif:

/directory-path/file-name.*

• To invalidate all of the files in a directory for which the file name starts with the same
characters (such as all of the files for a video in HLS format), regardless of the file name
extension:

/directory-path/initial-characters-in-file-name*

• When you configure CloudFront to cache based on query string parameters and you want to
invalidate every version of a file:

/directory-path/file-name.file-name-extension*

• To invalidate all of the files in a distribution:

/*

The maximum length of a path is 4,000 characters. You can’t use a wildcard within the path;
only at the end of the path.

For information about invalidating files if you use a Lambda function to change the URI, see
Changing the URI Using a Lambda Function.

The charge to submit an invalidation path is the same regardless of the number of files you’re
invalidating: a single file (/images/logo.jpg) or all of the files that are associated with a
distribution (/*). For more information, see Amazon CloudFront Pricing.

If the invalidation path is a directory and if you have not standardized on a method for
specifying directories—with or without a trailing slash (/)—we recommend that you invalidate
the directory both with and without a trailing slash, for example, /images and /images/.

Specifying the files to invalidate 210

https://aws.amazon.com/cloudfront/pricing/

Amazon CloudFront Developer Guide

Signed URLs

If you are using signed URLs, invalidate a file by including only the portion of the URL before
the question mark (?).

Invalidating files using the console

You can use the CloudFront console to create and run an invalidation, display a list of the
invalidations that you submitted previously, and display detailed information about an individual
invalidation. You can also copy an existing invalidation, edit the list of file paths, and run the edited
invalidation. You can't remove invalidations from the list.

• Invalidating files

• Copying, editing, and rerunning an existing invalidation

• Canceling invalidations

• Listing invalidations

• Displaying information about an invalidation

Invalidating files

To invalidate files using the CloudFront console, do the following.

To invalidate files

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. Select the distribution for which you want to invalidate files.

3. Choose Distribution Settings.

4. Choose the Invalidations tab.

5. Choose Create Invalidation.

6. For the files that you want to invalidate, enter one invalidation path per line. For information
about specifying invalidation paths, see Specifying the files to invalidate.

Important

Specify file paths carefully. You can’t cancel an invalidation request after you start it.

Invalidating files using the console 211

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

7. Choose Invalidate.

Copying, editing, and rerunning an existing invalidation

You can copy an invalidation that you created previously, update the list of invalidation paths, and
run the updated invalidation. You cannot copy an existing invalidation, update the invalidation
paths, and then save the updated invalidation without running it.

Important

If you copy an invalidation that is still in progress, update the list of invalidation paths, and
then run the updated invalidation, CloudFront will not stop or delete the invalidation that
you copied. If any invalidation paths appear in the original and in the copy, CloudFront will
try to invalidate the files twice, and both invalidations will count against your maximum
number of free invalidations for the month. If you’ve already reached the maximum
number of free invalidations, you'll be charged for both invalidations of each file. For more
information, see Concurrent invalidation request maximum.

To copy, edit, and rerun an existing invalidation

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. Select the distribution that contains the invalidation that you want to copy.

3. Choose Distribution Settings.

4. Choose the Invalidations tab.

5. Choose the invalidation that you want to copy.

If you aren’t sure which invalidation you want to copy, you can choose an invalidation and
choose Details to display detailed information about that invalidation.

6. Choose Copy.

7. Update the list of invalidation paths if applicable.

8. Choose Invalidate.

Invalidating files using the console 212

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

Canceling invalidations

When you submit an invalidation request to CloudFront, CloudFront forwards the request to all
edge locations within a few seconds, and each edge location starts processing the invalidation
immediately. As a result, you can’t cancel an invalidation after you submit it.

Listing invalidations

You can display a list of the last 100 invalidations that you’ve created and run for a distribution
by using the CloudFront console. If you want to get a list of more than 100 invalidations, use
the ListInvalidations API action. For more information, see ListInvalidations in the Amazon
CloudFront API Reference.

To list invalidations

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. Select the distribution for which you want to display a list of invalidations.

3. Choose Distribution Settings.

4. Choose the Invalidations tab.

Note

You can’t remove invalidations from the list.

Displaying information about an invalidation

You can display detailed information about an invalidation, including distribution ID, invalidation
ID, the status of the invalidation, the date and time that the invalidation was created, and a
complete list of the invalidation paths.

To display information about an invalidation

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. Select the distribution that contains the invalidation that you want to display detailed
information for.

Invalidating files using the console 213

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_ListInvalidations.html
https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

3. Choose Distribution Settings.

4. Choose the Invalidations tab.

5. Choose the applicable invalidation.

6. Choose Details.

Invalidating files using the CloudFront API

For information about invalidating objects and about displaying information about invalidations
using the CloudFront API, see the following topics in the Amazon CloudFront API Reference:

• Invalidating files: CreateInvalidation

• Getting a list of your invalidations: ListInvalidations

• Getting information about a specific invalidation: GetInvalidation

Concurrent invalidation request maximum

If you’re invalidating files individually, you can have invalidation requests for up to 3,000 files per
distribution in progress at one time. This can be one invalidation request for up to 3,000 files, up
to 3,000 requests for one file each, or any other combination that doesn’t exceed 3,000 files. For
example, you can submit 30 invalidation requests that invalidate 100 files each. As long as all 30
invalidation requests are still in progress, you can’t submit any more invalidation requests. If you
exceed the maximum, CloudFront returns an error message.

If you’re using the * wildcard, you can have requests for up to 15 invalidation paths in progress at
one time. You can also have invalidation requests for up to 3,000 individual files per distribution in
progress at the same time; the maximum on wildcard invalidation requests allowed is independent
of the maximum on invalidating files individually.

Paying for file invalidation

The first 1,000 invalidation paths that you submit per month are free; you pay for each invalidation
path over 1,000 in a month. An invalidation path can be for a single file (such as /images/
logo.jpg) or for multiple files (such as /images/*). A path that includes the * wildcard counts as
one path even if it causes CloudFront to invalidate thousands of files.

The maximum of 1,000 free invalidation paths per month applies to the total number of
invalidation paths across all of the distributions that you create with one AWS account. For

Invalidating files using the CloudFront API 214

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateInvalidation.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_ListInvalidations.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_GetInvalidation.html

Amazon CloudFront Developer Guide

example, if you use the AWS account john@example.com to create three distributions, and
you submit 600 invalidation paths for each distribution in a given month (for a total of 1,800
invalidation paths), AWS will charge you for 800 invalidation paths in that month.

Because you are charged per path in your invalidation request, even if you bundle multiple paths
into a single request, each path is still counted individually for billing purposes. For specific
information about invalidation pricing, see Amazon CloudFront Pricing. For more information
about invalidation paths, see Invalidation paths.

Serving compressed files

You can use CloudFront to automatically compress certain types of objects (files) and serve the
compressed objects when viewers (web browsers or other clients) support them. Viewers indicate
their support for compressed objects with the Accept-Encoding HTTP header.

CloudFront can compress objects using the Gzip and Brotli compression formats. When the viewer
supports both formats, and both are present in the cache server that's reached, then CloudFront
prefers Brotli. If only one compression format is present in the cache server, CloudFront returns it.

Note

The Chrome and Firefox web browsers support Brotli compression only when the request is
sent using HTTPS. These browsers do not support Brotli with HTTP requests.

When requested objects are compressed, downloads can be faster because the objects are smaller
—in some cases, less than a quarter the size of the original. Especially for JavaScript and CSS files,
faster downloads can result in faster rendering of webpages for your users. In addition, because the
cost of CloudFront data transfer is based on the total amount of data served, serving compressed
objects can be less expensive than serving them uncompressed.

Some custom origins can also compress objects. Your origin might be able to compress objects that
CloudFront doesn’t compress (see File types that CloudFront compresses). If your origin returns a
compressed object to CloudFront, CloudFront detects that the object is compressed based on the
presence of a Content-Encoding header and doesn’t compress the object again.

Serving compressed files 215

https://aws.amazon.com/cloudfront/pricing/

Amazon CloudFront Developer Guide

Configuring CloudFront to compress objects

To configure CloudFront to compress objects, update the cache behavior that you want to serve the
compressed objects by doing all of the following:

1. Make sure the Compress objects automatically setting is Yes. (In AWS CloudFormation or the
CloudFront API, set Compress to true.)

2. Use a cache policy to specify caching settings, and make sure the Gzip and Brotli
settings are both enabled. (In AWS CloudFormation or the CloudFront API, set
EnableAcceptEncodingGzip and EnableAcceptEncodingBrotli to true.)

3. Make sure the TTL values in the cache policy are set to a value greater than zero. When you set
the TTL values to zero, caching is disabled and CloudFront doesn’t compress objects.

To update a cache behavior, you can use any of the following tools:

• The CloudFront console

• AWS CloudFormation

• The AWS SDKs and command line tools

How CloudFront compression works

When you configure CloudFront to compress objects (see the previous section), here’s how it works:

1. A viewer requests an object. The viewer includes the Accept-Encoding HTTP header in the
request, and the header value includes gzip, br, or both. This indicates that the viewer supports
compressed objects. When the viewer supports both Gzip and Brotli, CloudFront prefers Brotli.

Note

The Chrome and Firefox web browsers support Brotli compression only when the request
is sent using HTTPS. These browsers do not support Brotli with HTTP requests.

2. At the edge location, CloudFront checks the cache for a compressed copy of the requested
object.

3. If the compressed object is already in the cache, CloudFront sends it to the viewer and skips the
remaining steps.

Configuring CloudFront to compress objects 216

https://console.aws.amazon.com/cloudfront/v4/home
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_CloudFront.html
https://aws.amazon.com/getting-started/tools-sdks/

Amazon CloudFront Developer Guide

If the compressed object is not in the cache, CloudFront forwards the request to the origin.

Note

If an uncompressed copy of the object is already in the cache, CloudFront might send it
to the viewer without forwarding the request to the origin. For example, this can happen
when CloudFront previously skipped compression. When this happens, CloudFront
caches the uncompressed object and continues to serve it until the object expires, is
evicted, or is invalidated.

4. If the origin returns a compressed object, as indicated by the presence of a Content-Encoding
header in the HTTP response, CloudFront sends the compressed object to the viewer, adds it to
the cache, and skips the remaining step. CloudFront doesn’t compress the object again.

If the origin returns an uncompressed object to CloudFront (there’s no Content-Encoding
header in the HTTP response), CloudFront determines whether the object is compressible. For
more information about how CloudFront determines whether an object is compressible, see the
following section.

5. If the object is compressible, CloudFront compresses it, sends it to the viewer, and adds it to the
cache. (In rare cases, CloudFront might skip compression and send the uncompressed object to
the viewer.)

Notes about CloudFront compression

The following list provides more information about when CloudFront compresses objects.

Request uses HTTP 1.0

If a request to CloudFront uses HTTP 1.0, CloudFront removes the Accept-Encoding header
and does not compress the object in the response.

Accept-Encoding request header

If the Accept-Encoding header is missing from the viewer request, or if it doesn’t contain
gzip or br as a value, CloudFront does not compress the object in the response. If the Accept-
Encoding header includes additional values such as deflate, CloudFront removes them
before forwarding the request to the origin.

Notes about CloudFront compression 217

Amazon CloudFront Developer Guide

When CloudFront is configured to compress objects, it includes the Accept-Encoding header
in the cache key and in origin requests automatically.

Dynamic content

CloudFront does not always compress dynamic content. Sometimes responses for dynamic
content are compressed, and sometimes they are not.

Content is already cached when you configure CloudFront to compress objects

CloudFront compresses objects when it gets them from the origin. When you configure
CloudFront to compress objects, CloudFront doesn’t compress objects that are already cached
in edge locations. In addition, when a cached object expires in an edge location and CloudFront
forwards another request for the object to your origin, CloudFront doesn’t compress the object
when your origin returns an HTTP status code 304, which means that the edge location already
has the latest version of the object. If you want CloudFront to compress objects that are already
cached in edge locations, you need to invalidate those objects. For more information, see
Invalidating files.

Origin is already configured to compress objects

If you configure CloudFront to compress objects and the origin also compresses objects,
the origin should include a Content-Encoding header, which indicates to CloudFront that
the object is already compressed. When a response from an origin includes the Content-
Encoding header, CloudFront does not compress the object, regardless of the header’s value.
CloudFront sends the response to the viewer and caches the object in the edge location.

File types that CloudFront compresses

For a complete list of the file types that CloudFront compresses, see File types that CloudFront
compresses.

Size of objects that CloudFront compresses

CloudFront compresses objects that are between 1,000 bytes and 10,000,000 bytes in size.

Content-Length header

The origin must include a Content-Length header in the response, which CloudFront uses
to determine whether the size of the object is in the range that CloudFront compresses. If the
Content-Length header is missing, contains an invalid value, or contains a value outside the
range of sizes that CloudFront compresses, CloudFront does not compress the object.

Notes about CloudFront compression 218

Amazon CloudFront Developer Guide

HTTP status code of the response

CloudFront compresses objects only when the HTTP status code of the response is 200, 403, or
404.

Response has no body

When the HTTP response from the origin has no body, there is nothing for CloudFront to
compress.

ETag header

CloudFront sometimes modifies the ETag header in the HTTP response when it compresses
objects. For more information, see the section called “ETag header conversion”.

CloudFront skips compression

CloudFront compresses objects on a best-effort basis. In rare cases, CloudFront skips
compression. CloudFront makes this decision based on a variety of factors, including host
capacity. If CloudFront skips compression for an object, it caches the uncompressed object and
continues to serve it to viewers until the object expires, is evicted, or is invalidated.

File types that CloudFront compresses

If you configure CloudFront to compress objects, CloudFront only compresses objects that have one
of the following values in the Content-Type response header:

• application/dash+xml

• application/eot

• application/font

• application/font-sfnt

• application/javascript

• application/json

• application/opentype

• application/otf

• application/pdf

• application/pkcs7-mime

• application/protobuf

File types that CloudFront compresses 219

Amazon CloudFront Developer Guide

• application/rss+xml

• application/truetype

• application/ttf

• application/vnd.apple.mpegurl

• application/vnd.mapbox-vector-tile

• application/vnd.ms-fontobject

• application/wasm

• application/xhtml+xml

• application/xml

• application/x-font-opentype

• application/x-font-truetype

• application/x-font-ttf

• application/x-httpd-cgi

• application/x-javascript

• application/x-mpegurl

• application/x-opentype

• application/x-otf

• application/x-perl

• application/x-ttf

• font/eot

• font/opentype

• font/otf

• font/ttf

• image/svg+xml

• text/css

• text/csv

• text/html

• text/javascript

• text/js

File types that CloudFront compresses 220

Amazon CloudFront Developer Guide

• text/plain

• text/richtext

• text/tab-separated-values

• text/xml

• text/x-component

• text/x-java-source

• text/x-script

• vnd.apple.mpegurl

ETag header conversion

When the uncompressed object from the origin includes a valid, strong ETag HTTP header, and
CloudFront compresses the object, CloudFront also converts the strong ETag header value to
a weak ETag, and returns the weak ETag value to the viewer. Viewers can store the weak ETag
value and use it to send conditional requests with the If-None-Match HTTP header. This allows
viewers, CloudFront, and the origin to treat the compressed and uncompressed versions of an
object as semantically equivalent, which reduces unnecessary data transfer.

A valid, strong ETag header value begins with a double quote character ("). To convert the strong
ETag value to a weak one, CloudFront adds the characters W/ to the beginning of the strong ETag
value.

When the object from the origin includes a weak ETag header value (a value that begins with the
characters W/), CloudFront does not modify this value, and returns it to the viewer as received from
the origin.

When the object from the origin includes an invalid ETag header value (the value does not begin
with " or with W/), CloudFront removes the ETag header and returns the object to the viewer
without the ETag response header.

For more information, see the following pages in the MDN web docs:

• Directives (ETag HTTP header)

• Weak validation (HTTP conditional requests)

• If-None-Match HTTP header

ETag header conversion 221

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag#Directives
https://developer.mozilla.org/en-US/docs/Web/HTTP/Conditional_requests#Weak_validation
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/If-None-Match

Amazon CloudFront Developer Guide

Generating custom error responses

If an object that you’re serving through CloudFront is unavailable for some reason, your web server
typically returns a relevant HTTP status code to CloudFront to indicate this. For example, if a
viewer requests an invalid URL, your web server returns an HTTP 404 (Not Found) status code to
CloudFront, and CloudFront returns that status code to the viewer.

You can configure CloudFront to return a custom error response to the viewer instead, if you like.
You also have several options for managing how CloudFront responds when there’s an error. To
specify options for custom error messages, you update your CloudFront distribution to specify
those values. For more information, see Configuring error response behavior.

If you configure CloudFront to return a custom error page for an HTTP status code but the custom
error page isn’t available, CloudFront returns to the viewer the status code that CloudFront
received from the origin that contains the custom error pages. For example, suppose your custom
origin returns a 500 status code and you have configured CloudFront to get a custom error page
for a 500 status code from an Amazon S3 bucket. However, someone accidentally deleted the
custom error page from your bucket. CloudFront returns an HTTP 404 status code (Not Found) to
the viewer that requested the object.

When CloudFront returns a custom error page to a viewer, you pay the standard CloudFront
charges for the custom error page, not the charges for the requested object. For more information
about CloudFront charges, see Amazon CloudFront Pricing.

Topics

• Configuring error response behavior

• Creating a custom error page for specific HTTP status codes

• Storing objects and custom error pages in different locations

• Changing response codes returned by CloudFront

• Controlling how long CloudFront caches errors

Configuring error response behavior

To configure custom error responses, you can use the CloudFront console, the CloudFront API, or
AWS CloudFormation. Regardless of how you choose to update the configuration, consider the
following tips and recommendations:

Generating custom error responses 222

https://aws.amazon.com/cloudfront/pricing/

Amazon CloudFront Developer Guide

• Save your custom error pages in a location that is accessible to CloudFront. We recommend that
you store them in an Amazon S3 bucket, and that you don’t store them in the same place as the
rest of your website or application’s content. If you store the custom error pages on the same
origin as your website or application, and the origin starts to return 5xx errors, CloudFront can’t
get the custom error pages because the origin server is unavailable. For more information, see
Storing objects and custom error pages in different locations.

• Make sure that CloudFront has permission to get your custom error pages. If the custom error
pages are stored in Amazon S3, the pages must be publicly accessible or you must configure a
CloudFront origin access control (OAC). If the custom error pages are stored in a custom origin,
the pages must be publicly accessible.

• (Optional) Configure your origin to add a Cache-Control or Expires header along with the
custom error pages, if you want. You can also use the Error Caching Minimum TTL setting
to control how long CloudFront caches the custom error pages. For more information, see
Controlling how long CloudFront caches errors.

Configure custom error responses (CloudFront console)

To configure custom error responses in the CloudFront console, you must have a CloudFront
distribution. In the console, the configuration settings for custom error responses are only available
for existing distributions. To learn how to create a distribution, see Getting started with a basic
CloudFront distribution.

To configure custom error responses (console)

1. Sign in to the AWS Management Console and open the Distributions page in the CloudFront
console at https://console.aws.amazon.com/cloudfront/v4/home#distributions.

2. In the list of distributions, choose the distribution to update.

3. Choose the Error Pages tab, then choose Create Custom Error Response.

4. Enter the applicable values. For more information, see Custom error pages and error caching.

5. After entering the desired values, choose Create.

Configure custom error responses (CloudFront API or AWS CloudFormation)

To configure custom error responses with the CloudFront API or AWS CloudFormation, use the
CustomErrorResponse type in a distribution. For more information, see the following:

Configuring error response behavior 223

https://console.aws.amazon.com/cloudfront/v4/home#distributions

Amazon CloudFront Developer Guide

• AWS::CloudFront::Distribution CustomErrorResponse in the AWS CloudFormation User Guide

• CustomErrorResponse in the Amazon CloudFront API Reference

Creating a custom error page for specific HTTP status codes

If you’d rather display a custom error message instead of the default message—for example, a
page that uses the same formatting as the rest of your website—you can have CloudFront return to
the viewer an object (such as an HTML file) that contains your custom error message.

To specify the file that you want to return and the errors for which the file should be returned, you
update your CloudFront distribution to specify those values. For more information, see Configuring
error response behavior.

For example, the following is a custom error page:

You can specify a different object for each supported HTTP status code, or you can use the same
object for all of the supported status codes. You can choose to specify custom error pages for some
status codes and not for others.

The objects that you’re serving through CloudFront can be unavailable for a variety of reasons.
These fall into two broad categories:

Creating a custom error page for specific HTTP status codes 224

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudfront-distribution-customerrorresponse.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CustomErrorResponse.html

Amazon CloudFront Developer Guide

• Client errors indicate a problem with the request. For example, an object with the specified name
isn’t available, or the user doesn’t have the permissions required to get an object in your Amazon
S3 bucket. When a client error occurs, the origin returns an HTTP status code in the 4xx range to
CloudFront.

• Server errors indicate a problem with the origin server. For example, the HTTP server is busy or
unavailable. When a server error occurs, either your origin server returns an HTTP status code in
the 5xx range to CloudFront, or CloudFront doesn’t get a response from your origin server for a
certain period of time and assumes a 504 status code (Gateway Timeout).

The HTTP status codes for which CloudFront can return a custom error page include the following:

• 400, 403, 404, 405, 414, 416

Notes

• If CloudFront detects that the request might be unsafe, CloudFront returns a 400 (Bad
Request) error instead of a custom error page.

• You can create a custom error page for HTTP status code 416 (Requested Range
Not Satisfiable), and you can change the HTTP status code that CloudFront returns
to viewers when your origin returns a status code 416 to CloudFront. (For more
information, see Changing response codes returned by CloudFront.) However,
CloudFront doesn't cache status code 416 responses, so even if you specify a value for
Error Caching Minimum TTL for status code 416, CloudFront doesn't use it.

• 500, 501, 502, 503, 504

Note

In some cases, CloudFront doesn’t return a custom error page for the HTTP 503 status
code even if you configure CloudFront to do so. If the CloudFront error code is Capacity
Exceeded or Limit Exceeded, CloudFront returns a 503 status code to the viewer
without using your custom error page.

For a detailed explanation of how CloudFront handles error responses from your origin, see How
CloudFront processes and caches HTTP 4xx and 5xx status codes from your origin.

Creating a custom error page for specific HTTP status codes 225

Amazon CloudFront Developer Guide

Storing objects and custom error pages in different locations

If you want to store your objects and your custom error pages in different locations, your
distribution must include a cache behavior for which the following is true:

• The value of Path Pattern matches the path to your custom error messages. For example,
suppose you saved custom error pages for 4xx errors in an Amazon S3 bucket in a directory
named /4xx-errors. Your distribution must include a cache behavior for which the path
pattern routes requests for your custom error pages to that location, for example, /4xx-
errors/*.

• The value of Origin specifies the value of Origin ID for the origin that contains your custom error
pages.

For more information, see Cache behavior settings.

Changing response codes returned by CloudFront

You can configure CloudFront to return a different HTTP status code to the viewer than what
CloudFront received from the origin. For example, if your origin returns a 500 status code to
CloudFront, you might want CloudFront to return a custom error page and a 200 status code (OK)
to the viewer. There are a variety of reasons that you might want CloudFront to return a status
code to the viewer that is different from the one that your origin returned to CloudFront:

• Some internet devices (some firewalls and corporate proxies, for example) intercept HTTP
4xx and 5xx status codes and prevent the response from being returned to the viewer. In this
scenario, if you substitute 200, the response is not intercepted.

• If you don’t care about distinguishing among different client errors or server errors, you can
specify 400 or 500 as the value that CloudFront returns for all 4xx or 5xx status codes.

• You might want to return a 200 status code (OK) and a static website so your customers don’t
know that your website is down.

If you enable CloudFront standard logs and you configure CloudFront to change the HTTP status
code in the response, the value of the sc-status column in the logs contains the status code that
you specify. However, the value of the x-edge-result-type column is not affected. It contains
the result type of the response from the origin. For example, suppose you configure CloudFront to
return a status code of 200 to the viewer when the origin returns 404 (Not Found) to CloudFront.

Storing objects and custom error pages in different locations 226

Amazon CloudFront Developer Guide

When the origin responds to a request with a 404 status code, the value in the sc-status column
in the log will be 200, but the value in the x-edge-result-type column will be Error.

You can configure CloudFront to return any of the following HTTP status codes along with a
custom error page:

• 200

• 400, 403, 404, 405, 414, 416

• 500, 501, 502, 503, 504

Controlling how long CloudFront caches errors

CloudFront caches error responses for a default duration of 10 seconds. CloudFront then submits
the next request for the object to your origin to see if the problem that caused the error has been
resolved and the requested object is available.

You can specify the error-caching duration—the Error Caching Minimum TTL—for each 4xx and
5xx status code that CloudFront caches. (For more information, see HTTP 4xx and 5xx status codes
that CloudFront caches.) When you specify a duration, note the following:

• If you specify a short error-caching duration, CloudFront forwards more requests to your origin
than if you specify a longer duration. For 5xx errors, this might aggravate the problem that
originally caused your origin to return an error.

• When your origin returns an error for an object, CloudFront responds to requests for the object
either with the error response or with your custom error page until the error-caching duration
elapses. If you specify a long error-caching duration, CloudFront might continue to respond
to requests with an error response or your custom error page for a long time after the object
becomes available again.

Note

You can create a custom error page for HTTP status code 416 (Requested Range Not
Satisfiable), and you can change the HTTP status code that CloudFront returns to viewers
when your origin returns a status code 416 to CloudFront. (For more information, see
Changing response codes returned by CloudFront.) However, CloudFront doesn't cache

Controlling how long CloudFront caches errors 227

Amazon CloudFront Developer Guide

status code 416 responses, so even if you specify a value for Error Caching Minimum TTL
for status code 416, CloudFront doesn't use it.

If you want to control how long CloudFront caches errors for individual objects, you can configure
your origin server to add the applicable header to the error response for that object.

If the origin adds a Cache-Control: max-age or Cache-Control: s-maxage directive, or an
Expires header, CloudFront caches error responses for the greater of the value in the header or
the Error Caching Minimum TTL.

Note

The Cache-Control: max-age and Cache-Control: s-maxage values cannot be
greater than the Maximum TTL value set for the cache behavior for which the error page is
being fetched.

If the origin adds other Cache-Control directives or adds no headers, CloudFront caches error
responses for the value of Error Caching Minimum TTL.

If the expiration time for a 4xx or 5xx status code for an object is longer than you want, and the
object is available again, you can invalidate cached error code by using the URL of the requested
object. If your origin is returning an error response for multiple objects, you need to invalidate each
object separately. For more information about invalidating objects, see Invalidating files.

Controlling how long CloudFront caches errors 228

Amazon CloudFront Developer Guide

Using AWS WAF protections

You can use AWS WAF to protect your CloudFront distributions and origin servers. AWS WAF is a
web application firewall that helps secure your web applications and APIs by blocking requests
before they reach your servers. For more details, see Accelerate and protect your websites using
CloudFront and AWS WAF.

To enable AWS WAF protections, you can:

• Use one-click protection in the CloudFront console. One-click protection creates an AWS WAF
web access control list (web ACL), configures rules to protect your servers from common web
threats, and attaches the web ACL to the CloudFront distribution for you. The topics in this
section assume the use of one-click protections.

• Use a preconfigured web ACL (access control list) that you create in the AWS WAF console, or by
using the AWS WAF APIs. For more information, see Web access control lists (ACLs) in the AWS
WAF Developer Guide and AssociateWebACL in the AWS WAF API Reference

You can enable AWS WAF when you:

• Create a distribution

• Use the Security dashboard to edit the security settings of an existing distribution

When you use one-click protection, CloudFront applies an AWS-recommended set of protections
that:

• Block IP addresses from potential threats based on Amazon internal threat intelligence.

• Protect against the most common vulnerabilities found in web applications as described in the
OWASP Top 10.

• Defend against malicious actors discovering application vulnerabilities.

Important

You must enable AWS WAF if you want to view security metrics in the CloudFront Security
dashboard. Without AWS WAF, enabled, you can only use the Security dashboard to enable

229

https://docs.aws.amazon.com/waf/latest/developerguide/what-is-aws-waf
https://aws.amazon.com/blogs/networking-and-content-delivery/accelerate-and-protect-your-websites-using-amazon-cloudfront-and-aws-waf/
https://aws.amazon.com/blogs/networking-and-content-delivery/accelerate-and-protect-your-websites-using-amazon-cloudfront-and-aws-waf/
https://docs.aws.amazon.com/waf/latest/developerguide/web-acl.html
https://docs.aws.amazon.com/waf/latest/APIReference/API_AssociateWebACL.html
https://owasp.org/www-project-top-ten/

Amazon CloudFront Developer Guide

AWS WAF or configure CloudFront geographic restrictions. For more information about the
dashboard, see Using CloudFront security dashboards, later in this section.

Topics

• Enabling AWS WAF for new distributions

• Enabling AWS WAF for existing distributions

• Disabling AWS WAF security protections

• Setting up rate limiting

• Using CloudFront security dashboards

Enabling AWS WAF for new distributions

The following steps explain how to enable AWS WAF when you create a distribution, and how to
use an existing ACL with the new distribution.

To enable AWS WAF for new distributions

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

2. In the navigation pane, choose Distributions, then choose Create distribution.

3. As needed, follow the steps in Creating a distribution.

4. In the Web Application Firewall section, select Edit, then Enable security protections. More
fields appear.

5. Complete the following fields:

• Use monitor mode: You enable monitor mode when you want to first collect data to test
how protection will work. When you enable monitor mode, requests aren't blocked if the
protections were active. Instead, monitor mode collects data about requests that would be
blocked if the protections were active. When you are ready to begin blocking, you can enable
blocking on the Security page.

• You might see an Additional protections section. Choose any options that you want to
enable. If you enable rate limiting, see the section called “Setting up rate limiting” for more
information.

• A Price estimate section. You can open the section to display a field where you enter a
different number of requests/month and see a new estimate.

Enabling AWS WAF for new distributions 230

https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

6. Review the remaining distribution settings, then select Create distribution or Save Settings (if
editing an existing distribution).

Using an existing web ACL

If you have a web ACL, you can use it instead of the protection offered by one-click WAF.

To use an existing AWS WAF configuration

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

2. Do one of the following:

a. Choose Create distribution and follow the steps in Creating a distribution, then return to
this topic.

b. Choose an existing configuration, then choose the Security tab.

3. In the Web Application Firewall (WAF) section, select Edit, then Enable security protections.

4. Choose Use existing WAF configuration. This option appears only if you have web ACLs
configured.

5. Choose your existing web ACL from the Choose a web ACL table.

6. Review the remaining distribution settings, then choose Create distribution, or Save Settings
(if editing an existing distribution).

Enabling AWS WAF for existing distributions

CloudFront creates a Security dashboard when you create a distribution. You use the dashboard to
enable AWS WAF after you create a distribution. The charts and graphs in the dashboard remain
blank until you enable AWS WAF.

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

2. In the navigation pane, choose Distributions, then choose the distribution that you want to
change.

3. Choose the Security tab.

4. Under Web Application Firewall, select Edit, then Enable security protections.

5. (Optional) Choose Use monitor mode.

6. Choose Save changes.

Using an existing web ACL 231

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

For more information about monitor mode, see the previous section, Enabling AWS WAF for new
distributions.

Using an existing web ACL

If you web ACLs configured, you can use them instead of the protection offered by one-click WAF.

To use an existing AWS WAF configuration

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

2. Do one of the following:

a. Choose Create distribution and follow the steps in Creating a distribution, then return to
this topic.

b. Choose the Security to configure an existing distribution.

3. In the Web Application Firewall (WAF) section, select Enable security protections.

4. Choose Use existing WAF configuration. This option appears only if you have web ACLs
configured.

5. Choose your existing web ACL from the Choose a web ACL table.

6. Review the remaining distribution settings, then choose Create distribution, or Save Settings
(if editing an existing distribution).

Disabling AWS WAF security protections

If your distribution doesn't need AWS WAF security protections, you can disable this feature by
using the CloudFront console.

If you previously enabled AWS WAF protection and didn't choose an existing WAF configuration
(also known as one-click protection), CloudFront automatically created a web ACL for you. For web
ACLs created this way, the CloudFront console will disassociate the resource and delete the web
ACL.

Disassociating a web ACL is different from deleting it. Disassociating removes the web ACL
from your distribution, but it's not deleted from your AWS account. For more information, see
Associating or disassociating a web ACL with an AWS resource in the AWS WAF, AWS Firewall
Manager, and AWS Shield Advanced Developer Guide.

Using an existing web ACL 232

https://console.aws.amazon.com/cloudfront/v4/home
https://docs.aws.amazon.com/waf/latest/developerguide/web-acl-associating-aws-resource.html

Amazon CloudFront Developer Guide

See the following procedure to disable AWS WAF protections and disassociate the web ACL from
your distribution.

To disable AWS WAF security protections in CloudFront

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

2. In the navigation pane, choose Distributions, and then choose the distribution that you want
to change.

3. Choose the Security tab and then choose Edit.

4. In the Web Application Firewall (WAF) section, choose Disable AWS WAF protection.

5. Choose Save changes.

Notes

• If you disabled AWS WAF security protection and you still want to delete the web ACL
from your AWS account, you can delete it manually. Follow the procedure to delete a
web ACL. In the AWS WAF & Shield console, for the Web ACLs page, you must choose the
Global (CloudFront) list to find the web ACLs.

• When you delete a distribution from the CloudFront console, CloudFront will attempt
to also delete the web ACL if you chose one-click protection. This is best effort and isn't
always guaranteed. For more information, see Deleting a distribution.

Setting up rate limiting

Rate limiting is one of the recommendations you may receive when configuring security
protections.

CloudFront always enables rate limiting in monitor mode. When monitor mode is enabled,
CloudFront captures metrics that tell you if the rate you configured in the Rate limiting field has
been exceeded, how often, and by how much.

After you save the distribution, CloudFront starts to collect data based on the number in the Rate
limiting field.

You can manage the rate limiting settings in the Security - Web Application Firewall (WAF)
section on the Security tab of any CloudFront distribution. Select the Monitor mode message to

Setting up rate limiting 233

https://console.aws.amazon.com/cloudfront/v4/home
https://docs.aws.amazon.com/waf/latest/developerguide/web-acl-deleting.html
https://docs.aws.amazon.com/waf/latest/developerguide/web-acl-deleting.html

Amazon CloudFront Developer Guide

display a dialog with details about the collected data. On that dialog, you can optionally change
the rate limit. When you have fine-tuned the rate, you can choose Enable blocking (on the dialog)
to deactivate monitor mode. CloudFront will start to block requests that exceed the specified rate
limit.

Using CloudFront security dashboards

CloudFront creates a security dashboard for each of your distributions. You use the dashboards in
the CloudFront console. With the dashboards, you can use CloudFront and AWS WAF together in
a single location to monitor and manage common security protections for your web applications.
The dashboards provide the following tasks and data:

• Security configuration: You can enable and disable AWS WAF protections, and see any app-
specific protections such as WordPress protections.

• Security trends: These include allowed and blocked requests, challenge and CAPTCHA requests,
and top attack types.

• Bot requests: You can see how much traffic comes from bots, which types of bots (verified vs
non-verified), and how the percentage allocations of bot types (verified vs non-verified) change
over time.

• Request logs: Log data can help answer questions about security trends or bot requests. You
can search your logs without writing queries, and view aggregate charts to help determine if
a filtered set of logs is primarily being driven by a subset of HTTP methods, IP addresses, URI
paths, or countries. You can hover over values in the charts and block IP addresses and countries.

• Geographic restriction management

Note

You must enable AWS WAF if you want to view security metrics in the CloudFront Security
dashboard. Without AWS WAF enabled, you can only use the Security dashboard to enable
AWS WAF or configure CloudFront geographic restrictions.

The following sections explain how to use the dashboards.

Topics

• Enabling AWS WAF

Using CloudFront security dashboards 234

Amazon CloudFront Developer Guide

• Understanding trend data

• Enabling bot control

• Understanding logs

• Managing CloudFront geographic restrictions

• Security dashboard pricing

Enabling AWS WAF

You use the top section of the Security dashboard to enable or disable AWS WAF protections.
CloudFront also displays security recommendations specific to your distribution. depending on your
configuration. For example, if you configure a cache behavior with a WordPress path pattern, you
see WordPress protections and rate limiting.

Note

You must enable AWS WAF if you want to view security metrics in the CloudFront Security
dashboard. Without AWS WAF enabled, you can only use the Security dashboard to enable
AWS WAF or configure CloudFront geographic restrictions.

To enable AWS WAF

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

2. In the navigation pane, choose Distributions, then choose the distribution that you want to
change.

3. Choose the Security tab.

4. In the Web Application Firewall section, select Enable security protections.

5. Select Save changes.

To disable AWS WAF protections

• Repeat the steps listed above, but select Disable security protections.

Enabling AWS WAF 235

https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

Understanding trend data

The Security trends for the specified time range section of the dashboard displays summary
metrics of your traffic for a given period of time. The dashboard displays data for Allowed, Blocked,
Challenge, and CAPTCHA requests. You can see traffic ratios and how they change over time. For
example, if all requests increase by 3% but allowed requests increase by 14%, that means you
allowed a larger portion of your traffic through in the current period.

The section provides three bar charts, Requests, Top attack types, and Top countries. You can use
the Top countries chart to block a country.

To use the charts

• Use the Date range, Rule actions, and Granularity controls above the chart to set a time range
and filter your data.

• Hover over any bar to see the request, attack, or country data for the specified time period.

• To block a country, hover over that bar and move the Block country name slider to the on
position.

Note

The Block option may not be available if you previously created a custom AWS WAF rule
outside of the CloudFront console to block countries.

Enabling bot control

The Bot requests for a given time range section displays bot request data. You can also enable
or disable the AWS WAF bot control. You incur charges when you enable bot control, and the
dashboard provides a cost estimate.

If you enable bot control, the dashboard charts display the amount of traffic coming from each
type and category of bot. If you disable bot controls, the charts display the amount of traffic based
on request sampling.

The section provides two bar charts, Requests by bot type and Requests by bot category. The
charts vary, depending on whether you have bot control enabled.

Understanding trend data 236

Amazon CloudFront Developer Guide

To enable bot control

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

2. In the navigation pane, choose Distributions, then choose the distribution that you want to
change.

3. Choose the Security tab.

4. Scroll down to the Bot requests for a given time range section and choose Enable Bot
Control.

5. In the Bot Control dialog box, under Configuration, select the Enable Bot Control for
common bots check box.

6. Choose Save changes.

When you enable bot protection, you have the option of configuring how each unverified bot is
handled per bot category. For example, you can set an HTTP library bot to Monitor mode and
assign a Challenge to a Link Checker.

Bots that are known by AWS to be common and verifiable, such as known search engine crawlers,
aren't subject to the actions you set here. Bot control confirms that validated bots come from the
source that they claim before marking them as verified.

To configure protection for a category

1. Repeat steps 1 and 2 in the previous steps to start the Security dashboard.

2. In the Requests by bot category chart, point to any of the items in the Unverified bot action
column and choose the edit icon.

3. Open the resulting list and choose one of the following:

• Block

• Allow

• Monitor mode

• CAPTCHA

• Challenge

Enabling bot control 237

https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

4. Select the check mark next to the list to commit your change.

To use the charts

• In the Security trends for the specified time range section, use the Date range, Rule actions,
and Granularity controls set a time range and filter your bot data.

• In the Requests by bot type chart, hover over any bar to see the number of requests by bot type.

• In the Requests by bot category chart, hover over any bar to see the number of requests by bot
category.

Understanding logs

Log data can help you isolate specific traffic patterns. For example, logs can show you where
certain traffic comes from or what it does.

To enable logs

1. Enter your expected request volume in the Number of requests/month box to estimate the
costs of enabling logs.

2. Select the Enable AWS WAF logs check box.

3. Choose Enable.

CloudFront creates a CloudWatch logs group and updates your AWS WAF configuration to begin
logging to CloudWatch. On first use, log data can take several minutes to appear. The Requests

Understanding logs 238

Amazon CloudFront Developer Guide

section of the chart lists each request. Below the individual requests, the bar charts aggregate data
by HTTP method, top URI paths, top IP addresses, and top countries. The charts can help you find
patterns. For example, you may see a disproportionate volume of requests from a single IP address,
or data from a country that you haven't previously seen in your logs. You can filter requests based
on Country, Host Header, and other attributes to help find unwanted traffic. Once you identify
that traffic, hover over an individual request or chart item and block an IP address or country.

To use the charts

• Use the Date range, Rule actions, and Granularity controls in the Security trends for the
specified time range section to set a time range and filter your data.

• Hover over any bar to see the URI path, IP address, or country data for the specified time period.

• To block an IP address or country, hover over that bar and move the Block item name slider to
the on position.

Note

The Block option may not be available if you previously created a custom AWS WAF rule
outside of the CloudFront console to block countries or IP addresses.

Note

Displayed metrics are based on web access control list (ACL). Therefore, if you associate the
same web ACL to multiple distributions, you will see all metrics for your web ACL, not only
the AWS WAF requests that are processed for that distribution.

Managing CloudFront geographic restrictions

You can manage geographic restrictions at any time.

To manage geo restrictions

1. Scroll down to the Geographic restrictions section.

2. Choose Edit.

Managing CloudFront geographic restrictions 239

Amazon CloudFront Developer Guide

3. Select Allow list to add a country to your list of allowed countries, or Block list to add a
country to your list of blocked countries.

4. Add the desired country or countries to the list, then choose Save changes.

CloudFront and AWS WAF provide geographic restriction features. CloudFront provides geographic
restrictions for free, but your dashboard will not display metrics for the blocked countries. In
contrast, when you hover over a country bar in the Security dashboard and block a country, you
use AWS WAF geographic restrictions. They also block countries, but your dashboard displays the
request metrics for blocked requests.

Security dashboard pricing

If you enable AWS WAF logging to Amazon CloudWatch, the CloudFront Security dashboard
queries, aggregates, and displays insights from the CloudWatch logs. We don’t charge to use
the Security dashboard, but Amazon CloudWatch pricing applies to logs queried through the
dashboard. For more information, see Amazon CloudWatch Pricing.

Security dashboard pricing 240

https://aws.amazon.com/cloudwatch/pricing/

Amazon CloudFront Developer Guide

Configuring secure access and restricting access to
content

CloudFront provides several options for securing content that it delivers. The following are some
ways you can use CloudFront to secure and restrict access to content:

• Configure HTTPS connections

• Prevent users in specific geographic locations from accessing content

• Require users to access content using CloudFront signed URLs or signed cookies

• Set up field-level encryption for specific content fields

• Use AWS WAF to control access to your content

Topics

• Using HTTPS with CloudFront

• Using alternate domain names and HTTPS

• Serving private content with signed URLs and signed cookies

• Restricting access to an AWS origin

• Restricting access to Application Load Balancers

• Restricting the geographic distribution of your content

• Using field-level encryption to help protect sensitive data

Using HTTPS with CloudFront

You can configure CloudFront to require that viewers use HTTPS so that connections are encrypted
when CloudFront communicates with viewers. You also can configure CloudFront to use HTTPS
with your origin so that connections are encrypted when CloudFront communicates with your
origin.

If you configure CloudFront to require HTTPS both to communicate with viewers and to
communicate with your origin, here’s what happens when CloudFront receives a request:

Using HTTPS with CloudFront 241

Amazon CloudFront Developer Guide

1. A viewer submits an HTTPS request to CloudFront. There’s some SSL/TLS negotiation here
between the viewer and CloudFront. In the end, the viewer submits the request in an encrypted
format.

2. If the CloudFront edge location contains a cached response, CloudFront encrypts the response
and returns it to the viewer, and the viewer decrypts it.

3. If the CloudFront edge location doesn’t contain a cached response, CloudFront performs SSL/
TLS negotiation with your origin and, when the negotiation is complete, forwards the request to
your origin in an encrypted format.

4. Your origin decrypts the request, processes it (generates a response), encrypts the response, and
returns the response to CloudFront.

5. CloudFront decrypts the response, re-encrypts it, and forwards it to the viewer. CloudFront also
caches the response in the edge location so that it’s available the next time it’s requested.

6. The viewer decrypts the response.

The process works basically the same way whether your origin is an Amazon S3 bucket, MediaStore,
or a custom origin such as an HTTP/S server.

Note

To help thwart SSL renegotiation-type attacks, CloudFront does not support renegotiation
for viewer and origin requests.

For information about how to require HTTPS between viewers and CloudFront, and between
CloudFront and your origin, see the following topics.

Topics

• Requiring HTTPS for communication between viewers and CloudFront

• Requiring HTTPS for communication between CloudFront and your custom origin

• Requiring HTTPS for communication between CloudFront and your Amazon S3 origin

• Supported protocols and ciphers between viewers and CloudFront

• Supported protocols and ciphers between CloudFront and the origin

• Charges for HTTPS connections

Using HTTPS with CloudFront 242

Amazon CloudFront Developer Guide

Requiring HTTPS for communication between viewers and CloudFront

You can configure one or more cache behaviors in your CloudFront distribution to require HTTPS
for communication between viewers and CloudFront. You also can configure one or more cache
behaviors to allow both HTTP and HTTPS, so that CloudFront requires HTTPS for some objects but
not for others. The configuration steps depend on which domain name you're using in object URLs:

• If you're using the domain name that CloudFront assigned to your distribution, such as
d111111abcdef8.cloudfront.net, you change the Viewer Protocol Policy setting for one or more
cache behaviors to require HTTPS communication. In that configuration, CloudFront provides the
SSL/TLS certificate.

To change the value of Viewer Protocol Policy by using the CloudFront console, see the
procedure later in this section.

For information about how to use the CloudFront API to change the value of the
ViewerProtocolPolicy element, see UpdateDistribution in the Amazon CloudFront API
Reference.

• If you're using your own domain name, such as example.com, you need to change several
CloudFront settings. You also need to use an SSL/TLS certificate provided by AWS Certificate
Manager (ACM), or import a certificate from a third-party certificate authority into ACM or the
IAM certificate store. For more information, see Using alternate domain names and HTTPS.

Note

If you want to ensure that the objects that viewers get from CloudFront were encrypted
when CloudFront got them from your origin, always use HTTPS between CloudFront and
your origin. If you recently changed from HTTP to HTTPS between CloudFront and your
origin, we recommend that you invalidate objects in CloudFront edge locations. CloudFront
will return an object to a viewer regardless of whether the protocol used by the viewer
(HTTP or HTTPS) matches the protocol that CloudFront used to get the object. For more
information about removing or replacing objects in a distribution, see Adding, removing, or
replacing content that CloudFront distributes.

To require HTTPS between viewers and CloudFront for one or more cache behaviors, perform the
following procedure.

Requiring HTTPS between viewers and CloudFront 243

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html

Amazon CloudFront Developer Guide

To configure CloudFront to require HTTPS between viewers and CloudFront

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. In the top pane of the CloudFront console, choose the ID for the distribution that you want to
update.

3. On the Behaviors tab, select the cache behavior that you want to update, and then choose
Edit.

4. Specify one of the following values for Viewer protocol policy:

Redirect HTTP to HTTPS

Viewers can use both protocols. HTTP GET and HEAD requests are automatically redirected
to HTTPS requests. CloudFront returns HTTP status code 301 (Moved Permanently) along
with the new HTTPS URL. The viewer then resubmits the request to CloudFront using the
HTTPS URL.

Important

If you send POST, PUT, DELETE, OPTIONS, or PATCH over HTTP with an HTTP
to HTTPS cache behavior and a request protocol version of HTTP 1.1 or above,
CloudFront redirects the request to a HTTPS location with a HTTP status code 307
(Temporary Redirect). This guarantees that the request is sent again to the new
location using the same method and body payload.
If you send POST, PUT, DELETE, OPTIONS, or PATCH requests over HTTP to HTTPS
cache behavior with a request protocol version below HTTP 1.1, CloudFront returns
a HTTP status code 403 (Forbidden).

When a viewer makes an HTTP request that is redirected to an HTTPS request, CloudFront
charges for both requests. For the HTTP request, the charge is only for the request and for
the headers that CloudFront returns to the viewer. For the HTTPS request, the charge is for
the request, and for the headers and the object that are returned by your origin.

Requiring HTTPS between viewers and CloudFront 244

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

HTTPS only

Viewers can access your content only if they're using HTTPS. If a viewer sends an HTTP
request instead of an HTTPS request, CloudFront returns HTTP status code 403 (Forbidden)
and does not return the object.

5. Choose Save changes.

6. Repeat steps 3 through 5 for each additional cache behavior that you want to require HTTPS
for between viewers and CloudFront.

7. Confirm the following before you use the updated configuration in a production environment:

• The path pattern in each cache behavior applies only to the requests that you want viewers
to use HTTPS for.

• The cache behaviors are listed in the order that you want CloudFront to evaluate them in.
For more information, see Path pattern.

• The cache behaviors are routing requests to the correct origins.

Requiring HTTPS for communication between CloudFront and your
custom origin

You can require HTTPS for communication between CloudFront and your origin.

Note

If your origin is an Amazon S3 bucket that’s configured as a website endpoint, you can’t
configure CloudFront to use HTTPS with your origin because Amazon S3 doesn’t support
HTTPS for website endpoints.

To require HTTPS between CloudFront and your origin, follow the procedures in this topic to do the
following:

1. In your distribution, change the Origin Protocol Policy setting for the origin.

2. Install an SSL/TLS certificate on your origin server (this isn’t required when you use an Amazon
S3 origin or certain other AWS origins).

Topics

Requiring HTTPS to a custom origin 245

Amazon CloudFront Developer Guide

• Changing CloudFront settings

• Installing an SSL/TLS certificate on your custom origin

Changing CloudFront settings

The following procedure explains how to configure CloudFront to use HTTPS to communicate with
an Elastic Load Balancing load balancer, an Amazon EC2 instance, or another custom origin. For
information about using the CloudFront API to update a distribution, see UpdateDistribution in the
Amazon CloudFront API Reference.

To configure CloudFront to require HTTPS between CloudFront and your custom origin

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. In the top pane of the CloudFront console, choose the ID for the distribution that you want to
update.

3. On the Behaviors tab, select the origin that you want to update, and then choose Edit.

4. Update the following settings:

Origin Protocol Policy

Change the Origin Protocol Policy for the applicable origins in your distribution:

• HTTPS Only – CloudFront uses only HTTPS to communicate with your custom origin.

• Match Viewer – CloudFront communicates with your custom origin using HTTP or
HTTPS, depending on the protocol of the viewer request. For example, if you choose
Match Viewer for Origin Protocol Policy and the viewer uses HTTPS to request an object
from CloudFront, CloudFront also uses HTTPS to forward the request to your origin.

Choose Match Viewer only if you specify Redirect HTTP to HTTPS or HTTPS Only for
Viewer Protocol Policy.

CloudFront caches the object only once even if viewers make requests using both HTTP
and HTTPS protocols.

Origin SSL Protocols

Choose the Origin SSL Protocols for the applicable origins in your distribution. The SSLv3
protocol is less secure, so we recommend that you choose SSLv3 only if your origin doesn’t

Requiring HTTPS to a custom origin 246

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html
https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

support TLSv1 or later. The TLSv1 handshake is both backwards and forwards compatible
with SSLv3, but TLSv1.1 and TLSv1.2 are not. When you choose SSLv3, CloudFront only
sends SSLv3 handshake requests.

5. Choose Save changes.

6. Repeat steps 3 through 5 for each additional origin that you want to require HTTPS for
between CloudFront and your custom origin.

7. Confirm the following before you use the updated configuration in a production environment:

• The path pattern in each cache behavior applies only to the requests that you want viewers
to use HTTPS for.

• The cache behaviors are listed in the order that you want CloudFront to evaluate them in.
For more information, see Path pattern.

• The cache behaviors are routing requests to the origins that you changed the Origin
Protocol Policy for.

Installing an SSL/TLS certificate on your custom origin

You can use an SSL/TLS certificate from the following sources on your custom origin:

• If your origin is an Elastic Load Balancing load balancer, you can use a certificate provided by
AWS Certificate Manager (ACM). You also can use a certificate that is signed by a trusted third-
party certificate authority and imported into ACM.

• For origins other than Elastic Load Balancing load balancers, you must use a certificate that
is signed by a trusted third-party certificate authority (CA), for example, Comodo, DigiCert, or
Symantec.

The certificate returned from the origin must include one of the following domain names:

• The domain name in the origin’s Origin domain field (the DomainName field in the CloudFront
API).

• The domain name in the Host header, if the cache behavior is configured to forward the Host
header to the origin.

When CloudFront uses HTTPS to communicate with your origin, CloudFront verifies that the
certificate was issued by a trusted certificate authority. CloudFront supports the same certificate

Requiring HTTPS to a custom origin 247

Amazon CloudFront Developer Guide

authorities that Mozilla does. For the current list, see Mozilla Included CA Certificate List. You can’t
use a self-signed certificate for HTTPS communication between CloudFront and your origin.

Important

If the origin server returns an expired certificate, an invalid certificate, or a self-signed
certificate, or if the origin server returns the certificate chain in the wrong order,
CloudFront drops the TCP connection, returns HTTP status code 502 (Bad Gateway) to the
viewer, and sets the X-Cache header to Error from cloudfront. Also, if the full chain
of certificates, including the intermediate certificate, is not present, CloudFront drops the
TCP connection.

Requiring HTTPS for communication between CloudFront and your
Amazon S3 origin

When your origin is an Amazon S3 bucket, your options for using HTTPS for communications with
CloudFront depend on how you're using the bucket. If your Amazon S3 bucket is configured as a
website endpoint, you can't configure CloudFront to use HTTPS to communicate with your origin
because Amazon S3 doesn't support HTTPS connections in that configuration.

When your origin is an Amazon S3 bucket that supports HTTPS communication, CloudFront
always forwards requests to S3 by using the protocol that viewers used to submit the requests.
The default setting for the Protocol (custom origins only) setting is Match Viewer and can't be
changed.

If you want to require HTTPS for communication between CloudFront and Amazon S3, you
must change the value of Viewer Protocol Policy to Redirect HTTP to HTTPS or HTTPS
Only. The procedure later in this section explains how to use the CloudFront console to
change Viewer Protocol Policy. For information about using the CloudFront API to update the
ViewerProtocolPolicy element for a distribution, see UpdateDistribution in the Amazon
CloudFront API Reference.

When you use HTTPS with an Amazon S3 bucket that supports HTTPS communication, Amazon S3
provides the SSL/TLS certificate, so you don't have to.

Requiring HTTPS to an Amazon S3 origin 248

https://wiki.mozilla.org/CA/Included_Certificates
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html

Amazon CloudFront Developer Guide

To configure CloudFront to require HTTPS to your Amazon S3 origin

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. In the top pane of the CloudFront console, choose the ID for the distribution that you want to
update.

3. On the Behaviors tab, choose the cache behavior that you want to update, and then choose
Edit.

4. Specify one of the following values for Viewer Protocol Policy:

Redirect HTTP to HTTPS

Viewers can use both protocols, but HTTP requests are automatically redirected to HTTPS
requests. CloudFront returns HTTP status code 301 (Moved Permanently) along with the
new HTTPS URL. The viewer then resubmits the request to CloudFront using the HTTPS
URL.

Important

CloudFront doesn't redirect DELETE, OPTIONS, PATCH, POST, or PUT requests from
HTTP to HTTPS. If you configure a cache behavior to redirect to HTTPS, CloudFront
responds to HTTP DELETE, OPTIONS, PATCH, POST, or PUT requests for that cache
behavior with HTTP status code 403 (Forbidden).

When a viewer makes an HTTP request that is redirected to an HTTPS request, CloudFront
charges for both requests. For the HTTP request, the charge is only for the request and for
the headers that CloudFront returns to the viewer. For the HTTPS request, the charge is for
the request, and for the headers and the object returned by your origin.

HTTPS Only

Viewers can access your content only if they're using HTTPS. If a viewer sends an HTTP
request instead of an HTTPS request, CloudFront returns HTTP status code 403 (Forbidden)
and does not return the object.

5. Choose Yes, Edit.

6. Repeat steps 3 through 5 for each additional cache behavior that you want to require HTTPS
for between viewers and CloudFront, and between CloudFront and S3.

Requiring HTTPS to an Amazon S3 origin 249

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

7. Confirm the following before you use the updated configuration in a production environment:

• The path pattern in each cache behavior applies only to the requests that you want viewers
to use HTTPS for.

• The cache behaviors are listed in the order that you want CloudFront to evaluate them in.
For more information, see Path pattern.

• The cache behaviors are routing requests to the correct origins.

Supported protocols and ciphers between viewers and CloudFront

When you require HTTPS between viewers and your CloudFront distribution, you must choose a
security policy, which determines the following settings:

• The minimum SSL/TLS protocol that CloudFront uses to communicate with viewers.

• The ciphers that CloudFront can use to encrypt the communication with viewers.

To choose a security policy, specify the applicable value for Security policy. The following table lists
the protocols and ciphers that CloudFront can use for each security policy.

A viewer must support at least one of the supported ciphers to establish an HTTPS connection with
CloudFront. CloudFront chooses a cipher in the listed order from among the ciphers that the viewer
supports. See also OpenSSL, s2n, and RFC cipher names.

 Security policy

 SSLv3 TLSv1 TLSv1_201
6

TLSv1.1_2
016

TLSv1.2_2
018

TLSv1.2_2
019

TLSv1.2_2
021

Supported SSL/TLS protocols

TLSv1.3 ♦ ♦ ♦ ♦ ♦ ♦ ♦

TLSv1.2 ♦ ♦ ♦ ♦ ♦ ♦ ♦

TLSv1.1 ♦ ♦ ♦ ♦

TLSv1 ♦ ♦ ♦

Supported protocols and ciphers between viewers and CloudFront 250

Amazon CloudFront Developer Guide

 Security policy

 SSLv3 TLSv1 TLSv1_201
6

TLSv1.1_2
016

TLSv1.2_2
018

TLSv1.2_2
019

TLSv1.2_2
021

SSLv3 ♦

Supported TLSv1.3 ciphers

TLS_AES_128_GCM_SH
A256

♦ ♦ ♦ ♦ ♦ ♦ ♦

TLS_AES_256_GCM_SH
A384

♦ ♦ ♦ ♦ ♦ ♦ ♦

TLS_CHACHA20_POLY1
305_SHA256

♦ ♦ ♦ ♦ ♦ ♦ ♦

Supported ECDSA ciphers

ECDHE-ECDSA-AES128-
GCM-SHA256

♦ ♦ ♦ ♦ ♦ ♦ ♦

ECDHE-ECDSA-AES128-
SHA256

♦ ♦ ♦ ♦ ♦ ♦

ECDHE-ECDSA-AES128-
SHA

♦ ♦ ♦ ♦

ECDHE-ECDSA-AES256-
GCM-SHA384

♦ ♦ ♦ ♦ ♦ ♦ ♦

ECDHE-ECDSA-CHACHA
20-POLY1305

♦ ♦ ♦ ♦ ♦ ♦ ♦

ECDHE-ECDSA-AES256-
SHA384

♦ ♦ ♦ ♦ ♦ ♦

ECDHE-ECDSA-AES256-
SHA

♦ ♦ ♦ ♦

Supported protocols and ciphers between viewers and CloudFront 251

Amazon CloudFront Developer Guide

 Security policy

 SSLv3 TLSv1 TLSv1_201
6

TLSv1.1_2
016

TLSv1.2_2
018

TLSv1.2_2
019

TLSv1.2_2
021

Supported RSA ciphers

ECDHE-RSA-AES128-GCM-
SHA256

♦ ♦ ♦ ♦ ♦ ♦ ♦

ECDHE-RSA-AES128-S
HA256

♦ ♦ ♦ ♦ ♦ ♦

ECDHE-RSA-AES128-SHA ♦ ♦ ♦ ♦

ECDHE-RSA-AES256-GCM-
SHA384

♦ ♦ ♦ ♦ ♦ ♦ ♦

ECDHE-RSA-CHACHA20-
POLY1305

♦ ♦ ♦ ♦ ♦ ♦ ♦

ECDHE-RSA-AES256-S
HA384

♦ ♦ ♦ ♦ ♦ ♦

ECDHE-RSA-AES256-SHA ♦ ♦ ♦ ♦

AES128-GCM-SHA256 ♦ ♦ ♦ ♦ ♦

AES256-GCM-SHA384 ♦ ♦ ♦ ♦ ♦

AES128-SHA256 ♦ ♦ ♦ ♦ ♦

AES256-SHA ♦ ♦ ♦ ♦

AES128-SHA ♦ ♦ ♦ ♦

DES-CBC3-SHA ♦ ♦

RC4-MD5 ♦

Supported protocols and ciphers between viewers and CloudFront 252

Amazon CloudFront Developer Guide

OpenSSL, s2n, and RFC cipher names

OpenSSL and s2n use different names for ciphers than the TLS standards use (RFC 2246, RFC 4346,
RFC 5246, and RFC 8446). The following table maps the OpenSSL and s2n names to the RFC name
for each cipher.

For ciphers with elliptic curve key exchange algorithms, CloudFront supports the following elliptic
curvers:

• prime256v1

• secp384r1

• X25519

OpenSSL and s2n cipher name RFC cipher name

Supported TLSv1.3 ciphers

TLS_AES_128_GCM_SHA256 TLS_AES_128_GCM_SHA256

TLS_AES_256_GCM_SHA384 TLS_AES_256_GCM_SHA384

TLS_CHACHA20_POLY1305_SHA256 TLS_CHACHA20_POLY1305_SHA256

Supported ECDSA ciphers

ECDHE-ECDSA-AES128-GCM-SHA256 TLS_ECDHE_ECDSA_WITH_AES_12
8_GCM_SHA256

ECDHE-ECDSA-AES128-SHA256 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
256

ECDHE-ECDSA-AES128-SHA TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

ECDHE-ECDSA-AES256-GCM-SHA384 TLS_ECDHE_ECDSA_WITH_AES_25
6_GCM_SHA384

ECDHE-ECDSA-CHACHA20-POLY1305 TLS_ECDHE_ECDSA_WITH_CHACHA
20_POLY1305_SHA256

Supported protocols and ciphers between viewers and CloudFront 253

https://github.com/awslabs/s2n
https://tools.ietf.org/html/rfc2246
https://tools.ietf.org/html/rfc4346
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc8446

Amazon CloudFront Developer Guide

OpenSSL and s2n cipher name RFC cipher name

ECDHE-ECDSA-AES256-SHA384 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
384

ECDHE-ECDSA-AES256-SHA TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

Supported RSA ciphers

ECDHE-RSA-AES128-GCM-SHA256 TLS_ECDHE_RSA_WITH_AES_128_
GCM_SHA256

ECDHE-RSA-AES128-SHA256 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA25
6

ECDHE-RSA-AES128-SHA TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

ECDHE-RSA-AES256-GCM-SHA384 TLS_ECDHE_RSA_WITH_AES_256_
GCM_SHA384

ECDHE-RSA-CHACHA20-POLY1305 TLS_ECDHE_RSA_WITH_CHACHA20
_POLY1305_SHA256

ECDHE-RSA-AES256-SHA384 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA38
4

ECDHE-RSA-AES256-SHA TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

AES128-GCM-SHA256 TLS_RSA_WITH_AES_128_GCM_SHA256

AES256-GCM-SHA384 TLS_RSA_WITH_AES_256_GCM_SHA384

AES128-SHA256 TLS_RSA_WITH_AES_128_CBC_SHA256

AES256-SHA TLS_RSA_WITH_AES_256_CBC_SHA

AES128-SHA TLS_RSA_WITH_AES_128_CBC_SHA

DES-CBC3-SHA TLS_RSA_WITH_3DES_EDE_CBC_SHA

RC4-MD5 TLS_RSA_WITH_RC4_128_MD5

Supported protocols and ciphers between viewers and CloudFront 254

Amazon CloudFront Developer Guide

Supported signature schemes between viewers and CloudFront

CloudFront supports the following signature schemes for connections between viewers and
CloudFront.

• TLS_SIGNATURE_SCHEME_RSA_PSS_PSS_SHA256

• TLS_SIGNATURE_SCHEME_RSA_PSS_PSS_SHA384

• TLS_SIGNATURE_SCHEME_RSA_PSS_PSS_SHA512

• TLS_SIGNATURE_SCHEME_RSA_PSS_RSAE_SHA256

• TLS_SIGNATURE_SCHEME_RSA_PSS_RSAE_SHA384

• TLS_SIGNATURE_SCHEME_RSA_PSS_RSAE_SHA512

• TLS_SIGNATURE_SCHEME_RSA_PKCS1_SHA256

• TLS_SIGNATURE_SCHEME_RSA_PKCS1_SHA384

• TLS_SIGNATURE_SCHEME_RSA_PKCS1_SHA512

• TLS_SIGNATURE_SCHEME_RSA_PKCS1_SHA224

• TLS_SIGNATURE_SCHEME_ECDSA_SHA256

• TLS_SIGNATURE_SCHEME_ECDSA_SHA384

• TLS_SIGNATURE_SCHEME_ECDSA_SHA512

• TLS_SIGNATURE_SCHEME_ECDSA_SHA224

• TLS_SIGNATURE_SCHEME_ECDSA_SECP256R1_SHA256

• TLS_SIGNATURE_SCHEME_ECDSA_SECP384R1_SHA384

• TLS_SIGNATURE_SCHEME_RSA_PKCS1_SHA1

• TLS_SIGNATURE_SCHEME_ECDSA_SHA1

Supported protocols and ciphers between CloudFront and the origin

If you choose to require HTTPS between CloudFront and your origin, you can decide which SSL/TLS
protocol to allow for the secure connection, and CloudFront can connect to the origin using any
of the ECDSA or RSA ciphers listed in the following table. Your origin must support at least one of
these ciphers for CloudFront to establish an HTTPS connection to your origin.

OpenSSL and s2n use different names for ciphers than the TLS standards use (RFC 2246, RFC 4346,
RFC 5246, and RFC 8446). The following table includes the OpenSSL and s2n name, and the RFC
name, for each cipher.

Supported protocols and ciphers between CloudFront and the origin 255

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html#DownloadDistValuesOriginProtocolPolicy
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html#DownloadDistValuesOriginSSLProtocols
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html#DownloadDistValuesOriginSSLProtocols
https://github.com/awslabs/s2n
https://tools.ietf.org/html/rfc2246
https://tools.ietf.org/html/rfc4346
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc8446

Amazon CloudFront Developer Guide

For ciphers with elliptic curve key exchange algorithms, CloudFront supports the following elliptic
curvers:

• prime256v1

• secp384r1

• X25519

OpenSSL and s2n cipher name RFC cipher name

Supported ECDSA ciphers

ECDHE-ECDSA-AES256-GCM-SHA384 TLS_ECDHE_ECDSA_WITH_AES_25
6_GCM_SHA384

ECDHE-ECDSA-AES256-SHA384 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
384

ECDHE-ECDSA-AES256-SHA TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

ECDHE-ECDSA-AES128-GCM-SHA256 TLS_ECDHE_ECDSA_WITH_AES_12
8_GCM_SHA256

ECDHE-ECDSA-AES128-SHA256 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
256

ECDHE-ECDSA-AES128-SHA TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

Supported RSA ciphers

ECDHE-RSA-AES256-GCM-SHA384 TLS_ECDHE_RSA_WITH_AES_256_
GCM_SHA384

ECDHE-RSA-AES256-SHA384 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA38
4

ECDHE-RSA-AES256-SHA TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

ECDHE-RSA-AES128-GCM-SHA256 TLS_ECDHE_RSA_WITH_AES_128_
GCM_SHA256

Supported protocols and ciphers between CloudFront and the origin 256

Amazon CloudFront Developer Guide

OpenSSL and s2n cipher name RFC cipher name

ECDHE-RSA-AES128-SHA256 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA25
6

ECDHE-RSA-AES128-SHA TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

AES256-SHA TLS_RSA_WITH_AES_256_CBC_SHA

AES128-SHA TLS_RSA_WITH_AES_128_CBC_SHA

DES-CBC3-SHA TLS_RSA_WITH_3DES_EDE_CBC_SHA

RC4-MD5 TLS_RSA_WITH_RC4_128_MD5

Supported signature schemes between CloudFront and the origin

CloudFront supports the following signature schemes for connections between CloudFront and the
origin.

• TLS_SIGNATURE_SCHEME_RSA_PKCS1_SHA256

• TLS_SIGNATURE_SCHEME_RSA_PKCS1_SHA384

• TLS_SIGNATURE_SCHEME_RSA_PKCS1_SHA512

• TLS_SIGNATURE_SCHEME_RSA_PKCS1_SHA224

• TLS_SIGNATURE_SCHEME_ECDSA_SHA256

• TLS_SIGNATURE_SCHEME_ECDSA_SHA384

• TLS_SIGNATURE_SCHEME_ECDSA_SHA512

• TLS_SIGNATURE_SCHEME_ECDSA_SHA224

• TLS_SIGNATURE_SCHEME_RSA_PKCS1_SHA1

• TLS_SIGNATURE_SCHEME_ECDSA_SHA1

Charges for HTTPS connections

You always incur a surcharge for HTTPS requests. For more information, see Amazon CloudFront
Pricing.

Charges for HTTPS connections 257

https://aws.amazon.com/cloudfront/pricing
https://aws.amazon.com/cloudfront/pricing

Amazon CloudFront Developer Guide

Using alternate domain names and HTTPS

If you want to use your own domain name in the URLs for your files (for example, https://
www.example.com/image.jpg) and you want your viewers to use HTTPS, you must complete
the steps in the following topics. (If you use the default CloudFront distribution domain name in
your URLs, for example, https://d111111abcdef8.cloudfront.net/image.jpg, follow the
guidance in the following topic instead: Requiring HTTPS for communication between viewers and
CloudFront.)

Important

When you add a certificate to your distribution, CloudFront immediately propagates the
certificate to all of its edge locations. As new edge locations become available, CloudFront
propagates the certificate to those locations, too. You can't restrict the edge locations that
CloudFront propagates the certificates to.

Topics

• Choosing how CloudFront serves HTTPS requests

• Requirements for using SSL/TLS certificates with CloudFront

• Quotas on using SSL/TLS certificates with CloudFront (HTTPS between viewers and CloudFront
only)

• Configuring alternate domain names and HTTPS

• Determining the size of the public key in an SSL/TLS RSA certificate

• Increasing the quotas for SSL/TLS certificates

• Rotating SSL/TLS certificates

• Reverting from a custom SSL/TLS certificate to the default CloudFront certificate

• Switching from a custom SSL/TLS certificate with dedicated IP addresses to SNI

Choosing how CloudFront serves HTTPS requests

If you want your viewers to use HTTPS and to use alternate domain names for your files, choose
one of the following options for how CloudFront serves HTTPS requests:

• Use Server Name Indication (SNI) – Recommended

Using alternate domain names and HTTPS 258

https://en.wikipedia.org/wiki/Server_Name_Indication

Amazon CloudFront Developer Guide

• Use a dedicated IP address in each edge location

This section explains how each option works.

Using SNI to serve HTTPS requests (works for most clients)

Server Name Indication (SNI) is an extension to the TLS protocol that is supported by browsers
and clients released after 2010. If you configure CloudFront to serve HTTPS requests using SNI,
CloudFront associates your alternate domain name with an IP address for each edge location.
When a viewer submits an HTTPS request for your content, DNS routes the request to the IP
address for the correct edge location. The IP address to your domain name is determined during
the SSL/TLS handshake negotiation; the IP address isn't dedicated to your distribution.

The SSL/TLS negotiation occurs early in the process of establishing an HTTPS connection. If
CloudFront can't immediately determine which domain the request is for, it drops the connection.
When a viewer that supports SNI submits an HTTPS request for your content, here's what happens:

1. The viewer automatically gets the domain name from the request URL and adds it to a field in
the request header.

2. When CloudFront receives the request, it finds the domain name in the request header and
responds to the request with the applicable SSL/TLS certificate.

3. The viewer and CloudFront perform SSL/TLS negotiation.

4. CloudFront returns the requested content to the viewer.

For a current list of the browsers that support SNI, see the Wikipedia entry Server Name Indication.

If you want to use SNI but some of your users' browsers don't support SNI, you have several
options:

• Configure CloudFront to serve HTTPS requests by using dedicated IP addresses instead of SNI.
For more information, see Using a dedicated IP address to serve HTTPS requests (works for all
clients).

• Use the CloudFront SSL/TLS certificate instead of a custom certificate. This requires that you
use the CloudFront domain name for your distribution in the URLs for your files, for example,
https://d111111abcdef8.cloudfront.net/logo.png.

If you use the default CloudFront certificate, viewers must support the SSL protocol TLSv1 or
later. CloudFront doesn't support SSLv3 with the default CloudFront certificate.

Choosing how CloudFront serves HTTPS requests 259

https://en.wikipedia.org/wiki/Server_Name_Indication
https://en.wikipedia.org/wiki/Server_Name_Indication

Amazon CloudFront Developer Guide

You also must change the SSL/TLS certificate that CloudFront is using from a custom certificate
to the default CloudFront certificate:

• If you haven't used your distribution to distribute your content, you can just change the
configuration. For more information, see Updating a distribution.

• If you have used your distribution to distribute your content, you must create a new
CloudFront distribution and change the URLs for your files to reduce or eliminate the amount
of time that your content is unavailable. For more information, see Reverting from a custom
SSL/TLS certificate to the default CloudFront certificate.

• If you can control which browser your users use, have them upgrade their browser to one that
supports SNI.

• Use HTTP instead of HTTPS.

Using a dedicated IP address to serve HTTPS requests (works for all clients)

Server Name Indication (SNI) is one way to associate a request with a domain. Another way is to
use a dedicated IP address. If you have users who can't upgrade to a browser or client released
after 2010, you can use a dedicated IP address to serve HTTPS requests. For a current list of the
browsers that support SNI, see the Wikipedia entry Server Name Indication.

Important

If you configure CloudFront to serve HTTPS requests using dedicated IP addresses, you
incur an additional monthly charge. The charge begins when you associate your SSL/
TLS certificate with a distribution and you enable the distribution. For more information
about CloudFront pricing, see Amazon CloudFront Pricing. In addition, see Using the Same
Certificate for Multiple CloudFront Distributions.

When you configure CloudFront to serve HTTPS requests by using dedicated IP addresses,
CloudFront associates your certificate with a dedicated IP address in each CloudFront edge
location. When a viewer submits an HTTPS request for your content, here's what happens:

1. DNS routes the request to the IP address for your distribution in the applicable edge location.

2. If a client request provides the SNI extension in the ClientHello message, CloudFront searches
for a distribution that is associated with that SNI.

Choosing how CloudFront serves HTTPS requests 260

https://en.wikipedia.org/wiki/Server_Name_Indication
https://aws.amazon.com/cloudfront/pricing

Amazon CloudFront Developer Guide

• If there's a match, CloudFront responds to the request with the SSL/TLS certificate.

• If there's no match, CloudFront uses the IP address instead to identify your distribution and to
determine which SSL/TLS certificate to return to the viewer.

3. The viewer and CloudFront perform SSL/TLS negotiation using your SSL/TLS certificate.

4. CloudFront returns the requested content to the viewer.

This method works for every HTTPS request, regardless of the browser or other viewer that the
user is using.

Requesting permission to use three or more dedicated IP SSL/TLS certificates

If you need permission to permanently associate three or more SSL/TLS dedicated IP certificates
with CloudFront, perform the following procedure. For more details about HTTPS requests, see
Choosing how CloudFront serves HTTPS requests.

Note

This procedure is for using three or more dedicated IP certificates across your CloudFront
distributions. The default value is 2. Keep in mind you cannot bind more than one SSL
certificate to a distribution.
You can only associate a single SSL/TLS certificate to a CloudFront distribution at a time.
This number is for the total number of dedicated IP SSL certificates you can use across all
of your CloudFront distributions.

To request permission to use three or more certificates with a CloudFront distribution

1. Go to the Support Center and create a case.

2. Indicate how many certificates you need permission to use, and describe the circumstances in
your request. We'll update your account as soon as possible.

3. Continue with the next procedure.

Requirements for using SSL/TLS certificates with CloudFront

The requirements for SSL/TLS certificates are described in this topic. They apply to both of the
following, except as noted:

Requirements for using SSL/TLS certificates with CloudFront 261

https://console.aws.amazon.com/support/home?#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions

Amazon CloudFront Developer Guide

• Certificates for using HTTPS between viewers and CloudFront

• Certificates for using HTTPS between CloudFront and your origin

Topics

• Certificate issuer

• AWS Region for AWS Certificate Manager

• Certificate format

• Intermediate certificates

• Key type

• Private key

• Permissions

• Size of the certificate key

• Supported types of certificates

• Certificate expiration date and renewal

• Domain names in the CloudFront distribution and in the certificate

• Minimum SSL/TLS protocol version

• Supported HTTP versions

Certificate issuer

We recommend that you use a certificate issued by AWS Certificate Manager (ACM). For
information about getting a certificate from ACM, see the AWS Certificate Manager User Guide. To
use an ACM certificate with CloudFront, make sure you request (or import) the certificate in the US
East (N. Virginia) Region (us-east-1).

CloudFront supports the same certificate authorities (CAs) as Mozilla, so if you don’t use ACM, use
a certificate issued by a CA on the Mozilla Included CA Certificate List. For more information about
getting and installing a certificate, refer to the documentation for your HTTP server software and
to the documentation for the CA.

AWS Region for AWS Certificate Manager

To use a certificate in AWS Certificate Manager (ACM) to require HTTPS between viewers and
CloudFront, make sure you request (or import) the certificate in the US East (N. Virginia) Region
(us-east-1).

Requirements for using SSL/TLS certificates with CloudFront 262

https://aws.amazon.com/certificate-manager/
https://docs.aws.amazon.com/acm/latest/userguide/
https://wiki.mozilla.org/CA/Included_Certificates

Amazon CloudFront Developer Guide

If you want to require HTTPS between CloudFront and your origin, and you’re using a load balancer
in Elastic Load Balancing as your origin, you can request or import the certificate in any AWS
Region.

Certificate format

The certificate must be in X.509 PEM format. This is the default format if you’re using AWS
Certificate Manager.

Intermediate certificates

If you’re using a third-party certificate authority (CA), list all of the intermediate certificates in the
certificate chain that’s in the .pem file, beginning with one for the CA that signed the certificate
for your domain. Typically, you’ll find a file on the CA website that lists intermediate and root
certificates in the proper chained order.

Important

Do not include the following: the root certificate, intermediate certificates that are not in
the trust path, or your CA’s public key certificate.

Here’s an example:

-----BEGIN CERTIFICATE-----
Intermediate certificate 2
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
Intermediate certificate 1
-----END CERTIFICATE-----

Key type

CloudFront supports RSA and ECDSA public–private key pairs.

CloudFront supports HTTPS connections to both viewers and origins using RSA and ECDSA
certificates. With AWS Certificate Manager (ACM), you can request and import RSA or ECDSA
certificates and then associate them with your CloudFront distribution.

For lists of the RSA and ECDSA ciphers supported by CloudFront that you can negotiate in HTTPS
connections, see the section called “Supported protocols and ciphers between viewers and

Requirements for using SSL/TLS certificates with CloudFront 263

https://console.aws.amazon.com/acm

Amazon CloudFront Developer Guide

CloudFront” and the section called “Supported protocols and ciphers between CloudFront and the
origin”.

Private key

If you're using a certificate from a third-party certificate authority (CA), note the following:

• The private key must match the public key that is in the certificate.

• The private key must be in PEM format.

• The private key cannot be encrypted with a password.

If AWS Certificate Manager (ACM) provided the certificate, ACM doesn’t release the private key. The
private key is stored in ACM for use by AWS services that are integrated with ACM.

Permissions

You must have permission to use and import the SSL/TLS certificate. If you’re using AWS
Certificate Manager (ACM), we recommend that you use AWS Identity and Access Management
permissions to restrict access to the certificates. For more information, see Identity and access
management in the AWS Certificate Manager User Guide.

Size of the certificate key

The certificate key size that CloudFront supports depends on the type of key and certificate.

For RSA certificates:

CloudFront supports 1024-bit, 2048-bit, and 3072-bit, and 4096-bit RSA keys. The maximum
key length for an RSA certificate that you use with CloudFront is 4096 bits.

Note that ACM issues RSA certificates with up to 2048-bit keys. To use a 3072-bit or 4096-bit
RSA certificate, you need to obtain the certificate externally and import it into ACM, after which
it will be available for you to use with CloudFront.

For information about how to determine the size of an RSA key, see Determining the size of the
public key in an SSL/TLS RSA certificate.

For ECDSA certificates:

CloudFront supports 256-bit keys. To use an ECDSA certificate in ACM to require HTTPS
between viewers and CloudFront, use the prime256v1 elliptic curve.

Requirements for using SSL/TLS certificates with CloudFront 264

https://docs.aws.amazon.com/acm/latest/userguide/security-iam.html
https://docs.aws.amazon.com/acm/latest/userguide/security-iam.html

Amazon CloudFront Developer Guide

Supported types of certificates

CloudFront supports all types of certificates issued by a trusted certificate authority.

Certificate expiration date and renewal

If you’re using certificates that you get from a third-party certificate authority (CA), you must
monitor certificate expiration dates and renew the certificates that you import into AWS Certificate
Manager (ACM) or upload to the AWS Identity and Access Management certificate store before they
expire.

If you’re using ACM-provided certificates, ACM manages certificate renewals for you. For more
information, see Managed renewal in the AWS Certificate Manager User Guide.

Domain names in the CloudFront distribution and in the certificate

When you’re using a custom origin, the SSL/TLS certificate on your origin includes a domain name
in the Common Name field, and possibly several more in the Subject Alternative Names field.
(CloudFront supports wildcard characters in certificate domain names.)

One of the domain names in the certificate must match the domain name that you specify for
Origin Domain Name. If no domain name matches, CloudFront returns HTTP status code 502
(Bad Gateway) to the viewer.

Important

When you add an alternate domain name to a distribution, CloudFront checks that the
alternate domain name is covered by the certificate that you’ve attached. The certificate
must cover the alternate domain name in the subject alternate name (SAN) field of the
certificate. This means the SAN field must contain an exact match for the alternate domain
name, or contain a wildcard at the same level of the alternate domain name that you’re
adding.
For more information, see Requirements for using alternate domain names.

Minimum SSL/TLS protocol version

If you’re using dedicated IP addresses, set the minimum SSL/TLS protocol version for the
connection between viewers and CloudFront by choosing a security policy.

Requirements for using SSL/TLS certificates with CloudFront 265

https://docs.aws.amazon.com/acm/latest/userguide/managed-renewal.html

Amazon CloudFront Developer Guide

For more information, see Security policy in the topic Values that you specify when you create or
update a distribution.

Supported HTTP versions

If you associate one certificate with more than one CloudFront distribution, all the distributions
associated with the certificate must use the same option for Supported HTTP versions. You specify
this option when you create or update a CloudFront distribution.

Quotas on using SSL/TLS certificates with CloudFront (HTTPS between
viewers and CloudFront only)

Note the following quotas (formerly known as limits) on using SSL/TLS certificates with
CloudFront. These quotas apply only to the SSL/TLS certificates that you provision by using AWS
Certificate Manager (ACM), that you import into ACM, or upload to the IAM certificate store for
HTTPS communication between viewers and CloudFront.

Maximum number of certificates per CloudFront distribution

You can associate a maximum of one SSL/TLS certificate with each CloudFront distribution.

Maximum number of certificates that you can import into ACM or upload to the IAM certificate
store

If you obtained your SSL/TLS certificates from a third-party CA, you must store the certificates
in one of the following locations:

• AWS Certificate Manager – For the current quota on the number of ACM certificates, see
Quotas in the AWS Certificate Manager User Guide. The listed quota is a total that includes
certificates that you provision by using ACM and certificates that you import into ACM.

• IAM certificate store – For the current quota (formerly known as limit) on the number of
certificates that you can upload to the IAM certificate store for an AWS account, see IAM and
STS Limits in the IAM User Guide. You can request a higher quota in the AWS Management
Console.

Maximum number of certificates per AWS account (dedicated IP addresses only)

If you want to serve HTTPS requests by using dedicated IP addresses, note the following:

• By default, CloudFront gives you permission to use two certificates with your AWS account,
one for everyday use and one for when you need to rotate certificates for multiple
distributions.

Quotas on using SSL/TLS certificates with CloudFront (HTTPS between viewers and CloudFront only) 266

https://docs.aws.amazon.com/acm/latest/userguide/acm-limits.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-limits.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-limits.html
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-iam-groups-and-users
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-iam-groups-and-users

Amazon CloudFront Developer Guide

• If you need more than two custom SSL/TLS certificates for your AWS account, go to the
Support Center and create a case. Indicate how many certificates that you need permission
to use, and describe the circumstances in your request. We'll update your account as soon as
possible.

Using the same certificate for CloudFront distributions that were created by using different
AWS accounts

If you're using a third-party CA and you want to use the same certificate with multiple
CloudFront distributions that were created by using different AWS accounts, you must import
the certificate into ACM or upload it to the IAM certificate store once for each AWS account.

If you're using certificates provided by ACM, you can't configure CloudFront to use certificates
that were created by a different AWS account.

Using the same certificate for CloudFront and for other AWS services

If you bought a certificate from a trusted certificate authority such as Comodo, DigiCert, or
Symantec, you can use the same certificate for CloudFront and for other AWS services. If you're
importing the certificate into ACM, you need to import it only once to use it for multiple AWS
services.

If you're using certificates provided by ACM, the certificates are stored in ACM.

Using the same certificate for multiple CloudFront distributions

You can use the same certificate for any or all of the CloudFront distributions that you're using
to serve HTTPS requests. Note the following:

• You can use the same certificate both for serving requests using dedicated IP addresses and
for serving requests using SNI.

• You can associate only one certificate with each distribution.

• Each distribution must include one or more alternate domain names that also appear in the
Common Name field or the Subject Alternative Names field in the certificate.

• If you're serving HTTPS requests using dedicated IP addresses and you created all of your
distributions by using the same AWS account, you can significantly reduce your cost by using
the same certificate for all distributions. CloudFront charges for each certificate, not for each
distribution.

For example, suppose you create three distributions by using the same AWS account, and you
use the same certificate for all three distributions. You would be charged only one fee for
using dedicated IP addresses.

Quotas on using SSL/TLS certificates with CloudFront (HTTPS between viewers and CloudFront only) 267

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions

Amazon CloudFront Developer Guide

However, if you're serving HTTPS requests using dedicated IP addresses and using the
same certificate to create CloudFront distributions in different AWS accounts, each account
is charged the fee for using dedicated IP addresses. For example, if you create three
distributions by using three different AWS accounts and you use the same certificate for all
three distributions, each account is charged the full fee for using dedicated IP addresses.

Configuring alternate domain names and HTTPS

To use alternate domain names in the URLs for your files and to use HTTPS between viewers and
CloudFront, perform the applicable procedures.

Topics

• Getting an SSL/TLS certificate

• Importing an SSL/TLS certificate

• Updating your CloudFront distribution

Getting an SSL/TLS certificate

Get an SSL/TLS certificate if you don’t already have one. For more information, see the applicable
documentation:

• To use a certificate provided by AWS Certificate Manager (ACM), see the AWS Certificate Manager
User Guide. Then skip to Updating your CloudFront distribution.

Note

We recommend that you use ACM to provision, manage, and deploy SSL/TLS certificates
on AWS managed resources. You must request an ACM certificate in the US East (N.
Virginia) Region.

• To get a certificate from a third-party certificate authority (CA), see the documentation provided
by the certificate authority. When you have the certificate, continue with the next procedure.

Configuring alternate domain names and HTTPS 268

https://docs.aws.amazon.com/acm/latest/userguide/
https://docs.aws.amazon.com/acm/latest/userguide/

Amazon CloudFront Developer Guide

Importing an SSL/TLS certificate

If you got your certificate from a third-party CA, import the certificate into ACM or upload it to the
IAM certificate store:

ACM (recommended)

ACM lets you import third-party certificates from the ACM console, as well as programmatically.
For information about importing a certificate to ACM, see Importing Certificates into AWS
Certificate Manager in the AWS Certificate Manager User Guide. You must import the certificate
in the US East (N. Virginia) Region.

IAM certificate store

(Not recommended) Use the following AWS CLI command to upload your third-party certificate
to the IAM certificate store.

aws iam upload-server-certificate \
 --server-certificate-name CertificateName \
 --certificate-body file://public_key_certificate_file \
 --private-key file://privatekey.pem \
 --certificate-chain file://certificate_chain_file \
 --path /cloudfront/path/

Note the following:

• AWS account – You must upload the certificate to the IAM certificate store using the same
AWS account that you used to create your CloudFront distribution.

• --path parameter – When you upload the certificate to IAM, the value of the --path
parameter (certificate path) must start with /cloudfront/, for example, /cloudfront/
production/ or /cloudfront/test/. The path must end with a /.

• Existing certificates – You must specify values for the --server-certificate-name
and --path parameters that are different from the values that are associated with existing
certificates.

• Using the CloudFront console – The value that you specify for the --server-
certificate-name parameter in the AWS CLI, for example, myServerCertificate,
appears in the SSL Certificate list in the CloudFront console.

• Using the CloudFront API – Make note of the alphanumeric string that the AWS CLI returns,
for example, AS1A2M3P4L5E67SIIXR3J. This is the value that you will specify in the
IAMCertificateId element. You don't need the IAM ARN, which is also returned by the CLI.

Configuring alternate domain names and HTTPS 269

https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html

Amazon CloudFront Developer Guide

For more information about the AWS CLI, see the AWS Command Line Interface User Guide and
the AWS CLI Command Reference.

Updating your CloudFront distribution

To update settings for your distribution, perform the following procedure:

To configure your CloudFront distribution for alternate domain names

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. Choose the ID for the distribution that you want to update.

3. On the General tab, choose Edit.

4. Update the following values:

Alternate domain name (CNAME)

Choose Add item to add the applicable alternate domain names. Separate domain names
with commas, or type each domain name on a new line.

Custom SSL certificate

Select a certificate from the dropdown list.

Up to 100 certificates are listed here. If you have more than 100 certificates and you don't
see the certificate that you want to add, you can type a certificate ARN in the field to
choose it.

If you uploaded a certificate to the IAM certificate store but it's not listed, and you can't
choose it by typing the name in the field, review the procedure Importing an SSL/TLS
certificate to confirm that you correctly uploaded the certificate.

Important

After you associate your SSL/TLS certificate with your CloudFront distribution, do
not delete the certificate from ACM or the IAM certificate store until you remove
the certificate from all distributions and all the distributions are deployed.

5. Choose Save changes.

Configuring alternate domain names and HTTPS 270

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/reference/
https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

6. Configure CloudFront to require HTTPS between viewers and CloudFront:

a. On the Behaviors tab, choose the cache behavior that you want to update, and choose
Edit.

b. Specify one of the following values for Viewer Protocol Policy:

Redirect HTTP to HTTPS

Viewers can use both protocols, but HTTP requests are automatically redirected to
HTTPS requests. CloudFront returns HTTP status code 301 (Moved Permanently)
along with the new HTTPS URL. The viewer then resubmits the request to CloudFront
using the HTTPS URL.

Important

CloudFront doesn't redirect DELETE, OPTIONS, PATCH, POST, or PUT requests
from HTTP to HTTPS. If you configure a cache behavior to redirect to HTTPS,
CloudFront responds to HTTP DELETE, OPTIONS, PATCH, POST, or PUT
requests for that cache behavior with HTTP status code 403 (Forbidden).

When a viewer makes an HTTP request that is redirected to an HTTPS request,
CloudFront charges for both requests. For the HTTP request, the charge is only for
the request and for the headers that CloudFront returns to the viewer. For the HTTPS
request, the charge is for the request, and for the headers and the file returned by your
origin.

HTTPS Only

Viewers can access your content only if they're using HTTPS. If a viewer sends an
HTTP request instead of an HTTPS request, CloudFront returns HTTP status code 403
(Forbidden) and does not return the file.

c. Choose Yes, Edit.

d. Repeat steps a through c for each additional cache behavior that you want to require
HTTPS for between viewers and CloudFront.

7. Confirm the following before you use the updated configuration in a production environment:

Configuring alternate domain names and HTTPS 271

Amazon CloudFront Developer Guide

• The path pattern in each cache behavior applies only to the requests that you want viewers
to use HTTPS for.

• The cache behaviors are listed in the order that you want CloudFront to evaluate them in.
For more information, see Path pattern.

• The cache behaviors are routing requests to the correct origins.

Determining the size of the public key in an SSL/TLS RSA certificate

When you’re using CloudFront alternate domain names and HTTPS, the maximum size of the
public key in an SSL/TLS RSA certificate is 4096 bits. (This is the key size, not the number of
characters in the public key.) If you use AWS Certificate Manager for your certificates, although
ACM supports larger RSA keys, you cannot use the larger keys with CloudFront.

You can determine the size of the RSA public key by running the following OpenSSL command:

openssl x509 -in path and filename of SSL/TLS certificate -text -noout

Where:

• -in specifies the path and file name of your SSL/TLS RSA certificate.

• -text causes OpenSSL to display the length of the RSA public key in bits.

• -noout prevents OpenSSL from displaying the public key.

Example output:

Public-Key: (2048 bit)

Increasing the quotas for SSL/TLS certificates

There are quotas (formerly known as limits) on the number of SSL/TLS certificates that you can
import into AWS Certificate Manager or upload to AWS Identity and Access Management. There
also is a quota on the number of SSL/TLS certificates that you can use with an AWS account when
you configure CloudFront to serve HTTPS requests by using dedicated IP addresses. However, you
can request higher quotas.

Topics

Determining the size of the public key in an SSL/TLS RSA certificate 272

https://docs.aws.amazon.com/acm/latest/userguide/acm-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

Amazon CloudFront Developer Guide

• Certificates that you can import into ACM

• Certificates that you can upload to IAM

• Certificates that you can use with dedicated IP addresses

Certificates that you can import into ACM

For the quota on the number of certificates that you can import into ACM, see Quotas in the AWS
Certificate Manager User Guide.

To request a higher quota, create a case in the Support Center Console. Specify the following
values:

• Accept the default value of Service limit increase.

• For Limit type, choose Certificate Manager.

• For Region, choose the AWS Region where you want to import certificates.

• For Limit, choose Number of ACM certificates.

Then fill out the rest of the form and submit it.

Certificates that you can upload to IAM

For the quota (formerly known as limit) on the number of certificates that you can upload to IAM,
see IAM and STS Limits in the IAM User Guide.

To request a higher quota, create a case in the Support Center Console. Specify the following
values:

• Accept the default value of Service limit increase.

• For Limit type, choose Certificate Manager.

• For Region, choose the AWS Region where you want to import certificates.

• For Limit, choose Server Certificate Limit (IAM).

Then fill out the rest of the form and submit it.

Increasing the quotas for SSL/TLS certificates 273

https://docs.aws.amazon.com/acm/latest/userguide/acm-limits.html
https://console.aws.amazon.com/support/cases#/create?issueType=service-limit-increase
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-limits.html
https://console.aws.amazon.com/support/cases#/create?issueType=service-limit-increase

Amazon CloudFront Developer Guide

Certificates that you can use with dedicated IP addresses

For the quota (formerly known as limit) on the number of SSL certificates that you can use for
each AWS account when serving HTTPS requests using dedicated IP addresses, see Quotas on SSL
certificates.

To request a higher quota, create a case in the Support Center Console. Specify the following
values:

• Accept the default value of Service limit increase.

• For Limit Type, choose CloudFront Distributions.

• For Limit, choose Dedicated IP SSL Certificate Limit per Account.

Then fill out the rest of the form and submit it.

Rotating SSL/TLS certificates

If you're using certificates provided by AWS Certificate Manager (ACM), you don't need to rotate
SSL/TLS certificates. ACM manages certificate renewals for you. For more information, see
Managed Renewal in the AWS Certificate Manager User Guide.

Note

ACM does not manage certificate renewals for certificates that you acquire from third-party
certificate authorities and import into ACM.

If you're using a third-party certificate authority and you imported certificates into ACM
(recommended) or uploaded them to the IAM certificate store, you must occasionally replace one
certificate with another. For example, you must replace a certificate when the expiration date on
the certificate approaches.

Important

If you configured CloudFront to serve HTTPS requests by using dedicated IP addresses, you
might incur an additional, pro-rated charge for using one or more additional certificates
while you're rotating certificates. We recommend that you update your distributions
promptly to minimize the additional charge.

Rotating SSL/TLS certificates 274

https://console.aws.amazon.com/support/cases#/create?issueType=service-limit-increase
https://docs.aws.amazon.com/acm/latest/userguide/acm-renewal.html

Amazon CloudFront Developer Guide

To rotate certificates, perform the following procedure. Viewers can continue to access your
content while you rotate certificates as well as after the process is complete.

To rotate SSL/TLS certificates

1. Increasing the quotas for SSL/TLS certificates to determine whether you need permission to
use more SSL certificates. If so, request permission and wait until permission is granted before
you continue with step 2.

2. Import the new certificate into ACM or upload it to IAM. For more information, see Importing
an SSL/TLS Certificate in the Amazon CloudFront Developer Guide.

3. Update your distributions one at a time to use the new certificate. For more information, see
Listing, Viewing, and Updating CloudFront Distributions in the Amazon CloudFront Developer
Guide.

4. (Optional) After you have updated all of your CloudFront distributions, you can delete the old
certificate from ACM or from IAM.

Important

Do not delete an SSL/TLS certificate until you remove it from all distributions and until
the status of the distributions that you have updated has changed to Deployed.

Reverting from a custom SSL/TLS certificate to the default CloudFront
certificate

If you configured CloudFront to use HTTPS between viewers and CloudFront, and you configured
CloudFront to use a custom SSL/TLS certificate, you can change your configuration to use the
default CloudFront SSL/TLS certificate. The process depends on whether you've used your
distribution to distribute your content:

• If you have not used your distribution to distribute your content, you can just change the
configuration. For more information, see Updating a distribution.

• If you have used your distribution to distribute your content, you must create a new CloudFront
distribution and change the URLs for your files to reduce or eliminate the amount of time that
your content is unavailable. To do that, perform the following procedure.

Reverting from a custom SSL/TLS certificate to the default CloudFront certificate 275

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-and-https-procedures.html#cnames-and-https-uploading-certificates
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-and-https-procedures.html#cnames-and-https-uploading-certificates
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/HowToUpdateDistribution.html

Amazon CloudFront Developer Guide

To revert to the default CloudFront certificate

1. Create a new CloudFront distribution with the desired configuration. For SSL Certificate,
choose Default CloudFront Certificate (*.cloudfront.net).

For more information, see Steps for creating a distribution (overview).

2. For files that you're distributing using CloudFront, update the URLs in your application
to use the domain name that CloudFront assigned to the new distribution. For
example, change https://www.example.com/images/logo.png to https://
d111111abcdef8.cloudfront.net/images/logo.png.

3. Either delete the distribution that is associated with a custom SSL/TLS certificate, or update
the distribution to change the value of SSL Certificate to Default CloudFront Certificate
(*.cloudfront.net). For more information, see Updating a distribution.

Important

Until you complete this step, AWS continues to charge you for using a custom SSL/TLS
certificate.

4. (Optional) Delete your custom SSL/TLS certificate.

a. Run the AWS CLI command list-server-certificates to get the certificate ID of the
certificate that you want to delete. For more information, see list-server-certificates in the
AWS CLI Command Reference.

b. Run the AWS CLI command delete-server-certificate to delete the certificate. For
more information, see delete-server-certificate in the AWS CLI Command Reference.

Switching from a custom SSL/TLS certificate with dedicated IP
addresses to SNI

If you configured CloudFront to use a custom SSL/TLS certificate with dedicated IP addresses, you
can switch to using a custom SSL/TLS certificate with SNI instead and eliminate the charge that is
associated with dedicated IP addresses. The following procedure shows you how.

Switching from a custom SSL/TLS certificate with dedicated IP addresses to SNI 276

https://docs.aws.amazon.com/cli/latest/reference/iam/list-server-certificates.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-server-certificate.html

Amazon CloudFront Developer Guide

Important

This update to your CloudFront configuration has no effect on viewers that support SNI.
Viewers can access your content before and after the change, as well as while the change
is propagating to CloudFront edge locations. Viewers that don't support SNI cannot access
your content after the change. For more information, see Choosing how CloudFront serves
HTTPS requests.

To switch from a custom SSL/TLS certificate with dedicated IP addresses to SNI

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. Choose the ID of the distribution that you want to view or update.

3. Choose Distribution Settings.

4. On the General tab, choose Edit.

5. Change the setting of Custom SSL Client Support to Only Clients that Support Server Name
Indication (SNI).

6. Choose Yes, Edit.

Serving private content with signed URLs and signed cookies

Many companies that distribute content over the internet want to restrict access to documents,
business data, media streams, or content that is intended for selected users, for example, users
who have paid a fee. To securely serve this private content by using CloudFront, you can do the
following:

• Require that your users access your private content by using special CloudFront signed URLs or
signed cookies.

• Require that your users access your content by using CloudFront URLs, not URLs that access
content directly on the origin server (for example, Amazon S3 or a private HTTP server).
Requiring CloudFront URLs isn't necessary, but we recommend it to prevent users from bypassing
the restrictions that you specify in signed URLs or signed cookies.

Topics

Restricting content with signed URLs and signed cookies 277

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

• Overview of serving private content

• Task list for serving private content

• Specifying the signers that can create signed URLs and signed cookies

• Choosing between signed URLs and signed cookies

• Using signed URLs

• Using signed cookies

• Using Linux commands and OpenSSL for base64 encoding and encryption

• Code examples for creating a signature for a signed URL

Overview of serving private content

You can control user access to your private content in two ways:

• Restrict access to files in CloudFront caches.

• Restrict access to files in your origin by doing one of the following:

• Set up an origin access control (OAC) for your Amazon S3 bucket.

• Configure custom headers for a private HTTP server (a custom origin).

Restricting access to files in CloudFront caches

You can configure CloudFront to require that users access your files using either signed URLs or
signed cookies. You then develop your application either to create and distribute signed URLs to
authenticated users or to send Set-Cookie headers that set signed cookies for authenticated
users. (To give a few users long-term access to a small number of files, you can also create signed
URLs manually.)

When you create signed URLs or signed cookies to control access to your files, you can specify the
following restrictions:

• An ending date and time, after which the URL is no longer valid.

• (Optional) The date and time that the URL becomes valid.

• (Optional) The IP address or range of addresses of the computers that can be used to access your
content.

Overview of serving private content 278

Amazon CloudFront Developer Guide

One part of a signed URL or a signed cookie is hashed and signed using the private key from
a public–private key pair. When someone uses a signed URL or signed cookie to access a file,
CloudFront compares the signed and unsigned portions of the URL or cookie. If they don't match,
CloudFront doesn't serve the file.

You must use RSA-SHA1 for signing URLs or cookies. CloudFront doesn't accept other algorithms.

Restricting access to files in Amazon S3 buckets

You can optionally secure the content in your Amazon S3 bucket so that users can access it through
the specified CloudFront distribution but cannot access it directly by using Amazon S3 URLs. This
prevents someone from bypassing CloudFront and using the Amazon S3 URL to get content that
you want to restrict access to. This step isn't required to use signed URLs, but we recommend it.

To require that users access your content through CloudFront URLs, you do the following tasks:

• Give a CloudFront origin access control permission to read the files in the S3 bucket.

• Create the origin access control and associate it with your CloudFront distribution.

• Remove permission for anyone else to use Amazon S3 URLs to read the files.

For more information, see the section called “Restricting access to an Amazon Simple Storage
Service origin”.

Restricting access to files on custom origins

If you use a custom origin, you can optionally set up custom headers to restrict access. For
CloudFront to get your files from a custom origin, the files must be accessible by CloudFront using
a standard HTTP (or HTTPS) request. But by using custom headers, you can further restrict access
to your content so that users can access it only through CloudFront, not directly. This step isn't
required to use signed URLs, but we recommend it.

To require that users access content through CloudFront, change the following settings in your
CloudFront distributions:

Origin Custom Headers

Configure CloudFront to forward custom headers to your origin. See Configuring CloudFront to
add custom headers to origin requests.

Overview of serving private content 279

Amazon CloudFront Developer Guide

Viewer Protocol Policy

Configure your distribution to require viewers to use HTTPS to access CloudFront. See Viewer
protocol policy.

Origin Protocol Policy

Configure your distribution to require CloudFront to use the same protocol as viewers to
forward requests to the origin. See Protocol (custom origins only).

After you've made these changes, update your application on your custom origin to only accept
requests that include the custom headers that you’ve configured CloudFront to send.

The combination of Viewer Protocol Policy and Origin Protocol Policy ensure that the custom
headers are encrypted in transit. However, we recommend that you periodically do the following to
rotate the custom headers that CloudFront forwards to your origin:

1. Update your CloudFront distribution to begin forwarding a new header to your custom origin.

2. Update your application to accept the new header as confirmation that the request is coming
from CloudFront.

3. When requests no longer include the header that you're replacing, update your application to no
longer accept the old header as confirmation that the request is coming from CloudFront.

Task list for serving private content

To configure CloudFront to serve private content, do the following tasks:

1. (Optional but recommended) Require your users to access your content only through
CloudFront. The method that you use depends on whether you're using Amazon S3 or custom
origins:

• Amazon S3 – See the section called “Restricting access to an Amazon Simple Storage Service
origin”.

• Custom origin – See Restricting access to files on custom origins.

Custom origins include Amazon EC2, Amazon S3 buckets configured as website endpoints,
Elastic Load Balancing, and your own HTTP web servers.

Task list for serving private content 280

Amazon CloudFront Developer Guide

2. Specify the trusted key groups or trusted signers that you want to use to create signed URLs
or signed cookies. We recommend that you use trusted key groups. For more information, see
Specifying the signers that can create signed URLs and signed cookies.

3. Write your application to respond to requests from authorized users either with signed URLs
or with Set-Cookie headers that set signed cookies. Follow the steps in one of the following
topics:

• Using signed URLs

• Using signed cookies

If you're not sure which method to use, see Choosing between signed URLs and signed cookies.

Specifying the signers that can create signed URLs and signed cookies

Topics

• Choosing between trusted key groups (recommended) and AWS accounts

• Creating key pairs for your signers

• Reformatting the private key (.NET and Java only)

• Adding a signer to a distribution

• Rotating key pairs

To create signed URLs or signed cookies, you need a signer. A signer is either a trusted key
group that you create in CloudFront, or an AWS account that contains a CloudFront key pair.
We recommend that you use trusted key groups with signed URLs and signed cookies. For more
information, see Choosing between trusted key groups (recommended) and AWS accounts.

The signer has two purposes:

• As soon as you add the signer to your distribution, CloudFront starts to require that viewers use
signed URLs or signed cookies to access your files.

• When you create signed URLs or signed cookies, you use the private key from the signer’s
key pair to sign a portion of the URL or the cookie. When someone requests a restricted file,
CloudFront compares the signature in the URL or cookie with the unsigned URL or cookie, to
verify that it hasn’t been tampered with. CloudFront also verifies that the URL or cookie is valid,
meaning, for example, that the expiration date and time hasn’t passed.

Specifying signers 281

Amazon CloudFront Developer Guide

When you specify a signer, you also indirectly specify the files that require signed URLs or signed
cookies by adding the signer to a cache behavior. If your distribution has only one cache behavior,
viewers must use signed URLs or signed cookies to access any file in the distribution. If you create
multiple cache behaviors and add signers to some cache behaviors and not to others, you can
require that viewers use signed URLs or signed cookies to access some files and not others.

To specify the signers (the private keys) that are allowed to create signed URLs or signed cookies,
and to add the signers to your CloudFront distribution, do the following tasks:

1. Decide whether to use a trusted key group or an AWS account as the signer. We recommend
using a trusted key group. For more information, see Choosing between trusted key groups
(recommended) and AWS accounts.

2. For the signer that you chose in step 1, create a public–private key pair. For more information,
see Creating key pairs for your signers.

3. If you’re using .NET or Java to create signed URLs or signed cookies, reformat the private key.
For more information, see Reformatting the private key (.NET and Java only).

4. In the distribution for which you’re creating signed URLs or signed cookies, specify the signer.
For more information, see Adding a signer to a distribution.

Choosing between trusted key groups (recommended) and AWS accounts

To use signed URLs or signed cookies, you need a signer. A signer is either a trusted key group that
you create in CloudFront, or an AWS account that contains a CloudFront key pair. We recommend
that you use trusted key groups, for the following reasons:

• With CloudFront key groups, you don’t need to use the AWS account root user to manage the
public keys for CloudFront signed URLs and signed cookies. AWS best practices recommend that
you don’t use the root user when you don’t have to.

• With CloudFront key groups, you can manage public keys, key groups, and trusted signers using
the CloudFront API. You can use the API to automate key creation and key rotation. When you
use the AWS root user, you have to use the AWS Management Console to manage CloudFront
key pairs, so you can’t automate the process.

• Because you can manage key groups with the CloudFront API, you can also use AWS Identity and
Access Management (IAM) permissions policies to limit what different users are allowed to do.
For example, you can allow users to upload public keys, but not delete them. Or you can allow
users to delete public keys, but only when certain conditions are met, such as using multi-factor

Specifying signers 282

https://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html#aws_tasks-that-require-root

Amazon CloudFront Developer Guide

authentication, sending the request from a particular network, or sending the request within a
particular date and time range.

• With CloudFront key groups, you can associate a higher number of public keys with your
CloudFront distribution, giving you more flexibility in how you use and manage the public keys.
By default, you can associate up to four key groups with a single distribution, and you can have
up to five public keys in a key group.

When you use the AWS account root user to manage CloudFront key pairs, you can only have up
to two active CloudFront key pairs per AWS account.

Creating key pairs for your signers

Each signer that you use to create CloudFront signed URLs or signed cookies must have a public–
private key pair. The signer uses its private key to sign the URL or cookies, and CloudFront uses the
public key to verify the signature.

The way that you create a key pair depends on whether you use a trusted key group as the signer
(recommended), or a CloudFront key pair. For more information, see the following sections. The key
pair that you create must meet the following requirements:

• It must be an SSH-2 RSA key pair.

• It must be in base64-encoded PEM format.

• It must be a 2048-bit key pair.

To help secure your applications, we recommend that you rotate key pairs periodically. For more
information, see Rotating key pairs.

Create a key pair for a trusted key group (recommended)

To create a key pair for a trusted key group, perform the following steps:

1. Create the public–private key pair.

2. Upload the public key to CloudFront.

3. Add the public key to a CloudFront key group.

For more information, see the following procedures.

Specifying signers 283

Amazon CloudFront Developer Guide

To create a key pair

Note

The following steps use OpenSSL as an example of one way to create a key pair. There are
many other ways to create an RSA key pair.

1. The following example command uses OpenSSL to generate an RSA key pair with a length of
2048 bits and save to the file named private_key.pem.

openssl genrsa -out private_key.pem 2048

2. The resulting file contains both the public and the private key. The following example
command extracts the public key from the file named private_key.pem.

openssl rsa -pubout -in private_key.pem -out public_key.pem

You upload the public key (in the public_key.pem file) later, in the following procedure.

To upload the public key to CloudFront

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. In the navigation menu, choose Public keys.

3. Choose Create public key.

4. In the Create public key window, do the following:

a. For Key name, type a name to identify the public key.

b. For Key value, paste the public key. If you followed the steps in the preceding procedure,
the public key is in the file named public_key.pem. To copy and paste the contents of
the public key, you can:

• Use the cat command on the macOS or Linux command line, like this:

Specifying signers 284

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

cat public_key.pem

Copy the output of that command, then paste it into the Key value field.

• Open the public_key.pem file with a plaintext editor like Notepad (on Windows) or
TextEdit (on macOS). Copy the contents of the file, then paste it into the Key value
field.

c. (Optional) For Comment, add a comment to describe the public key.

When finished, choose Add.

5. Record the public key ID. You use it later when you create signed URLs or signed cookies, as the
value of the Key-Pair-Id field.

To add the public key to a key group

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

2. In the navigation menu, choose Key groups.

3. Choose Add key group.

4. On the Create key group page, do the following:

a. For Key group name, type a name to identify the key group.

b. (Optional) For Comment, type a comment to describe the key group.

c. For Public keys, select the public key to add to the key group, then choose Add. Repeat
this step for each public key that you want to add to the key group.

5. Choose Create key group.

6. Record the key group name. You use it later to associate the key group with a cache behavior
in a CloudFront distribution. (In the CloudFront API, you use the key group ID to associate the
key group with a cache behavior.)

Specifying signers 285

https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

Create a CloudFront key pair (not recommended, requires the AWS account root user)

Important

We recommend that you create a public key for a trusted key group instead of following
these steps. For the recommended way to create public keys for signed URLs and signed
cookies, see Create a key pair for a trusted key group (recommended).

You can create a CloudFront key pair in the following ways:

• Create a key pair in the AWS Management Console and download the private key. See the
following procedure.

• Create an RSA key pair by using an application such as OpenSSL, and then upload the public
key to the AWS Management Console. For more information about creating an RSA key pair, see
Create a key pair for a trusted key group (recommended).

To create CloudFront key pairs in the AWS Management Console

1. Sign in to the AWS Management Console using the credentials of the AWS account root user.

Important

IAM users can’t create CloudFront key pairs. You must sign in using root user
credentials to create key pairs.

2. Choose your account name, then choose My Security Credentials.

3. Choose CloudFront key pairs.

4. Confirm that you have no more than one active key pair. You can’t create a key pair if you
already have two active key pairs.

5. Choose Create New Key Pair.

Note

You can also choose to create your own key pair and upload the public key. CloudFront
key pairs support 1024, 2048, or 4096-bit keys.

Specifying signers 286

Amazon CloudFront Developer Guide

6. In the Create Key Pair dialog box, choose Download Private Key File, and then save the file on
your computer.

Important

Save the private key for your CloudFront key pair in a secure location, and set
permissions on the file so that only the desired administrators can read it. If someone
gets your private key, they can generate valid signed URLs and signed cookies and
download your content. You cannot get the private key again, so if you lose or delete
it, you must create a new CloudFront key pair.

7. Record the key pair ID for your key pair. (In the AWS Management Console, this is called the
Access Key ID.) You’ll use it when you create signed URLs or signed cookies.

Reformatting the private key (.NET and Java only)

If you’re using .NET or Java to create signed URLs or signed cookies, you cannot use the private key
from your key pair in the default PEM format to create the signature. Instead, do the following:

• .NET framework – Convert the private key to the XML format that the .NET framework uses.
Several tools are available.

• Java – Convert the private key to DER format. One way to do this is with the following OpenSSL
command. In the following command, private_key.pem is the name of the file that contains
the PEM-formatted private key, and private_key.der is the name of the file that contains the
DER-formatted private key after you run the command.

openssl pkcs8 -topk8 -nocrypt -in private_key.pem -inform PEM -out private_key.der -
outform DER

To ensure that the encoder works correctly, add the JAR for the Bouncy Castle Java cryptography
APIs to your project and then add the Bouncy Castle provider.

Specifying signers 287

Amazon CloudFront Developer Guide

Adding a signer to a distribution

A signer is the trusted key group (recommended) or CloudFront key pair that can create signed
URLs and signed cookies for a distribution. To use signed URLs or signed cookies with a CloudFront
distribution, you must specify a signer.

Signers are associated with cache behaviors. This allows you to require signed URLs or signed
cookies for some files and not for others in the same distribution. A distribution requires signed
URLs or cookies only for files that are associated with the corresponding cache behaviors.

Similarly, a signer can only sign URLs or cookies for files that are associated with the corresponding
cache behaviors. For example, if you have one signer for one cache behavior and a different signer
for a different cache behavior, neither signer can create signed URLs or cookies for files that are
associated with the other cache behavior.

Important

Before you add a signer to your distribution, do the following:

• Define the path patterns in cache behaviors and the sequence of cache behaviors
carefully so you don’t give users unintended access to your content or prevent them from
accessing content that you want to be available to everyone.

For example, suppose a request matches the path pattern for two cache behaviors. The
first cache behavior does not require signed URLs or signed cookies and the second cache
behavior does. Users will be able to access the files without using signed URLs or signed
cookies because CloudFront processes the cache behavior that is associated with the first
match.

For more information about path patterns, see Path pattern.

• For a distribution that you’re already using to distribute content, make sure you’re ready
to start generating signed URLs and signed cookies before you add a signer. When you
add a signer, CloudFront rejects requests that don’t include a valid signed URL or signed
cookie.

You can add signers to your distribution using either the CloudFront console or the CloudFront API.

Topics

Specifying signers 288

Amazon CloudFront Developer Guide

• Adding a signer to a distribution using the CloudFront console

• Adding a signer to a distribution using the CloudFront API

Adding a signer to a distribution using the CloudFront console

The following steps show how to add a trusted key group as a signer. You can also add an AWS
account as a trusted signer, but it’s not recommended.

To add a signer to a distribution using the console

1. Record the key group ID of the key group that you want to use as a trusted signer. For more
information, see Create a key pair for a trusted key group (recommended).

2. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

3. Choose the distribution whose files you want to protect with signed URLs or signed cookies.

Note

To add a signer to a new distribution, you specify the same settings that are described
in step 6 when you create the distribution.

4. Choose the Behaviors tab.

5. Select the cache behavior whose path pattern matches the files that you want to protect with
signed URLs or signed cookies, and then choose Edit.

6. On the Edit Behavior page, do the following:

a. For Restrict Viewer Access (Use Signed URLs or Signed Cookies), choose Yes.

b. For Trusted Key Groups or Trusted Signer, choose Trusted Key Groups.

c. For Trusted Key Groups, choose the key group to add, and then choose Add. Repeat if you
want to add more than one key group.

7. Choose Yes, Edit to update the cache behavior.

Adding a signer to a distribution using the CloudFront API

You can use the CloudFront API to add a trusted key group as a signer. You can add a signer
to an existing distribution or to a new distribution. In either case, specify the values in the
TrustedKeyGroups element.

Specifying signers 289

https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

You can also add an AWS account as a trusted signer, but it’s not recommended.

See the following topics in the Amazon CloudFront API Reference:

• Update an existing distribution – UpdateDistribution

• Create a new distribution – CreateDistribution

Rotating key pairs

We recommend that you periodically rotate (change) your key pairs for signed URLs and signed
cookies. To rotate key pairs that you’re using to create signed URLs or signed cookies without
invalidating URLs or cookies that haven’t expired yet, do the following tasks:

1. Create a new key pair, and add the public key to a key group. For more information, see Create a
key pair for a trusted key group (recommended).

2. If you created a new key group in the previous step, add the key group to the distribution as a
signer.

Important

Don’t remove any existing public keys from the key group, or any key groups from the
distribution yet. Only add the new ones.

3. Update your application to create signatures using the private key from the new key pair.
Confirm that the signed URLs or cookies that are signed with the new private keys are working.

4. Wait until the expiration date has passed in URLs or cookies that were signed using the previous
private key. Then remove the old public key from the key group. If you created a new key group
in step 2, remove the old key group from your distribution.

Choosing between signed URLs and signed cookies

CloudFront signed URLs and signed cookies provide the same basic functionality: they allow you to
control who can access your content. If you want to serve private content through CloudFront and
you're trying to decide whether to use signed URLs or signed cookies, consider the following.

Use signed URLs in the following cases:

Choosing between signed URLs and signed cookies 290

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateDistribution.html

Amazon CloudFront Developer Guide

• You want to restrict access to individual files, for example, an installation download for your
application.

• Your users are using a client (for example, a custom HTTP client) that doesn't support cookies.

Use signed cookies in the following cases:

• You want to provide access to multiple restricted files, for example, all of the files for a video in
HLS format or all of the files in the subscribers' area of website.

• You don't want to change your current URLs.

If you are not currently using signed URLs, and if your (unsigned) URLs contain any of the following
query string parameters, you cannot use either signed URLs or signed cookies:

• Expires

• Policy

• Signature

• Key-Pair-Id

CloudFront assumes that URLs that contain any of those query string parameters are signed URLs,
and therefore won't look at signed cookies.

Using both signed URLs and signed cookies

Signed URLs take precedence over signed cookies. If you use both signed URLs and signed cookies
to control access to the same files and a viewer uses a signed URL to request a file, CloudFront
determines whether to return the file to the viewer based only on the signed URL.

Using signed URLs

Topics

• Choosing between canned and custom policies for signed URLs

• How signed URLs work

• Choosing how long signed URLs are valid

• When does CloudFront check the expiration date and time in a signed URL?

• Example code and third-party tools

Using signed URLs 291

Amazon CloudFront Developer Guide

• Creating a signed URL using a canned policy

• Creating a signed URL using a custom policy

A signed URL includes additional information, for example, an expiration date and time, that gives
you more control over access to your content. This additional information appears in a policy
statement, which is based on either a canned policy or a custom policy. The differences between
canned and custom policies are explained in the next two sections.

Note

You can create some signed URLs using canned policies and create some signed URLs using
custom policies for the same distribution.

Choosing between canned and custom policies for signed URLs

When you create a signed URL, you write a policy statement in JSON format that specifies the
restrictions on the signed URL, for example, how long the URL is valid. You can use either a canned
policy or a custom policy. Here's how canned and custom policies compare:

Description Canned policy Custom policy

You can reuse the policy statement for multiple
files. To reuse the policy statement, you must use
wildcard characters in the Resource object. For
more information, see Values that you specify in
 the policy statement for a signed URL that uses a
custom policy.)

No Yes

You can specify the date and time that users can
begin to access your content.

No Yes (optional)

You can specify the date and time that users can no
longer access your content.

Yes Yes

You can specify the IP address or range of IP
addresses of the users who can access your content.

No Yes (optional)

Using signed URLs 292

Amazon CloudFront Developer Guide

Description Canned policy Custom policy

The signed URL includes a base64-encoded version
of the policy, which results in a longer URL.

No Yes

For information about creating signed URLs using a canned policy, see Creating a signed URL using
a canned policy.

For information about creating signed URLs using a custom policy, see Creating a signed URL using
a custom policy.

How signed URLs work

Here's an overview of how you configure CloudFront and Amazon S3 for signed URLs and how
CloudFront responds when a user uses a signed URL to request a file.

1. In your CloudFront distribution, specify one or more trusted key groups, which contain the
public keys that CloudFront can use to verify the URL signature. You use the corresponding
private keys to sign the URLs.

For more information, see Specifying the signers that can create signed URLs and signed
cookies.

2. Develop your application to determine whether a user should have access to your content and
to create signed URLs for the files or parts of your application that you want to restrict access
to. For more information, see the following topics:

• Creating a signed URL using a canned policy

• Creating a signed URL using a custom policy

3. A user requests a file for which you want to require signed URLs.

4. Your application verifies that the user is entitled to access the file: they've signed in, they've
paid for access to the content, or they've met some other requirement for access.

5. Your application creates and returns a signed URL to the user.

6. The signed URL allows the user to download or stream the content.

This step is automatic; the user usually doesn't have to do anything additional to access the
content. For example, if a user is accessing your content in a web browser, your application

Using signed URLs 293

Amazon CloudFront Developer Guide

returns the signed URL to the browser. The browser immediately uses the signed URL to access
the file in the CloudFront edge cache without any intervention from the user.

7. CloudFront uses the public key to validate the signature and confirm that the URL hasn't been
tampered with. If the signature is invalid, the request is rejected.

If the signature is valid, CloudFront looks at the policy statement in the URL (or constructs one
if you're using a canned policy) to confirm that the request is still valid. For example, if you
specified a beginning and ending date and time for the URL, CloudFront confirms that the user
is trying to access your content during the time period that you want to allow access.

If the request meets the requirements in the policy statement, CloudFront does the standard
operations: determines whether the file is already in the edge cache, forwards the request to
the origin if necessary, and returns the file to the user.

Note

If an unsigned URL contains query string parameters, make sure you include them in the
portion of the URL that you sign. If you add a query string to a signed URL after signing it,
the URL returns an HTTP 403 status.

Choosing how long signed URLs are valid

You can distribute private content using a signed URL that is valid for only a short time—possibly
for as little as a few minutes. Signed URLs that are valid for such a short period are good for
distributing content on-the-fly to a user for a specific purpose, such as distributing movie rentals or
music downloads to customers on demand. If your signed URLs will be valid for just a short period,
you'll probably want to generate them automatically using an application that you develop. When
the user starts to download a file or starts to play a media file, CloudFront compares the expiration
time in the URL with the current time to determine whether the URL is still valid.

You can also distribute private content using a signed URL that is valid for a longer time, possibly
for years. Signed URLs that are valid for a longer period are useful for distributing private content
to known users, such as distributing a business plan to investors or distributing training materials
to employees. You can develop an application to generate these longer-term signed URLs for you.

Using signed URLs 294

Amazon CloudFront Developer Guide

When does CloudFront check the expiration date and time in a signed URL?

CloudFront checks the expiration date and time in a signed URL at the time of the HTTP request.
If a client begins to download a large file immediately before the expiration time, the download
should complete even if the expiration time passes during the download. If the TCP connection
drops and the client tries to restart the download after the expiration time passes, the download
will fail.

If a client uses Range GETs to get a file in smaller pieces, any GET request that occurs after the
expiration time passes will fail. For more information about Range GETs, see How CloudFront
processes partial requests for an object (range GETs).

Example code and third-party tools

For example code that creates the hashed and signed part of signed URLs, see the following topics:

• Create a URL signature using Perl

• Create a URL signature using PHP

• Create a URL signature using C# and the .NET Framework

• Create a URL signature using Java

Creating a signed URL using a canned policy

To create a signed URL using a canned policy, complete the following steps.

To create a signed URL using a canned policy

1. If you're using .NET or Java to create signed URLs, and if you haven't reformatted the private
key for your key pair from the default .pem format to a format compatible with .NET or with
Java, do so now. For more information, see Reformatting the private key (.NET and Java only).

2. Concatenate the following values in the specified order, and remove the white space (including
tabs and newline characters) between the parts. You might have to include escape characters
in the string in application code. All values have a type of String. Each part is keyed by number

()
to the two examples that follow.

Using signed URLs 295

Amazon CloudFront Developer Guide

Base URL for the file

The base URL is the CloudFront URL that you would use to access the file if you were
not using signed URLs, including your own query string parameters, if any. For more
information about the format of URLs for distributions, see Customizing the URL format for
files in CloudFront.

• The following CloudFront URL is for an image file in a distribution (using the CloudFront
domain name). Note that image.jpg is in an images directory. The path to the file
in the URL must match the path to the file on your HTTP server or in your Amazon S3
bucket.

https://d111111abcdef8.cloudfront.net/images/image.jpg

• The following CloudFront URL includes a query string:

https://d111111abcdef8.cloudfront.net/images/image.jpg?size=large

• The following CloudFront URLs are for image files in a distribution. Both use an alternate
domain name; the second one includes a query string:

https://www.example.com/images/image.jpg

https://www.example.com/images/image.jpg?color=red

• The following CloudFront URL is for an image file in a distribution that uses an alternate
domain name and the HTTPS protocol:

https://www.example.com/images/image.jpg

?

The ? indicates that query string parameters follow the base URL. Include the ? even if you
don't have any query string parameters of your own.

Your query string parameters, if any&

This value is optional. If you want to add your own query string parameters, for example:

color=red&size=medium
Using signed URLs 296

Amazon CloudFront Developer Guide

then add the parameters after the ? (see

)
and before the Expires parameter. In certain rare circumstances, you might need to put
your query string parameters after Key-Pair-Id.

Important

Your parameters cannot be named Expires, Signature, or Key-Pair-Id.

If you add your own parameters, append an & after each one, including the last one.

Expires=date and time in Unix time format (in seconds) and Coordinated
Universal Time (UTC)

The date and time that you want the URL to stop allowing access to the file.

Specify the expiration date and time in Unix time format (in seconds) and Coordinated
Universal Time (UTC). For example, January 1, 2013 10:00 am UTC converts to 1357034400
in Unix time format. To use epoch time, use a 32-bit integer for a date that's no later than
2147483647 (January 19th, 2038 at 03:14:07 UTC). For information about UTC, see RFC
3339, Date and Time on the Internet: Timestamps, https://tools.ietf.org/html/rfc3339.

&Signature=hashed and signed version of the policy statement

A hashed, signed, and base64-encoded version of the JSON policy statement. For more
information, see Creating a signature for a signed URL that uses a canned policy.

&Key-Pair-Id=public key ID for the CloudFront public key whose
corresponding private key you're using to generate the signature

The ID for a CloudFront public key, for example, K2JCJMDEHXQW5F. The public key ID tells
CloudFront which public key to use to validate the signed URL. CloudFront compares the
information in the signature with the information in the policy statement to verify that the
URL has not been tampered with.

Using signed URLs 297

https://tools.ietf.org/html/rfc3339

Amazon CloudFront Developer Guide

This public key must belong to a key group that is a trusted signer in the distribution.
For more information, see Specifying the signers that can create signed URLs and signed
cookies.

Example signed URL:

https://
d111111abcdef8.cloudfront.net/image.jpg

?

color=red&size=medium&

Expires=1357034400

&Signature=nitfHRCrtziwO2HwPfWw~yYDhUF5EwRunQA-j19DzZrvDh6hQ73lDx~-
ar3UocvvRQVw6EkC~GdpGQyyOSKQim-
TxAnW7d8F5Kkai9HVx0FIu-5jcQb0UEmatEXAMPLE3ReXySpLSMj0yCd3ZAB4UcBCAqEijkytL6f3fVYNGQI6

&Key-Pair-Id=K2JCJMDEHXQW5F

Creating a signature for a signed URL that uses a canned policy

To create the signature for a signed URL that uses a canned policy, you do the following
procedures:

1. Create a policy statement. See Creating a policy statement for a signed URL that uses a canned
policy.

2. Sign the policy statement to create a signature. See Creating a signature for a signed URL that
uses a canned policy.

Creating a policy statement for a signed URL that uses a canned policy

When you create a signed URL using a canned policy, the Signature parameter is a hashed and
signed version of a policy statement. For signed URLs that use a canned policy, you don't include

Using signed URLs 298

Amazon CloudFront Developer Guide

the policy statement in the URL, as you do for signed URLs that use a custom policy. To create the
policy statement, do the following procedure.

To create the policy statement for a signed URL that uses a canned policy

1. Construct the policy statement using the following JSON format and using UTF-8 character
encoding. Include all punctuation and other literal values exactly as specified. For information
about the Resource and DateLessThan parameters, see Values that you specify in the policy
statement for a signed URL that uses a canned policy.

{
 "Statement": [
 {
 "Resource": "base URL or stream name",
 "Condition": {
 "DateLessThan": {
 "AWS:EpochTime": ending date and time in Unix time format and
 UTC
 }
 }
 }
]
}

2. Remove all white space (including tabs and newline characters) from the policy statement. You
might have to include escape characters in the string in application code.

Values that you specify in the policy statement for a signed URL that uses a canned policy

When you create a policy statement for a canned policy, you specify the following values.

Resource

Note

You can specify only one value for Resource.

The base URL including your query strings, if any, but excluding the CloudFront Expires,
Signature, and Key-Pair-Id parameters, for example:

Using signed URLs 299

Amazon CloudFront Developer Guide

https://d111111abcdef8.cloudfront.net/images/horizon.jpg?
size=large&license=yes

Note the following:

• Protocol – The value must begin with http:// or https://.

• Query string parameters – If you have no query string parameters, omit the question mark.

• Alternate domain names – If you specify an alternate domain name (CNAME) in the URL,
you must specify the alternate domain name when referencing the file in your webpage or
application. Do not specify the Amazon S3 URL for the object.

DateLessThan

The expiration date and time for the URL in Unix time format (in seconds) and Coordinated
Universal Time (UTC). For example, January 1, 2013 10:00 am UTC converts to 1357034400 in
Unix time format.

This value must match the value of the Expires query string parameter in the signed URL. Do
not enclose the value in quotation marks.

For more information, see When does CloudFront check the expiration date and time in a signed
URL?.

Example policy statement for a signed URL that uses a canned policy

When you use the following example policy statement in a signed URL, a user can access the file
https://d111111abcdef8.cloudfront.net/horizon.jpg until January 1, 2013 10:00 am
UTC:

{
 "Statement": [
 {
 "Resource": "https://d111111abcdef8.cloudfront.net/horizon.jpg?
size=large&license=yes",
 "Condition": {
 "DateLessThan": {
 "AWS:EpochTime": 1357034400
 }
 }
 }
]

Using signed URLs 300

Amazon CloudFront Developer Guide

}

Creating a signature for a signed URL that uses a canned policy

To create the value for the Signature parameter in a signed URL, you hash and sign the policy
statement that you created in Creating a policy statement for a signed URL that uses a canned
policy.

For additional information and examples of how to hash, sign, and encode the policy statement,
see:

• Using Linux commands and OpenSSL for base64 encoding and encryption

• Code examples for creating a signature for a signed URL

Option 1: To create a signature by using a canned policy

1. Use the SHA-1 hash function and RSA to hash and sign the policy statement that you created
in the procedure To create the policy statement for a signed URL that uses a canned policy.
Use the version of the policy statement that no longer includes white space.

For the private key that is required by the hash function, use a private key whose public key is
in an active trusted key group for the distribution.

Note

The method that you use to hash and sign the policy statement depends on your
programming language and platform. For sample code, see Code examples for creating
a signature for a signed URL.

2. Remove white space (including tabs and newline characters) from the hashed and signed
string.

3. Base64-encode the string using MIME base64 encoding. For more information, see Section 6.8,
Base64 Content-Transfer-Encoding in RFC 2045, MIME (Multipurpose Internet Mail Extensions)
Part One: Format of Internet Message Bodies.

4. Replace characters that are invalid in a URL query string with characters that are valid. The
following table lists invalid and valid characters.

Using signed URLs 301

https://tools.ietf.org/html/rfc2045#section-6.8
https://tools.ietf.org/html/rfc2045#section-6.8

Amazon CloudFront Developer Guide

Replace these invalid characters With these valid characters

+ - (hyphen)

= _ (underscore)

/ ~ (tilde)

5. Append the resulting value to your signed URL after &Signature=, and return to To create a
signed URL using a canned policy to finish concatenating the parts of your signed URL.

Creating a signed URL using a custom policy

Topics

• Creating a policy statement for a signed URL that uses a custom policy

• Example policy statements for a signed URL that uses a custom policy

• Creating a signature for a signed URL that uses a custom policy

To create a signed URL using a custom policy, do the following procedure.

To create a signed URL using a custom policy

1. If you're using .NET or Java to create signed URLs, and if you haven't reformatted the private
key for your key pair from the default .pem format to a format compatible with .NET or with
Java, do so now. For more information, see Reformatting the private key (.NET and Java only).

2. Concatenate the following values in the specified order, and remove the white space (including
tabs and newline characters) between the parts. You might have to include escape characters
in the string in application code. All values have a type of String. Each part is keyed by number

()
to the two examples that follow.

Base URL for the file

The base URL is the CloudFront URL that you would use to access the file if you were
not using signed URLs, including your own query string parameters, if any. For more

Using signed URLs 302

Amazon CloudFront Developer Guide

information about the format of URLs for distributions, see Customizing the URL format for
files in CloudFront.

The following examples show values that you specify for distributions.

• The following CloudFront URL is for an image file in a distribution (using the CloudFront
domain name). Note that image.jpg is in an images directory. The path to the file
in the URL must match the path to the file on your HTTP server or in your Amazon S3
bucket.

https://d111111abcdef8.cloudfront.net/images/image.jpg

• The following CloudFront URL includes a query string:

https://d111111abcdef8.cloudfront.net/images/image.jpg?size=large

• The following CloudFront URLs are for image files in a distribution. Both use an alternate
domain name; the second one includes a query string:

https://www.example.com/images/image.jpg

https://www.example.com/images/image.jpg?color=red

• The following CloudFront URL is for an image file in a distribution that uses an alternate
domain name and the HTTPS protocol:

https://www.example.com/images/image.jpg

?

The ? indicates that query string parameters follow the base URL. Include the ? even if you
don't have any query string parameters of your own.

Your query string parameters, if any&

This value is optional. If you want to add your own query string parameters, for example:

color=red&size=medium

then add them after the ? (see

)

Using signed URLs 303

Amazon CloudFront Developer Guide

and before the Policy parameter. In certain rare circumstances, you might need to put
your query string parameters after Key-Pair-Id.

Important

Your parameters cannot be named Policy, Signature, or Key-Pair-Id.

If you add your own parameters, append an & after each one, including the last one.

Policy=base64 encoded version of policy statement

Your policy statement in JSON format, with white space removed, then base64 encoded.
For more information, see Creating a policy statement for a signed URL that uses a custom
policy.

The policy statement controls the access that a signed URL grants to a user. It includes
the URL of the file, an expiration date and time, an optional date and time that the URL
becomes valid, and an optional IP address or range of IP addresses that are allowed to
access the file.

&Signature=hashed and signed version of the policy statement

A hashed, signed, and base64-encoded version of the JSON policy statement. For more
information, see Creating a signature for a signed URL that uses a custom policy.

&Key-Pair-Id=public key ID for the CloudFront public key whose
corresponding private key you're using to generate the signature

The ID for a CloudFront public key, for example, K2JCJMDEHXQW5F. The public key ID tells
CloudFront which public key to use to validate the signed URL. CloudFront compares the
information in the signature with the information in the policy statement to verify that the
URL has not been tampered with.

This public key must belong to a key group that is a trusted signer in the distribution.
For more information, see Specifying the signers that can create signed URLs and signed
cookies.

Using signed URLs 304

Amazon CloudFront Developer Guide

Example signed URL:

https://
d111111abcdef8.cloudfront.net/image.jpg

?

color=red&size=medium&

Policy=eyANCiAgICEXAMPLEW1lbnQiOiBbeyANCiAgICAgICJSZXNvdXJjZSI6Imh0dHA
6Ly9kemJlc3FtN3VuMW0wLmNsb3VkZnJvbnQubmV0L2RlbW8ucGhwIiwgDQogICAgICAiQ
29uZGl0aW9uIjp7IA0KICAgICAgICAgIklwQWRkcmVzcyI6eyJBV1M6U291cmNlSXAiOiI
yMDcuMTcxLjE4MC4xMDEvMzIifSwNCiAgICAgICAgICJEYXRlR3JlYXRlclRoYW4iOnsiQ
VdTOkVwb2NoVGltZSI6MTI5Njg2MDE3Nn0sDQogICAgICAgICAiRGF0ZUxlc3NUaGFuIjp
7IkFXUzpFcG9jaFRpbWUiOjEyOTY4NjAyMjZ9DQogICAgICB9IA0KICAgfV0gDQp9DQo

&Signature=nitfHRCrtziwO2HwPfWw~yYDhUF5EwRunQA-
j19DzZrvDh6hQ73lDx~ -ar3UocvvRQVw6EkC~GdpGQyyOSKQim-
TxAnW7d8F5Kkai9HVx0FIu-5jcQb0UEmat
EXAMPLE3ReXySpLSMj0yCd3ZAB4UcBCAqEijkytL6f3fVYNGQI6

&Key-
Pair-Id=K2JCJMDEHXQW5F

Creating a policy statement for a signed URL that uses a custom policy

Complete the following steps to create a policy statement for a signed URL that uses a custom
policy.

For example policy statements that control access to files in a variety of ways, see the section
called “Example policy statements for a signed URL that uses a custom policy”.

To create the policy statement for a signed URL that uses a custom policy

1. Construct the policy statement using the following JSON format. Replace the less than (<)
and greater than (>) symbols, and the descriptions within them, with your own values. For
more information, see the section called “Values that you specify in the policy statement for a
signed URL that uses a custom policy”.

{
 "Statement": [
 {
 "Resource": "<Optional but recommended: URL of the file>",
 "Condition": {

Using signed URLs 305

Amazon CloudFront Developer Guide

 "DateLessThan": {
 "AWS:EpochTime": <Required: ending date and time in Unix time
 format and UTC>
 },
 "DateGreaterThan": {
 "AWS:EpochTime": <Optional: beginning date and time in Unix time
 format and UTC>
 },
 "IpAddress": {
 "AWS:SourceIp": "<Optional: IP address>"
 }
 }
 }
]
}

Note the following:

• You can include only one statement in the policy.

• Use UTF-8 character encoding.

• Include all punctuation and parameter names exactly as specified. Abbreviations for
parameter names are not accepted.

• The order of the parameters in the Condition section doesn't matter.

• For information about the values for Resource, DateLessThan, DateGreaterThan, and
IpAddress, see the section called “Values that you specify in the policy statement for a
signed URL that uses a custom policy”.

2. Remove all white space (including tabs and newline characters) from the policy statement. You
might have to include escape characters in the string in application code.

3. Base64-encode the policy statement using MIME base64 encoding. For more information, see
Section 6.8, Base64 Content-Transfer-Encoding in RFC 2045, MIME (Multipurpose Internet Mail
Extensions) Part One: Format of Internet Message Bodies.

4. Replace characters that are invalid in a URL query string with characters that are valid. The
following table lists invalid and valid characters.

Replace these invalid characters With these valid characters

+ - (hyphen)

Using signed URLs 306

https://tools.ietf.org/html/rfc2045#section-6.8

Amazon CloudFront Developer Guide

Replace these invalid characters With these valid characters

= _ (underscore)

/ ~ (tilde)

5. Append the resulting value to your signed URL after Policy=.

6. Create a signature for the signed URL by hashing, signing, and base64-encoding the policy
statement. For more information, see the section called “Creating a signature for a signed URL
that uses a custom policy”.

Values that you specify in the policy statement for a signed URL that uses a custom policy

When you create a policy statement for a custom policy, you specify the following values.

Resource

The URL, including any query strings, but excluding the CloudFront Policy, Signature, and
Key-Pair-Id parameters. For example:

https://d111111abcdef8.cloudfront.net/images/horizon.jpg\?
size=large&license=yes

You can specify only one URL value for Resource.

Important

You can omit the Resource parameter in a policy, but doing so means that anyone with
the signed URL can access all of the files in any distribution that is associated with the
key pair that you use to create the signed URL.

Note the following:

• Protocol – The value must begin with http://, https://, or *://.

• Query string parameters – If the URL has query string parameters, use a backslash character
(\) to escape the question mark character (?) that begins the query string. For example:

https://d111111abcdef8.cloudfront.net/images/horizon.jpg\?
size=large&license=yes

Using signed URLs 307

Amazon CloudFront Developer Guide

• Wildcard characters – You can use wildcard characters in the URL in the policy. The following
wildcard characters are supported:

• asterisk (*), which matches zero or more characters

• question mark (?), which matches exactly one character

When CloudFront matches the URL in the policy to the URL in the HTTP request, the URL in
the policy is divided into four sections—protocol, domain, path, and query string—as follows:

[protocol]://[domain]/[path]\?[query string]

When you use a wildcard character in the URL in the policy, the wildcard matching applies
only within the boundaries of the section that contains the wildcard. For example, consider
this URL in a policy:

https://www.example.com/hello*world

In this example, the asterisk wildcard (*) only applies within the path section, so it matches
the URLs https://www.example.com/helloworld and https://www.example.com/
hello-world, but it does not match the URL https://www.example.net/hello?world.

The following exceptions apply to the section boundaries for wildcard matching:

• A trailing asterisk in the path section implies an asterisk in the query string section. For
example, http://example.com/hello* is equivalent to http://example.com/
hello*\?*.

• A trailing asterisk in the domain section implies an asterisk in both the path and query
string sections. For example, http://example.com* is equivalent to http://
example.com*/*\?*.

• A URL in the policy can omit the protocol section and start with an asterisk in the domain
section. In that case, the protocol section is implicitly set to an asterisk. For example, the
URL *example.com in a policy is equivalent to *://*example.com/.

• An asterisk by itself ("Resource": "*") matches any URL.

For example, the value: https://d111111abcdef8.cloudfront.net/
game_download.zip in a policy matches all of the following URLs:

• https://d111111abcdef8.cloudfront.net/game_download.zip

• https://d111111abcdef8.cloudfront.net/example_game_download.zip?
license=yes

Using signed URLs 308

Amazon CloudFront Developer Guide

• https://d111111abcdef8.cloudfront.net/test_game_download.zip?
license=temp

• Alternate domain names – If you specify an alternate domain name (CNAME) in the URL
in the policy, the HTTP request must use the alternate domain name in your webpage or
application. Do not specify the Amazon S3 URL for the file in a policy.

DateLessThan

The expiration date and time for the URL in Unix time format (in seconds) and Coordinated
Universal Time (UTC). In the policy, do not enclose the value in quotation marks. For
information about UTC, see Date and Time on the Internet: Timestamps.

For example, January 31, 2023 10:00 AM UTC converts to 1675159200 in Unix time format.

This is the only required parameter in the Condition section. CloudFront requires this value to
prevent users from having permanent access to your private content.

For more information, see the section called “When does CloudFront check the expiration date
and time in a signed URL?”

DateGreaterThan (Optional)

An optional start date and time for the URL in Unix time format (in seconds) and Coordinated
Universal Time (UTC). Users are not allowed to access the file on or before the specified date
and time. Do not enclose the value in quotation marks.

IpAddress (Optional)

The IP address of the client making the HTTP request. Note the following:

• To allow any IP address to access the file, omit the IpAddress parameter.

• You can specify either one IP address or one IP address range. You can't use the policy to
allow access if the client's IP address is in one of two separate ranges.

• To allow access from a single IP address, you specify:

"IPv4 IP address/32"

• You must specify IP address ranges in standard IPv4 CIDR format (for example,
192.0.2.0/24). For more information, see Classless Inter-domain Routing (CIDR): The
Internet Address Assignment and Aggregation Plan.

Using signed URLs 309

https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc4632
https://tools.ietf.org/html/rfc4632

Amazon CloudFront Developer Guide

Important

IP addresses in IPv6 format, such as 2001:0db8:85a3::8a2e:0370:7334, are not
supported.

If you're using a custom policy that includes IpAddress, do not enable IPv6 for the
distribution. If you want to restrict access to some content by IP address and support IPv6
requests for other content, you can create two distributions. For more information, see the
section called “Enable IPv6” in the topic the section called “Values that you specify”.

Example policy statements for a signed URL that uses a custom policy

The following example policy statements show how to control access to a specific file, all of the
files in a directory, or all of the files associated with a key pair ID. The examples also show how to
control access from an individual IP address or a range of IP addresses, and how to prevent users
from using the signed URL after a specified date and time.

If you copy and paste any of these examples, remove any white space (including tabs and newline
characters), replace the values with your own values, and include a newline character after the
closing brace (}).

For more information, see the section called “Values that you specify in the policy statement for a
signed URL that uses a custom policy”.

Topics

• Example policy statement: accessing one file from a range of IP addresses

• Example policy statement: accessing all files in a directory from a range of IP addresses

• Example policy statement: accessing all files associated with a key pair ID from one IP address

Example policy statement: accessing one file from a range of IP addresses

The following example custom policy in a signed URL specifies that a user can access the file
https://d111111abcdef8.cloudfront.net/game_download.zip from IP addresses in the
range 192.0.2.0/24 until January 31, 2023 10:00 AM UTC:

{

Using signed URLs 310

Amazon CloudFront Developer Guide

 "Statement": [
 {
 "Resource": "https://d111111abcdef8.cloudfront.net/game_download.zip",
 "Condition": {
 "IpAddress": {
 "AWS:SourceIp": "192.0.2.0/24"
 },
 "DateLessThan": {
 "AWS:EpochTime": 1675159200
 }
 }
 }
]
}

Example policy statement: accessing all files in a directory from a range of IP addresses

The following example custom policy allows you to create signed URLs for any file in the
training directory, as indicated by the asterisk wildcard character (*) in the Resource
parameter. Users can access the file from an IP address in the range 192.0.2.0/24 until January
31, 2023 10:00 AM UTC:

{
 "Statement": [
 {
 "Resource": "https://d111111abcdef8.cloudfront.net/training/*",
 "Condition": {
 "IpAddress": {
 "AWS:SourceIp": "192.0.2.0/24"
 },
 "DateLessThan": {
 "AWS:EpochTime": 1675159200
 }
 }
 }
]
}

Each signed URL with which you use this policy has a URL that identifies a specific file, for example:

https://d111111abcdef8.cloudfront.net/training/orientation.pdf

Using signed URLs 311

Amazon CloudFront Developer Guide

Example policy statement: accessing all files associated with a key pair ID from one IP address

The following example custom policy allows you to create signed URLs for any file associated with
any distribution, as indicated by the asterisk wildcard character (*) in the Resource parameter.
The signed URL must use the https:// protocol, not http://. The user must use the IP address
192.0.2.10/32. (The value 192.0.2.10/32 in CIDR notation refers to a single IP address,
192.0.2.10.) The files are available only from January 31, 2023 10:00 AM UTC until February 2,
2023 10:00 AM UTC:

{
 "Statement": [
 {
 "Resource": "https://*",
 "Condition": {
 "IpAddress": {
 "AWS:SourceIp": "192.0.2.10/32"
 },
 "DateGreaterThan": {
 "AWS:EpochTime": 1675159200
 },
 "DateLessThan": {
 "AWS:EpochTime": 1675332000
 }
 }
 }
]
}

Each signed URL with which you use this policy has a URL that identifies a specific file in a specific
CloudFront distribution, for example:

https://d111111abcdef8.cloudfront.net/training/orientation.pdf

The signed URL also includes a key pair ID, which must be associated with a trusted key group in
the distribution (d111111abcdef8.cloudfront.net) that you specify in the URL.

Creating a signature for a signed URL that uses a custom policy

The signature for a signed URL that uses a custom policy is a hashed, signed, and base64-encoded
version of the policy statement. To create a signature for a custom policy, complete the following
steps.

Using signed URLs 312

Amazon CloudFront Developer Guide

For additional information and examples of how to hash, sign, and encode the policy statement,
see:

• Using Linux commands and OpenSSL for base64 encoding and encryption

• Code examples for creating a signature for a signed URL

Option 1: To create a signature by using a custom policy

1. Use the SHA-1 hash function and RSA to hash and sign the JSON policy statement that you
created in the procedure To create the policy statement for a signed URL that uses a custom
policy. Use the version of the policy statement that no longer includes white space but that
has not yet been base64-encoded.

For the private key that is required by the hash function, use a private key whose public key is
in an active trusted key group for the distribution.

Note

The method that you use to hash and sign the policy statement depends on your
programming language and platform. For sample code, see Code examples for creating
a signature for a signed URL.

2. Remove white space (including tabs and newline characters) from the hashed and signed
string.

3. Base64-encode the string using MIME base64 encoding. For more information, see Section 6.8,
Base64 Content-Transfer-Encoding in RFC 2045, MIME (Multipurpose Internet Mail Extensions)
Part One: Format of Internet Message Bodies.

4. Replace characters that are invalid in a URL query string with characters that are valid. The
following table lists invalid and valid characters.

Replace these invalid characters With these valid characters

+ - (hyphen)

= _ (underscore)

/ ~ (tilde)

Using signed URLs 313

https://tools.ietf.org/html/rfc2045#section-6.8
https://tools.ietf.org/html/rfc2045#section-6.8

Amazon CloudFront Developer Guide

5. Append the resulting value to your signed URL after &Signature=, and return to To create a
signed URL using a custom policy to finish concatenating the parts of your signed URL.

Using signed cookies

CloudFront signed cookies allow you to control who can access your content when you don't want
to change your current URLs or when you want to provide access to multiple restricted files, for
example, all of the files in the subscribers' area of a website. This topic explains the considerations
when using signed cookies and describes how to set signed cookies using canned and custom
policies.

Topics

• Choosing between canned and custom policies for signed cookies

• How signed cookies work

• Preventing misuse of signed cookies

• When does CloudFront check the expiration date and time in a signed cookie?

• Sample code and third-party tools

• Setting signed cookies using a canned policy

• Setting signed cookies using a custom policy

Choosing between canned and custom policies for signed cookies

When you create a signed cookie, you write a policy statement in JSON format that specifies the
restrictions on the signed cookie, for example, how long the cookie is valid. You can use canned
policies or custom policies. The following table compares canned and custom policies:

Description Canned policy Custom policy

You can reuse the policy statement for multiple
files. To reuse the policy statement, you must use
wildcard characters in the Resource object. For
more information, see Values that you specify in
the policy statement for a custom policy for signed
cookies.)

No Yes

Using signed cookies 314

Amazon CloudFront Developer Guide

Description Canned policy Custom policy

You can specify the date and time that users can
begin to access your content

No Yes (optional)

You can specify the date and time that users can no
longer access your content

Yes Yes

You can specify the IP address or range of IP
addresses of the users who can access your content

No Yes (optional)

For information about creating signed cookies using a canned policy, see Setting signed cookies
using a canned policy.

For information about creating signed cookies using a custom policy, see Setting signed cookies
using a custom policy.

How signed cookies work

Here's an overview of how you configure CloudFront for signed cookies and how CloudFront
responds when a user submits a request that contains a signed cookie.

1. In your CloudFront distribution, specify one or more trusted key groups, which contain the
public keys that CloudFront can use to verify the URL signature. You use the corresponding
private keys to sign the URLs.

For more information, see Specifying the signers that can create signed URLs and signed
cookies.

2. You develop your application to determine whether a user should have access to your content
and, if so, to send three Set-Cookie headers to the viewer. (Each Set-Cookie header can
contain only one name-value pair, and a CloudFront signed cookie requires three name-value
pairs.) You must send the Set-Cookie headers to the viewer before the viewer requests
your private content. If you set a short expiration time on the cookie, you might also want to
send three more Set-Cookie headers in response to subsequent requests, so that the user
continues to have access.

Using signed cookies 315

Amazon CloudFront Developer Guide

Typically, your CloudFront distribution will have at least two cache behaviors, one that doesn't
require authentication and one that does. The error page for the secure portion of the site
includes a redirector or a link to a login page.

If you configure your distribution to cache files based on cookies, CloudFront doesn't cache
separate files based on the attributes in signed cookies.

3. A user signs in to your website and either pays for content or meets some other requirement
for access.

4. Your application returns the Set-Cookie headers in the response, and the viewer stores the
name-value pairs.

5. The user requests a file.

The user's browser or other viewer gets the name-value pairs from step 4 and adds them to
the request in a Cookie header. This is the signed cookie.

6. CloudFront uses the public key to validate the signature in the signed cookie and to confirm
that the cookie hasn't been tampered with. If the signature is invalid, the request is rejected.

If the signature in the cookie is valid, CloudFront looks at the policy statement in the cookie
(or constructs one if you're using a canned policy) to confirm that the request is still valid. For
example, if you specified a beginning and ending date and time for the cookie, CloudFront
confirms that the user is trying to access your content during the time period that you want to
allow access.

If the request meets the requirements in the policy statement, CloudFront serves your content
as it does for content that isn't restricted: it determines whether the file is already in the edge
cache, forwards the request to the origin if necessary, and returns the file to the user.

Preventing misuse of signed cookies

If you specify the Domain parameter in a Set-Cookie header, specify the most precise value
possible to reduce the potential for access by someone with the same root domain name. For
example, app.example.com is preferable to example.com, especially when you don't control
example.com. This helps prevent someone from accessing your content from www.example.com.

To help prevent this type of attack, do the following:

Using signed cookies 316

Amazon CloudFront Developer Guide

• Exclude the Expires and Max-Age cookie attributes, so that the Set-Cookie header creates
a session cookie. Session cookies are automatically deleted when the user closes the browser,
which reduces the possibility of someone getting unauthorized access to your content.

• Include the Secure attribute, so that the cookie is encrypted when a viewer includes it in a
request.

• When possible, use a custom policy and include the IP address of the viewer.

• In the CloudFront-Expires attribute, specify the shortest reasonable expiration time based
on how long you want users to have access to your content.

When does CloudFront check the expiration date and time in a signed cookie?

To determine whether a signed cookie is still valid, CloudFront checks the expiration date and
time in the cookie at the time of the HTTP request. If a client begins to download a large file
immediately before the expiration time, the download should complete even if the expiration
time passes during the download. If the TCP connection drops and the client tries to restart the
download after the expiration time passes, the download will fail.

If a client uses Range GETs to get a file in smaller pieces, any GET request that occurs after the
expiration time passes will fail. For more information about Range GETs, see How CloudFront
processes partial requests for an object (range GETs).

Sample code and third-party tools

The sample code for private content shows only how to create the signature for signed URLs.
However, the process for creating a signature for a signed cookie is very similar, so much of the
sample code is still relevant. For more information, see the following topics:

• Create a URL signature using Perl

• Create a URL signature using PHP

• Create a URL signature using C# and the .NET Framework

• Create a URL signature using Java

Setting signed cookies using a canned policy

To set a signed cookie by using a canned policy, complete the following steps. To create the
signature, see Creating a signature for a signed cookie that uses a canned policy.

Using signed cookies 317

Amazon CloudFront Developer Guide

To set a signed cookie using a canned policy

1. If you're using .NET or Java to create signed cookies, and if you haven't reformatted the private
key for your key pair from the default .pem format to a format compatible with .NET or with
Java, do so now. For more information, see Reformatting the private key (.NET and Java only).

2. Program your application to send three Set-Cookie headers to approved viewers. You need
three Set-Cookie headers because each Set-Cookie header can contain only one name-
value pair, and a CloudFront signed cookie requires three name-value pairs. The name-value
pairs are: CloudFront-Expires, CloudFront-Signature, and CloudFront-Key-Pair-
Id. The values must be present on the viewer before a user makes the first request for a file
that you want to control access to.

Note

In general, we recommend that you exclude Expires and Max-Age attributes.
Excluding the attributes causes the browser to delete the cookie when the user closes
the browser, which reduces the possibility of someone getting unauthorized access to
your content. For more information, see Preventing misuse of signed cookies.

The names of cookie attributes are case-sensitive.

Line breaks are included only to make the attributes more readable.

Set-Cookie:
CloudFront-Expires=date and time in Unix time format (in seconds) and Coordinated
 Universal Time (UTC);
Domain=optional domain name;
Path=/optional directory path;
Secure;
HttpOnly

Set-Cookie:
CloudFront-Signature=hashed and signed version of the policy statement;
Domain=optional domain name;
Path=/optional directory path;
Secure;
HttpOnly

Set-Cookie:

Using signed cookies 318

Amazon CloudFront Developer Guide

CloudFront-Key-Pair-Id=public key ID for the CloudFront public key whose
 corresponding private key you're using to generate the signature;
Domain=optional domain name;
Path=/optional directory path;
Secure;
HttpOnly

(Optional) Domain

The domain name for the requested file. If you don't specify a Domain attribute, the
default value is the domain name in the URL, and it applies only to the specified domain
name, not to subdomains. If you specify a Domain attribute, it also applies to subdomains.
A leading dot in the domain name (for example, Domain=.example.com) is optional. In
addition, if you specify a Domain attribute, the domain name in the URL and the value of
the Domain attribute must match.

You can specify the domain name that CloudFront assigned to your distribution, for
example, d111111abcdef8.cloudfront.net, but you can't specify *.cloudfront.net for the
domain name.

If you want to use an alternate domain name such as example.com in URLs, you must add
the alternate domain name to your distribution regardless of whether you specify the
Domain attribute. For more information, see Alternate domain names (CNAMEs) in the
topic Values that you specify when you create or update a distribution.

(Optional) Path

The path for the requested file. If you don't specify a Path attribute, the default value is
the path in the URL.

Secure

Requires that the viewer encrypt cookies before sending a request. We recommend that
you send the Set-Cookie header over an HTTPS connection to ensure that the cookie
attributes are protected from man-in-the-middle attacks.

HttpOnly

Requires that the viewer send the cookie only in HTTP or HTTPS requests.

Using signed cookies 319

Amazon CloudFront Developer Guide

CloudFront-Expires

Specify the expiration date and time in Unix time format (in seconds) and Coordinated
Universal Time (UTC). For example, January 1, 2013 10:00 am UTC converts to 1357034400
in Unix time format. To use epoch time, use a 32-bit integer for a date that's no later than
2147483647 (January 19th, 2038 at 03:14:07 UTC). For information about UTC, see RFC
3339, Date and Time on the Internet: Timestamps, https://tools.ietf.org/html/rfc3339.

CloudFront-Signature

A hashed, signed, and base64-encoded version of a JSON policy statement. For more
information, see Creating a signature for a signed cookie that uses a canned policy.

CloudFront-Key-Pair-Id

The ID for a CloudFront public key, for example, K2JCJMDEHXQW5F. The public key ID tells
CloudFront which public key to use to validate the signed URL. CloudFront compares the
information in the signature with the information in the policy statement to verify that the
URL has not been tampered with.

This public key must belong to a key group that is a trusted signer in the distribution.
For more information, see Specifying the signers that can create signed URLs and signed
cookies.

The following example shows Set-Cookie headers for one signed cookie when you're using the
domain name that is associated with your distribution in the URLs for your files:

Set-Cookie: CloudFront-Expires=1426500000; Domain=d111111abcdef8.cloudfront.net; Path=/
images/*; Secure; HttpOnly
Set-Cookie: CloudFront-Signature=yXrSIgyQoeE4FBI4eMKF6ho~CA8_;
 Domain=d111111abcdef8.cloudfront.net; Path=/images/*; Secure; HttpOnly
Set-Cookie: CloudFront-Key-Pair-Id=K2JCJMDEHXQW5F;
 Domain=d111111abcdef8.cloudfront.net; Path=/images/*; Secure; HttpOnly

The following example shows Set-Cookie headers for one signed cookie when you're using the
alternate domain name example.org in the URLs for your files:

Set-Cookie: CloudFront-Expires=1426500000; Domain=example.org; Path=/images/*; Secure;
 HttpOnly
Set-Cookie: CloudFront-Signature=yXrSIgyQoeE4FBI4eMKF6ho~CA8_; Domain=example.org;
 Path=/images/*; Secure; HttpOnly

Using signed cookies 320

https://tools.ietf.org/html/rfc3339

Amazon CloudFront Developer Guide

Set-Cookie: CloudFront-Key-Pair-Id=K2JCJMDEHXQW5F; Domain=example.org; Path=/images/*;
 Secure; HttpOnly

If you want to use an alternate domain name such as example.com in URLs, you must add the
alternate domain name to your distribution regardless of whether you specify the Domain
attribute. For more information, see Alternate domain names (CNAMEs) in the topic Values that
you specify when you create or update a distribution.

Creating a signature for a signed cookie that uses a canned policy

To create the signature for a signed cookie that uses a canned policy, do the following:

1. Create a policy statement. See Creating a policy statement for a signed cookie that uses a
canned policy.

2. Sign the policy statement to create a signature. See Signing the policy statement to create a
signature for a signed cookie that uses a canned policy.

Creating a policy statement for a signed cookie that uses a canned policy

When you set a signed cookie that uses a canned policy, the CloudFront-Signature attribute is
a hashed and signed version of a policy statement. For signed cookies that use a canned policy, you
don't include the policy statement in the Set-Cookie header, as you do for signed cookies that
use a custom policy. To create the policy statement, complete the following steps.

To create a policy statement for a signed cookie that uses a canned policy

1. Construct the policy statement using the following JSON format and using UTF-8 character
encoding. Include all punctuation and other literal values exactly as specified. For information
about the Resource and DateLessThan parameters, see Values that you specify in the policy
statement for a canned policy for signed cookies.

{
 "Statement": [
 {
 "Resource": "base URL or stream name",
 "Condition": {
 "DateLessThan": {
 "AWS:EpochTime": ending date and time in Unix time format and
 UTC
 }

Using signed cookies 321

Amazon CloudFront Developer Guide

 }
 }
]
}

2. Remove all white space (including tabs and newline characters) from the policy statement. You
might have to include escape characters in the string in application code.

Values that you specify in the policy statement for a canned policy for signed cookies

When you create a policy statement for a canned policy, you specify the following values:

Resource

The base URL including your query strings, if any, for example:

https://d111111abcdef8.cloudfront.net/images/horizon.jpg?
size=large&license=yes

You can specify only one value for Resource.

Note the following:

• Protocol – The value must begin with http:// or https://.

• Query string parameters – If you have no query string parameters, omit the question mark.

• Alternate domain names – If you specify an alternate domain name (CNAME) in the URL,
you must specify the alternate domain name when referencing the file in your webpage or
application. Do not specify the Amazon S3 URL for the file.

DateLessThan

The expiration date and time for the URL in Unix time format (in seconds) and Coordinated
Universal Time (UTC). Do not enclose the value in quotation marks.

For example, March 16, 2015 10:00 am UTC converts to 1426500000 in Unix time format.

This value must match the value of the CloudFront-Expires attribute in the Set-Cookie
header. Do not enclose the value in quotation marks.

For more information, see When does CloudFront check the expiration date and time in a signed
cookie?.

Using signed cookies 322

Amazon CloudFront Developer Guide

Example policy statement for a canned policy

When you use the following example policy statement in a signed cookie, a user can access the file
https://d111111abcdef8.cloudfront.net/horizon.jpg until March 16, 2015 10:00 am
UTC:

{
 "Statement": [
 {
 "Resource": "https://d111111abcdef8.cloudfront.net/horizon.jpg?
size=large&license=yes",
 "Condition": {
 "DateLessThan": {
 "AWS:EpochTime": 1426500000
 }
 }
 }
]
}

Signing the policy statement to create a signature for a signed cookie that uses a canned policy

To create the value for the CloudFront-Signature attribute in a Set-Cookie header, you hash
and sign the policy statement that you created in To create a policy statement for a signed cookie
that uses a canned policy.

For additional information and examples of how to hash, sign, and encode the policy statement,
see the following topics:

• Using Linux commands and OpenSSL for base64 encoding and encryption

• Code examples for creating a signature for a signed URL

To create a signature for a signed cookie using a canned policy

1. Use the SHA-1 hash function and RSA to hash and sign the policy statement that you created
in the procedure To create a policy statement for a signed cookie that uses a canned policy.
Use the version of the policy statement that no longer includes white space.

For the private key that is required by the hash function, use a private key whose public key is
in an active trusted key group for the distribution.

Using signed cookies 323

Amazon CloudFront Developer Guide

Note

The method that you use to hash and sign the policy statement depends on your
programming language and platform. For sample code, see Code examples for creating
a signature for a signed URL.

2. Remove white space (including tabs and newline characters) from the hashed and signed
string.

3. Base64-encode the string using MIME base64 encoding. For more information, see Section 6.8,
Base64 Content-Transfer-Encoding in RFC 2045, MIME (Multipurpose Internet Mail Extensions)
Part One: Format of Internet Message Bodies.

4. Replace characters that are invalid in a URL query string with characters that are valid. The
following table lists invalid and valid characters.

Replace these invalid characters With these valid characters

+ - (hyphen)

= _ (underscore)

/ ~ (tilde)

5. Include the resulting value in the Set-Cookie header for the CloudFront-Signature
name-value pair. Then return to To set a signed cookie using a canned policy add the Set-
Cookie header for CloudFront-Key-Pair-Id.

Setting signed cookies using a custom policy

Topics

• Example Set-Cookie headers for custom policies

• Creating a policy statement for a signed cookie that uses a custom policy

• Example policy statements for a signed cookie that uses a custom policy

• Creating a signature for a signed cookie that uses a custom policy

To set a signed cookie that uses a custom policy, complete the following steps.

Using signed cookies 324

https://tools.ietf.org/html/rfc2045#section-6.8
https://tools.ietf.org/html/rfc2045#section-6.8

Amazon CloudFront Developer Guide

To set a signed cookie using a custom policy

1. If you're using .NET or Java to create signed URLs, and if you haven't reformatted the private
key for your key pair from the default .pem format to a format compatible with .NET or with
Java, do so now. For more information, see Reformatting the private key (.NET and Java only).

2. Program your application to send three Set-Cookie headers to approved viewers. You need
three Set-Cookie headers because each Set-Cookie header can contain only one name-
value pair, and a CloudFront signed cookie requires three name-value pairs. The name-value
pairs are: CloudFront-Policy, CloudFront-Signature, and CloudFront-Key-Pair-
Id. The values must be present on the viewer before a user makes the first request for a file
that you want to control access to.

Note

In general, we recommend that you exclude Expires and Max-Age attributes. This
causes the browser to delete the cookie when the user closes the browser, which
reduces the possibility of someone getting unauthorized access to your content. For
more information, see Preventing misuse of signed cookies.

The names of cookie attributes are case-sensitive.

Line breaks are included only to make the attributes more readable.

Set-Cookie:
CloudFront-Policy=base64 encoded version of the policy statement;
Domain=optional domain name;
Path=/optional directory path;
Secure;
HttpOnly

Set-Cookie:
CloudFront-Signature=hashed and signed version of the policy statement;
Domain=optional domain name;
Path=/optional directory path;
Secure;
HttpOnly

Set-Cookie:

Using signed cookies 325

Amazon CloudFront Developer Guide

CloudFront-Key-Pair-Id=public key ID for the CloudFront public key whose
 corresponding private key you're using to generate the signature;
Domain=optional domain name;
Path=/optional directory path;
Secure;
HttpOnly

(Optional) Domain

The domain name for the requested file. If you don't specify a Domain attribute, the
default value is the domain name in the URL, and it applies only to the specified domain
name, not to subdomains. If you specify a Domain attribute, it also applies to subdomains.
A leading dot in the domain name (for example, Domain=.example.com) is optional. In
addition, if you specify a Domain attribute, the domain name in the URL and the value of
the Domain attribute must match.

You can specify the domain name that CloudFront assigned to your distribution, for
example, d111111abcdef8.cloudfront.net, but you can't specify *.cloudfront.net for the
domain name.

If you want to use an alternate domain name such as example.com in URLs, you must add
the alternate domain name to your distribution regardless of whether you specify the
Domain attribute. For more information, see Alternate domain names (CNAMEs) in the
topic Values that you specify when you create or update a distribution.

(Optional) Path

The path for the requested file. If you don't specify a Path attribute, the default value is
the path in the URL.

Secure

Requires that the viewer encrypt cookies before sending a request. We recommend that
you send the Set-Cookie header over an HTTPS connection to ensure that the cookie
attributes are protected from man-in-the-middle attacks.

HttpOnly

Requires that the viewer send the cookie only in HTTP or HTTPS requests.

Using signed cookies 326

Amazon CloudFront Developer Guide

CloudFront-Policy

Your policy statement in JSON format, with white space removed, then base64 encoded.
For more information, see Creating a signature for a signed cookie that uses a custom
policy.

The policy statement controls the access that a signed cookie grants to a user. It includes
the files that the user can access, an expiration date and time, an optional date and time
that the URL becomes valid, and an optional IP address or range of IP addresses that are
allowed to access the file.

CloudFront-Signature

A hashed, signed, and base64-encoded version of the JSON policy statement. For more
information, see Creating a signature for a signed cookie that uses a custom policy.

CloudFront-Key-Pair-Id

The ID for a CloudFront public key, for example, K2JCJMDEHXQW5F. The public key ID tells
CloudFront which public key to use to validate the signed URL. CloudFront compares the
information in the signature with the information in the policy statement to verify that the
URL has not been tampered with.

This public key must belong to a key group that is a trusted signer in the distribution.
For more information, see Specifying the signers that can create signed URLs and signed
cookies.

Example Set-Cookie headers for custom policies

See the following examples of Set-Cookie header pairs.

If you want to use an alternate domain name such as example.org in URLs, you must add the
alternate domain name to your distribution regardless of whether you specify the Domain
attribute. For more information, see Alternate domain names (CNAMEs) in the topic Values that
you specify when you create or update a distribution.

Example Example 1

You can use the Set-Cookie headers for one signed cookie when you're using the domain name
that is associated with your distribution in the URLs for your files.

Using signed cookies 327

Amazon CloudFront Developer Guide

Set-Cookie: CloudFront-
Policy=eyJTdGF0ZW1lbnQiOlt7IlJlc291cmNlIjoiaHR0cDovL2QxMTExMTFhYmNkZWY4LmNsb3VkZnJvbnQubmV0L2dhbWVfZG93bmxvYWQuemlwIiwiQ29uZGl0aW9uIjp7IklwQWRkcmVzcyI6eyJBV1M6U291cmNlSXAiOiIxOTIuMC4yLjAvMjQifSwiRGF0ZUxlc3NUaGFuIjp7IkFXUzpFcG9jaFRpbWUiOjE0MjY1MDAwMDB9fX1dfQ__;
 Domain=d111111abcdef8.cloudfront.net; Path=/; Secure; HttpOnly
Set-Cookie: CloudFront-Signature=dtKhpJ3aUYxqDIwepczPiDb9NXQ_;
 Domain=d111111abcdef8.cloudfront.net; Path=/; Secure; HttpOnly
Set-Cookie: CloudFront-Key-Pair-Id=K2JCJMDEHXQW5F;
 Domain=d111111abcdef8.cloudfront.net; Path=/; Secure; HttpOnly

Example Example 2

You can use the Set-Cookie headers for one signed cookie when you're using an alternate
domain name (example.org) in the URLs for your files.

Set-Cookie: CloudFront-
Policy=eyJTdGF0ZW1lbnQiOlt7IlJlc291cmNlIjoiaHR0cDovL2QxMTExMTFhYmNkZWY4LmNsb3VkZnJvbnQubmV0L2dhbWVfZG93bmxvYWQuemlwIiwiQ29uZGl0aW9uIjp7IklwQWRkcmVzcyI6eyJBV1M6U291cmNlSXAiOiIxOTIuMC4yLjAvMjQifSwiRGF0ZUxlc3NUaGFuIjp7IkFXUzpFcG9jaFRpbWUiOjE0MjY1MDAwMDB9fX1dfQ__;
 Domain=example.org; Path=/; Secure; HttpOnly
Set-Cookie: CloudFront-Signature=dtKhpJ3aUYxqDIwepczPiDb9NXQ_; Domain=example.org;
 Path=/; Secure; HttpOnly
Set-Cookie: CloudFront-Key-Pair-Id=K2JCJMDEHXQW5F; Domain=example.org; Path=/; Secure;
 HttpOnly

Example Example 3

You can use the Set-Cookie header pairs for a signed request when you're using the domain
name that is associated with your distribution in the URLs for your files.

Set-Cookie: CloudFront-
Policy=eyJTdGF0ZW1lbnQiOlt7IlJlc291cmNlIjoiaHR0cDovL2QxMTExMTFhYmNkZWY4LmNsb3VkZnJvbnQubmV0L2dhbWVfZG93bmxvYWQuemlwIiwiQ29uZGl0aW9uIjp7IklwQWRkcmVzcyI6eyJBV1M6U291cmNlSXAiOiIxOTIuMC4yLjAvMjQifSwiRGF0ZUxlc3NUaGFuIjp7IkFXUzpFcG9jaFRpbWUiOjE0MjY1MDAwMDB9fX1dfQ__;
 Domain=d111111abcdef8.cloudfront.net; Path=/; Secure; HttpOnly
Set-Cookie: CloudFront-Signature=dtKhpJ3aUYxqDIwepczPiDb9NXQ_;
 Domain=d111111abcdef8.cloudfront.net; Path=/; Secure; HttpOnly
Set-Cookie: CloudFront-Key-Pair-Id=K2JCJMDEHXQW5F;
 Domain=dd111111abcdef8.cloudfront.net; Path=/; Secure; HttpOnly

Example Example 4

You can use the Set-Cookie header pairs for one signed request when you're using an alternate
domain name (example.org) that is associated with your distribution in the URLs for your files.

Set-Cookie: CloudFront-
Policy=eyJTdGF0ZW1lbnQiOlt7IlJlc291cmNlIjoiaHR0cDovL2QxMTExMTFhYmNkZWY4LmNsb3VkZnJvbnQubmV0L2dhbWVfZG93bmxvYWQuemlwIiwiQ29uZGl0aW9uIjp7IklwQWRkcmVzcyI6eyJBV1M6U291cmNlSXAiOiIxOTIuMC4yLjAvMjQifSwiRGF0ZUxlc3NUaGFuIjp7IkFXUzpFcG9jaFRpbWUiOjE0MjY1MDAwMDB9fX1dfQ__;
 Domain=example.org; Path=/; Secure; HttpOnly

Using signed cookies 328

Amazon CloudFront Developer Guide

Set-Cookie: CloudFront-Signature=dtKhpJ3aUYxqDIwepczPiDb9NXQ_; Domain=example.org;
 Path=/; Secure; HttpOnly
Set-Cookie: CloudFront-Key-Pair-Id=K2JCJMDEHXQW5F; Domain=example.org; Path=/; Secure;
 HttpOnly

Creating a policy statement for a signed cookie that uses a custom policy

To create a policy statement for a custom policy, complete the following steps. For several example
policy statements that control access to files in a variety of ways, see Example policy statements
for a signed cookie that uses a custom policy.

To create the policy statement for a signed cookie that uses a custom policy

1. Construct the policy statement using the following JSON format.

{
 "Statement": [
 {
 "Resource": "URL of the file",
 "Condition": {
 "DateLessThan": {
 "AWS:EpochTime":required ending date and time in Unix time
 format and UTC
 },
 "DateGreaterThan": {
 "AWS:EpochTime":optional beginning date and time in Unix time
 format and UTC
 },
 "IpAddress": {
 "AWS:SourceIp": "optional IP address"
 }
 }
 }
]
}

Note the following:

• You can include only one statement.

• Use UTF-8 character encoding.

Using signed cookies 329

Amazon CloudFront Developer Guide

• Include all punctuation and parameter names exactly as specified. Abbreviations for
parameter names are not accepted.

• The order of the parameters in the Condition section doesn't matter.

• For information about the values for Resource, DateLessThan, DateGreaterThan, and
IpAddress, see Values that you specify in the policy statement for a custom policy for
signed cookies.

2. Remove all white space (including tabs and newline characters) from the policy statement. You
might have to include escape characters in the string in application code.

3. Base64-encode the policy statement using MIME base64 encoding. For more information, see
Section 6.8, Base64 Content-Transfer-Encoding in RFC 2045, MIME (Multipurpose Internet Mail
Extensions) Part One: Format of Internet Message Bodies.

4. Replace characters that are invalid in a URL query string with characters that are valid. The
following table lists invalid and valid characters.

Replace these invalid characters With these valid characters

+ - (hyphen)

= _ (underscore)

/ ~ (tilde)

5. Include the resulting value in your Set-Cookie header after CloudFront-Policy=.

6. Create a signature for the Set-Cookie header for CloudFront-Signature by hashing,
signing, and base64-encoding the policy statement. For more information, see Creating a
signature for a signed cookie that uses a custom policy.

Values that you specify in the policy statement for a custom policy for signed cookies

When you create a policy statement for a custom policy, you specify the following values.

Resource

The base URL including your query strings, if any:

Using signed cookies 330

https://tools.ietf.org/html/rfc2045#section-6.8

Amazon CloudFront Developer Guide

https://d111111abcdef8.cloudfront.net/images/horizon.jpg?
size=large&license=yes

Important

If you omit the Resource parameter, users can access all of the files associated with
any distribution that is associated with the key pair that you use to create the signed
URL.

You can specify only one value for Resource.

Note the following:

• Protocol – The value must begin with http:// or https://.

• Query string parameters – If you have no query string parameters, omit the question mark.

• Wildcards – You can use the wildcard character that matches zero or more characters (*) or
the wild-card character that matches exactly one character (?) anywhere in the string. For
example, the value:

https://d111111abcdef8.cloudfront.net/*game_download.zip*

would include (for example) the following files:

• https://d111111abcdef8.cloudfront.net/game_download.zip

• https://d111111abcdef8.cloudfront.net/example_game_download.zip?
license=yes

• https://d111111abcdef8.cloudfront.net/test_game_download.zip?
license=temp

• Alternate domain names – If you specify an alternate domain name (CNAME) in the URL,
you must specify the alternate domain name when referencing the file in your webpage or
application. Do not specify the Amazon S3 URL for the file.

DateLessThan

The expiration date and time for the URL in Unix time format (in seconds) and Coordinated
Universal Time (UTC). Do not enclose the value in quotation marks.

For example, March 16, 2015 10:00 am UTC converts to 1426500000 in Unix time format.

Using signed cookies 331

Amazon CloudFront Developer Guide

For more information, see When does CloudFront check the expiration date and time in a signed
cookie?.

DateGreaterThan (Optional)

An optional start date and time for the URL in Unix time format (in seconds) and Coordinated
Universal Time (UTC). Users are not allowed to access the file on or before the specified date
and time. Do not enclose the value in quotation marks.

IpAddress (Optional)

The IP address of the client making the GET request. Note the following:

• To allow any IP address to access the file, omit the IpAddress parameter.

• You can specify either one IP address or one IP address range. For example, you can't set the
policy to allow access if the client's IP address is in one of two separate ranges.

• To allow access from a single IP address, you specify:

"IPv4 IP address/32"

• You must specify IP address ranges in standard IPv4 CIDR format (for example,
192.0.2.0/24). For more information, go to RFC 4632, Classless Inter-domain Routing
(CIDR): The Internet Address Assignment and Aggregation Plan, https://tools.ietf.org/html/
rfc4632.

Important

IP addresses in IPv6 format, such as 2001:0db8:85a3::8a2e:0370:7334, are not
supported.

If you're using a custom policy that includes IpAddress, do not enable IPv6 for the
distribution. If you want to restrict access to some content by IP address and support IPv6
requests for other content, you can create two distributions. For more information, see
Enable IPv6 in the topic Values that you specify when you create or update a distribution.

Example policy statements for a signed cookie that uses a custom policy

The following example policy statements show how to control access to a specific file, all of the
files in a directory, or all of the files associated with a key pair ID. The examples also show how to

Using signed cookies 332

https://tools.ietf.org/html/rfc4632
https://tools.ietf.org/html/rfc4632

Amazon CloudFront Developer Guide

control access from an individual IP address or a range of IP addresses, and how to prevent users
from using the signed cookie after a specified date and time.

If you copy and paste any of these examples, remove any white space (including tabs and newline
characters), replace the values with your own values, and include a newline character after the
closing brace (}).

For more information, see Values that you specify in the policy statement for a custom policy for
signed cookies.

Topics

• Example policy statement: accessing one file from a range of IP addresses

• Example policy statement: accessing all files in a directory from a range of IP addresses

• Example policy statement: accessing all files associated with a key pair ID from one IP address

Example policy statement: accessing one file from a range of IP addresses

The following example custom policy in a signed cookie specifies that a user can access the file
https://d111111abcdef8.cloudfront.net/game_download.zip from IP addresses in the
range 192.0.2.0/24 until January 1, 2023 10:00 am UTC:

{
 "Statement": [
 {
 "Resource": "https://d111111abcdef8.cloudfront.net/game_download.zip",
 "Condition": {
 "IpAddress": {
 "AWS:SourceIp": "192.0.2.0/24"
 },
 "DateLessThan": {
 "AWS:EpochTime": 1357034400
 }
 }
 }
]
}

Using signed cookies 333

Amazon CloudFront Developer Guide

Example policy statement: accessing all files in a directory from a range of IP addresses

The following example custom policy allows you to create signed cookies for any file in the
training directory, as indicated by the * wildcard character in the Resource parameter. Users
can access the file from an IP address in the range 192.0.2.0/24 until January 1, 2013 10:00 am
UTC:

{
 "Statement": [
 {
 "Resource": "https://d111111abcdef8.cloudfront.net/training/*",
 "Condition": {
 "IpAddress": {
 "AWS:SourceIp": "192.0.2.0/24"
 },
 "DateLessThan": {
 "AWS:EpochTime": 1357034400
 }
 }
 }
]
}

Each signed cookie in which you use this policy includes a base URL that identifies a specific file, for
example:

https://d111111abcdef8.cloudfront.net/training/orientation.pdf

Example policy statement: accessing all files associated with a key pair ID from one IP address

The following sample custom policy allows you to set signed cookies for any file associated with
any distribution, as indicated by the * wildcard character in the Resource parameter. The user
must use the IP address 192.0.2.10/32. (The value 192.0.2.10/32 in CIDR notation refers to
a single IP address, 192.0.2.10.) The files are available only from January 1, 2013 10:00 am UTC
until January 2, 2013 10:00 am UTC:

{
 "Statement": [
 {
 "Resource": "https://*",
 "Condition": {
 "IpAddress": {

Using signed cookies 334

Amazon CloudFront Developer Guide

 "AWS:SourceIp": "192.0.2.10/32"
 },
 "DateGreaterThan": {
 "AWS:EpochTime": 1357034400
 },
 "DateLessThan": {
 "AWS:EpochTime": 1357120800
 }
 }
 }
]
}

Each signed cookie in which you use this policy includes a base URL that identifies a specific file in a
specific CloudFront distribution, for example:

https://d111111abcdef8.cloudfront.net/training/orientation.pdf

The signed cookie also includes a key pair ID, which must be associated with a trusted key group in
the distribution (d111111abcdef8.cloudfront.net) that you specify in the base URL.

Creating a signature for a signed cookie that uses a custom policy

The signature for a signed cookie that uses a custom policy is a hashed, signed, and base64-
encoded version of the policy statement.

For additional information and examples of how to hash, sign, and encode the policy statement,
see:

• Using Linux commands and OpenSSL for base64 encoding and encryption

• Code examples for creating a signature for a signed URL

To create a signature for a signed cookie by using a custom policy

1. Use the SHA-1 hash function and RSA to hash and sign the JSON policy statement that you
created in the procedure To create the policy statement for a signed URL that uses a custom
policy. Use the version of the policy statement that no longer includes white space but that
has not yet been base64-encoded.

For the private key that is required by the hash function, use a private key whose public key is
in an active trusted key group for the distribution.

Using signed cookies 335

Amazon CloudFront Developer Guide

Note

The method that you use to hash and sign the policy statement depends on your
programming language and platform. For sample code, see Code examples for creating
a signature for a signed URL.

2. Remove white space (including tabs and newline characters) from the hashed and signed
string.

3. Base64-encode the string using MIME base64 encoding. For more information, see Section 6.8,
Base64 Content-Transfer-Encoding in RFC 2045, MIME (Multipurpose Internet Mail Extensions)
Part One: Format of Internet Message Bodies.

4. Replace characters that are invalid in a URL query string with characters that are valid. The
following table lists invalid and valid characters.

Replace these invalid characters With these valid characters

+ - (hyphen)

= _ (underscore)

/ ~ (tilde)

5. Include the resulting value in the Set-Cookie header for the CloudFront-Signature=
name-value pair, and return to To set a signed cookie using a custom policy to add the Set-
Cookie header for CloudFront-Key-Pair-Id.

Using Linux commands and OpenSSL for base64 encoding and
encryption

You can use the following Linux command-line command and OpenSSL to hash and sign the policy
statement, base64-encode the signature, and replace characters that are not valid in URL query
string parameters with characters that are valid.

For information about OpenSSL, go to https://www.openssl.org.

Using Linux commands and OpenSSL for base64 encoding and encryption 336

https://tools.ietf.org/html/rfc2045#section-6.8
https://tools.ietf.org/html/rfc2045#section-6.8
https://www.openssl.org

Amazon CloudFront Developer Guide

cat policy |

tr -d "\n" | tr -d " \t\n\r" |

openssl sha1 -sign private_key.pem |

openssl base64 -A |

tr -- '+=/' '-_~'

where:

cat reads the policy file.

tr -d "\n" | tr -d " \t\n\r" removes the white spaces and newline character that were
added by cat.

OpenSSL hashes the file using SHA-1 and signs it using RSA and the private key file
private_key.pem.

OpenSSL base64-encodes the hashed and signed policy statement.

tr replaces characters that are not valid in URL query string parameters with characters that are
valid.

For code examples that demonstrate creating a signature in several programming languages see
Code examples for creating a signature for a signed URL.

Code examples for creating a signature for a signed URL

This section includes downloadable application examples that demonstrate how to create
signatures for signed URLs. Examples are available in Perl, PHP, C#, and Java. You can use any of

Code examples for signed URLs 337

Amazon CloudFront Developer Guide

the examples to create signed URLs. The Perl script runs on Linux and macOS platforms. The PHP
example will work on any server that runs PHP. The C# example uses the .NET Framework.

For example code in JavaScript (Node.js), see Creating Amazon CloudFront Signed URLs in Node.js
on the AWS Developer Blog.

For example code in Python, see Generate a signed URL for Amazon CloudFront in the AWS SDK for
Python (Boto3) API Reference and this example code in the Boto3 GitHub repository.

Topics

• Create a URL signature using Perl

• Create a URL signature using PHP

• Create a URL signature using C# and the .NET Framework

• Create a URL signature using Java

Create a URL signature using Perl

This section includes a Perl script for Linux/Mac platforms that you can use to create the signature
for private content. To create the signature, run the script with command line arguments that
specify the CloudFront URL, the path to the private key of the signer, the key ID, and an expiration
date for the URL. The tool can also decode signed URLs.

Note

Creating a URL signature is just one part of the process of serving private content using a
signed URL. For more information about the end-to-end process, see Using signed URLs.

Topics

• Source for the Perl script to create a signed URL

Source for the Perl script to create a signed URL

The following Perl source code can be used to create a signed URL for CloudFront. Comments in
the code include information about the command line switches and the features of the tool.

#!/usr/bin/perl -w

Code examples for signed URLs 338

https://aws.amazon.com/blogs/developer/creating-amazon-cloudfront-signed-urls-in-node-js/
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/cloudfront.html#examples
https://github.com/boto/boto3/blob/develop/boto3/examples/cloudfront.rst

Amazon CloudFront Developer Guide

Copyright 2008 Amazon Technologies, Inc. Licensed under the Apache License, Version
 2.0 (the "License");
you may not use this file except in compliance with the License. You may obtain a
 copy of the License at:
#
https://aws.amazon.com/apache2.0
#
This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 KIND, either express or implied.
See the License for the specific language governing permissions and limitations under
 the License.

=head1 cfsign.pl

cfsign.pl - A tool to generate and verify Amazon CloudFront signed URLs

=head1 SYNOPSIS

This script uses an existing RSA key pair to sign and verify Amazon CloudFront signed
 URLs

View the script source for details as to which CPAN packages are required beforehand.

For help, try:

cfsign.pl --help

URL signing examples:

cfsign.pl --action encode --url https://images.my-website.com/gallery1.zip --policy
 sample_policy.json --private-key privkey.pem --key-pair-id mykey

cfsign.pl --action encode --url https://images.my-website.com/gallery1.zip --expires
 1257439868 --private-key privkey.pem --key-pair-id mykey

URL decode example:

cfsign.pl --action decode --url "http//mydist.cloudfront.net/?Signature=AGO-
PgxkYo99MkJFHvjfGXjG1QDEXeaDb4Qtzmy85wqyJjK7eKojQWa4BCRcow__&Policy=eyJTdGF0ZW1lbnQiOlt7IlJlc291cmNlIjoiaHR0cDovLypicmFkbS5qcGciLCJDb25kaXRpb24iOnsiSXBBZGRyZXNzIjp7IkFXUzpTb3VyY2VJcCI6IjEwLjUyLjE3LjkvMCJ9LCJEYXRlR3JlYXRlclRoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTI1MjUyMDgzMH19fV19Cg__&Key-
Pair-Id=mykey"

To generate an RSA key pair, you can use openssl and the following commands:

Code examples for signed URLs 339

Amazon CloudFront Developer Guide

Generate a 2048 bit key pair
openssl genrsa -out private-key.pem 2048
openssl rsa -in private-key.pem -pubout -out public-key.pem

=head1 OPTIONS

=over 8

=item B<--help>

Print a help message and exits.

=item B<--action> [action]

The action to execute. action can be one of:

 encode - Generate a signed URL (using a canned policy or a user policy)
 decode - Decode a signed URL

=item B<--url>

The URL to en/decode

=item B<--stream>

The stream to en/decode

=item B<--private-key>

The path to your private key.

=item B<--key-pair-id>

The key pair identifier.

=item B<--policy>

The CloudFront policy document.

=item B<--expires>

The Unix epoch time when the URL is to expire. If both this option and
the --policy option are specified, --policy will be used. Otherwise, this

Code examples for signed URLs 340

Amazon CloudFront Developer Guide

option alone will use a canned policy.

=back

=cut

use strict;
use warnings;

you might need to use CPAN to get these modules.
run perl -MCPAN -e "install <module>" to get them.
The openssl command line will also need to be in your $PATH.
use File::Temp qw/tempfile/;
use File::Slurp;
use Getopt::Long;
use IPC::Open2;
use MIME::Base64 qw(encode_base64 decode_base64);
use Pod::Usage;
use URI;

my $CANNED_POLICY
 = '{"Statement":[{"Resource":"<RESOURCE>","Condition":{"DateLessThan":
{"AWS:EpochTime":<EXPIRES>}}}]}';

my $POLICY_PARAM = "Policy";
my $EXPIRES_PARAM = "Expires";
my $SIGNATURE_PARAM = "Signature";
my $KEY_PAIR_ID_PARAM = "Key-Pair-Id";

my $verbose = 0;
my $policy_filename = "";
my $expires_epoch = 0;
my $action = "";
my $help = 0;
my $key_pair_id = "";
my $url = "";
my $stream = "";
my $private_key_filename = "";

my $result = GetOptions("action=s" => \$action,
 "policy=s" => \$policy_filename,
 "expires=i" => \$expires_epoch,
 "private-key=s" => \$private_key_filename,
 "key-pair-id=s" => \$key_pair_id,

Code examples for signed URLs 341

Amazon CloudFront Developer Guide

 "verbose" => \$verbose,
 "help" => \$help,
 "url=s" => \$url,
 "stream=s" => \$stream,
);

if ($help or !$result) {
 pod2usage(1);
 exit;
}

if ($url eq "" and $stream eq "") {
 print STDERR "Must include a stream or a URL to encode or decode with the --stream
 or --url option\n";
 exit;
}

if ($url ne "" and $stream ne "") {
 print STDERR "Only one of --url and --stream may be specified\n";
 exit;
}

if ($url ne "" and !is_url_valid($url)) {
 exit;
}

if ($stream ne "") {
 exit unless is_stream_valid($stream);

 # The signing mechanism is identical, so from here on just pretend we're
 # dealing with a URL
 $url = $stream;
}

if ($action eq "encode") {
 # The encode action will generate a private content URL given a base URL,
 # a policy file (or an expires timestamp) and a key pair id parameter
 my $private_key;
 my $public_key;
 my $public_key_file;

 my $policy;
 if ($policy_filename eq "") {
 if ($expires_epoch == 0) {

Code examples for signed URLs 342

Amazon CloudFront Developer Guide

 print STDERR "Must include policy filename with --policy argument or an
 expires" .
 "time using --expires\n";
 }

 $policy = $CANNED_POLICY;
 $policy =~ s/<EXPIRES>/$expires_epoch/g;
 $policy =~ s/<RESOURCE>/$url/g;
 } else {
 if (! -e $policy_filename) {
 print STDERR "Policy file $policy_filename does not exist\n";
 exit;
 }
 $expires_epoch = 0; # ignore if set
 $policy = read_file($policy_filename);
 }

 if ($private_key_filename eq "") {
 print STDERR "You must specific the path to your private key file with --
private-key\n";
 exit;
 }

 if (! -e $private_key_filename) {
 print STDERR "Private key file $private_key_filename does not exist\n";
 exit;
 }

 if ($key_pair_id eq "") {
 print STDERR "You must specify a key pair id with --key-pair-id\n";
 exit;
 }

 my $encoded_policy = url_safe_base64_encode($policy);
 my $signature = rsa_sha1_sign($policy, $private_key_filename);
 my $encoded_signature = url_safe_base64_encode($signature);

 my $generated_url = create_url($url, $encoded_policy, $encoded_signature,
 $key_pair_id, $expires_epoch);

 if ($stream ne "") {
 print "Encoded stream (for use within a swf):\n" . $generated_url . "\n";

Code examples for signed URLs 343

Amazon CloudFront Developer Guide

 print "Encoded and escaped stream (for use on a webpage):\n" .
 escape_url_for_webpage($generated_url) . "\n";
 } else {
 print "Encoded URL:\n" . $generated_url . "\n";
 }
} elsif ($action eq "decode") {
 my $decoded = decode_url($url);
 if (!$decoded) {
 print STDERR "Improperly formed URL\n";
 exit;
 }

 print_decoded_url($decoded);
} else {
 # No action specified, print help. But only if this is run as a program (caller
 will be empty)
 pod2usage(1) unless caller();
}

Decode a private content URL into its component parts
sub decode_url {
 my $url = shift;

 if ($url =~ /(.*)\?(.*)/) {
 my $base_url = $1;
 my $params = $2;

 my @unparsed_params = split(/&/, $params);
 my %params = ();
 foreach my $param (@unparsed_params) {
 my ($key, $val) = split(/=/, $param);
 $params{$key} = $val;
 }

 my $encoded_signature = "";
 if (exists $params{$SIGNATURE_PARAM}) {
 $encoded_signature = $params{"Signature"};
 } else {
 print STDERR "Missing Signature URL parameter\n";
 return 0;
 }

 my $encoded_policy = "";
 if (exists $params{$POLICY_PARAM}) {

Code examples for signed URLs 344

Amazon CloudFront Developer Guide

 $encoded_policy = $params{$POLICY_PARAM};
 } else {
 if (!exists $params{$EXPIRES_PARAM}) {
 print STDERR "Either the Policy or Expires URL parameter needs to be
 specified\n";
 return 0;
 }

 my $expires = $params{$EXPIRES_PARAM};

 my $policy = $CANNED_POLICY;
 $policy =~ s/<EXPIRES>/$expires/g;

 my $url_without_cf_params = $url;
 $url_without_cf_params =~ s/$SIGNATURE_PARAM=[^&]*&?//g;
 $url_without_cf_params =~ s/$POLICY_PARAM=[^&]*&?//g;
 $url_without_cf_params =~ s/$EXPIRES_PARAM=[^&]*&?//g;
 $url_without_cf_params =~ s/$KEY_PAIR_ID_PARAM=[^&]*&?//g;

 if ($url_without_cf_params =~ /(.*)\?$/) {
 $url_without_cf_params = $1;
 }

 $policy =~ s/<RESOURCE>/$url_without_cf_params/g;

 $encoded_policy = url_safe_base64_encode($policy);
 }

 my $key = "";
 if (exists $params{$KEY_PAIR_ID_PARAM}) {
 $key = $params{$KEY_PAIR_ID_PARAM};
 } else {
 print STDERR "Missing $KEY_PAIR_ID_PARAM parameter\n";
 return 0;
 }

 my $policy = url_safe_base64_decode($encoded_policy);

 my %ret = ();
 $ret{"base_url"} = $base_url;
 $ret{"policy"} = $policy;
 $ret{"key"} = $key;

 return \%ret;

Code examples for signed URLs 345

Amazon CloudFront Developer Guide

 } else {
 return 0;
 }
}

Print a decoded URL out
sub print_decoded_url {
 my $decoded = shift;

 print "Base URL: \n" . $decoded->{"base_url"} . "\n";
 print "Policy: \n" . $decoded->{"policy"} . "\n";
 print "Key: \n" . $decoded->{"key"} . "\n";
}

Encode a string with base 64 encoding and replace some invalid URL characters
sub url_safe_base64_encode {
 my ($value) = @_;

 my $result = encode_base64($value);
 $result =~ tr|+=/|-_~|;

 return $result;
}

Decode a string with base 64 encoding. URL-decode the string first
followed by reversing any special character ("+=/") translation.
sub url_safe_base64_decode {
 my ($value) = @_;

 $value =~ s/%([0-9A-Fa-f]{2})/chr(hex($1))/eg;
 $value =~ tr|-_~|+=/|;

 my $result = decode_base64($value);

 return $result;
}

Create a private content URL
sub create_url {
 my ($path, $policy, $signature, $key_pair_id, $expires) = @_;

 my $result;
 my $separator = $path =~ /\?/ ? '&' : '?';
 if ($expires) {

Code examples for signed URLs 346

Amazon CloudFront Developer Guide

 $result = "$path$separator$EXPIRES_PARAM=$expires&$SIGNATURE_PARAM=$signature&
$KEY_PAIR_ID_PARAM=$key_pair_id";
 } else {
 $result = "$path$separator$POLICY_PARAM=$policy&$SIGNATURE_PARAM=$signature&
$KEY_PAIR_ID_PARAM=$key_pair_id";
 }
 $result =~ s/\n//g;

 return $result;
}

Sign a document with given private key file.
The first argument is the document to sign
The second argument is the name of the private key file
sub rsa_sha1_sign {
 my ($to_sign, $pvkFile) = @_;
 print "openssl sha1 -sign $pvkFile $to_sign\n";

 return write_to_program($pvkFile, $to_sign);
}

Helper function to write data to a program
sub write_to_program {
my ($keyfile, $data) = @_;
unlink "temp_policy.dat" if (-e "temp_policy.dat");
unlink "temp_sign.dat" if (-e "temp_sign.dat");

write_file("temp_policy.dat", $data);

system("openssl dgst -sha1 -sign \"$keyfile\" -out temp_sign.dat temp_policy.dat");

my $output = read_file("temp_sign.dat");

 return $output;
}

Read a file into a string and return the string
sub read_file {
 my ($file) = @_;

 open(INFILE, "<$file") or die("Failed to open $file: $!");
 my $str = join('', <INFILE>);
 close INFILE;

Code examples for signed URLs 347

Amazon CloudFront Developer Guide

 return $str;
}

sub is_url_valid {
 my ($url) = @_;

 # HTTP distributions start with http[s]:// and are the correct thing to sign
 if ($url =~ /^https?:\/\//) {
 return 1;
 } else {
 print STDERR "CloudFront requires absolute URLs for HTTP distributions\n";
 return 0;
 }
}

sub is_stream_valid {
 my ($stream) = @_;

 if ($stream =~ /^rtmp:\/\// or $stream =~ /^\/?cfx\/st/) {
 print STDERR "Streaming distributions require that only the stream name is
 signed.\n";
 print STDERR "The stream name is everything after, but not including, cfx/st/
\n";
 return 0;
 } else {
 return 1;
 }
}

flash requires that the query parameters in the stream name are url
encoded when passed in through javascript, etc. This sub handles the minimal
required url encoding.
sub escape_url_for_webpage {
 my ($url) = @_;

 $url =~ s/\?/%3F/g;
 $url =~ s/=/%3D/g;
 $url =~ s/&/%26/g;

 return $url;
}

1;

Code examples for signed URLs 348

Amazon CloudFront Developer Guide

Create a URL signature using PHP

Any web server that runs PHP can use this PHP example code to create policy statements and
signatures for private CloudFront distributions. The full example creates a functioning webpage
with signed URL links that play a video stream using CloudFront streaming. You can download
the full example at https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
samples/demo-php.zip.

You can also create signed URLs by using the UrlSigner class in the AWS SDK for PHP. For more
information, see Class UrlSigner in the AWS SDK for PHP API Reference.

Note

Creating a URL signature is just one part of the process of serving private content using a
signed URL. For more information about the entire process, see Using signed URLs.

Topics

• Sample: RSA SHA-1 signature

• Example: create a canned policy

• Example: create a custom policy

• Full code example

Sample: RSA SHA-1 signature

In the following code example, the function rsa_sha1_sign hashes and signs the policy
statement. The arguments required are a policy statement and the private key that
corresponds with a public key that’s in a trusted key group for your distribution. Next, the
url_safe_base64_encode function creates a URL-safe version of the signature.

function rsa_sha1_sign($policy, $private_key_filename) {
 $signature = "";

 // load the private key
 $fp = fopen($private_key_filename, "r");
 $priv_key = fread($fp, 8192);
 fclose($fp);
 $pkeyid = openssl_get_privatekey($priv_key);

Code examples for signed URLs 349

samples/demo-php.zip
samples/demo-php.zip
https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.CloudFront.UrlSigner.html

Amazon CloudFront Developer Guide

 // compute signature
 openssl_sign($policy, $signature, $pkeyid);

 // free the key from memory
 openssl_free_key($pkeyid);

 return $signature;
}

function url_safe_base64_encode($value) {
 $encoded = base64_encode($value);
 // replace unsafe characters +, = and / with
 // the safe characters -, _ and ~
 return str_replace(
 array('+', '=', '/'),
 array('-', '_', '~'),
 $encoded);
}

Example: create a canned policy

The following example code constructs a canned policy statement for the signature. For more
information about canned policies, see Creating a signed URL using a canned policy.

Note

The $expires variable is a date/time stamp that must be an integer, not a string.

function get_canned_policy_stream_name($video_path, $private_key_filename,
 $key_pair_id, $expires) {
 // this policy is well known by CloudFront, but you still need to sign it,
 // since it contains your parameters
 $canned_policy = '{"Statement":[{"Resource":"' . $video_path . '","Condition":
{"DateLessThan":{"AWS:EpochTime":'. $expires . '}}}]}';

 // sign the canned policy
 $signature = rsa_sha1_sign($canned_policy, $private_key_filename);
 // make the signature safe to be included in a url
 $encoded_signature = url_safe_base64_encode($signature);

 // combine the above into a stream name

Code examples for signed URLs 350

Amazon CloudFront Developer Guide

 $stream_name = create_stream_name($video_path, null, $encoded_signature,
 $key_pair_id, $expires);
 // url-encode the query string characters to work around a flash player bug
 return encode_query_params($stream_name);
}

Example: create a custom policy

The following example code constructs a custom policy statement for the signature. For more
information about custom policies, see Creating a signed URL using a custom policy.

function get_custom_policy_stream_name($video_path, $private_key_filename,
 $key_pair_id, $policy) {
 // sign the policy
 $signature = rsa_sha1_sign($policy, $private_key_filename);
 // make the signature safe to be included in a url
 $encoded_signature = url_safe_base64_encode($signature);

 // combine the above into a stream name
 $stream_name = create_stream_name($video_path, $encoded_policy, $encoded_signature,
 $key_pair_id, null);
 // url-encode the query string characters to work around a flash player bug
 return encode_query_params($stream_name);
}

Full code example

The following example code provides a complete demonstration of creating CloudFront
signed URLs with PHP. You can download this full example at https://docs.aws.amazon.com/
AmazonCloudFront/latest/DeveloperGuide/samples/demo-php.zip.

In the following example, you can modify the $policy Condition element to allow both IPv4
and IPv6 address ranges. For an example, see Using IPv6 addresses in IAM policies in the Amazon
Simple Storage Service User Guide.

<?php

function rsa_sha1_sign($policy, $private_key_filename) {
 $signature = "";

 // load the private key
 $fp = fopen($private_key_filename, "r");

Code examples for signed URLs 351

samples/demo-php.zip
samples/demo-php.zip
https://docs.aws.amazon.com/AmazonS3/latest/userguide/ipv6-access.html#ipv6-access-iam

Amazon CloudFront Developer Guide

 $priv_key = fread($fp, 8192);
 fclose($fp);
 $pkeyid = openssl_get_privatekey($priv_key);

 // compute signature
 openssl_sign($policy, $signature, $pkeyid);

 // free the key from memory
 openssl_free_key($pkeyid);

 return $signature;
}

function url_safe_base64_encode($value) {
 $encoded = base64_encode($value);
 // replace unsafe characters +, = and / with the safe characters -, _ and ~
 return str_replace(
 array('+', '=', '/'),
 array('-', '_', '~'),
 $encoded);
}

function create_stream_name($stream, $policy, $signature, $key_pair_id, $expires) {
 $result = $stream;
 // if the stream already contains query parameters, attach the new query parameters
 to the end
 // otherwise, add the query parameters
 $separator = strpos($stream, '?') == FALSE ? '?' : '&';
 // the presence of an expires time means we're using a canned policy
 if($expires) {
 $result .= $path . $separator . "Expires=" . $expires . "&Signature=" .
 $signature . "&Key-Pair-Id=" . $key_pair_id;
 }
 // not using a canned policy, include the policy itself in the stream name
 else {
 $result .= $path . $separator . "Policy=" . $policy . "&Signature=" .
 $signature . "&Key-Pair-Id=" . $key_pair_id;
 }

 // new lines would break us, so remove them
 return str_replace('\n', '', $result);
}

function encode_query_params($stream_name) {

Code examples for signed URLs 352

Amazon CloudFront Developer Guide

 // Adobe Flash Player has trouble with query parameters being passed into it,
 // so replace the bad characters with their URL-encoded forms
 return str_replace(
 array('?', '=', '&'),
 array('%3F', '%3D', '%26'),
 $stream_name);
}

function get_canned_policy_stream_name($video_path, $private_key_filename,
 $key_pair_id, $expires) {
 // this policy is well known by CloudFront, but you still need to sign it, since it
 contains your parameters
 $canned_policy = '{"Statement":[{"Resource":"' . $video_path . '","Condition":
{"DateLessThan":{"AWS:EpochTime":'. $expires . '}}}]}';
 // the policy contains characters that cannot be part of a URL, so we base64 encode
 it
 $encoded_policy = url_safe_base64_encode($canned_policy);
 // sign the original policy, not the encoded version
 $signature = rsa_sha1_sign($canned_policy, $private_key_filename);
 // make the signature safe to be included in a URL
 $encoded_signature = url_safe_base64_encode($signature);

 // combine the above into a stream name
 $stream_name = create_stream_name($video_path, null, $encoded_signature,
 $key_pair_id, $expires);
 // URL-encode the query string characters to support Flash Player
 return encode_query_params($stream_name);
}

function get_custom_policy_stream_name($video_path, $private_key_filename,
 $key_pair_id, $policy) {
 // the policy contains characters that cannot be part of a URL, so we base64 encode
 it
 $encoded_policy = url_safe_base64_encode($policy);
 // sign the original policy, not the encoded version
 $signature = rsa_sha1_sign($policy, $private_key_filename);
 // make the signature safe to be included in a URL
 $encoded_signature = url_safe_base64_encode($signature);

 // combine the above into a stream name
 $stream_name = create_stream_name($video_path, $encoded_policy, $encoded_signature,
 $key_pair_id, null);
 // URL-encode the query string characters to support Flash Player
 return encode_query_params($stream_name);

Code examples for signed URLs 353

Amazon CloudFront Developer Guide

}

// Path to your private key. Be very careful that this file is not accessible
// from the web!

$private_key_filename = '/home/test/secure/example-priv-key.pem';
$key_pair_id = 'K2JCJMDEHXQW5F';

$video_path = 'example.mp4';

$expires = time() + 300; // 5 min from now
$canned_policy_stream_name = get_canned_policy_stream_name($video_path,
 $private_key_filename, $key_pair_id, $expires);

$client_ip = $_SERVER['REMOTE_ADDR'];
$policy =
'{'.
 '"Statement":['.
 '{'.
 '"Resource":"'. $video_path . '",'.
 '"Condition":{'.
 '"IpAddress":{"AWS:SourceIp":"' . $client_ip . '/32"},'.
 '"DateLessThan":{"AWS:EpochTime":' . $expires . '}'.
 '}'.
 '}'.
 ']' .
 '}';
$custom_policy_stream_name = get_custom_policy_stream_name($video_path,
 $private_key_filename, $key_pair_id, $policy);

?>

<html>

<head>
 <title>CloudFront</title>
<script type='text/javascript' src='https://example.cloudfront.net/player/
swfobject.js'></script>
</head>

<body>
 <h1>Amazon CloudFront</h1>
 <h2>Canned Policy</h2>

Code examples for signed URLs 354

Amazon CloudFront Developer Guide

 <h3>Expires at <?= gmdate('Y-m-d H:i:s T', $expires) ?></h3>

 <div id='canned'>The canned policy video will be here</div>

 <h2>Custom Policy</h2>
 <h3>Expires at <?= gmdate('Y-m-d H:i:s T', $expires) ?> only viewable by IP <?=
 $client_ip ?></h3>
 <div id='custom'>The custom policy video will be here</div>

 <!-- ************** Have to update the player.swf path to a real JWPlayer instance.
 The fake one means that external people cannot watch the video right now -->
 <script type='text/javascript'>
 var so_canned = new SWFObject('https://files.example.com/
player.swf','mpl','640','360','9');
 so_canned.addParam('allowfullscreen','true');
 so_canned.addParam('allowscriptaccess','always');
 so_canned.addParam('wmode','opaque');
 so_canned.addVariable('file','<?= $canned_policy_stream_name ?>');
 so_canned.addVariable('streamer','rtmp://example.cloudfront.net/cfx/st');
 so_canned.write('canned');

 var so_custom = new SWFObject('https://files.example.com/
player.swf','mpl','640','360','9');
 so_custom.addParam('allowfullscreen','true');
 so_custom.addParam('allowscriptaccess','always');
 so_custom.addParam('wmode','opaque');
 so_custom.addVariable('file','<?= $custom_policy_stream_name ?>');
 so_custom.addVariable('streamer','rtmp://example.cloudfront.net/cfx/st');
 so_custom.write('custom');
 </script>
</body>

</html>

See also:

• Create a URL signature using Perl

• Create a URL signature using C# and the .NET Framework

• Create a URL signature using Java

Code examples for signed URLs 355

Amazon CloudFront Developer Guide

Create a URL signature using C# and the .NET Framework

The C# examples in this section implement an example application that demonstrates how
to create the signatures for CloudFront private distributions using canned and custom policy
statements. The examples include utility functions based on the AWS SDK for .NET that can be
useful in .NET applications.

You can also create signed URLs and signed cookies by using the AWS SDK for .NET. In the AWS
SDK for .NET API Reference, see the following topics:

• Signed URLs – Amazon.CloudFront > AmazonCloudFrontUrlSigner

• Signed cookies – Amazon.CloudFront > AmazonCloudFrontCookieSigner

Note

Creating a URL signature is just one part of the process of serving private content using a
signed URL. For more information about the entire process, see Using signed URLs.

To download the code, go to Signature Code in C#.

To use an RSA key in the .NET Framework, you must convert the AWS supplied .pem file to the XML
format that the .NET Framework uses.

After conversion, the RSA private key file is in the following format:

Example RSA private key in the XML .NET Framework format

<RSAKeyValue>
 <Modulus>
 wO5IvYCP5UcoCKDo1dcspoMehWBZcyfs9QEzGi6Oe5y+ewGr1oW+vB2GPB
 ANBiVPcUHTFWhwaIBd3oglmF0lGQljP/jOfmXHUK2kUUnLnJp+oOBL2NiuFtqcW6h/L5lIpD8Yq+NRHg
 Ty4zDsyr2880MvXv88yEFURCkqEXAMPLE=
 </Modulus>
 <Exponent>AQAB</Exponent>
 <P>
 5bmKDaTz
 npENGVqz4Cea8XPH+sxt+2VaAwYnsarVUoSBeVt8WLloVuZGG9IZYmH5KteXEu7fZveYd9UEXAMPLE==
 </P>
 <Q>
 1v9l/WN1a1N3rOK4VGoCokx7kR2SyTMSbZgF9IWJNOugR/WZw7HTnjipO3c9dy1Ms9pUKwUF4

Code examples for signed URLs 356

https://aws.amazon.com/sdkfornet/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/samples/AWS_PrivateCF_Distributions.zip

Amazon CloudFront Developer Guide

 6d7049EXAMPLE==
 </Q>
 <DP>
 RgrSKuLWXMyBH+/l1Dx/I4tXuAJIrlPyo+VmiOc7b5NzHptkSHEPfR9s1
 OK0VqjknclqCJ3Ig86OMEtEXAMPLE==
 </DP>
 <DQ>
 pjPjvSFw+RoaTu0pgCA/jwW/FGyfN6iim1RFbkT4
 z49DZb2IM885f3vf35eLTaEYRYUHQgZtChNEV0TEXAMPLE==
 </DQ>
 <InverseQ>
 nkvOJTg5QtGNgWb9i
 cVtzrL/1pFEOHbJXwEJdU99N+7sMK+1066DL/HSBUCD63qD4USpnf0myc24in0EXAMPLE==</InverseQ>
 <D>
 Bc7mp7XYHynuPZxChjWNJZIq+A73gm0ASDv6At7F8Vi9r0xUlQe/v0AQS3ycN8QlyR4XMbzMLYk
 3yjxFDXo4ZKQtOGzLGteCU2srANiLv26/imXA8FVidZftTAtLviWQZBVPTeYIA69ATUYPEq0a5u5wjGy
 UOij9OWyuEXAMPLE=
 </D>
</RSAKeyValue>

The following C# code creates a signed URL that uses a canned policy by doing the following:

• Creates a policy statement.

• Hashes the policy statement using SHA1, and signs the result using RSA and the private key
whose corresponding public key is in a trusted key group.

• Base64-encodes the hashed and signed policy statement and replaces special characters to make
the string safe to use as a URL request parameter.

• Concatenates the values.

For the complete implementation, see the example at Signature Code in C#.

Example Canned policy signing method in C#

public static string ToUrlSafeBase64String(byte[] bytes)
{
 return System.Convert.ToBase64String(bytes)
 .Replace('+', '-')
 .Replace('=', '_')
 .Replace('/', '~');
}

Code examples for signed URLs 357

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/samples/AWS_PrivateCF_Distributions.zip

Amazon CloudFront Developer Guide

public static string CreateCannedPrivateURL(string urlString,
 string durationUnits, string durationNumber, string pathToPolicyStmnt,
 string pathToPrivateKey, string privateKeyId)
{
 // args[] 0-thisMethod, 1-resourceUrl, 2-seconds-minutes-hours-days
 // to expiration, 3-numberOfPreviousUnits, 4-pathToPolicyStmnt,
 // 5-pathToPrivateKey, 6-PrivateKeyId

 TimeSpan timeSpanInterval = GetDuration(durationUnits, durationNumber);

 // Create the policy statement.
 string strPolicy = CreatePolicyStatement(pathToPolicyStmnt,
 urlString,
 DateTime.Now,
 DateTime.Now.Add(timeSpanInterval),
 "0.0.0.0/0");
 if ("Error!" == strPolicy) return "Invalid time frame." +
 "Start time cannot be greater than end time.";

 // Copy the expiration time defined by policy statement.
 string strExpiration = CopyExpirationTimeFromPolicy(strPolicy);

 // Read the policy into a byte buffer.
 byte[] bufferPolicy = Encoding.ASCII.GetBytes(strPolicy);

 // Initialize the SHA1CryptoServiceProvider object and hash the policy data.
 using (SHA1CryptoServiceProvider
 cryptoSHA1 = new SHA1CryptoServiceProvider())
 {
 bufferPolicy = cryptoSHA1.ComputeHash(bufferPolicy);

 // Initialize the RSACryptoServiceProvider object.
 RSACryptoServiceProvider providerRSA = new RSACryptoServiceProvider();
 XmlDocument xmlPrivateKey = new XmlDocument();

 // Load your private key, which you created by converting your
 // .pem file to the XML format that the .NET framework uses.
 // Several tools are available.
 xmlPrivateKey.Load(pathToPrivateKey);

 // Format the RSACryptoServiceProvider providerRSA and
 // create the signature.
 providerRSA.FromXmlString(xmlPrivateKey.InnerXml);
 RSAPKCS1SignatureFormatter rsaFormatter =

Code examples for signed URLs 358

Amazon CloudFront Developer Guide

 new RSAPKCS1SignatureFormatter(providerRSA);
 rsaFormatter.SetHashAlgorithm("SHA1");
 byte[] signedPolicyHash = rsaFormatter.CreateSignature(bufferPolicy);

 // Convert the signed policy to URL-safe base64 encoding and
 // replace unsafe characters + = / with the safe characters - _ ~
 string strSignedPolicy = ToUrlSafeBase64String(signedPolicyHash);

 // Concatenate the URL, the timestamp, the signature,
 // and the key pair ID to form the signed URL.
 return urlString +
 "?Expires=" +
 strExpiration +
 "&Signature=" +
 strSignedPolicy +
 "&Key-Pair-Id=" +
 privateKeyId;
 }
}

The following C# code creates a signed URL that uses a custom policy by doing the following:

1. Creates a policy statement.

2. Base64-encodes the policy statement and replaces special characters to make the string safe to
use as a URL request parameter.

3. Hashes the policy statement using SHA1, and encrypts the result using RSA and the private key
whose corresponding public key is in a trusted key group.

4. Base64-encodes the hashed policy statement and replacing special characters to make the string
safe to use as a URL request parameter.

5. Concatenates the values.

For the complete implementation, see the example at Signature Code in C#.

Example Custom policy signing method in C#

public static string ToUrlSafeBase64String(byte[] bytes)
{
 return System.Convert.ToBase64String(bytes)
 .Replace('+', '-')
 .Replace('=', '_')

Code examples for signed URLs 359

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/samples/AWS_PrivateCF_Distributions.zip

Amazon CloudFront Developer Guide

 .Replace('/', '~');
}

public static string CreateCustomPrivateURL(string urlString,
 string durationUnits, string durationNumber, string startIntervalFromNow,
 string ipaddress, string pathToPolicyStmnt, string pathToPrivateKey,
 string PrivateKeyId)
{
 // args[] 0-thisMethod, 1-resourceUrl, 2-seconds-minutes-hours-days
 // to expiration, 3-numberOfPreviousUnits, 4-starttimeFromNow,
 // 5-ip_address, 6-pathToPolicyStmt, 7-pathToPrivateKey, 8-privateKeyId

 TimeSpan timeSpanInterval = GetDuration(durationUnits, durationNumber);
 TimeSpan timeSpanToStart = GetDurationByUnits(durationUnits,
 startIntervalFromNow);
 if (null == timeSpanToStart)
 return "Invalid duration units." +
 "Valid options: seconds, minutes, hours, or days";

 string strPolicy = CreatePolicyStatement(
 pathToPolicyStmnt, urlString, DateTime.Now.Add(timeSpanToStart),
 DateTime.Now.Add(timeSpanInterval), ipaddress);

 // Read the policy into a byte buffer.
 byte[] bufferPolicy = Encoding.ASCII.GetBytes(strPolicy);

 // Convert the policy statement to URL-safe base64 encoding and
 // replace unsafe characters + = / with the safe characters - _ ~

 string urlSafePolicy = ToUrlSafeBase64String(bufferPolicy);

 // Initialize the SHA1CryptoServiceProvider object and hash the policy data.
 byte[] bufferPolicyHash;
 using (SHA1CryptoServiceProvider cryptoSHA1 =
 new SHA1CryptoServiceProvider())
 {
 bufferPolicyHash = cryptoSHA1.ComputeHash(bufferPolicy);

 // Initialize the RSACryptoServiceProvider object.
 RSACryptoServiceProvider providerRSA = new RSACryptoServiceProvider();
 XmlDocument xmlPrivateKey = new XmlDocument();

 // Load your private key, which you created by converting your
 // .pem file to the XML format that the .NET framework uses.

Code examples for signed URLs 360

Amazon CloudFront Developer Guide

 // Several tools are available.
 xmlPrivateKey.Load(pathToPrivateKey);

 // Format the RSACryptoServiceProvider providerRSA
 // and create the signature.
 providerRSA.FromXmlString(xmlPrivateKey.InnerXml);
 RSAPKCS1SignatureFormatter RSAFormatter =
 new RSAPKCS1SignatureFormatter(providerRSA);
 RSAFormatter.SetHashAlgorithm("SHA1");
 byte[] signedHash = RSAFormatter.CreateSignature(bufferPolicyHash);

 // Convert the signed policy to URL-safe base64 encoding and
 // replace unsafe characters + = / with the safe characters - _ ~
 string strSignedPolicy = ToUrlSafeBase64String(signedHash);

 return urlString +
 "?Policy=" +
 urlSafePolicy +
 "&Signature=" +
 strSignedPolicy +
 "&Key-Pair-Id=" +
 PrivateKeyId;
 }
}

Example Utility methods for signature generation

The following methods get the policy statement from a file and parse time intervals for signature
generation.

public static string CreatePolicyStatement(string policyStmnt,
 string resourceUrl,
 DateTime startTime,
 DateTime endTime,
 string ipAddress)

{
 // Create the policy statement.
 FileStream streamPolicy = new FileStream(policyStmnt, FileMode.Open,
 FileAccess.Read);
 using (StreamReader reader = new StreamReader(streamPolicy))
 {
 string strPolicy = reader.ReadToEnd();

Code examples for signed URLs 361

Amazon CloudFront Developer Guide

 TimeSpan startTimeSpanFromNow = (startTime - DateTime.Now);
 TimeSpan endTimeSpanFromNow = (endTime - DateTime.Now);
 TimeSpan intervalStart =
 (DateTime.UtcNow.Add(startTimeSpanFromNow)) -
 new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc);
 TimeSpan intervalEnd =
 (DateTime.UtcNow.Add(endTimeSpanFromNow)) -
 new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc);

 int startTimestamp = (int)intervalStart.TotalSeconds; // START_TIME
 int endTimestamp = (int)intervalEnd.TotalSeconds; // END_TIME

 if (startTimestamp > endTimestamp)
 return "Error!";

 // Replace variables in the policy statement.
 strPolicy = strPolicy.Replace("RESOURCE", resourceUrl);
 strPolicy = strPolicy.Replace("START_TIME", startTimestamp.ToString());
 strPolicy = strPolicy.Replace("END_TIME", endTimestamp.ToString());
 strPolicy = strPolicy.Replace("IP_ADDRESS", ipAddress);
 strPolicy = strPolicy.Replace("EXPIRES", endTimestamp.ToString());
 return strPolicy;
 }
}

public static TimeSpan GetDuration(string units, string numUnits)
{
 TimeSpan timeSpanInterval = new TimeSpan();
 switch (units)
 {
 case "seconds":
 timeSpanInterval = new TimeSpan(0, 0, 0, int.Parse(numUnits));
 break;
 case "minutes":
 timeSpanInterval = new TimeSpan(0, 0, int.Parse(numUnits), 0);
 break;
 case "hours":
 timeSpanInterval = new TimeSpan(0, int.Parse(numUnits), 0 ,0);
 break;
 case "days":
 timeSpanInterval = new TimeSpan(int.Parse(numUnits),0 ,0 ,0);
 break;
 default:

Code examples for signed URLs 362

Amazon CloudFront Developer Guide

 Console.WriteLine("Invalid time units;" +
 "use seconds, minutes, hours, or days");
 break;
 }
 return timeSpanInterval;
}

private static TimeSpan GetDurationByUnits(string durationUnits,
 string startIntervalFromNow)
{
 switch (durationUnits)
 {
 case "seconds":
 return new TimeSpan(0, 0, int.Parse(startIntervalFromNow));
 case "minutes":
 return new TimeSpan(0, int.Parse(startIntervalFromNow), 0);
 case "hours":
 return new TimeSpan(int.Parse(startIntervalFromNow), 0, 0);
 case "days":
 return new TimeSpan(int.Parse(startIntervalFromNow), 0, 0, 0);
 default:
 return new TimeSpan(0, 0, 0, 0);
 }
}

public static string CopyExpirationTimeFromPolicy(string policyStatement)
{
 int startExpiration = policyStatement.IndexOf("EpochTime");
 string strExpirationRough = policyStatement.Substring(startExpiration +
 "EpochTime".Length);
 char[] digits = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9' };

 List<char> listDigits = new List<char>(digits);
 StringBuilder buildExpiration = new StringBuilder(20);

 foreach (char c in strExpirationRough)
 {
 if (listDigits.Contains(c))
 buildExpiration.Append(c);
 }
 return buildExpiration.ToString();
}

Code examples for signed URLs 363

Amazon CloudFront Developer Guide

See also

• Create a URL signature using Perl

• Create a URL signature using PHP

• Create a URL signature using Java

Create a URL signature using Java

In addition to the following code example, you can use the CloudFrontUrlSigner utility class in
the AWS SDK for Java (version 1) to create CloudFront signed URLs.

For more examples, see Create signed URLs and cookies using an AWS SDK in the AWS SDK Code
Examples Code Library.

Note

Creating a signed URL is just one part of the process of serving private content with
CloudFront. For more information about the entire process, see Using signed URLs.

The following example shows how to create a CloudFront signed URL.

Example Java policy and signature encryption methods

package org.example;

import java.time.Instant;
import java.time.temporal.ChronoUnit;
import software.amazon.awssdk.services.cloudfront.CloudFrontUtilities;
import software.amazon.awssdk.services.cloudfront.model.CannedSignerRequest;
import software.amazon.awssdk.services.cloudfront.url.SignedUrl;

public class Main {

 public static void main(String[] args) throws Exception {
 CloudFrontUtilities cloudFrontUtilities = CloudFrontUtilities.create();
 Instant expirationDate = Instant.now().plus(7, ChronoUnit.DAYS);
 String resourceUrl = "https://a1b2c3d4e5f6g7.cloudfront.net";
 String keyPairId = "K1UA3WV15I7JSD";
 CannedSignerRequest cannedRequest = CannedSignerRequest.builder()

Code examples for signed URLs 364

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/cloudfront/CloudFrontUrlSigner.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/cloudfront/CloudFrontUrlSigner.html
https://docs.aws.amazon.com/code-library/latest/ug/cloudfront_example_cloudfront_CloudFrontUtilities_section.html

Amazon CloudFront Developer Guide

 .resourceUrl(resourceUrl)
 .privateKey(new java.io.File("/path/to/private_key.pem").toPath())
 .keyPairId(keyPairId)
 .expirationDate(expirationDate)
 .build();
 SignedUrl signedUrl =
 cloudFrontUtilities.getSignedUrlWithCannedPolicy(cannedRequest);
 String url = signedUrl.url();
 System.out.println(url);

 }
}

See also:

• Create a URL signature using Perl

• Create a URL signature using PHP

• Create a URL signature using C# and the .NET Framework

Restricting access to an AWS origin

You can configure CloudFront and some AWS origins in a way that provides the following benefits:

• Restricts access to the AWS origin so that it's not publicly accessible

• Makes sure that viewers (users) can access the content in the AWS origin only through the
specified CloudFront distribution—preventing them from accessing the content directly from the
bucket, or through an unintended CloudFront distribution

To do this, configure CloudFront to send authenticated requests to your AWS origin, and configure
the AWS origin to only allow access to authenticated requests from CloudFront. For more
information, see following topics for compatible types of AWS origins.

Topics

• Restricting access to an AWS Elemental MediaPackage v2 origin

• Restricting access to an AWS Elemental MediaStore origin

• Restricting access to an AWS Lambda function URL origin

• Restricting access to an Amazon Simple Storage Service origin

Restricting access to an AWS origin 365

Amazon CloudFront Developer Guide

Restricting access to an AWS Elemental MediaPackage v2 origin

CloudFront provides origin access control (OAC) for restricting access to a MediaPackage v2 origin.

Note

CloudFront OAC only supports MediaPackage v2. MediaPackage v1 isn't supported.

Topics

• Creating a new OAC

• Advanced settings for origin access control

Creating a new OAC

Complete the steps described in the following topics to set up a new OAC in CloudFront.

Topics

• Prerequisites

• Giving the OAC permission to access the MediaPackage v2 origin

• Creating the OAC

Prerequisites

Before you create and set up OAC, you must have a CloudFront distribution with a MediaPackage
v2 origin. For more information, see Using a MediaStore container or a MediaPackage channel.

Giving the OAC permission to access the MediaPackage v2 origin

Before you create an OAC or set it up in a CloudFront distribution, make sure the OAC has
permission to access the MediaPackage v2 origin. Do this after you create a CloudFront distribution,
but before you add the OAC to the MediaPackage v2 origin in the distribution configuration.

To give the OAC permission to access the MediaPackage v2 origin, use a IAM policy to allow the
CloudFront service principal (cloudfront.amazonaws.com) to access the origin. The Condition
element in the policy allows CloudFront to access the MediaPackage v2 origin only when the
request is on behalf of the CloudFront distribution that contains the MediaPackage v2 origin.

Restricting access to an AWS Elemental MediaPackage v2 origin 366

Amazon CloudFront Developer Guide

Example : IAM policy that allows read-only access to a CloudFront distribution

The following policy allows the CloudFront distribution (E1PDK09ESKHJWT) access to the
MediaPackage v2 origin. The origin is the ARN specified for the Resource element.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowCloudFrontServicePrincipal",
 "Effect": "Allow",
 "Principal": {"Service": "cloudfront.amazonaws.com"},
 "Action": "mediapackagev2:GetObject",
 "Resource": "arn:aws:mediapackagev2:us-
east-1:123456789012:channelGroup/channel-group-name/channel/channel-name/
originEndpoint/origin_endpoint_name",
 "Condition": {
 "StringEquals": {"AWS:SourceArn":
 "arn:aws:cloudfront::123456789012:distribution/E1PDK09ESKHJWT"}
 }
 }
]
}

Note

If you create a distribution that doesn't have permission to your MediaPackage v2 origin,
you can choose Copy policy from the CloudFront console and then choose Update
endpoint permissions. You can then attach the copied permission to the endpoint. For
more information, see Endpoint policy fields in the AWS Elemental MediaPackage User
Guide.

Creating the OAC

To create an OAC, you can use the AWS Management Console, AWS CloudFormation, the AWS CLI,
or the CloudFront API.

Restricting access to an AWS Elemental MediaPackage v2 origin 367

https://docs.aws.amazon.com/mediapackage/latest/userguide/endpoints-policy.html

Amazon CloudFront Developer Guide

Console

To create an OAC

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. In the navigation pane, choose Origin access.

3. Choose Create control setting.

4. On the Create new OAC form, do the following:

a. Enter a Name and (optionally) a Description for the OAC.

b. For Signing behavior, we recommend that you leave the default setting (Sign requests
(recommended)). For more information, see the section called “Advanced settings for
origin access control”.

5. For Origin type, choose MediaPackage V2.

6. Choose Create.

Tip

After you create the OAC, make note of the Name. You need this in the following
procedure.

To add an OAC to a MediaPackage v2 origin in a distribution

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

2. Choose a distribution with a MediaPackage V2 origin that you want to add the OAC to, then
choose the Origins tab.

3. Select the MediaPackage v2 origin that you want to add the OAC to, then choose Edit.

4. Select HTTPS only for your origin's Protocol.

5. From the Origin access control dropdown, choose the OAC name that you want to use.

6. Choose Save changes.

The distribution starts deploying to all of the CloudFront edge locations. When an edge location
receives the new configuration, it signs all requests that it sends to the MediaPackage v2 origin.

Restricting access to an AWS Elemental MediaPackage v2 origin 368

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

CloudFormation

To create an OAC with AWS CloudFormation, use the
AWS::CloudFront::OriginAccessControl resource type. The following example shows
the AWS CloudFormation template syntax, in YAML format, for creating an OAC.

Type: AWS::CloudFront::OriginAccessControl
Properties:
 OriginAccessControlConfig:
 Description: An optional description for the origin access control
 Name: ExampleOAC
 OriginAccessControlOriginType: mediapackagev2
 SigningBehavior: always
 SigningProtocol: sigv4

For more information, see AWS::CloudFront::OriginAccessControl in the AWS CloudFormation
User Guide.

CLI

To create an origin access control with the AWS Command Line Interface (AWS CLI), use the
aws cloudfront create-origin-access-control command. You can use an input file to provide
the input parameters for the command, rather than specifying each individual parameter as
command line input.

To create an origin access control (CLI with input file)

1. Use the following command to create a file that's named origin-access-
control.yaml. This file contains all of the input parameters for the create-origin-access-
control command.

aws cloudfront create-origin-access-control --generate-cli-skeleton yaml-input >
 origin-access-control.yaml

2. Open the origin-access-control.yaml file that you just created. Edit the file to add a
name for the OAC, a description (optional), and change the SigningBehavior to always.
Then save the file.

For information about other OAC settings, see the section called “Advanced settings for
origin access control”.

Restricting access to an AWS Elemental MediaPackage v2 origin 369

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudfront-originaccesscontrol.html

Amazon CloudFront Developer Guide

3. Use the following command to create the origin access control using the input parameters
from the origin-access-control.yaml file.

aws cloudfront create-origin-access-control --cli-input-yaml file://origin-
access-control.yaml

Make note of the Id value in the command output. You need it to add the OAC to a
MediaPackage v2 origin in a CloudFront distribution.

To attach an OAC to a MediaPackage v2 origin in an existing distribution (CLI with input file)

1. Use the following command to save the distribution configuration for the CloudFront
distribution that you want to add the OAC to. The distribution must have a MediaPackage
v2 origin.

aws cloudfront get-distribution-config --id <CloudFront distribution ID> --
output yaml > dist-config.yaml

2. Open the file that's named dist-config.yaml that you just created. Edit the file, making
the following changes:

• In the Origins object, add the OAC's ID to the field that's named
OriginAccessControlId.

• Remove the value from the field that's named OriginAccessIdentity, if one exists.

• Rename the ETag field to IfMatch, but don't change the field's value.

Save the file when finished.

3. Use the following command to update the distribution to use the origin access control.

aws cloudfront update-distribution --id <CloudFront distribution ID> --cli-
input-yaml file://dist-config.yaml

The distribution starts deploying to all of the CloudFront edge locations. When an edge location
receives the new configuration, it signs all requests that it sends to the MediaPackage v2 origin.

Restricting access to an AWS Elemental MediaPackage v2 origin 370

Amazon CloudFront Developer Guide

API

To create an OAC with the CloudFront API, use CreateOriginAccessControl. For more
information about the fields that you specify in this API call, see the API reference
documentation for your AWS SDK or other API client.

After you create an OAC you can attach it to a MediaPackage v2 origin in a distribution, using
one of the following API calls:

• To attach it to an existing distribution, use UpdateDistribution.

• To attach it to a new distribution, use CreateDistribution.

For both of these API calls, provide the OAC ID in the OriginAccessControlId field, inside
an origin. For more information about the other fields that you specify in these API calls,
see Values that you specify when you create or update a distribution and the API reference
documentation for your AWS SDK or other API client.

Advanced settings for origin access control

The CloudFront OAC feature includes advanced settings that are intended only for specific use
cases. Use the recommended settings unless you have a specific need for the advanced settings.

OAC contains a setting named Signing behavior (in the console), or SigningBehavior (in the API,
CLI, and AWS CloudFormation). This setting provides the following options:

Always sign origin requests (recommended setting)

We recommend using this setting, named Sign requests (recommended) in the console, or
always in the API, CLI, and AWS CloudFormation. With this setting, CloudFront always signs all
requests that it sends to the MediaPackage v2 origin.

Never sign origin requests

This setting is named Do not sign requests in the console, or never in the API, CLI, and AWS
CloudFormation. Use this setting to turn off OAC for all origins in all distributions that use
this OAC. This can save time and effort compared to removing an OAC from all origins and
distributions that use it, one by one. With this setting, CloudFront doesn't sign any requests that
it sends to the MediaPackage v2 origin.

Restricting access to an AWS Elemental MediaPackage v2 origin 371

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateOriginAccessControl.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateDistribution.html

Amazon CloudFront Developer Guide

Warning

To use this setting, the MediaPackage v2 origin must be publicly accessible. If you use
this setting with a MediaPackage v2 origin that's not publicly accessible, CloudFront
can't access the origin. The MediaPackage v2 origin returns errors to CloudFront and
CloudFront passes those errors on to viewers. For more information, see the example
MediaPackage v2 policy for Policies and Permissions in MediaPackage in the AWS
Elemental MediaPackage User Guide.

Don't override the viewer (client) Authorization header

This setting is named Do not override authorization header in the console, or no-override
in the API, CLI, and AWS CloudFormation. Use this setting when you want CloudFront
to sign origin requests only when the corresponding viewer request does not include an
Authorization header. With this setting, CloudFront passes on the Authorization header
from the viewer request when one is present, but signs the origin request (adding its own
Authorization header) when the viewer request doesn't include an Authorization header.

Warning

To pass along the Authorization header from the viewer request, you must
add the Authorization header to a cache policy for all cache behaviors that use
MediaPackage v2 origins associated with this origin access control.

Restricting access to an AWS Elemental MediaStore origin

CloudFront provides origin access control (OAC) for restricting access to an AWS Elemental
MediaStore origin.

Topics

• Creating a new origin access control

• Advanced settings for origin access control

Restricting access to an AWS Elemental MediaStore origin 372

https://docs.aws.amazon.com/mediapackage/latest/userguide/policies-permissions.html

Amazon CloudFront Developer Guide

Creating a new origin access control

Complete the steps described in the following topics to set up a new origin access control in
CloudFront.

Topics

• Prerequisites

• Giving the origin access control permission to access the MediaStore origin

• Creating the origin access control

Prerequisites

Before you create and set up origin access control, you must have a CloudFront distribution with a
MediaStore origin.

Giving the origin access control permission to access the MediaStore origin

Before you create an origin access control or set it up in a CloudFront distribution, make sure
the OAC has permission to access the MediaStore origin. Do this after creating a CloudFront
distribution, but before adding the OAC to the MediaStore origin in the distribution configuration.

To give the OAC permission to access the MediaStore origin, use a MediaStore container policy to
allow the CloudFront service principal (cloudfront.amazonaws.com) to access the origin. Use
a Condition element in the policy to allow CloudFront to access the MediaStore container only
when the request is on behalf of the CloudFront distribution that contains the MediaStore origin.

The following are examples of MediaStore container policies that allow a CloudFront OAC to access
a MediaStore origin.

Example MediaStore container policy that allows read-only access to a CloudFront OAC

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowCloudFrontServicePrincipalReadOnly",
 "Effect": "Allow",
 "Principal": {
 "Service": "cloudfront.amazonaws.com"
 },

Restricting access to an AWS Elemental MediaStore origin 373

Amazon CloudFront Developer Guide

 "Action": [
 "mediastore:GetObject"
],
 "Resource":
 "arn:aws:mediastore:<region>:111122223333:container/<container name>/*",
 "Condition": {
 "StringEquals": {
 "AWS:SourceArn":
 "arn:aws:cloudfront::111122223333:distribution/<CloudFront distribution ID>"
 },
 "Bool": {
 "aws:SecureTransport": "true"
 }
 }
 }
]
}

Example MediaStore container policy that allows read and write access to a CloudFront OAC

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowCloudFrontServicePrincipalReadWrite",
 "Effect": "Allow",
 "Principal": {
 "Service": "cloudfront.amazonaws.com"
 },
 "Action": [
 "mediastore:GetObject",
 "mediastore:PutObject"
],
 "Resource":
 "arn:aws:mediastore:<region>:111122223333:container/<container name>/*",
 "Condition": {
 "StringEquals": {
 "AWS:SourceArn":
 "arn:aws:cloudfront::111122223333:distribution/<CloudFront distribution ID>"
 },
 "Bool": {
 "aws:SecureTransport": "true"
 }

Restricting access to an AWS Elemental MediaStore origin 374

Amazon CloudFront Developer Guide

 }
 }
]
}

Note

To allow write access, you must configure Allowed HTTP methods to include PUT in your
CloudFront distribution's behavior settings.

Creating the origin access control

To create an OAC, you can use the AWS Management Console, AWS CloudFormation, the AWS CLI,
or the CloudFront API.

Console

To create an origin access control

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. In the navigation pane, choose Origin access.

3. Choose Create control setting.

4. On the Create control setting form, do the following:

a. In the Details pane, enter a Name and (optionally) a Description for the origin access
control.

b. In the Settings pane, we recommend that you leave the default setting (Sign requests
(recommended)). For more information, see the section called “Advanced settings for
origin access control”.

5. Choose MediaStore from the Origin type dropdown.

6. Choose Create.

After the OAC is created, make note of the Name. You need this in the following procedure.

Restricting access to an AWS Elemental MediaStore origin 375

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

To add an origin access control to a MediaStore origin in a distribution

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

2. Choose a distribution with a MediaStore origin that you want to add the OAC to, then
choose the Origins tab.

3. Select the MediaStore origin that you want to add the OAC to, then choose Edit.

4. Select HTTPS only for your origin's Protocol.

5. From the Origin access control dropdown menu, choose the OAC that you want to use.

6. Choose Save changes.

The distribution starts deploying to all of the CloudFront edge locations. When an edge location
receives the new configuration, it signs all requests that it sends to the MediaStore bucket
origin.

CloudFormation

To create an origin access control (OAC) with AWS CloudFormation, use the
AWS::CloudFront::OriginAccessControl resource type. The following example shows
the AWS CloudFormation template syntax, in YAML format, for creating an origin access control.

Type: AWS::CloudFront::OriginAccessControl
Properties:
 OriginAccessControlConfig:
 Description: An optional description for the origin access control
 Name: ExampleOAC
 OriginAccessControlOriginType: mediastore
 SigningBehavior: always
 SigningProtocol: sigv4

For more information, see AWS::CloudFront::OriginAccessControl in the AWS CloudFormation
User Guide.

CLI

To create an origin access control with the AWS Command Line Interface (AWS CLI), use the
aws cloudfront create-origin-access-control command. You can use an input file to provide
the input parameters for the command, rather than specifying each individual parameter as
command line input.

Restricting access to an AWS Elemental MediaStore origin 376

https://console.aws.amazon.com/cloudfront/v4/home
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudfront-originaccesscontrol.html

Amazon CloudFront Developer Guide

To create an origin access control (CLI with input file)

1. Use the following command to create a file that's named origin-access-
control.yaml. This file contains all of the input parameters for the create-origin-access-
control command.

aws cloudfront create-origin-access-control --generate-cli-skeleton yaml-input >
 origin-access-control.yaml

2. Open the origin-access-control.yaml file that you just created. Edit the file to add a
name for the OAC, a description (optional), and change the SigningBehavior to always.
Then save the file.

For information about other OAC settings, see the section called “Advanced settings for
origin access control”.

3. Use the following command to create the origin access control using the input parameters
from the origin-access-control.yaml file.

aws cloudfront create-origin-access-control --cli-input-yaml file://origin-
access-control.yaml

Make note of the Id value in the command output. You need it to add the OAC to a
MediaStore origin in a CloudFront distribution.

To attach an OAC to a MediaStore origin in an existing distribution (CLI with input file)

1. Use the following command to save the distribution configuration for the CloudFront
distribution that you want to add the OAC to. The distribution must have a MediaStore
origin.

aws cloudfront get-distribution-config --id <CloudFront distribution ID> --
output yaml > dist-config.yaml

2. Open the file that's named dist-config.yaml that you just created. Edit the file, making
the following changes:

Restricting access to an AWS Elemental MediaStore origin 377

Amazon CloudFront Developer Guide

• In the Origins object, add the OAC's ID to the field that's named
OriginAccessControlId.

• Remove the value from the field that's named OriginAccessIdentity, if one exists.

• Rename the ETag field to IfMatch, but don't change the field's value.

Save the file when finished.

3. Use the following command to update the distribution to use the origin access control.

aws cloudfront update-distribution --id <CloudFront distribution ID> --cli-
input-yaml file://dist-config.yaml

The distribution starts deploying to all of the CloudFront edge locations. When an edge location
receives the new configuration, it signs all requests that it sends to the MediaStore origin.

API

To create an origin access control with the CloudFront API, use CreateOriginAccessControl.
For more information about the fields that you specify in this API call, see the API reference
documentation for your AWS SDK or other API client.

After you create an origin access control you can attach it to a MediaStore origin in a
distribution, using one of the following API calls:

• To attach it to an existing distribution, use UpdateDistribution.

• To attach it to a new distribution, use CreateDistribution.

For both of these API calls, provide the origin access control ID in the
OriginAccessControlId field, inside an origin. For more information about the other fields
that you specify in these API calls, see Values that you specify when you create or update a
distribution and the API reference documentation for your AWS SDK or other API client.

Restricting access to an AWS Elemental MediaStore origin 378

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateOriginAccessControl.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateDistribution.html

Amazon CloudFront Developer Guide

Advanced settings for origin access control

The CloudFront origin access control feature includes advanced settings that are intended only for
specific use cases. Use the recommended settings unless you have a specific need for the advanced
settings.

Origin access control contains a setting named Signing behavior (in the console), or
SigningBehavior (in the API, CLI, and AWS CloudFormation). This setting provides the following
options:

Always sign origin requests (recommended setting)

We recommend using this setting, named Sign requests (recommended) in the console, or
always in the API, CLI, and AWS CloudFormation. With this setting, CloudFront always signs all
requests that it sends to the MediaStore origin.

Never sign origin requests

This setting is named Do not sign requests in the console, or never in the API, CLI, and
AWS CloudFormation. Use this setting to turn off origin access control for all origins in all
distributions that use this origin access control. This can save time and effort compared to
removing an origin access control from all origins and distributions that use it, one by one. With
this setting, CloudFront does not sign any requests that it sends to the MediaStore origin.

Warning

To use this setting, the MediaStore origin must be publicly accessible. If you use this
setting with a MediaStore origin that's not publicly accessible, CloudFront cannot access
the origin. The MediaStore origin returns errors to CloudFront and CloudFront passes
those errors on to viewers. For more information, see the example MediaStore container
policy for Public read access over HTTPS.

Don't override the viewer (client) Authorization header

This setting is named Do not override authorization header in the console, or no-override
in the API, CLI, and AWS CloudFormation. Use this setting when you want CloudFront
to sign origin requests only when the corresponding viewer request does not include an
Authorization header. With this setting, CloudFront passes on the Authorization header

Restricting access to an AWS Elemental MediaStore origin 379

https://docs.aws.amazon.com/mediastore/latest/ug/policies-examples-public-https.html

Amazon CloudFront Developer Guide

from the viewer request when one is present, but signs the origin request (adding its own
Authorization header) when the viewer request doesn't include an Authorization header.

Warning

To pass along the Authorization header from the viewer request, you must add the
Authorization header to a cache policy for all cache behaviors that use MediaStore
origins associated with this origin access control.

Restricting access to an AWS Lambda function URL origin

CloudFront provides origin access control (OAC) for restricting access to a Lambda function URL
origin.

Topics

• Creating a new OAC

• Advanced settings for origin access control

Creating a new OAC

Complete the steps described in the following topics to set up a new OAC in CloudFront.

Note

If you use PUT or POST methods with your Lambda function URL, your user must provide a
signed payload to CloudFront. Lambda doesn't support unsigned payloads.

Topics

• Prerequisites

• Giving the OAC permission to access the Lambda function URL

• Creating the OAC

Restricting access to an AWS Lambda function URL origin 380

Amazon CloudFront Developer Guide

Prerequisites

Before you create and set up OAC, you must have a CloudFront distribution with a Lambda function
URL as the origin. For more information, see Using a Lambda function URL.

Giving the OAC permission to access the Lambda function URL

Before you create an OAC or set it up in a CloudFront distribution, make sure the OAC has
permission to access the Lambda function URL. Do this after you create a CloudFront distribution,
but before you add the OAC to the Lambda function URL in the distribution configuration.

Note

To update the IAM policy for the Lambda function URL, you must use the AWS Command
Line Interface (AWS CLI). Editing the IAM policy in the Lambda console isn't supported at
this time.

The following AWS CLI command grants the CloudFront service principal
(cloudfront.amazonaws.com) access to your Lambda function URL. The Condition element
in the policy allows CloudFront to access Lambda only when the request is on behalf of the
CloudFront distribution that contains the Lambda function URL.

Example : AWS CLI command to update a policy to allow read-only access to a CloudFront OAC

The following AWS CLI command allows the CloudFront distribution (E1PDK09ESKHJWT) access
your Lambda FUNCTION_URL_NAME.

aws lambda add-permission \
--statement-id "AllowCloudFrontServicePrincipal" \
--action "lambda:InvokeFunctionUrl" \
--principal "cloudfront.amazonaws.com" \
--source-arn "arn:aws:cloudfront::123456789012:distribution/E1PDK09ESKHJWT" \
--function-name FUNCTION_URL_NAME

Note

If you create a distribution and it doesn't have permission to your Lambda function URL,
you can choose Copy CLI command from the CloudFront console, and then enter this

Restricting access to an AWS Lambda function URL origin 381

Amazon CloudFront Developer Guide

command from your command line terminal. For more information, see Granting function
access to AWS services in the AWS Lambda Developer Guide.

Creating the OAC

To create an OAC, you can use the AWS Management Console, AWS CloudFormation, the AWS CLI,
or the CloudFront API.

Console

To create an OAC

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. In the navigation pane, choose Origin access.

3. Choose Create control setting.

4. On the Create new OAC form, do the following:

a. Enter a Name and (optionally) a Description for the OAC.

b. For Signing behavior, we recommend that you leave the default setting (Sign requests
(recommended)). For more information, see the section called “Advanced settings for
origin access control”.

5. For Origin type, choose Lambda.

6. Choose Create.

Tip

After you create the OAC, make note of the Name. You need this in the following
procedure.

To add an origin access control to a Lambda function URL in a distribution

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

2. Choose a distribution with a Lambda function URL that you want to add the OAC to, then
choose the Origins tab.

Restricting access to an AWS Lambda function URL origin 382

https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html#permissions-resource-serviceinvoke
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html#permissions-resource-serviceinvoke
https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

3. Select the Lambda function URL that you want to add the OAC to, and then choose Edit.

4. Select HTTPS only for your origin's Protocol.

5. From the Origin access control dropdown, choose the OAC name that you want to use.

6. Choose Save changes.

The distribution starts deploying to all of the CloudFront edge locations. When an edge location
receives the new configuration, it signs all requests that it sends to the Lambda function URL.

CloudFormation

To create an OAC with AWS CloudFormation, use the
AWS::CloudFront::OriginAccessControl resource type. The following example shows
the AWS CloudFormation template syntax, in YAML format, for creating an OAC.

Type: AWS::CloudFront::OriginAccessControl
Properties:
 OriginAccessControlConfig:
 Description: An optional description for the origin access control
 Name: ExampleOAC
 OriginAccessControlOriginType: lambda
 SigningBehavior: always
 SigningProtocol: sigv4

For more information, see AWS::CloudFront::OriginAccessControl in the AWS CloudFormation
User Guide.

CLI

To create an origin access control with the AWS Command Line Interface (AWS CLI), use the
aws cloudfront create-origin-access-control command. You can use an input file to provide
the input parameters for the command, rather than specifying each individual parameter as
command line input.

To create an origin access control (CLI with input file)

1. Use the following command to create a file that's named origin-access-
control.yaml. This file contains all of the input parameters for the create-origin-access-
control command.

Restricting access to an AWS Lambda function URL origin 383

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudfront-originaccesscontrol.html

Amazon CloudFront Developer Guide

aws cloudfront create-origin-access-control --generate-cli-skeleton yaml-input >
 origin-access-control.yaml

2. Open the origin-access-control.yaml file that you just created. Edit the file to add a
name for the OAC, a description (optional), and change the SigningBehavior to always.
Then save the file.

For information about other OAC settings, see the section called “Advanced settings for
origin access control”.

3. Use the following command to create the origin access control using the input parameters
from the origin-access-control.yaml file.

aws cloudfront create-origin-access-control --cli-input-yaml file://origin-
access-control.yaml

Make note of the Id value in the command output. You need it to add the OAC to a
Lambda function URL in a CloudFront distribution.

To attach an OAC to a Lambda function URL in an existing distribution (CLI with input file)

1. Use the following command to save the distribution configuration for the CloudFront
distribution that you want to add the OAC to. The distribution must have a Lambda
function URL as the origin.

aws cloudfront get-distribution-config --id <CloudFront distribution ID> --
output yaml > dist-config.yaml

2. Open the file that's named dist-config.yaml that you just created. Edit the file, making
the following changes:

• In the Origins object, add the OAC's ID to the field that's named
OriginAccessControlId.

• Remove the value from the field that's named OriginAccessIdentity, if one exists.

• Rename the ETag field to IfMatch, but don't change the field's value.

Save the file when finished.

Restricting access to an AWS Lambda function URL origin 384

Amazon CloudFront Developer Guide

3. Use the following command to update the distribution to use the origin access control.

aws cloudfront update-distribution --id <CloudFront distribution ID> --cli-
input-yaml file://dist-config.yaml

The distribution starts deploying to all of the CloudFront edge locations. When an edge location
receives the new configuration, it signs all requests that it sends to the Lambda function URL.

API

To create an OAC with the CloudFront API, use CreateOriginAccessControl. For more
information about the fields that you specify in this API call, see the API reference
documentation for your AWS SDK or other API client.

After you create an OAC you can attach it to a Lambda function URL in a distribution, using one
of the following API calls:

• To attach it to an existing distribution, use UpdateDistribution.

• To attach it to a new distribution, use CreateDistribution.

For both of these API calls, provide the OAC ID in the OriginAccessControlId field, inside
an origin. For more information about the other fields that you specify in these API calls, see
and the API reference documentation for your AWS SDK or other API client.

Advanced settings for origin access control

The CloudFront OAC feature includes advanced settings that are intended only for specific use
cases. Use the recommended settings unless you have a specific need for the advanced settings.

OAC contains a setting named Signing behavior (in the console), or SigningBehavior (in the API,
CLI, and AWS CloudFormation). This setting provides the following options:

Always sign origin requests (recommended setting)

We recommend using this setting, named Sign requests (recommended) in the console, or
always in the API, CLI, and AWS CloudFormation. With this setting, CloudFront always signs all
requests that it sends to the Lambda function URL.

Restricting access to an AWS Lambda function URL origin 385

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateOriginAccessControl.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateDistribution.html

Amazon CloudFront Developer Guide

Never sign origin requests

This setting is named Do not sign requests in the console, or never in the API, CLI, and AWS
CloudFormation. Use this setting to turn off OAC for all origins in all distributions that use
this OAC. This can save time and effort compared to removing an OAC from all origins and
distributions that use it, one by one. With this setting, CloudFront doesn't sign any requests that
it sends to the Lambda function URL.

Warning

To use this setting, the Lambda function URL must be publicly accessible. If you use
this setting with a Lambda function URL that's not publicly accessible, CloudFront
can't access the origin. The Lambda function URL returns errors to CloudFront and
CloudFront passes those errors on to viewers. For more information, see the example
Lambda policy for Policies and Permissions in Lambda in the AWS Lambda User Guide.

Don't override the viewer (client) Authorization header

This setting is named Do not override authorization header in the console, or no-override
in the API, CLI, and AWS CloudFormation. Use this setting when you want CloudFront
to sign origin requests only when the corresponding viewer request does not include an
Authorization header. With this setting, CloudFront passes on the Authorization header
from the viewer request when one is present, but signs the origin request (adding its own
Authorization header) when the viewer request doesn't include an Authorization header.

Warning

To pass along the Authorization header from the viewer request, you must add the
Authorization header to a cache policy for all cache behaviors that use Lambda
function URLs associated with this origin access control.

Restricting access to an Amazon Simple Storage Service origin

CloudFront provides two ways to send authenticated requests to an Amazon S3 origin: origin
access control (OAC) and origin access identity (OAI). OAC helps you secure your origins, such as for
Amazon S3. We recommend using OAC because it supports:

Restricting access to an Amazon Simple Storage Service origin 386

https://docs.aws.amazon.com/mediapackage/latest/userguide/policies-permissions.html

Amazon CloudFront Developer Guide

• All Amazon S3 buckets in all AWS Regions, including opt-in Regions launched after December
2022

• Amazon S3 server-side encryption with AWS KMS (SSE-KMS)

• Dynamic requests (PUT and DELETE) to Amazon S3

Origin access identity (OAI) doesn't work for the scenarios in the preceding list, or it requires extra
workarounds in those scenarios. The following topics describe how to use origin access control
(OAC) with an Amazon S3 origin. For information about how to migrate from origin access identity
(OAI) to origin access control (OAC), see the section called “Migrating from origin access identity
(OAI) to origin access control (OAC)”.

Notes

• When you use CloudFront OAC with Amazon S3 bucket origins, you must set Amazon S3
Object Ownership to Bucket owner enforced, the default for new Amazon S3 buckets.
If you require ACLs, use the Bucket owner preferred setting to maintain control over
objects uploaded via CloudFront.

• If your origin is an Amazon S3 bucket configured as a website endpoint, you must set
it up with CloudFront as a custom origin. That means you can't use OAC (or OAI). OAC
doesn't support origin redirect by using Lambda@Edge.

Topics

• the section called “Creating a new origin access control”

• the section called “Deleting a distribution with an OAC attached to an S3 bucket”

• the section called “Migrating from origin access identity (OAI) to origin access control (OAC)”

• the section called “Advanced settings for origin access control”

Creating a new origin access control

Complete the steps described in the following topics to set up a new origin access control in
CloudFront.

Topics

Restricting access to an Amazon Simple Storage Service origin 387

https://docs.aws.amazon.com/AmazonS3/latest/userguide/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/WebsiteEndpoints.html

Amazon CloudFront Developer Guide

• Prerequisites

• Giving the origin access control permission to access the S3 bucket

• Creating the origin access control

Prerequisites

Before you create and set up origin access control (OAC), you must have a CloudFront distribution
with an Amazon S3 bucket origin. This origin must be a regular S3 bucket, not a bucket configured
as a website endpoint. For more information about setting up a CloudFront distribution with an S3
bucket origin, see the section called “Getting started with a basic distribution”.

Note

When you use OAC to secure your S3 bucket origin, communication between CloudFront
and Amazon S3 is always through HTTPS, regardless of your specific settings.

Giving the origin access control permission to access the S3 bucket

Before you create an origin access control (OAC) or set it up in a CloudFront distribution, make
sure the OAC has permission to access the S3 bucket origin. Do this after creating a CloudFront
distribution, but before adding the OAC to the S3 origin in the distribution configuration.

To give the OAC permission to access the S3 bucket, use an S3 bucket policy to allow the
CloudFront service principal (cloudfront.amazonaws.com) to access the bucket. Use a
Condition element in the policy to allow CloudFront to access the bucket only when the request
is on behalf of the CloudFront distribution that contains the S3 origin.

For information about adding or modifying a bucket policy, see Adding a bucket policy using the
Amazon S3 console in the Amazon S3 User Guide.

The following are examples of S3 bucket policies that allow a CloudFront OAC to access an S3
origin.

Example S3 bucket policy that allows read-only access to a CloudFront OAC

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "AllowCloudFrontServicePrincipalReadOnly",

Restricting access to an Amazon Simple Storage Service origin 388

https://docs.aws.amazon.com/AmazonS3/latest/userguide/WebsiteEndpoints.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/add-bucket-policy.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/add-bucket-policy.html

Amazon CloudFront Developer Guide

 "Effect": "Allow",
 "Principal": {
 "Service": "cloudfront.amazonaws.com"
 },
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::<S3 bucket name>/*",
 "Condition": {
 "StringEquals": {
 "AWS:SourceArn":
 "arn:aws:cloudfront::111122223333:distribution/<CloudFront distribution ID>"
 }
 }
 }
}

Example S3 bucket policy that allows read and write access to a CloudFront OAC

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "AllowCloudFrontServicePrincipalReadWrite",
 "Effect": "Allow",
 "Principal": {
 "Service": "cloudfront.amazonaws.com"
 },
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::<S3 bucket name>/*",
 "Condition": {
 "StringEquals": {
 "AWS:SourceArn":
 "arn:aws:cloudfront::111122223333:distribution/<CloudFront distribution ID>"
 }
 }
 }
}

SSE-KMS

If the objects in the S3 bucket origin are encrypted using server-side encryption with AWS Key
Management Service (SSE-KMS), you must make sure that the OAC has permission to use the

Restricting access to an Amazon Simple Storage Service origin 389

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html

Amazon CloudFront Developer Guide

AWS KMS key. To give the OAC permission to use the KMS key, add a statement to the KMS key
policy. For information about how to modify a key policy, see Changing a key policy in the AWS Key
Management Service Developer Guide.

The following example shows a KMS key policy statement that allows the OAC to use the KMS key.

Example KMS key policy statement that allows a CloudFront OAC to access a KMS key for SSE-
KMS

{
 "Sid": "AllowCloudFrontServicePrincipalSSE-KMS",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "cloudfront.amazonaws.com"
]
 },
 "Action": [
 "kms:Decrypt",
 "kms:Encrypt",
 "kms:GenerateDataKey*"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "AWS:SourceArn":
 "arn:aws:cloudfront::111122223333:distribution/<CloudFront distribution ID>"
 }
 }
}

Creating the origin access control

To create an origin access control (OAC), you can use the AWS Management Console, AWS
CloudFormation, the AWS CLI, or the CloudFront API.

Console

To create an origin access control

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

Restricting access to an Amazon Simple Storage Service origin 390

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying.html
https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

2. In the navigation pane, choose Origin access.

3. Choose Create control setting.

4. On the Create control setting form, do the following:

a. In the Details pane, enter a Name and (optionally) a Description for the origin access
control.

b. In the Settings pane, we recommend that you leave the default setting (Sign requests
(recommended)). For more information, see the section called “Advanced settings for
origin access control”.

5. Choose S3 from the Origin type dropdown.

6. Choose Create.

After the OAC is created, make note of the Name. You need this in the following procedure.

To add an origin access control to an S3 origin in a distribution

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

2. Choose a distribution with an S3 origin that you want to add the OAC to, then choose the
Origins tab.

3. Select the S3 origin that you want to add the OAC to, then choose Edit.

4. For Origin access, choose Origin access control settings (recommended).

5. From the Origin access control dropdown menu, choose the OAC that you want to use.

6. Choose Save changes.

The distribution starts deploying to all of the CloudFront edge locations. When an edge location
receives the new configuration, it signs all requests that it sends to the S3 bucket origin.

CloudFormation

To create an origin access control (OAC) with AWS CloudFormation, use the
AWS::CloudFront::OriginAccessControl resource type. The following example shows
the AWS CloudFormation template syntax, in YAML format, for creating an origin access control.

Type: AWS::CloudFront::OriginAccessControl
Properties:
 OriginAccessControlConfig:
 Description: An optional description for the origin access control

Restricting access to an Amazon Simple Storage Service origin 391

https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

 Name: ExampleOAC
 OriginAccessControlOriginType: s3
 SigningBehavior: always
 SigningProtocol: sigv4

For more information, see AWS::CloudFront::OriginAccessControl in the AWS CloudFormation
User Guide.

CLI

To create an origin access control with the AWS Command Line Interface (AWS CLI), use the
aws cloudfront create-origin-access-control command. You can use an input file to provide
the input parameters for the command, rather than specifying each individual parameter as
command line input.

To create an origin access control (CLI with input file)

1. Use the following command to create a file that's named origin-access-
control.yaml. This file contains all of the input parameters for the create-origin-access-
control command.

aws cloudfront create-origin-access-control --generate-cli-skeleton yaml-input >
 origin-access-control.yaml

2. Open the origin-access-control.yaml file that you just created. Edit the file to add a
name for the OAC, a description (optional), and change the SigningBehavior to always.
Then save the file.

For information about other OAC settings, see the section called “Advanced settings for
origin access control”.

3. Use the following command to create the origin access control using the input parameters
from the origin-access-control.yaml file.

aws cloudfront create-origin-access-control --cli-input-yaml file://origin-
access-control.yaml

Make note of the Id value in the command output. You need it to add the OAC to an S3
bucket origin in a CloudFront distribution.

Restricting access to an Amazon Simple Storage Service origin 392

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudfront-originaccesscontrol.html

Amazon CloudFront Developer Guide

To attach an OAC to an S3 bucket origin in an existing distribution (CLI with input file)

1. Use the following command to save the distribution configuration for the CloudFront
distribution that you want to add the OAC to. The distribution must have an S3 bucket
origin.

aws cloudfront get-distribution-config --id <CloudFront distribution ID> --
output yaml > dist-config.yaml

2. Open the file that's named dist-config.yaml that you just created. Edit the file, making
the following changes:

• In the Origins object, add the OAC's ID to the field that's named
OriginAccessControlId.

• Remove the value from the field that's named OriginAccessIdentity, if one exists.

• Rename the ETag field to IfMatch, but don't change the field's value.

Save the file when finished.

3. Use the following command to update the distribution to use the origin access control.

aws cloudfront update-distribution --id <CloudFront distribution ID> --cli-
input-yaml file://dist-config.yaml

The distribution starts deploying to all of the CloudFront edge locations. When an edge location
receives the new configuration, it signs all requests that it sends to the S3 bucket origin.

API

To create an origin access control with the CloudFront API, use CreateOriginAccessControl.
For more information about the fields that you specify in this API call, see the API reference
documentation for your AWS SDK or other API client.

After you create an origin access control you can attach it to an S3 bucket origin in a
distribution, using one of the following API calls:

• To attach it to an existing distribution, use UpdateDistribution.

• To attach it to a new distribution, use CreateDistribution.

Restricting access to an Amazon Simple Storage Service origin 393

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateOriginAccessControl.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateDistribution.html

Amazon CloudFront Developer Guide

For both of these API calls, provide the origin access control ID in the
OriginAccessControlId field, inside an origin. For more information about the other fields
that you specify in these API calls, see Values that you specify when you create or update a
distribution and the API reference documentation for your AWS SDK or other API client.

Deleting a distribution with an OAC attached to an S3 bucket

If you need to delete a distribution with an OAC attached to an S3 bucket, you should delete the
distribution before you delete the S3 bucket origin. Alternatively, include the Region in the origin
domain name. If this isn't possible, you can remove the OAC from the distribution by switching to
public before deletion. For more information, see Deleting a distribution.

Migrating from origin access identity (OAI) to origin access control (OAC)

To migrate from a legacy origin access identity (OAI) to an origin access control (OAC), first update
the S3 bucket origin to allow both the OAI and OAC to access the bucket's content. This makes sure
that CloudFront never loses access to the bucket during the transition. To allow both OAI and OAC
to access an S3 bucket, update the bucket policy to include two statements, one for each kind of
principal.

The following example S3 bucket policy allows both an OAI and an OAC to access an S3 origin.

Example S3 bucket policy that allows read-only access to an OAI and an OAC

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowCloudFrontServicePrincipalReadOnly",
 "Effect": "Allow",
 "Principal": {
 "Service": "cloudfront.amazonaws.com"
 },
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::<S3 bucket name>/*",
 "Condition": {
 "StringEquals": {
 "AWS:SourceArn":
 "arn:aws:cloudfront::111122223333:distribution/<CloudFront distribution ID>"
 }
 }

Restricting access to an Amazon Simple Storage Service origin 394

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-policies.html

Amazon CloudFront Developer Guide

 },
 {
 "Sid": "AllowLegacyOAIReadOnly",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::cloudfront:user/CloudFront Origin Access
 Identity <origin access identity ID>"
 },
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::<S3 bucket name>/*"
 }
]
}

After you update the S3 origin's bucket policy to allow access to both OAI and OAC, you can update
the distribution configuration to use OAC instead of OAI. For more information, see the section
called “Creating a new origin access control”.

After the distribution is fully deployed, you can remove the statement in the bucket policy that
allows access to the OAI. For more information, see the section called “Giving the origin access
control permission to access the S3 bucket”.

Advanced settings for origin access control

The CloudFront origin access control feature includes advanced settings that are intended only for
specific use cases. Use the recommended settings unless you have a specific need for the advanced
settings.

Origin access control contains a setting named Signing behavior (in the console), or
SigningBehavior (in the API, CLI, and AWS CloudFormation). This setting provides the following
options:

Always sign origin requests (recommended setting)

We recommend using this setting, named Sign requests (recommended) in the console, or
always in the API, CLI, and AWS CloudFormation. With this setting, CloudFront always signs all
requests that it sends to the S3 bucket origin.

Never sign origin requests

This setting is named Do not sign requests in the console, or never in the API, CLI, and
AWS CloudFormation. Use this setting to turn off origin access control for all origins in all

Restricting access to an Amazon Simple Storage Service origin 395

Amazon CloudFront Developer Guide

distributions that use this origin access control. This can save time and effort compared to
removing an origin access control from all origins and distributions that use it, one by one. With
this setting, CloudFront does not sign any requests that it sends to the S3 bucket origin.

Warning

To use this setting, the S3 bucket origin must be publicly accessible. If you use this
setting with an S3 bucket origin that's not publicly accessible, CloudFront cannot access
the origin. The S3 bucket origin returns errors to CloudFront and CloudFront passes
those errors on to viewers.

Don't override the viewer (client) Authorization header

This setting is named Do not override authorization header in the console, or no-override
in the API, CLI, and AWS CloudFormation. Use this setting when you want CloudFront
to sign origin requests only when the corresponding viewer request does not include an
Authorization header. With this setting, CloudFront passes on the Authorization header
from the viewer request when one is present, but signs the origin request (adding its own
Authorization header) when the viewer request doesn't include an Authorization header.

Warning

To pass along the Authorization header from the viewer request, you must add the
Authorization header to a cache policy for all cache behaviors that use S3 bucket
origins associated with this origin access control.

Using an origin access identity (legacy, not recommended)

Overview of origin access identity

CloudFront origin access identity (OAI) provides similar functionality as origin access control (OAC),
but it doesn't work for all scenarios. This is why we recommend using OAC instead. Specifically, OAI
doesn't support:

• Amazon S3 buckets in all AWS Regions, including opt-in Regions

• Amazon S3 server-side encryption with AWS KMS (SSE-KMS)

• Dynamic requests (PUT, POST, or DELETE) to Amazon S3

Restricting access to an Amazon Simple Storage Service origin 396

https://docs.aws.amazon.com/AmazonS3/latest/userguide/serv-side-encryption.html

Amazon CloudFront Developer Guide

• New AWS Regions launched after December 2022

For information about how to migrating from OAI to OAC, see the section called “Migrating from
origin access identity (OAI) to origin access control (OAC)”.

Giving an origin access identity permission to read files in the Amazon S3 bucket

When you create an OAI or add one to a distribution with the CloudFront console, you can
automatically update the Amazon S3 bucket policy to give the OAI permission to access your
bucket. Alternatively, you can choose to manually create or update the bucket policy. Whichever
method you use, you should still review the permissions to make sure that:

• Your CloudFront OAI can access files in the bucket on behalf of viewers who are requesting them
through CloudFront.

• Viewers can't use Amazon S3 URLs to access your files outside of CloudFront.

Important

If you configure CloudFront to accept and forward all of the HTTP methods that CloudFront
supports, make sure you give your CloudFront OAI the desired permissions. For example,
if you configure CloudFront to accept and forward requests that use the DELETE method,
configure your bucket policy to handle DELETE requests appropriately so viewers can
delete only files that you want them to.

Using Amazon S3 bucket policies

You can give a CloudFront OAI access to files in an Amazon S3 bucket by creating or updating the
bucket policy in the following ways:

• Using the Amazon S3 bucket's Permissions tab in the Amazon S3 console.

• Using PutBucketPolicy in the Amazon S3 API.

• Using the CloudFront console. When you add an OAI to your origin settings in the CloudFront
console, you can choose Yes, update the bucket policy to tell CloudFront to update the bucket
policy on your behalf.

If you update the bucket policy manually, make sure that you:

Restricting access to an Amazon Simple Storage Service origin 397

https://console.aws.amazon.com/s3/home
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutBucketPolicy.html
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

• Specify the correct OAI as the Principal in the policy.

• Give the OAI the permissions it needs to access objects on behalf of viewers.

For more information, see the following sections.

Specify an OAI as the Principal in a bucket policy

To specify an OAI as the Principal in an Amazon S3 bucket policy, use the OAI's Amazon
Resource Name (ARN), which includes the OAI's ID. For example:

"Principal": {
 "AWS": "arn:aws:iam::cloudfront:user/CloudFront Origin Access Identity <origin
 access identity ID>"
}

Find the OAI ID in the CloudFront console under Security, Origin access, Identities (legacy).
Alternatively, use ListCloudFrontOriginAccessIdentities in the CloudFront API.

Give permissions to an OAI

To give the OAI the permissions to access objects in your Amazon S3 bucket, use actions in the
policy that relate to specific Amazon S3 API operations. For example, the s3:GetObject action
allows the OAI to read objects in the bucket. For more information, see the examples in the
following section, or see Amazon S3 actions in the Amazon Simple Storage Service User Guide.

Amazon S3 bucket policy examples

The following examples show Amazon S3 bucket policies that allow CloudFront OAI to access an S3
bucket.

Find the OAI ID in the CloudFront console under Security, Origin access, Identities (legacy).
Alternatively, use ListCloudFrontOriginAccessIdentities in the CloudFront API.

Example Amazon S3 bucket policy that gives the OAI read access

The following example allows the OAI to read objects in the specified bucket (s3:GetObject).

{
 "Version": "2012-10-17",
 "Id": "PolicyForCloudFrontPrivateContent",
 "Statement": [
 {

Restricting access to an Amazon Simple Storage Service origin 398

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_ListCloudFrontOriginAccessIdentities.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_ListCloudFrontOriginAccessIdentities.html

Amazon CloudFront Developer Guide

 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::cloudfront:user/CloudFront Origin Access
 Identity <origin access identity ID>"
 },
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::<S3 bucket name>/*"
 }
]
}

Example Amazon S3 bucket policy that gives the OAI read and write access

The following example allows the OAI to read and write objects in the specified bucket
(s3:GetObject and s3:PutObject). This allows viewers to upload files to your Amazon S3
bucket through CloudFront.

{
 "Version": "2012-10-17",
 "Id": "PolicyForCloudFrontPrivateContent",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::cloudfront:user/CloudFront Origin Access
 Identity <origin access identity ID>"
 },
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::<S3 bucket name>/*"
 }
]
}

Using Amazon S3 object ACLs (not recommended)

Important

We recommend using Amazon S3 bucket policies to give an OAI access to an S3 bucket. You
can use access control lists (ACLs) as described in this section, but we don't recommend it.

Restricting access to an Amazon Simple Storage Service origin 399

Amazon CloudFront Developer Guide

Amazon S3 recommends setting S3 Object Ownership to bucket owner enforced, which
means that ACLs are disabled for the bucket and the objects in it. When you apply this
setting for Object Ownership, you must use bucket policies to give access to the OAI (see
the previous section).
This following section is only for legacy use cases that require ACLs.

You can give a CloudFront OAI access to files in an Amazon S3 bucket by creating or updating the
file's ACL in the following ways:

• Using the Amazon S3 object's Permissions tab in the Amazon S3 console.

• Using PutObjectAcl in the Amazon S3 API.

When you grant access to an OAI using an ACL, you must specify the OAI using its Amazon S3
canonical user ID. In the CloudFront console, you can find this ID under Security, Origin access,
Identities (legacy). If you're using the CloudFront API, use the value of the S3CanonicalUserId
element that was returned when you created the OAI, or call ListCloudFrontOriginAccessIdentities
in the CloudFront API.

Using an origin access identity in Amazon S3 regions that support only signature version 4
authentication

Newer Amazon S3 Regions require that you use Signature Version 4 for authenticated requests.
(For the signature versions supported in each Amazon S3 Region, see Amazon Simple Storage
Service endpoints and quotas in the AWS General Reference.) If you're using an origin access
identity and if your bucket is in one of the Regions that requires Signature Version 4, note the
following:

• DELETE, GET, HEAD, OPTIONS, and PATCH requests are supported without qualifications.

• POST requests are not supported.

Restricting access to Application Load Balancers

For a web application or other content that’s served by an Application Load Balancer in Elastic
Load Balancing, CloudFront can cache objects and serve them directly to users (viewers), reducing
the load on your Application Load Balancer. CloudFront can also help to reduce latency and even
absorb some distributed denial of service (DDoS) attacks. However, if users can bypass CloudFront

Restricting access to Application Load Balancers 400

https://docs.aws.amazon.com/AmazonS3/latest/userguide/about-object-ownership.html
https://console.aws.amazon.com/s3/home
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObjectAcl.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_ListCloudFrontOriginAccessIdentities.html
https://docs.aws.amazon.com/general/latest/gr/s3.html
https://docs.aws.amazon.com/general/latest/gr/s3.html

Amazon CloudFront Developer Guide

and access your Application Load Balancer directly, you don’t get these benefits. But you can
configure Amazon CloudFront and your Application Load Balancer to prevent users from directly
accessing the Application Load Balancer. This allows users to access the Application Load Balancer
only through CloudFront, ensuring that you get the benefits of using CloudFront.

To prevent users from directly accessing an Application Load Balancer and allow access only
through CloudFront, complete these high-level steps:

1. Configure CloudFront to add a custom HTTP header to requests that it sends to the Application
Load Balancer.

2. Configure the Application Load Balancer to only forward requests that contain the custom HTTP
header.

3. (Optional) Require HTTPS to improve the security of this solution.

For more information, see the following topics. After you complete these steps, users can only
access your Application Load Balancer through CloudFront.

Topics

• Configuring CloudFront to add a custom HTTP header to requests

• Configuring an Application Load Balancer to only forward requests that contain a specific header

• (Optional) Improve the security of this solution

• (Optional) Limit access to origin by using the AWS-managed prefix list for CloudFront

Configuring CloudFront to add a custom HTTP header to requests

You can configure CloudFront to add a custom HTTP header to the requests that it sends to your
origin (in this case, an Application Load Balancer).

Important

This use case relies on keeping the custom header name and value secret. If the header
name and value are not secret, other HTTP clients could potentially include them in
requests that they send directly to the Application Load Balancer. This can cause the
Application Load Balancer to behave as though the requests came from CloudFront when
they did not. To prevent this, keep the custom header name and value secret.

Configuring CloudFront to add a custom HTTP header to requests 401

Amazon CloudFront Developer Guide

You can configure CloudFront to add a custom HTTP header to origin requests with the CloudFront
console, AWS CloudFormation, or the CloudFront API.

To add a custom HTTP header (CloudFront console)

In the CloudFront console, use the Origin Custom Headers setting in Origin Settings. Enter the
Header Name and its Value, as shown in the following example.

Note

The header name and value in this example are just for demonstration. In production,
use randomly generated values. Treat the header name and value as a secure credential,
like a user name and password.

You can edit the Origin Custom Headers setting when you create or edit an origin for an
existing CloudFront distribution, and when you create a new distribution. For more information,
see Updating a distribution and Creating a distribution.

To add a custom HTTP header (AWS CloudFormation)

In an AWS CloudFormation template, use the OriginCustomHeaders property, as shown in
the following example.

Note

The header name and value in this example are just for demonstration. In production,
use randomly generated values. Treat the header name and value as a secure credential,
like a user name and password.

AWSTemplateFormatVersion: '2010-09-09'
Resources:
 TestDistribution:
 Type: 'AWS::CloudFront::Distribution'
 Properties:

Configuring CloudFront to add a custom HTTP header to requests 402

Amazon CloudFront Developer Guide

 DistributionConfig:
 Origins:
 - DomainName: app-load-balancer.example.com
 Id: Example-ALB
 CustomOriginConfig:
 OriginProtocolPolicy: https-only
 OriginSSLProtocols:
 - TLSv1.2
 OriginCustomHeaders:
 - HeaderName: X-Custom-Header
 HeaderValue: random-value-1234567890
 Enabled: 'true'
 DefaultCacheBehavior:
 TargetOriginId: Example-ALB
 ViewerProtocolPolicy: allow-all
 CachePolicyId: 658327ea-f89d-4fab-a63d-7e88639e58f6
 PriceClass: PriceClass_All
 ViewerCertificate:
 CloudFrontDefaultCertificate: 'true'

For more information, see the Origin and OriginCustomHeader properties in the AWS
CloudFormation User Guide.

To add a custom HTTP header (CloudFront API)

In the CloudFront API, use the CustomHeaders object inside Origin. For more information,
see CreateDistribution and UpdateDistribution in the Amazon CloudFront API Reference, and the
documentation for your SDK or other API client.

There are some header names that you can’t specify as origin custom headers. For more
information, see Custom headers that CloudFront can’t add to origin requests.

Configuring an Application Load Balancer to only forward requests that
contain a specific header

After you configure CloudFront to add a custom HTTP header to the requests that it sends to your
Application Load Balancer (see the previous section), you can configure the load balancer to only
forward requests that contain this custom header. You do this by adding a new rule and modifying
the default rule in your load balancer’s listener.

Prerequisites

Configuring an Application Load Balancer to only forward requests that contain a specific header 403

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudfront-distribution-origin.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudfront-distribution-origincustomheader.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html

Amazon CloudFront Developer Guide

To use the following procedures, you need an Application Load Balancer with at least one listener.
If you haven’t created one yet, see Create an Application Load Balancer in the User Guide for
Application Load Balancers.

The following procedures modify an HTTPS listener. You can use the same process to modify an
HTTP listener.

To update the rules in an Application Load Balancer listener

1. Open the Load Balancers page in the Amazon EC2 console.

2. Choose the load balancer that is the origin for your CloudFront distribution, then choose the
Listeners tab.

3. For the listener that you are modifying, choose View/edit rules.

4. Choose the icon to add rules.

5. Choose Insert Rule.

Configuring an Application Load Balancer to only forward requests that contain a specific header 404

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-application-load-balancer.html
https://console.aws.amazon.com/ec2/v2/home#LoadBalancers:

Amazon CloudFront Developer Guide

6. For the new rule, do the following:

a. Choose Add condition and then choose Http header. Specify the HTTP header name and
value that you added as an origin custom header in CloudFront.

b. Choose Add action and then choose Forward to. Choose the target group where you want
to forward requests.

c. Choose Save to create the new rule.

7. Choose the icon to edit rules.

8. Choose the edit icon for the default rule.

Configuring an Application Load Balancer to only forward requests that contain a specific header 405

Amazon CloudFront Developer Guide

9. For the default rule, do the following:

a. Delete the default action.

b. Choose Add action and then choose Return fixed response.

c. For Response code, enter 403.

d. For Response body, enter Access denied.

e. Choose Update to update the default rule.

Configuring an Application Load Balancer to only forward requests that contain a specific header 406

Amazon CloudFront Developer Guide

After you complete these steps, your load balancer listener has two rules, as shown in the following
image. The first rule forwards requests that contain the HTTP header (requests that come from
CloudFront). The second rule sends a fixed response to all other requests (requests that don’t come
from CloudFront).

You can verify that the solution works by sending a request to your CloudFront distribution and
one to your Application Load Balancer. The request to CloudFront returns your web application or
content, and the one sent directly to your Application Load Balancer returns a 403 response with
the plain text message Access denied.

Configuring an Application Load Balancer to only forward requests that contain a specific header 407

Amazon CloudFront Developer Guide

(Optional) Improve the security of this solution

To improve the security of this solution, you can configure your CloudFront distribution to always
use HTTPS when sending requests to your Application Load Balancer. Remember, this solution
only works if you keep the custom header name and value secret. Using HTTPS can help prevent
an eavesdropper from discovering the header name and value. We also recommend rotating the
header name and value periodically.

Use HTTPS for origin requests

To configure CloudFront to use HTTPS for origin requests, set the Origin Protocol Policy setting
to HTTPS Only. This setting is available in the CloudFront console, AWS CloudFormation, and the
CloudFront API. For more information, see Protocol (custom origins only).

The following also applies when you configure CloudFront to use HTTPS for origin requests:

• You must configure CloudFront to forward the Host header to the origin with the origin request
policy. You can use the AllViewer managed origin request policy.

• Make sure that your Application Load Balancer has an HTTPS listener (as shown in the preceding
section). For more information, see Create an HTTPS listener in the User Guide for Application
Load Balancers. Using an HTTPS listener requires you to have an SSL/TLS certificate that
matches the domain name that's routed to your Application Load Balancer.

• SSL/TLS certificates for CloudFront can only be requested (or imported) in the us-east-1
AWS Region in AWS Certificate Manager (ACM). Because CloudFront is a global service, it
automatically distributes the certificate from the us-east-1 Region to all Regions associated
with your CloudFront distribution.

• For example, if you have an Application Load Balancer (ALB) in the ap-southeast-2 Region,
you must configure SSL/TLS certificates in both the ap-southeast-2 Region (for using
HTTPS between CloudFront and the ALB origin) and the us-east-1 Region (for using HTTPS
between viewers and CloudFront). Both certificates should match the domain name that is
routed to your Application Load Balancer. For more information, see AWS Region for AWS
Certificate Manager.

• If the end users (also known as viewers, or clients) of your web application can use HTTPS, you
can also configure CloudFront to prefer (or even require) HTTPS connections from the end users.
To do this, use the Viewer Protocol Policy setting. You can set it to redirect end users from HTTP
to HTTPS, or to reject requests that use HTTP. This setting is available in the CloudFront console,
AWS CloudFormation, and the CloudFront API. For more information, see Viewer protocol policy.

(Optional) Improve the security of this solution 408

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-https-listener.html

Amazon CloudFront Developer Guide

Rotate the header name and value

In addition to using HTTPS, we also recommend rotating the header name and value periodically.
The high-level steps for doing this are as follows:

1. Configure CloudFront to add an additional custom HTTP header to requests that it sends to the
Application Load Balancer.

2. Update the Application Load Balancer listener rule to forward requests that contain this
additional custom HTTP header.

3. Configure CloudFront to stop adding the original custom HTTP header to requests that it sends
to the Application Load Balancer.

4. Update the Application Load Balancer listener rule to stop forwarding requests that contain the
original custom HTTP header.

For more information about accomplishing these steps, see the preceding sections.

(Optional) Limit access to origin by using the AWS-managed prefix list
for CloudFront

To further restrict access to your Application Load Balancer, you can configure the security group
associated with the Application Load Balancer so that it only accept traffic from CloudFront
when the service is using an AWS-managed prefix list. This prevents traffic that doesn't originate
from CloudFront from reaching your Application Load Balancer at the network layer (layer 3) or
transport layer (layer 4).

For more information, see the Limit access to your origins using the AWS-managed prefix list for
Amazon CloudFront blog post.

Restricting the geographic distribution of your content

You can use geographic restrictions, sometimes known as geo blocking, to prevent users in
specific geographic locations from accessing content that you're distributing through an Amazon
CloudFront distribution. To use geographic restrictions, you have two options:

• Use the CloudFront geographic restrictions feature. Use this option to restrict access to all of the
files that are associated with a distribution and to restrict access at the country level.

(Optional) Limit access to origin by using the AWS-managed prefix list for CloudFront 409

https://aws.amazon.com/blogs/networking-and-content-delivery/limit-access-to-your-origins-using-the-aws-managed-prefix-list-for-amazon-cloudfront/
https://aws.amazon.com/blogs/networking-and-content-delivery/limit-access-to-your-origins-using-the-aws-managed-prefix-list-for-amazon-cloudfront/

Amazon CloudFront Developer Guide

• Use a third-party geolocation service. Use this option to restrict access to a subset of the files
that are associated with a distribution or to restrict access at a finer granularity than the country
level.

Topics

• Using CloudFront geographic restrictions

• Using a third-party geolocation service

Using CloudFront geographic restrictions

When a user requests your content, CloudFront typically serves the requested content regardless
of where the user is located. If you need to prevent users in specific countries from accessing your
content, you can use the CloudFront geographic restrictions feature to do one of the following:

• Grant permission to your users to access your content only if they’re in one of the approved
countries on your allowlist.

• Prevent your users from accessing your content if they’re in one of the banned countries on your
denylist.

For example, if a request comes from a country where you are not authorized to distribute your
content, you can use CloudFront geographic restrictions to block the request.

Note

CloudFront determines the location of your users by using a third-party database. The
accuracy of the mapping between IP addresses and countries varies by Region. Based on
recent tests, the overall accuracy is 99.8%. If CloudFront can’t determine a user’s location,
CloudFront serves the content that the user has requested.

Here’s how geographic restrictions work:

1. Suppose you have rights to distribute your content only in Liechtenstein. You update your
CloudFront distribution to add an allowlist that contains only Liechtenstein. (Alternatively, you
could add a denylist that contains every country except Liechtenstein.)

Using CloudFront geographic restrictions 410

Amazon CloudFront Developer Guide

2. A user in Monaco requests your content, and DNS routes the request to a CloudFront edge
location in Milan, Italy.

3. The edge location in Milan looks up your distribution and determines that the user in Monaco
does not have permission to download your content.

4. CloudFront returns an HTTP status code 403 (Forbidden) to the user.

You can optionally configure CloudFront to return a custom error message to the user, and you
can specify how long you want CloudFront to cache the error response for the requested file. The
default value is 10 seconds. For more information, see Creating a custom error page for specific
HTTP status codes.

Geographic restrictions apply to an entire distribution. If you need to apply one restriction to part
of your content and a different restriction (or no restriction) to another part of your content, you
must create separate CloudFront distributions or use a third-party geolocation service.

If you enable CloudFront standard logs (access logs), you can identify the requests that CloudFront
rejected by searching for the log entries in which the value of sc-status (the HTTP status code)
is 403. However, using only the standard logs, you can’t distinguish a request that CloudFront
rejected based on the location of the user from a request that CloudFront rejected because the user
didn’t have permission to access the file for another reason. If you have a third-party geolocation
service such as Digital Element or MaxMind, you can identify the location of requests based on the
IP address in the c-ip (client IP) column in the access logs. For more information about CloudFront
standard logs, see Configuring and using standard logs (access logs).

The following procedure explains how to use the CloudFront console to add geographic restrictions
to an existing distribution. For information about how to use the console to create a distribution,
see Creating a distribution.

To add geographic restrictions to your CloudFront web distribution (console)

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. In the navigation pane, choose Distributions, then choose the distribution that you want to
update.

3. Choose the Security tab, then choose Geographic restrictions.

4. Choose Edit.

Using CloudFront geographic restrictions 411

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

5. Select Allow list to create a list of allowed countries, or Block list to create a list of blocked
countries.

6. Add the desired countries to the list, then choose Save changes.

Using a third-party geolocation service

With the CloudFront geographic restrictions feature, you control distribution of your content at
the country level for all files that you're distributing with a given web distribution. If you have a
use case for geographic restrictions where the restrictions don't follow country boundaries, or if
you want to restrict access to only some of the files that you're serving by a given distribution, you
can combine CloudFront with a third-party geolocation service. This provides you with control over
your content based not only on country but also based on city, ZIP, or postal code, or even latitude
and longitude.

When you're using a third-party geolocation service, we recommend that you use CloudFront
signed URLs, with which you can specify an expiration date and time after which the URL is no
longer valid. In addition, we recommend that you use an Amazon S3 bucket as your origin because
you can then use a CloudFront origin access control to prevent users from accessing your content
directly from the origin. For more information about signed URLs and origin access control, see
Serving private content with signed URLs and signed cookies.

The following steps explain how to control access to your files by using a third-party geolocation
service.

To use a third-party geolocation service to restrict access to files in a CloudFront distribution

1. Get an account with a geolocation service.

2. Upload your content to an Amazon S3 bucket.

3. Configure Amazon CloudFront and Amazon S3 to serve private content. For more information,
see Serving private content with signed URLs and signed cookies.

4. Write your web application to do the following:

• Send the IP address for each user request to the geolocation service.

• Evaluate the return value from the geolocation service to determine whether the user is in a
location where you want CloudFront to distribute your content.

• If you want to distribute your content to the user’s location, generate a signed URL for your
CloudFront content. If you don’t want to distribute content to that location, return HTTP

Using a third-party geolocation service 412

Amazon CloudFront Developer Guide

status code 403 (Forbidden) to the user. Alternatively, you can configure CloudFront
to return a custom error message. For more information, see the section called “Creating a
custom error page for specific HTTP status codes”.

For more information, refer to the documentation for the geolocation service that you’re
using.

You can use a web server variable to get the IP addresses of the users who are visiting your website.
Note the following caveats:

• If your web server is not connected to the internet through a load balancer, you can use a web
server variable to get the remote IP address. However, this IP address isn’t always the user’s IP
address. It can also be the IP address of a proxy server, depending on how the user is connected
to the internet.

• If your web server is connected to the internet through a load balancer, a web server variable
might contain the IP address of the load balancer, not the IP address of the user. In this
configuration, we recommend that you use the last IP address in the X-Forwarded-For HTTP
header. This header typically contains more than one IP address, most of which are for proxies
or load balancers. The last IP address in the list is the one most likely to be associated with the
user’s geographic location.

If your web server is not connected to a load balancer, we recommend that you use web server
variables instead of the X-Forwarded-For header to avoid IP address spoofing.

Using field-level encryption to help protect sensitive data

With Amazon CloudFront, you can enforce secure end-to-end connections to origin servers by
using HTTPS. Field-level encryption adds an additional layer of security that lets you protect
specific data throughout system processing so that only certain applications can see it.

Field-level encryption allows you to enable your users to securely upload sensitive information
to your web servers. The sensitive information provided by your users is encrypted at the edge,
close to the user, and remains encrypted throughout your entire application stack. This encryption
ensures that only applications that need the data—and have the credentials to decrypt it—are able
to do so.

Using field-level encryption to help protect sensitive data 413

Amazon CloudFront Developer Guide

To use field-level encryption, when you configure your CloudFront distribution, specify the set of
fields in POST requests that you want to be encrypted, and the public key to use to encrypt them.
You can encrypt up to 10 data fields in a request. (You can’t encrypt all of the data in a request
with field-level encryption; you must specify individual fields to encrypt.)

When the HTTPS request with field-level encryption is forwarded to the origin, and the request
is routed throughout your origin application or subsystem, the sensitive data is still encrypted,
reducing the risk of a data breach or accidental data loss of the sensitive data. Components that
need access to the sensitive data for business reasons, such as a payment processing system
needing access to a credit number, can use the appropriate private key to decrypt and access the
data.

Note

To use field-level encryption, your origin must support chunked encoding.

CloudFront field-level encryption uses asymmetric encryption, also known as public key
encryption. You provide a public key to CloudFront, and all sensitive data that you specify is
encrypted automatically. The key you provide to CloudFront cannot be used to decrypt the
encrypted values; only your private key can do that.

Using field-level encryption to help protect sensitive data 414

Amazon CloudFront Developer Guide

Topics

• Overview of field-level encryption

• Setting up field-level encryption

• Decrypting data fields at your origin

Overview of field-level encryption

The following steps provide an overview of setting up field-level encryption. For specific steps, see
Setting up field-level encryption.

1. Get a public key-private key pair. You must obtain and add the public key before you start
setting up field-level encryption in CloudFront.

2. Create a field-level encryption profile. Field-level encryption profiles, which you create in
CloudFront, define the fields that you want to be encrypted.

3. Create a field-level encryption configuration. A configuration specifies the profiles to
use, based on the content type of the request or a query argument, for encrypting specific
data fields. You can also choose the request-forwarding behavior options that you want for
different scenarios. For example, you can set the behavior for when the profile name specified
by the query argument in a request URL doesn’t exist in CloudFront.

4. Link to a cache behavior. Link the configuration to a cache behavior for a distribution, to
specify when CloudFront should encrypt data.

Overview of field-level encryption 415

Amazon CloudFront Developer Guide

Setting up field-level encryption

Follow these steps to get started using field-level encryption. To learn about quotas (formerly
known as limits) on field-level encryption, see Quotas.

• Step 1: Create an RSA key pair

• Step 2: Add your public key to CloudFront

• Step 3: Create a profile for field-level encryption

• Step 4: Create a configuration

• Step 5: Add a configuration to a cache behavior

Step 1: Create an RSA key pair

To get started, you must create an RSA key pair that includes a public key and a private key. The
public key enables CloudFront to encrypt data, and the private key enables components at your
origin to decrypt the fields that have been encrypted. You can use OpenSSL or another tool to
create a key pair. The key size must be 2048 bits.

For example, if you’re using OpenSSL, you can use the following command to generate a key pair
with a length of 2048 bits and save it in the file private_key.pem:

openssl genrsa -out private_key.pem 2048

The resulting file contains both the public and the private key. To extract the public key from that
file, run the following command:

openssl rsa -pubout -in private_key.pem -out public_key.pem

The public key file (public_key.pem) contains the encoded key value that you paste in the
following step.

Step 2: Add your public key to CloudFront

After you get your RSA key pair, add your public key to CloudFront.

To add your public key to CloudFront (console)

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

Setting up field-level encryption 416

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

2. In the navigation pane, choose Public key.

3. Choose Add public key.

4. For Key name, type a unique name for the key. The name can't have spaces and can include
only alphanumeric characters, underscores (_), and hyphens (-). The maximum number of
characters is 128.

5. For Key value, paste the encoded key value for your public key, including the -----BEGIN
PUBLIC KEY----- and -----END PUBLIC KEY----- lines.

6. For Comment, add an optional comment. For example, you could include the expiration date
for the public key.

7. Choose Add.

You can add more keys to use with CloudFront by repeating the steps in the procedure.

Step 3: Create a profile for field-level encryption

After you add at least one public key to CloudFront, create a profile that tells CloudFront which
fields to encrypt.

To create a profile for field-level encryption (console)

1. In the navigation pane, choose Field-level encryption.

2. Choose Create profile.

3. Fill in the following fields:

Profile name

Type a unique name for the profile. The name can't have spaces and can include only
alphanumeric characters, underscores (_), and hyphens (-). The maximum number of
characters is 128.

Public key name

In the drop-down list, choose the name of a public key that you added to CloudFront in
step 2. CloudFront uses the key to encrypt the fields that you specify in this profile.

Provider name

Type a phrase to help identify the key, such as the provider where you got the key pair. This
information, along with the private key, is needed when applications decrypt data fields.

Setting up field-level encryption 417

Amazon CloudFront Developer Guide

The provider name can't have spaces and can include only alphanumeric characters, colons
(:), underscores (_), and hyphens (-). The maximum number of characters is 128.

Field name pattern to match

Type the names of the data fields, or patterns that identify data field names in the request,
that you want CloudFront to encrypt. Choose the + option to add all the fields that you
want to encrypt with this key.

For the field name pattern, you can type the entire name of the data field, like DateOfBirth,
or just the first part of the name with a wildcard character (*), like CreditCard*. The field
name pattern must include only alphanumeric characters, square brackets ([and]), periods
(.), underscores (_), and hyphens (-), in addition to the optional wildcard character (*).

Make sure that you don’t use overlapping characters for different field name patterns.
For example, if you have a field name pattern of ABC*, you can’t add another field name
pattern that is AB*. In addition, field names are case-sensitive and the maximum number of
characters that you can use is 128.

Comment

(Optional) Type a comment about this profile. The maximum number of characters that you
can use is 128.

4. After you fill in the fields, choose Create profile.

5. If you want to add more profiles, choose Add profile.

Step 4: Create a configuration

After you create one or more field-level encryption profiles, create a configuration that specifies
the content type of the request that includes the data to be encrypted, the profile to use for
encryption, and other options that specify how you want CloudFront to handle encryption.

For example, when CloudFront can’t encrypt the data, you can specify whether CloudFront should
block or forward a request to your origin in the following scenarios:

• When a request’s content type isn’t in a configuration – If you haven’t added a content type
to a configuration, you can specify whether CloudFront should forward the request with that
content type to the origin without encrypting data fields, or block the request and return an
error.

Setting up field-level encryption 418

Amazon CloudFront Developer Guide

Note

If you add a content type to a configuration but haven’t specified a profile to use with
that type, CloudFront always forwards requests with that content type to the origin.

• When the profile name provided in a query argument is unknown – When you specify the
fle-profile query argument with a profile name that doesn’t exist for your distribution, you
can specify whether CloudFront should send the request to the origin without encrypting data
fields, or block the request and return an error.

In a configuration, you can also specify whether providing a profile as a query argument in a URL
overrides a profile that you’ve mapped to the content type for that query. By default, CloudFront
uses the profile that you’ve mapped to a content type, if you specify one. This lets you have a
profile that’s used by default but decide for certain requests that you want to enforce a different
profile.

So, for example, you might specify (in your configuration) SampleProfile as the query
argument profile to use. Then you could use the URL https://d1234.cloudfront.net?fle-
profile=SampleProfile instead of https://d1234.cloudfront.net, to have CloudFront
use SampleProfile for this request, instead of the profile you’d set up for the content type of the
request.

You can create up to 10 configurations for a single account, and then associate one of the
configurations to the cache behavior of any distribution for the account.

To create a configuration for field-level encryption (console)

1. On the Field-level encryption page, choose Create configuration.

Note: If you haven’t created at least one profile, you won’t see the option to create a
configuration.

2. Fill in the following fields to specify the profile to use. (Some fields can’t be changed.)

Content type (can’t be changed)

The content type is set to application/x-www-form-urlencoded and can’t be
changed.

Setting up field-level encryption 419

Amazon CloudFront Developer Guide

Default profile ID (optional)

In the drop-down list, choose the profile that you want to map to the content type in the
Content type field.

Content format (can’t be changed)

The content format is set to URLencoded and can’t be changed.

3. If you want to change the CloudFront default behavior for the following options, select the
appropriate check box.

Forward request to origin when request’s content type is not configured

Select the check box if you want to allow the request to go to your origin if you have not
specified a profile to use for the content type of the request.

Override the profile for a content type with a provided query argument

Select the check box if you want to allow a profile provided in a query argument to override
the profile that you’ve specified for a content type.

4. If you select the check box to allow a query argument to override the default profile, you must
complete the following additional fields for the configuration. You can create up to five of
these query argument mappings to use with queries.

Query argument

Type the value that you want to include in URLs for the fle-profile query argument.
This value tells CloudFront to use the profile ID (that you specify in the next field)
associated with this query argument for field-level encryption for this query.

The maximum number of characters that you can use is 128. The value can’t include spaces,
and must use only alphanumeric or the following characters: dash (-), period (.), underscore
(_), asterisk (*), plus-sign (+), percent (%).

Profile ID

In the drop-down list, choose the profile that you want to associate with the value that you
typed for Query argument.

Setting up field-level encryption 420

Amazon CloudFront Developer Guide

Forward request to origin when the profile specified in a query argument does not exist

Select the check box if you want to allow the request to go to your origin if the profile
specified in a query argument isn't defined in CloudFront.

Step 5: Add a configuration to a cache behavior

To use field-level encryption, link a configuration to a cache behavior for a distribution by adding
the configuration ID as a value for your distribution.

Important

To link a field-level encryption configuration to a cache behavior, the distribution must be
configured to always use HTTPS, and to accept HTTP POST and PUT requests from viewers.
That is, the following must be true:

• The cache behavior’s Viewer Protocol Policy must be set to Redirect HTTP to HTTPS or
HTTPS Only. (In AWS CloudFormation or the CloudFront API, ViewerProtocolPolicy
must be set to redirect-to-https or https-only.)

• The cache behavior’s Allowed HTTP Methods must be set to GET, HEAD, OPTIONS,
PUT, POST, PATCH, DELETE. (In AWS CloudFormation or the CloudFront API,
AllowedMethods must be set to GET, HEAD, OPTIONS, PUT, POST, PATCH, DELETE.
These can be specified in any order.)

• The origin setting’s Origin Protocol Policy must be set to Match Viewer or HTTPS Only.
(In AWS CloudFormation or the CloudFront API, OriginProtocolPolicy must be set to
match-viewer or https-only.)

For more information, see Values that you specify when you create or update a distribution.

Decrypting data fields at your origin

CloudFront encrypts data fields by using the AWS Encryption SDK. The data remains encrypted
throughout your application stack and can be accessed only by applications that have the
credentials to decrypt it.

Decrypting data fields at your origin 421

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/introduction.html

Amazon CloudFront Developer Guide

After encryption, the ciphertext is base64 encoded. When your applications decrypt the text at the
origin, they must first decode the ciphertext, and then use the AWS Encryption SDK to decrypt the
data.

The following code example illustrates how applications can decrypt data at your origin. Note the
following:

• To simplify the example, this sample loads public and private keys (in DER format) from files in
the working directory. In practice, you would store the private key in a secure offline location,
such as an offline hardware security module, and distribute the public key to your development
team.

• CloudFront uses specific information while encrypting the data, and the same set of parameters
should be used at the origin to decrypt it. Parameters CloudFront uses while initializing the
MasterKey include the following:

• PROVIDER_NAME: You specified this value when you created a field-level encryption profile.
Use the same value here.

• KEY_NAME: You created a name for your public key when you uploaded it to CloudFront, and
then specified the key name in the profile. Use the same value here.

• ALGORITHM: CloudFront uses RSA/ECB/OAEPWithSHA-256AndMGF1Padding as the
algorithm for encrypting, so you must use the same algorithm to decrypt the data.

• If you run the following sample program with ciphertext as input, the decrypted data is output
to your console. For more information, see the Java Example Code in the AWS Encryption SDK.

Sample code

import java.nio.file.Files;
import java.nio.file.Paths;
import java.security.KeyFactory;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;

import org.apache.commons.codec.binary.Base64;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CryptoResult;

Decrypting data fields at your origin 422

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/java-example-code.html

Amazon CloudFront Developer Guide

import com.amazonaws.encryptionsdk.jce.JceMasterKey;

/**
 * Sample example of decrypting data that has been encrypted by CloudFront field-level
 encryption.
 */
public class DecryptExample {

 private static final String PRIVATE_KEY_FILENAME = "private_key.der";
 private static final String PUBLIC_KEY_FILENAME = "public_key.der";
 private static PublicKey publicKey;
 private static PrivateKey privateKey;

 // CloudFront uses the following values to encrypt data, and your origin must use
 same values to decrypt it.
 // In your own code, for PROVIDER_NAME, use the provider name that you specified
 when you created your field-level
 // encryption profile. This sample uses 'DEMO' for the value.
 private static final String PROVIDER_NAME = "DEMO";
 // In your own code, use the key name that you specified when you added your public
 key to CloudFront. This sample
 // uses 'DEMOKEY' for the key name.
 private static final String KEY_NAME = "DEMOKEY";
 // CloudFront uses this algorithm when encrypting data.
 private static final String ALGORITHM = "RSA/ECB/OAEPWithSHA-256AndMGF1Padding";

 public static void main(final String[] args) throws Exception {

 final String dataToDecrypt = args[0];

 // This sample uses files to get public and private keys.
 // In practice, you should distribute the public key and save the private key
 in secure storage.
 populateKeyPair();

 System.out.println(decrypt(debase64(dataToDecrypt)));
 }

 private static String decrypt(final byte[] bytesToDecrypt) throws Exception {
 // You can decrypt the stream only by using the private key.

 // 1. Instantiate the SDK
 final AwsCrypto crypto = new AwsCrypto();

Decrypting data fields at your origin 423

Amazon CloudFront Developer Guide

 // 2. Instantiate a JCE master key
 final JceMasterKey masterKey = JceMasterKey.getInstance(
 publicKey,
 privateKey,
 PROVIDER_NAME,
 KEY_NAME,
 ALGORITHM);

 // 3. Decrypt the data
 final CryptoResult <byte[], ? > result = crypto.decryptData(masterKey,
 bytesToDecrypt);
 return new String(result.getResult());
 }

 // Function to decode base64 cipher text.
 private static byte[] debase64(final String value) {
 return Base64.decodeBase64(value.getBytes());
 }

 private static void populateKeyPair() throws Exception {
 final byte[] PublicKeyBytes =
 Files.readAllBytes(Paths.get(PUBLIC_KEY_FILENAME));
 final byte[] privateKeyBytes =
 Files.readAllBytes(Paths.get(PRIVATE_KEY_FILENAME));
 publicKey = KeyFactory.getInstance("RSA").generatePublic(new
 X509EncodedKeySpec(PublicKeyBytes));
 privateKey = KeyFactory.getInstance("RSA").generatePrivate(new
 PKCS8EncodedKeySpec(privateKeyBytes));
 }
}

Decrypting data fields at your origin 424

Amazon CloudFront Developer Guide

Optimizing caching and availability

This section describes how to set up and manage the caching of objects to improve performance
and meet your business requirements.

To learn about adding and removing the content that you want CloudFront to serve, see Adding,
removing, or replacing content that CloudFront distributes.

Topics

• How caching works with CloudFront edge locations

• Increasing the proportion of requests that are served directly from the CloudFront caches (cache
hit ratio)

• Using Amazon CloudFront Origin Shield

• Optimizing high availability with CloudFront origin failover

• Managing how long content stays in the cache (expiration)

• Caching content based on query string parameters

• Caching content based on cookies

• Caching content based on request headers

How caching works with CloudFront edge locations

One of the purposes of using CloudFront is to reduce the number of requests that your origin
server must respond to directly. With CloudFront caching, more objects are served from CloudFront
edge locations, which are closer to your users. This reduces the load on your origin server and
reduces latency.

The more requests that CloudFront can serve from edge caches, the fewer viewer requests that
CloudFront must forward to your origin to get the latest version or a unique version of an object.
To optimize CloudFront to make as few requests to your origin as possible, consider using a
CloudFront Origin Shield. For more information, see Using Amazon CloudFront Origin Shield.

The proportion of requests that are served directly from the CloudFront cache compared to all
requests is called the cache hit ratio. You can view the percentage of viewer requests that are hits,
misses, and errors in the CloudFront console. For more information, see CloudFront cache statistics
reports.

Caching with edge locations 425

Amazon CloudFront Developer Guide

A number of factors affect the cache hit ratio. You can adjust your CloudFront distribution
configuration to improve the cache hit ratio by following the guidance in Increasing the proportion
of requests that are served directly from the CloudFront caches (cache hit ratio).

Increasing the proportion of requests that are served directly
from the CloudFront caches (cache hit ratio)

You can improve performance by increasing the proportion of your viewer requests that are served
directly from the CloudFront cache instead of going to your origin servers for content. This is
known as improving the cache hit ratio.

The following sections explain how to improve your cache hit ratio.

Topics

• Specifying how long CloudFront caches your objects

• Using Origin Shield

• Caching based on query string parameters

• Caching based on cookie values

• Caching based on request headers

• Remove Accept-Encoding header when compression is not needed

• Serving media content by using HTTP

Specifying how long CloudFront caches your objects

To increase your cache hit ratio, you can configure your origin to add a Cache-Control max-age
directive to your objects, and specify the longest practical value for max-age. The shorter the
cache duration, the more frequently CloudFront sends requests to your origin to determine if an
object has changed and to get the latest version. You can supplement max-age with the stale-
while-revalidate and stale-if-error directives to further improve cache hit ratio under
certain conditions. For more information, see Managing how long content stays in the cache
(expiration).

Using Origin Shield

CloudFront Origin Shield can help improve the cache hit ratio of your CloudFront distribution,
because it provides an additional layer of caching in front of your origin. When you use Origin

Improving your cache hit ratio 426

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control

Amazon CloudFront Developer Guide

Shield, all requests from all of CloudFront’s caching layers to your origin come from a single
location. CloudFront can retrieve each object using a single origin request from Origin Shield, and
all other layers of the CloudFront cache (edge locations and regional edge caches) can retrieve the
object from Origin Shield.

For more information, see Using Amazon CloudFront Origin Shield.

Caching based on query string parameters

If you configure CloudFront to cache based on query string parameters, you can improve caching if
you do the following:

• Configure CloudFront to forward only the query string parameters for which your origin will
return unique objects.

• Use the same case (uppercase or lowercase) for all instances of the same parameter. For example,
if one request contains parameter1=A and another contains parameter1=a, CloudFront
forwards separate requests to your origin when a request contains parameter1=A and when
a request contains parameter1=a. CloudFront then separately caches the corresponding
objects returned by your origin separately even if the objects are identical. If you use just A or a,
CloudFront forwards fewer requests to your origin.

• List parameters in the same order. As with differences in case, if one request for an object
contains the query string parameter1=a¶meter2=b and another request for the same
object contains parameter2=b¶meter1=a, CloudFront forwards both requests to your
origin and separately caches the corresponding objects even if they're identical. If you always use
the same order for parameters, CloudFront forwards fewer requests to your origin.

For more information, see Caching content based on query string parameters. If you want to review
the query strings that CloudFront forwards to your origin, see the values in the cs-uri-query
column of your CloudFront log files. For more information, see Configuring and using standard logs
(access logs).

Caching based on cookie values

If you configure CloudFront to cache based on cookie values, you can improve caching if you do the
following:

• Configure CloudFront to forward only specified cookies instead of forwarding all cookies. For
the cookies that you configure CloudFront to forward to your origin, CloudFront forwards every

Caching based on query string parameters 427

Amazon CloudFront Developer Guide

combination of cookie name and value. It then separately caches the objects that your origin
returns, even if they're all identical.

For example, suppose that viewers include two cookies in every request, that each cookie has
three possible values, and that all combinations of cookie values are possible. CloudFront
forwards up to six different requests to your origin for each object. If your origin returns different
versions of an object based on only one of the cookies, then CloudFront is forwarding more
requests to your origin than necessary and is needlessly caching multiple identical versions of the
object.

• Create separate cache behaviors for static and dynamic content, and configure CloudFront to
forward cookies to your origin only for dynamic content.

For example, suppose you have just one cache behavior for your distribution and that you're
using the distribution both for dynamic content, such as .js files, and for .css files that rarely
change. CloudFront caches separate versions of your .css files based on cookie values, so
each CloudFront edge location forwards a request to your origin for every new cookie value or
combination of cookie values.

If you create a cache behavior for which the path pattern is *.css and for which CloudFront
doesn't cache based on cookie values, then CloudFront forwards requests for .css files to your
origin for only the first request that an edge location receives for a given .css file and for the
first request after a .css file expires.

• If possible, create separate cache behaviors for dynamic content when cookie values are unique
for each user (such as a user ID), and dynamic content that varies based on a smaller number of
unique values.

For more information, see Caching content based on cookies. If you want to review the cookies that
CloudFront forwards to your origin, see the values in the cs(Cookie) column of your CloudFront
log files. For more information, see Configuring and using standard logs (access logs).

Caching based on request headers

If you configure CloudFront to cache based on request headers, you can improve caching if you do
the following:

• Configure CloudFront to forward and cache based on only specified headers instead of
forwarding and caching based on all headers. For the headers that you specify, CloudFront

Caching based on request headers 428

Amazon CloudFront Developer Guide

forwards every combination of header name and value. It then separately caches the objects that
your origin returns even if they're all identical.

Note

CloudFront always forwards to your origin the headers specified in the following topics:

• How CloudFront Processes and Forwards Requests to Your Amazon S3 Origin Server >
HTTP request headers that CloudFront removes or updates

• How CloudFront Processes and Forwards Requests to Your Custom Origin Server >
HTTP request headers and CloudFront behavior (custom and Amazon S3 origins)

When you configure CloudFront to cache based on request headers, you don't change the
headers that CloudFront forwards, only whether CloudFront caches objects based on the header
values.

• Try to avoid caching based on request headers that have large numbers of unique values.

For example, if you want to serve different sizes of an image based on the user's device, then
don't configure CloudFront to cache based on the User-Agent header, which has an enormous
number of possible values. Instead, configure CloudFront to cache based on the CloudFront
device-type headers CloudFront-Is-Desktop-Viewer, CloudFront-Is-Mobile-Viewer,
CloudFront-Is-SmartTV-Viewer, and CloudFront-Is-Tablet-Viewer. In addition, if
you're returning the same version of the image for tablets and desktops, then forward only
the CloudFront-Is-Tablet-Viewer header, not the CloudFront-Is-Desktop-Viewer
header.

For more information, see Caching content based on request headers.

Remove Accept-Encoding header when compression is not needed

If compression is not enabled—because the origin doesn’t support it, CloudFront doesn’t support
it, or the content is not compressible—you can increase the cache hit ratio by associating a cache
behavior in your distribution to an origin that sets the Custom Origin Header as follows:

• Header name: Accept-Encoding

• Header value: (Keep blank)

Remove Accept-Encoding header when compression is not needed 429

Amazon CloudFront Developer Guide

When you use this configuration, CloudFront removes the Accept-Encoding header from the
cache key and doesn’t include the header in origin requests. This configuration applies to all
content that CloudFront serves with the distribution from that origin.

Serving media content by using HTTP

For information about optimizing video on demand (VOD) and streaming video content, see Video
on demand and live streaming video with CloudFront.

Using Amazon CloudFront Origin Shield

CloudFront Origin Shield is an additional layer in the CloudFront caching infrastructure that
helps to minimize your origin’s load, improve its availability, and reduce its operating costs. With
CloudFront Origin Shield, you get the following benefits:

Better cache hit ratio

Origin Shield can help improve the cache hit ratio of your CloudFront distribution because it
provides an additional layer of caching in front of your origin. When you use Origin Shield,
all requests from all of CloudFront’s caching layers to your origin go through Origin Shield,
increasing the likelihood of a cache hit. CloudFront can retrieve each object with a single origin
request from Origin Shield to your origin, and all other layers of the CloudFront cache (edge
locations and regional edge caches) can retrieve the object from Origin Shield.

Reduced origin load

Origin Shield can further reduce the number of simultaneous requests that are sent to
your origin for the same object. Requests for content that is not in Origin Shield’s cache are
consolidated with other requests for the same object, resulting in as few as one request going
to your origin. Handling fewer requests at your origin can preserve your origin’s availability
during peak loads or unexpected traffic spikes, and can reduce costs for things like just-in-time
packaging, image transformations, and data transfer out (DTO).

Better network performance

When you enable Origin Shield in the AWS Region that has the lowest latency to your origin,
you can get better network performance. For origins in an AWS Region, CloudFront network
traffic remains on the high throughput CloudFront network all the way to your origin. For
origins outside of AWS, CloudFront network traffic remains on the CloudFront network all the
way to Origin Shield, which has a low latency connection to your origin.

Serving media content by using HTTP 430

Amazon CloudFront Developer Guide

You incur additional charges for using Origin Shield. For more information, see CloudFront Pricing.

Topics

• Use cases for Origin Shield

• Choosing the AWS Region for Origin Shield

• Enabling Origin Shield

• Estimating Origin Shield costs

• Origin Shield high availability

• How Origin Shield interacts with other CloudFront features

Use cases for Origin Shield

CloudFront Origin Shield can be beneficial for many use cases, including the following:

• Viewers that are spread across different geographical regions

• Origins that provide just-in-time packaging for live streaming or on-the-fly image processing

• On-premises origins with capacity or bandwidth constraints

• Workloads that use multiple content delivery networks (CDNs)

Origin Shield may not be a good fit in other cases, such as dynamic content that is proxied to the
origin, content with low cacheability, or content that is infrequently requested.

The following sections explain the benefits of Origin Shield for the following use cases.

Use Cases

• Viewers in different geographical regions

• Multiple CDNs

Viewers in different geographical regions

With Amazon CloudFront, you inherently get a reduced load on your origin because requests that
CloudFront can serve from the cache don’t go to your origin. In addition to CloudFront’s global
network of edge locations, regional edge caches serve as a mid-tier caching layer to provide cache
hits and consolidate origin requests for viewers in nearby geographical regions. Viewer requests are

Use cases for Origin Shield 431

https://aws.amazon.com/cloudfront/pricing/
https://aws.amazon.com/cloudfront/features/#Amazon_CloudFront_Infrastructure
https://aws.amazon.com/cloudfront/features/#Amazon_CloudFront_Infrastructure

Amazon CloudFront Developer Guide

routed first to a nearby CloudFront edge location, and if the object isn’t cached in that location, the
request is sent on to a regional edge cache.

When viewers are in different geographical regions, requests can be routed through different
regional edge caches, each of which can send a request to your origin for the same content. But
with Origin Shield, you get an additional layer of caching between the regional edge caches and
your origin. All requests from all regional edge caches go through Origin Shield, further reducing
the load on your origin. The following diagrams illustrate this. In the following diagrams, the origin
is AWS Elemental MediaPackage.

Without Origin Shield

Without Origin Shield, your origin might receive duplicate requests for the same content, as shown
in the following diagram.

With Origin Shield

Using Origin Shield can help reduce the load on your origin, as shown in the following diagram.

Use cases for Origin Shield 432

Amazon CloudFront Developer Guide

Multiple CDNs

To serve live video events or popular on-demand content, you might use multiple content delivery
networks (CDNs). Using multiple CDNs can offer certain advantages, but it also means that your
origin might receive many duplicate requests for the same content, each coming from different
CDNs or different locations within the same CDN. These redundant requests might adversely affect
the availability of your origin or cause additional operating costs for processes like just-in-time
packaging or data transfer out (DTO) to the internet.

When you combine Origin Shield with using your CloudFront distribution as the origin for other
CDNs, you can get the following benefits:

• Fewer redundant requests received at your origin, which helps to reduce the negative effects of
using multiple CDNs.

• A common cache key across CDNs, and centralized management for origin-facing features.

• Improved network performance. Network traffic from other CDNs is terminated at a nearby
CloudFront edge location, which might provide a hit from the local cache. If the requested object
is not in the edge location cache, the request to the origin remains on the CloudFront network
all the way to Origin Shield, which provides high throughput and low latency to the origin. If the
requested object is in Origin Shield’s cache, the request to your origin is avoided entirely.

Use cases for Origin Shield 433

Amazon CloudFront Developer Guide

Important

If you are interested in using Origin Shield in a multi-CDN architecture, and have
discounted pricing, contact us or your AWS sales representative for more information.
Additional charges may apply.

The following diagrams show how this configuration can help minimize the load on your origin
when you serve popular live video events with multiple CDNs. In the following diagrams, the origin
is AWS Elemental MediaPackage.

Without Origin Shield (multiple CDNs)

Without Origin Shield, your origin might receive many duplicate requests for the same content,
each coming from a different CDN, as shown in the following diagram.

With Origin Shield (multiple CDNs)

Use cases for Origin Shield 434

https://aws.amazon.com/contact-us/

Amazon CloudFront Developer Guide

Using Origin Shield, with CloudFront as the origin for your other CDNs, can help reduce the load on
your origin, as shown in the following diagram.

Choosing the AWS Region for Origin Shield

Amazon CloudFront offers Origin Shield in AWS Regions where CloudFront has a regional edge
cache. When you enable Origin Shield, you choose the AWS Region for Origin Shield. You should
choose the AWS Region that has the lowest latency to your origin. You can use Origin Shield with
origins that are in an AWS Region, and with origins that are not in AWS.

For origins in an AWS Region

If your origin is in an AWS Region, first determine whether your origin is in a Region in which
CloudFront offers Origin Shield. CloudFront offers Origin Shield in the following AWS Regions.

• US East (Ohio) – us-east-2

• US East (N. Virginia) – us-east-1

• US West (Oregon) – us-west-2

• Asia Pacific (Mumbai) – ap-south-1

• Asia Pacific (Seoul) – ap-northeast-2

• Asia Pacific (Singapore) – ap-southeast-1

• Asia Pacific (Sydney) – ap-southeast-2

• Asia Pacific (Tokyo) – ap-northeast-1

Choosing the AWS Region for Origin Shield 435

Amazon CloudFront Developer Guide

• Europe (Frankfurt) – eu-central-1

• Europe (Ireland) – eu-west-1

• Europe (London) – eu-west-2

• South America (São Paulo) – sa-east-1

If your origin is in an AWS Region in which CloudFront offers Origin Shield

If your origin is in an AWS Region in which CloudFront offers Origin Shield (see the preceding list),
enable Origin Shield in the same Region as your origin.

If your origin is not in an AWS Region in which CloudFront offers Origin Shield

If your origin is not in an AWS Region in which CloudFront offers Origin Shield, see the following
table to determine which Region to enable Origin Shield in.

If your origin is in ... Enable Origin Shield in ...

US West (N. California) – us-west-1 US West (Oregon) – us-west-2

Africa (Cape Town) – af-south-1 Europe (Ireland) – eu-west-1

Asia Pacific (Hong Kong) – ap-east-1 Asia Pacific (Singapore) – ap-southeast-1

Canada (Central) – ca-central-1 US East (N. Virginia) – us-east-1

Europe (Milan) – eu-south-1 Europe (Frankfurt) – eu-central-1

Europe (Paris) – eu-west-3 Europe (London) – eu-west-2

Europe (Stockholm) – eu-north-1 Europe (London) – eu-west-2

Middle East (Bahrain) – me-south-1 Asia Pacific (Mumbai) – ap-south-1

For origins outside of AWS

You can use Origin Shield with an origin that is on-premises or is not in an AWS Region. In this case,
enable Origin Shield in the AWS Region that has the lowest latency to your origin. If you’re not sure
which AWS Region has the lowest latency to your origin, you can use the following suggestions to
help you make a determination.

Choosing the AWS Region for Origin Shield 436

Amazon CloudFront Developer Guide

• You can consult the preceding table for an approximation of which AWS Region might have the
lowest latency to your origin, based on your origin’s geographic location.

• You can launch Amazon EC2 instances in a few different AWS Regions that are geographically
close to your origin, and run some tests using ping to measure the typical network latencies
between those Regions and your origin.

Enabling Origin Shield

You can enable Origin Shield to improve your cache hit ratio, reduce the load on your origin, and
help improve performance. To enable Origin Shield, change the origin settings in a CloudFront
distribution. Origin Shield is a property of the origin. For each origin in your CloudFront
distributions, you can separately enable Origin Shield in whichever AWS Region provides the best
performance for that origin.

You can enable Origin Shield in the CloudFront console, with AWS CloudFormation, or with the
CloudFront API.

Console

To enable Origin Shield for an existing origin (console)

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. Choose the distribution that has the origin that you want to update.

3. Choose the Origins and Origin Groups tab.

4. Choose the origin to update, then choose Edit.

5. For Enable Origin Shield, choose Yes.

6. For Origin Shield Region, choose the AWS Region where you want to enable Origin Shield.
For help choosing a Region, see Choosing the AWS Region for Origin Shield.

7. At the bottom of the page, choose Yes, Edit.

When your distribution status is Deployed, Origin Shield is ready. This takes a few minutes.

To enable Origin Shield for a new origin (console)

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

Enabling Origin Shield 437

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

2. To create the new origin in an existing distribution, do the following:

1. Choose the distribution where you want to create the origin.

2. Choose Create Origin, and then proceed to step 3.

To create the new origin in a new distribution, do the following:

1. Choose Create Distribution.

2. In the Web section, choose Get Started. In the Origin Settings section, complete the
following steps, starting with step 3.

3. For Enable Origin Shield, choose Yes.

4. For Origin Shield Region, choose the AWS Region where you want to enable Origin Shield.
For help choosing a Region, see Choosing the AWS Region for Origin Shield.

If you are creating a new distribution, continue configuring your distribution, using the
other settings on the page. For more information, see Values that you specify when you
create or update a distribution.

5. Make sure to save your changes by choosing Create (for a new origin in an existing
distribution) or Create Distribution (for a new origin in a new distribution).

When your distribution status is Deployed, Origin Shield is ready. This takes a few minutes.

AWS CloudFormation

To enable Origin Shield with AWS CloudFormation, use the OriginShield property in the
Origin property type in an AWS::CloudFront::Distribution resource. You can add the
OriginShield property to an existing Origin, or include it when you create a new Origin.

The following example shows the syntax, in YAML format, for enabling OriginShield in the
US West (Oregon) Region (us-west-2). For help choosing a Region, see the section called
“Choosing the AWS Region for Origin Shield”. This example shows only the Origin property
type, not the entire AWS::CloudFront::Distribution resource.

Origins:
- DomainName: 3ae97e9482b0d011.mediapackage.us-west-2.amazonaws.com
 Id: Example-EMP-3ae97e9482b0d011
 OriginShield:
 Enabled: true

Enabling Origin Shield 438

Amazon CloudFront Developer Guide

 OriginShieldRegion: us-west-2
 CustomOriginConfig:
 OriginProtocolPolicy: match-viewer
 OriginSSLProtocols: TLSv1

For more information, see AWS::CloudFront::Distribution Origin in the resource and property
reference section of the AWS CloudFormation User Guide.

API

To enable Origin Shield with the CloudFront API using the AWS SDKs or AWS Command Line
Interface (AWS CLI), use the OriginShield type. You specify OriginShield in an Origin,
in a DistributionConfig. For information about the OriginShield type, see the following
information in the Amazon CloudFront API Reference.

• OriginShield (type)

• Origin (type)

• DistributionConfig (type)

• UpdateDistribution (operation)

• CreateDistribution (operation)

The specific syntax for using these types and operations varies based on the SDK, CLI, or API
client. For more information, see the reference documentation for your SDK, CLI, or client.

Estimating Origin Shield costs

You accrue charges for Origin Shield based on the number of requests that go to Origin Shield as
an incremental layer.

For dynamic (non-cacheable) requests that are proxied to the origin, Origin Shield is always an
incremental layer. Dynamic requests use the HTTP methods PUT, POST, PATCH, and DELETE.

GET and HEAD requests that have a time to live (TTL) setting of less than 3600 seconds are
considered dynamic requests. In addition, GET and HEAD requests that have disabled caching are
also considered dynamic requests.

To estimate your charges for Origin Shield for dynamic requests, use the following formula:

Total number of dynamic requests x Origin Shield charge per 10,000 requests / 10,000

Estimating Origin Shield costs 439

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudfront-distribution-origin.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_OriginShield.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_Origin.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_DistributionConfig.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateDistribution.html

Amazon CloudFront Developer Guide

For non-dynamic requests with the HTTP methods GET, HEAD, and OPTIONS, Origin Shield is
sometimes an incremental layer. When you enable Origin Shield, you choose the AWS Region for
Origin Shield. For requests that naturally go to the regional edge cache in the same Region as
Origin Shield, Origin Shield is not an incremental layer. You don't accrue Origin Shield charges for
these requests. For requests that go to a regional edge cache in a different Region from Origin
Shield, and then go to Origin Shield, Origin Shield is an incremental layer. You do accrue Origin
Shield charges for these requests.

To estimate your charges for Origin Shield for cacheable requests, use the following formula:

Total number of cacheable requests x (1 – cache hit rate) x percentage of requests that go to Origin
Shield from a regional edge cache in a different region x Origin Shield charge per 10,000 requests /
10,000

For more information about the charge per 10,000 requests for Origin Shield, see CloudFront
Pricing.

Origin Shield high availability

Origin Shield leverages the CloudFront regional edge caches feature. Each of these edge caches is
built in an AWS Region using at least three Availability Zones with fleets of auto-scaling Amazon
EC2 instances. Connections from CloudFront locations to Origin Shield also use active error
tracking for each request to automatically route the request to a secondary Origin Shield location if
the primary Origin Shield location is unavailable.

How Origin Shield interacts with other CloudFront features

The following sections explain how Origin Shield interacts with other CloudFront features.

Origin Shield and CloudFront logging

To see when Origin Shield handled a request, you must enable one of the following:

• CloudFront standard logs (access logs). Standard logs are provided free of charge.

• CloudFront real-time logs. You incur additional charges for using real-time logs. See Amazon
CloudFront Pricing.

Cache hits from Origin Shield appear as OriginShieldHit in the x-edge-detailed-result-
type field in CloudFront logs. Origin Shield leverages Amazon CloudFront’s regional edge caches.

Origin Shield high availability 440

https://aws.amazon.com/cloudfront/pricing/
https://aws.amazon.com/cloudfront/pricing/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://aws.amazon.com/cloudfront/pricing/
https://aws.amazon.com/cloudfront/pricing/

Amazon CloudFront Developer Guide

If a request is routed from a CloudFront edge location to the regional edge cache that is acting as
Origin Shield, it is reported as a Hit in the logs, not as an OriginShieldHit.

Origin Shield and origin groups

Origin Shield is compatible with CloudFront origin groups. Because Origin Shield is a property of
the origin, requests always travel through Origin Shield for each origin even when the origin is
part of an origin group. For a given request, CloudFront routes the request to the primary origin in
the origin group through the primary origin’s Origin Shield. If that request fails (according to the
origin group failover criteria), CloudFront routes the request to the secondary origin through the
secondary origin’s Origin Shield.

Origin Shield and Lambda@Edge

Origin Shield does not impact the functionality of Lambda@Edge functions, but it can affect the
AWS Region where those functions run.

When you use Origin Shield with Lambda@Edge, origin-facing triggers (origin request and origin
response) run in the AWS Region where Origin Shield is enabled. If the primary Origin Shield
location is unavailable and CloudFront routes requests to a secondary Origin Shield location,
Lambda@Edge origin-facing triggers will also shift to use the secondary Origin Shield location.

Viewer-facing triggers are not affected.

Optimizing high availability with CloudFront origin failover

You can set up CloudFront with origin failover for scenarios that require high availability. To get
started, you create an origin group with two origins: a primary and a secondary. If the primary
origin is unavailable, or returns specific HTTP response status codes that indicate a failure,
CloudFront automatically switches to the secondary origin.

To set up origin failover, you must have a distribution with at least two origins. Next, you create an
origin group for your distribution that includes two origins, setting one as the primary. Finally, you
create or update a cache behavior to use the origin group.

To see the steps for setting up origin groups and configuring specific origin failover options, see
Creating an origin group.

After you configure origin failover for a cache behavior, CloudFront does the following for viewer
requests:

Increasing availability with origin failover 441

Amazon CloudFront Developer Guide

• When there’s a cache hit, CloudFront returns the requested object.

• When there’s a cache miss, CloudFront routes the request to the primary origin in the origin
group.

• When the primary origin returns a status code that is not configured for failover, such as an HTTP
2xx or 3xx status code, CloudFront serves the requested object to the viewer.

• When any of the following occur:

• The primary origin returns an HTTP status code that you’ve configured for failover

• CloudFront fails to connect to the primary origin

• The response from the primary origin takes too long (times out)

Then CloudFront routes the request to the secondary origin in the origin group.

Note

For some use cases, like streaming video content, you might want CloudFront to fail
over to the secondary origin quickly. To adjust how quickly CloudFront fails over to the
secondary origin, see Controlling origin timeouts and attempts.

CloudFront routes all incoming requests to the primary origin, even when a previous request
failed over to the secondary origin. CloudFront only sends requests to the secondary origin after a
request to the primary origin fails.

CloudFront fails over to the secondary origin only when the HTTP method of the viewer request
is GET, HEAD, or OPTIONS. CloudFront does not fail over when the viewer sends a different HTTP
method (for example POST, PUT, and so on).

The following diagram illustrates how origin failover works.

Increasing availability with origin failover 442

Amazon CloudFront Developer Guide

Topics

• Creating an origin group

• Controlling origin timeouts and attempts

• Use origin failover with Lambda@Edge functions

• Use custom error pages with origin failover

Creating an origin group

To create an origin group

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. Choose the distribution that you want to create the origin group for.

3. Choose the Origins tab.

4. Make sure the distribution has more than one origin. If it doesn’t, add a second origin.

5. On the Origins tab, in the Origin groups pane, choose Create origin group.

6. Choose the origins for the origin group. After you add origins, use the arrows to set the priority
—that is, which origin is primary and which is secondary.

Creating an origin group 443

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

7. Enter a name for the origin group.

8. Choose the HTTP status codes to use as failover criteria. You can choose any combination
of the following status codes: 400, 403, 404, 416, 500, 502, 503, or 504. When CloudFront
receives a response with one of the status codes that you specify, it fails over to the secondary
origin.

Note

CloudFront fails over to the secondary origin only when the HTTP method of the
viewer request is GET, HEAD, or OPTIONS. CloudFront does not fail over when the
viewer sends a different HTTP method (for example POST, PUT, and so on).

9. Choose Create origin group.

Make sure to assign your origin group as the origin for your distribution's cache behavior. For more
information, see Name.

Controlling origin timeouts and attempts

By default, CloudFront tries to connect to the primary origin in an origin group for as long as 30
seconds (3 connection attempts of 10 seconds each) before failing over to the secondary origin.
For some use cases, like streaming video content, you might want CloudFront to fail over to
the secondary origin more quickly. You can adjust the following settings to affect how quickly
CloudFront fails over to the secondary origin. If the origin is a secondary origin, or an origin that
is not part of an origin group, these settings affect how quickly CloudFront returns an HTTP 504
response to the viewer.

To fail over more quickly, specify a shorter connection timeout, fewer connection attempts, or
both. For custom origins (including Amazon S3 bucket origins that are configured with static
website hosting), you can also adjust the origin response timeout.

Origin connection timeout

The origin connection timeout setting affects how long CloudFront waits when trying to
establish a connection to the origin. By default, CloudFront waits 10 seconds to establish a
connection, but you can specify 1–10 seconds (inclusive). For more information, see Connection
timeout.

Controlling origin timeouts and attempts 444

Amazon CloudFront Developer Guide

Origin connection attempts

The origin connection attempts setting affects the number of times that CloudFront attempts
to connect to the origin. By default, CloudFront tries 3 times to connect, but you can specify 1–
3 (inclusive). For more information, see Connection attempts.

For a custom origin (including an Amazon S3 bucket that’s configured with static website
hosting), this setting also affects the number of times that CloudFront attempts to get a
response from the origin in the case of an origin response timeout.

Origin response timeout

Note

This applies only to custom origins.

The origin response timeout setting affects how long CloudFront waits to receive a response (or
to receive the complete response) from the origin. By default, CloudFront waits for 30 seconds,
but you can specify 1–60 seconds (inclusive). For more information, see Response timeout
(custom origins only).

How to change these settings

To change these settings in the CloudFront console

• For a new origin or a new distribution, you specify these values when you create the resource.

• For an existing origin in an existing distribution, you specify these values when you edit the
origin.

For more information, see Values that you specify when you create or update a distribution.

Use origin failover with Lambda@Edge functions

You can use Lambda@Edge functions with CloudFront distributions that you’ve set up with origin
groups. To use a Lambda function, specify it in an origin request or origin response trigger for an
origin group when you create the cache behavior. When you use a Lambda@Edge function with an
origin group, the function can be triggered twice for a single viewer request. For example, consider
this scenario:

Use origin failover with Lambda@Edge functions 445

https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

1. You create a Lambda@Edge function with an origin request trigger.

2. The Lambda function is triggered once when CloudFront sends a request to the primary origin
(on a cache miss).

3. The primary origin responds with an HTTP status code that’s configured for failover.

4. The Lambda function is triggered again when CloudFront sends the same request to the
secondary origin.

The following diagram illustrates how origin failover works when you include a Lambda@Edge
function in an origin request or response trigger.

For more information about using Lambda@Edge triggers, see the section called “Adding triggers”.

For more information about managing DNS failover, see Configuring DNS failover in the Amazon
Route 53 Developer Guide.

Use custom error pages with origin failover

You can use custom error pages with origin groups similarly to how you use them with origins that
are not set up for origin failover.

Use custom error pages with origin failover 446

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-failover-configuring.html

Amazon CloudFront Developer Guide

When you use origin failover, you can configure CloudFront to return a custom error page for the
primary or secondary origin (or both):

• Return a custom error page for the primary origin – If the primary origin returns an HTTP
status code that’s not configured for failover, CloudFront returns the custom error page to
viewers.

• Return a custom error page for the secondary origin – If CloudFront receives a failure status
code from the secondary origin, CloudFront returns the custom error page.

For more information about using custom error pages with CloudFront, see Generating custom
error responses.

Managing how long content stays in the cache (expiration)

You can control how long your files stay in a CloudFront cache before CloudFront forwards another
request to your origin. Reducing the duration allows you to serve dynamic content. Increasing the
duration means that your users get better performance because your files are more likely to be
served directly from the edge cache. A longer duration also reduces the load on your origin.

Typically, CloudFront serves a file from an edge location until the cache duration that you specified
passes—that is, until the file expires. After it expires, the next time the edge location gets a request
for the file, CloudFront forwards the request to the origin to verify that the cache contains the
latest version of the file. The response from the origin depends on whether the file has changed:

• If the CloudFront cache already has the latest version, the origin returns a status code 304 Not
Modified.

• If the CloudFront cache does not have the latest version, the origin returns a status code 200 OK
and the latest version of the file.

If a file in an edge location isn't frequently requested, CloudFront might evict the file—remove the
file before its expiration date—to make room for files that have been requested more recently.

By default, each file automatically expires after 24 hours, but you can change the default behavior
in two ways:

• To change the cache duration for all files that match the same path pattern, you can change the
CloudFront settings for Minimum TTL, Maximum TTL, and Default TTL for a cache behavior. For

Managing cache expiration 447

Amazon CloudFront Developer Guide

information about the individual settings, see Minimum TTL, Maximum TTL, and Default TTL in
the section called “Values that you specify”.

• To change the cache duration for an individual file, you can configure your origin to add a
Cache-Control header with the max-age or s-maxage directive, or an Expires header to the
file. For more information, see Using headers to control cache duration for individual objects.

For more information about how Minimum TTL, Default TTL, and Maximum TTL interact with
the max-age and s-maxage directives and the Expires header field, see the section called
“Specifying the amount of time that CloudFront caches objects”.

You can also control how long errors (for example, 404 Not Found) stay in a CloudFront cache
before CloudFront tries again to get the requested object by forwarding another request to your
origin. For more information, see the section called “How CloudFront processes and caches HTTP
4xx and 5xx status codes from your origin”.

Topics

• Using headers to control cache duration for individual objects

• Serving stale (expired) content

• Specifying the amount of time that CloudFront caches objects

• Adding headers to your objects using the Amazon S3 console

Using headers to control cache duration for individual objects

You can use the Cache-Control and Expires headers to control how long objects stay in the
cache. Settings for Minimum TTL, Default TTL, and Maximum TTL also affect cache duration, but
here's an overview of how headers can affect cache duration:

• The Cache-Control max-age directive lets you specify how long (in seconds) that you want an
object to remain in the cache before CloudFront gets the object again from the origin server. The
minimum expiration time CloudFront supports is 0 seconds. The maximum value is 100 years.
Specify the value in the following format:

Cache-Control: max-age=seconds

For example, the following directive tells CloudFront to keep the associated object in the cache
for 3600 seconds (one hour):

Using headers to control cache duration for individual objects 448

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html#DownloadDistValuesMinTTL
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html#DownloadDistValuesMaxTTL
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html#DownloadDistValuesDefaultTTL

Amazon CloudFront Developer Guide

Cache-Control: max-age=3600

If you want objects to stay in CloudFront edge caches for a different duration than they stay in
browser caches, you can use the Cache-Control max-age and Cache-Control s-maxage
directives together. For more information, see Specifying the amount of time that CloudFront
caches objects.

• The Expires header field lets you specify an expiration date and time using the format specified
in RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1 Section 3.3.1, Full Date, for example:

Sat, 27 Jun 2015 23:59:59 GMT

We recommend that you use the Cache-Control max-age directive instead of the Expires
header field to control object caching. If you specify values both for Cache-Control max-age
and for Expires, CloudFront uses only the value of Cache-Control max-age.

For more information, see Specifying the amount of time that CloudFront caches objects.

You cannot use the HTTP Cache-Control or Pragma header fields in a GET request from a viewer
to force CloudFront to go back to the origin server for the object. CloudFront ignores those header
fields in viewer requests.

For more information about the Cache-Control and Expires header fields, see the following
sections in RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1:

• Section 14.9 Cache Control

• Section 14.21 Expires

Serving stale (expired) content

CloudFront supports the Stale-While-Revalidate and Stale-If-Error cache control
directives.

• The stale-while-revalidate directive allows CloudFront to serve stale content from cache
while it asynchronously fetches a fresh version from the origin. This improves latency as users
receive responses immediately from CloudFront's edge locations without having to wait for the
background fetch, and fresh content is loaded in the background for future requests.

Serving stale (expired) content 449

https://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.3.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.21

Amazon CloudFront Developer Guide

In the following example, CloudFront caches the response for one hour (max-age=3600). If a
request is made after this period, CloudFront serves the stale content while concurrently sending
a request to the origin to revalidate and refresh the cached content. The stale content is served
for up to 10 minutes (stale-while-revalidate=600) while the content is being revalidated.

Cache-Control: max-age=3600, stale-while-revalidate=600

• The stale-if-error directive allows CloudFront to serve stale content from cache if the origin
is unreachable or returns an error code that is between 500 and 600. This ensures that viewers
can access content even during an origin outage.

In the following example, CloudFront caches the response for one hour (max-age=3600). If
the origin is down or returns an error after this period, CloudFront continues to serve the stale
content for up to 24 hours (stale-if-error=86400).

Cache-Control: max-age=3600, stale-if-error=86400

Note

When both stale-if-error and custom error responses are configured, CloudFront
first attempts to serve the stale content if an error is encountered within the specified
stale-if-error duration. If stale content is unavailable, or the content is beyond the
stale-if-error duration, CloudFront serves the custom error responses configured for
the corresponding error status code.

Using both together

stale-while-revalidate and stale-if-error are independent cache control directives
that can be used together to reduce latency and to add a buffer for your origin to respond or
recover.

In the following example, CloudFront caches the response for one hour (max-age=3600). If
a request is made after this period, CloudFront serves the stale content for up to 10 minutes
(stale-while-revalidate=600) while the content is being revalidated. If the origin server
returns an error while CloudFront attempts to revalidate the content, CloudFront continues to
serve the stale content for up to 24 hours (stale-if-error=86400).

Serving stale (expired) content 450

GeneratingCustomErrorResponses.html

Amazon CloudFront Developer Guide

Cache-Control: max-age=3600, stale-while-revalidate=600, stale-if-error=86400

Tip

Caching is a balance between performance and freshness. Using directives like stale-
while-revalidate and stale-if-error can enhance performance and user
experience, but make sure the configurations align with how fresh you want your content
to be. Stale content directives are best suited for use cases where content needs to be
refreshed but having the latest version is non-essential. Additionally, if your content
doesn’t change or rarely changes, stale-while-revalidate could add unnecessary
network requests. Instead, consider setting a long cache duration.

Specifying the amount of time that CloudFront caches objects

To control the amount of time that CloudFront keeps an object in the cache before sending
another request to the origin, you can:

• Set the minimum, maximum, and default TTL values in a CloudFront distribution's cache
behavior. You can set these values in a cache policy attached to the cache behavior
(recommended), or in the legacy cache settings.

• Include the Cache-Control or Expires header in responses from the origin. These headers
also help determine how long a browser keeps an object in the browser cache before sending
another request to CloudFront.

The following table explains how the Cache-Control and Expires headers sent from the origin
work together with the TTL settings in a cache behavior to affect caching.

Origin headers Minimum TTL = 0 Minimum TTL > 0

The origin adds a Cache-
Control: max-age
directive to the object

CloudFront caching

CloudFront caches the object
for the lesser of the value
of the Cache-Control:

CloudFront caching

CloudFront caching depends
on the values of the
CloudFront minimum TTL

Specifying the amount of time that CloudFront caches objects 451

Amazon CloudFront Developer Guide

Origin headers Minimum TTL = 0 Minimum TTL > 0

max-age directive or the
value of the CloudFront
maximum TTL.

Browser caching

Browsers cache the object for
the value of the Cache-Con
trol: max-age directive.

and maximum TTL and the
Cache-Control max-age
 directive:

•
If minimum TTL < max-
age < maximum TTL, then
CloudFront caches the obj
ect for the value of the
Cache-Control: m
ax-age directive.

•
If max-age < minimum
TTL, then CloudFront
caches the object for the
value of the CloudFront
minimum TTL.

•
If max-age > maximum
TTL, then CloudFront
caches the object for the
value of the CloudFront
maximum TTL.

Browser caching

Browsers cache the object for
the value of the Cache-Con
trol: max-age directive.

Specifying the amount of time that CloudFront caches objects 452

Amazon CloudFront Developer Guide

Origin headers Minimum TTL = 0 Minimum TTL > 0

The origin does not add a
Cache-Control: max-
age directive to the object

CloudFront caching

CloudFront caches the object
for the value of the CloudFron
t default TTL.

Browser caching

Depends on the browser.

CloudFront caching

CloudFront caches the object
for the greater of the value of
the CloudFront minimum TTL
or default TTL.

Browser caching

Depends on the browser.

Specifying the amount of time that CloudFront caches objects 453

Amazon CloudFront Developer Guide

Origin headers Minimum TTL = 0 Minimum TTL > 0

The origin adds Cache-
Control: max-age and
Cache-Control: s-
maxage directives to the
object

CloudFront caching

CloudFront caches the object
for the lesser of the value of
the Cache-Control: s-
maxage directive or the value
of the CloudFront maximum
TTL.

Browser caching

Browsers cache the object for
the value of the Cache-Con
trol max-age directive.

CloudFront caching

CloudFront caching depends
on the values of the
CloudFront minimum TTL
and maximum TTL and the
Cache-Control: s-
maxage directive:

•
If minimum TTL < s-
maxage < maximum TTL,
then CloudFront caches the
 object for the value of the
Cache-Control: s-
maxage directive.

•
If s-maxage < minimum
TTL, then CloudFront
caches the object for the
value of the CloudFront
minimum TTL.

•
If s-maxage > maximum
TTL, then CloudFront
caches the object for the
value of the CloudFront
maximum TTL.

Browser caching

Browsers cache the object for
the value of the Cache-Con
trol: max-age directive.

Specifying the amount of time that CloudFront caches objects 454

Amazon CloudFront Developer Guide

Origin headers Minimum TTL = 0 Minimum TTL > 0

The origin adds an Expires
header to the object

CloudFront caching

CloudFront caches the object
until the date in the Expires
header or for the value of the
CloudFront maximum TTL,
whichever is sooner.

Browser caching

Browsers cache the object
until the date in the Expires
header.

CloudFront caching

CloudFront caching depends
on the values of the
CloudFront minimum TTL
and maximum TTL and the
Expires header:

•
If minimum TTL < Expires
< maximum TTL, then
CloudFront caches the obj
ect until the date and time
in the Expires header.

•
If Expires < minimum
TTL, then CloudFront
caches the object for the
value of the CloudFront
minimum TTL.

•
If Expires > maximum
TTL, then CloudFront
caches the object for the
value of the CloudFront
maximum TTL.

Browser caching

Browsers cache the object
until the date and time in the
Expires header.

Specifying the amount of time that CloudFront caches objects 455

Amazon CloudFront Developer Guide

Origin headers Minimum TTL = 0 Minimum TTL > 0

Origin adds Cache-Con
trol: no-cache , no-
store, and/or private
directives to the object

CloudFront and browsers
respect the headers.

CloudFront caching

CloudFront caches the object
for the value of the CloudFron
t minimum TTL. See the
warning below this table.

Browser caching

Browsers respect the headers.

Warning

If your minimum TTL is greater than 0, CloudFront uses the cache policy’s minimum TTL,
even if the Cache-Control: no-cache, no-store, and/or private directives are
present in the origin headers.
If the origin is reachable, CloudFront gets the object from the origin and returns it to the
viewer.
If the origin is unreachable and the minimum or maximum TTL value is greater than 0,
CloudFront will serve the object that it got from the origin previously.
To avoid this behavior, include the Cache-Control: stale-if-error=0 directive with
the object returned from the origin. This causes CloudFront to return an error in response
to future requests if the origin is unreachable, rather than returning the object that it got
from the origin previously.

For information about how to change settings for distributions using the CloudFront console, see
Updating a distribution. For information about how to change settings for distributions using the
CloudFront API, see UpdateDistribution.

Specifying the amount of time that CloudFront caches objects 456

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html

Amazon CloudFront Developer Guide

Adding headers to your objects using the Amazon S3 console

To add a Cache-Control or Expires header field to Amazon S3 objects using the Amazon S3
console

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. In the list of buckets, choose the name of the bucket that contains the files that you are adding
headers to.

3. Select the check box next to the name of the file or folder that you are adding headers to.
When you add headers to a folder, it affects all the files inside that folder.

4. Choose Actions, then choose Edit metadata.

5. In the Add metadata panel, do the following:

a. Choose Add metadata.

b. For Type, choose System defined.

c. For Key, choose the name of the header that you are adding (Cache-Control or Expires).

d. For Value, enter a header value. For example, for a Cache-Control header, you could
enter max-age=86400. For Expires, you could enter an expiration date and time such as
Wed, 30 Jun 2021 09:28:00 GMT.

6. At the bottom of the page, choose Edit metadata.

Caching content based on query string parameters

Some web applications use query strings to send information to the origin. A query string is
the part of a web request that appears after a ? character; the string can contain one or more
parameters, separated by & characters. In the following example, the query string includes two
parameters, color=red and size=large:

https://d111111abcdef8.cloudfront.net/images/image.jpg?color=red&size=large

For distributions, you can choose if you want CloudFront to forward query strings to your origin
and whether to cache your content based on all parameters or on selected parameters. Why might
this be useful? Consider the following example.

Adding headers to your objects using the Amazon S3 console 457

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon CloudFront Developer Guide

Suppose that your website is available in five languages. The directory structure and file names
for all five versions of the website are identical. As a user views your website, requests that are
forwarded to CloudFront include a language query string parameter based on the language that
the user chose. You can configure CloudFront to forward query strings to the origin and to cache
based on the language parameter. If you configure your web server to return the version of a
given page that corresponds with the selected language, CloudFront caches each language version
separately, based on the value of the language query string parameter.

In this example, if the main page for your website is main.html, the following five requests cause
CloudFront to cache main.html five times, once for each value of the language query string
parameter:

• https://d111111abcdef8.cloudfront.net/main.html?language=de

• https://d111111abcdef8.cloudfront.net/main.html?language=en

• https://d111111abcdef8.cloudfront.net/main.html?language=es

• https://d111111abcdef8.cloudfront.net/main.html?language=fr

• https://d111111abcdef8.cloudfront.net/main.html?language=jp

Note the following:

• Some HTTP servers don't process query string parameters and, therefore, don't return different
versions of an object based on parameter values. For these origins, if you configure CloudFront
to forward query string parameters to the origin, CloudFront still caches based on the parameter
values even though the origin returns identical versions of the object to CloudFront for every
parameter value.

• For query string parameters to work as described in the example above with the languages,
you must use the & character as the delimiter between query string parameters. If you use a
different delimiter, you may get unexpected results, depending on which parameters you specify
for CloudFront to use as a basis for caching, and the order in which the parameters appear in the
query string.

The following examples show what happens if you use a different delimiter and you configure
CloudFront to cache based only on the color parameter:

• In the following request, CloudFront caches your content based on the value of the color
parameter, but CloudFront interprets the value as red;size=large:

Caching and query string parameters 458

Amazon CloudFront Developer Guide

https://d111111abcdef8.cloudfront.net/images/
image.jpg?color=red;size=large

• In the following request, CloudFront caches your content but doesn't base caching on the
query string parameters. This is because you configured CloudFront to cache based on the
color parameter, but CloudFront interprets the following string as containing only a size
parameter that has a value of large;color=red:

https://d111111abcdef8.cloudfront.net/images/
image.jpg?size=large;color=red

You can configure CloudFront to do one of the following:

• Don't forward query strings to the origin at all. If you don't forward query strings, CloudFront
doesn't cache based on query string parameters.

• Forward query strings to the origin, and cache based on all parameters in the query string.

• Forward query strings to the origin, and cache based on specified parameters in the query string.

For more information, see the section called “Optimizing caching”.

Topics

• Console and API settings for query string forwarding and caching

• Optimizing caching

• Query string parameters and CloudFront standard logs (access logs)

Console and API settings for query string forwarding and caching

To configure query string forwarding and caching in the CloudFront console, see the following
settings in the section called “Values that you specify”:

• the section called “Query string forwarding and caching”

• the section called “Query string allowlist”

Console and API settings for query string forwarding and caching 459

Amazon CloudFront Developer Guide

To configure query string forwarding and caching with the CloudFront API, see the following
settings in DistributionConfig and in DistributionConfigWithTags in the Amazon CloudFront API
Reference:

• QueryString

• QueryStringCacheKeys

Optimizing caching

When you configure CloudFront to cache based on query string parameters, you can take the
following steps to reduce the number of requests that CloudFront forwards to your origin. When
CloudFront edge locations serve objects, you reduce the load on your origin server and reduce
latency because objects are served from locations that are closer to your users.

Cache based only on parameters for which your origin returns different versions of an object

For each query string parameter that your web application forwards to CloudFront, CloudFront
forwards requests to your origin for every parameter value and caches a separate version of the
object for every parameter value. This is true even if your origin always returns the same object
regardless of the parameter value. For multiple parameters, the number of requests and the
number of objects multiply.

We recommend that you configure CloudFront to cache based only on the query string
parameters for which your origin returns different versions, and that you carefully consider the
merits of caching based on each parameter. For example, suppose you have a retail website.
You have pictures of a jacket in six different colors, and the jacket comes in 10 different sizes.
The pictures that you have of the jacket show the different colors but not the different sizes. To
optimize caching, you should configure CloudFront to cache based only on the color parameter,
not on the size parameter. This increases the likelihood that CloudFront can serve a request
from the cache, which improves performance and reduces the load on your origin.

Always list parameters in the same order

The order of parameters matters in query strings. In the following example, the query strings
are identical except that the parameters are in a different order. This causes CloudFront to
forward two separate requests for image.jpg to your origin and to cache two separate versions
of the object:

• https://d111111abcdef8.cloudfront.net/images/
image.jpg?color=red&size=large

Optimizing caching 460

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_DistributionConfig.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_DistributionConfigWithTags.html

Amazon CloudFront Developer Guide

• https://d111111abcdef8.cloudfront.net/images/
image.jpg?size=large&color=red

We recommend that you always list parameter names in the same order, such as alphabetical
order.

Always use the same case for parameter names and values

CloudFront considers the case of parameter names and values when caching based on query
string parameters. In the following example, the query strings are identical except for the case
of parameter names and values. This causes CloudFront to forward four separate requests for
image.jpg to your origin and to cache four separate versions of the object:

• https://d111111abcdef8.cloudfront.net/images/image.jpg?color=red

• https://d111111abcdef8.cloudfront.net/images/image.jpg?color=Red

• https://d111111abcdef8.cloudfront.net/images/image.jpg?Color=red

• https://d111111abcdef8.cloudfront.net/images/image.jpg?Color=Red

We recommend that you use case consistently for parameter names and values, such as all
lowercase.

Don’t use parameter names that conflict with signed URLs

If you're using signed URLs to restrict access to your content (if you added trusted signers
to your distribution), CloudFront removes the following query string parameters before
forwarding the rest of the URL to your origin:

• Expires

• Key-Pair-Id

• Policy

• Signature

If you're using signed URLs and you want to configure CloudFront to forward query strings
to your origin, your own query string parameters cannot be named Expires, Key-Pair-Id,
Policy, or Signature.

Query string parameters and CloudFront standard logs (access logs)

If you enable logging, CloudFront logs the full URL, including query string parameters. This is true
regardless of whether you have configured CloudFront to forward query strings to the origin. For

Query string parameters and CloudFront standard logs (access logs) 461

Amazon CloudFront Developer Guide

more information about CloudFront logging, see the section called “Using standard logs (access
logs)”.

Caching content based on cookies

By default, CloudFront doesn’t consider cookies when processing requests and responses, or when
caching your objects in edge locations. If CloudFront receives two requests that are identical except
for what’s in the Cookie header, then, by default, CloudFront treats the requests as identical and
returns the same object for both requests.

You can configure CloudFront to forward to your origin some or all of the cookies in viewer
requests, and to cache separate versions of your objects based on the cookie values that it
forwards. When you do this, CloudFront uses some or all of the cookies in viewer requests—
whichever ones it’s configured to forward—to uniquely identify an object in the cache.

For example, suppose that requests for locations.html contain a country cookie that has a
value of either uk or fr. When you configure CloudFront to cache your objects based on the value
of the country cookie, CloudFront forwards requests for locations.html to the origin and
includes the country cookie and its value. Your origin returns locations.html, and CloudFront
caches the object once for requests in which the value of the country cookie is uk and once for
requests in which the value is fr.

Important

Amazon S3 and some HTTP servers don’t process cookies. Don’t configure CloudFront to
forward cookies to an origin that doesn’t process cookies or doesn’t vary its response based
on cookies. That can cause CloudFront to forward more requests to the origin for the same
object, which slows performance and increases the load on the origin. If, considering the
previous example, your origin doesn’t process the country cookie or always returns the
same version of locations.html to CloudFront regardless of the value of the country
cookie, don’t configure CloudFront to forward that cookie.
Conversely, if your custom origin depends on a particular cookie or sends different
responses based on a cookie, make sure you configure CloudFront to forward that cookie
to the origin. Otherwise, CloudFront removes the cookie before forwarding the request to
your origin.

Caching content based on cookies 462

Amazon CloudFront Developer Guide

To configure cookie forwarding, you update your distribution’s cache behavior. For more
information about cache behaviors, see Cache behavior settings, particularly the Forward cookies
and Allowlist cookies sections.

You can configure each cache behavior to do one of the following:

• Forward all cookies to your origin – CloudFront includes all cookies sent by the viewer when
it forwards requests to the origin. When your origin returns a response, CloudFront caches
the response using the cookie names and values in the viewer request. If the origin response
includes Set-Cookie headers, CloudFront returns them to the viewer with the requested object.
CloudFront also caches the Set-Cookie headers with the object returned from the origin, and
sends those Set-Cookie headers to viewers on all cache hits.

• Forward a set of cookies that you specify – CloudFront removes any cookies that the viewer
sends that aren’t on the allowlist before it forwards a request to the origin. CloudFront caches
the response using the listed cookies names and values in the viewer request. If the origin
response includes Set-Cookie headers, CloudFront returns them to the viewer with the
requested object. CloudFront also caches the Set-Cookie headers with the object returned
from the origin, and sends those Set-Cookie headers to viewers on all cache hits.

For information about specifying wildcards in cookie names, see Allowlist cookies.

For the current quota on the number of cookie names that you can forward for each cache
behavior, or to request a higher quota, see Quotas on query strings (legacy cache settings).

• Don't forward cookies to your origin – CloudFront doesn’t cache your objects based on cookie
sent by the viewer. In addition, CloudFront removes cookies before forwarding requests to your
origin, and removes Set-Cookie headers from responses before returning responses to your
viewers. Because this isn't an optimal way to use your origin resources, when you select this
cache behavior, you should make sure that your origin doesn't include cookies in origin responses
by default.

Note the following about specifying the cookies that you want to forward:

Access logs

If you configure CloudFront to log requests and to log cookies, CloudFront logs all cookies and
all cookie attributes, even if you configure CloudFront not to forward cookies to your origin
or if you configure CloudFront to forward only specific cookies. For more information about
CloudFront logging, see Configuring and using standard logs (access logs).

Caching content based on cookies 463

Amazon CloudFront Developer Guide

Case sensitivity

Cookie names and values are both case-sensitive. For example, if CloudFront is configured to
forward all cookies, and two viewer requests for the same object have cookies that are identical
except for case, CloudFront caches the object twice.

CloudFront sorts cookies

If CloudFront is configured to forward cookies (all or a subset), CloudFront sorts the cookies in
natural order by cookie name before forwarding the request to your origin.

If-Modified-Since and If-None-Match

If-Modified-Since and If-None-Match conditional requests are not supported when
CloudFront is configured to forward cookies (all or a subset).

Standard name–value pair format is required

CloudFront forwards a cookie header only if the value conforms to the standard name–value
pair format, for example: "Cookie: cookie1=value1; cookie2=value2"

Disable caching of Set-Cookie headers

If CloudFront is configured to forward cookies to the origin (whether all or specific cookies),
it also caches the Set-Cookie headers received in the origin response. CloudFront includes
these Set-Cookie headers in its response to the original viewer, and also includes them in
subsequent responses that are served from the CloudFront cache.

If you want to receive cookies at your origin but you don’t want CloudFront to cache the Set-
Cookie headers in your origin’s responses, configure your origin to add a Cache-Control
header with a no-cache directive that specifies Set-Cookie as a field name. For example:
Cache-Control: no-cache="Set-Cookie". For more information, see Response Cache-
Control Directives in the Hypertext Transfer Protocol (HTTP/1.1): Caching standard.

Maximum length of cookie names

If you configure CloudFront to forward specific cookies to your origin, the total number of bytes
in all of the cookie names that you configure CloudFront to forward can’t exceed 512 minus the
number of cookies that you’re forwarding. For example, if you configure CloudFront to forward
10 cookies to your origin, the combined length of the names of the 10 cookies can’t exceed 502
bytes (512 – 10).

If you configure CloudFront to forward all cookies to your origin, the length of cookie names
doesn’t matter.

Caching content based on cookies 464

https://tools.ietf.org/html/rfc6265#section-4.1.1
https://tools.ietf.org/html/rfc6265#section-4.1.1
https://tools.ietf.org/html/rfc7234#section-5.2.2
https://tools.ietf.org/html/rfc7234#section-5.2.2

Amazon CloudFront Developer Guide

For information about using the CloudFront console to update a distribution so CloudFront
forwards cookies to the origin, see Updating a distribution. For information about using the
CloudFront API to update a distribution, see UpdateDistribution in the Amazon CloudFront API
Reference.

Caching content based on request headers

CloudFront lets you choose whether you want CloudFront to forward headers to your origin and to
cache separate versions of a specified object based on the header values in viewer requests. This
allows you to serve different versions of your content based on the device the user is using, the
location of the viewer, the language the viewer is using, and a variety of other criteria.

Topics

• Headers and distributions – overview

• Selecting the headers to base caching on

• Configuring CloudFront to respect CORS settings

• Configuring caching based on the device type

• Configuring caching based on the language of the viewer

• Configuring caching based on the location of the viewer

• Configuring caching based on the protocol of the request

• Configuring caching for compressed files

• How caching based on headers affects performance

• How the case of headers and header values affects caching

• Headers that CloudFront returns to the viewer

Headers and distributions – overview

By default, CloudFront doesn't consider headers when caching your objects in edge locations.
If your origin returns two objects and they differ only by the values in the request headers,
CloudFront caches only one version of the object.

You can configure CloudFront to forward headers to the origin, which causes CloudFront to cache
multiple versions of an object based on the values in one or more request headers. To configure

Caching content based on request headers 465

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html

Amazon CloudFront Developer Guide

CloudFront to cache objects based on the values of specific headers, you specify cache behavior
settings for your distribution. For more information, see Cache Based on Selected Request
Headers.

For example, suppose viewer requests for logo.jpg contain a custom Product header that has
a value of either Acme or Apex. When you configure CloudFront to cache your objects based on
the value of the Product header, CloudFront forwards requests for logo.jpg to the origin and
includes the Product header and header values. CloudFront caches logo.jpg once for requests in
which the value of the Product header is Acme and once for requests in which the value is Apex.

You can configure each cache behavior in a distribution to do one of the following:

• Forward all headers to your origin

Note

For legacy cache settings – If you configure CloudFront to forward all headers to your
origin, CloudFront doesn't cache the objects associated with this cache behavior. Instead,
it sends every request to the origin.

• Forward a list of headers that you specify. CloudFront caches your objects based on the values
in all of the specified headers. CloudFront also forwards the headers that it forwards by default,
but it caches your objects based only on the headers that you specify.

• Forward only the default headers. In this configuration, CloudFront doesn't cache your objects
based on the values in the request headers.

For the current quota on the number of headers that you can forward for each cache behavior or to
request a higher quota, see Quotas on headers.

For information about using the CloudFront console to update a distribution so CloudFront
forwards headers to the origin, see Updating a distribution. For information about using the
CloudFront API to update an existing distribution, see Update Distribution in the Amazon
CloudFront API Reference.

Selecting the headers to base caching on

The headers that you can forward to the origin and that CloudFront bases caching on depend on
whether your origin is an Amazon S3 bucket or a custom origin.

Selecting the headers to base caching on 466

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html#DownloadDistValuesForwardHeaders
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html#DownloadDistValuesForwardHeaders
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html

Amazon CloudFront Developer Guide

• Amazon S3 – You can configure CloudFront to forward and to cache your objects based on a
number of specific headers (see the following list of exceptions). However, we recommend that
you avoid forwarding headers with an Amazon S3 origin unless you need to implement cross-
origin resource sharing (CORS) or you want to personalize content by using Lambda@Edge in
origin-facing events.

• To configure CORS, you must forward headers that allow CloudFront to distribute content for
websites that are enabled for cross-origin resource sharing (CORS). For more information, see
Configuring CloudFront to respect CORS settings.

• To personalize content by using headers that you forward to your Amazon S3 origin, you write
and add Lambda@Edge functions and associate them with your CloudFront distribution to
be triggered by an origin-facing event. For more information about working with headers to
personalize content, see Personalize content by country or device type headers - examples.

We recommend that you avoid forwarding headers that you aren’t using to personalize
content because forwarding extra headers can reduce your cache hit ratio. That is, CloudFront
can’t serve as many requests from edge caches, as a proportion of all requests.

• Custom origin – You can configure CloudFront to cache based on the value of any request
header except the following:

• Connection

• Cookie – If you want to forward and cache based on cookies, you use a separate setting in
your distribution. For more information, see Caching content based on cookies.

• Host (for Amazon S3 origins)

• Proxy-Authorization

• TE

• Upgrade

You can configure CloudFront to cache objects based on values in the Date and User-Agent
headers, but we don’t recommend it. These headers have numerous possible values, and caching
based on their values could cause CloudFront to forward significantly more requests to your
origin.

For a full list of HTTP request headers and how CloudFront processes them, see HTTP request
headers and CloudFront behavior (custom and Amazon S3 origins).

Selecting the headers to base caching on 467

Amazon CloudFront Developer Guide

Configuring CloudFront to respect CORS settings

If you have enabled cross-origin resource sharing (CORS) on an Amazon S3 bucket or a custom
origin, you must choose specific headers to forward, to respect the CORS settings. The headers that
you must forward differ depending on the origin (Amazon S3 or custom) and whether you want to
cache OPTIONS responses.

Amazon S3

• If you want OPTIONS responses to be cached, do the following:

• Choose the options for default cache behavior settings that enable caching for OPTIONS
responses.

• Configure CloudFront to forward the following headers: Origin, Access-Control-
Request-Headers, and Access-Control-Request-Method.

• If you don't want OPTIONS responses to be cached, configure CloudFront to forward the
Origin header, together with any other headers required by your origin (for example, Access-
Control-Request-Headers, Access-Control-Request-Method, or others).

Custom origins – Forward the Origin header along with any other headers required by your
origin.

To configure CloudFront to cache responses based on CORS, you must configure CloudFront to
forward headers by using a cache policy. For more information, see Working with policies.

For more information about CORS and Amazon S3, see Using cross-origin resource sharing (CORS)
in the Amazon Simple Storage Service User Guide.

Configuring caching based on the device type

If you want CloudFront to cache different versions of your objects based on the device a user is
using to view your content, configure CloudFront to forward the applicable headers to your custom
origin:

• CloudFront-Is-Desktop-Viewer

• CloudFront-Is-Mobile-Viewer

• CloudFront-Is-SmartTV-Viewer

• CloudFront-Is-Tablet-Viewer

Configuring CloudFront to respect CORS settings 468

https://docs.aws.amazon.com/AmazonS3/latest/userguide/cors.html

Amazon CloudFront Developer Guide

Based on the value of the User-Agent header, CloudFront sets the value of these headers to
true or false before forwarding the request to your origin. If a device falls into more than one
category, more than one value might be true. For example, for some tablet devices, CloudFront
might set both CloudFront-Is-Mobile-Viewer and CloudFront-Is-Tablet-Viewer to
true.

Configuring caching based on the language of the viewer

If you want CloudFront to cache different versions of your objects based on the language specified
in the request, configure CloudFront to forward the Accept-Language header to your origin.

Configuring caching based on the location of the viewer

If you want CloudFront to cache different versions of your objects based on the country that the
request came from, configure CloudFront to forward the CloudFront-Viewer-Country header
to your origin. CloudFront automatically converts the IP address that the request came from into a
two-letter country code. For an easy-to-use list of country codes, sortable by code and by country
name, see the Wikipedia entry ISO 3166-1 alpha-2.

Configuring caching based on the protocol of the request

If you want CloudFront to cache different versions of your objects based on the protocol of the
request, HTTP or HTTPS, configure CloudFront to forward the CloudFront-Forwarded-Proto
header to your origin.

Configuring caching for compressed files

If your origin supports Brotli compression, you can cache based on the Accept-Encoding header.
Configure caching based on Accept-Encoding only if your origin serves different content based
on the header.

How caching based on headers affects performance

When you configure CloudFront to cache based on one or more headers and the headers have
more than one possible value, CloudFront forwards more requests to your origin server for the
same object. This slows performance and increases the load on your origin server. If your origin
server returns the same object regardless of the value of a given header, we recommend that you
don't configure CloudFront to cache based on that header.

Configuring caching based on the language of the viewer 469

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Amazon CloudFront Developer Guide

If you configure CloudFront to forward more than one header, the order of the headers in viewer
requests doesn't affect caching as long as the values are the same. For example, if one request
contains the headers A:1,B:2 and another request contains B:2,A:1, CloudFront caches just one copy
of the object.

How the case of headers and header values affects caching

When CloudFront caches based on header values, it doesn't consider the case of the header name,
but it does consider the case of the header value:

• If viewer requests include both Product:Acme and product:Acme, CloudFront caches an
object only once. The only difference between them is the case of the header name, which
doesn't affect caching.

• If viewer requests include both Product:Acme and Product:acme, CloudFront caches an
object twice, because the value is Acme in some requests and acme in others.

Headers that CloudFront returns to the viewer

Configuring CloudFront to forward and cache headers does not affect which headers CloudFront
returns to the viewer. CloudFront returns all of the headers that it gets from the origin with a few
exceptions. For more information, see the applicable topic:

• Amazon S3 origins – See HTTP response headers that CloudFront removes or updates.

• Custom origins – See HTTP response headers that CloudFront removes or replaces.

How the case of headers and header values affects caching 470

Amazon CloudFront Developer Guide

Troubleshooting

Troubleshoot common problems you might encounter when setting up Amazon CloudFront to
distribute your content or when using Lambda@Edge, and find possible solutions.

Topics

• Troubleshooting distribution issues

• Troubleshooting error responses from your origin

• Load testing CloudFront

Troubleshooting distribution issues

Use the information here to help you diagnose and fix certificate errors, access-denied issues, or
other common issues that you might encounter when setting up your website or application with
Amazon CloudFront distributions.

Topics

• CloudFront returns an InvalidViewerCertificate error when I try to add an alternate domain name

• I can't view the files in my distribution

• Error message: Certificate: <certificate-id> is being used by CloudFront

CloudFront returns an InvalidViewerCertificate error when I try to add
an alternate domain name

If CloudFront returns an InvalidViewerCertificate error when you try to add an alternate
domain name (CNAME) to your distribution, review the following information to help troubleshoot
the problem. This error can indicate that one of the following issues must be resolved before you
can successfully add the alternate domain name.

The following errors are listed in the order in which CloudFront checks for authorization to add
an alternate domain name. This can help you troubleshoot issues because based on the error that
CloudFront returns, you can tell which verification checks have completed successfully.

Troubleshooting distribution issues 471

Amazon CloudFront Developer Guide

There's no certificate attached to your distribution.

To add an alternate domain name (CNAME), you must attach a trusted, valid certificate to your
distribution. Please review the requirements, obtain a valid certificate that meets them, attach
it to your distribution, and then try again. For more information, see Requirements for using
alternate domain names.

There are too many certificates in the certificate chain for the certificate that you've attached.

You can only have up to five certificates in a certificate chain. Reduce the number of certificates
in the chain, and then try again.

The certificate chain includes one or more certificates that aren't valid for the current date.

The certificate chain for a certificate that you have added has one or more certificates that
aren't valid, either because a certificate isn't valid yet or a certificate has expired. Check the Not
Valid Before and Not Valid After fields in the certificates in your certificate chain to make sure
that all of the certificates are valid based on the dates that you've listed.

The certificate that you've attached isn't signed by a trusted Certificate Authority (CA).

The certificate that you attach to CloudFront to verify an alternate domain name cannot
be a self-signed certificate. It must be signed by a trusted CA. For more information, see
Requirements for using alternate domain names.

The certificate that you've attached isn't formatted correctly

The domain name and IP address format that are included in the certificate, and the format of
the certificate itself, must follow the standard for certificates.

There was a CloudFront internal error.

CloudFront was blocked by an internal issue and couldn't make validation checks for
certificates. In this scenario, CloudFront returns an HTTP 500 status code and indicates that
there is an internal CloudFront problem with attaching the certificate. Wait a few minutes, and
then try again to add the alternate domain name with the certificate.

The certificate that you've attached doesn't cover the alternate domain name that you're trying
to add.

For each alternate domain name that you add, CloudFront requires that you attach a valid
SSL/TLS certificate from a trusted Certificate Authority (CA) that covers the domain name, to
validate your authorization to use it. Please update your certificate to include a domain name
that covers the CNAME that you're trying to add. For more information and examples of using
domain names with wildcards, see Requirements for using alternate domain names.

CloudFront returns an InvalidViewerCertificate error when I try to add an alternate domain name 472

Amazon CloudFront Developer Guide

I can't view the files in my distribution

If you can't view the files in your CloudFront distribution, see the following topics for some
common solutions.

Did you sign up for both CloudFront and Amazon S3?

To use Amazon CloudFront with an Amazon S3 origin, you must sign up for both CloudFront and
Amazon S3, separately. For more information about signing up for CloudFront and Amazon S3, see
Setting up.

Are your Amazon S3 bucket and object permissions set correctly?

If you are using CloudFront with an Amazon S3 origin, the original versions of your content are
stored in an S3 bucket. The easiest way to use CloudFront with Amazon S3 is to make all of your
objects publicly readable in Amazon S3. To do this, you must explicitly enable public read privileges
for each object that you upload to Amazon S3.

If your content is not publicly readable, you must create a CloudFront origin access control (OAC) so
that CloudFront can access it. For more information about CloudFront origin access control, see the
section called “Restricting access to an Amazon Simple Storage Service origin”.

Object properties and bucket properties are independent. You must explicitly grant privileges to
each object in Amazon S3. Objects do not inherit properties from buckets, and object properties
must be set independently of the bucket.

Is your alternate domain name (CNAME) correctly configured?

If you already have an existing CNAME record for your domain name, update that record or replace
it with a new one that points to your distribution's domain name.

Also, make sure that your CNAME record points to your distribution's domain name, not your
Amazon S3 bucket. You can confirm that the CNAME record in your DNS system points to your
distribution's domain name. To do so, use a DNS tool like dig.

The following example shows a dig request for a domain name called images.example.com and
the relevant part of the response. Under ANSWER SECTION, see the line that contains CNAME. The
CNAME record for your domain name is set up correctly if the value on the right side of CNAME is
your CloudFront distribution's domain name. If it's your Amazon S3 origin server bucket or some
other domain name, then the CNAME record is set up incorrectly.

I can't view the files in my distribution 473

Amazon CloudFront Developer Guide

[prompt]> dig images.example.com

; <<> DiG 9.3.3rc2 <<> images.example.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 15917
;; flags: qr rd ra; QUERY: 1, ANSWER: 9, AUTHORITY: 2, ADDITIONAL: 0
;; QUESTION SECTION:
;images.example.com. IN A
;; ANSWER SECTION:
images.example.com. 10800 IN CNAME d111111abcdef8.cloudfront.net.
...
...

For more information about CNAMEs, see Using custom URLs by adding alternate domain names
(CNAMEs).

Are you referencing the correct URL for your CloudFront distribution?

Make sure that the URL that you're referencing uses the domain name (or CNAME) of your
CloudFront distribution, not your Amazon S3 bucket or custom origin.

Do you need help troubleshooting a custom origin?

If you need AWS to help you troubleshoot a custom origin, we probably will need to inspect the
X-Amz-Cf-Id header entries from your requests. If you are not already logging these entries,
you might want to consider it for the future. For more information, see the section called “Using
Amazon EC2 (or another custom origin)”. For further help, see the AWS Support Center.

Error message: Certificate: <certificate-id> is being used by CloudFront

Problem: You're trying to delete an SSL/TLS certificate from the IAM certificate store, and you're
getting the message "Certificate: <certificate-id> is being used by CloudFront."

Solution: Every CloudFront distribution must be associated either with the default CloudFront
certificate or with a custom SSL/TLS certificate. Before you can delete an SSL/TLS certificate, you
must either rotate the certificate (replace the current custom SSL/TLS certificate with another
custom SSL/TLS certificate) or revert from using a custom SSL/TLS certificate to using the default
CloudFront certificate. To fix that, complete the steps in one of the following procedures:

• Rotating SSL/TLS certificates

Error message: Certificate: <certificate-id> is being used by CloudFront 474

https://console.aws.amazon.com/support/home?#/

Amazon CloudFront Developer Guide

• Reverting from a custom SSL/TLS certificate to the default CloudFront certificate

Troubleshooting error responses from your origin

If CloudFront requests an object from your origin, and the origin returns an HTTP 4xx or 5xx status
code, there's a problem with communication between CloudFront and your origin. The following
topics describe common causes for some of these HTTP status codes, and some possible solutions.

Topics

• HTTP 400 status code (Bad Request)

• HTTP 502 status code (Bad Gateway)

• HTTP 502 status code (Lambda validation error)

• HTTP 502 status code (DNS error)

• HTTP 503 status code (function execution error)

• HTTP 503 status code (Lambda limit exceeded)

• HTTP 503 status code (Service Unavailable)

• HTTP 504 status code (Gateway Timeout)

HTTP 400 status code (Bad Request)

Your CloudFront distribution might send error responses with HTTP status code 400 Bad Request,
and a message similar to the following:

The authorization header is malformed; the region '<AWS Region>' is wrong; expecting '<AWS
Region>'

For example:

The authorization header is malformed; the region 'us-east-1' is wrong; expecting 'us-west-2'

This problem can occur in the following scenario:

1. Your CloudFront distribution's origin is an Amazon S3 bucket.

2. You moved the S3 bucket from one AWS Region to another. That is, you deleted the S3 bucket,
then later you created a new bucket with the same bucket name, but in a different AWS Region
than where the original S3 bucket was located.

Troubleshooting error responses from your origin 475

Amazon CloudFront Developer Guide

To fix this error, update your CloudFront distribution so that it finds the S3 bucket in the bucket's
current AWS Region.

To update your CloudFront distribution

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. Choose the distribution that produces this error.

3. Choose Origins and Origin Groups.

4. Find the origin for the S3 bucket that you moved. Select the check box next to this origin, then
choose Edit.

5. Choose Yes, Edit. You do not need to change any settings before choosing Yes, Edit.

When you complete these steps, CloudFront redeploys your distribution. While the distribution is
deploying, you see the Deploying status under the Last modified column. Some time after the
deployment is complete, you should stop receiving the AuthorizationHeaderMalformed error
responses.

HTTP 502 status code (Bad Gateway)

An HTTP 502 status code (Bad Gateway) indicates that CloudFront wasn't able to serve the
requested object because it couldn't connect to the origin server.

Topics

• SSL/TLS negotiation failure between CloudFront and a custom origin server

• Origin is not responding with supported ciphers/protocols

• SSL/TLS certificate on the origin is expired, invalid, self-signed, or the certificate chain is in the
wrong order

• Origin is not responding on specified ports in origin settings

SSL/TLS negotiation failure between CloudFront and a custom origin server

If you use a custom origin and you configured CloudFront to require HTTPS between CloudFront
and your origin, the problem might be mismatched domain names. The SSL/TLS certificate that
is installed on your origin includes a domain name in the Common Name field and possibly

HTTP 502 status code (Bad Gateway) 476

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

several more in the Subject Alternative Names field. (CloudFront supports wildcard characters in
certificate domain names.) One of the domain names in the certificate must match one or both of
the following values:

• The value that you specified for Origin Domain for the applicable origin in your distribution.

• The value of the Host header if you configured CloudFront to forward the Host header to your
origin. For more information about forwarding the Host header to your origin, see Caching
content based on request headers.

If the domain names don't match, the SSL/TLS handshake fails, and CloudFront returns an HTTP
status code 502 (Bad Gateway) and sets the X-Cache header to Error from cloudfront.

To determine whether domain names in the certificate match the Origin Domain in the
distribution or the Host header, you can use an online SSL checker or OpenSSL. If the domain
names don't match, you have two options:

• Get a new SSL/TLS certificate that includes the applicable domain names.

If you use AWS Certificate Manager (ACM), see Requesting a public certificate in the AWS
Certificate Manager User Guide to request a new certificate.

• Change the distribution configuration so CloudFront no longer tries to use SSL to connect with
your origin.

Online SSL checker

To find an SSL test tool, search the internet for "online ssl checker." Typically, you specify the name
of your domain, and the tool returns a variety of information about your SSL/TLS certificate.
Confirm that the certificate contains your domain name in the Common Name or Subject
Alternative Names fields.

OpenSSL

To help troubleshoot HTTP 502 errors from CloudFront, you can use OpenSSL to try to make an
SSL/TLS connection to your origin server. If OpenSSL is not able to make a connection, that can
indicate a problem with your origin server's SSL/TLS configuration. If OpenSSL is able to make a
connection, it returns information about the origin server's certificate, including the certificate's
common name (Subject CN field) and subject alternative name (Subject Alternative Name
field).

HTTP 502 status code (Bad Gateway) 477

https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request-public.html

Amazon CloudFront Developer Guide

Use the following OpenSSL command to test the connection to your origin server (replace origin
domain with your origin server's domain name, such as example.com):

openssl s_client -connect origin domain name:443

If the following are true:

• Your origin server supports multiple domain names with multiple SSL/TLS certificates

• Your distribution is configured to forward the Host header to the origin

Then add the -servername option to the OpenSSL command, as in the following example
(replace CNAME with the CNAME that's configured in your distribution):

openssl s_client -connect origin domain name:443 -servername CNAME

Origin is not responding with supported ciphers/protocols

CloudFront connects to origin servers using ciphers and protocols. For a list of the ciphers and
protocols that CloudFront supports, see the section called “Supported protocols and ciphers
between CloudFront and the origin”. If your origin does not respond with one of these ciphers or
protocols in the SSL/TLS exchange, CloudFront fails to connect. You can validate that your origin
supports the ciphers and protocols by using an online tool such as SSL Labs. Type the domain
name of your origin in the Hostname field, and then choose Submit. Review the Common names
and Alternative names fields from the test to see if they match your origin's domain name. After
the test is finished, find the Protocols and Cipher Suites sections in the test results to see which
ciphers or protocols are supported by your origin. Compare them with the list of the section called
“Supported protocols and ciphers between CloudFront and the origin”.

SSL/TLS certificate on the origin is expired, invalid, self-signed, or the certificate
chain is in the wrong order

If the origin server returns the following, CloudFront drops the TCP connection, returns HTTP
status code 502 (Bad Gateway), and sets the X-Cache header to Error from cloudfront:

• An expired certificate

• Invalid certificate

• Self-signed certificate

• Certificate chain in the wrong order

HTTP 502 status code (Bad Gateway) 478

https://www.ssllabs.com/ssltest

Amazon CloudFront Developer Guide

Note

If the full chain of certificates, including the intermediate certificate, is not present,
CloudFront drops the TCP connection.

For information about installing an SSL/TLS certificate on your custom origin server, see the
section called “Requiring HTTPS to a custom origin”.

Origin is not responding on specified ports in origin settings

When you create an origin on your CloudFront distribution, you can set the ports that CloudFront
connects to the origin with for HTTP and HTTPS traffic. By default, these are TCP 80/443. You have
the option to modify these ports. If your origin is rejecting traffic on these ports for any reason, or
if your backend server isn't responding on the ports, CloudFront will fail to connect.

To troubleshoot these issues, check any firewalls running in your infrastructure and validate that
they are not blocking the supported IP ranges. For more information, see AWS IP address ranges in
the Amazon Web Services General Reference. Additionally, verify whether your web server is running
on the origin.

HTTP 502 status code (Lambda validation error)

If you're using Lambda@Edge, an HTTP 502 status code can indicate that your Lambda function
response was incorrectly formed or included invalid content. For more information about
troubleshooting Lambda@Edge errors, see Testing and debugging Lambda@Edge functions.

HTTP 502 status code (DNS error)

An HTTP 502 error with the NonS3OriginDnsError error code indicates that there's a DNS
configuration problem that prevents CloudFront from connecting to the origin. If you get this error
from CloudFront, make sure that the origin's DNS configuration is correct and working.

When CloudFront receives a request for an object that's expired or is not in its cache, it makes
a request to the origin to get the object. To make a successful request to the origin, CloudFront
performs a DNS resolution on the origin domain. If the DNS service for your domain is experiencing
issues, CloudFront can't resolve the domain name to get the IP address, which results in an HTTP
502 error (NonS3OriginDnsError). To fix this problem, contact your DNS provider, or, if you are
using Amazon Route 53, see Why can't I access my website that uses Route 53 DNS services?

HTTP 502 status code (Lambda validation error) 479

https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
https://aws.amazon.com/premiumsupport/knowledge-center/route-53-dns-website-unreachable/

Amazon CloudFront Developer Guide

To further troubleshoot this issue, ensure that the authoritative name servers of your origin's root
domain or zone apex (such as example.com) are functioning correctly. You can use the following
commands to find the name servers for your apex origin, with a tool such as dig or nslookup:

dig OriginAPEXDomainName NS +short

nslookup -query=NS OriginAPEXDomainName

When you have the names of your name servers, use the following commands to query the domain
name of your origin against them to make sure that each responds with an answer:

dig OriginDomainName @NameServer

nslookup OriginDomainName NameServer

Important

Make sure that you perform this DNS troubleshooting using a computer that's connected
to the public internet. CloudFront resolves the origin domain using public DNS on the
internet, so it's important to troubleshoot in a similar context.

If your origin is a subdomain whose DNS authority is delegated to a different name server than
the root domain, make sure that the name server (NS) and start of authority (SOA) records are
configured correctly for the subdomain. You can check for these records using commands similar to
the preceding examples.

For more information about DNS, see Domain Name System (DNS) concepts in the Amazon
Route 53 documentation.

HTTP 503 status code (function execution error)

If you're using Lambda@Edge or CloudFront Functions, an HTTP 503 status code can indicate that
your function returned an execution error.

For more information about troubleshooting Lambda@Edge errors, see Testing and debugging
Lambda@Edge functions.

For more information about troubleshooting CloudFront Functions, see Testing functions.

HTTP 503 status code (function execution error) 480

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/route-53-concepts.html#route-53-concepts-authoritative-name-server
https://en.wikipedia.org/wiki/Dig_(command)
https://en.wikipedia.org/wiki/Nslookup
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/route-53-concepts.html#route-53-concepts-domain-name-system-dns

Amazon CloudFront Developer Guide

HTTP 503 status code (Lambda limit exceeded)

If you're using Lambda@Edge, an HTTP 503 status code can indicate that the Lambda service
returned an error. The error might be caused by one of the following:

• The number of function executions exceeded one of the quotas (formerly known as limits)
that Lambda sets to throttle executions in an AWS Region (concurrent executions or invocation
frequency).

• The function exceeded the Lambda function timeout quota.

For more information about the AWS Lambda quotas, see Lambda quotas in the AWS Lambda
Developer Guide. For more information about troubleshooting Lambda@Edge errors, see the
section called “Testing and debugging”.

HTTP 503 status code (Service Unavailable)

An HTTP 503 status code (Service Unavailable) typically indicates a performance issue on the origin
server. In rare cases, it indicates that CloudFront temporarily can't satisfy a request because of
resource constraints at an edge location.

Topics

• Origin server does not have enough capacity to support the request rate

• CloudFront caused the error due to resource constraints at the edge location

Origin server does not have enough capacity to support the request rate

CloudFront generates this error when the origin server is overwhelmed with incoming requests.
CloudFront then relays the error back to the user. To resolve this issue, try the following solutions:

• If you use Amazon S3 as your origin server, optimize the performance of Amazon S3 by
following the best practices for key naming. For more information, see Optimizing Amazon S3
performance in the Amazon Simple Storage Service User Guide.

• If you use Elastic Load Balancing as your origin server, see How do I troubleshoot 503 errors
returned while using Classic Load Balancer?

• If you use a custom origin, examine the application logs to ensure that your origin has sufficient
resources, such as memory, CPU, and disk size. If you use Amazon EC2 as the backend, make sure

HTTP 503 status code (Lambda limit exceeded) 481

https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://aws.amazon.com/premiumsupport/knowledge-center/503-error-classic/
https://aws.amazon.com/premiumsupport/knowledge-center/503-error-classic/

Amazon CloudFront Developer Guide

that the instance type has the appropriate resources to fulfill the incoming requests. For more
information, see Instance types in the Amazon EC2 User Guide for Linux Instances.

CloudFront caused the error due to resource constraints at the edge location

You will receive this error in the rare situation that CloudFront can't route requests to the next best
available edge location, and so can't satisfy a request. This error is common when you perform load
testing on your CloudFront distribution. To help prevent this, follow the the section called “Load
testing CloudFront” guidelines for avoiding 503 (capacity exceeded) errors.

If this happens in your production environment, contact AWS Support.

HTTP 504 status code (Gateway Timeout)

An HTTP 504 status code (Gateway Timeout) indicates that when CloudFront forwarded a request
to the origin (because the requested object wasn't in the edge cache), one of the following
happened:

• The origin returned an HTTP 504 status code to CloudFront.

• The origin didn't respond before the request expired.

CloudFront will return an HTTP 504 status code if traffic is blocked to the origin by a firewall or
security group, or if the origin isn't accessible on the internet. Check for those issues first. Then, if
access isn't the problem, explore application delays and server timeouts to help you identify and fix
the issues.

Topics

• Configure the firewall on your origin server to allow CloudFront traffic

• Configure the security groups on your origin server to allow CloudFront traffic

• Make your custom origin server accessible on the internet

• Find and fix delayed responses from applications on your origin server

Configure the firewall on your origin server to allow CloudFront traffic

If the firewall on your origin server blocks CloudFront traffic, CloudFront returns an HTTP 504
status code, so it's good to make sure that isn't the issue before checking for other problems.

HTTP 504 status code (Gateway Timeout) 482

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://console.aws.amazon.com/support/home#/

Amazon CloudFront Developer Guide

The method that you use to determine if this is an issue with your firewall depends on what system
your origin server uses:

• If you use an IPTable firewall on a Linux server, you can search for tools and information to help
you work with IPTables.

• If you use Windows Firewall on a Windows server, see Add or Edit Firewall Rule in the Microsoft
documentation.

When you evaluate the firewall configuration on your origin server, look for any firewalls or
security rules that block traffic from CloudFront edge locations, based on the published IP address
range.

If the CloudFront IP address range is allowed to connect to your origin server, make sure to update
your server's security rules to incorporate changes. You can subscribe to an Amazon SNS topic and
receive notifications when the IP address range file is updated. After you receive the notification,
you can use code to retrieve the file, parse it, and make adjustments for your local environment.
For more information, see Subscribe to AWS Public IP Address Changes via Amazon SNS on the
AWS News Blog.

Configure the security groups on your origin server to allow CloudFront traffic

If your origin uses Elastic Load Balancing, review the ELB security groups and make sure that the
security groups allow inbound traffic from CloudFront.

You can also use AWS Lambda to automatically update your security groups to allow inbound
traffic from CloudFront.

Make your custom origin server accessible on the internet

If CloudFront can't access your custom origin server because it isn't publicly available on the
internet, CloudFront returns an HTTP 504 error.

CloudFront edge locations connect to origin servers through the internet. If your custom origin
is on a private network, CloudFront can't reach it. Because of this, you can't use private servers,
including internal Classic Load Balancers, as origin servers with CloudFront.

To check that internet traffic can connect to your origin server, run the following commands (where
OriginDomainName is the domain name for your server):

HTTP 504 status code (Gateway Timeout) 483

https://technet.microsoft.com/en-us/library/cc753558(v=ws.11).aspx
https://ip-ranges.amazonaws.com/ip-ranges.json
https://ip-ranges.amazonaws.com/ip-ranges.json
https://aws.amazon.com/blogs/aws/subscribe-to-aws-public-ip-address-changes-via-amazon-sns/
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-security-groups.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-internal-load-balancers.html

Amazon CloudFront Developer Guide

For HTTPS traffic:

• nc -zv OriginDomainName 443

• telnet OriginDomainName 443

For HTTP traffic:

• nc -zv OriginDomainName 80

• telnet OriginDomainName 80

Find and fix delayed responses from applications on your origin server

Server timeouts are often the result of either an application taking a very long time to respond, or
a timeout value that is set too low.

A quick fix to help avoid HTTP 504 errors is to simply set a higher CloudFront timeout value for
your distribution. But we recommend that you first make sure that you address any performance
and latency issues with the application and origin server. Then you can set a reasonable timeout
value that helps prevent HTTP 504 errors and provides good responsiveness to users.

Here's an overview of the steps you can take to find performance issues and correct them:

1. Measure the typical and high-load latency (responsiveness) of your web application.

2. Add additional resources, such as CPU or memory, if needed. Take other steps to address issues,
such as tuning database queries to accommodate high-load scenarios.

3. If needed, adjust the timeout value for your CloudFront distribution.

Following are details about each step.

Measure typical and high-load latency

To determine if one or more backend web application servers are experiencing high latency, run the
following Linux curl command on each server:

curl -w "Connect time: %{time_connect} Time to first byte:
%{time_starttransfer} Total time: %{time_total} \n" -o /dev/null https://
www.example.com/yourobject

HTTP 504 status code (Gateway Timeout) 484

Amazon CloudFront Developer Guide

Note

If you run Windows on your servers, you can search for and download curl for Windows to
run a similar command.

As you measure and evaluate the latency of an application that runs on your server, keep in mind
the following:

• Latency values are relative to each application. However, a time to first byte in milliseconds
rather than seconds or more, is reasonable.

• If you measure the application latency under normal load and it's fine, be aware that viewers
might still experience timeouts under high load. When there is high demand, servers can have
delayed responses or not respond at all. To help prevent high-load latency issues, check your
server's resources such as CPU, memory, and disk reads and writes to make sure that your servers
have the capacity to scale for high load.

You can run the following Linux command to check the memory that is used by Apache
processes:

watch -n 1 "echo -n 'Apache Processes: ' && ps -C apache2 --no-headers |
wc -l && free -m"

• High CPU utilization on the server can significantly reduce an application's performance. If you
use an Amazon EC2 instance for your backend server, review the CloudWatch metrics for the
server to check the CPU utilization. For more information, see the Amazon CloudWatch User
Guide. Or if you're using your own server, refer to the server Help documentation for instructions
on how to check CPU utilization.

• Check for other potential issues under high loads, such as database queries that run slowly when
there's a high volume of requests.

Add resources, and tune servers and databases

After you evaluate the responsiveness of your applications and servers, make sure that you have
sufficient resources in place for typical traffic and high load situations:

• If you have your own server, make sure it has enough CPU, memory, and disk space to handle
viewer requests, based on your evaluation.

HTTP 504 status code (Gateway Timeout) 485

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html

Amazon CloudFront Developer Guide

• If you use an Amazon EC2 instance as your backend server, make sure that the instance type has
the appropriate resources to fulfill incoming requests. For more information, see Instance types
in the Amazon EC2 User Guide.

In addition, consider the following tuning steps to help avoid timeouts:

• If the Time to First Byte value that is returned by the curl command seems high, take steps to
improve the performance of your application. Improving application responsiveness will in turn
help reduce timeout errors.

• Tune database queries to make sure that they can handle high request volumes without slow
performance.

• Set up keep-alive (persistent) connections on your backend server. This option helps to avoid
latencies that occur when connections must be re-established for subsequent requests or users.

• If you use ELB as your origin, learn how you can reduce latency by reviewing the suggestions in
the following Knowledge Center article: How do I troubleshoot high latency on my ELB Classic
Load Balancer?

If needed, adjust the CloudFront timeout value

If you have evaluated and addressed slow application performance, origin server capacity, and
other issues, but viewers are still experiencing HTTP 504 errors, then you should consider changing
the time that is specified in your distribution for origin response timeout. To learn more, see the
section called “Response timeout (custom origins only)”.

Load testing CloudFront

Traditional load testing methods don't work well with CloudFront because CloudFront uses DNS to
balance loads across geographically dispersed edge locations and within each edge location. When
a client requests content from CloudFront, the client receives a DNS response that includes a set
of IP addresses. If you test by sending requests to just one of the IP addresses that DNS returns,
you're testing only a small subset of the resources in one CloudFront edge location, which doesn't
accurately represent actual traffic patterns. Depending on the volume of data requested, testing in
this way may overload and degrade the performance of that small subset of CloudFront servers.

CloudFront is designed to scale for viewers that have different client IP addresses and different
DNS resolvers across multiple geographic regions. To perform load testing that accurately assesses
CloudFront performance, we recommend that you do all of the following:

Load testing CloudFront 486

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://www.w3.org/Protocols/HTTP/1.1/draft-ietf-http-v11-spec-01
https://aws.amazon.com/premiumsupport/knowledge-center/elb-latency-troubleshooting/
https://aws.amazon.com/premiumsupport/knowledge-center/elb-latency-troubleshooting/

Amazon CloudFront Developer Guide

• Send client requests from multiple geographic regions.

• Configure your test so each client makes an independent DNS request; each client will then
receive a different set of IP addresses from DNS.

• For each client that is making requests, spread your client requests across the set of IP addresses
that are returned by DNS, which ensures that the load is distributed across multiple servers in a
CloudFront edge location.

Note the following restrictions for load testing CloudFront:

• Load testing is not allowed on cache behaviors that have Lambda@Edge viewer request or
viewer response triggers.

• Load testing is not allowed on origins that have Origin Shield enabled.

Load testing CloudFront 487

Amazon CloudFront Developer Guide

Request and response behavior

The following sections explain how CloudFront processes viewer requests and forwards the
requests to your Amazon S3 or custom origin, and how CloudFront processes responses from your
origin, including how CloudFront processes and caches 4xx and 5xx HTTP status codes.

Topics

• Request and response behavior for Amazon S3 origins

• Request and response behavior for custom origins

• Request and response behavior for origin groups

• Adding custom headers to origin requests

• How CloudFront processes partial requests for an object (range GETs)

• How CloudFront processes HTTP 3xx status codes from your origin

• How CloudFront processes and caches HTTP 4xx and 5xx status codes from your origin

Request and response behavior for Amazon S3 origins

Topics

• How CloudFront processes HTTP and HTTPS requests

• How CloudFront processes and forwards requests to your Amazon S3 origin

• How CloudFront processes responses from your Amazon S3 origin

How CloudFront processes HTTP and HTTPS requests

For Amazon S3 origins, CloudFront accepts requests in both HTTP and HTTPS protocols for objects
in a CloudFront distribution by default. CloudFront then forwards the requests to your Amazon S3
bucket using the same protocol in which the requests were made.

For custom origins, when you create your distribution, you can specify how CloudFront accesses
your origin: HTTP only, or matching the protocol that is used by the viewer. For more information
about how CloudFront handles HTTP and HTTPS requests for custom origins, see Protocols.

For information about how to restrict your distribution so that end users can only access objects
using HTTPS, see Using HTTPS with CloudFront.

Request and response behavior for Amazon S3 origins 488

Amazon CloudFront Developer Guide

Note

The charge for HTTPS requests is higher than the charge for HTTP requests. For more
information about billing rates, go to the CloudFront pricing plan.

How CloudFront processes and forwards requests to your Amazon S3
origin

This topic contains information about how CloudFront processes viewer requests and forwards the
requests to your Amazon S3 origin.

Topics

• Caching duration and minimum TTL

• Client IP addresses

• Conditional GETs

• Cookies

• Cross-origin resource sharing (CORS)

• GET requests that include a body

• HTTP methods

• HTTP request headers that CloudFront removes or updates

• Maximum length of a request and maximum length of a URL

• OCSP stapling

• Protocols

• Query strings

• Origin connection timeout and attempts

• Origin response timeout

• Simultaneous requests for the same object (request collapsing)

Caching duration and minimum TTL

To control how long your objects stay in a CloudFront cache before CloudFront forwards another
request to your origin, you can:

How CloudFront processes and forwards requests to your Amazon S3 origin 489

https://aws.amazon.com/cloudfront/#pricing

Amazon CloudFront Developer Guide

• Configure your origin to add a Cache-Control or an Expires header field to each object.

• Specify a value for Minimum TTL in CloudFront cache behaviors.

• Use the default value of 24 hours.

For more information, see Managing how long content stays in the cache (expiration).

Client IP addresses

If a viewer sends a request to CloudFront and does not include an X-Forwarded-For request
header, CloudFront gets the IP address of the viewer from the TCP connection, adds an X-
Forwarded-For header that includes the IP address, and forwards the request to the origin. For
example, if CloudFront gets the IP address 192.0.2.2 from the TCP connection, it forwards the
following header to the origin:

X-Forwarded-For: 192.0.2.2

If a viewer sends a request to CloudFront and includes an X-Forwarded-For request header,
CloudFront gets the IP address of the viewer from the TCP connection, appends it to the end of
the X-Forwarded-For header, and forwards the request to the origin. For example, if the viewer
request includes X-Forwarded-For: 192.0.2.4,192.0.2.3 and CloudFront gets the IP
address 192.0.2.2 from the TCP connection, it forwards the following header to the origin:

X-Forwarded-For: 192.0.2.4,192.0.2.3,192.0.2.2

Note

The X-Forwarded-For header contains IPv4 addresses (such as 192.0.2.44) and IPv6
addresses (such as 2001:0db8:85a3::8a2e:0370:7334).

Conditional GETs

When CloudFront receives a request for an object that has expired from an edge cache, it forwards
the request to the Amazon S3 origin either to get the latest version of the object or to get
confirmation from Amazon S3 that the CloudFront edge cache already has the latest version.
When Amazon S3 originally sent the object to CloudFront, it included an ETag value and a
LastModified value in the response. In the new request that CloudFront forwards to Amazon S3,
CloudFront adds one or both of the following:

How CloudFront processes and forwards requests to your Amazon S3 origin 490

Amazon CloudFront Developer Guide

• An If-Match or If-None-Match header that contains the ETag value for the expired version of
the object.

• An If-Modified-Since header that contains the LastModified value for the expired version
of the object.

Amazon S3 uses this information to determine whether the object has been updated and,
therefore, whether to return the entire object to CloudFront or to return only an HTTP 304 status
code (not modified).

Cookies

Amazon S3 doesn't process cookies. If you configure a cache behavior to forward cookies to an
Amazon S3 origin, CloudFront forwards the cookies, but Amazon S3 ignores them. All future
requests for the same object, regardless if you vary the cookie, are served from the existing object
in the cache.

Cross-origin resource sharing (CORS)

If you want CloudFront to respect Amazon S3 cross-origin resource sharing settings, configure
CloudFront to forward selected headers to Amazon S3. For more information, see Caching content
based on request headers.

GET requests that include a body

If a viewer GET request includes a body, CloudFront returns an HTTP status code 403 (Forbidden) to
the viewer.

HTTP methods

If you configure CloudFront to process all of the HTTP methods that it supports, CloudFront
accepts the following requests from viewers and forwards them to your Amazon S3 origin:

• DELETE

• GET

• HEAD

• OPTIONS

• PATCH

• POST

How CloudFront processes and forwards requests to your Amazon S3 origin 491

Amazon CloudFront Developer Guide

• PUT

CloudFront always caches responses to GET and HEAD requests. You can also configure CloudFront
to cache responses to OPTIONS requests. CloudFront does not cache responses to requests that use
the other methods.

If you want to use multi-part uploads to add objects to an Amazon S3 bucket, you must add
a CloudFront origin access control (OAC) to your distribution and give the OAC the needed
permissions. For more information, see the section called “Restricting access to an Amazon Simple
Storage Service origin”.

Important

If you configure CloudFront to accept and forward to Amazon S3 all of the HTTP methods
that CloudFront supports, you must create a CloudFront origin access control (OAC) to
restrict access to your Amazon S3 content and give the OAC the required permissions. For
example, if you configure CloudFront to accept and forward these methods because you
want to use PUT, you must configure Amazon S3 bucket policies to handle DELETE requests
appropriately so viewers can't delete resources that you don't want them to. For more
information, see the section called “Restricting access to an Amazon Simple Storage Service
origin”.

For information about the operations supported by Amazon S3, see the Amazon S3
documentation.

HTTP request headers that CloudFront removes or updates

CloudFront removes or updates some headers before forwarding requests to your Amazon S3
origin. For most headers this behavior is the same as for custom origins. For a full list of HTTP
request headers and how CloudFront processes them, see HTTP request headers and CloudFront
behavior (custom and Amazon S3 origins).

Maximum length of a request and maximum length of a URL

The maximum length of a request, including the path, the query string (if any), and headers, is
20,480 bytes.

CloudFront constructs a URL from the request. The maximum length of this URL is 8192 bytes.

How CloudFront processes and forwards requests to your Amazon S3 origin 492

https://docs.aws.amazon.com/s3/index.html
https://docs.aws.amazon.com/s3/index.html

Amazon CloudFront Developer Guide

If a request or a URL exceeds these maximums, CloudFront returns HTTP status code 413, Request
Entity Too Large, to the viewer, and then terminates the TCP connection to the viewer.

OCSP stapling

When a viewer submits an HTTPS request for an object, either CloudFront or the viewer must
confirm with the certificate authority (CA) that the SSL certificate for the domain has not been
revoked. OCSP stapling speeds up certificate validation by allowing CloudFront to validate the
certificate and to cache the response from the CA, so the client doesn't need to validate the
certificate directly with the CA.

The performance improvement of OCSP stapling is more pronounced when CloudFront receives a
lot of HTTPS requests for objects in the same domain. Each server in a CloudFront edge location
must submit a separate validation request. When CloudFront receives a lot of HTTPS requests
for the same domain, every server in the edge location soon has a response from the CA that it
can "staple" to a packet in the SSL handshake; when the viewer is satisfied that the certificate is
valid, CloudFront can serve the requested object. If your distribution doesn't get much traffic in
a CloudFront edge location, new requests are more likely to be directed to a server that hasn't
validated the certificate with the CA yet. In that case, the viewer separately performs the validation
step and the CloudFront server serves the object. That CloudFront server also submits a validation
request to the CA, so the next time it receives a request that includes the same domain name, it has
a validation response from the CA.

Protocols

CloudFront forwards HTTP or HTTPS requests to the origin server based on the protocol of the
viewer request, either HTTP or HTTPS.

Important

If your Amazon S3 bucket is configured as a website endpoint, you cannot configure
CloudFront to use HTTPS to communicate with your origin because Amazon S3 doesn't
support HTTPS connections in that configuration.

Query strings

You can configure whether CloudFront forwards query string parameters to your Amazon S3 origin.
For more information, see Caching content based on query string parameters.

How CloudFront processes and forwards requests to your Amazon S3 origin 493

Amazon CloudFront Developer Guide

Origin connection timeout and attempts

Origin connection timeout is the number of seconds that CloudFront waits when trying to establish
a connection to the origin.

Origin connection attempts is the number of times that CloudFront attempts to connect to the
origin.

Together, these settings determine how long CloudFront tries to connect to the origin before
failing over to the secondary origin (in the case of an origin group) or returning an error response
to the viewer. By default, CloudFront waits as long as 30 seconds (3 attempts of 10 seconds each)
before attempting to connect to the secondary origin or returning an error response. You can
reduce this time by specifying a shorter connection timeout, fewer attempts, or both.

For more information, see Controlling origin timeouts and attempts.

Origin response timeout

The origin response timeout, also known as the origin read timeout or origin request timeout, applies
to both of the following:

• The amount of time, in seconds, that CloudFront waits for a response after forwarding a request
to the origin.

• The amount of time, in seconds, that CloudFront waits after receiving a packet of a response
from the origin and before receiving the next packet.

CloudFront behavior depends on the HTTP method of the viewer request:

• GET and HEAD requests – If the origin doesn’t respond within 30 seconds or stops responding
for 30 seconds, CloudFront drops the connection. If the specified number of origin connection
attempts is more than 1, CloudFront tries again to get a complete response. CloudFront tries
up to 3 times, as determined by the value of the origin connection attempts setting. If the origin
doesn’t respond during the final attempt, CloudFront doesn’t try again until it receives another
request for content on the same origin.

• DELETE, OPTIONS, PATCH, PUT, and POST requests – If the origin doesn’t respond within 30
seconds, CloudFront drops the connection and doesn’t try again to contact the origin. The client
can resubmit the request if necessary.

How CloudFront processes and forwards requests to your Amazon S3 origin 494

Amazon CloudFront Developer Guide

You can’t change the response timeout for an Amazon S3 origin (an S3 bucket that is not
configured with static website hosting).

Simultaneous requests for the same object (request collapsing)

When a CloudFront edge location receives a request for an object and the object isn't in the cache
or the cached object is expired, CloudFront immediately sends the request to the origin. However,
if there are simultaneous requests for the same object—that is, if additional requests for the
same object (with the same cache key) arrive at the edge location before CloudFront receives the
response to the first request—CloudFront pauses before forwarding the additional requests to
the origin. This brief pause helps to reduce the load on the origin. CloudFront sends the response
from the original request to all the requests that it received while it was paused. This is called
request collapsing. In CloudFront logs, the first request is identified as a Miss in the x-edge-
result-type field, and the collapsed requests are identified as a Hit. For more information
about CloudFront logs, see the section called “CloudFront and edge function logging”.

CloudFront only collapses requests that share a cache key. If the additional requests do not share
the same cache key because, for example, you configured CloudFront to cache based on request
headers or cookies or query strings, CloudFront forwards all the requests with a unique cache key
to your origin.

If you would like to prevent all request collapsing, you can use the managed cache policy
CachingDisabled, which also prevents caching. For more information, see Using the managed
cache policies.

If you would like to prevent request collapsing for specific objects, you can set the minimum TTL
for the cache behavior to 0 and configure the origin to send Cache-Control: private, Cache-
Control: no-store, Cache-Control: no-cache, Cache-Control: max-age=0, or Cache-
Control: s-maxage=0. These configurations will increase the load on your origin and introduce
additional latency for the simultaneous requests that are paused while CloudFront waits for the
response to the first request.

How CloudFront processes responses from your Amazon S3 origin

This topic contains information about how CloudFront processes responses from your Amazon S3
origin.

Topics

• Canceled requests

How CloudFront processes responses from your Amazon S3 origin 495

Amazon CloudFront Developer Guide

• HTTP response headers that CloudFront removes or updates

• Maximum cacheable file size

• Redirects

Canceled requests

If an object is not in the edge cache, and if a viewer terminates a session (for example, closes a
browser) after CloudFront gets the object from your origin but before it can deliver the requested
object, CloudFront does not cache the object in the edge location.

HTTP response headers that CloudFront removes or updates

CloudFront removes or updates the following header fields before forwarding the response from
your Amazon S3 origin to the viewer:

• X-Amz-Id-2

• X-Amz-Request-Id

• Set-Cookie – If you configure CloudFront to forward cookies, it will forward the Set-Cookie
header field to clients. For more information, see Caching content based on cookies.

• Trailer

• Transfer-Encoding – If your Amazon S3 origin returns this header field, CloudFront sets the
value to chunked before returning the response to the viewer.

• Upgrade

• Via – CloudFront sets the value to the following in the response to the viewer:

Via: http-version alphanumeric-string.cloudfront.net (CloudFront)

For example, the value is something like the following:

Via: 1.1 1026589cc7887e7a0dc7827b4example.cloudfront.net (CloudFront)

Maximum cacheable file size

The maximum size of a response body that CloudFront saves in its cache is 50 GB. This includes
chunked transfer responses that don't specify the Content-Length header value.

How CloudFront processes responses from your Amazon S3 origin 496

Amazon CloudFront Developer Guide

You can use CloudFront to cache an object that is larger than this size by using range requests
to request the objects in parts that are each 50 GB or smaller. CloudFront caches these parts
because each of them is 50 GB or smaller. After the viewer retrieves all the parts of the object, it
can reconstruct the original, larger object. For more information, see Use range requests to cache
large objects.

Redirects

You can configure an Amazon S3 bucket to redirect all requests to another host name; this can be
another Amazon S3 bucket or an HTTP server. If you configure a bucket to redirect all requests
and if the bucket is the origin for a CloudFront distribution, we recommend that you configure
the bucket to redirect all requests to a CloudFront distribution using either the domain name
for the distribution (for example, d111111abcdef8.cloudfront.net) or an alternate domain name
(a CNAME) that is associated with a distribution (for example, example.com). Otherwise, viewer
requests bypass CloudFront, and the objects are served directly from the new origin.

Note

If you redirect requests to an alternate domain name, you must also update the DNS
service for your domain by adding a CNAME record. For more information, see Using
custom URLs by adding alternate domain names (CNAMEs).

Here's what happens when you configure a bucket to redirect all requests:

1. A viewer (for example, a browser) requests an object from CloudFront.

2. CloudFront forwards the request to the Amazon S3 bucket that is the origin for your
distribution.

3. Amazon S3 returns an HTTP status code 301 (Moved Permanently) as well as the new location.

4. CloudFront caches the redirect status code and the new location, and returns the values to the
viewer. CloudFront does not follow the redirect to get the object from the new location.

5. The viewer sends another request for the object, but this time the viewer specifies the new
location that it got from CloudFront:

• If the Amazon S3 bucket is redirecting all requests to a CloudFront distribution, using either
the domain name for the distribution or an alternate domain name, CloudFront requests
the object from the Amazon S3 bucket or the HTTP server in the new location. When the

How CloudFront processes responses from your Amazon S3 origin 497

Amazon CloudFront Developer Guide

new location returns the object, CloudFront returns it to the viewer and caches it in an edge
location.

• If the Amazon S3 bucket is redirecting requests to another location, the second request
bypasses CloudFront. The Amazon S3 bucket or the HTTP server in the new location returns
the object directly to the viewer, so the object is never cached in a CloudFront edge cache.

Request and response behavior for custom origins

Topics

• How CloudFront processes and forwards requests to your custom origin

• How CloudFront processes responses from your custom origin

How CloudFront processes and forwards requests to your custom origin

This topic contains information about how CloudFront processes viewer requests and forwards the
requests to your custom origin.

Topics

• Authentication

• Caching duration and minimum TTL

• Client IP addresses

• Client-side SSL authentication

• Compression

• Conditional requests

• Cookies

• Cross-origin resource sharing (CORS)

• Encryption

• GET requests that include a body

• HTTP methods

• HTTP request headers and CloudFront behavior (custom and Amazon S3 origins)

• HTTP version

• Maximum length of a request and maximum length of a URL

• OCSP stapling

Request and response behavior for custom origins 498

Amazon CloudFront Developer Guide

• Persistent connections

• Protocols

• Query strings

• Origin connection timeout and attempts

• Origin response timeout

• Simultaneous requests for the same object (request collapsing)

• User-Agent header

Authentication

If you forward the Authorization header to your origin, you can then configure your origin
server to request client authentication for the following types of requests:

• DELETE

• GET

• HEAD

• PATCH

• PUT

• POST

For OPTIONS requests, client authentication can only be configured if you use the following
CloudFront settings:

• CloudFront is configured to forward the Authorization header to your origin

• CloudFront is configured to not cache the response to OPTIONS requests

For more information, see Configuring CloudFront to forward the Authorization header.

You can use HTTP or HTTPS to forward requests to your origin server. For more information, see
Using HTTPS with CloudFront.

Caching duration and minimum TTL

To control how long your objects stay in a CloudFront cache before CloudFront forwards another
request to your origin, you can:

How CloudFront processes and forwards requests to your custom origin 499

Amazon CloudFront Developer Guide

• Configure your origin to add a Cache-Control or an Expires header field to each object.

• Specify a value for Minimum TTL in CloudFront cache behaviors.

• Use the default value of 24 hours.

For more information, see Managing how long content stays in the cache (expiration).

Client IP addresses

If a viewer sends a request to CloudFront and does not include an X-Forwarded-For request
header, CloudFront gets the IP address of the viewer from the TCP connection, adds an X-
Forwarded-For header that includes the IP address, and forwards the request to the origin. For
example, if CloudFront gets the IP address 192.0.2.2 from the TCP connection, it forwards the
following header to the origin:

X-Forwarded-For: 192.0.2.2

If a viewer sends a request to CloudFront and includes an X-Forwarded-For request header,
CloudFront gets the IP address of the viewer from the TCP connection, appends it to the end of
the X-Forwarded-For header, and forwards the request to the origin. For example, if the viewer
request includes X-Forwarded-For: 192.0.2.4,192.0.2.3 and CloudFront gets the IP
address 192.0.2.2 from the TCP connection, it forwards the following header to the origin:

X-Forwarded-For: 192.0.2.4,192.0.2.3,192.0.2.2

Some applications, such as load balancers (including Elastic Load Balancing), web application
firewalls, reverse proxies, intrusion prevention systems, and API Gateway, append the IP address
of the CloudFront edge server that forwarded the request onto the end of the X-Forwarded-For
header. For example, if CloudFront includes X-Forwarded-For: 192.0.2.2 in a request that it
forwards to ELB and if the IP address of the CloudFront edge server is 192.0.2.199, the request that
your EC2 instance receives contains the following header:

X-Forwarded-For: 192.0.2.2,192.0.2.199

Note

The X-Forwarded-For header contains IPv4 addresses (such as 192.0.2.44) and IPv6
addresses (such as 2001:0db8:85a3::8a2e:0370:7334).

How CloudFront processes and forwards requests to your custom origin 500

Amazon CloudFront Developer Guide

Also note that the X-Forwarded-For header may be modified by every node on the path
to the current server (CloudFront). For more information, see section 8.1 in RFC 7239. You
can also modify the header using CloudFront edge compute functions.

Client-side SSL authentication

CloudFront does not support client authentication with client-side SSL certificates. If an origin
requests a client-side certificate, CloudFront drops the request.

Compression

For more information, see Serving compressed files.

Conditional requests

When CloudFront receives a request for an object that has expired from an edge cache, it forwards
the request to the origin either to get the latest version of the object or to get confirmation from
the origin that the CloudFront edge cache already has the latest version. Typically, when the origin
last sent the object to CloudFront, it included an ETag value, a LastModified value, or both
values in the response. In the new request that CloudFront forwards to the origin, CloudFront adds
one or both of the following:

• An If-Match or If-None-Match header that contains the ETag value for the expired version of
the object.

• An If-Modified-Since header that contains the LastModified value for the expired version
of the object.

The origin uses this information to determine whether the object has been updated and, therefore,
whether to return the entire object to CloudFront or to return only an HTTP 304 status code (not
modified).

Cookies

You can configure CloudFront to forward cookies to your origin. For more information, see Caching
content based on cookies.

How CloudFront processes and forwards requests to your custom origin 501

https://datatracker.ietf.org/doc/html/rfc7239

Amazon CloudFront Developer Guide

Cross-origin resource sharing (CORS)

If you want CloudFront to respect cross-origin resource sharing settings, configure CloudFront to
forward the Origin header to your origin. For more information, see Caching content based on
request headers.

Encryption

You can require viewers to use HTTPS to send requests to CloudFront and require CloudFront to
forward requests to your custom origin by using the protocol that is used by the viewer. For more
information, see the following distribution settings:

• Viewer protocol policy

• Protocol (custom origins only)

CloudFront forwards HTTPS requests to the origin server using the SSLv3, TLSv1.0, TLSv1.1, and
TLSv1.2 protocols. For custom origins, you can choose the SSL protocols that you want CloudFront
to use when communicating with your origin:

• If you're using the CloudFront console, choose protocols by using the Origin SSL Protocols check
boxes. For more information, see Creating a distribution.

• If you're using the CloudFront API, specify protocols by using the OriginSslProtocols
element. For more information, see OriginSslProtocols and DistributionConfig in the Amazon
CloudFront API Reference.

If the origin is an Amazon S3 bucket, CloudFront always uses TLSv1.2.

Important

Other versions of SSL and TLS are not supported.

For more information about using HTTPS with CloudFront, see Using HTTPS with CloudFront.
For lists of the ciphers that CloudFront supports for HTTPS communication between viewers
and CloudFront, and between CloudFront and your origin, see Supported protocols and ciphers
between viewers and CloudFront.

How CloudFront processes and forwards requests to your custom origin 502

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_OriginSslProtocols.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_DistributionConfig.html

Amazon CloudFront Developer Guide

GET requests that include a body

If a viewer GET request includes a body, CloudFront returns an HTTP status code 403 (Forbidden) to
the viewer.

HTTP methods

If you configure CloudFront to process all of the HTTP methods that it supports, CloudFront
accepts the following requests from viewers and forwards them to your custom origin:

• DELETE

• GET

• HEAD

• OPTIONS

• PATCH

• POST

• PUT

CloudFront always caches responses to GET and HEAD requests. You can also configure CloudFront
to cache responses to OPTIONS requests. CloudFront does not cache responses to requests that use
the other methods.

For information about configuring whether your custom origin processes these methods, see the
documentation for your origin.

Important

If you configure CloudFront to accept and forward to your origin all of the HTTP methods
that CloudFront supports, configure your origin server to handle all methods. For example,
if you configure CloudFront to accept and forward these methods because you want to use
POST, you must configure your origin server to handle DELETE requests appropriately so
viewers can't delete resources that you don't want them to. For more information, see the
documentation for your HTTP server.

How CloudFront processes and forwards requests to your custom origin 503

Amazon CloudFront Developer Guide

HTTP request headers and CloudFront behavior (custom and Amazon S3 origins)

The following table lists HTTP request headers that you can forward to both custom and Amazon
S3 origins (with the exceptions that are noted). For each header, the table includes information
about the following:

• CloudFront behavior if you don't configure CloudFront to forward the header to your origin,
which causes CloudFront to cache your objects based on header values.

• Whether you can configure CloudFront to cache objects based on header values for that header.

You can configure CloudFront to cache objects based on values in the Date and User-Agent
headers, but we don't recommend it. These headers have many possible values, and caching
based on their values would cause CloudFront to forward significantly more requests to your
origin.

For more information about caching based on header values, see Caching content based on request
headers.

Header Behavior if you don't configure CloudFront to
cache based on header values

Caching
based on
header
values is
supported

Other-defined headers Legacy cache settings – CloudFront forwards the
headers to your origin.

Yes

Accept CloudFront removes the header. Yes

Accept-Charset CloudFront removes the header. Yes

Accept-Encoding If the value contains gzip or br, CloudFront
forwards a normalized Accept-Encoding
header to your origin.

Yes

How CloudFront processes and forwards requests to your custom origin 504

Amazon CloudFront Developer Guide

Header Behavior if you don't configure CloudFront to
cache based on header values

Caching
based on
header
values is
supported

For more information, see Compression support
and Serving compressed files.

Accept-Language CloudFront removes the header. Yes

Authorization •
GET and HEAD requests – CloudFront removes
the Authorization header field before
forwarding the request to your origin.

•
OPTIONS requests – CloudFront removes
the Authorization header field before
forwarding the request to your origin if you
 configure CloudFront to cache responses to
 OPTIONS requests.

CloudFront forwards the Authorization
 header field to your origin if you do not
configure CloudFront to cache responses to
OPTIONS requests.

•
DELETE, PATCH, POST, and PUT requests –
CloudFront does not remove the header field
before forwarding the request to your origin.

Yes

Cache-Control CloudFront forwards the header to your origin. No

How CloudFront processes and forwards requests to your custom origin 505

Amazon CloudFront Developer Guide

Header Behavior if you don't configure CloudFront to
cache based on header values

Caching
based on
header
values is
supported

CloudFront-Forward
ed-Proto

CloudFront does not add the header before
forwarding the request to your origin.

For more information, see Configuring caching
based on the protocol of the request.

Yes

CloudFront-Is-Desk
top-Viewer

CloudFront does not add the header before
forwarding the request to your origin.

For more information, see Configuring caching
based on the device type.

Yes

CloudFront-Is-Mobi
le-Viewer

CloudFront does not add the header before
forwarding the request to your origin.

For more information, see Configuring caching
based on the device type.

Yes

CloudFront-Is-Tabl
et-Viewer

CloudFront does not add the header before
forwarding the request to your origin.

For more information, see Configuring caching
based on the device type.

Yes

CloudFront-Viewer-
Country

CloudFront does not add the header before
forwarding the request to your origin.

Yes

How CloudFront processes and forwards requests to your custom origin 506

Amazon CloudFront Developer Guide

Header Behavior if you don't configure CloudFront to
cache based on header values

Caching
based on
header
values is
supported

Connection CloudFront replaces this header with Connectio
n: Keep-Alive before forwarding the
request to your origin.

No

Content-Length CloudFront forwards the header to your origin. No

Content-MD5 CloudFront forwards the header to your origin. Yes

Content-Type CloudFront forwards the header to your origin. Yes

Cookie If you configure CloudFront to forward cookies,
it will forward the Cookie header field to your
origin. If you don't, CloudFront removes the
Cookie header field. For more information, see
Caching content based on cookies.

No

Date CloudFront forwards the header to your origin. Yes, but not
recommend
ed

Expect CloudFront removes the header. Yes

From CloudFront forwards the header to your origin. Yes

How CloudFront processes and forwards requests to your custom origin 507

Amazon CloudFront Developer Guide

Header Behavior if you don't configure CloudFront to
cache based on header values

Caching
based on
header
values is
supported

Host CloudFront sets the value to the domain name of
the origin that is associated with the requested
object.

You can't cache based on the Host header for
Amazon S3 or MediaStore origins.

Yes
(custom)

No (S3 and
MediaStore)

If-Match CloudFront forwards the header to your origin. Yes

If-Modified-Since CloudFront forwards the header to your origin. Yes

If-None-Match CloudFront forwards the header to your origin. Yes

If-Range CloudFront forwards the header to your origin. Yes

If-Unmodified-Sinc
e

CloudFront forwards the header to your origin. Yes

Max-Forwards CloudFront forwards the header to your origin. No

Origin CloudFront forwards the header to your origin. Yes

Pragma CloudFront forwards the header to your origin. No

Proxy-Authenticate CloudFront removes the header. No

How CloudFront processes and forwards requests to your custom origin 508

Amazon CloudFront Developer Guide

Header Behavior if you don't configure CloudFront to
cache based on header values

Caching
based on
header
values is
supported

Proxy-Authorizatio
n

CloudFront removes the header. No

Proxy-Connection CloudFront removes the header. No

Range CloudFront forwards the header to your origin. For
more information, see How CloudFront processes
partial requests for an object (range GETs).

Yes, by
default

Referer CloudFront removes the header. Yes

Request-Range CloudFront forwards the header to your origin. No

TE CloudFront removes the header. No

Trailer CloudFront removes the header. No

Transfer-Encoding CloudFront forwards the header to your origin. No

Upgrade CloudFront removes the header, unless you've
established a WebSocket connection.

No (except
for
WebSocket
connectio
ns)

How CloudFront processes and forwards requests to your custom origin 509

Amazon CloudFront Developer Guide

Header Behavior if you don't configure CloudFront to
cache based on header values

Caching
based on
header
values is
supported

User-Agent CloudFront replaces the value of this header
field with Amazon CloudFront . If you want
CloudFront to cache your content based on the
device the user is using, see Configuring caching
based on the device type.

Yes, but not
recommend
ed

Via CloudFront forwards the header to your origin. Yes

Warning CloudFront forwards the header to your origin. Yes

X-Amz-Cf-Id CloudFront adds the header to the viewer request
before forwarding the request to your origin. The
header value contains an encrypted string that
uniquely identifies the request.

No

X-Edge-* CloudFront removes all X-Edge-* headers. No

X-Forwarded-For CloudFront forwards the header to your origin. For
more information, see Client IP addresses.

Yes

X-Forwarded-Proto CloudFront removes the header. No

X-HTTP-Method-Over
ride

CloudFront removes the header. Yes

X-Real-IP CloudFront removes the header. No

How CloudFront processes and forwards requests to your custom origin 510

Amazon CloudFront Developer Guide

HTTP version

CloudFront forwards requests to your custom origin using HTTP/1.1.

Maximum length of a request and maximum length of a URL

The maximum length of a request, including the path, the query string (if any), and headers, is
20,480 bytes.

CloudFront constructs a URL from the request. The maximum length of this URL is 8192 bytes.

If a request or a URL exceeds these maximums, CloudFront returns HTTP status code 413, Request
Entity Too Large, to the viewer, and then terminates the TCP connection to the viewer.

OCSP stapling

When a viewer submits an HTTPS request for an object, either CloudFront or the viewer must
confirm with the certificate authority (CA) that the SSL certificate for the domain has not been
revoked. OCSP stapling speeds up certificate validation by allowing CloudFront to validate the
certificate and to cache the response from the CA, so the client doesn't need to validate the
certificate directly with the CA.

The performance improvement of OCSP stapling is more pronounced when CloudFront receives
numerous HTTPS requests for objects in the same domain. Each server in a CloudFront edge
location must submit a separate validation request. When CloudFront receives a lot of HTTPS
requests for the same domain, every server in the edge location soon has a response from the
CA that it can "staple" to a packet in the SSL handshake; when the viewer is satisfied that the
certificate is valid, CloudFront can serve the requested object. If your distribution doesn't get much
traffic in a CloudFront edge location, new requests are more likely to be directed to a server that
hasn't validated the certificate with the CA yet. In that case, the viewer separately performs the
validation step and the CloudFront server serves the object. That CloudFront server also submits a
validation request to the CA, so the next time it receives a request that includes the same domain
name, it has a validation response from the CA.

Persistent connections

When CloudFront gets a response from your origin, it tries to maintain the connection for several
seconds in case another request arrives during that period. Maintaining a persistent connection
saves the time required to re-establish the TCP connection and perform another TLS handshake for
subsequent requests.

How CloudFront processes and forwards requests to your custom origin 511

Amazon CloudFront Developer Guide

For more information, including how to configure the duration of persistent connections, see
Keep-alive timeout (custom origins only) in the section Values that you specify when you create or
update a distribution.

Protocols

CloudFront forwards HTTP or HTTPS requests to the origin server based on the following:

• The protocol of the request that the viewer sends to CloudFront, either HTTP or HTTPS.

• The value of the Origin Protocol Policy field in the CloudFront console or, if you're using the
CloudFront API, the OriginProtocolPolicy element in the DistributionConfig complex
type. In the CloudFront console, the options are HTTP Only, HTTPS Only, and Match Viewer.

If you specify HTTP Only or HTTPS Only, CloudFront forwards requests to the origin server using
the specified protocol, regardless of the protocol in the viewer request.

If you specify Match Viewer, CloudFront forwards requests to the origin server using the protocol
in the viewer request. Note that CloudFront caches the object only once even if viewers make
requests using both HTTP and HTTPS protocols.

Important

If CloudFront forwards a request to the origin using the HTTPS protocol, and if the origin
server returns an invalid certificate or a self-signed certificate, CloudFront drops the TCP
connection.

For information about how to update a distribution using the CloudFront console, see Updating a
distribution. For information about how to update a distribution using the CloudFront API, go to
UpdateDistribution in the Amazon CloudFront API Reference.

Query strings

You can configure whether CloudFront forwards query string parameters to your origin. For more
information, see Caching content based on query string parameters.

Origin connection timeout and attempts

Origin connection timeout is the number of seconds that CloudFront waits when trying to establish
a connection to the origin.

How CloudFront processes and forwards requests to your custom origin 512

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html

Amazon CloudFront Developer Guide

Origin connection attempts is the number of times that CloudFront attempts to connect to the
origin.

Together, these settings determine how long CloudFront tries to connect to the origin before
failing over to the secondary origin (in the case of an origin group) or returning an error response
to the viewer. By default, CloudFront waits as long as 30 seconds (3 attempts of 10 seconds each)
before attempting to connect to the secondary origin or returning an error response. You can
reduce this time by specifying a shorter connection timeout, fewer attempts, or both.

For more information, see Controlling origin timeouts and attempts.

Origin response timeout

The origin response timeout, also known as the origin read timeout or origin request timeout, applies
to both of the following:

• The amount of time, in seconds, that CloudFront waits for a response after forwarding a request
to the origin.

• The amount of time, in seconds, that CloudFront waits after receiving a packet of a response
from the origin and before receiving the next packet.

CloudFront behavior depends on the HTTP method of the viewer request:

• GET and HEAD requests – If the origin doesn’t respond or stops responding within the duration
of the response timeout, CloudFront drops the connection. If the specified number of origin
connection attempts is more than 1, CloudFront tries again to get a complete response.
CloudFront tries up to 3 times, as determined by the value of the origin connection attempts
setting. If the origin doesn’t respond during the final attempt, CloudFront doesn’t try again until
it receives another request for content on the same origin.

• DELETE, OPTIONS, PATCH, PUT, and POST requests – If the origin doesn’t respond within 30
seconds, CloudFront drops the connection and doesn’t try again to contact the origin. The client
can resubmit the request if necessary.

For more information, including how to configure the origin response timeout, see Response
timeout (custom origins only).

How CloudFront processes and forwards requests to your custom origin 513

Amazon CloudFront Developer Guide

Simultaneous requests for the same object (request collapsing)

When a CloudFront edge location receives a request for an object and the object isn't in the cache
or the cached object is expired, CloudFront immediately sends the request to the origin. However,
if there are simultaneous requests for the same object—that is, if additional requests for the
same object (with the same cache key) arrive at the edge location before CloudFront receives the
response to the first request—CloudFront pauses before forwarding the additional requests to
the origin. This brief pause helps to reduce the load on the origin. CloudFront sends the response
from the original request to all the requests that it received while it was paused. This is called
request collapsing. In CloudFront logs, the first request is identified as a Miss in the x-edge-
result-type field, and the collapsed requests are identified as a Hit. For more information
about CloudFront logs, see the section called “CloudFront and edge function logging”.

CloudFront only collapses requests that share a cache key. If the additional requests do not share
the same cache key because, for example, you configured CloudFront to cache based on request
headers or cookies or query strings, CloudFront forwards all the requests with a unique cache key
to your origin.

If you would like to prevent all request collapsing, you can use the managed cache policy
CachingDisabled, which also prevents caching. For more information, see Using the managed
cache policies.

If you would like to prevent request collapsing for specific objects, you can set the minimum TTL
for the cache behavior to 0 and configure the origin to send Cache-Control: private, Cache-
Control: no-store, Cache-Control: no-cache, Cache-Control: max-age=0, or Cache-
Control: s-maxage=0. These configurations will increase the load on your origin and introduce
additional latency for the simultaneous requests that are paused while CloudFront waits for the
response to the first request.

User-Agent header

If you want CloudFront to cache different versions of your objects based on the device that a user is
using to view your content, we recommend that you configure CloudFront to forward one or more
of the following headers to your custom origin:

• CloudFront-Is-Desktop-Viewer

• CloudFront-Is-Mobile-Viewer

• CloudFront-Is-SmartTV-Viewer

• CloudFront-Is-Tablet-Viewer

How CloudFront processes and forwards requests to your custom origin 514

Amazon CloudFront Developer Guide

Based on the value of the User-Agent header, CloudFront sets the value of these headers to
true or false before forwarding the request to your origin. If a device falls into more than one
category, more than one value might be true. For example, for some tablet devices, CloudFront
might set both CloudFront-Is-Mobile-Viewer and CloudFront-Is-Tablet-Viewer to
true. For more information about configuring CloudFront to cache based on request headers, see
Caching content based on request headers.

You can configure CloudFront to cache objects based on values in the User-Agent header, but
we don't recommend it. The User-Agent header has many possible values, and caching based on
those values would cause CloudFront to forward significantly more requests to your origin.

If you do not configure CloudFront to cache objects based on values in the User-Agent header,
CloudFront adds a User-Agent header with the following value before it forwards a request to
your origin:

User-Agent = Amazon CloudFront

CloudFront adds this header regardless of whether the request from the viewer includes a User-
Agent header. If the request from the viewer includes a User-Agent header, CloudFront removes
it.

How CloudFront processes responses from your custom origin

This topic contains information about how CloudFront processes responses from your custom
origin.

Topics

• 100 Continue responses

• Caching

• Canceled requests

• Content negotiation

• Cookies

• Dropped TCP connections

• HTTP response headers that CloudFront removes or replaces

• Maximum cacheable file size

• Origin unavailable

• Redirects

How CloudFront processes responses from your custom origin 515

Amazon CloudFront Developer Guide

• Transfer-Encoding header

100 Continue responses

Your origin cannot send more than one 100-Continue response to CloudFront. After the first 100-
Continue response, CloudFront expects an HTTP 200 OK response. If your origin sends another
100-Continue response after the first one, CloudFront will return an error.

Caching

• Ensure that the origin server sets valid and accurate values for the Date and Last-Modified
header fields.

• CloudFront normally respects a Cache-Control: no-cache header in the response from the
origin. For an exception, see Simultaneous requests for the same object (request collapsing).

Canceled requests

If an object is not in the edge cache, and if a viewer terminates a session (for example, closes a
browser) after CloudFront gets the object from your origin but before it can deliver the requested
object, CloudFront does not cache the object in the edge location.

Content negotiation

If your origin returns Vary:* in the response, and if the value of Minimum TTL for the
corresponding cache behavior is 0, CloudFront caches the object but still forwards every
subsequent request for the object to the origin to confirm that the cache contains the latest
version of the object. CloudFront doesn't include any conditional headers, such as If-None-Match
or If-Modified-Since. As a result, your origin returns the object to CloudFront in response to
every request.

If your origin returns Vary:* in the response, and if the value of Minimum TTL for the
corresponding cache behavior is any other value, CloudFront processes the Vary header as
described in HTTP response headers that CloudFront removes or replaces.

Cookies

If you enable cookies for a cache behavior, and if the origin returns cookies with an object,
CloudFront caches both the object and the cookies. Note that this reduces cacheability for an
object. For more information, see Caching content based on cookies.

How CloudFront processes responses from your custom origin 516

Amazon CloudFront Developer Guide

Dropped TCP connections

If the TCP connection between CloudFront and your origin drops while your origin is returning an
object to CloudFront, CloudFront behavior depends on whether your origin included a Content-
Length header in the response:

• Content-Length header – CloudFront returns the object to the viewer as it gets the object from
your origin. However, if the value of the Content-Length header doesn't match the size of the
object, CloudFront doesn't cache the object.

• Transfer-Encoding: Chunked – CloudFront returns the object to the viewer as it gets the object
from your origin. However, if the chunked response is not complete, CloudFront does not cache
the object.

• No Content-Length header – CloudFront returns the object to the viewer and caches it, but the
object may not be complete. Without a Content-Length header, CloudFront cannot determine
whether the TCP connection was dropped accidentally or on purpose.

We recommend that you configure your HTTP server to add a Content-Length header to prevent
CloudFront from caching partial objects.

HTTP response headers that CloudFront removes or replaces

CloudFront removes or updates the following header fields before forwarding the response from
your origin to the viewer:

• Set-Cookie – If you configure CloudFront to forward cookies, it will forward the Set-Cookie
header field to clients. For more information, see Caching content based on cookies.

• Trailer

• Transfer-Encoding – If your origin returns this header field, CloudFront sets the value to
chunked before returning the response to the viewer.

• Upgrade

• Vary – Note the following:

• If you configure CloudFront to forward any of the device-specific headers to your origin
(CloudFront-Is-Desktop-Viewer, CloudFront-Is-Mobile-Viewer, CloudFront-
Is-SmartTV-Viewer, CloudFront-Is-Tablet-Viewer) and you configure your origin
to return Vary:User-Agent to CloudFront, CloudFront returns Vary:User-Agent to the
viewer. For more information, see Configuring caching based on the device type.

How CloudFront processes responses from your custom origin 517

Amazon CloudFront Developer Guide

• If you configure your origin to include either Accept-Encoding or Cookie in the Vary
header, CloudFront includes the values in the response to the viewer.

• If you configure CloudFront to forward headers to your origin, and if you configure your origin
to return the header names to CloudFront in the Vary header (for example, Vary:Accept-
Charset,Accept-Language), CloudFront returns the Vary header with those values to the
viewer.

• For information about how CloudFront processes a value of * in the Vary header, see Content
negotiation.

• If you configure your origin to include any other values in the Vary header, CloudFront
removes the values before returning the response to the viewer.

• Via – CloudFront sets the value to the following in the response to the viewer:

Via: http-version alphanumeric-string.cloudfront.net (CloudFront)

For example, the value is something like the following:

Via: 1.1 1026589cc7887e7a0dc7827b4example.cloudfront.net (CloudFront)

Maximum cacheable file size

The maximum size of a response body that CloudFront saves in its cache is 50 GB. This includes
chunked transfer responses that don't specify the Content-Length header value.

You can use CloudFront to cache an object that is larger than this size by using range requests
to request the objects in parts that are each 50 GB or smaller. CloudFront caches these parts
because each of them is 50 GB or smaller. After the viewer retrieves all the parts of the object, it
can reconstruct the original, larger object. For more information, see Use range requests to cache
large objects.

Origin unavailable

If your origin server is unavailable and CloudFront gets a request for an object that is in the edge
cache but that has expired (for example, because the period of time specified in the Cache-
Control max-age directive has passed), CloudFront either serves the expired version of the
object or serves a custom error page. For more information about CloudFront behavior when
you've configured custom error pages, see How CloudFront processes errors when you have
configured custom error pages.

How CloudFront processes responses from your custom origin 518

Amazon CloudFront Developer Guide

In some cases, an object that is seldom requested is evicted and is no longer available in the edge
cache. CloudFront can't serve an object that has been evicted.

Redirects

If you change the location of an object on the origin server, you can configure your web server
to redirect requests to the new location. After you configure the redirect, the first time a viewer
submits a request for the object, CloudFront Front sends the request to the origin, and the origin
responds with a redirect (for example, 302 Moved Temporarily). CloudFront caches the redirect
and returns it to the viewer. CloudFront does not follow the redirect.

You can configure your web server to redirect requests to one of the following locations:

• The new URL of the object on the origin server. When the viewer follows the redirect to the new
URL, the viewer bypasses CloudFront and goes straight to the origin. As a result, we recommend
that you not redirect requests to the new URL of the object on the origin.

• The new CloudFront URL for the object. When the viewer submits the request that contains the
new CloudFront URL, CloudFront gets the object from the new location on your origin, caches
it at the edge location, and returns the object to the viewer. Subsequent requests for the object
will be served by the edge location. This avoids the latency and load associated with viewers
requesting the object from the origin. However, every new request for the object will incur
charges for two requests to CloudFront.

Transfer-Encoding header

CloudFront supports only the chunked value of the Transfer-Encoding header. If your origin
returns Transfer-Encoding: chunked, CloudFront returns the object to the client as the object
is received at the edge location, and caches the object in chunked format for subsequent requests.

If the viewer makes a Range GET request and the origin returns Transfer-Encoding:
chunked, CloudFront returns the entire object to the viewer instead of the requested range.

We recommend that you use chunked encoding if the content length of your response cannot be
predetermined. For more information, see Dropped TCP connections.

Request and response behavior for origin groups

Requests to an origin group work the same as requests to an origin that is not set up as an origin
group, except when there is an origin failover. As with any other origin, when CloudFront receives

Request and response behavior for origin groups 519

Amazon CloudFront Developer Guide

a request and the content is already cached in an edge location, the content is served to viewers
from the cache. When there’s a cache miss and the origin is an origin group, viewer requests are
forwarded to the primary origin in the origin group.

The request and response behavior for the primary origin is the same as it is for an origin that isn’t
in an origin group. For more information, see Request and response behavior for Amazon S3 origins
and Request and response behavior for custom origins.

The following describes the behavior for origin failover when the primary origin returns specific
HTTP status codes:

• HTTP 2xx status code (success): CloudFront caches the file and returns it to the viewer.

• HTTP 3xx status code (redirection): CloudFront returns the status code to the viewer.

• HTTP 4xx or 5xx status code (client/server error): If the returned status code has been configured
for failover, CloudFront sends the same request to the secondary origin in the origin group.

• HTTP 4xx or 5xx status code (client/server error): If the returned status code has not been
configured for failover, CloudFront returns the error to the viewer.

CloudFront fails over to the secondary origin only when the HTTP method of the viewer request
is GET, HEAD, or OPTIONS. CloudFront does not fail over when the viewer sends a different HTTP
method (for example POST, PUT, and so on).

When CloudFront sends a request to a secondary origin, the response behavior is the same as for a
CloudFront origin that’s not in an origin group.

For more information about origin groups, see Optimizing high availability with CloudFront origin
failover.

Adding custom headers to origin requests

You can configure CloudFront to add custom headers to the requests that it sends to your origin.
These custom headers enable you to send and gather information from your origin that you don’t
get with typical viewer requests. These headers can even be customized for each origin. CloudFront
supports custom headers for both for custom and Amazon S3 origins.

Topics

• Use cases for origin custom headers

Adding custom headers to origin requests 520

Amazon CloudFront Developer Guide

• Configuring CloudFront to add custom headers to origin requests

• Custom headers that CloudFront can’t add to origin requests

• Configuring CloudFront to forward the Authorization header

Use cases for origin custom headers

You can use custom headers for a variety of things, such as the following:

Identifying requests from CloudFront

You can identify the requests that your origin receives from CloudFront. This can be useful if
you want to know if users are bypassing CloudFront, or if you’re using more than one CDN and
you want information about which requests are coming from each CDN.

Note

If you’re using an Amazon S3 origin and you enable Amazon S3 server access logging,
the logs don’t include header information.

Determining which requests come from a particular distribution

If you configure more than one CloudFront distribution to use the same origin, you can add
different custom headers in each distribution. You can then use the logs from your origin to
determine which requests came from which CloudFront distribution.

Enabling cross-origin resource sharing (CORS)

If some of your viewers don’t support cross-origin resource sharing (CORS), you can configure
CloudFront to always add the Origin header to requests that it sends to your origin. Then you
can configure your origin to return the Access-Control-Allow-Origin header for every
request. You must also configure CloudFront to respect CORS settings.

Controlling access to content

You can use custom headers to control access to content. By configuring your origin to respond
to requests only when they include a custom header that gets added by CloudFront, you
prevent users from bypassing CloudFront and accessing your content directly on the origin. For
more information, see Restricting access to files on custom origins.

Use cases for origin custom headers 521

https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerLogs.html

Amazon CloudFront Developer Guide

Configuring CloudFront to add custom headers to origin requests

To configure a distribution to add custom headers to requests that it sends to your origin, update
the origin configuration using one of the following methods:

• CloudFront console – When you create or update a distribution, specify header names and
values in the Origin Custom Headers settings. For more information, see Creating a distribution
or Updating a distribution.

• CloudFront API – For each origin that you want to add custom headers to, specify the header
names and values in the CustomHeaders field inside Origin. For more information, see
CreateDistribution or UpdateDistribution.

If the header names and values that you specify are not already present in the viewer request,
CloudFront adds them to the origin request. If a header is present, CloudFront overwrites the
header value before forwarding the request to the origin.

For the quotas (formerly known as limits) that apply to origin custom headers, see Quotas on
headers.

Custom headers that CloudFront can’t add to origin requests

You can’t configure CloudFront to add any of the following headers to requests that it sends to
your origin:

• Cache-Control

• Connection

• Content-Length

• Cookie

• Host

• If-Match

• If-Modified-Since

• If-None-Match

• If-Range

• If-Unmodified-Since

• Max-Forwards

Configuring CloudFront to add custom headers to origin requests 522

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html

Amazon CloudFront Developer Guide

• Pragma

• Proxy-Authorization

• Proxy-Connection

• Range

• Request-Range

• TE

• Trailer

• Transfer-Encoding

• Upgrade

• Via

• Headers that begin with X-Amz-

• Headers that begin with X-Edge-

• X-Real-Ip

Configuring CloudFront to forward the Authorization header

When CloudFront forwards a viewer request to your origin, CloudFront removes some viewer
headers by default, including the Authorization header. To make sure that your origin always
receives the Authorization header in origin requests, you have the following options:

• Add the Authorization header to the cache key using a cache policy. All headers in the cache
key are automatically included in origin requests. For more information, see Controlling the
cache key.

• Use an origin request policy that forwards all viewer headers to the origin. You cannot forward
the Authorization header individually in an origin request policy, but when you forward all
viewer headers CloudFront includes the Authorization header in viewer requests. CloudFront
provides a managed origin request policy for this use case, called Managed-AllViewer. For more
information, see Using the managed origin request policies.

Configuring CloudFront to forward the Authorization header 523

Amazon CloudFront Developer Guide

How CloudFront processes partial requests for an object (range
GETs)

For a large object, the viewer (web browser or other client) can make multiple GET requests and use
the Range request header to download the object in smaller parts. These requests for ranges of
bytes, sometimes known as Range GET requests, improve the efficiency of partial downloads and
the recovery from partially failed transfers.

When CloudFront receives a Range GET request, it checks the cache in the edge location that
received the request. If the cache in that edge location already contains the entire object or the
requested part of the object, CloudFront immediately serves the requested range from the cache.

If the cache doesn’t contain the requested range, CloudFront forwards the request to the origin.
(To optimize performance, CloudFront may request a larger range than the client requested in the
Range GET.) What happens next depends on whether the origin supports Range GET requests:

• If the origin supports Range GET requests: It returns the requested range. CloudFront serves
the requested range and also caches it for future requests. (Amazon S3 supports Range GET
requests, as do many HTTP servers.)

• If the origin doesn’t support Range GET requests: It returns the entire object. CloudFront
serves the current request by sending the entire object while also caching it for future requests.
After CloudFront caches the entire object in an edge cache, it responds to new Range GET
requests by serving the requested range.

In either case, CloudFront begins to serve the requested range or object to the end user as soon as
the first byte arrives from the origin.

Note

If the viewer makes a Range GET request and the origin returns Transfer-Encoding:
chunked, CloudFront returns the entire object to the viewer instead of the requested
range.

CloudFront generally follows the RFC specification for the Range header. However, if your Range
headers don’t adhere to the following requirements, CloudFront returns HTTP status code 200 with
the full object instead of status code 206 with the specified ranges:

How range GETs are processed 524

Amazon CloudFront Developer Guide

• The ranges must be listed in ascending order. For example, 100-200,300-400 is valid,
300-400,100-200 is not valid.

• The ranges must not overlap. For example, 100-200,150-250 is not valid.

• All of the ranges specifications must be valid. For example, you can’t specify a negative value as
part of a range.

For more information about the Range request header, see Range Requests in RFC 7233, or Range
in the MDN Web Docs.

Use range requests to cache large objects

When caching is enabled, CloudFront doesn’t retrieve or cache an object that is larger than 50 GB.
When an origin indicates that the object is larger than this size (in the Content-Length response
header), CloudFront closes the connection to the origin and returns an error to the viewer. (With
caching disabled, CloudFront can retrieve an object that is larger than this size from the origin and
pass it along to the viewer. However, CloudFront doesn’t cache the object.)

However, with range requests, you can use CloudFront to cache an object that is larger than the
maximum cacheable file size. For example, consider an origin with a 100 GB object. With caching
enabled, CloudFront doesn’t retrieve or cache an object this large. However, the viewer can send
multiple range requests to retrieve this object in parts, with each part smaller than 50 GB. For
example, the viewer can request the object in 20 GB parts by sending a request with the header
Range: bytes=0-21474836480 to retrieve the first part, another request with the header
Range: bytes=21474836481-42949672960 to retrieve the next part, and so on. When the
viewer has received all of the parts, it can combine them to construct the original 100 GB object. In
this case, CloudFront caches each of the 20 GB parts of the object and can respond to subsequent
requests for the same part from the cache.

How CloudFront processes HTTP 3xx status codes from your
origin

When CloudFront requests an object from your Amazon S3 bucket or custom origin server, your
origin sometimes returns an HTTP 3xx status code. This typically indicates one of the following:

• The object’s URL has changed (for example, status codes 301, 302, 307, or 308)

• The object hasn’t changed since the last time CloudFront requested it (status code 304)

Use range requests to cache large objects 525

https://httpwg.org/specs/rfc7233.html#range.requests
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Range

Amazon CloudFront Developer Guide

CloudFront caches 3xx responses according to the settings in your CloudFront distribution and
the headers in the response. CloudFront caches 307 and 308 responses only when you include the
Cache-Control header in responses from the origin. For more information, see Managing how
long content stays in the cache (expiration).

If your origin returns a redirect status code (for example, 301 or 307), CloudFront doesn’t follow
the redirect. CloudFront passes along the 301 or 307 response to the viewer, who can follow the
redirect by sending a new request.

How CloudFront processes and caches HTTP 4xx and 5xx status
codes from your origin

Topics

• How CloudFront processes errors when you have configured custom error pages

• How CloudFront processes errors when you have not configured custom error pages

• HTTP 4xx and 5xx status codes that CloudFront caches

When CloudFront requests an object from your Amazon S3 bucket or custom origin server, your
origin sometimes returns an HTTP 4xx or 5xx status code, which indicates that an error has
occurred. CloudFront behavior depends on:

• Whether you have configured custom error pages.

• Whether you have configured how long you want CloudFront to cache error responses from your
origin (error caching minimum TTL).

• The status code.

• For 5xx status codes, whether the requested object is currently in the CloudFront edge cache.

• For some 4xx status codes, whether the origin returns a Cache-Control max-age or Cache-
Control s-maxage header.

CloudFront always caches responses to GET and HEAD requests. You can also configure CloudFront
to cache responses to OPTIONS requests. CloudFront does not cache responses to requests that use
the other methods.

If the origin doesn't respond, the CloudFront request to the origin times out which is considered
an HTTP 5xx error from the origin, even though the origin didn't respond with that error. In

How CloudFront processes and caches HTTP 4xx and 5xx status codes from your origin 526

Amazon CloudFront Developer Guide

that scenario, CloudFront continues to serve cached content. For more information, see Origin
unavailable.

If you have enabled logging, CloudFront writes the results to the logs regardless of the HTTP status
code.

For more information about features and options that relate to the error message returned from
CloudFront, see the following:

• For information about settings for custom error pages in the CloudFront console, see Custom
error pages and error caching.

• For information about the error caching minimum TTL in the CloudFront console, see Error
caching minimum TTL (seconds).

• For a list of the HTTP status codes that CloudFront caches, see HTTP 4xx and 5xx status codes
that CloudFront caches.

How CloudFront processes errors when you have configured custom
error pages

If you have configured custom error pages, CloudFront behavior depends on whether the requested
object is in the edge cache.

The requested object is not in the edge cache

CloudFront continues to try to get the requested object from your origin when all of the following
are true:

• A viewer requests an object.

• The object isn't in the edge cache.

• Your origin returns an HTTP 4xx or 5xx status code and one of the following is true:

• Your origin returns an HTTP 5xx status code instead of returning a 304 status code (Not
Modified) or an updated version of the object.

• Your origin returns an HTTP 4xx status code that is not restricted by a cache control header
and is included in the following list of status codes: HTTP 4xx and 5xx status codes that
CloudFront always caches.

• Your origin returns an HTTP 4xx status code without a Cache-Control max-age header
or a Cache-Control s-maxage header, and the status code is included in the following

How CloudFront processes errors when you have configured custom error pages 527

Amazon CloudFront Developer Guide

list of status codes: Control HTTP 4xx status codes that CloudFront caches based on Cache-
Control headers.

CloudFront does the following:

1. In the CloudFront edge cache that received the viewer request, CloudFront checks your
distribution configuration and gets the path of the custom error page that corresponds with the
status code that your origin returned.

2. CloudFront finds the first cache behavior in your distribution that has a path pattern that
matches the path of the custom error page.

3. The CloudFront edge location sends a request for the custom error page to the origin that is
specified in the cache behavior.

4. The origin returns the custom error page to the edge location.

5. CloudFront returns the custom error page to the viewer that made the request, and also caches
the custom error page for the maximum of the following:

• The amount of time specified by the error caching minimum TTL (10 seconds by default)

• The amount of time specified by a Cache-Control max-age header or a Cache-Control
s-maxage header that is returned by the origin when the first request generated the error

6. After the caching time (determined in Step 5) has elapsed, CloudFront tries again to get the
requested object by forwarding another request to your origin. CloudFront continues to retry at
intervals specified by the error caching minimum TTL.

The requested object is in the edge cache

CloudFront continues to serve the object that is currently in the edge cache when all of the
following are true:

• A viewer requests an object.

• The object is in the edge cache but it has expired.

• Your origin returns an HTTP 5xx status code instead of returning a 304 status code (Not
Modified) or an updated version of the object.

CloudFront does the following:

How CloudFront processes errors when you have configured custom error pages 528

Amazon CloudFront Developer Guide

1. If your origin returns a 5xx status code, CloudFront serves the object even though it has expired.
For the duration of the error caching minimum TTL, CloudFront continues to respond to viewer
requests by serving the object from the edge cache.

If your origin returns a 4xx status code, CloudFront returns the status code, not the requested
object, to the viewer.

2. After the error caching minimum TTL has elapsed, CloudFront tries again to get the requested
object by forwarding another request to your origin. Note that if the object is not requested
frequently, CloudFront might evict it from the edge cache while your origin server is still
returning 5xx responses. For information about how long objects stay in CloudFront edge
caches, see Managing how long content stays in the cache (expiration).

How CloudFront processes errors when you have not configured custom
error pages

If you have not configured custom error pages, CloudFront behavior depends on whether the
requested object is in the edge cache.

The requested object is not in the edge cache

CloudFront continues to try to get the requested object from your origin when all of the following
are true:

• A viewer requests an object.

• The object isn't in the edge cache.

• Your origin returns an HTTP 4xx or 5xx status code and one of the following is true:

• Your origin returns an HTTP 5xx status code instead of returning a 304 status code (Not
Modified) or an updated version of the object.

• Your origin returns an HTTP 4xx status code that is not restricted by a cache control header
and is included in the following list of status codes: HTTP 4xx and 5xx status codes that
CloudFront always caches

• Your origin returns an HTTP 4xx status code without a Cache-Control max-age header
or a Cache-Control s-maxage header and the status code is included in the following
list of status codes: Control HTTP 4xx status codes that CloudFront caches based on Cache-
Control headers.

How CloudFront processes errors when you have not configured custom error pages 529

Amazon CloudFront Developer Guide

CloudFront does the following:

1. CloudFront returns the 4xx or 5xx status code to the viewer, and also caches status code in the
edge cache that received the request for the maximum of the following:

• The amount of time specified by the error caching minimum TTL (10 seconds by default)

• The amount of time specified by a Cache-Control max-age header or a Cache-Control
s-maxage header that is returned by the origin when the first request generated the error

2. For the duration of the caching time (determined in Step 1), CloudFront responds to subsequent
viewer requests for the same object with the cached 4xx or 5xx status code.

3. After the caching time (determined in Step 1) has elapsed, CloudFront tries again to get the
requested object by forwarding another request to your origin. CloudFront continues to retry at
intervals specified by the error caching minimum TTL.

The requested object is in the edge cache

CloudFront continues to serve the object that is currently in the edge cache when all of the
following are true:

• A viewer requests an object.

• The object is in the edge cache but it has expired.

• Your origin returns an HTTP 5xx status code instead of returning a 304 status code (Not
Modified) or an updated version of the object.

CloudFront does the following:

1. If your origin returns a 5xx error code, CloudFront serves the object even though it has expired.
For the duration of the error caching minimum TTL (10 seconds by default), CloudFront
continues to respond to viewer requests by serving the object from the edge cache.

If your origin returns a 4xx status code, CloudFront returns the status code, not the requested
object, to the viewer.

2. After the error caching minimum TTL has elapsed, CloudFront tries again to get the requested
object by forwarding another request to your origin. Note that if the object is not requested
frequently, CloudFront might evict it from the edge cache while your origin server is still
returning 5xx responses. For information about how long objects stay in CloudFront edge
caches, see Managing how long content stays in the cache (expiration).

How CloudFront processes errors when you have not configured custom error pages 530

Amazon CloudFront Developer Guide

HTTP 4xx and 5xx status codes that CloudFront caches

CloudFront caches HTTP 4xx and 5xx status codes returned by your origin, depending on the
specific status code that is returned and whether your origin returns specific headers in the
response.

HTTP 4xx and 5xx status codes that CloudFront always caches

CloudFront always caches the following HTTP 4xx and 5xx status codes returned by your origin. If
you have configured a custom error page for an HTTP status code, CloudFront caches the custom
error page.

404 Not Found

414 Request-URI Too Large

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Time-out

HTTP 4xx status codes that CloudFront caches based on Cache-Control headers

CloudFront only caches the following HTTP 4xx status codes returned by your origin if your
origin returns a Cache-Control max-age or Cache-Control s-maxage header. If you have
configured a custom error page for one of these HTTP status codes—and your origin returns one of
the cache control headers—CloudFront caches the custom error page.

400 Bad Request

403 Forbidden

HTTP 4xx and 5xx status codes that CloudFront caches 531

Amazon CloudFront Developer Guide

405 Method Not Allowed

412¹ Precondition Failed

415¹ Unsupported Media Type

¹CloudFront doesn't support creating custom error pages for these HTTP status codes.

HTTP 4xx and 5xx status codes that CloudFront caches 532

Amazon CloudFront Developer Guide

Video on demand and live streaming video with
CloudFront

You can use CloudFront to deliver video on demand (VOD) or live streaming video using any HTTP
origin. One way you can set up video workflows in the cloud is by using CloudFront together with
AWS Media Services.

Topics

• About streaming video: video on demand and live streaming

• Delivering video on demand (VOD) with CloudFront

• Delivering live streaming video with CloudFront and AWS Media Services

About streaming video: video on demand and live streaming

You must use an encoder to package video content before CloudFront can distribute the content.
The packaging process creates segments that contain your audio, video, and captions content. It
also generates manifest files, which describe in a specific order what segments to play and when.
Common package formats are MPEG DASH, Apple HLS, Microsoft Smooth Streaming, and CMAF.

Video on demand (VOD) streaming

For video on demand (VOD) streaming, your video content is stored on a server and viewers can
watch it at any time. To make an asset that viewers can stream, use an encoder, such as AWS
Elemental MediaConvert, to format and package your media files.

After your video is packaged into the right formats, you can store it on a server or in an Amazon
S3 bucket, and then deliver it with CloudFront as viewers request it.

Live video streaming

For live video streaming, your video content is streamed real time as live events happen, or is
set up as a 24x7 live channel. To create live outputs for broadcast and streaming delivery, use
an encoder such as AWS Elemental MediaLive, to compress the video and format it for viewing
devices.

After your video is encoded, you can store it in AWS Elemental MediaStore or convert it into
different delivery formats by using AWS Elemental MediaPackage. Use either of these origins

About streaming video: video on demand and live streaming 533

https://aws.amazon.com/media-services/
https://docs.aws.amazon.com/mediaconvert/latest/ug/getting-started.html
https://docs.aws.amazon.com/mediaconvert/latest/ug/getting-started.html

Amazon CloudFront Developer Guide

to set up a CloudFront distribution to deliver the content. For specific steps and guidance for
creating distributions that work together with these services, see Serving video using AWS
Elemental MediaStore as the origin and Serving live video formatted with AWS Elemental
MediaPackage.

Wowza and Unified Streaming also provide tools that you can use for streaming video with
CloudFront. For more information about using Wowza with CloudFront, see Bring your Wowza
Streaming Engine license to CloudFront live HTTP streaming on the Wowza documentation
website. For information about using Unified Streaming with CloudFront for VOD streaming, see
CloudFront on the Unified Streaming documentation website.

Delivering video on demand (VOD) with CloudFront

To deliver video on demand (VOD) streaming with CloudFront, use the following services:

• Amazon S3 to store the content in its original format and to store the transcoded video.

• An encoder (such as AWS Elemental MediaConvert) to transcode the video into streaming
formats.

• CloudFront to deliver the transcoded video to viewers. For Microsoft Smooth Streaming, see
Configuring video on demand for Microsoft Smooth Streaming.

To create a VOD solution with CloudFront

1. Upload your content to an Amazon S3 bucket. To learn more about working with Amazon S3,
see the Amazon Simple Storage Service User Guide.

2. Transcode your content by using a MediaConvert job. The job converts your video into the
formats required by the players that your viewers use. You can also use the job to create
assets that vary in resolution and bitrate. These assets are used for adaptive bitrate (ABR)
streaming, which adjusts the viewing quality depending on the viewer’s available bandwidth.
MediaConvert stores the transcoded video in an S3 bucket.

3. Deliver your converted content by using a CloudFront distribution. Viewers can watch the
content on any device, at any time.

Delivering video on demand (VOD) 534

https://www.wowza.com/docs/how-to-bring-your-wowza-streaming-engine-license-to-cloudfront-live-http-streaming
https://www.wowza.com/docs/how-to-bring-your-wowza-streaming-engine-license-to-cloudfront-live-http-streaming
https://docs.unified-streaming.com/documentation/vod/cloud/amazon/amazon-cloudfront.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/

Amazon CloudFront Developer Guide

Tip

You can explore how to use an AWS CloudFormation template to deploy a VOD AWS
solution together with all the associated components. To see the steps for using the
template, see Automated Deployment in the Video on Demand on AWS guide.

Configuring video on demand for Microsoft Smooth Streaming

You have the following options for using CloudFront to distribute video on demand (VOD) content
that you’ve transcoded into the Microsoft Smooth Streaming format:

• Specify a web server that runs Microsoft IIS and supports Smooth Streaming as the origin for
your distribution.

• Enable Smooth Streaming in the cache behaviors of a CloudFront distribution. Because you
can use multiple cache behaviors in a distribution, you can use one distribution for Smooth
Streaming media files as well as other content.

Important

If you specify a web server running Microsoft IIS as your origin, do not enable Smooth
Streaming in the cache behaviors of your CloudFront distribution. CloudFront can’t use a
Microsoft IIS server as an origin if you enable Smooth Streaming as a cache behavior.

If you enable Smooth Streaming in a cache behavior (that is, you do not have a server that is
running Microsoft IIS), note the following:

• You can still distribute other content using the same cache behavior if the content matches the
value of Path Pattern for that cache behavior.

• CloudFront can use either an Amazon S3 bucket or a custom origin for Smooth Streaming media
files. CloudFront cannot use a Microsoft IIS Server as an origin if you enable Smooth Streaming
for the cache behavior.

• You cannot invalidate media files in the Smooth Streaming format. If you want to update files
before they expire, you must rename them. For more information, see Adding, removing, or
replacing content that CloudFront distributes.

Configuring video on demand for Microsoft Smooth Streaming 535

https://docs.aws.amazon.com/solutions/latest/video-on-demand/deployment.html

Amazon CloudFront Developer Guide

For information about Smooth Streaming clients, see Smooth Streaming on the Microsoft
documentation website.

To use CloudFront to distribute Smooth Streaming files when a Microsoft IIS web server isn’t
the origin

1. Transcode your media files into Smooth Streaming fragmented MP4 format.

2. Do one of the following:

• If you’re using the CloudFront console: When you create or update a distribution, enable
Smooth Streaming in one or more of the distribution’s cache behaviors.

• If you’re using the CloudFront API: Add the SmoothStreaming element to the
DistributionConfig complex type for one or more of the distribution’s cache behaviors.

3. Upload the Smooth Streaming files to your origin.

4. Create either a clientaccesspolicy.xml or a crossdomainpolicy.xml file, and add
it to a location that is accessible at the root of your distribution, for example, https://
d111111abcdef8.cloudfront.net/clientaccesspolicy.xml. The following is an
example policy:

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
<cross-domain-access>
<policy>
<allow-from http-request-headers="*">
<domain uri="*"/>
</allow-from>
<grant-to>
<resource path="/" include-subpaths="true"/>
</grant-to>
</policy>
</cross-domain-access>
</access-policy>

For more information, see Making a Service Available Across Domain Boundaries on the
Microsoft Developer Network website.

5. For links in your application (for example, a media player), specify the URL for the media file in
the following format:

https://d111111abcdef8.cloudfront.net/video/presentation.ism/Manifest

Configuring video on demand for Microsoft Smooth Streaming 536

https://learn.microsoft.com/en-us/shows/iis-net-site-videos/smooth-streaming
https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/cc197955(v=vs.95)

Amazon CloudFront Developer Guide

Delivering live streaming video with CloudFront and AWS
Media Services

To use AWS Media Services with CloudFront to deliver live content to a global audience, follow the
guidance included in this section.

Use AWS Elemental MediaLive to encode live video streams in real time. To encode a large video
stream, MediaLive compresses it into smaller versions (encodes) that can be distributed to your
viewers.

After you compress a live video stream, you can use either of the following two main options to
prepare and serve the content:

• Convert your content into required formats, and then serve it: If you require content in
multiple formats, use AWS Elemental MediaPackage to package the content for different device
types. When you package the content, you can also implement extra features and add digital
rights management (DRM) to prevent unauthorized use of your content. For step-by-step
instructions for using CloudFront to serve content that MediaPackage formatted, see Serving live
video formatted with AWS Elemental MediaPackage.

• Store and serve your content using scalable origin: If MediaLive encoded content in the
formats required by all of the devices that your viewers use, use a highly scalable origin like AWS
Elemental MediaStore to serve the content. For step-by-step instructions for using CloudFront
to serve content that is stored in a MediaStore container, see Serving video using AWS Elemental
MediaStore as the origin.

After you’ve set up your origin by using one of these options, you can distribute live streaming
video to viewers by using CloudFront.

Tip

You can learn about an AWS solution that automatically deploys services for building a
highly available real-time viewing experience. To see the steps to automatically deploy this
solution, see Live Streaming Automated Deployment.

Topics

• Serving video using AWS Elemental MediaStore as the origin

Delivering live streaming video 537

https://docs.aws.amazon.com/medialive/latest/ug/getting-started.html
https://aws.amazon.com/mediapackage/
https://docs.aws.amazon.com/mediastore/latest/ug/getting-started.html
https://docs.aws.amazon.com/mediastore/latest/ug/getting-started.html
https://docs.aws.amazon.com/solutions/latest/live-streaming/deployment.html

Amazon CloudFront Developer Guide

• Serving live video formatted with AWS Elemental MediaPackage

Serving video using AWS Elemental MediaStore as the origin

If you have video stored in an AWS Elemental MediaStore container, you can create a CloudFront
distribution to serve the content.

To get started, you grant CloudFront access to your MediaStore container. Then you create a
CloudFront distribution and configure it to work with MediaStore.

To serve content from an AWS Elemental MediaStore container

1. Follow the procedure at Allowing Amazon CloudFront to access your AWS Elemental
MediaStore container, and then return to these steps to create your distribution.

2. Create a distribution with the following settings:

Origin domain

The data endpoint that is assigned to your MediaStore container. From the dropdown list,
choose the MediaStore container for your live video.

Origin path

The folder structure in the MediaStore container where your objects are stored. For more
information, see the section called “Origin path”.

Add custom header

Add header names and values if you want CloudFront to add custom headers when it
forwards requests to your origin.

Viewer protocol policy

Choose Redirect HTTP to HTTPS. For more information, see the section called “Viewer
protocol policy”.

Cache policy and origin request policy

For Cache policy, choose Create policy, and then create a cache policy that’s appropriate
for your caching needs and segment durations. After you create the policy, refresh the list
of cache policies and choose the policy that you just created.

For Origin request policy, choose CORS-CustomOrigin from the dropdown list.

Serving video using AWS Elemental MediaStore as the origin 538

https://docs.aws.amazon.com/mediastore/latest/ug/getting-started.html
https://docs.aws.amazon.com/mediastore/latest/ug/cdns-allowing-cloudfront-to-access-mediastore.html
https://docs.aws.amazon.com/mediastore/latest/ug/cdns-allowing-cloudfront-to-access-mediastore.html

Amazon CloudFront Developer Guide

For the other settings, you can set specific values based on other technical requirements or
the needs of your business. For a list of all the options for distributions and information about
setting them, see the section called “Values that you specify”.

3. For links in your application (for example, a media player), specify the name of the media file
in the same format that you use for other objects that you’re distributing using CloudFront.

Serving live video formatted with AWS Elemental MediaPackage

If you formatted a live stream by using AWS Elemental MediaPackage, you can create a CloudFront
distribution and configure cache behaviors to serve the live stream. The following process
assumes that you have already created a channel and added endpoints for your live video using
MediaPackage.

To create a CloudFront distribution for MediaPackage manually, follow these steps:

Steps

• Step 1: Create and configure a CloudFront distribution

• Step 2: Add Origins for the domains of your MediaPackage endpoints

• Step 3: Configure cache behaviors for all endpoints

• Step 4: Enable header-based MediaPackage CDN Authorization

• Step 5: Use CloudFront to serve the live stream channel

Step 1: Create and configure a CloudFront distribution

Complete the following procedure to set up a CloudFront distribution for the live video channel
that you created with MediaPackage.

To create a distribution for your live video channel

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. Choose Create distribution.

3. Choose the settings for the distribution, including the following:

Serving live video formatted with AWS Elemental MediaPackage 539

https://docs.aws.amazon.com/mediapackage/latest/ug/channels-create.html
https://docs.aws.amazon.com/mediapackage/latest/ug/channels-add-endpoint.html
https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

Origin domain

The origin where your MediaPackage live video channel and endpoints are. Choose the text
field, then from the dropdown list, choose the MediaPackage origin domain for your live
video. You can map one domain to several origin endpoints.

If you created your origin domain using another AWS account, type the origin URL value
into the field. The origin must be an HTTPS URL.

For example, for an HLS endpoint like
https://3ae97e9482b0d011.mediapackage.us-west-2.amazonaws.com/out/v1/
abc123/index.m3u8, the origin domain is 3ae97e9482b0d011.mediapackage.us-
west-2.amazonaws.com.

For more information, see the section called “Origin domain”.

Origin path

The path to the MediaPackage endpoint from where the content is served.

The Origin path field is not filled in for you. You must manually enter the correct origin
path.

For more information about how an origin path works, see the section called “Origin path”.

Important

The wildcard path * is required to route somewhere in the CloudFront distribution. To
prevent requests not matching an explicit path from routing to the real origin, create a
"dummy" origin for that wildcard path.

Example : Creating a "dummy" origin

In the following example, the endpoints abc123 and def456 route to the "real" origin,
but requests for any other endpoint's video content route to mediapackage.us-
west-2.amazonaws.com without the proper subdomain, which results in an HTTP 404 error.

MediaPackage endpoints:

Serving live video formatted with AWS Elemental MediaPackage 540

Amazon CloudFront Developer Guide

https://3ae97e9482b0d011.mediapackage.us-west-2.amazonaws.com/out/v1/abc123/
index.m3u8
https://3ae97e9482b0d011.mediapackage.us-west-2.amazonaws.com/out/v1/def456/
index.m3u8

CloudFront Origin A:

Domain: 3ae97e9482b0d011.mediapackage.us-west-2.amazonaws.com
Path: None

CloudFront Origin B:

Domain: mediapackage.us-west-2.amazonaws.com
Path: None

CloudFront cache behavior:

1. Path: /out/v1/abc123/* forward to Origin A
2. Path: /out/v1/def456/* forward to Origin A
3. Path: * forward to Origin B

For the other distribution settings, set specific values based on other technical requirements or
the needs of your business. For a list of all the options for distributions and information about
setting them, see the section called “Values that you specify”.

When you finish choosing the other distribution settings, choose Create distribution.

4. Choose the distribution that you just created, then choose Behaviors.

5. Select the default cache behavior, then choose Edit. Specify the correct cache behavior
settings for the channel that you chose for the origin. Later, you’ll add one or more additional
origins and edit cache behavior settings for them.

6. Go to the CloudFront distributions page.

7. Wait until the value of the Last modified column for your distribution has changed from
Deploying to a date and time, indicating that CloudFront has created your distribution.

Serving live video formatted with AWS Elemental MediaPackage 541

https://console.aws.amazon.com/cloudfront/v4/home#/distributions

Amazon CloudFront Developer Guide

Step 2: Add Origins for the domains of your MediaPackage endpoints

Repeat the steps here to add each of your MediaPackage channel endpoints to your distribution,
keeping in mind the need to create a "dummy" origin.

To add other endpoints as origins

1. On the CloudFront console, choose the distribution that you created for your channel.

2. Choose Origins, then choose Create origin.

3. For Origin domain, in the dropdown list, choose a MediaPackage endpoint for your channel.

4. For the other settings, set the values based on other technical requirements or the needs of
your business. For more information, see the section called “Origin settings”.

5. Choose Create origin.

Step 3: Configure cache behaviors for all endpoints

For each endpoint, you must configure cache behaviors to add path patterns that route requests
correctly. The path patterns that you specify depend on the video format that you’re serving. The
following procedure includes the path pattern information to use for Apple HLS, CMAF, DASH, and
Microsoft Smooth Streaming formats.

You typically set up two cache behaviors for each endpoint:

• The parent manifest, which is the index to your files.

• The segments, which are the files of the video content.

To create a cache behavior for an endpoint

1. On the CloudFront console, choose the distribution that you created for your channel.

2. Choose Behaviors, then choose Create behavior.

3. For Path pattern, use a specific MediaPackage OriginEndpoint GUID as a path prefix.

Path patterns

For an HLS endpoint like https://3ae97e9482b0d011.mediapackage.us-
west-2.amazonaws.com/out/v1/abc123/index.m3u8, create the following two cache
behaviors:

Serving live video formatted with AWS Elemental MediaPackage 542

Amazon CloudFront Developer Guide

• For parent and child manifests, use /out/v1/abc123/*.m3u8.

• For the content segments, use /out/v1/abc123/*.ts.

For a CMAF endpoint like https://3ae97e9482b0d011.mediapackage.us-
west-2.amazonaws.com/out/v1/abc123/index.m3u8, create the following two cache
behaviors:

• For parent and child manifests, use /out/v1/abc123/*.m3u8.

• For the content segments, use /out/v1/abc123/*.mp4.

For a DASH endpoint like https://3ae97e9482b0d011.mediapackage.us-
west-2.amazonaws.com/out/v1/abc123/index.mpd, create the following two cache
behaviors:

• For the parent manifest, use /out/v1/abc123/*.mpd.

• For the content segments, use /out/v1/abc123/*.mp4.

For a Microsoft Smooth Streaming endpoint like
https://3ae97e9482b0d011.mediapackage.us-west-2.amazonaws.com/out/
v1/abc123/index.ism, only a manifest is served, so you create only one cache behavior:
out/v1/abc123/index.ism/*.

4. For each cache behavior, specify values for the following settings:

Viewer protocol policy

Choose Redirect HTTP to HTTPS.

Cache policy and origin request policy

For Cache policy, choose Create policy. For your new cache policy, specify the following
settings:

Minimum TTL

Set to 5 seconds or less, to help prevent serving stale content.

Query strings

For Query strings (in Cache key settings), choose Include specified query strings. For
Allow, add the following values by typing them and then choosing Add item:

• Add m as a query string parameter that you want CloudFront to use as the basis for
caching. The MediaPackage response always includes the tag ?m=### to capture the Serving live video formatted with AWS Elemental MediaPackage 543

Amazon CloudFront Developer Guide

modified time of the endpoint. If content is already cached with a different value for
this tag, CloudFront requests a new manifest instead of serving the cached version.

• If you’re using the time-shifted viewing functionality in MediaPackage, specify start
and end as additional query string parameters on the cache behavior for manifest
requests (*.m3u8, *.mpd, and index.ism/*). This way, content is served that’s
specific to the requested time period in the manifest request. For more information
about time-shifted viewing and formatting content start and end request parameters,
see Time-shifted viewing in the AWS Elemental MediaPackage User Guide.

• If you’re using the manifest filtering feature in MediaPackage, specify
aws.manifestfilter as an additional query string parameter for the cache
policy that you use with the cache behavior for manifest requests (*.m3u8,
.mpd, and index.ism/). This configures your distribution to forward the
aws.manifestfilter query string to your MediaPackage origin, which is required
for the manifest filtering feature to work. For more information, see Manifest filtering
in the AWS Elemental MediaPackage User Guide.

• If you're using low-latency HLS (LL-HLS), specify _HLS_msn and _HLS_part as
additional query string parameters for the cache policy that you use with the cache
behavior for manifest requests (*.m3u8). This configures your distribution to forward
the _HLS_msn and _HLS_part query strings to your MediaPackage origin, which is
required for the LL-HLS blocking playlist request feature to work.

5. Choose Create.

6. After you create the cache policy, go back to the cache behavior creation workflow. Refresh the
list of cache policies, and choose the policy that you just created.

7. Choose Create behavior.

8. If your endpoint is not a Microsoft Smooth Streaming endpoint, repeat these steps to create a
second cache behavior.

Step 4: Enable header-based MediaPackage CDN Authorization

We recommend enabling header-based MediaPackage CDN Authorization between MediaPackage
endpoints and the CloudFront distribution. For more information, see Enable CDN authorization in
MediaPackage in the AWS Elemental MediaPackage User Guide.

Serving live video formatted with AWS Elemental MediaPackage 544

https://docs.aws.amazon.com/mediapackage/latest/ug/time-shifted.html
https://docs.aws.amazon.com/mediapackage/latest/ug/manifest-filtering.html
https://docs.aws.amazon.com/mediapackage/latest/ug/cdn-auth-setup.html#cdn-aut-setup-endpoint
https://docs.aws.amazon.com/mediapackage/latest/ug/cdn-auth-setup.html#cdn-aut-setup-endpoint

Amazon CloudFront Developer Guide

Step 5: Use CloudFront to serve the live stream channel

After you create the distribution, add the origins, create the cache behaviors, and enable header-
based CDN authorization, you can serve the live stream channel using CloudFront. CloudFront
routes requests from viewers to the correct MediaPackage endpoints based on the settings that
you configured for the cache behaviors.

For links in your application (for example, a media player), specify the URL for the media file in the
standard format for CloudFront URLs. For more information, see the section called “Customizing
file URLs”.

Serving live video formatted with AWS Elemental MediaPackage 545

Amazon CloudFront Developer Guide

Customizing at the edge with functions

With Amazon CloudFront, you can write your own code to customize how your CloudFront
distributions process HTTP requests and responses. The code runs close to your viewers (users)
to minimize latency, and you don’t have to manage servers or other infrastructure. You can write
code to manipulate the requests and responses that flow through CloudFront, perform basic
authentication and authorization, generate HTTP responses at the edge, and more.

The code that you write and attach to your CloudFront distribution is called an edge function.
CloudFront provides two ways to write and manage edge functions:

• CloudFront Functions – With CloudFront Functions, you can write lightweight functions in
JavaScript for high-scale, latency-sensitive CDN customizations. The CloudFront Functions
runtime environment offers submillisecond startup times, scales immediately to handle
millions of requests per second, and is highly secure. CloudFront Functions is a native feature of
CloudFront, which means you can build, test, and deploy your code entirely within CloudFront.

• Lambda@Edge – Lambda@Edge is an extension of AWS Lambda that offers powerful and
flexible computing for complex functions and full application logic closer to your viewers, and
is highly secure. Lambda@Edge functions run in a Node.js or Python runtime environment. You
publish them to a single AWS Region, but when you associate the function with a CloudFront
distribution, Lambda@Edge automatically replicates your code around the world.

If you run AWS WAF on CloudFront, you can use AWS WAF inserted headers for both CloudFront
Functions and Lambda@Edge. This works for viewer and origin requests and responses.

Choosing between CloudFront Functions and Lambda@Edge

CloudFront Functions and Lambda@Edge both provide a way to run code in response to
CloudFront events. However, there are important differences that distinguish them. These
differences can help you choose the one that’s right for your use case. The following table lists
some of the important differences between CloudFront Functions and Lambda@Edge.

 CloudFront Functions Lambda@Edge

Programming languages JavaScript (ECMAScript
5.1 compliant)

Node.js and Python

Which functions type to use 546

https://aws.amazon.com/lambda/

Amazon CloudFront Developer Guide

 CloudFront Functions Lambda@Edge

Event sources • Viewer request

• Viewer response

• Viewer request

• Viewer response

• Origin request

• Origin response

Scale 10,000,000 requests per
second or more

Up to 10,000 requests
per second per Region

Function duration Submillisecond Up to 5 seconds (viewer
request and viewer
response)

Up to 30 seconds (origin
request and origin
response)

Maximum memory 2 MB 128 – 3,008 MB

Maximum size of the function code and
included libraries

10 KB 1 MB (viewer request and
viewer response)

50 MB (origin request
and origin response)

Network access No Yes

File system access No Yes

Access to the request body No Yes

Access to geolocation and device data Yes No (viewer request and
viewer response)

Yes (origin request and
origin response)

Which functions type to use 547

Amazon CloudFront Developer Guide

 CloudFront Functions Lambda@Edge

Can build and test entirely within
CloudFront

Yes No

Function logging and metrics Yes Yes

Pricing Free tier available;
charged per request

No free tier; charged per
request and function
duration

CloudFront Functions is ideal for lightweight, short-running functions for use cases like the
following:

• Cache key normalization – You can transform HTTP request attributes (headers, query strings,
cookies, and even the URL path) to create an optimal cache key, which can improve your cache
hit ratio.

• Header manipulation – You can insert, modify, or delete HTTP headers in the request or
response. For example, you can add a True-Client-IP header to every request.

• URL redirects or rewrites – You can redirect viewers to other pages based on information in the
request, or rewrite all requests from one path to another.

• Request authorization – You can validate hashed authorization tokens, such as JSON web tokens
(JWT), by inspecting authorization headers or other request metadata.

To get started with CloudFront Functions, see Customizing at the edge with CloudFront Functions.

Lambda@Edge is a good fit for the following scenarios:

• Functions that take several milliseconds or more to complete.

• Functions that require adjustable CPU or memory.

• Functions that depend on third-party libraries (including the AWS SDK, for integration with other
AWS services).

• Functions that require network access to use external services for processing.

• Functions that require file system access or access to the body of HTTP requests.

Which functions type to use 548

Amazon CloudFront Developer Guide

To get started with Lambda@Edge, see Customizing at the edge with Lambda@Edge.

Customizing at the edge with CloudFront Functions

With CloudFront Functions, you can write lightweight functions in JavaScript for high-scale,
latency-sensitive CDN customizations. Your functions can manipulate the requests and responses
that flow through CloudFront, perform basic authentication and authorization, generate
HTTP responses at the edge, and more. The CloudFront Functions runtime environment offers
submillisecond startup times, scales immediately to handle millions of requests per second, and is
highly secure. CloudFront Functions is a native feature of CloudFront, which means you can build,
test, and deploy your code entirely within CloudFront.

CloudFront Functions is ideal for lightweight, short-running functions for use cases like the
following:

• Cache key normalization – You can transform HTTP request attributes (headers, query strings,
cookies, even the URL path) to create an optimal cache key, which can improve your cache hit
ratio.

• Header manipulation – You can insert, modify, or delete HTTP headers in the request or
response. For example, you can add a True-Client-IP header to every request.

• Status code modification and body generation – You can evaluate headers and respond back to
viewers with customized content.

• URL redirects or rewrites – You can redirect viewers to other pages based on information in the
request, or rewrite all requests from one path to another.

• Request authorization – You can validate hashed authorization tokens, such as JSON web tokens
(JWT), by inspecting authorization headers or other request metadata.

When you associate a CloudFront function with a CloudFront distribution, CloudFront intercepts
requests and responses at CloudFront edge locations and passes them to your function. You can
invoke CloudFront Functions when the following events occur:

• When CloudFront receives a request from a viewer (viewer request)

• Before CloudFront returns the response to the viewer (viewer response)

For a quick introduction, see Tutorial: Creating a simple function with CloudFront Functions.

CloudFront Functions 549

Amazon CloudFront Developer Guide

You can include variables in a CloudFront function by setting up the function to use key-value
pairs that are stored in a key value store. For a quick introduction to including key-value pairs in a
CloudFront function, see the section called “Tutorial: A function with key values”.

To get started writing function code and to read example code, see Writing function code and
Example code.

Tutorial: Creating a simple function with CloudFront Functions

This tutorial shows you how to get started with CloudFront Functions. You can create a simple
function that redirects the viewer to a different URL, and also returns a custom response header.

Prerequisites

To use CloudFront Functions, you need a CloudFront distribution. If you don’t have one, follow the
steps in Getting started with a basic CloudFront distribution.

Creating the function

This procedure shows you how to use the CloudFront console to create a simple function that
redirects the viewer to a different URL, and also returns a custom response header.

To create a function in the CloudFront console

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. In the navigation pane, choose Functions and then choose Create function.

3. On the Create function page, for Name, enter a function name such as MyFunctionName.

4. (Optional) For Description, enter a description for the function such as Simple test
function.

5. For Runtime, keep the default selected JavaScript version.

6. Choose Create function.

7. Copy the following function code. This function code redirects the viewer to a different URL,
and also returns a custom response header.

function handler(event) {
 // NOTE: This example function is for a viewer request event trigger.

Tutorial: A simple function 550

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

 // Choose viewer request for event trigger when you associate this function
 with a distribution.
 var response = {
 statusCode: 302,
 statusDescription: 'Found',
 headers: {
 'cloudfront-functions': { value: 'generated-by-CloudFront-Functions' },
 'location': { value: 'https://aws.amazon.com/cloudfront/' }
 }
 };
 return response;
}

8. For Function code, paste the code into the code editor to replace the default code.

9. Choose Save changes.

10. (Optional) You can test the function before you publish it. This tutorial doesn’t describe how to
test a function. For more information, see Testing functions.

11. Choose the Publish tab and then choose Publish function. You must publish the function
before you can associate it with your CloudFront distribution.

12. Next, you can associate the function with a distribution or cache behavior. On the
MyFunctionName page, choose the Publish tab.

Warning

In the following steps, choose a distribution or a cache behavior that’s used for testing.
Don’t associate this test function with a distribution or cache behavior that’s used in
production.

13. Choose Add association.

14. On the Associate dialog box, choose a distribution and/or a cache behavior. For Event type,
keep the default value.

15. Choose Add association.

The Associated distributions table shows the associated distribution.

16. Wait a few minutes for the associated distribution to finish deploying. To check the
distribution’s status, select the distribution in the Associated distributions table and then
choose View distribution.

When the distribution’s status is Deployed, you’re ready to verify that the function works.

Tutorial: A simple function 551

Amazon CloudFront Developer Guide

Verifying the function

To see your function in action and verify that it works, go to your distribution’s domain name (for
example, https://d111111abcdef8.cloudfront.net) in a web browser. The function returns
a redirect to the browser, so the browser automatically goes to https://aws.amazon.com/
cloudfront/.

If you send a request to your distribution’s domain name using a tool like curl, you see the redirect
response (302 Found) and the custom response header added by the function, as emphasized in
the following example.

curl -v https://d111111abcdef8.cloudfront.net/
> GET / HTTP/1.1
> Host: d111111abcdef8.cloudfront.net
> User-Agent: curl/7.64.1
> Accept: */*
>
< HTTP/1.1 302 Found
< Server: CloudFront
< Date: Tue, 16 Mar 2021 18:50:48 GMT
< Content-Length: 0
< Connection: keep-alive
< Location: https://aws.amazon.com/cloudfront/
< Cloudfront-Functions: generated-by-CloudFront-Functions
< X-Cache: FunctionGeneratedResponse from cloudfront
< Via: 1.1 3035b31bddaf14eded329f8d22cf188c.cloudfront.net (CloudFront)
< X-Amz-Cf-Pop: PHX50-C2
< X-Amz-Cf-Id: ULZdIz6j43uGBlXyob_JctF9x7CCbwpNniiMlmNbmwzH1YWP9FsEHg==

Tutorial: Creating a function that includes key values

This tutorial shows you how to include key values with CloudFront function. Key values are part
of a key value pair. You include the name (from the key value pair) in the function code. When the
function runs, CloudFront replaces the name with the value.

key value pairs are variables that are stored in a key value store. When you use a key in your
function (instead of hard-coded values), your function is more flexible. You can change the value
of the key without having to deploy code changes. Key value pairs can also reduce the size of your
function. For more information about key value pairs and key value stores, see ???.

Tutorial: A function with key values 552

Amazon CloudFront Developer Guide

Prerequisites

We assume that you are familiar with CloudFront Functions. If you are new to both functions and
the key value store, you should first follow the tutorial in the section called “Tutorial: A simple
function”.

Set up the key value store

Step 1: Create the key value store

1. Plan the key value pairs you want to include in the function. Make a note of key names.

Keep in mind that all the key value pairs you want to use in a function must be in a single key
value store.

2. Decide about the order of work. There are two ways to proceed:

• Create a key value store, and add key value pairs to the store. Then create (or modify) the
function and incorporate the key names.

• Or, create (or modify) the function and incorporate the key names you want to use. Then
create a key value store, and add the key value pairs.

This tutorial assumes that you are extending the function from the functions tutorial. It also
assumes that you want to create the key value store first.

3. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

4. In the left navigation bar, choose Functions. On the Functions page, choose the KeyValueStores
tab.

5. Choose Create KeyValueStore and complete the fields as follows:

• Enter a name and optional description for the store.

• Leave S3 URI blank because this tutorial demonstrates how to enter the key value pairs
manually.

6. Choose the Create button. The details page for the new key value store appears. This page
includes a Key value pairs section that is currently empty.

Step 2: Add key value pairs to the store

1. In the Key value pairs section, choose the Add key value pairs button. Choose Add pair and
enter a name and value.

Tutorial: A function with key values 553

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

2. Choose the Add pair button to add another pair.

3. When you have finished, choose Save changes to save all the pairs in the store. On the
confirmation dialog that appears, choose Done.

You now have a store that contains a group of key value pairs.

Set up in the function

Step 3: Associate the key value store with the function

You have now created the key value store. And you have created or modified a function that
includes the key names from the key value store. You can now associate the key value store and the
function. You create that association from within the function.

1. In the left navigation bar, choose Functions. The Functions tab appears on top, by default.

2. In the Associated KeyValueStore section, choose Associate Existing KeyValueStore. Select the
key value store and choose the Associate KeyValueStore button. Note that you can associate
only one key value store with each function.

Step 4: Test and publish the function code

1. You should always test the function code every time you modify it, including when you do the
following:

• Associate a key value store with the function.

• Modify the function and its key value store to include a new key value pair.

• Change the value of a key value pair.

For information about how to test a function, see the section called “Testing functions”. Make
sure that you choose to test the function in the DEVELOPMENT stage.

2. Publish the function when you are ready to use the function (with the new or revised key value
pairs) in a LIVE environment.

When you publish, CloudFront copies the version of the function from the DEVELOPMENT stage
over to the live stage. The function has the new code and is associated with the key value store.
(There is no need to perform the association again, in the live stage.)

For information about how to publish the function, see the section called “Publishing functions”.

Tutorial: A function with key values 554

Amazon CloudFront Developer Guide

Writing function code

With CloudFront Functions in Amazon CloudFront, you can write lightweight functions in
JavaScript for high-scale, latency-sensitive CDN customizations. Your function code can manipulate
the requests and responses that flow through CloudFront, perform basic authentication and
authorization, generate HTTP responses at the edge, and more.

The following topics can help you write function code for CloudFront Functions.

Topics

• Determine the purpose of your function

• CloudFront Functions event structure

• JavaScript runtime features for CloudFront Functions

• Helper methods for key value stores

• Example code for CloudFront Functions

Determine the purpose of your function

Before you write your function code, determine the purpose of your function. Most functions in
CloudFront Functions have one of the following purposes. For more information, see the topic that
corresponds to your function’s purpose.

Regardless of your function’s purpose, the handler is the entry point for any function. It takes
a single argument called event, which is passed to the function by CloudFront. The event is a
JSON object that contains a representation of the HTTP request (and the response, if your function
modifies the HTTP response). For more information about the structure of the event object, see
CloudFront Functions event structure.

For more information about restrictions that apply to CloudFront Functions and Lambda@Edge,
see Restrictions on edge functions.

Topics

• Modify the HTTP request in a viewer request event type

• Generate an HTTP response in a viewer request event type

• Modify the HTTP response in a viewer response event type

Writing function code 555

Amazon CloudFront Developer Guide

Modify the HTTP request in a viewer request event type

Your function can modify the HTTP request that CloudFront receives from the viewer (client), and
return the modified request to CloudFront for continued processing. For example, your function
code might normalize the cache key or modify request headers.

When you create a function that modifies the HTTP request, make sure to choose the viewer
request event type. This means that the function runs each time that CloudFront receives a request
from a viewer, before checking to see whether the requested object is in the CloudFront cache.

The following pseudocode shows the structure of a function that modifies the HTTP request.

function handler(event) {
 var request = event.request;

 // Modify the request object here.

 return request;
}

The function returns the modified request object to CloudFront. CloudFront continues processing
the returned request by checking the CloudFront cache for a cache hit, and sending the request to
the origin if necessary.

For more information about the structure of the event and request objects, see Event structure.

Generate an HTTP response in a viewer request event type

Your function can generate an HTTP response at the edge and return it directly to the viewer
(client) without checking for a cached response or any further processing by CloudFront. For
example, your function code might redirect the request to a new URL, or check for authorization
and return a 401 or 403 response to unauthorized requests.

When you create a function that generates an HTTP response, make sure to choose the viewer
request event type. This means that the function runs each time CloudFront receives a request from
a viewer, before CloudFront does any further processing of the request.

The following pseudocode shows the structure of a function that generates an HTTP response.

function handler(event) {
 var request = event.request;

Writing function code 556

Amazon CloudFront Developer Guide

 var response = ...; // Create the response object here,
 // using the request properties if needed.

 return response;
}

The function returns a response object to CloudFront, which CloudFront immediately returns to
the viewer without checking the CloudFront cache or sending a request to the origin.

For more information about the structure of the event, request, and response objects, see
Event structure.

Modify the HTTP response in a viewer response event type

Your function can modify the HTTP response before CloudFront sends it to the viewer (client),
regardless of whether the response comes from the CloudFront cache or the origin. For example,
your function code might add or modify response headers, status codes, and body content.

When you create a function that modifies the HTTP response, make sure to choose the viewer
response event type. This means that the function runs before CloudFront returns a response to the
viewer, regardless of whether the response comes from the CloudFront cache or the origin.

The following pseudocode shows the structure of a function that modifies the HTTP response.

function handler(event) {
 var request = event.request;
 var response = event.response;

 // Modify the response object here,
 // using the request properties if needed.

 return response;
}

The function returns the modified response object to CloudFront, which CloudFront immediately
returns to the viewer.

For more information about the structure of the event and response objects, see Event structure.

For more information about writing function code for CloudFront Functions, see Event structure,
JavaScript runtime features, and Example code.

Writing function code 557

Amazon CloudFront Developer Guide

CloudFront Functions event structure

CloudFront Functions passes an event object to your function code as input when it runs the
function. When you test a function, you create the event object and pass it to your function. When
you create an event object for testing a function, you can omit the distributionDomainName,
distributionId, and requestId fields in the context object. Make sure that the names of
headers are lowercase, which is always the case in the event object that CloudFront Functions
passes to your function in production.

The following shows an overview of the structure of this event object. For more information, see
the topics that follow.

{
 "version": "1.0",
 "context": {
 <context object>
 },
 "viewer": {
 <viewer object>
 },
 "request": {
 <request object>
 },
 "response": {
 <response object>
 }
}

Topics

• Version field

• Context object

• Viewer object

• Request object

• Response object

• Status code and body

• Structure for a query string, header, or cookie

• Example response object

Writing function code 558

Amazon CloudFront Developer Guide

• Example event object

Version field

The version field contains a string that specifies the version of the CloudFront Functions event
object. The current version is 1.0.

Context object

The context object contains contextual information about the event. It includes the following
fields:

distributionDomainName

The CloudFront domain name (for example, d111111abcdef8.cloudfront.net) of the distribution
that's associated with the event.

distributionId

The ID of the distribution (for example, EDFDVBD6EXAMPLE) that's associated with the event.

eventType

The event type, either viewer-request or viewer-response.

requestId

A string that uniquely identifies a CloudFront request (and its associated response).

Viewer object

The viewer object contains an ip field whose value is the IP address of the viewer (client) that
sent the request. If the viewer request came through an HTTP proxy or a load balancer, the value is
the IP address of the proxy or load balancer.

Request object

The request object contains a representation of a viewer-to-CloudFront HTTP request. In the
event object that's passed to your function, the request object represents the actual request that
CloudFront received from the viewer.

If your function code returns a request object to CloudFront, it must use this same structure.

Writing function code 559

Amazon CloudFront Developer Guide

The request object contains the following fields:

method

The HTTP method of the request. If your function code returns a request, it cannot modify
this field. This is the only read-only field in the request object.

uri

The relative path of the requested object. If your function modifies the uri value, note the
following:

• The new uri value must begin with a forward slash (/).

• When a function changes the uri value, it changes the object that the viewer is requesting.

• When a function changes the uri value, it doesn't change the cache behavior for the request
or the origin that an origin request is sent to.

querystring

An object that represents the query string in the request. If the request doesn't include a query
string, the request object still includes an empty querystring object.

The querystring object contains one field for each query string parameter in the request.

headers

An object that represents the HTTP headers in the request. If the request contains any Cookie
headers, those headers are not part of the headers object. Cookies are represented separately
in the cookies object.

The headers object contains one field for each header in the request. Header names are
converted to lowercase in the event object, and header names must be lowercase when they're
added by your function code. When CloudFront Functions converts the event object back
into an HTTP request, the first letter of each word in header names is capitalized. Words are
separated by a hyphen (-). For example, if your function code adds a header named example-
header-name, CloudFront converts this to Example-Header-Name in the HTTP request.

cookies

An object that represents the cookies in the request (Cookie headers).

The cookies object contains one field for each cookie in the request.

Writing function code 560

Amazon CloudFront Developer Guide

For more information about the structure of query strings, headers, and cookies, see Structure for a
query string, header, or cookie.

For an example event object, see Example event object.

Response object

The response object contains a representation of a CloudFront-to-viewer HTTP response. In the
event object that's passed to your function, the response object represents CloudFront's actual
response to a viewer request.

If your function code returns a response object, it must use this same structure.

The response object contains the following fields:

statusCode

The HTTP status code of the response. This value is an integer, not a string.

Your function can generate or modify the statusCode.

statusDescription

The HTTP status description of the response. If your function code generates a response, this
field is optional.

headers

An object that represents the HTTP headers in the response. If the response contains any Set-
Cookie headers, those headers are not part of the headers object. Cookies are represented
separately in the cookies object.

The headers object contains one field for each header in the response. Header names are
converted to lowercase in the event object, and header names must be lowercase when they're
added by your function code. When CloudFront Functions converts the event object back
into an HTTP response, the first letter of each word in header names is capitalized. Words are
separated by a hyphen (-). For example, if your function code adds a header named example-
header-name, CloudFront converts this to Example-Header-Name in the HTTP response.

cookies

An object that represents the cookies in the response (Set-Cookie headers).

Writing function code 561

Amazon CloudFront Developer Guide

The cookies object contains one field for each cookie in the response.

body

Adding the body field is optional, and it will not be present in the response object unless you
specify it in your function. Your function does not have access to the original body returned
by the CloudFront cache or origin. If you don't specify the body field in your viewer response
function, the original body returned by the CloudFront cache or origin is returned to viewer.

If you want CloudFront to return a custom body to the viewer, specify the body content in the
data field, and the body encoding in the encoding field. You can specify the encoding as plain
text ("encoding": "text") or as Base64-encoded content ("encoding": "base64").

As a shortcut, you can also specify the body content directly in the body field ("body":
"<specify the body content here>"). When you do this, omit the data and encoding
fields. CloudFront treats the body as plain text in this case.

encoding

The encoding for the body content (data field). The only valid encodings are text and
base64.

If you specify encoding as base64 but the body is not valid base64, CloudFront returns an
error.

data

The body content.

For more information about modified status codes and body content, see Status code and body.

For more information about the structure of headers and cookies, see Structure for a query string,
header, or cookie.

For an example response object, see Example response object.

Status code and body

With CloudFront Functions, you can update the viewer response status code, replace the entire
response body with a new one, or remove the response body. Some common scenarios for
updating the viewer response after evaluating aspects of the response from the CloudFront cache
or origin include the following:

Writing function code 562

Amazon CloudFront Developer Guide

• Changing the status to set an HTTP 200 status code and creating static body content to return to
the viewer.

• Changing the status to set an HTTP 301 or 302 status code to redirect the user to another
website.

• Deciding whether to serve or drop the body of the viewer response.

Note

If the origin returns an HTTP error of 400 and above, the CloudFront Function will not run.
For more information see Restrictions on all edge functions.

When you're working with the HTTP response, CloudFront Functions does not have access to the
response body. You can replace the body content by setting it to the desired value, or you can
remove the body by setting the value to be empty. If you don't update the body field in your
function, the original body returned by the CloudFront cache or origin is returned back to viewer.

Tip

When using CloudFront Functions to replace a body, be sure to align the corresponding
headers, such as content-encoding, content-type, or content-length, to the new
body content.
For example, if the CloudFront origin or cache returns content-encoding: gzip but the
viewer response function sets a body that's plain text, the function also needs to change
the content-encoding and content-type headers accordingly.

If your CloudFront Function is configured to return an HTTP error of 400 or above, your viewer will
not see a custom error page that you have specified for the same status code.

Structure for a query string, header, or cookie

Query strings, headers, and cookies share the same structure. Query strings can appear in requests.
Headers appear in requests and responses. Cookies appear in requests and responses.

Each query string, header, or cookie is a unique field within the parent querystring, headers,
or cookies object. The field name is the name of the query string, header, or cookie. Each field
contains a value property with the value of the query string, header, or cookie.

Writing function code 563

Amazon CloudFront Developer Guide

Topics

• Query strings values or query string objects

• Special considerations for headers

• Duplicate query strings, headers, and cookies (multiValue array)

• Cookie attributes

Query strings values or query string objects

A function can return a query string value in addition to a query string object. The query string
value can be used to arrange the query string parameters in any custom order. For example, to
modify a query string in your function code, use code like the following:

var request = event.request;
request.querystring =
 'ID=42&Exp=1619740800&TTL=1440&NoValue=&querymv=val1&querymv=val2,val3';

Special considerations for headers

For headers only, the header names are converted to lowercase in the event object, and header
names must be lowercase when they're added by your function code. When CloudFront Functions
converts the event object back into an HTTP request or response, the first letter of each word in
header names is capitalized. Words are separated by a hyphen (-). For example, if your function
code adds a header named example-header-name, CloudFront converts this to Example-
Header-Name in the HTTP request or response.

For example, consider the following Host header in an HTTP request:

Host: video.example.com

This header is represented as follows in the request object:

"headers": {
 "host": {
 "value": "video.example.com"
 }
}

To access the Host header in your function code, use code like the following:

Writing function code 564

Amazon CloudFront Developer Guide

var request = event.request;
var host = request.headers.host.value;

To add or modify a header in your function code, use code like the following (this code adds a
header named X-Custom-Header with the value example value):

var request = event.request;
request.headers['x-custom-header'] = {value: 'example value'};

Duplicate query strings, headers, and cookies (multiValue array)

An HTTP request or response can contain more than one query string, header, or cookie with
the same name. In this case, the duplicate query strings, headers, or cookies are collapsed into
one field in the request or response object, but this field contains an extra property named
multiValue. The multiValue property contains an array with the values of each of the duplicate
query strings, headers, or cookies.

For example, consider an HTTP request with the following Accept headers:

Accept: application/json
Accept: application/xml
Accept: text/html

These headers are represented as follows in the request object:

"headers": {
 "accept": {
 "value": "application/json",
 "multiValue": [
 {
 "value": "application/json"
 },
 {
 "value": "application/xml"
 },
 {
 "value": "text/html"
 }
]
 }

Writing function code 565

Amazon CloudFront Developer Guide

}

Note that the first header value (in this case, application/json) is repeated in both the value
and multiValue properties. This allows you to access all the values by looping through the
multiValue array.

If your function code modifies a query string, header, or cookie that has a multiValue array,
CloudFront Functions uses the following rules to apply the changes:

1. If the multiValue array exists and has any modification, then that modification is applied. The
first element in the value property is ignored.

2. Otherwise, any modification to the value property is applied, and subsequent values (if they
exist) remain unchanged.

The multiValue property is used only when the HTTP request or response contains duplicate
query strings, headers, or cookies with the same name, as shown in the preceding example.
However, if there are multiple values in a single query string, header, or cookie, the multiValue
property is not used.

For example, consider a request with one Accept header that contains three values, as in the
following example:

Accept: application/json, application/xml, text/html

This header is represented as follows in the request object:

"headers": {
 "accept": {
 "value": "application/json, application/xml, text/html"
 }
}

Cookie attributes

In a Set-Cookie header in an HTTP response, the header contains the name–value pair for the
cookie and optionally a set of attributes separated by semicolons. For example:

Writing function code 566

Amazon CloudFront Developer Guide

Set-Cookie: cookie1=val1; Secure; Path=/; Domain=example.com; Expires=Wed, 05 Apr 2021
 07:28:00 GMT

In the response object, these attributes are represented in the attributes property of the
cookie field. For example, the preceding Set-Cookie header is represented as follows:

"cookie1": {
 "value": "val1",
 "attributes": "Secure; Path=/; Domain=example.com; Expires=Wed, 05 Apr 2021
 07:28:00 GMT"
}

Example response object

The following example shows a response object — the output of a viewer response function — in
which the body has been replaced by a viewer response function.

{
 "response": {
 "statusCode": 200,
 "statusDescription": "OK",
 "headers": {
 "date": {
 "value": "Mon, 04 Apr 2021 18:57:56 GMT"
 },
 "server": {
 "value": "gunicorn/19.9.0"
 },
 "access-control-allow-origin": {
 "value": "*"
 },
 "access-control-allow-credentials": {
 "value": "true"
 },
 "content-type": {
 "value": "text/html"
 },
 "content-length": {
 "value": "86"
 }
 },
 "cookies": {
 "ID": {

Writing function code 567

Amazon CloudFront Developer Guide

 "value": "id1234",
 "attributes": "Expires=Wed, 05 Apr 2021 07:28:00 GMT"
 },
 "Cookie1": {
 "value": "val1",
 "attributes": "Secure; Path=/; Domain=example.com; Expires=Wed, 05 Apr 2021
 07:28:00 GMT",
 "multiValue": [
 {
 "value": "val1",
 "attributes": "Secure; Path=/; Domain=example.com; Expires=Wed, 05 Apr 2021
 07:28:00 GMT"
 },
 {
 "value": "val2",
 "attributes": "Path=/cat; Domain=example.com; Expires=Wed, 10 Jan 2021
 07:28:00 GMT"
 }
]
 }
 },

 // Adding the body field is optional and it will not be present in the response
 object
 // unless you specify it in your function.
 // Your function does not have access to the original body returned by the
 CloudFront
 // cache or origin.
 // If you don't specify the body field in your viewer response function, the
 original
 // body returned by the CloudFront cache or origin is returned to viewer.

 "body": {
 "encoding": "text",
 "data": "<!DOCTYPE html><html><body><p>Here is your custom content.</p></body></
html>"
 }
 }
}

Example event object

The following example shows a complete event object.

Writing function code 568

Amazon CloudFront Developer Guide

Note

The event object is the input to your function. Your function returns only the request or
response object, not the complete event object.

{
 "version": "1.0",
 "context": {
 "distributionDomainName": "d111111abcdef8.cloudfront.net",
 "distributionId": "EDFDVBD6EXAMPLE",
 "eventType": "viewer-response",
 "requestId": "EXAMPLEntjQpEXAMPLE_SG5Z-EXAMPLEPmPfEXAMPLEu3EqEXAMPLE=="
 },
 "viewer": {"ip": "198.51.100.11"},
 "request": {
 "method": "GET",
 "uri": "/media/index.mpd",
 "querystring": {
 "ID": {"value": "42"},
 "Exp": {"value": "1619740800"},
 "TTL": {"value": "1440"},
 "NoValue": {"value": ""},
 "querymv": {
 "value": "val1",
 "multiValue": [
 {"value": "val1"},
 {"value": "val2,val3"}
]
 }
 },
 "headers": {
 "host": {"value": "video.example.com"},
 "user-agent": {"value": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:83.0)
 Gecko/20100101 Firefox/83.0"},
 "accept": {
 "value": "application/json",
 "multiValue": [
 {"value": "application/json"},
 {"value": "application/xml"},
 {"value": "text/html"}
]

Writing function code 569

Amazon CloudFront Developer Guide

 },
 "accept-language": {"value": "en-GB,en;q=0.5"},
 "accept-encoding": {"value": "gzip, deflate, br"},
 "origin": {"value": "https://website.example.com"},
 "referer": {"value": "https://website.example.com/videos/12345678?
action=play"},
 "cloudfront-viewer-country": {"value": "GB"}
 },
 "cookies": {
 "Cookie1": {"value": "value1"},
 "Cookie2": {"value": "value2"},
 "cookie_consent": {"value": "true"},
 "cookiemv": {
 "value": "value3",
 "multiValue": [
 {"value": "value3"},
 {"value": "value4"}
]
 }
 }
 },
 "response": {
 "statusCode": 200,
 "statusDescription": "OK",
 "headers": {
 "date": {"value": "Mon, 04 Apr 2021 18:57:56 GMT"},
 "server": {"value": "gunicorn/19.9.0"},
 "access-control-allow-origin": {"value": "*"},
 "access-control-allow-credentials": {"value": "true"},
 "content-type": {"value": "application/json"},
 "content-length": {"value": "701"}
 },
 "cookies": {
 "ID": {
 "value": "id1234",
 "attributes": "Expires=Wed, 05 Apr 2021 07:28:00 GMT"
 },
 "Cookie1": {
 "value": "val1",
 "attributes": "Secure; Path=/; Domain=example.com; Expires=Wed, 05 Apr
 2021 07:28:00 GMT",
 "multiValue": [
 {
 "value": "val1",

Writing function code 570

Amazon CloudFront Developer Guide

 "attributes": "Secure; Path=/; Domain=example.com; Expires=Wed,
 05 Apr 2021 07:28:00 GMT"
 },
 {
 "value": "val2",
 "attributes": "Path=/cat; Domain=example.com; Expires=Wed, 10
 Jan 2021 07:28:00 GMT"
 }
]
 }
 }
 }
}

JavaScript runtime features for CloudFront Functions

The Amazon CloudFront Functions JavaScript runtime environment is compliant with ECMAScript
(ES) version 5.1 and also supports some features of ES versions 6 through 12.

We recommend that you use runtime 2.0 for the most up to date features. Note that runtime 2.0
has the following changes compared to 1.0:

• Buffer module methods are available.

• The following non-standard string prototype methods are not available:

• String.prototype.bytesFrom()

• String.prototype.fromBytes()

• String.prototype.fromUTF8()

• String.prototype.toBytes()

• String.prototype.toUTF8()

• The cryptographic module has the following changes:

• hash.digest() - Return type is changed to Buffer if no encoding is provided

• hmac.digest() - Return type is changed to Buffer if no encoding is provided

• Additional new features are noted in JavaScript runtime 2.0 features for CloudFront Functions.

Topics

• JavaScript runtime 1.0 features for CloudFront Functions

• JavaScript runtime 2.0 features for CloudFront Functions

Writing function code 571

https://www.ecma-international.org/ecma-262/5.1/
https://www.ecma-international.org/ecma-262/5.1/

Amazon CloudFront Developer Guide

JavaScript runtime 1.0 features for CloudFront Functions

The CloudFront Functions JavaScript runtime environment is compliant with ECMAScript (ES)
version 5.1 and also supports some features of ES versions 6 through 9. It also provides some
nonstandard methods that are not part of the ES specifications. The following topics list all the
supported language features.

Topics

• Core features

• Primitive objects

• Built-in objects

• Error types

• Globals

• Built-in modules

• Restricted features

Core features

The following core features of ES are supported.

Types

All ES 5.1 types are supported. This includes Boolean values, numbers, strings, objects, arrays,
functions, function constructors, and regular expressions.

Operators

All ES 5.1 operators are supported.

The ES 7 exponentiation operator (**) is supported.

Statements

Note

The const and let statements are not supported.

The following ES 5.1 statements are supported:

Writing function code 572

https://www.ecma-international.org/ecma-262/5.1/
https://www.ecma-international.org/ecma-262/5.1/

Amazon CloudFront Developer Guide

• break

• catch

• continue

• do-while

• else

• finally

• for

• for-in

• if

• return

• switch

• throw

• try

• var

• while

• Labeled statements

Literals

ES 6 template literals are supported: multiline strings, expression interpolation, and nesting
templates.

Functions

All ES 5.1 function features are supported.

ES 6 arrow functions are supported, and ES 6 rest parameter syntax is supported.

Unicode

Source text and string literals can contain Unicode-encoded characters. Unicode code point
escape sequences of six characters (for example, \uXXXX) are also supported.

Strict mode

Functions operate in strict mode by default, so you don’t need to add a use strict statement
in your function code. This cannot be changed.

Writing function code 573

Amazon CloudFront Developer Guide

Primitive objects

The following primitive objects of ES are supported.

Object

The following ES 5.1 methods on objects are supported:

• create (without properties list)

• defineProperties

• defineProperty

• freeze

• getOwnPropertyDescriptor

• getOwnPropertyNames

• getPrototypeOf

• hasOwnProperty

• isExtensible

• isFrozen

• prototype.isPrototypeOf

• isSealed

• keys

• preventExtensions

• prototype.propertyIsEnumerable

• seal

• prototype.toString

• prototype.valueOf

The following ES 6 methods on objects are supported:

• assign

• is

• prototype.setPrototypeOf

The following ES 8 methods on objects are supported:

• entries

Writing function code 574

Amazon CloudFront Developer Guide

• values

String

The following ES 5.1 methods on strings are supported:

• fromCharCode

• prototype.charAt

• prototype.concat

• prototype.indexOf

• prototype.lastIndexOf

• prototype.match

• prototype.replace

• prototype.search

• prototype.slice

• prototype.split

• prototype.substr

• prototype.substring

• prototype.toLowerCase

• prototype.trim

• prototype.toUpperCase

The following ES 6 methods on strings are supported:

• fromCodePoint

• prototype.codePointAt

• prototype.endsWith

• prototype.includes

• prototype.repeat

• prototype.startsWith

The following ES 8 methods on strings are supported:

• prototype.padStart

• prototype.padEnd

Writing function code 575

Amazon CloudFront Developer Guide

The following ES 9 methods on strings are supported:

• prototype.trimStart

• prototype.trimEnd

The following nonstandard methods on strings are supported:

• prototype.bytesFrom(array | string, encoding)

Creates a byte string from an array of octets or an encoded string. The string encoding
options are hex, base64, and base64url.

• prototype.fromBytes(start[, end])

Creates a Unicode string from a byte string where each byte is replaced with the
corresponding Unicode code point.

• prototype.fromUTF8(start[, end])

Creates a Unicode string from a UTF-8 encoded byte string. If the encoding is incorrect, it
returns null.

• prototype.toBytes(start[, end])

Creates a byte string from a Unicode string. All characters must be in the [0,255] range. If not,
it returns null.

• prototype.toUTF8(start[, end])

Creates a UTF-8 encoded byte string from a Unicode string.

Number

All ES 5.1 methods on numbers are supported.

The following ES 6 methods on numbers are supported:

• isFinite

• isInteger

• isNaN

• isSafeInteger

• parseFloat

• parseInt

• prototype.toExponential

Writing function code 576

Amazon CloudFront Developer Guide

• prototype.toFixed

• prototype.toPrecision

• EPSILON

• MAX_SAFE_INTEGER

• MAX_VALUE

• MIN_SAFE_INTEGER

• MIN_VALUE

• NEGATIVE_INFINITY

• NaN

• POSITIVE_INFINITY

Built-in objects

The following built-in objects of ES are supported.

Math

All ES 5.1 math methods are supported.

Note

In the CloudFront Functions runtime environment, the Math.random()
implementation uses OpenBSD arc4random seeded with the timestamp of when the
function runs.

The following ES 6 math methods are supported:

• acosh

• asinh

• atanh

• cbrt

• clz32

• cosh

• expm1

Writing function code 577

Amazon CloudFront Developer Guide

• fround

• hypot

• imul

• log10

• log1p

• log2

• sign

• sinh

• tanh

• trunc

• E

• LN10

• LN2

• LOG10E

• LOG2E

• PI

• SQRT1_2

• SQRT2

Date

All ES 5.1 Date features are supported.

Note

For security reasons, Date always returns the same value—the function’s start time
—during the lifetime of a single function run. For more information, see Restricted
features.

Function

The apply, bind, and call methods are supported.

Function constructors are not supported.

Writing function code 578

Amazon CloudFront Developer Guide

Regular expressions

All ES 5.1 regular expression features are supported. The regular expression language is Perl
compatible. ES 9 named capture groups are supported.

JSON

All ES 5.1 JSON features are supported, including parse and stringify.

Array

The following ES 5.1 methods on arrays are supported:

• isArray

• prototype.concat

• prototype.every

• prototype.filter

• prototype.forEach

• prototype.indexOf

• prototype.join

• prototype.lastIndexOf

• prototype.map

• prototype.pop

• prototype.push

• prototype.reduce

• prototype.reduceRight

• prototype.reverse

• prototype.shift

• prototype.slice

• prototype.some

• prototype.sort

• prototype.splice

• prototype.unshift

The following ES 6 methods on arrays are supported:

Writing function code 579

Amazon CloudFront Developer Guide

• of

• prototype.copyWithin

• prototype.fill

• prototype.find

• prototype.findIndex

The following ES 7 methods on arrays are supported:

• prototype.includes

Typed arrays

The following ES 6 typed arrays are supported:

• Int8Array

• Uint8Array

• Uint8ClampedArray

• Int16Array

• Uint16Array

• Int32Array

• Uint32Array

• Float32Array

• Float64Array

• prototype.copyWithin

• prototype.fill

• prototype.join

• prototype.set

• prototype.slice

• prototype.subarray

• prototype.toString

ArrayBuffer

The following methods on ArrayBuffer are supported:

• prototype.isView

• prototype.slice

Writing function code 580

Amazon CloudFront Developer Guide

Promise

The following methods on promises are supported:

• reject

• resolve

• prototype.catch

• prototype.finally

• prototype.then

Crypto

The cryptographic module provides standard hashing and hash-based message authentication
code (HMAC) helpers. You can load the module using require('crypto'). The module
exposes the following methods that behave exactly as their Node.js counterparts:

• createHash(algorithm)

• hash.update(data)

• hash.digest([encoding])

• createHmac(algorithm, secret key)

• hmac.update(data)

• hmac.digest([encoding])

For more information, see Crypto (hash and HMAC) in the built-in modules section.

Console

This is a helper object for debugging. It only supports the log() method, to record log
messages.

Note

CloudFront Functions doesn't support comma syntax, such as console.log('a',
'b'). Instead, use the console.log('a' + ' ' + 'b') format.

Error types

The following error objects are supported:

Writing function code 581

Amazon CloudFront Developer Guide

• Error

• EvalError

• InternalError

• MemoryError

• RangeError

• ReferenceError

• SyntaxError

• TypeError

• URIError

Globals

The globalThis object is supported.

The following ES 5.1 global functions are supported:

• decodeURI

• decodeURIComponent

• encodeURI

• encodeURIComponent

• isFinite

• isNaN

• parseFloat

• parseInt

The following global constants are supported:

• NaN

• Infinity

• undefined

Built-in modules

The following built-in modules are supported.

Writing function code 582

Amazon CloudFront Developer Guide

Modules

• Crypto (hash and HMAC)

• Query string

Crypto (hash and HMAC)

The cryptographic module (crypto) provides standard hashing and hash-based message
authentication code (HMAC) helpers. You can load the module using require('crypto'). The
module provides the following methods that behave exactly as their Node.js counterparts.

Hashing methods

crypto.createHash(algorithm)

Creates and returns a hash object that you can use to generate hash digests using the given
algorithm: md5, sha1, or sha256.

hash.update(data)

Updates the hash content with the given data.

hash.digest([encoding])

Calculates the digest of all of the data passed using hash.update(). The encoding can be
hex, base64, or base64url.

HMAC methods

crypto.createHmac(algorithm, secret key)

Creates and returns an HMAC object that uses the given algorithm and secret key. The
algorithm can be md5, sha1, or sha256.

hmac.update(data)

Updates the HMAC content with the given data.

hmac.digest([encoding])

Calculates the digest of all of the data passed using hmac.update(). The encoding can be
hex, base64, or base64url.

Writing function code 583

Amazon CloudFront Developer Guide

Query string

Note

The CloudFront Functions event object automatically parses URL query strings for you.
That means that in most cases you don’t need to use this module.

The query string module (querystring) provides methods for parsing and formatting URL query
strings. You can load the module using require('querystring'). The module provides the
following methods.

querystring.escape(string)

URL-encodes the given string, returning an escaped query string. The method is used by
querystring.stringify() and should not be used directly.

querystring.parse(string[, separator[, equal[, options]]])

Parses a query string (string) and returns an object.

The separator parameter is a substring for delimiting key and value pairs in the query string.
By default it is &.

The equal parameter is a substring for delimiting keys and values in the query string. By
default it is =.

The options parameter is an object with the following keys:

decodeURIComponent function

A function to decode percent-encoded characters in the query string. By default it is
querystring.unescape().

maxKeys number

The maximum number of keys to parse. By default it is 1000. Use a value of 0 to remove the
limitations for counting keys.

By default, percent-encoded characters within the query string are assumed to use the UTF-8
encoding. Invalid UTF-8 sequences are replaced with the U+FFFD replacement character.

For example, for the following query string:

Writing function code 584

Amazon CloudFront Developer Guide

'name=value&abc=xyz&abc=123'

The return value of querystring.parse() is:

{
name: 'value',
abc: ['xyz', '123']
}

querystring.decode() is an alias for querystring.parse().

querystring.stringify(object[, separator[, equal[, options]]])

Serializes an object and returns a query string.

The separator parameter is a substring for delimiting key and value pairs in the query string.
By default it is &.

The equal parameter is a substring for delimiting keys and values in the query string. By
default it is =.

The options parameter is an object with the following keys:

encodeURIComponent function

The function to use for converting URL-unsafe characters to percent-encoding in the query
string. By default it is querystring.escape().

By default, characters that require percent-encoding within the query string are encoded as
UTF-8. To use a different encoding, specify the encodeURIComponent option.

For example, for the following code:

querystring.stringify({ name: 'value', abc: ['xyz', '123'], anotherName: '' });

The return value is:

'name=value&abc=xyz&abc=123&anotherName='

querystring.encode() is an alias for querystring.stringify().

Writing function code 585

Amazon CloudFront Developer Guide

querystring.unescape(string)

Decodes URL percent-encoded characters in the given string, returning an unescaped query
string. This method is used by querystring.parse() and should not be used directly.

Restricted features

The following JavaScript language features are either unsupported or restricted due to security
concerns.

Dynamic code evaluation

Dynamic code evaluation is not supported. Both eval() and Function constructors throw an
error if attempted. For example, const sum = new Function('a', 'b', 'return a +
b') throws an error.

Timers

The setTimeout(), setImmediate(), and clearTimeout() functions are not supported.
There is no provision to defer or yield within a function run. Your function must synchronously
run to completion.

Date and timestamps

For security reasons, there is no access to high-resolution timers. All Date methods to query
the current time always return the same value during the lifetime of a single function run. The
returned timestamp is the time when the function started running. Consequently, you cannot
measure elapsed time in your function.

File system access

There is no file system access. For example, there is no fs module for file system access like
there is in Node.js.

Network access

There is no support for network calls. For example, XHR, HTTP(S), and socket are not supported.

JavaScript runtime 2.0 features for CloudFront Functions

The CloudFront Functions JavaScript runtime environment is compliant with ECMAScript (ES)
version 5.1 and also supports some features of ES versions 6 through 12. It also provides some

Writing function code 586

https://www.ecma-international.org/ecma-262/5.1/
https://www.ecma-international.org/ecma-262/5.1/

Amazon CloudFront Developer Guide

nonstandard methods that are not part of the ES specifications. The following topics list all
supported features in this runtime.

Topics

• Core features

• Primitive objects

• Built-in objects

• Error types

• Globals

• Built-in modules

• Restricted features

Core features

The following core features of ES are supported.

Types

All ES 5.1 types are supported. This includes boolean values, numbers, strings, objects, arrays,
functions, and regular expressions.

Operators

All ES 5.1 operators are supported.

The ES 7 exponentiation operator (**) is supported.

Statements

The following ES 5.1 statements are supported:

• break

• catch

• continue

• do-while

• else

• finally

Writing function code 587

Amazon CloudFront Developer Guide

• for

• for-in

• if

• label

• return

• switch

• throw

• try

• var

• while

The following ES 6 statements are supported:

• async

• await

• const

• let

Note

async, await, const, and let are new in JavaScript runtime 2.0.

Literals

ES 6 template literals are supported: multiline strings, expression interpolation, and nesting
templates.

Functions

All ES 5.1 function features are supported.

ES 6 arrow functions are supported, and ES 6 rest parameter syntax is supported.

Unicode

Source text and string literals can contain Unicode-encoded characters. Unicode code point
escape sequences of six characters (for example, \uXXXX) are also supported.

Writing function code 588

Amazon CloudFront Developer Guide

Strict mode

Functions operate in strict mode by default, so you don’t need to add a use strict statement
in your function code. This cannot be changed.

Primitive objects

The following primitive objects of ES are supported.

Object

The following ES 5.1 methods on objects are supported:

• Object.create() (without properties list)

• Object.defineProperties()

• Object.defineProperty()

• Object.freeze()

• Object.getOwnPropertyDescriptor()

• Object.getOwnPropertyDescriptors()

• Object.getOwnPropertyNames()

• Object.getPrototypeOf()

• Object.isExtensible()

• Object.isFrozen()

• Object.isSealed()

• Object.keys()

• Object.preventExtensions()

• Object.seal()

The following ES 6 methods on objects are supported:

• Object.assign()

The following ES 8 methods on objects are supported:

• Object.entries()

• Object.values()

Writing function code 589

Amazon CloudFront Developer Guide

The following ES 5.1 prototype methods on objects are supported:

• Object.prototype.hasOwnProperty()

• Object.prototype.isPrototypeOf()

• Object.prototype.propertyIsEnumerable()

• Object.prototype.toString()

• Object.prototype.valueOf()

The following ES 6 prototype methods on objects are supported:

• Object.prototype.is()

• Object.prototype.setPrototypeOf()

String

The following ES 5.1 methods on strings are supported:

• String.fromCharCode()

The following ES 6 methods on strings are supported:

• String.fromCodePoint()

The following ES 5.1 prototype methods on strings are supported:

• String.prototype.charAt()

• String.prototype.concat()

• String.prototype.indexOf()

• String.prototype.lastIndexOf()

• String.prototype.match()

• String.prototype.replace()

• String.prototype.search()

• String.prototype.slice()

• String.prototype.split()

• String.prototype.substr()

• String.prototype.substring()

• String.prototype.toLowerCase()

• String.prototype.trim()

Writing function code 590

Amazon CloudFront Developer Guide

• String.prototype.toUpperCase()

The following ES 6 prototype methods on strings are supported:

• String.prototype.codePointAt()

• String.prototype.endsWith()

• String.prototype.includes()

• String.prototype.repeat()

• String.prototype.startsWith()

The following ES 8 prototype methods on strings are supported:

• String.prototype.padStart()

• String.prototype.padEnd()

The following ES 9 prototype methods on strings are supported:

• String.prototype.trimStart()

• String.prototype.trimEnd()

The following ES 12 prototype methods on strings are supported:

• String.prototype.replaceAll()

Note

String.prototype.replaceAll() is new in JavaScript runtime 2.0.

Number

ALL ES 5 numbers are supported.

The following ES 6 properties on numbers are supported:

• Number.EPSILON

• Number.MAX_SAFE_INTEGER

• Number.MIN_SAFE_INTEGER

• Number.MAX_VALUE

• Number.MIN_VALUE

• Number.NaN

Writing function code 591

Amazon CloudFront Developer Guide

• Number.NEGATIVE_INFINITY

• Number.POSITIVE_INFINITY

The following ES 6 methods on numbers are supported:

• Number.isFinite()

• Number.isInteger()

• Number.isNaN()

• Number.isSafeInteger()

• Number.parseInt()

• Number.parseFloat()

The following ES 5.1 prototype methods on numbers are supported:

• Number.prototype.toExponential()

• Number.prototype.toFixed()

• Number.prototype.toPrecision()

ES 12 numeric separators are supported.

Note

ES 12 numeric separators are new in JavaScript runtime 2.0.

Built-in objects

The following built-in objects of ES are supported.

Math

All ES 5.1 math methods are supported.

The following ES 6 math properties are supported:

• Math.E

• Math.LN10

• Math.LN2

• Math.LOG10E

Writing function code 592

Amazon CloudFront Developer Guide

• Math.LOG2E

• Math.PI

• Math.SQRT1_2

• Math.SQRT2

The following ES 6 math methods are supported:

• Math.abs()

• Math.acos()

• Math.acosh()

• Math.asin()

• Math.asinh()

• Math.atan()

• Math.atan2()

• Math.atanh()

• Math.cbrt()

• Math.ceil()

• Math.clz32()

• Math.cos()

• Math.cosh()

• Math.exp()

• Math.expm1()

• Math.floor()

• Math.fround()

• Math.hypot()

• Math.imul()

• Math.log()

• Math.log1p()

• Math.log2()

• Math.log10()

• Math.max()

Writing function code 593

Amazon CloudFront Developer Guide

• Math.min()

• Math.pow()

• Math.random()

• Math.round()

• Math.sign()

• Math.sinh()

• Math.sin()

• Math.sqrt()

• Math.tan()

• Math.tanh()

• Math.trunc()

Date

All ES 5.1 Date features are supported.

Note

For security reasons, Date always returns the same value—the function’s start time
—during the lifetime of a single function run. For more information, see Restricted
features.

Function

The following ES 5.1 prototype methods are supported:

• Function.prototype.apply()

• Function.prototype.bind()

• Function.prototype.call()

Function constructors are not supported.

Regular expressions

All ES 5.1 regular expression features are supported. The regular expression language is Perl
compatible.

Writing function code 594

Amazon CloudFront Developer Guide

The following ES 5.1 prototype accessor properties are supported:

• RegExp.prototype.global

• RegExp.prototype.ignoreCase

• RegExp.protoype.multiline

• RegExp.protoype.source

• RegExp.prototype.sticky

• RegExp.prototype.flags

Note

RegExp.prototype.sticky and RegExp.prototype.flags are new in
JavaScript runtime 2.0.

The following ES 5.1 prototype methods are supported:

• RegExp.prototype.exec()

• RegExp.prototype.test()

• RegExp.prototype.toString()

• RegExp.prototype[@@replace]()

• RegExp.prototype[@@split]()

Note

RegExp.prototype[@@split]() is new in JavaScript runtime 2.0.

The following ES 5.1 instance properties are supported:

• lastIndex

ES 9 named capture groups are supported.

JSON

The following ES 5.1 methods are supported:

• JSON.parse()

• JSON.stringify()

Writing function code 595

Amazon CloudFront Developer Guide

Array

The following ES 5.1 methods on arrays are supported:

• Array.isArray()

The following ES 6 methods on arrays are supported:

• Array.of()

The following ES 5.1 prototype methods are supported:

• Array.prototype.concat()

• Array.prototype.every()

• Array.prototype.filter()

• Array.prototype.forEach()

• Array.prototype.indexOf()

• Array.prototype.join()

• Array.prototype.lastIndexOf()

• Array.prototype.map()

• Array.prototype.pop()

• Array.prototype.push()

• Array.prototype.reduce()

• Array.prototype.reduceRight()

• Array.prototype.reverse()

• Array.prototype.shift()

• Array.prototype.slice()

• Array.prototype.some()

• Array.prototype.sort()

• Array.prototype.splice()

• Array.prototype.unshift()

The following ES 6 prototype methods are supported

• Array.prototype.copyWithin()

Writing function code 596

Amazon CloudFront Developer Guide

• Array.prototype.fill()

• Array.prototype.find()

• Array.prototype.findIndex()

The following ES 7 prototype methods are supported:

• Array.prototype.includes()

Typed arrays

The following ES 6 typed array constructors are supported:

• Float32Array

• Float64Array

• Int8Array

• Int16Array

• Int32Array

• Uint8Array

• Uint8ClampedArray

• Uint16Array

• Uint32Array

The following ES 6 methods are supported:

• TypedArray.from()

• TypedArray.of()

Note

TypedArray.from() and TypedArray.of() are new in JavaScript runtime 2.0.

The following ES 6 prototype methods are supported:

• TypedArray.prototype.copyWithin()

• TypedArray.prototype.every()

• TypedArray.prototype.fill()

• TypedArray.prototype.filter()

Writing function code 597

Amazon CloudFront Developer Guide

• TypedArray.prototype.find()

• TypedArray.prototype.findIndex()

• TypedArray.prototype.forEach()

• TypedArray.prototype.includes()

• TypedArray.prototype.indexOf()

• TypedArray.prototype.join()

• TypedArray.prototype.lastIndexOf()

• TypedArray.prototype.map()

• TypedArray.prototype.reduce()

• TypedArray.prototype.reduceRight()

• TypedArray.prototype.reverse()

• TypedArray.prototype.some()

• TypedArray.prototype.set()

• TypedArray.prototype.slice()

• TypedArray.prototype.sort()

• TypedArray.prototype.subarray()

• TypedArray.prototype.toString()

Note

TypedArray.prototype.every(), TypedArray.prototype.fill(),
TypedArray.prototype.filter(), TypedArray.prototype.find(),
TypedArray.prototype.findIndex(), TypedArray.prototype.forEach(),
TypedArray.prototype.includes(), TypedArray.prototype.indexOf(),
TypedArray.prototype.join(),
TypedArray.prototype.lastIndexOf(),TypedArray.prototype.map(),
TypedArray.prototype.reduce(), TypedArray.prototype.reduceRight(),
TypedArray.prototype.reverse(), and TypedArray.prototype.some() are
new in JavaScript runtime 2.0.

ArrayBuffer

The following ES 6 methods on ArrayBuffer are supported:

Writing function code 598

Amazon CloudFront Developer Guide

• isView()

The following ES 6 prototype methods on ArrayBuffer are supported:

• ArrayBuffer.prototype.slice()

Promise

The following ES 6 methods on promises are supported:

• Promise.all()

• Promise.allSettled()

• Promise.any()

• Promise.reject()

• Promise.resolve()

• Promise.race()

Note

Promise.all(), Promise.allSettled(), Promise.any(), and
Promise.race() are new in JavaScript runtime 2.0.

The following ES 6 prototype methods on promises are supported:

• Promise.prototype.catch()

• Promise.prototype.finally()

• Promise.prototype.then()

DataView

The following ES 6 prototype methods are supported:

• DataView.prototype.getFloat32()

• DataView.prototype.getFloat64()

• DataView.prototype.getInt16()

• DataView.prototype.getInt32()

• DataView.prototype.getInt8()

• DataView.prototype.getUint16()

Writing function code 599

Amazon CloudFront Developer Guide

• DataView.prototype.getUint32()

• DataView.prototype.getUint8()

• DataView.prototype.setFloat32()

• DataView.prototype.setFloat64()

• DataView.prototype.setInt16()

• DataView.prototype.setInt32()

• DataView.prototype.setInt8()

• DataView.prototype.setUint16()

• DataView.prototype.setUint32()

• DataView.prototype.setUint8()

Note

All Dataview ES 6 prototype methods are new in JavaScript runtime 2.0.

Symbol

The following ES 6 methods are supported:

• Symbol.for()

• Symbol.keyfor()

Note

All Symbol ES 6 methods are new in JavaScript runtime 2.0.

Text Decoder

The following prototype methods are supported:

• TextDecoder.prototype.decode()

The following prototype accessor properties are supported:

• TextDecoder.prototype.encoding

• TextDecoder.prototype.fatal

• TextDecoder.prototype.ignoreBOM

Writing function code 600

Amazon CloudFront Developer Guide

Text Encoder

The following prototype methods are supported:

• TextEncoder.prototype.encode()

• TextEncoder.prototype.encodeInto()

Error types

The following error objects are supported:

• Error

• EvalError

• InternalError

• RangeError

• ReferenceError

• SyntaxError

• TypeError

• URIError

Globals

The globalThis object is supported.

The following ES 5.1 global functions are supported:

• decodeURI()

• decodeURIComponent()

• encodeURI()

• encodeURIComponent()

• isFinite()

• isNaN()

• parseFloat()

• parseInt()

The following ES 6 global functions are supported:

Writing function code 601

Amazon CloudFront Developer Guide

• atob()

• btoa()

Note

atob() and btoa() are new in JavaScript runtime 2.0.

The following global constants are supported:

• NaN

• Infinity

• undefined

• arguments

Built-in modules

The following built-in modules are supported.

Modules

• Buffer

• Query string

• Crypto

Buffer

The module provides the following methods:

• Buffer.alloc(size[, fill[, encoding]])

Allocate a Buffer.

• size: Buffer size. Enter an integer.

• fill: Optional. Enter a string, Buffer, Uint8Array, or integer. Default is 0.

• encoding: Optional. When fill is a string, enter one of the following: utf8, hex, base64,
base64url. Default is utf8.

• Buffer.allocUnsafe(size)

Writing function code 602

Amazon CloudFront Developer Guide

Allocate a non-initialized Buffer.

• size: Enter an integer.

• Buffer.byteLength(value[, encoding])

Return the length of a value, in bytes.

• value: A string, Buffer, TypedArray, Dataview, or Arraybuffer.

• encoding: Optional. When value is a string, enter one of the following: utf8, hex, base64,
base64url. Default is utf8.

• Buffer.compare(buffer1, buffer2)

Compare two Buffers to help sort arrays. Returns 0 if they're the same, -1 if buffer1 comes
first, or 1 if buffer2 comes first.

• buffer1: Enter a Buffer.

• buffer2: Enter a different Buffer.

• Buffer.concat(list[, totalLength])

Concatenate multiple Buffers. Returns 0 if none. Returns up to totalLength.

• list: Enter a list of Buffers. Note this will be truncated to totalLength.

• totalLength: Optional. Enter an unsigned integer. Use sum of Buffer instances in list if
blank.

• Buffer.from(array)

Create a Buffer from an array.

• array: Enter a byte array from 0 to 255.

• Buffer.from(arrayBuffer, byteOffset[, length]))

Create a view from arrayBuffer, starting at offset byteOffset with length length.

• arrayBuffer: Enter a Buffer array.

• byteOffset: Enter an integer.

• length: Optional. Enter an integer.

• Buffer.from(buffer)

Create a copy of the Buffer.

• buffer: Enter a Buffer.

Writing function code 603

Amazon CloudFront Developer Guide

• Buffer.from(object[, offsetOrEncoding[, length]])

Create a Buffer from an object. Returns Buffer.from(object.valueOf(),
offsetOrEncoding, length) if valueOf() is not equal to the object.

• object: Enter an object.

• offsetOrEncoding: Optional. Enter an integer or encoding string.

• length: Optional. Enter an integer.

• Buffer.from(string[, encoding])

Create a Buffer from a string.

• string: Enter a string.

• encoding: Optional. Enter one of the following: utf8, hex, base64, base64url. Default is
utf8.

• Buffer.isBuffer(object)

Check if object is a Buffer. Returns true or false.

• object: Enter an object.

• Buffer.isEncoding(encoding)

Check if encoding is supported. Returns true or false.

• encoding: Optional. Enter one of the following: utf8, hex, base64, base64url. Default is
utf8.

The module provides the following buffer prototype methods:

• Buffer.prototype.compare(target[, targetStart[, targetEnd[, sourceStart[,
sourceEnd]]]])

Compare Buffer with target. Returns 0 if they're the same, 1 if buffer comes first, or -1 if
target comes first.

• target: Enter a Buffer.

• targetStart: Optional. Enter an integer. Default is 0.

• targetEnd: Optional. Enter an integer. Default is target length.

• sourceStart: Optional. Enter an integer. Default is 0.

• sourceEnd: Optional. Enter an integer. Default is Buffer length.Writing function code 604

Amazon CloudFront Developer Guide

• Buffer.prototype.copy(target[, targetStart[, sourceStart[, sourceEnd]]])

Copy buffer to target.

• target: Enter a Buffer or Uint8Array.

• targetStart: Optional. Enter an integer. Default is 0.

• sourceStart: Optional. Enter an integer. Default is 0.

• sourceEnd: Optional. Enter an integer. Default is Buffer length.

• Buffer.prototype.equals(otherBuffer)

Compare Buffer to otherBuffer. Returns true or false.

• otherBuffer: Enter a string.

• Buffer.prototype.fill(value[, offset[, end][, encoding])

Fill Buffer with value.

• value: Enter a string, Buffer, or integer.

• offset: Optional. Enter an integer.

• end: Optional. Enter an integer.

• encoding: Optional. Enter one of the following: utf8, hex, base64, base64url. Default is
utf8.

• Buffer.prototype.includes(value[, byteOffset][, encoding])

Search for value in Buffer. Returns true or false.

• value: Enter a string, Buffer, Uint8Array, or integer.

• byteOffset: Optional. Enter an integer.

• encoding: Optional. Enter one of the following: utf8, hex, base64, base64url. Default is
utf8.

• Buffer.prototype.indexOf(value[, byteOffset][, encoding])

Search for first value in Buffer. Returns index if found; returns -1 if not found.

• value: Enter a string, Buffer, Unit8Array, or integer from 0 to 255.

• byteOffset: Optional. Enter an integer.

• encoding: Optional. Enter one of the following if value is a string: utf8, hex, base64,
base64url. Default is utf8.

• Buffer.prototype.lastIndexOf(value[, byteOffset][, encoding])
Writing function code 605

Amazon CloudFront Developer Guide

Search for last value in Buffer. Returns index if found; returns -1 if not found.

• value: Enter a string, Buffer, Unit8Array, or integer from 0 to 255.

• byteOffset: Optional. Enter an integer.

• encoding: Optional. Enter one of the following if value is a string: utf8, hex, base64,
base64url. Default is utf8.

• Buffer.prototype.readInt8(offset)

Read Int8 at offset from Buffer.

• offset: Enter an integer.

• Buffer.prototype.readIntBE(offset, byteLength)

Read Int as big-endian at offset from Buffer.

• offset: Enter an integer.

• byteLength: Optional. Enter an integer from 1 to 6.

• Buffer.prototype.readInt16BE(offset)

Read Int16 as big-endian at offset from Buffer.

• offset: Enter an integer.

• Buffer.prototype.readInt32BE(offset)

Read Int32 as big-endian at offset from Buffer.

• offset: Enter an integer.

• Buffer.prototype.readIntLE(offset, byteLength)

Read Int as little-endian at offset from Buffer.

• offset: Enter an integer.

• byteLength: Enter an integer from 1 to 6.

• Buffer.prototype.readInt16LE(offset)

Read Int16 as little-endian at offset from Buffer.

• offset: Enter an integer.

• Buffer.prototype.readInt32LE(offset)

Read Int32 as little-endian at offset from Buffer.
Writing function code 606

Amazon CloudFront Developer Guide

• offset: Enter an integer.

• Buffer.prototype.readUInt8(offset)

Read UInt8 at offset from Buffer.

• offset: Enter an integer.

• Buffer.prototype.readUIntBE(offset, byteLength)

Read UInt as big-endian at offset from Buffer.

• offset: Enter an integer.

• byteLength: Enter an integer from 1 to 6.

• Buffer.prototype.readUInt16BE(offset)

Read UInt16 as big-endian at offset from Buffer.

• • offset: Enter an integer.

• Buffer.prototype.readUInt32BE(offset)

Read UInt32 as big-endian at offset from Buffer.

• offset: Enter an integer.

• Buffer.prototype.readUIntLE(offset, byteLength)

Read UInt as little-endian at offset from Buffer.

• offset: Enter an integer.

• byteLength: Enter an integer from 1 to 6.

• Buffer.prototype.readUInt16LE(offset)

Read UInt16 as little-endian at offset from Buffer.

• offset: Enter an integer.

• Buffer.prototype.readUInt32LE(offset)

Read UInt32 as little-endian at offset from Buffer.

• offset: Enter an integer.

• Buffer.prototype.readDoubleBE([offset])

Read a 64-bit double as big-endian at offset from Buffer.

• offset: Optional. Enter an integer.

Writing function code 607

Amazon CloudFront Developer Guide

• Buffer.prototype.readDoubleLE([offset])

Read a 64-bit double as little-endian at offset from Buffer.

• offset: Optional. Enter an integer.

• Buffer.prototype.readFloatBE([offset])

Read a 32-bit float as big-endian at offset from Buffer.

• offset: Optional. Enter an integer.

• Buffer.prototype.readFloatLE([offset])

Read a 32-bit float as little-endian at offset from Buffer.

• offset: Optional. Enter an integer.

• Buffer.prototype.subarray([start[, end]])

Returns a copy of Buffer that is offset and cropped with a new start and end.

• start: Optional. Enter an integer. Default is 0.

• end: Optional. Enter an integer. Default is buffer length.

• Buffer.prototype.swap16()

Swap the Buffer array byte order, treating it as an array of 16-bit numbers. Buffer length
must be divisible by 2, or you will receive an error.

• Buffer.prototype.swap32()

Swap the Buffer array byte order, treating it as an array of 32-bit numbers . Buffer length
must be divisible by 4, or you will receive an error.

• Buffer.prototype.swap64()

Swap the Buffer array byte order, treating it as an array of 64-bit numbers. Buffer length
must be divisible by 8, or you will receive an error.

• Buffer.prototype.toJSON()

Returns Buffer as a JSON.

• Buffer.prototype.toString([encoding[, start[, end]]])

Convert Buffer, from start to end, to encoded string.
Writing function code 608

Amazon CloudFront Developer Guide

• encoding: Optional. Enter one of the following: utf8, hex, base64, or base64url. Default is
utf8.

• start: Optional. Enter an integer. Default is 0.

• end: Optional. Enter an integer. Default is buffer length.

• Buffer.prototype.write(string[, offset[, length]][, encoding])

Write encoded string to Buffer if there is space, or a truncated string if there is not enough
space.

• string: Enter a string.

• offset: Optional. Enter an integer. Default is 0.

• length: Optional. Enter an integer. Default is the length of the string.

• encoding: Optional. Optionally enter one of the following: utf8, hex, base64, or
base64url. Default is utf8.

• Buffer.prototype.writeInt8(value, offset, byteLength)

Write Int8 value of byteLength at offset to Buffer.

• value: Enter an integer.

• offset: Enter an integer

• byteLength: Enter an integer from 1 to 6.

• Buffer.prototype.writeIntBE(value, offset, byteLength)

Write value at offset to Buffer, using big-endian.

• value: Enter an integer.

• offset: Enter an integer

• byteLength: Enter an integer from 1 to 6.

• Buffer.prototype.writeInt16BE(value, offset, byteLength)

Write value at offset to Buffer, using big-endian.

• value: Enter an integer.

• offset: Enter an integer

• byteLength: Enter an integer from 1 to 6.

• Buffer.prototype.writeInt32BE(value, offset, byteLength)

Write value at offset to Buffer, using big-endian.

Writing function code 609

Amazon CloudFront Developer Guide

• value: Enter an integer.

• offset: Enter an integer

• byteLength: Enter an integer from 1 to 6.

• Buffer.prototype.writeIntLE(offset, byteLength)

Write value at offset to Buffer, using little-endian.

• offset: Enter an integer.

• byteLength: Enter an integer from 1 to 6.

• Buffer.prototype.writeInt16LE(offset, byteLength)

Write value at offset to Buffer, using little-endian.

• offset: Enter an integer.

• byteLength: Enter an integer from 1 to 6.

• Buffer.prototype.writeInt32LE(offset, byteLength)

Write value at offset to Buffer, using little-endian.

• offset: Enter an integer.

• byteLength: Enter an integer from 1 to 6.

• Buffer.prototype.writeUInt8(value, offset, byteLength)

Write UInt8 value of byteLength at offset to Buffer.

• value: Enter an integer.

• offset: Enter an integer

• byteLength: Enter an integer from 1 to 6.

• Buffer.prototype.writeUIntBE(value, offset, byteLength)

Write value at offset to Buffer, using big-endian.

• value: Enter an integer.

• offset: Enter an integer

• byteLength: Enter an integer from 1 to 6.

• Buffer.prototype.writeUInt16BE(value, offset, byteLength)

Write value at offset to Buffer, using big-endian.

• value: Enter an integer.

Writing function code 610

Amazon CloudFront Developer Guide

• offset: Enter an integer

• byteLength: Enter an integer from 1 to 6.

• Buffer.prototype.writeUInt32BE(value, offset, byteLength)

Write value at offset to Buffer, using big-endian.

• value: Enter an integer.

• offset: Enter an integer

• byteLength: Enter an integer from 1 to 6.

• Buffer.prototype.writeUIntLE(value, offset, byteLength)

Write value at offset to Buffer, using little-endian.

• value: Enter an integer.

• offset: Enter an integer

• byteLength: Enter an integer from 1 to 6.

• Buffer.prototype.writeUInt16LE(value, offset, byteLength)

Write value at offset to Buffer, using little-endian.

• value: Enter an integer.

• offset: Enter an integer

• byteLength: Enter an integer from 1 to 6.

• Buffer.prototype.writeUInt32LE(value, offset, byteLength)

Write value at offset to Buffer, using little-endian.

• value: Enter an integer.

• offset: Enter an integer

• byteLength: Enter an integer from 1 to 6.

• Buffer.prototype.writeDoubleBE(value, [offset])

Write value at offset to Buffer, using big-endian.

• value: Enter an integer.

• offset: Optional. Enter an integer. Default is 0.

• Buffer.prototype.writeDoubleLE(value, [offset])

Write value at offset to Buffer, using little-endian.

Writing function code 611

Amazon CloudFront Developer Guide

• value: Enter an integer.

• offset: Optional. Enter an integer. Default is 0.

• Buffer.prototype.writeFloatBE(value, [offset])

Write value at offset to Buffer, using big-endian.

• value: Enter an integer.

• offset: Optional. Enter an integer. Default is 0.

• Buffer.prototype.writeFloatLE(value, [offset])

Write value at offset to Buffer, using little-endian.

• value: Enter an integer.

• offset: Optional. Enter an integer. Default is 0.

The following instance methods are supported:

• buffer[index]

Get and set octet (byte) at index in Buffer.

• Get a number from 0 to 255. Or set a number from from 0 to 255.

The following instance properties are supported:

• buffer

Get the ArrayBuffer object for the buffer.

• byteOffset

Get the byteOffset of the buffer's Arraybuffer object.

• length

Get the buffer byte count.

Note

All Buffer module methods are new in JavaScript runtime 2.0.

Writing function code 612

Amazon CloudFront Developer Guide

Query string

Note

The CloudFront Functions event object automatically parses URL query strings for you.
That means that in most cases you don’t need to use this module.

The query string module (querystring) provides methods for parsing and formatting URL query
strings. You can load the module using require('querystring'). The module provides the
following methods.

querystring.escape(string)

URL-encodes the given string, returning an escaped query string. The method is used by
querystring.stringify() and should not be used directly.

querystring.parse(string[, separator[, equal[, options]]])

Parses a query string (string) and returns an object.

The separator parameter is a substring for delimiting key and value pairs in the query string.
By default it is &.

The equal parameter is a substring for delimiting keys and values in the query string. By
default it is =.

The options parameter is an object with the following keys:

decodeURIComponent function

A function to decode percent-encoded characters in the query string. By default it is
querystring.unescape().

maxKeys number

The maximum number of keys to parse. By default it is 1000. Use a value of 0 to remove the
limitations for counting keys.

By default, percent-encoded characters within the query string are assumed to use the UTF-8
encoding. Invalid UTF-8 sequences are replaced with the U+FFFD replacement character.

Writing function code 613

Amazon CloudFront Developer Guide

For example, for the following query string:

'name=value&abc=xyz&abc=123'

The return value of querystring.parse() is:

{
name: 'value',
abc: ['xyz', '123']
}

querystring.decode() is an alias for querystring.parse().

querystring.stringify(object[, separator[, equal[, options]]])

Serializes an object and returns a query string.

The separator parameter is a substring for delimiting key and value pairs in the query string.
By default it is &.

The equal parameter is a substring for delimiting keys and values in the query string. By
default it is =.

The options parameter is an object with the following keys:

encodeURIComponent function

The function to use for converting URL-unsafe characters to percent-encoding in the query
string. By default it is querystring.escape().

By default, characters that require percent-encoding within the query string are encoded as
UTF-8. To use a different encoding, specify the encodeURIComponent option.

For example, for the following code:

querystring.stringify({ name: 'value', abc: ['xyz', '123'], anotherName: '' });

The return value is:

'name=value&abc=xyz&abc=123&anotherName='

Writing function code 614

Amazon CloudFront Developer Guide

querystring.encode() is an alias for querystring.stringify().

querystring.unescape(string)

Decodes URL percent-encoded characters in the given string, returning an unescaped query
string. This method is used by querystring.parse() and should not be used directly.

Crypto

The cryptographic module (crypto) provides standard hashing and hash-based message
authentication code (HMAC) helpers. You can load the module using require('crypto').

Hashing methods

crypto.createHash(algorithm)

Creates and returns a hash object that you can use to generate hash digests using the given
algorithm: md5, sha1, or sha256.

hash.update(data)

Updates the hash content with the given data.

hash.digest([encoding])

Calculates the digest of all of the data passed using hash.update(). The encoding can be
hex, base64, or base64url.

HMAC methods

crypto.createHmac(algorithm, secret key)

Creates and returns an HMAC object that uses the given algorithm and secret key. The
algorithm can be md5, sha1, or sha256.

hmac.update(data)

Updates the HMAC content with the given data.

hmac.digest([encoding])

Calculates the digest of all of the data passed using hmac.update(). The encoding can be
hex, base64, or base64url.

Writing function code 615

Amazon CloudFront Developer Guide

Restricted features

The following JavaScript language features are either unsupported or restricted due to security
concerns.

Dynamic code evaluation

Dynamic code evaluation is not supported. Both eval() and Function constructors throw an
error if attempted. For example, const sum = new Function('a', 'b', 'return a +
b') throws an error.

Timers

The setTimeout(), setImmediate(), and clearTimeout() functions are not supported.
There is no provision to defer or yield within a function run. Your function must synchronously
run to completion.

Date and timestamps

For security reasons, there is no access to high-resolution timers. All Date methods to query
the current time always return the same value during the lifetime of a single function run. The
returned timestamp is the time when the function started running. Consequently, you cannot
measure elapsed time in your function.

File system access

There is no file system access.

Network access

There is no support for network calls. For example, XHR, HTTP(S), and socket are not supported.

Helper methods for key value stores

This section applies if you use the CloudFront Key Value Store to include key values in the function
that you create. CloudFront Functions has a module that provides three helper methods to read
values from the key value store.

To use this module in the function code, make sure that you have associated a key value store with
the function.

Next, include the following statements in the first lines of the function code:

Writing function code 616

Amazon CloudFront Developer Guide

import cf from 'cloudfront';
const kvsId = "key value store ID";
const kvsHandle = cf.kvs(kvsId);

Your key value store ID might look like the following: a1b2c3d4-5678-90ab-cdef-
EXAMPLE1

The get() method

Use this method to return the key value for the key name that you specify.

Request

get("key", options);

• key: The name of the key whose value needs to be fetched

• options: There is one option, format. It ensures that the function parses the data correctly.
Possible values:

• string: (Default) UTF8 encoded

• json

• bytes: Raw binary data buffer

Request example

const value = await kvsHandle.get("myFunctionKey", { format: "string"});

Response

The response is a promise that resolves to a value in the format requested by using options. By
default, the value is returned as a string.

The exists() method

Use this method to identify whether or not the key exists in the key value store.

Request

exists("key");

Writing function code 617

Amazon CloudFront Developer Guide

Request example

const exist = await kvsHandle.exists("myFunctionkey");

Response

The response is a promise that returns a Boolean (true or false). This value specifies whether or
not the key exists in the key value store.

Error handling

The get() method will return an error when the key that you requested doesn't exist in the
associated key value store. To manage this use case, you can add a try and catch block to your
code.

The meta() method

Use this method to return metadata about the key value store.

Request

meta();

Request example

const meta = await kvsHandle.meta();

Response

The response is a promise that resolves to an object with the following properties:

• creationDateTime: The date and time that the key value store was created, in ISO 8601
format.

• lastUpdatedDateTime: The date and time that the key value store was last synced from the
source, in ISO 8601 format. The value doesn't include the propagation time to the edge.

• keyCount: The total number of keys in the KVS after the last sync from the source.

Response example

Writing function code 618

Amazon CloudFront Developer Guide

{keyCount:3,creationDateTime:2023-11-30T23:07:55.765Z,lastUpdatedDateTime:2023-12-15T03:57:52.411Z}

Example code for CloudFront Functions

Use the following example functions to help you get started writing function code for CloudFront
Functions. All of these examples are available in the amazon-cloudfront-functions repository on
GitHub.

Examples

• Add a Cache-Control header to the response

• Add a cross-origin resource sharing (CORS) header to the response

• Add cross-origin resource sharing (CORS) header to the request

• Add security headers to the response

• Add a True-Client-IP header to the request

• Redirect the viewer to a new URL

• Add index.html to request URLs that don’t include a file name

• Validate a simple token in the request

• Using async and await

• Normalize query string parameters

• Use key value pairs in a function

Add a Cache-Control header to the response

The following example function adds a Cache-Control HTTP header to the response. The header
uses the max-age directive to tell web browsers to cache the response for a maximum of two years
(63,072,000 seconds). For more information, see Cache-Control on the MDN Web Docs website.

This is a viewer response function.

See this example on GitHub.

JavaScript runtime 2.0

async function handler(event) {
 const response = event.response;
 const headers = response.headers;

Writing function code 619

https://github.com/aws-samples/amazon-cloudfront-functions
https://github.com/aws-samples/amazon-cloudfront-functions
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control
https://github.com/aws-samples/amazon-cloudfront-functions/tree/main/add-cache-control-header

Amazon CloudFront Developer Guide

 // Set the cache-control header
 headers['cache-control'] = {value: 'public, max-age=63072000'};

 // Return response to viewers
 return response;
}

JavaScript runtime 1.0

function handler(event) {
 var response = event.response;
 var headers = response.headers;

 // Set the cache-control header
 headers['cache-control'] = {value: 'public, max-age=63072000'};

 // Return response to viewers
 return response;
}

Add a cross-origin resource sharing (CORS) header to the response

The following example function adds an Access-Control-Allow-Origin HTTP header to the
response if the response doesn’t already contain this header. This header is part of cross-origin
resource sharing (CORS). The header’s value (*) tells web browsers to allow code from any origin to
access this resource. For more information, see Access-Control-Allow-Origin on the MDN Web Docs
website.

This is a viewer response function.

See this example on GitHub.

JavaScript runtime 2.0

async function handler(event) {
 const request = event.request;
 const response = event.response;

 // If Access-Control-Allow-Origin CORS header is missing, add it.
 // Since JavaScript doesn't allow for hyphens in variable names, we use the
 dict["key"] notation.

Writing function code 620

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Origin
https://github.com/aws-samples/amazon-cloudfront-functions/tree/main/add-cors-header

Amazon CloudFront Developer Guide

 if (!response.headers['access-control-allow-origin'] &&
 request.headers['origin']) {
 response.headers['access-control-allow-origin'] = {value:
 request.headers['origin'].value};
 console.log("Access-Control-Allow-Origin was missing, adding it now.");
 }

 return response;
}

JavaScript runtime 1.0

function handler(event) {
 var response = event.response;
 var headers = response.headers;

 // If Access-Control-Allow-Origin CORS header is missing, add it.
 // Since JavaScript doesn't allow for hyphens in variable names, we use the
 dict["key"] notation.
 if (!headers['access-control-allow-origin']) {
 headers['access-control-allow-origin'] = {value: "*"};
 console.log("Access-Control-Allow-Origin was missing, adding it now.");
 }

 return response;
}

Add cross-origin resource sharing (CORS) header to the request

The following example function adds an Origin HTTP header to the request if the request doesn’t
already contain this header. This header is part of cross-origin resource sharing (CORS). This
example sets the header’s value to the value in the request’s Host header. For more information,
see Origin on the MDN Web Docs website.

This is a viewer request function.

See this example on GitHub.

JavaScript runtime 2.0

async function handler(event) {

Writing function code 621

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Origin
https://github.com/aws-samples/amazon-cloudfront-functions/tree/main/add-origin-header

Amazon CloudFront Developer Guide

 const request = event.request;
 const headers = request.headers;
 const host = request.headers.host.value;

 // If origin header is missing, set it equal to the host header.
 if (!headers.origin)
 headers.origin = {value:`https://${host}`};

 return request;
}

JavaScript runtime 1.0

function handler(event) {
 var request = event.request;
 var headers = request.headers;
 var host = request.headers.host.value;

 // If origin header is missing, set it equal to the host header.
 if (!headers.origin)
 headers.origin = {value:`https://${host}`};

 return request;
}

Add security headers to the response

The following example function adds several common security-related HTTP headers to the
response. For more information, see the following pages on the MDN Web Docs website:

• Strict-Transport-Security

• Content-Security-Policy

• X-Content-Type-Options

• X-Frame-Options

• X-XSS-Protection

This is a viewer response function.

See this example on GitHub.

Writing function code 622

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
https://github.com/aws-samples/amazon-cloudfront-functions/tree/main/add-security-headers

Amazon CloudFront Developer Guide

JavaScript runtime 2.0

async function handler(event) {
 const response = event.response;
 const headers = response.headers;

 // Set HTTP security headers
 // Since JavaScript doesn't allow for hyphens in variable names, we use the
 dict["key"] notation
 headers['strict-transport-security'] = { value: 'max-age=63072000;
 includeSubdomains; preload'};
 headers['content-security-policy'] = { value: "default-src 'none'; img-src
 'self'; script-src 'self'; style-src 'self'; object-src 'none'; frame-ancestors
 'none'"};
 headers['x-content-type-options'] = { value: 'nosniff'};
 headers['x-frame-options'] = {value: 'DENY'};
 headers['x-xss-protection'] = {value: '1; mode=block'};
 headers['referrer-policy'] = {value: 'same-origin'};

 // Return the response to viewers
 return response;
}

JavaScript runtime 1.0

function handler(event) {
 var response = event.response;
 var headers = response.headers;

 // Set HTTP security headers
 // Since JavaScript doesn't allow for hyphens in variable names, we use the
 dict["key"] notation
 headers['strict-transport-security'] = { value: 'max-age=63072000;
 includeSubdomains; preload'};
 headers['content-security-policy'] = { value: "default-src 'none'; img-src
 'self'; script-src 'self'; style-src 'self'; object-src 'none'"};
 headers['x-content-type-options'] = { value: 'nosniff'};
 headers['x-frame-options'] = {value: 'DENY'};
 headers['x-xss-protection'] = {value: '1; mode=block'};

 // Return the response to viewers
 return response;
}

Writing function code 623

Amazon CloudFront Developer Guide

Add a True-Client-IP header to the request

The following example function adds a True-Client-IP HTTP header to the request, with the
IP address of the viewer as the header’s value. When CloudFront sends a request to an origin, the
origin can determine the IP address of the CloudFront host that sent the request but not the IP
address of the viewer (client) that sent the original request to CloudFront. This function adds the
True-Client-IP header so the origin can see the IP address of the viewer.

Important

To make sure that CloudFront includes this header in origin requests, you must add it to the
allowed headers list in an origin request policy.

This is a viewer request function.

See this example on GitHub.

JavaScript runtime 2.0

async function handler(event) {
 var request = event.request;
 var clientIP = event.viewer.ip;

 //Add the true-client-ip header to the incoming request
 request.headers['true-client-ip'] = {value: clientIP};

 return request;
}

JavaScript runtime 1.0

function handler(event) {
 var request = event.request;
 var clientIP = event.viewer.ip;

 //Add the true-client-ip header to the incoming request
 request.headers['true-client-ip'] = {value: clientIP};

 return request;
}

Writing function code 624

https://github.com/aws-samples/amazon-cloudfront-functions/tree/main/add-true-client-ip-header

Amazon CloudFront Developer Guide

Redirect the viewer to a new URL

The following example function generates a response to redirect the viewer to a country-specific
URL when the request comes from within a particular country. This function relies on the value of
the CloudFront-Viewer-Country header to determine the viewer’s country.

Important

For this function to work, you must configure CloudFront to add the CloudFront-
Viewer-Country header to incoming requests by adding it to the allowed headers in a
cache policy or an origin request policy.

This example redirects the viewer to a Germany-specific URL when the viewer request comes from
Germany. If the viewer request doesn’t come from Germany, the function returns the original,
unmodified request.

This is a viewer request function.

See this example on GitHub.

JavaScript runtime 2.0

async function handler(event) {
 const request = event.request;
 const headers = request.headers;
 const host = request.headers.host.value;
 const country = Symbol.for('DE'); // Choose a country code
 const newurl = `https://${host}/de/index.html`; // Change the redirect URL to
 your choice

 if (headers['cloudfront-viewer-country']) {
 const countryCode = Symbol.for(headers['cloudfront-viewer-country'].value);
 if (countryCode === country) {
 const response = {
 statusCode: 302,
 statusDescription: 'Found',
 headers:
 { "location": { "value": newurl } }
 }

Writing function code 625

https://github.com/aws-samples/amazon-cloudfront-functions/tree/main/redirect-based-on-country

Amazon CloudFront Developer Guide

 return response;
 }
 }
 return request;
}

JavaScript runtime 1.0

function handler(event) {
 var request = event.request;
 var headers = request.headers;
 var host = request.headers.host.value;
 var country = 'DE' // Choose a country code
 var newurl = `https://${host}/de/index.html` // Change the redirect URL to your
 choice

 if (headers['cloudfront-viewer-country']) {
 var countryCode = headers['cloudfront-viewer-country'].value;
 if (countryCode === country) {
 var response = {
 statusCode: 302,
 statusDescription: 'Found',
 headers:
 { "location": { "value": newurl } }
 }

 return response;
 }
 }
 return request;
}

For more information about rewrites and redirects, see Handling rewrites and redirects using edge
functions in the AWS workshop studio.

Add index.html to request URLs that don’t include a file name

The following example function appends index.html to requests that don’t include a file name
or extension in the URL. This function can be useful for single page applications or statically
generated websites that are hosted in an Amazon S3 bucket.

This is a viewer request function.

Writing function code 626

https://catalog.us-east-1.prod.workshops.aws/workshops/814dcdac-c2ad-4386-98d5-27d37bb77766/en-US
https://catalog.us-east-1.prod.workshops.aws/workshops/814dcdac-c2ad-4386-98d5-27d37bb77766/en-US

Amazon CloudFront Developer Guide

See this example on GitHub.

JavaScript runtime 2.0

async function handler(event) {
 const request = event.request;
 const uri = request.uri;

 // Check whether the URI is missing a file name.
 if (uri.endsWith('/')) {
 request.uri += 'index.html';
 }
 // Check whether the URI is missing a file extension.
 else if (!uri.includes('.')) {
 request.uri += '/index.html';
 }

 return request;
}

JavaScript runtime 1.0

function handler(event) {
 var request = event.request;
 var uri = request.uri;

 // Check whether the URI is missing a file name.
 if (uri.endsWith('/')) {
 request.uri += 'index.html';
 }
 // Check whether the URI is missing a file extension.
 else if (!uri.includes('.')) {
 request.uri += '/index.html';
 }

 return request;
}

Validate a simple token in the request

The following example function validates a JSON web token (JWT) in the query string of a request.
If the token is valid, the function returns the original, unmodified request to CloudFront. If the

Writing function code 627

https://github.com/aws-samples/amazon-cloudfront-functions/tree/main/url-rewrite-single-page-apps
https://en.wikipedia.org/wiki/JSON_Web_Token

Amazon CloudFront Developer Guide

token is not valid, the function generates an error response. This function uses the crypto
module. For more information, see Built-in modules.

This function assumes that requests contain a JWT value in a query string parameter named jwt.

Warning

To use this function, you must put your secret key in the function code.

This is a viewer request function.

See this example on GitHub.

JavaScript runtime 2.0

const crypto = require('crypto');

//Response when JWT is not valid.
const response401 = {
 statusCode: 401,
 statusDescription: 'Unauthorized'
};

function jwt_decode(token, key, noVerify, algorithm) {
 // check token
 if (!token) {
 throw new Error('No token supplied');
 }
 // check segments
 const segments = token.split('.');
 if (segments.length !== 3) {
 throw new Error('Not enough or too many segments');
 }

 // All segment should be base64
 const headerSeg = segments[0];
 const payloadSeg = segments[1];
 const signatureSeg = segments[2];

 // base64 decode and parse JSON
 const header = JSON.parse(_base64urlDecode(headerSeg));
 const payload = JSON.parse(_base64urlDecode(payloadSeg));

Writing function code 628

https://github.com/aws-samples/amazon-cloudfront-functions/tree/main/verify-jwt

Amazon CloudFront Developer Guide

 if (!noVerify) {
 const signingMethod = 'sha256';
 const signingType = 'hmac';

 // Verify signature. `sign` will return base64 string.
 const signingInput = [headerSeg, payloadSeg].join('.');

 if (!_verify(signingInput, key, signingMethod, signingType, signatureSeg)) {
 throw new Error('Signature verification failed');
 }

 // Support for nbf and exp claims.
 // According to the RFC, they should be in seconds.
 if (payload.nbf && Date.now() < payload.nbf*1000) {
 throw new Error('Token not yet active');
 }

 if (payload.exp && Date.now() > payload.exp*1000) {
 throw new Error('Token expired');
 }
 }

 return payload;
}

//Function to ensure a constant time comparison to prevent
//timing side channels.
function _constantTimeEquals(a, b) {
 if (a.length != b.length) {
 return false;
 }

 var xor = 0;
 for (var i = 0; i < a.length; i++) {
 xor |= (a.charCodeAt(i) ^ b.charCodeAt(i));
 }

 return 0 === xor;
}

function _verify(input, key, method, type, signature) {
 if(type === "hmac") {
 return _constantTimeEquals(signature, _sign(input, key, method));

Writing function code 629

Amazon CloudFront Developer Guide

 }
 else {
 throw new Error('Algorithm type not recognized');
 }
}

function _sign(input, key, method) {
 return crypto.createHmac(method, key).update(input).digest('base64url');
}

function _base64urlDecode(str) {
 return Buffer.from(str, 'base64url')
}

function handler(event) {
 const request = event.request;
 //Secret key used to verify JWT token.
 //Update with your own key.
 var key = "LzdWGpAToQ1DqYuzHxE6YOqi7G3X2yvNBot9mCXfx5k";

 // If no JWT token, then generate HTTP redirect 401 response.
 if(!request.querystring.jwt) {
 console.log("Error: No JWT in the querystring");
 return response401;
 }

 const jwtToken = request.querystring.jwt.value;

 try{
 jwt_decode(jwtToken, key);
 }
 catch(e) {
 console.log(e);
 return response401;
 }

 //Remove the JWT from the query string if valid and return.
 delete request.querystring.jwt;
 console.log("Valid JWT token");
 return request;
}

Writing function code 630

Amazon CloudFront Developer Guide

JavaScript runtime 1.0

var crypto = require('crypto');

//Response when JWT is not valid.
var response401 = {
 statusCode: 401,
 statusDescription: 'Unauthorized'
};

function jwt_decode(token, key, noVerify, algorithm) {
 // check token
 if (!token) {
 throw new Error('No token supplied');
 }
 // check segments
 var segments = token.split('.');
 if (segments.length !== 3) {
 throw new Error('Not enough or too many segments');
 }

 // All segment should be base64
 var headerSeg = segments[0];
 var payloadSeg = segments[1];
 var signatureSeg = segments[2];

 // base64 decode and parse JSON
 var header = JSON.parse(_base64urlDecode(headerSeg));
 var payload = JSON.parse(_base64urlDecode(payloadSeg));

 if (!noVerify) {
 var signingMethod = 'sha256';
 var signingType = 'hmac';

 // Verify signature. `sign` will return base64 string.
 var signingInput = [headerSeg, payloadSeg].join('.');

 if (!_verify(signingInput, key, signingMethod, signingType, signatureSeg)) {
 throw new Error('Signature verification failed');
 }

 // Support for nbf and exp claims.
 // According to the RFC, they should be in seconds.
 if (payload.nbf && Date.now() < payload.nbf*1000) {

Writing function code 631

Amazon CloudFront Developer Guide

 throw new Error('Token not yet active');
 }

 if (payload.exp && Date.now() > payload.exp*1000) {
 throw new Error('Token expired');
 }
 }

 return payload;
}

function _verify(input, key, method, type, signature) {
 if(type === "hmac") {
 return (signature === _sign(input, key, method));
 }
 else {
 throw new Error('Algorithm type not recognized');
 }
}

function _sign(input, key, method) {
 return crypto.createHmac(method, key).update(input).digest('base64url');
}

function _base64urlDecode(str) {
 return String.bytesFrom(str, 'base64url')
}

function handler(event) {
 var request = event.request;

 //Secret key used to verify JWT token.
 //Update with your own key.
 var key = "LzdWGpAToQ1DqYuzHxE6YOqi7G3X2yvNBot9mCXfx5k";

 // If no JWT token, then generate HTTP redirect 401 response.
 if(!request.querystring.jwt) {
 console.log("Error: No JWT in the querystring");
 return response401;
 }

 var jwtToken = request.querystring.jwt.value;

 try{

Writing function code 632

Amazon CloudFront Developer Guide

 jwt_decode(jwtToken, key);
 }
 catch(e) {
 console.log(e);
 return response401;
 }

 //Remove the JWT from the query string if valid and return.
 delete request.querystring.jwt;
 console.log("Valid JWT token");
 return request;
}

Using async and await

Amazon CloudFront JavaScript runtime functions 2.0 provide async and await syntax to handle
Promise objects. Promises represent delayed results that can be accessed via the await keyword
in functions marked as async. Various new WebCrypto functions use Promises.

For more information about Promise objects, see Promise.

async function answer() {
 return 42;
}

// Note: async, await can be used only inside an async function.

async function handler(event) {
 // var answer_value = answer(); // returns Promise, not a 42 value
 let answer_value = await answer(); // resolves Promise, 42
 console.log("Answer"+answer_value);
 event.request.headers['answer'] = { value : ""+answer_value };
 return event.request;
}

The following example JavaScript code shows how to view promises with the then chain method.
You can use catch to view errors.

async function answer() {
 return 42;
}

Writing function code 633

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Amazon CloudFront Developer Guide

async function squared_answer() {
 // before, in NJS 0.4.3 we have to write as following
 // return answer().then(function(value) { return value * value; })

 // in NJS 0.7.11 we can simplify
 return answer().then(value => value * value)
}
// note async, await can be used only inside async function
async function handler(event) {
 // var answer_value = answer(); // returns Promise, not a 42 value
 let answer_value = await squared_answer(); // resolves Promise, 42
 console.log("Answer"+answer_value);
 event.request.headers['answer'] = { value : ""+answer_value };
 return event.request;
}

Note

async and await are only available when you use JavaScript runtime 2.0.

Normalize query string parameters

You can normalize query string parameters to improve the cache hit ratio.

The following example shows how to improve your cache hit ratio by putting the query strings in
alphabetical order before CloudFront forwards requests to your origin.

function handler(event) {
 var qs=[];
 for (var key in event.request.querystring) {
 if (event.request.querystring[key].multiValue) {
 event.request.querystring[key].multiValue.forEach((mv) => {qs.push(key +
 "=" + mv.value)});
 } else {
 qs.push(key + "=" + event.request.querystring[key].value);
 }
 };

 event.request.querystring = qs.sort().join('&');

Writing function code 634

Amazon CloudFront Developer Guide

 return event.request;
}

Use key value pairs in a function

You can use key value pairs from a key value store in a function.

The following example shows a function that uses the content of the URL in the HTTP request to
look up a custom path in the key value store. CloudFront then uses that custom path to make the
request. This function helps manage the multiple paths that are part of a website.

import cf from 'cloudfront';

// Declare the ID of the key value store that you have associated with this function
// The import fails at runtime if the specified key value store is not associated with
 the function

const kvsId = "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111";

const kvsHandle = cf.kvs(kvsId);

async function handler(event) {
 const request = event.request;
 // Use the first segment of the pathname as key
 // For example http(s)://domain/<key>/something/else
 const pathSegments = request.uri.split('/')
 const key = pathSegments[1]
 try {
 // Replace the first path of the pathname with the value of the key
 // For example http(s)://domain/<value>/something/else
 pathSegments[1] = await kvsHandle.get(key);
 const newUri = pathSegments.join('/');
 console.log(`${request.uri} -> ${newUri}`)
 request.uri = newUri;
 } catch (err) {
 // No change to the pathname if the key is not found
 console.log(`${request.uri} | ${err}`);
 }
 return request;
}

Writing function code 635

Amazon CloudFront Developer Guide

Managing functions in CloudFront Functions

With CloudFront Functions, you can write lightweight functions in JavaScript for high-scale,
latency-sensitive CDN customizations. After you write the function code, the following topics can
help you create the function in CloudFront Functions, test it, update it, publish it, and associate it
with a CloudFront distribution.

The full procedure for deploying a function is the following:

• Create the function. The function is initially created in with sample function code. This code is
valid, even in the live stage. The function exists in the Development stage.

• Test, update, associate. When the function is in the Development stage, you can test the
function, and update it (including associating a key value store with it).

• Publish. When you're ready to use your function with a CloudFront distribution, you publish the
function, which copies it from the DEVELOPMENT stage to LIVE.

• Associate with a distribution. When the function is in the LIVE stage, you can associate the
function with a distribution's cache behavior.

Topics

• Creating functions

• Testing functions

• Updating functions

• Publishing functions

• Associating functions with distributions

Creating functions

You create a function in two stages. First you create the function code as Java Script, outside of
CloudFront. Then you use CloudFront to create the function and include the code. The code exists
inside the function (not as a reference).

The new function is added to the DEVELOPMENT stage. You must publish the function to copy it
over to the LIVE stage (Published in the console).

Managing functions 636

Amazon CloudFront Developer Guide

Console

To create a function (console)

1. Sign in to the AWS Management Console and open the Functions page in the CloudFront
console at https://console.aws.amazon.com/cloudfront/v4/home#/functions.

2. Choose Create function.

3. Enter a function name that is unique within the AWS account, then choose the Java Script
version, and then choose Continue. The function now exists. The details page for the new
function appears.

Note

If you want to use key value pairs in the function, you must choose Java Script 2.0.

4. In the Function code section, select the Build tab and enter your function code. The
sample code that is included in the Build tab illustrates the basic syntax for the function
code. You can complete the code as follows:

• Use the default function just so you can get started.

• Replace it with code that you copy from example code on GitHub.

• Replace it with your own code.

For more information about writing function code, see the following:

• Writing function code

• the section called “Event structure”

5. Choose Save changes as often as you want, to save the function code.

6. If the function code uses key value pairs, you must associate a key value store.

You can associate the key value store during the initial creation of the function. Or you can
associate it later, by updating the function.

To associate a key value store now, follow these steps:

• Go to the Associate KeyValueStore section and choose Associate existing
KeyValueStore.

Managing functions 637

https://console.aws.amazon.com/cloudfront/v4/home#/functions
https://github.com/aws-samples/amazon-cloudfront-functions

Amazon CloudFront Developer Guide

• Select the key value store that contains the key value pairs in the function, then choose
Associate KeyValueStore.

CloudFront immediately associates the store with the function. You don't need to save the
function.

CLI

If you use the CLI, you typically first create the function code in a file, and then create the
function with the AWS CLI.

1. Create the function code in a file, and store it in a directory that your computer can connect
to. For more information about writing function code, see the following:

• Writing function code

• the section called “Event structure”

2. Run the command as shown in the example. This example uses the fileb:// notation to pass
in the file. It also includes line breaks to make the command more readable.

aws cloudfront create-function \
 --name MaxAge \
 --function-config '{"Comment":"Max Age 2 years","Runtime":"cloudfront-
js-2.0","KeyValueStoreAssociations":{"Quantity":1,"Items":
[{"KeyValueStoreARN":"arn:aws:cloudfront::111122223333:key-value-store/
a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"}]}}' \
 --function-code fileb://function-max-age-v1.js

Notes:

• Runtime: The version of Java Script. If you want to use key value pairs in the function, you
must specify version 2.0.

• KeyValueStoreAssociations: If your function uses key value pairs, you can associate the
key value store during the initial creation of the function. Or you can associate it later, by
using update-function. The Quantity is always 1 because each function can have only
one key value store associated with it.

When the command is successful, you see output like the following.

Managing functions 638

Amazon CloudFront Developer Guide

ETag: ETVABCEXAMPLE
FunctionSummary:
 FunctionConfig:
 Comment: Max Age 2 years
 Runtime: cloudfront-js-2.0
 KeyValueStoreAssociations= \
 {Quantity=1, \
 Items=[{KeyValueStoreARN='arn:aws:cloudfront::111122223333:key-value-store/
a1b2c3d4-5678-90ab-cdef-EXAMPLE11111'}]} \
 FunctionMetadata:
 CreatedTime: '2021-04-18T20:38:56.915000+00:00'
 FunctionARN: arn:aws:cloudfront::111122223333:function/MaxAge
 LastModifiedTime: '2023-11-19T20:38:56.915000+00:00'
 Stage: DEVELOPMENT
 Name: MaxAge
 Status: UNPUBLISHED
Location: https://cloudfront.amazonaws.com/2020-05-31/function/
arn:aws:cloudfront:::function/MaxAge

Most of the information is repeated from the request. Other information is added by
CloudFront.

Notes

• ETag: This value changes each time you modify the key value store. You use this value
and the function name to reference the function in the future. Make sure that you
always use the current ETag.

• FunctionARN

• Stage

• 111122223333

• Status

Testing functions

You can test a CloudFront Function to make sure that it works as intended before you deploy
the function to the live stage (production). To test a function, you provide an event object that

Managing functions 639

Amazon CloudFront Developer Guide

represents an HTTP request or response that your CloudFront distribution could receive in
production. CloudFront Functions does the following:

1. Runs the function, using the provided event object as input.

2. Returns the function's result (the modified event object) along with any function logs or
error messages and the function's compute utilization. For more information about compute
utilization, see the section called “Understanding compute utilization”.

Topics

• Set up the event object

• Test the function

• Understanding compute utilization

Set up the event object

Before you test a function, you must set up the event object to test it with. There are several
options.

Option 1: Set up an event object without saving it

You can set up an event object in the visual editor in the CloudFront console and not save it.

You can use this event object to test the function from the CloudFront console, even though it's
not saved.

Option 2: Create an event object in the visual editor

You can set up an event object in the visual editor in the CloudFront console and not save it.
You can create 10 event objects for each function so that you can, for example, test different
possible inputs.

When you create the event object in this way, you can use the event object to test the function
in the CloudFront console. You can't use it to test the function using an AWS API or SDK.

Option 3: Create an event object using a text editor

You can use a text editor to create an event object in JSON format. For information about the
structure of an event object, see Event structure.

Managing functions 640

Amazon CloudFront Developer Guide

You can use this event object to test the function using the CLI. But you can't use it to test the
function in the CloudFront console.

To create using option 1 or 2

1. Display the Functions page in the CloudFront console and choose the function that you want
to test.

2. On the function details page, choose the Test tab. The Test function section appears with
buttons that include Edit JSON and Test function.

3. Complete Event type:

• Choose Viewer request if the function modifies an HTTP request or generates a response
based on the request. The Request section, which is already displayed applies to this type.

• Or choose Viewer response. The Request section, which is already displayed, applies to this
type. In addition, the Response section appears.

4. Complete all the fields that you want to include in the event. As you work, you can choose Edit
JSON to view the raw JSON.

5. Save the event, if you want to.

You can also choose Edit JSON and copy the raw JSON, and save it in your own file, outside of
CloudFront.

To create using option 3

Create the event object using a text editor. Store the file in a directory that your computer can
connect to.

Makes sure that you follow these guidelines:

• Omit the distributionDomainName, distributionId, and requestId fields.

• Make sure that the names of headers, cookies, and query strings are lowercase.

One option for creating an event object in this way is to create a sample using the visual editor. You
can be sure that the sample is correctly formatted. You can then copy the raw JSON and paste it
into a text editor and save the file.

For detailed information about the structure of an event, see Event structure.

Managing functions 641

Amazon CloudFront Developer Guide

Test the function

You can test a function in the CloudFront console or with the AWS CLI.

Console

In the CloudFront console, you can test a function that you have created using the console.

To test the function

1. Display the Functions page in the CloudFront console and choose the function that you
want to test.

2. On the function page, choose the Test tab. The Test function section appears with buttons
that include Edit JSON and Test function.

3. Make sure that the correct event is displayed.

If you want to switch from the currently displayed event, choose another event in the
Select test event field.

4. Choose the Test function button. The console shows the output of the function, including
function logs. It also shows the compute utilization. For more information, see the section
called “Understanding compute utilization”.

CLI

You can test a function using the aws cloudfront test-function command.

1. Run the command as shown in the example. Run the command from the same directory that
contains this file.

This example uses the fileb:// notation to pass in the event object file. It also includes line
breaks to make the command more readable.

aws cloudfront test-function \
 --name MaxAge \
 --if-match ETVABCEXAMPLE \
 --event-object fileb://event-maxage-test01.json \
 --stage DEVELOPMENT

Notes:

Managing functions 642

Amazon CloudFront Developer Guide

• You reference the function by its name and ETag (in the if-match parameter). You reference
the event object by its location in your file system.

• The stage can be DEVELOPMENT or LIVE.

When the command is successful, you see output like the following.

TestResult:
 ComputeUtilization: '21'
 FunctionErrorMessage: ''
 FunctionExecutionLogs: []
 FunctionOutput: '{"response":{"headers":{"cloudfront-functions":
{"value":"generated-by-CloudFront-Functions"},"location":{"value":"https://
aws.amazon.com/cloudfront/"}},"statusDescription":"Found","cookies":
{},"statusCode":302}}'
 FunctionSummary:
 FunctionConfig:
 Comment: MaxAge function
 Runtime: cloudfront-js-2.0
 KeyValueStoreAssociations= \
 {Quantity=1, \
 Items=[{KeyValueStoreARN='arn:aws:cloudfront::111122223333:key-value-store/
a1b2c3d4-5678-90ab-cdef-EXAMPLE11111'}]} \
 FunctionMetadata:
 CreatedTime: '2021-04-18T20:38:56.915000+00:00'
 FunctionARN: arn:aws:cloudfront::111122223333:function/MaxAge
 LastModifiedTime: '2023-17-20T10:38:57.057000+00:00'
 Stage: DEVELOPMENT
 Name: MaxAge
 Status: UNPUBLISHED

Notes

• FunctionExecutionLogs contains a list of log lines that the function wrote in
console.log() statements (if any).

• ComputeUtilization. See the section called “Understanding compute utilization”.

• FunctionOutput contains the event object that the function returned.

Managing functions 643

Amazon CloudFront Developer Guide

Understanding compute utilization

Compute utilization is the amount of time that the function took to run as a percentage of the
maximum allowed time. For example, a value of 35 means that the function completed in 35% of
the maximum allowed time.

If a function continuously exceeds the maximum allowed time, CloudFront throttles the function.
The following list explains the likelihood of a function getting throttled based on the compute
utilization value.

Compute utilization value:

• 1 – 50 – The function is comfortably below the maximum allowed time and should run without
throttling.

• 51 – 70 – The function is nearing the maximum allowed time. Consider optimizing the function
code.

• 71 – 100 – The function is very close to or exceeds the maximum allowed time. CloudFront is
likely to throttle this function if you associate it with a distribution.

Updating functions

You can update a function at any time. The changes are made only to the version of the function
that is in the DEVELOPMENT stage. You must publish the function to copy the changes from the
DEVELOPMENT stage to LIVE.

You can update a function's code in the CloudFront console or with the AWS CLI.

Console

To update function code (console)

1. Open the Functions page in the CloudFront console at https://console.aws.amazon.com/
cloudfront/v4/home#/functions, and then choose the function that you want to update.

2. Make changes:

• You can choose the Edit button and make change the fields in the Details section.

Managing functions 644

https://console.aws.amazon.com/cloudfront/v4/home#/functions
https://console.aws.amazon.com/cloudfront/v4/home#/functions

Amazon CloudFront Developer Guide

• You can change or remove the associated key value store. Choose the appropriate
button. For more information about key value stores, see the section called “Using
CloudFront KeyValueStore”.

• You can change the function code. Choose the Build tab, make changes, then choose
Save changes to save only the changes to the code.

CLI

To update function code (CLI)

Run the command as shown in the example.

This example uses the fileb:// notation to pass in the file. It also includes line breaks to make
the command more readable.

aws cloudfront update-function \
 --name MaxAge \
 --function-config '{"Comment":"Max Age 2 years","Runtime":"cloudfront-
js-2.0","KeyValueStoreAssociations":{"Quantity":1,"Items":
[{"KeyValueStoreARN":"arn:aws:cloudfront::111122223333:key-value-store/
a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"}]}}' \
 --function-code fileb://function-max-age-v1.js \
 --if-match ETVABCEXAMPLE

Notes:

• You identify the function by both its name and its ETag (in the if-match parameter). Make
sure that you use the current ETag. You can obtain it using a describe operation.

• You must include the function-code, even if you don't want to change it.

• Be careful with the function-config. You should pass everything that you want to keep in
the configuration. Specifically, handle the key value store as follows:

• If you want to retain the existing key value store association (if there is one), specify the
name of the existing store.

• If you want to change the association, specify the name of the new key value store.

• If you want to remove the association, omit the KeyValueStoreAssociations
parameter.

Managing functions 645

Amazon CloudFront Developer Guide

When the command is successful, you see output like the following.

ETag: ETVXYZEXAMPLE
FunctionSummary:
 FunctionConfig:
 Comment: Max Age 2 years \
 Runtime: cloudfront-js-2.0 \
 KeyValueStoreAssociations= \
 {Quantity=1, \
 Items=[{KeyValueStoreARN='arn:aws:cloudfront::111122223333:key-value-store/
a1b2c3d4-5678-90ab-cdef-EXAMPLE11111'}]} \
 FunctionMetadata: \
 CreatedTime: '2021-04-18T20:38:56.915000+00:00' \
 FunctionARN: arn:aws:cloudfront::111122223333:function/MaxAge \
 LastModifiedTime: '2023-12-19T23:41:15.389000+00:00' \
 Stage: DEVELOPMENT \
 Name: MaxAge \
 Status: UNPUBLISHED

Most of the information is repeated from the request. Other information is added by CloudFront.
Note the following:

• ETag: This value changes each time you modify the key value store.

• FunctionARN

• Stage

• Status

Publishing functions

Publishing a function copies it from the DEVELOPMENT stage to LIVE.

Important

When you publish a function, all cache behaviors that are associated with the function
automatically start using the newly published copy, as soon as the distributions finish
deploying.

Managing functions 646

Amazon CloudFront Developer Guide

If no cache behaviors are associated with the function, publishing it enables you to associate it with
a cache behavior. You can only associate cache behaviors with functions that are in the LIVE stage.

You can publish a function in the CloudFront console or with the AWS CLI.

Before you publish, you must test the function.

Console

To publish your function, you can use the CloudFront console. The console also shows the
CloudFront distributions that are associated with the function.

To publish a function (console)

1. To publish a function, open the Functions page in the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home#/functions, and then choose the function
that you want to publish.

2. On the function page, choose the Publish tab. Then choose the Publish button (or, if your
function is already attached to one or more cache behaviors, the Publish and update
button).

3. (Optional) To see the distributions that are associated with the function, choose Associated
CloudFront distributions to expand that section.

When successful, you see a banner at the top of the page that says Function name published
successfully. You can also choose the Build tab and then choose Live to see the live version of
the function code.

CLI

To publish a function, run the aws cloudfront publish-function command as shown in the
example. In the example, line breaks are provided to make the example more readable.

aws cloudfront publish-function \
 --name MaxAge \
 --if-match ETVXYZEXAMPLE

When the command is successful, you see output like the following.

FunctionSummary:

Managing functions 647

https://console.aws.amazon.com/cloudfront/v4/home#/functions
https://console.aws.amazon.com/cloudfront/v4/home#/functions

Amazon CloudFront Developer Guide

 FunctionConfig:
 Comment: Max Age 2 years
 Runtime: cloudfront-js-2.0
 FunctionMetadata:
 CreatedTime: '2021-04-18T21:24:21.314000+00:00'
 FunctionARN: arn:aws:cloudfront::111122223333:function/ExampleFunction
 LastModifiedTime: '2023-12-19T23:41:15.389000+00:00'
 Stage: LIVE
 Name: MaxAge
 Status: UNASSOCIATED

Associating functions with distributions

To use a function in CloudFront Functions with a CloudFront distribution, you associate the
function with one or more cache behaviors in the distribution. You can associate a function with
multiple cache behaviors in multiple distributions. Before you associate a function, you must
publish it to the LIVE stage.

When you associate a function with a cache behavior, you must choose an event type. The event
type determines when CloudFront Functions runs the function. There are two event types to
choose from:

For more information about event types, see CloudFront events that can trigger a Lambda@Edge
function. You cannot use origin-facing event types (origin request and origin response) with
CloudFront Functions.

• Viewer request – The function runs when CloudFront receives a request from a viewer.

• Viewer response – The function runs before CloudFront returns a response to the viewer.

You can associate a function with a distribution in the CloudFront console or with the AWS CLI.

Console

You can use the CloudFront console to associate a function with an existing cache behavior in
an existing CloudFront distribution. For more information about creating a distribution, see the
section called “Creating a distribution”.

Managing functions 648

Amazon CloudFront Developer Guide

To associate a function with an existing cache behavior (console)

1. Open the Functions page in the CloudFront console at https://console.aws.amazon.com/
cloudfront/v4/home#/functions, and then choose the name of the function that you want
to associate.

2. On the function page, choose the Publish tab.

3. Choose Publish function.

4. Choose Add association. On the dialog that appears, select a distribution, an event type,
and/or a cache behavior.

For the event type, choose when you want this function to run:

• To run the function every time CloudFront receives a request, choose Viewer Request.

• To run the function every time CloudFront returns a response, choose Viewer Response.

To save the configuration, choose Add association.

CloudFront associates the distribution with the function. Wait a few minutes for the associated
distribution to finish deploying. You can choose View distribution on the function details page
to check the progress.

CLI

You can associate a function with any of the following:

• An existing cache behavior.

• A new cache behavior in an existing distribution.

• A new cache behavior in a new distribution.

The following procedure shows how to associate a function with an existing cache behavior.

To associate a function with an existing cache behavior (AWS CLI)

1. Use the following command to save the distribution configuration for the distribution
whose cache behavior you want to associate with a function. This command saves the
distribution configuration to a file named dist-config.yaml. To use this command, do
the following:

Managing functions 649

https://console.aws.amazon.com/cloudfront/v4/home#/functions
https://console.aws.amazon.com/cloudfront/v4/home#/functions

Amazon CloudFront Developer Guide

• Replace DistributionID with the distribution's ID.

• Run the command on one line. In the example, line breaks are provided to make the
example more readable.

aws cloudfront get-distribution-config \
 --id DistributionID \
 --output yaml > dist-config.yaml

When the command is successful, the AWS CLI returns no output.

2. Open the file named dist-config.yaml that you just created. Edit the file to make the
following changes.

a. Rename the ETag field to IfMatch, but don't change the field's value.

b. In the cache behavior, find the object named FunctionAssociations. Update this
object to add a function association. The YAML syntax for a function association looks
like the following example.

• The following example shows a viewer request event type (trigger). To use a viewer
response event type, replace viewer-request with viewer-response.

• Replace arn:aws:cloudfront::111122223333:function/ExampleFunction
with the Amazon Resource Name (ARN) of the function that you're associating with
this cache behavior. To get the function ARN, you can use the aws cloudfront list-
functions command.

FunctionAssociations:
 Items:
 - EventType: viewer-request
 FunctionARN: arn:aws:cloudfront::111122223333:function/ExampleFunction
 Quantity: 1

After making these changes, save the file.

3. Use the following command to update the distribution, adding the function association. To
use this command, do the following:

• Replace DistributionID with the distribution's ID.

Managing functions 650

Amazon CloudFront Developer Guide

• Run the command on one line. In the example, line breaks are provided to make the
example more readable.

aws cloudfront update-distribution \
 --id DistributionID \
 --cli-input-yaml file://dist-config.yaml

When the command is successful, you see output like the following that describes the
distribution that was just updated with the function association. The following example
output is truncated for readability.

Distribution:
 ARN: arn:aws:cloudfront::111122223333:distribution/EBEDLT3BGRBBW
 ... truncated ...
 DistributionConfig:
 ... truncated ...
 DefaultCacheBehavior:
 ... truncated ...
 FunctionAssociations:
 Items:
 - EventType: viewer-request
 FunctionARN: arn:aws:cloudfront::111122223333:function/ExampleFunction
 Quantity: 1
 ... truncated ...
 DomainName: d111111abcdef8.cloudfront.net
 Id: EDFDVBD6EXAMPLE
 LastModifiedTime: '2021-04-19T22:39:09.158000+00:00'
 Status: InProgress
ETag: E2VJGGQEG1JT8S

Effect of associating a distribution

The distribution's Status changes to InProgress while the distribution is redeployed. As soon as
the new distribution configuration reaches a CloudFront edge location, that edge location begins
using the associated function. When the distribution is fully deployed, the Status changes back to
Deployed, which indicates that the associated CloudFront function is live in all CloudFront edge
locations worldwide. This typically takes a few minutes.

Managing functions 651

Amazon CloudFront Developer Guide

Amazon CloudFront KeyValueStore

CloudFront KeyValueStore is a secure, global, low-latency key value datastore that allows read
access from within CloudFront Functions, enabling advanced customizable logic at the CloudFront
edge locations.

With CloudFront KeyValueStore, you make updates to function code and updates to the data
associated with a function independently of each other. This separation simplifies function code
and makes it easy to update data without the need to deploy code changes.

The general procedure for using key-value pairs is as follows:

• Create key value stores, and populate it with a set of key-value pairs. You can add your key value
stores to an Amazon S3 bucket or enter them manually.

• Associate the key value stores with your CloudFront function.

• Within your function code, use the name of the key to either retrieve the value associated
with the key or to evaluate if a key exists. For more information about using key-value pairs
in function code, and for information about helper methods, see the section called “Helper
methods for key value stores”.

Use cases

Typical use cases for key-value pairs are the following:

• URL rewrites or redirects. The key-value pair could hold the rewritten URLs or the redirect URLs.

• A/B testing and feature flags. You could create a function to run experiments by assigning a
percentage of traffic to a specific version of your website.

• Access authorization. You could implement access control to allow or deny requests based on
criteria defined by you and the data stored in a key value store.

Supported formats for values

The value in a key-value pair can be stored in any of the following formats:

• A string

• A byte-encoded string

• JSON

Using CloudFront KeyValueStore 652

Amazon CloudFront Developer Guide

Security

The CloudFront function and all its key value stores data are handled securely, as follows:

• CloudFront encrypts each key value stores at rest and during transit (when reading or writing to
the key value stores) when you call the CloudFront KeyValueStore API operations.

• When the function is run, CloudFront decrypts each key-value pair in memory at the CloudFront
edge locations.

To get started with CloudFront KeyValueStore, see the following topics. You can use the CloudFront
console, the CloudFront API, or a supported AWS SDK.

Topics

• Working with key value store

• Working with key value data

For more information about getting started with CloudFront KeyValueStore, see the Introducing
Amazon CloudFront KeyValueStore AWS blog post.

Working with key value store

You must create a key value store to hold the key-value pairs that you want to use in CloudFront
Functions.

You can work with a key-value pair in a key value store in the following ways:

• Using the CloudFront console.

• Using your preferred CloudFront API or SDK.

After you have created the key value stores and added key-value pairs, you can use the key values
in your CloudFront function code. The JavaScript runtime 2.0 includes some helper methods for
working with key values in the function code. For more information, see the section called “Helper
methods for key value stores”.

Topics

• Creating key value stores

• Associating a key value store with a function

Using CloudFront KeyValueStore 653

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_Operations_Amazon_CloudFront_KeyValueStore.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_kvs_PutKeyRequestListItem.html#API_kvs_PutKeyRequestListItem_SeeAlso
https://aws.amazon.com/blogs/aws/introducing-amazon-cloudfront-keyvaluestore-a-low-latency-datastore-for-cloudfront-functions/
https://aws.amazon.com/blogs/aws/introducing-amazon-cloudfront-keyvaluestore-a-low-latency-datastore-for-cloudfront-functions/

Amazon CloudFront Developer Guide

• Modifying a key value stores

• Deleting a key value store

• Obtaining a reference to a key value store

• Creating a file of key-value pairs

Creating key value stores

You can create an empty key value stores then add key-value pairs later. Or you can create a key
value stores and its key-value pairs at the same time.

Note

If you specify your data source from an Amazon S3 bucket, you must have the
s3:GetObject and s3:GetBucketLocation permissions to that bucket. If you don't
have these permissions, CloudFront can't successfully create your key value store.

Console

To create key value stores (console)

1. Decide if you want to add key-value pairs at the same time as you create the key value
stores. (You can also add key-value pairs later.) This import feature is supported on both
the CloudFront console and with CloudFront APIs and SDKs. But it is supported only when
you initially create the key value stores.

If you want to use a file, create it now.

2. Sign in to the AWS Management Console and open the Functions page in the CloudFront
console at https://console.aws.amazon.com/cloudfront/v4/home#/functions.

3. Choose the KeyValueStores tab. Choose Create KeyValueStore.

4. Enter a name and optional description for the key value stores.

5. Complete S3 URI:

• If you prepared a file of key-value pairs, enter the path to the Amazon S3 bucket where
you stored the file.

• Leave this field blank if you plan to enter the key value pairs manually.

Using CloudFront KeyValueStore 654

https://console.aws.amazon.com/cloudfront/v4/home#/functions

Amazon CloudFront Developer Guide

6. Choose Create. The key value store now exists.

The details page for the new key value stores appears. The information on the page
includes the ID and the ARN of the key value store.

• The ID is a random string of characters that is unique in your AWS account.

• The ARN has this syntax:

AWS account:key-value-store/the key value stores ID

7. Look at the Key value pairs section. If you imported a file, this section shows some pairs.
Otherwise it is empty. You can do the following:

• If you didn't import a file from an Amazon S3 bucket, and if you want to add key-value
pairs now, you can complete this section.

• If you did import a file, you can also add more values manually.

• You can leave this section empty, and add the pairs later, by editing the key value stores.

To add the pairs now:

• Choose the Add key-value pairs button.

• Choose Add pair and enter a name and value.

• Choose the Add pair button again, to add more pairs.

When you have finished, choose Save changes to save all the pairs in the key value store.
On the confirmation dialog that appears, choose Done.

8. Complete the Associated functions section if you want to associate the key value stores
with a function now. You can also create this association later, either from this key value
stores details page, or from the functions details page.

To create the association now, choose the Go to functions button. For more information,
see ??? or ???.

Programmatically

1. Decide if you want to add key-value pairs at the same time as you create the key value
stores. (You can also add key-value pair later.) This import feature is supported on both the

Using CloudFront KeyValueStore 655

Amazon CloudFront Developer Guide

CloudFront console and with CloudFront APIs and SDKs. But it is supported only when you
initially create the key value stores.

If you want to use a file, create it now.

2. Use the create operation of your preferred CloudFront API or SDK. For example, for the REST
API, use CloudFront.CreateKeyValueStore. The operation takes several parameters:

• A name.

• A configuration parameter that includes a comment.

• An import-source parameter that lets you import key-value pairs from a file that
is stored in an Amazon S3 bucket. Note that you can import from a file only on initial
creation of the key value stores. For information about the format of the file, see the
section called “Creating a file of key-value pairs”.

The operation response includes the following information:

• The values passed in the request, including the name that you assigned.

• Data such as the creation time.

• An ETag (for example, ETVABCEXAMPLE2), the ARN that includes the name of the key
value stores (for example, arn:aws:cloudfront::111122223333:key-value-store/
MaxAge).

You will use some combination of the ETag, the ARN, and the name to work with the key
value stores programmatically.

Key value store statuses

When you create a key value store, the data store can have the following status values.

Value Description

Provisioning The key value store was created and CloudFront is processing the data
source that you specified.

Ready The key value store was created and CloudFront successfully processed the
data source that you specified.

Using CloudFront KeyValueStore 656

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateKeyValueStore.html

Amazon CloudFront Developer Guide

Value Description

Import failed CloudFront wasn't able to process the data source that you specified. This
status can appear if your file format isn't valid or that it exceeds the size
limit. For more information, see Creating a file of key-value pairs.

Associating a key value store with a function

You associate a key value store with a function by working in the function. You must make this
association in order to use the key-value pairs from that store in that function. The following rules
apply:

• One function can have one key value store.

• One key value store can be associated with multiple functions.

You can work with the association in the following ways.

• You can create an association between a function and a key value store:

• On the CloudFront console, view the key value stores details page and choose the Go to
functions button. The appropriate page appears — the Functions list (if there is currently no
associated function) or the function details page (if there is currently an association). For more
information, see the section called “Associating a key value store with a function”.

• Programmatically, use the function update operation of your preferred CloudFront API or SDK.

After you create the association (or if you change the association), you should test the function,
and you must republish the function.

• If you modify a key value stores without changing the key-value pairs, you don't need to renew
the association (which means that you don't need to publish again). But you should test the
function.

• If you change the key-value pairs in the key value stores, you don't need to renew the association
(which means that you don't need to publish again). But you should test the function to verify
that it works with the changes to the key-value pairs.

• You can view all the functions that use a specific key value stores. On the CloudFront console,
look at the key value stores details page.

Using CloudFront KeyValueStore 657

Amazon CloudFront Developer Guide

Modifying a key value stores

You can work with the key-value pairs, and you can change the association between the key value
stores and the function.

Using the CloudFront console

To modify a key value store by using the console

1. Sign in to the AWS Management Console and open the Functions page in the CloudFront
console at https://console.aws.amazon.com/cloudfront/v4/home#/functions.

2. Choose the KeyValueStores tab. Select the key value store that you want to change. The details
page appears.

• To work with the key-value pairs, choose the Edit button in the Key value pairs section. You
can add more key-value pairs, you can delete any key-value pair, and you can change the value
for an existing key-value pair. When you have finished, choose Save changes.

• To work with the association for this key value stores, choose the Go to functions button. The
appropriate page appears — the Functions list (if there is currently no associated function) or
the function details page (if there is currently an association). For more information, see the
section called “Associating a key value store with a function”.

Modifying a store programmatically

You can work with the key value stores in the following ways.

Change the key-value pairs

You can add more key-value pairs, you can delete one or more key-value pairs, and you can change
the value of an existing key-value pair. For more information, see the section called “Working
programmatically”.

Change the function association for the key value stores

To work with the association for this key value stores, see the section called “Updating functions”.
You will need the ARN of the key value stores. For more information, see the section called
“Obtaining a reference to a key value store”.

Deleting a key value store

You can delete your key value store by using the CloudFront console or API.

Using CloudFront KeyValueStore 658

https://console.aws.amazon.com/cloudfront/v4/home#/functions

Amazon CloudFront Developer Guide

To delete a key value store by using the console

1. Sign in to the AWS Management Console and open the Functions page in the CloudFront
console at https://console.aws.amazon.com/cloudfront/v4/home#/functions.

2. Verify if the key value stores is associated with a function. If it is, remove the association. For
more information on both these steps, see ???

3. Choose the KeyValueStores tab. Select the key value store that you want to change and then
choose Delete.

To delete a key value store programatically

1. Obtain the ETag and the name of the key value stores. For more information, see the section
called “Obtaining a reference to a key value store”.

2. Verify if the key value stores is associated with a function. If it is, remove the association. For
more information on both these steps, see ???.

3. To delete the key value stores, use the delete operation of your preferred CloudFront API or
SDK. For example, for the REST API, use CloudFront.DeleteKeyValueStore.

Obtaining a reference to a key value store

To work with the key value stores programmatically, you need the ETag and the name of the key
value store. To obtain this data, follow these steps:

1. Use the list operation of your preferred CloudFront API or SDK. For example, for the REST API,
use CloudFront.ListKeyValueStores. The response includes a list of key value stores. Find the
name of the key value store you want to change.

2. Use the describe operation of your preferred CloudFront API or SDK. For example, for the REST
API, use CloudFront.DescribeKeyValueStore. Pass in the name you obtained.

For important information about the describe operation, see the section called “About
CloudFront KeyValueStore”.

The response includes a UUID, the ARN of the key value stores, and the ETag of the key value
stores.

• The UUID is 128 bits. For example, a1b2c3d4-5678-90ab-cdef-EXAMPLE11111

Using CloudFront KeyValueStore 659

https://console.aws.amazon.com/cloudfront/v4/home#/functions
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_DeleteKeyValueStore.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_ListKeyValueStores.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_DescribeKeyValueStore.html

Amazon CloudFront Developer Guide

• The ARN includes the AWS account number, the constant key-value-store, and the UUID. For
example:

arn:aws:cloudfront::111122223333:key-value-store/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111

• An ETag looks like this: ETVABCEXAMPLE2

Creating a file of key-value pairs

When you create a UTF-8 encoded file, use the following JSON format:

{
 "data":[
 {
 "key":"key1",
 "value":"value"
 },
 {
 "key":"key2",
 "value":"value"
 }
]
}

Your file can't include duplicate keys. If you specified an invalid file in your Amazon S3 bucket, you
can update the file to remove any duplicates and then try creating your key value store again.

For more information, see Creating key value stores.

Note

The file for your data source and its key-value pairs have the following limits:

• File size – 5 MB

• Key size – 512 characters

• Value size – 1024 characters

Using CloudFront KeyValueStore 660

Amazon CloudFront Developer Guide

Working with key value data

You can work with key-value pairs in an existing key value stores in these ways:

• Using the CloudFront console.

• Using your preferred CloudFront KeyValueStore API or SDK.

Note

This is a different API or SDK from the regular CloudFront API or SDK.

This section describes how to add key-value pairs to an existing key value stores. To include key-
value pairs when you initially create the key value stores, see the section called “Creating key value
stores”.

Topics

• Working with key-value pairs by using the CloudFront console

• Working with key-value pairs programmatically

Working with key-value pairs by using the CloudFront console

You can use the CloudFront console to work with your key-value pairs.

To use the CloudFront console to work with key-value pairs

1. Sign in to the AWS Management Console and open the Functions page in the CloudFront
console at https://console.aws.amazon.com/cloudfront/v4/home#/functions.

2. Choose the KeyValueStores tab. Select the key value store that you want to change. The
details page appears.

3. In the Key value pairs section, choose Edit.

4. You can add a key-value pair, delete a key-value pair, or change the value for an existing key-
value pair.

5. When you have finished, choose Save changes.

Using CloudFront KeyValueStore 661

https://console.aws.amazon.com/cloudfront/v4/home#/functions

Amazon CloudFront Developer Guide

Working with key-value pairs programmatically

Topics

• Obtaining a reference to a key value store

• Changing key-value pairs in a key value stores

• About CloudFront KeyValueStore

• Example code for CloudFront KeyValueStore

Obtaining a reference to a key value store

When you enter a write operation using CloudFront KeyValueStore, you need to pass in the ARN
and the ETag of the key value stores. To obtain this data, do the following:

1. Use the list operation of your preferred CloudFront API or SDKs. For example, for the REST API,
use CloudFront.ListKeyValueStores. The response includes a list of key value stores. Find the
name of the key value store you want to change.

2. Use the describe operation of your preferred CloudFront KeyValueStore API or SDK. For example,
for the REST API, use CloudFrontKeyValueStore.DescribeKeyValueStore. Pass in the name you
obtained in the previous step.

Note

Use the operation from the CloudFront KeyValueStore API, not from the CloudFront API.
For more information, see the section called “About CloudFront KeyValueStore”.

The response includes the ARN and the ETag of the key value stores.

• The ARN includes the AWS account number, the constant key-value-store, and the UUID.
For example:

arn:aws:cloudfront::111122223333:key-value-store/a1b2c3d4-5678-90ab-
cdef-EXAMPLE11111

• An ETag looks like this: ETVABCEXAMPLE2

Using CloudFront KeyValueStore 662

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_ListKeyValueStore.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_kvs_DescribeKeyValueStore.html

Amazon CloudFront Developer Guide

Changing key-value pairs in a key value stores

You can work with the key-value pairs using the following operations of your preferred CloudFront
KeyValueStore API or SDK. All of these operations work on one specified key value stores:

• CloudFrontKeyValueStore.DeleteKey: Delete one key. See DeleteKey.

• CloudFrontKeyValueStore.GetKey: Get one key. See GetKey.

• CloudFrontKeyValueStore.ListKeys: List the keys. See ListKeys.

• CloudFrontKeyValueStore.PutKey: You can perform two actions:

• Create a new key-value pair in one key value stores: In this case, pass a new key name and
value.

• Set a different value in one existing key-value pair: In this case, pass an existing key name, and
a new key value.

See PutKey.

• CloudFrontKeyValueStore.UpdateKeys: You can perform one or more of the following
actions in one all-or-nothing operation:

• Delete one or more key-value pairs.

• Create one or more new key-value pairs.

• Set a different value in one or more existing key value pairs.

See UpdateKeys.

About CloudFront KeyValueStore

To work with key-value pairs programmatically in an existing key value stores, you use the
CloudFront KeyValueStore service.

To include some key-value pairs in the key value stores when you initially create the key value
stores, you use the CloudFront service.

The describe operation

Both the CloudFront API and the CloudFront KeyValueStore API have a describe operation that
returns data about the key value stores:

Using CloudFront KeyValueStore 663

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_kvs_DeleteKey.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_kvs_GetKey.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_kvs_ListKeys.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_kvs_PutKey.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_kvs_UpdateKeys.html

Amazon CloudFront Developer Guide

• The CloudFront API provides data such as the status and the date that the store itself was last
modified.

• The CloudFront KeyValueStore API provides data about the contents of the storage resource —
the key-value pairs in the store, and the size of the contents.

The describe operations in the two APIs return slightly different data that identifies the key value
stores:

• The describe operation in the CloudFront API returns an ETag, the UUID, and the ARN of the key
value stores.

• The describe operation in the CloudFront KeyValueStore API returns an ETag and the ARN of the
key value stores.

Note

Each describe operation returns a different ETag. The ETags are not interchangeable.
When you perform an operation in one of the APIs, you must pass in the ETag from the
appropriate API. For example, in the delete operation in CloudFront KeyValueStore, pass in
the ETag that you obtained from the describe operation in CloudFront KeyValueStore.

Example code for CloudFront KeyValueStore

Example : Calling the DescribeKeyValueStore API operation

The following sample code shows you how to call the DescribeKeyValueStore API operation
for a key value store.

const {
 CloudFrontKeyValueStoreClient,
 DescribeKeyValueStoreCommand,
} = require("@aws-sdk/client-cloudfront-keyvaluestore");

require("@aws-sdk/signature-v4-crt");

(async () => {
 try {

Using CloudFront KeyValueStore 664

Amazon CloudFront Developer Guide

 const client = new CloudFrontKeyValueStoreClient({
 region: "us-east-1"
 });
 const input = {
 KvsARN: "arn:aws:cloudfront::123456789012:key-value-store/a1b2c3d4-5678-90ab-
cdef-EXAMPLE11111",
 };
 const command = new DescribeKeyValueStoreCommand(input);

 const response = await client.send(command);
 } catch (e) {
 console.log(e);
 }
})();

Customizing at the edge with Lambda@Edge

Lambda@Edge is an extension of AWS Lambda. Lambda@Edge is a compute service that lets you
execute functions that customize the content that CloudFront delivers. You can author Node.js or
Python functions in one AWS Region, US East (N. Virginia), and then execute them in AWS locations
globally that are closer to the viewer, without provisioning or managing servers. Lambda@Edge
scales automatically, from a few requests per day to thousands per second. Processing requests at
AWS locations closer to the viewer instead of on origin servers significantly reduces latency and
improves the user experience.

When you associate a CloudFront distribution with a Lambda@Edge function, CloudFront
intercepts requests and responses at CloudFront edge locations. You can execute Lambda functions
when the following CloudFront events occur:

• When CloudFront receives a request from a viewer (viewer request)

• Before CloudFront forwards a request to the origin (origin request)

• When CloudFront receives a response from the origin (origin response)

• Before CloudFront returns the response to the viewer (viewer response)

If you're using AWS WAF, the Lambda@Edge viewer request is executed after any AWS WAF rules
are applied.

There are many uses for Lambda@Edge processing. For example:

Customizing with Lambda@Edge 665

Amazon CloudFront Developer Guide

• A Lambda function can inspect cookies and rewrite URLs so that users see different versions of a
site for A/B testing.

• CloudFront can return different objects to viewers based on the device they're using by checking
the User-Agent header, which includes information about the devices. For example, CloudFront
can return different images based on the screen size of their device. Similarly, the function could
consider the value of the Referer header and cause CloudFront to return the images to bots
that have the lowest available resolution.

• Or you could check cookies for other criteria. For example, on a retail website that sells clothing,
if you use cookies to indicate which color a user chose for a jacket, a Lambda function can change
the request so that CloudFront returns the image of a jacket in the selected color.

• A Lambda function can generate HTTP responses when CloudFront viewer request or origin
request events occur.

• A function can inspect headers or authorization tokens, and insert a header to control access to
your content before CloudFront forwards the request to your origin.

• A Lambda function can also make network calls to external resources to confirm user credentials,
or fetch additional content to customize a response.

For sample code and additional examples, see Lambda@Edge example functions.

Topics

• Get started creating and using Lambda@Edge functions

• Setting IAM permissions and roles for Lambda@Edge

• Writing and creating a Lambda@Edge function

• Adding triggers for a Lambda@Edge function

• Testing and debugging Lambda@Edge functions

• Deleting Lambda@Edge functions and replicas

• Lambda@Edge event structure

• Working with requests and responses

• Lambda@Edge example functions

Customizing with Lambda@Edge 666

Amazon CloudFront Developer Guide

Get started creating and using Lambda@Edge functions

With Lambda@Edge, you can use CloudFront triggers to invoke a Lambda function. When you
associate a CloudFront distribution with a Lambda function, CloudFront intercepts requests and
responses at CloudFront edge locations and runs the function. Lambda functions can improve
security or customize information close to your viewers to improve performance.

The following list provides a basic overview of how to create and use Lambda functions with
CloudFront. For a step-by-step tutorial, see Tutorial: Creating a simple Lambda@Edge function.

1. In the AWS Lambda console, create a Lambda function in the US East (N. Virginia) Region. (Or
you can create the function programmatically by using one of the AWS SDKs.)

2. Save and publish a numbered version of the function.

If you want to change the function, you must edit the $LATEST version of the function in the US
East (N. Virginia) Region. Then, before you set it up to work with CloudFront, you publish a new
numbered version.

3. Associate the function with a CloudFront distribution and cache behavior. Then specify one
or more CloudFront events (triggers) that cause the function to execute. For example, you can
create a trigger for the function to execute when CloudFront receives a request from a viewer.

4. When you create a trigger, Lambda creates replicas of the function at AWS locations around the
world.

Tip

Learn more about how you can use Lambda@Edge for your own custom solutions. Learn
more about creating and updating functions, the event structure, and adding CloudFront
triggers. You can also find more ideas and get code samples in Lambda@Edge example
functions.

Topics

• Tutorial: Creating a simple Lambda@Edge function

Getting started 667

https://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html

Amazon CloudFront Developer Guide

Tutorial: Creating a simple Lambda@Edge function

This tutorial shows you how to get started with Lambda@Edge by helping you create and add a
sample Node.js function that runs in CloudFront. The example that we walk through adds HTTP
security headers to a response, which can improve security and privacy for a website. You don't
need a website for this walkthrough. In it, we simply add security headers to a response when
CloudFront retrieves a file.

This example describes the steps to create and configure a Lambda@Edge function. When you
create your own Lambda@Edge solution, you follow similar steps and choose from the same
options.

Topics

• Step 1: Sign up for an AWS account

• Step 2: Create a CloudFront distribution

• Step 3: Create your function

• Step 4: Add a CloudFront trigger to run the function

• Step 5: Verify that the function runs

• Step 6: Troubleshoot issues

• Step 7: Clean up your example resources

• Resources for learning more

Step 1: Sign up for an AWS account

If you haven't already done so, sign up for an AWS account. For more information, see Sign up for
an AWS account.

Step 2: Create a CloudFront distribution

Before you create the example Lambda@Edge function, you must have a CloudFront environment
to work with that includes an origin to serve content from.

For this example, you create a CloudFront distribution that uses an Amazon S3 bucket as the origin
for the distribution. If you already have an environment to use, you can skip this step.

Getting started 668

Amazon CloudFront Developer Guide

To create a CloudFront distribution with an Amazon S3 origin

1. Create an Amazon S3 bucket with a file or two, such as image files, for sample content.
For help, follow the steps in Upload your content to Amazon S3. Make sure that you set
permissions to grant public read access to the objects in your bucket.

2. Create a CloudFront distribution and add your S3 bucket as an origin, by following the steps
in Create a CloudFront web distribution. If you already have a distribution, you can add the
bucket as an origin for that distribution instead.

Tip

Make a note of your distribution ID. Later in this tutorial when you add a CloudFront
trigger for your function, you must choose the ID for your distribution in a dropdown
list—for example, E653W22221KDDL.

Step 3: Create your function

In this step, you create a Lambda function from a blueprint template in the Lambda console. The
function adds code to update security headers in your CloudFront distribution.

To create a Lambda function

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

Important

Make sure that you're in the US-East-1 (N. Virginia) Region (us-east-1). You must be in
this Region to create Lambda@Edge functions.

2. Choose Create function.

3. On the Create function page, choose Use a blueprint, and then filter for the CloudFront
blueprints by entering cloudfront in the search field.

Getting started 669

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/GettingStarted.html#GettingStartedUploadContent
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/GettingStarted.html#GettingStartedCreateDistribution
https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon CloudFront Developer Guide

Note

CloudFront blueprints are available only in the US-East-1 (N. Virginia) Region (us-
east-1).

4. Choose the Modify HTTP response header blueprint as the template for your function.

5. Enter the following information about your function:

Function name

Enter a name for your function.

Execution role

Choose how to set the permissions for your function. To use the recommended basic
Lambda@Edge permissions policy template, choose Create a new role from AWS policy
templates.

Role name

Enter a name for the role that the policy template creates.

Policy templates

Lambda automatically adds the policy template Basic Lambda@Edge permissions because
you chose a CloudFront blueprint as the basis for your function. This policy template adds
execution role permissions that allow CloudFront to run your Lambda function for you in
CloudFront locations around the world. For more information, see Setting IAM permissions
and roles for Lambda@Edge.

6. Choose Create function.

7. In the Deploy to Lambda@Edge pane that appears, choose Cancel. (For this tutorial, you must
modify the function code before deploying the function to Lambda@Edge.)

8. Scroll down to the Code source section of the page.

9. Replace the template code with a function that modifies the security headers that your origin
returns. For example, you could use code similar to the following:

'use strict';
exports.handler = (event, context, callback) => {

 //Get contents of response

Getting started 670

Amazon CloudFront Developer Guide

 const response = event.Records[0].cf.request;
 const headers = response.headers;

 //Set new headers
 headers['strict-transport-security'] = [{key: 'Strict-Transport-Security',
 value: 'max-age= 63072000; includeSubdomains; preload'}];
 headers['content-security-policy'] = [{key: 'Content-Security-Policy', value:
 "default-src 'none'; img-src 'self'; script-src 'self'; style-src 'self'; object-
src 'none'"}];
 headers['x-content-type-options'] = [{key: 'X-Content-Type-Options', value:
 'nosniff'}];
 headers['x-frame-options'] = [{key: 'X-Frame-Options', value: 'DENY'}];
 headers['x-xss-protection'] = [{key: 'X-XSS-Protection', value: '1;
 mode=block'}];
 headers['referrer-policy'] = [{key: 'Referrer-Policy', value: 'same-origin'}];

 //Return modified response
 callback(null, response);
};

10. Choose File, Save to save your updated code.

Proceed to the next section to add a CloudFront trigger to run the function.

Step 4: Add a CloudFront trigger to run the function

Now that you have a Lambda function to update security headers, configure the CloudFront trigger
to run your function to add the headers in any response that CloudFront receives from the origin
for your distribution.

To configure the CloudFront trigger for your function

1. In the Lambda console, on the Function overview page for your function, choose Add trigger.

2. For Trigger configuration, choose CloudFront.

3. Choose Deploy to Lambda@Edge.

4. In the Deploy to Lambda@Edge pane, under Configure CloudFront trigger, enter the
following information:

Getting started 671

Amazon CloudFront Developer Guide

Distribution

The CloudFront distribution ID to associate with your function. In the dropdown list, choose
the distribution ID.

Cache behavior

The cache behavior to use with the trigger. For this example, leave the value set to *, which
means your distribution's default cache behavior. For more information, see Cache behavior
settings in the Values that you specify when you create or update a distribution topic.

CloudFront event

The trigger that specifies when your function runs. We want the security headers function
to run whenever CloudFront returns a response from the origin. So in the dropdown list,
choose Origin response. For more information, see Adding triggers for a Lambda@Edge
function.

5. Select the Confirm deploy to Lambda@Edge check box.

6. Choose Deploy to add the trigger and replicate the function to AWS locations worldwide.

7. Wait for the function to replicate. This typically takes several minutes.

You can check to see if replication is finished by going to the CloudFront console and viewing
your distribution. Wait for the distribution status to change from Deploying to a date and
time, which means that your function has been replicated. To verify that the function works,
follow the steps in the next section.

Step 5: Verify that the function runs

Now that you've created your Lambda function and configured a trigger to run it for a CloudFront
distribution, check to make sure that the function is accomplishing what you expect it to. In this
example, we check the HTTP headers that CloudFront returns, to make sure that the security
headers are added.

To verify that your Lambda@Edge function adds security headers

1. In a browser, enter the URL for a file in your S3 bucket. For example, you might use a URL
similar to https://d111111abcdef8.cloudfront.net/image.jpg.

Getting started 672

https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

For more information about the CloudFront domain name to use in the file URL, see
Customizing the URL format for files in CloudFront.

2. Open your browser's Web Developer toolbar. For example, in your browser window in Chrome,
open the context (right-click) menu, and then choose Inspect.

3. Choose the Network tab.

4. Reload the page to view your image, and then choose an HTTP request on the left pane. You
see the HTTP headers displayed in a separate pane.

5. Look through the list of HTTP headers to verify that the expected security headers are
included in the list. For example, you might see headers similar to those shown in the
following screenshot.

If the security headers are included in your headers list, great! You've successfully created your first
Lambda@Edge function. If CloudFront returns errors or there are other issues, continue to the next
step to troubleshoot the issues.

Getting started 673

Amazon CloudFront Developer Guide

Step 6: Troubleshoot issues

If CloudFront returns errors or doesn't add the security headers as expected, you can investigate
your function's execution by looking at CloudWatch Logs. Be sure to use the logs stored in the AWS
location that is closest to the location where the function is executed.

For example, if you view the file from London, try changing the Region in the CloudWatch console
to Europe (London).

To examine CloudWatch logs for your Lambda@Edge function

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Change Region to the location that is shown when you view the file in your browser. This is
where the function is executing.

3. In the left pane, choose Logs to view the logs for your distribution.

For more information, see Monitoring CloudFront metrics with Amazon CloudWatch.

Step 7: Clean up your example resources

If you created an Amazon S3 bucket and CloudFront distribution just for this tutorial, delete the
AWS resources that you allocated so that you no longer accrue charges. After you delete your AWS
resources, any content that you added is no longer available.

Tasks

• Delete the S3 bucket

• Delete the Lambda function

• Delete the CloudFront distribution

Delete the S3 bucket

Before you delete your Amazon S3 bucket, make sure that logging is disabled for the bucket.
Otherwise, AWS continues to write logs to your bucket as you delete it.

To disable logging for a bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

Getting started 674

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/s3/

Amazon CloudFront Developer Guide

2. Select your bucket, and then choose Properties.

3. From Properties, choose Logging.

4. Clear the Enabled check box.

5. Choose Save.

Now, you can delete your bucket. For more information, see Deleting a bucket in the Amazon
Simple Storage Service Console User Guide.

Delete the Lambda function

For instructions to delete the Lambda function association and optionally the function itself, see
Deleting Lambda@Edge functions and replicas.

Delete the CloudFront distribution

Before you delete a CloudFront distribution, you must disable it. A disabled distribution is no
longer functional and does not accrue charges. You can enable a disabled distribution at any time.
After you delete a disabled distribution, it's no longer available.

To disable and delete a CloudFront distribution

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

2. Select the distribution that you want to disable, and then choose Disable.

3. When prompted for confirmation, choose Yes, Disable.

4. Select the disabled distribution, and then choose Delete.

5. When prompted for confirmation, choose Yes, Delete.

Resources for learning more

Now that you have a basic idea of how Lambda@Edge functions work, learn more by reading the
following:

• Lambda@Edge example functions

• Lambda@Edge Design Best Practices

• Reducing Latency and Shifting Compute to the Edge with Lambda@Edge

Getting started 675

https://docs.aws.amazon.com/AmazonS3/latest/userguide/delete-bucket.html
https://console.aws.amazon.com/cloudfront/v4/home
https://aws.amazon.com/blogs/networking-and-content-delivery/lambdaedge-design-best-practices/
https://aws.amazon.com/blogs/networking-and-content-delivery/reducing-latency-and-shifting-compute-to-the-edge-with-lambdaedge/

Amazon CloudFront Developer Guide

Setting IAM permissions and roles for Lambda@Edge

To configure Lambda@Edge, you must set up specific IAM permissions and an IAM execution role.
Lambda@Edge also creates service-linked roles to replicate Lambda functions to CloudFront
Regions and to enable CloudWatch to use CloudFront log files.

Topics

• IAM permissions required to associate Lambda@Edge functions with CloudFront distributions

• Function execution role for service principals

• Service-linked roles for Lambda@Edge

IAM permissions required to associate Lambda@Edge functions with CloudFront
distributions

In addition to the IAM permissions that you need to use AWS Lambda, the user needs the following
IAM permissions to associate Lambda functions with CloudFront distributions:

• lambda:GetFunction

Allows the user to get configuration information for the Lambda function and a presigned URL
to download a .zip file that contains the function.

For the resource, specify the ARN of the function version that you want to execute when a
CloudFront event occurs, as shown in the following example:

arn:aws:lambda:us-east-1:123456789012:function:TestFunction:2

• lambda:EnableReplication*

Adds a permission to the resource policy that gives the Lambda replication service permission to
get function code and configuration.

Important

The asterisk (*) at the end of the permission is required: lambda:EnableReplication*

For the resource, specify the ARN of the function version that you want to execute when a
CloudFront event occurs, as shown in the following example:

Setting IAM permissions and roles 676

Amazon CloudFront Developer Guide

arn:aws:lambda:us-east-1:123456789012:function:TestFunction:2

• lambda:DisableReplication*

Adds a permission to the resource policy that gives the Lambda replication service permission to
allow the function to be deleted.

Important

The asterisk (*) at the end of the permission is required:
lambda:DisableReplication*

For the resource, specify the ARN of the function version that you want to execute when a
CloudFront event occurs, as shown in the following example:

arn:aws:lambda:us-east-1:123456789012:function:TestFunction:2

• iam:CreateServiceLinkedRole

Allows the user to create a service linked role that is used by Lambda@Edge to replicate Lambda
functions in CloudFront. After this role has been created by the first distribution you use with
Lambda@Edge, you don't need to add permission to other distributions that you use with
Lambda@Edge.

• cloudfront:UpdateDistribution or cloudfront:CreateDistribution

Use cloudfront:UpdateDistribution to update a distribution or
cloudfront:CreateDistribution to create a distribution.

For more information, see the following documentation:

• Identity and Access Management for Amazon CloudFront in this guide.

• Authentication and Access Control for AWS Lambda in the AWS Lambda Developer Guide

Function execution role for service principals

You must create an IAM role that can be assumed by the service principals
lambda.amazonaws.com and edgelambda.amazonaws.com. This role is assumed by the service

Setting IAM permissions and roles 677

https://docs.aws.amazon.com/lambda/latest/dg/auth-and-access-control.html

Amazon CloudFront Developer Guide

principals when they execute your function. For more information, see Creating roles and attaching
policies (console) in the IAM User Guide.

You add this role under the Trust Relationship tab in IAM (do not add it under the Permissions
tab).

Here's an example role trust policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lambda.amazonaws.com",
 "edgelambda.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

For information about the permissions that you need to grant to the execution role, see Manage
Permissions: Using an IAM Role (Execution Role) in the AWS Lambda Developer Guide. Note the
following:

• By default, whenever a CloudFront event triggers a Lambda function, data is written to
CloudWatch Logs. If you want to use these logs, the execution role needs permission to write
data to CloudWatch Logs. You can use the predefined AWSLambdaBasicExecutionRole to grant
permission to the execution role.

For more information about CloudWatch Logs, see the section called “Edge function logs”.

• If your Lambda function code accesses other AWS resources, such as reading an object from an
S3 bucket, the execution role needs permission to perform that operation.

Setting IAM permissions and roles 678

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions_create-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions_create-policies.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#lambda-intro-execution-role
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#lambda-intro-execution-role

Amazon CloudFront Developer Guide

Service-linked roles for Lambda@Edge

Lambda@Edge uses AWS Identity and Access Management (IAM) service-linked roles. A service-
linked role is a unique type of IAM role that is linked directly to a service. Service-linked roles are
predefined by the service and include all of the permissions that the service requires to call other
AWS services on your behalf.

Lambda@Edge uses the following IAM service-linked role:

• AWSServiceRoleForLambdaReplicator – Lambda@Edge uses this role to allow Lambda@Edge
to replicate functions to AWS Regions.

• AWSServiceRoleForCloudFrontLogger – CloudFront uses this role to push log files into your
CloudWatch account, to help you to debug Lambda@Edge validation errors.

When you first add a Lambda@Edge trigger in CloudFront, a role named
AWSServiceRoleForLambdaReplicator is automatically created to allow Lambda@Edge to replicate
functions to AWS Regions. This role is required for using Lambda@Edge functions. The ARN for the
AWSServiceRoleForLambdaReplicator role looks like this:

arn:aws:iam::123456789012:role/aws-service-role/
replicator.lambda.amazonaws.com/AWSServiceRoleForLambdaReplicator

The second role, named AWSServiceRoleForCloudFrontLogger, is created automatically when you
add Lambda@Edge function association to allow CloudFront to push Lambda@Edge error log files
to CloudWatch. The ARN for the AWSServiceRoleForCloudFrontLogger role looks like this:

arn:aws:iam::account_number:role/aws-service-role/
logger.cloudfront.amazonaws.com/AWSServiceRoleForCloudFrontLogger

A service-linked role makes setting up and using Lambda@Edge easier because you don’t have to
manually add the necessary permissions. Lambda@Edge defines the permissions of its service-
linked roles, and only Lambda@Edge can assume the roles. The defined permissions include the
trust policy and the permissions policy. The permissions policy cannot be attached to any other IAM
entity.

You must remove any associated CloudFront or Lambda@Edge resources before you can delete a
service-linked role. This helps protect your Lambda@Edge resources by making sure that you don't
remove a service-linked role that is still required to access active resources.

Setting IAM permissions and roles 679

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

Amazon CloudFront Developer Guide

For information about other services that support service-linked roles, see AWS services that work
with IAM and look for the services that have Yes in the Service-linked roles column.

Service-linked role permissions for Lambda@Edge

Lambda@Edge uses two service-linked roles, named AWSServiceRoleForLambdaReplicator and
AWSServiceRoleForCloudFrontLogger. The following sections describe the permissions for each of
these roles.

Service-linked role permissions for Lambda replicator

This service-linked role allows Lambda to replicate Lambda@Edge functions to AWS Regions.

The AWSServiceRoleForLambdaReplicator service-linked role trusts the following service to assume
the role: replicator.lambda.amazonaws.com

The role permissions policy allows Lambda@Edge to complete the following actions on the
specified resources:

• Action: lambda:CreateFunction on arn:aws:lambda:*:*:function:*

• Action: lambda:DeleteFunction on arn:aws:lambda:*:*:function:*

• Action: lambda:DisableReplication on arn:aws:lambda:*:*:function:*

• Action: iam:PassRole on all AWS resources

• Action: cloudfront:ListDistributionsByLambdaFunction on all AWS resources

Service-linked role permissions for CloudFront logger

This service-linked role allows CloudFront to push log files into your CloudWatch account, to help
you to debug Lambda@Edge validation errors.

The AWSServiceRoleForCloudFrontLogger service-linked role trusts the following service to assume
the role: logger.cloudfront.amazonaws.com

The role permissions policy allows Lambda@Edge to complete the following actions on the
specified resources:

• Action: logs:CreateLogGroup on arn:aws:logs:*:*:log-group:/aws/cloudfront/*

• Action: logs:CreateLogStream on arn:aws:logs:*:*:log-group:/aws/cloudfront/*

• Action: logs:PutLogEvents on arn:aws:logs:*:*:log-group:/aws/cloudfront/*

Setting IAM permissions and roles 680

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon CloudFront Developer Guide

You must configure permissions to allow an IAM entity (such as a user, group, or role) to delete the
Lambda@Edge service-linked roles. For more information, see Service-linked role permissions in
the IAM User Guide.

Creating service-linked roles for Lambda@Edge

You don’t typically manually create the service-linked roles for Lambda@Edge. The service creates
the roles for you automatically in the following scenarios:

• When you first create a trigger, the service creates a role, AWSServiceRoleForLambdaReplicator,
if the role doesn’t already exist, that allows Lambda to replicate Lambda@Edge functions to
AWS Regions.

If you delete the service-linked role, the role will be created again when you add a new trigger
for Lambda@Edge in a distribution.

• When you update or create a CloudFront distribution that has a Lambda@Edge association, the
service creates a role, AWSServiceRoleForCloudFrontLogger, if the role doesn’t already exist, that
allows CloudFront to push your log files to CloudWatch.

If you delete the service-linked role, the role will be created again when you update or create a
CloudFront distribution that has a Lambda@Edge association.

If you must manually create these service-linked roles, run the following commands using the AWS
CLI:

To create the AWSServiceRoleForLambdaReplicator role

aws iam create-service-linked-role --aws-service-name
replicator.lambda.amazonaws.com

To create the AWSServiceRoleForCloudFrontLogger role

aws iam create-service-linked-role --aws-service-name
logger.cloudfront.amazonaws.com

Editing Lambda@Edge service-linked roles

Lambda@Edge does not allow you to edit the AWSServiceRoleForLambdaReplicator or
AWSServiceRoleForCloudFrontLogger service-linked roles. After the service has created a service-
linked role, you cannot change the name of the role because various entities might reference

Setting IAM permissions and roles 681

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon CloudFront Developer Guide

the role. However, you can edit the description of a role by using IAM. For more information, see
Editing a service-linked role in the IAM User Guide.

Supported AWS Regions for CloudFront service-linked roles

CloudFront supports using service-linked roles for Lambda@Edge in the following AWS Regions:

• US East (N. Virginia) – us-east-1

• US East (Ohio) – us-east-2

• US West (N. California) – us-west-1

• US West (Oregon) – us-west-2

• Asia Pacific (Mumbai) – ap-south-1

• Asia Pacific (Seoul) – ap-northeast-2

• Asia Pacific (Singapore) – ap-southeast-1

• Asia Pacific (Sydney) – ap-southeast-2

• Asia Pacific (Tokyo) – ap-northeast-1

• Europe (Frankfurt) – eu-central-1

• Europe (Ireland) – eu-west-1

• Europe (London) – eu-west-2

• South America (São Paulo) – sa-east-1

Writing and creating a Lambda@Edge function

To use Lambda@Edge, you write the code for your Lambda function, then set up AWS Lambda
to run the function based on specific CloudFront events (triggers). To set up Lambda to run your
function, you use the create function option in Lambda.

You can use the AWS console to work with Lambda functions and CloudFront triggers, or you can
work with Lambda@Edge programmatically by using APIs.

• If you use the console, be aware that you can use only the AWS Lambda console to create
Lambda functions. You can't use the Amazon CloudFront console to create a function.

• If you want to work with Lambda@Edge programmatically, there are several resources to help
you. For more information, see Creating Lambda@Edge functions and CloudFront triggers
programmatically.

Writing and creating functions 682

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role

Amazon CloudFront Developer Guide

Note

You can use either the AWS Lambda console or CloudFront console to add triggers for
Lambda@Edge functions.

Topics

• Writing content of a Lambda@Edge function

• Creating a Lambda@Edge function in the Lambda console

• Creating Lambda@Edge functions and CloudFront triggers programmatically

• Editing a Lambda@Edge function

Writing content of a Lambda@Edge function

There are several resources to help you with writing Lambda@Edge functions:

• To learn about the event structure to use with Lambda@Edge functions, see Lambda@Edge
event structure.

• To see examples of Lambda@Edge functions, such as functions for A/B testing and generating
an HTTP redirect, see Lambda@Edge example functions.

The programming model for using Node.js or Python with Lambda@Edge is the same as using
Lambda in an AWS Region. For more information, see Building Lambda functions with Node.js or
Building Lambda functions with Python.

In your Lambda@Edge code, include the callback parameter and return the applicable object for
request or response events:

• Request events – Include the cf.request object in the response.

If you're generating a response, include the cf.response object in the response. For more
information, see Generating HTTP responses in request triggers.

• Response events – Include the cf.response object in the response.

Writing and creating functions 683

https://docs.aws.amazon.com/lambda/latest/dg/lambda-nodejs.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-python.html

Amazon CloudFront Developer Guide

Creating a Lambda@Edge function in the Lambda console

To set up AWS Lambda to run Lambda functions that are based on CloudFront events, follow this
procedure.

To create a Lambda@Edge function

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. If you already have one or more Lambda functions, choose Create function.

If you've don't have any functions, choose Get Started Now.

3. In the Region list at the top of the page, choose US East (N. Virginia).

4. Create a function using your own code or create a function starting with a CloudFront
blueprint.

• To create a function using your own code, choose Author from scratch.

• To display a list of blueprints for CloudFront, type cloudfront in the filter field, and then
press Enter.

If you find a blueprint that you want to use, choose the name of the blueprint.

5. In the Basic information section, specify the following values:

Name

Type a name for your function.

Role

Choose Create new role from template(s).

Note

Choosing this value will get you started quickly. Or you can choose Choose an
existing role or Create a custom role. If you choose one of these, follow the
prompts to complete the information for this section.

Writing and creating functions 684

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon CloudFront Developer Guide

Role name

Type a name for the role.

Policy templates

Choose Basic Edge Lambda permissions.

6. If you chose Author from scratch in step 4, skip to step 7.

If you chose a blueprint in step 4, the cloudfront section lets you create one trigger, which
associates this function with a cache in a CloudFront distribution and a CloudFront event. We
recommend that you choose Remove at this point, so there isn't a trigger for the function
when it's created. Then you can add triggers later.

Important

Why add triggers later? Generally it's best to test and debug the function before you
add triggers. If you choose instead to add a trigger now, the function will start to run
as soon as you create the function and it finishes replicating to AWS locations around
the world, and the corresponding distribution is deployed.

7. Choose Create function.

Lambda creates two versions of your function: $LATEST and Version 1. You can edit only the
$LATEST version, but the console initially displays Version 1.

8. To edit the function, choose Version 1 near the top of the page, under the ARN for the
function. Then, on the Versions tab, choose $LATEST. (If you left the function and then
returned to it, the button label is Qualifiers.)

9. On the Configuration tab, choose the applicable Code entry type. Then follow the prompts to
edit or upload your code.

10. For Runtime, choose the value based on your function's code.

11. In the Tags section, add any applicable tags.

12. Choose Actions, and then choose Publish new version.

13. Type a description for the new version of the function.

14. Choose Publish.

Writing and creating functions 685

Amazon CloudFront Developer Guide

15. Test and debug the function. For more information about testing in the Lambda console,
see the Invoke the Lambda Function and Verify Results, Logs, and Metrics section in Create a
Lambda Function with the Console in the AWS Lambda Developer Guide.

16. When you're ready to have the function execute for CloudFront events, publish another
version and edit the function to add triggers. For more information, see Adding triggers for a
Lambda@Edge function.

Creating Lambda@Edge functions and CloudFront triggers programmatically

You can set up Lambda@Edge functions and CloudFront triggers programmatically by using API
actions instead of by using the AWS console. For more information, see the following:

• API Reference in the AWS Lambda Developer Guide

• Amazon CloudFront API Reference

• AWS CLI

• Lambda create-function command

• CloudFront create-distribution command

• CloudFront create-distribution-with-tags command

• CloudFront update-distribution command

• AWS SDKs (See the SDKs & Toolkits section.)

• AWS Tools for PowerShell Cmdlet Reference

Editing a Lambda@Edge function

When you want to edit a Lambda function, note the following:

• The original version is labeled $LATEST.

• You can edit only the $LATEST version.

• Each time you edit the $LATEST version, you must publish a new numbered version.

• You can't create triggers for $LATEST.

• When you publish a new version of a function, Lambda doesn't automatically copy triggers from
the previous version to the new version. You must reproduce the triggers for the new version.

Writing and creating functions 686

https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html
https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html
https://docs.aws.amazon.com/lambda/latest/dg/API_Reference.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/
https://docs.aws.amazon.com/cli/latest/reference/lambda/create-function.html
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/create-distribution.html
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/create-distribution-with-tags.html
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/update-distribution.html
https://docs.aws.amazon.com/
https://docs.aws.amazon.com/powershell/latest/reference/

Amazon CloudFront Developer Guide

• When you add a trigger for a CloudFront event to a function, if there's already a trigger for the
same distribution, cache behavior, and event for an earlier version of the same function, Lambda
deletes the trigger from the earlier version.

• After you make updates to a CloudFront distribution, like adding triggers, you must wait for the
changes to propagate to edge locations before the functions you've specified in the triggers will
work.

To edit a Lambda function (AWS Lambda console)

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. In the Region list at the top of the page, choose US East (N. Virginia).

3. In the list of functions, choose the name of the function that you want to edit.

By default, the console displays the $LATEST version. You can view earlier versions (choose
Qualifiers), but you can only edit $LATEST.

4. On the Code tab, for Code entry type, choose to edit the code in the browser, upload a .zip
file, or upload a file from Amazon S3.

5. Choose either Save or Save and test.

6. Choose Actions, and choose Publish new version.

7. In the Publish new version from $LATEST dialog box, enter a description of the new version.
This description appears in the list of versions, along with an automatically generated version
number.

8. Choose Publish.

The new version automatically becomes the latest version. The version number appears on the
Version button in the upper-left corner of the page.

9. Choose the Triggers tab.

10. Choose Add trigger.

11. In the Add trigger dialog box, choose the dotted box, and then choose CloudFront.

Note

If you've already created one or more triggers for a function, CloudFront is the default
service.

Writing and creating functions 687

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon CloudFront Developer Guide

12. Specify the following values to indicate when you want the Lambda function to execute.

Distribution ID

Choose the ID of the distribution that you want to add the trigger to.

Cache behavior

Choose the cache behavior that specifies the objects that you want to execute the function
on.

CloudFront event

Choose the CloudFront event that causes the function to execute.

Enable trigger and replicate

Select this check box so Lambda replicates the function to Regions globally.

13. Choose Submit.

14. To add more triggers for this function, repeat steps 10 through 13.

Adding triggers for a Lambda@Edge function

A Lambda@Edge trigger is one combination of a CloudFront distribution, cache behavior, and
event that causes a function to execute. You can specify one or more CloudFront triggers that
cause the function to run. For example, you can create a trigger that causes the function to execute
when CloudFront receives a request from a viewer for a specific cache behavior you set up for your
distribution.

Tip

If you're not familiar with CloudFront cache behaviors, here's a brief overview. When you
create a CloudFront distribution, you specify settings that tell CloudFront how to respond
when it receives different requests. The default settings are called the default cache
behavior for the distribution. You can set up additional cache behaviors that define how
CloudFront responds under specific circumstances, for example, when it receives a request
for a specific file type. For more information, see Cache Behavior Settings.

Adding triggers 688

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html#DownloadDistValuesCacheBehavior

Amazon CloudFront Developer Guide

At the time that you create a Lambda function, you can specify only one trigger. But you can add
more triggers to the same function later in one of two ways: by using the Lambda console or by
editing the distribution in the CloudFront console.

• Using the Lambda console works well if you want to add more triggers to a function for the same
CloudFront distribution.

• Using the CloudFront console can be better if you want to add triggers for multiple distributions
because it's easier to find the distribution that you want to update. You can also update other
CloudFront settings at the same time.

Note

If you want to work with Lambda@Edge programmatically, there are several resources to
help you. For more information, see Creating Lambda@Edge functions and CloudFront
triggers programmatically.

Topics

• CloudFront events that can trigger a Lambda@Edge function

• How to decide which CloudFront event to use to trigger a Lambda@Edge function

• Adding triggers by using the Lambda console

• Adding triggers by using the CloudFront console

CloudFront events that can trigger a Lambda@Edge function

For each cache behavior in a CloudFront distribution, you can add up to four triggers (associations)
that cause a Lambda function to execute when specific CloudFront events occur. CloudFront
triggers can be based on one of four CloudFront events, as shown in the following diagram.

Adding triggers 689

Amazon CloudFront Developer Guide

The CloudFront events that can be used to trigger Lambda@Edge functions are the following:

Viewer request

The function executes when CloudFront receives a request from a viewer, before it checks to see
whether the requested object is in the CloudFront cache.

Origin request

The function executes only when CloudFront forwards a request to your origin. When the
requested object is in the CloudFront cache, the function doesn't execute.

Origin response

The function executes after CloudFront receives a response from the origin and before it caches
the object in the response. Note that the function executes even if an error is returned from the
origin.

The function doesn't execute in the following cases:

• When the requested file is in the CloudFront cache and is not expired.

• When the response is generated from a function that was triggered by an origin request
event.

Viewer response

The function executes before returning the requested file to the viewer. Note that the function
executes regardless of whether the file is already in the CloudFront cache.

The function doesn't execute in the following cases:

• When the origin returns an HTTP status code of 400 or higher.

• When a custom error page is returned.

Adding triggers 690

Amazon CloudFront Developer Guide

• When the response is generated from a function that was triggered by a viewer request
event.

• When CloudFront automatically redirects an HTTP request to HTTPS (when the value of
Viewer protocol policy is Redirect HTTP to HTTPS).

When you add multiple triggers to the same cache behavior, you can use them to run the same
function or run different functions for each trigger. You can also associate the same function with
more than one distribution.

Note

When a CloudFront event triggers the execution of a Lambda function, the function must
finish before CloudFront can continue. For example, if a Lambda function is triggered by
a CloudFront viewer request event, CloudFront won't return a response to the viewer or
forward the request to the origin until the Lambda function finishes running. This means
that each request that triggers a Lambda function increases latency for the request, so
you'll want the function to execute as fast as possible.

How to decide which CloudFront event to use to trigger a Lambda@Edge function

When you're deciding which CloudFront event you want to use to trigger a Lambda function,
consider the following:

Do you want CloudFront to cache objects that are changed by a Lambda function?

If you want CloudFront to cache an object that was modified by a Lambda function so that
CloudFront can serve the object from the edge location the next time it's requested, use the
origin request or origin response event. This reduces the load on the origin, reduces latency for
subsequent requests, and reduces the cost of invoking Lambda@Edge on subsequent requests.

For example, if you want to add, remove, or change headers for objects that are returned by the
origin and you want CloudFront to cache the result, use the origin response event.

Do you want the function to execute for every request?

If you want the function to execute for every request that CloudFront receives for the
distribution, use the viewer request or viewer response events. Origin request and origin

Adding triggers 691

Amazon CloudFront Developer Guide

response events occur only when a requested object isn't cached in an edge location and
CloudFront forwards a request to the origin.

Does the function change the cache key?

If you want the function to change a value that you're using as a basis for caching, use the
viewer request event. For example, if a function changes the URL to include a language
abbreviation in the path (for example, because the user chose their language from a dropdown
list), use the viewer request event:

• URL in the viewer request – https://example.com/en/index.html

• URL when the request comes from an IP address in Germany – https://example.com/de/
index.html

You also use the viewer request event if you're caching based on cookies or request headers.

Note

If the function changes cookies or headers, configure CloudFront to forward the
applicable part of the request to the origin. For more information, see the following
topics:

• Caching content based on cookies

• Caching content based on request headers

Does the function affect the response from the origin?

If you want the function to change the request in a way that affects the response from the
origin, use the origin request event. Typically, most viewer request events aren't forwarded to
the origin; CloudFront responds to a request with an object that's already in the edge cache.
If the function changes the request based on an origin request event, CloudFront caches the
response to the changed origin request.

Adding triggers by using the Lambda console

To add triggers to a Lambda@Edge function (AWS Lambda console)

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

Adding triggers 692

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon CloudFront Developer Guide

2. In the Region list at the top of the page, choose US East (N. Virginia).

3. On the Functions page, choose the name of the function that you want to add triggers for.

4. On the Function overview page, choose the Versions tab.

5. Choose the version that you want to add triggers to.

Important

You can't create triggers for the $LATEST version, you must create them for a
numbered version.

After you choose a version, the name of the button changes to Version: $LATEST or Version:
version number.

6. Choose the Triggers tab.

7. Choose Add trigger.

8. For Trigger configuration, choose Select a source and type cloudfront in the search box.
Select CloudFront.

Note

If you've already created one or more triggers, CloudFront is the default service.

9. Specify the following values to indicate when you want the Lambda function to execute.

Distribution

Choose the distribution that you want to add the trigger to.

Cache behavior

Choose the cache behavior that specifies the objects that you want to execute the function
on.

Note

If you specify * for the cache behavior, the Lambda function deploys to the default
cache behavior.

Adding triggers 693

Amazon CloudFront Developer Guide

CloudFront event

Choose the CloudFront event that causes the function to execute.

Include body

Select this check box if you want to access the request body in your function.

Confirm deploy to Lambda@Edge

Select this check box so that AWS Lambda replicates the function to Regions globally.

10. Choose Add.

The function starts to process requests for the specified CloudFront events when the updated
CloudFront distribution is deployed. To determine whether a distribution is deployed, choose
Distributions in the navigation pane. When a distribution is deployed, the value of the Status
column for the distribution changes from Deploying to the date and time of deployment.

Adding triggers by using the CloudFront console

To add triggers for CloudFront events to a Lambda function (CloudFront console)

1. Get the ARN of the Lambda function that you want to add triggers for:

a. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

b. In the list of Regions at the top of the page, choose US East (N. Virginia).

c. In the list of functions, choose name of the function that you want to add triggers to.

d. On the Function overview page, choose the Versions tab, and choose the numbered
version that you want to add triggers to.

Important

You can add triggers only to a numbered version, not to $LATEST.

e. Choose the Copy ARN button to copy the ARN to your clipboard. The ARN for the Lambda
function looks something like this:

arn:aws:lambda:us-east-1:123456789012:function:TestFunction:2

Adding triggers 694

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon CloudFront Developer Guide

The number at the end (2 in this example) is the version number of the function.

2. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

3. In the list of distributions, choose the ID of the distribution that you want to add triggers to.

4. Choose the Behaviors tab.

5. Select the cache behavior that you want to add triggers to, and then choose Edit.

6. For Function associations, in the Function type list, choose Lambda@Edge for when you
want the function to execute: for viewer requests, viewer responses, origin requests, or origin
responses.

For more information, see How to decide which CloudFront event to use to trigger a
Lambda@Edge function.

7. In the Function ARN / Name text box, paste the ARN of the Lambda function that you want
to execute when the chosen event occurs. This is the value that you copied from the Lambda
console.

8. Select Include body if you want to access the request body in your function.

If you just want to replace the request body, you don't need to select this option.

9. To execute the same function for more event types, repeat steps 6 and 7.

10. Choose Save changes.

11. To add triggers to more cache behaviors for this distribution, repeat steps 5 through 10.

The function starts to process requests for the specified CloudFront events when the updated
CloudFront distribution is deployed. To determine whether a distribution is deployed, choose
Distributions in the navigation pane. When a distribution is deployed, the value of the Status
column for the distribution changes from Deploying to the time and date of deployment.

Testing and debugging Lambda@Edge functions

This topic includes sections that describe strategies for testing and debugging Lambda@Edge
functions. It's important to test your Lambda@Edge function code standalone, to make sure that
it completes the intended task, and to do integration testing, to make sure that the function works
correctly with CloudFront.

During integration testing or after your function has been deployed, you might need to debug
CloudFront errors, such as HTTP 5xx errors. Errors can be an invalid response returned from the

Testing and debugging 695

https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

Lambda function, execution errors when the function is triggered, or errors due to execution
throttling by the Lambda service. Sections in this topic share strategies for determining which type
of failure is the issue, and then steps you can take to correct the problem.

Note

When you review CloudWatch log files or metrics when you're troubleshooting errors, be
aware that they are displayed or stored in the AWS Region closest to the location where
the function executed. So, if you have a website or web application with users in the United
Kingdom, and you have a Lambda function associated with your distribution, for example,
you must change the Region to view the CloudWatch metrics or log files for the London
AWS Region. For more information, see the section called “ Determining the Lambda@Edge
Region”.

Topics

• Testing your Lambda@Edge functions

• Identifying Lambda@Edge function errors in CloudFront

• Troubleshooting invalid Lambda@Edge function responses (validation errors)

• Troubleshooting Lambda@Edge function execution errors

• Determining the Lambda@Edge Region

• Determining if your account pushes logs to CloudWatch

Testing your Lambda@Edge functions

There are two steps to testing your Lambda function: standalone testing and integration testing.

Test standalone functionality

Before you add your Lambda function to CloudFront, make sure to test the functionality first
by using the testing capabilities in the Lambda console or by using other methods. For more
information about testing in the Lambda console, see the Invoke the Lambda Function and
Verify Results, Logs, and Metrics section in Create a Lambda Function with the Console in the
AWS Lambda Developer Guide.

Testing and debugging 696

https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html

Amazon CloudFront Developer Guide

Test your function's operation in CloudFront

It's important to complete integration testing, where your function is associated with a
distribution and runs based on a CloudFront event. Make sure that the function is triggered for
the right event, and returns a response that is valid and correct for CloudFront. For example,
make sure that the event structure is correct, that only valid headers are included, and so on.

As you iterate on integration testing with your function in the Lambda console, refer to the
steps in the Lambda@Edge tutorial as you modify your code or change the CloudFront trigger
that calls your function. For example, make sure that you're working in a numbered version of
your function, as described in this step of the tutorial: Step 4: Add a CloudFront trigger to run
the function.

As you make changes and deploy them, be aware that it will take several minutes for your
updated function and CloudFront triggers to replicate across all Regions. This typically takes a
few minutes but can take up to 15 minutes.

You can check to see if replication is finished by going to the CloudFront console and viewing
your distribution.

To check if your replication has finished deploying

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/v4/home.

2. Choose the distribution name.

3. Check for the distribution status to change from In Progress back to Deployed, which
means that your function has been replicated. Then follow the steps in the next section to
verify that the function works.

Be aware that testing in the console only validates your function's logic, and does not apply any
service quotas (formerly known as limits) that are specific to Lambda@Edge.

Identifying Lambda@Edge function errors in CloudFront

After you've verified that your function logic works correctly, you might still see HTTP 5xx errors
when your function runs in CloudFront. HTTP 5xx errors can be returned for a variety of reasons,
which can include Lambda function errors or other issues in CloudFront.

• If you use Lambda@Edge functions, you can use graphs in the CloudFront console to help track
down what's causing the error, and then work to fix it. For example, you can see if HTTP 5xx

Testing and debugging 697

https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

errors are caused by CloudFront or by Lambda functions, and then, for specific functions, you can
view related log files to investigate the issue.

• To troubleshoot HTTP errors in general in CloudFront, see the troubleshooting steps in the
following topic: Troubleshooting error responses from your origin.

What causes Lambda@Edge function errors in CloudFront

There are several reasons why a Lambda function might cause an HTTP 5xx error, and the
troubleshooting steps you should take depend on the type of error. Errors can be categorized as
the following:

A Lambda function execution error

An execution error results when CloudFront doesn't get a response from Lambda because there
are unhandled exceptions in the function or there's an error in the code. For example, if the
code includes callback(Error). For more information, see Lambda Function Errors in the AWS
Lambda Developer Guide.

An invalid Lambda function response is returned to CloudFront

After the function runs, CloudFront receives a response from Lambda. An error is returned if the
object structure of the response doesn't conform to the Lambda@Edge event structure, or the
response contains invalid headers or other invalid fields.

The execution in CloudFront is throttled due to Lambda service quotas (formerly known as
limits)

The Lambda service throttles executions in each Region, and returns an error if you exceed the
quota.

How to determine the type of failure

To help you decide where to focus as you debug and work to resolve errors returned by CloudFront,
it's helpful to identify why CloudFront is returning an HTTP error. To get started, you can use the
graphs provided in the Monitoring section of the CloudFront console on the AWS Management
Console. For more information about viewing graphs in the Monitoring section of the CloudFront
console, see Monitoring CloudFront metrics with Amazon CloudWatch.

Testing and debugging 698

https://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-mode-exceptions.html

Amazon CloudFront Developer Guide

The following graphs can be especially helpful when you want to track down whether errors are
being returned by origins or by a Lambda function, and to narrow down the type of issue when it's
an error from a Lambda function.

Error rates graph

One of the graphs that you can view on the Overview tab for each of your distributions is
an Error rates graph. This graph displays the rate of errors as a percentage of total requests
coming to your distribution. The graph shows the total error rate, total 4xx errors, total 5xx
errors, and total 5xx errors from Lambda functions. Based on the error type and volume, you
can take steps to investigate and troubleshoot the cause.

• If you see Lambda errors, you can investigate further by looking at the specific types of errors
that the function returns. The Lambda@Edge errors tab includes graphs that categorize
function errors by type to help you pinpoint the issue for a specific function.

• If you see CloudFront errors, you can troubleshoot and work to fix origin errors or change
your CloudFront configuration. For more information, see Troubleshooting error responses
from your origin.

Execution errors and invalid function responses graphs

The Lambda@Edge errors tab includes graphs that categorize the Lambda@Edge errors for a
specific distribution, by type. For example, one graph shows all execution errors by AWS Region.

To make it easier to troubleshoot issues, you can look for specific problems by opening and
examining the log files for specific functions by Region.

To view log files for a specific function by Region

1. On the Lambda@Edge errors tab, under Associated Lambda@Edge functions, choose the
function name, and then choose View metrics.

Testing and debugging 699

Amazon CloudFront Developer Guide

2. Next, on the page with your function name, in the upper-right corner, choose View
function logs, and then choose a Region.

For example, if you see issues in the Errors graph for the US West (Oregon) Region, choose
that Region from the dropdown list. This opens the Amazon CloudWatch console.

3. In the CloudWatch console for that Region, under Log streams, choose a log stream to view
the events for the function.

In addition, read the following sections in this chapter for more recommendations about
troubleshooting and fixing errors.

Throttles graph

The Lambda@Edge errors tab also includes a Throttles graph. On occasion, the Lambda service
throttles your function invocations on per Region basis, if you reach the regional concurrency
quota (formerly known as limit). If you see a limit exceeded error, your function has reached
a quota that the Lambda service imposes on executions in a Region. For more information,
including how to request an increase in the quota, see Quotas on Lambda@Edge.

For an example about how to use this information in troubleshooting HTTP errors, see Four steps
for debugging your content delivery on AWS.

Testing and debugging 700

https://aws.amazon.com/blogs/networking-and-content-delivery/four-steps-for-debugging-your-content-delivery-on-aws/
https://aws.amazon.com/blogs/networking-and-content-delivery/four-steps-for-debugging-your-content-delivery-on-aws/

Amazon CloudFront Developer Guide

Troubleshooting invalid Lambda@Edge function responses (validation errors)

If you identify that your problem is a Lambda validation error, it means that your Lambda function
is returning an invalid response to CloudFront. Follow the guidance in this section to take steps to
review your function and make sure that your response conforms to CloudFront requirements.

CloudFront validates the response from a Lambda function in two ways:

• The Lambda response must conform to the required object structure. Examples of bad object
structure include the following: unparsable JSON, missing required fields, and an invalid object in
the response. For more information, see the Lambda@Edge event structure.

• The response must include only valid object values. An error will occur if the response includes
a valid object but has values that are not supported. Examples include the following: adding or
updating disallowed or read-only headers (see Restrictions on edge functions), exceeding the
maximum body size (see Restrictions on the Size of the Generated Response in the Lambda@Edge
Errors topic), and invalid characters or values (see the Lambda@Edge event structure).

When Lambda returns an invalid response to CloudFront, error messages are written to log files
which CloudFront pushes to CloudWatch in the Region of where the Lambda function executed.
It's the default behavior to send the log files to CloudWatch when there's an invalid response.
However, if you associated a Lambda function with CloudFront before the functionality was
released, it might not be enabled for your function. For more information, see Determine if Your
Account Pushes Logs to CloudWatch later in the topic.

CloudFront pushes log files to the Region corresponding to where your function executed, in the
log group that's associated with your distribution. Log groups have the following format: /aws/
cloudfront/LambdaEdge/DistributionId, where DistributionId is your distribution's
ID. To determine the Region where you can find the CloudWatch log files, see Determining the
Lambda@Edge Region later in this topic.

If the error is reproducible, you can create a new request that results in the error and then find
the request id in a failed CloudFront response (X-Amz-Cf-Id header) to locate a single failure in
log files. The log file entry includes information that can help you identify why the error is being
returned, and also lists the corresponding Lambda request id so you can analyze the root cause in
the context of a single request.

Testing and debugging 701

Amazon CloudFront Developer Guide

If an error is intermittent, you can use CloudFront access logs to find the request id for a request
that has failed, and then search CloudWatch logs for the corresponding error messages. For more
information, see the previous section, Determining the Type of Failure.

Troubleshooting Lambda@Edge function execution errors

If the problem is a Lambda execution error, it can be helpful to create logging statements for
Lambda functions, to write messages to CloudWatch log files that monitor the execution of your
function in CloudFront and determine if it's working as expected. Then you can search for those
statements in the CloudWatch log files to verify that your function is working.

Note

Even if you haven't changed your Lambda@Edge function, updates to the Lambda function
execution environment might affect it and could return an execution error. For information
about testing and migrating to a later version, see Upcoming updates to the AWS Lambda
and AWS Lambda@Edge execution environment.

Determining the Lambda@Edge Region

To see the Regions where your Lambda@Edge function is receiving traffic, view metrics for the
function on the CloudFront console on the AWS Management Console. Metrics are displayed for
each AWS Region. On the same page, you can choose a Region and view log files for that Region so
you can investigate issues. You must review CloudWatch log files in the correct AWS Region to see
the log files created when CloudFront executed your Lambda function.

For more information about viewing graphs in the Monitoring section of the CloudFront console,
see Monitoring CloudFront metrics with Amazon CloudWatch.

Determining if your account pushes logs to CloudWatch

By default, CloudFront enables logging invalid Lambda function responses, and pushes the log
files to CloudWatch by using one of the Service-linked roles for Lambda@Edge. If you have
Lambda@Edge functions that you added to CloudFront before the invalid Lambda function
response log feature was released, logging is enabled when you next update your Lambda@Edge
configuration, for example, by adding a CloudFront trigger.

You can verify that pushing the log files to CloudWatch is enabled for your account by doing the
following:

Testing and debugging 702

https://aws.amazon.com/blogs/compute/upcoming-updates-to-the-aws-lambda-execution-environment/
https://aws.amazon.com/blogs/compute/upcoming-updates-to-the-aws-lambda-execution-environment/

Amazon CloudFront Developer Guide

• Check to see if the logs appear in CloudWatch. Make sure that you look in the Region where the
Lambda@Edge function executed. For more information, see Determining the Lambda@Edge
Region.

• Determine if the related service-linked role exists in your account in IAM. To do this,
open the IAM console at https://console.aws.amazon.com/iam/, and then choose Roles
to view the list of service-linked roles for your account. Look for the following role:
AWSServiceRoleForCloudFrontLogger.

Deleting Lambda@Edge functions and replicas

You can delete a Lambda@Edge function only when the replicas of the function have been deleted
by CloudFront. Replicas of a Lambda function are automatically deleted in the following situations:

• After you remove the last association for the function from all of your CloudFront distributions.
If more than one distribution uses a function, the replicas are deleted only after you remove the
function association from the last distribution.

• After you delete the last distribution that a function was associated with.

Replicas are typically deleted within a few hours. You cannot manually delete Lambda@Edge
function replicas. This helps prevent a situation where a replica is deleted that is still in use, which
would result in an error.

Don't build applications that use Lambda@Edge function replicas outside of CloudFront. These
replicas are deleted when their associations with distributions are removed, or when distributions
themselves are deleted. The replica that an outside application depends on might be removed
without warning, causing it to fail.

To delete a Lambda@Edge function association from a CloudFront distribution (console)

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. Choose the ID of the distribution that has the Lambda@Edge function association that you
want to delete.

3. Choose the Behaviors tab.

4. Select the cache behavior that has the Lambda@Edge function association that you want to
delete, and then choose Edit.

Deleting functions and replicas 703

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

5. Under Function associations, Function type, choose No association to delete the
Lambda@Edge function association.

6. Choose Save changes.

After you delete a Lambda@Edge function association from a CloudFront distribution, you can
optionally delete the Lambda function or function version from AWS Lambda. Wait a few hours
after deleting the function association so that the Lambda@Edge function replicas can be cleaned
up. After that, you will be able to delete the function by using the Lambda console, AWS CLI,
Lambda API, or an AWS SDK.

You can also delete a specific version of a Lambda function if the version doesn't have any
CloudFront distributions associated with it. After removing all the associations for a Lambda
function version, wait a few hours. Then you will be able to delete the function version.

Lambda@Edge event structure

The following topics describe the request and response event objects that CloudFront passes to a
Lambda@Edge function when it's triggered.

Topics

• Dynamic origin selection

• Request events

• Response events

Dynamic origin selection

You can use the path pattern in a cache behavior to route requests to an origin based on the path
and name of the requested object, such as images/*.jpg. Using Lambda@Edge, you can also
route requests to an origin based on other characteristics, such as the values in request headers.

There are a number of ways that this dynamic origin selection can be useful. For example, you can
distribute requests across origins in different geographic areas to help with global load balancing.
Or you can selectively route requests to different origins that each serve a particular function: bot
handling, SEO optimization, authentication, and so on. For code examples that demonstrate how
to use this feature, see Content-based dynamic origin selection - examples.

In the CloudFront origin request event, the origin object in the event structure contains
information about the origin that the request would be routed to, based on the path pattern.

Event structure 704

Amazon CloudFront Developer Guide

You can update the values in the origin object to route a request to a different origin. When
you update the origin object, you don't need to define the origin in the distribution. You can
also replace an Amazon S3 origin object with a custom origin object, and vice versa. You can only
specify a single origin per request, though; either a custom origin or an Amazon S3 origin, but not
both.

Request events

The following topics show the structure of the object that CloudFront passes to a Lambda function
for viewer and origin request events. These examples show a GET request with no body. Following
the examples is a list of all the possible fields in viewer and origin request events.

Topics

• Example viewer request

• Example origin request

• Request event fields

Example viewer request

The following example shows a viewer request event object.

{
 "Records": [
 {
 "cf": {
 "config": {
 "distributionDomainName": "d111111abcdef8.cloudfront.net",
 "distributionId": "EDFDVBD6EXAMPLE",
 "eventType": "viewer-request",
 "requestId": "4TyzHTaYWb1GX1qTfsHhEqV6HUDd_BzoBZnwfnvQc_1oF26ClkoUSEQ=="
 },
 "request": {
 "clientIp": "203.0.113.178",
 "headers": {
 "host": [
 {
 "key": "Host",
 "value": "d111111abcdef8.cloudfront.net"
 }
],

Event structure 705

Amazon CloudFront Developer Guide

 "user-agent": [
 {
 "key": "User-Agent",
 "value": "curl/7.66.0"
 }
],
 "accept": [
 {
 "key": "accept",
 "value": "*/*"
 }
]
 },
 "method": "GET",
 "querystring": "",
 "uri": "/"
 }
 }
 }
]
}

Example origin request

The following example shows an origin request event object.

{
 "Records": [
 {
 "cf": {
 "config": {
 "distributionDomainName": "d111111abcdef8.cloudfront.net",
 "distributionId": "EDFDVBD6EXAMPLE",
 "eventType": "origin-request",
 "requestId": "4TyzHTaYWb1GX1qTfsHhEqV6HUDd_BzoBZnwfnvQc_1oF26ClkoUSEQ=="
 },
 "request": {
 "clientIp": "203.0.113.178",
 "headers": {
 "x-forwarded-for": [
 {
 "key": "X-Forwarded-For",
 "value": "203.0.113.178"
 }

Event structure 706

Amazon CloudFront Developer Guide

],
 "user-agent": [
 {
 "key": "User-Agent",
 "value": "Amazon CloudFront"
 }
],
 "via": [
 {
 "key": "Via",
 "value": "2.0 2afae0d44e2540f472c0635ab62c232b.cloudfront.net
 (CloudFront)"
 }
],
 "host": [
 {
 "key": "Host",
 "value": "example.org"
 }
],
 "cache-control": [
 {
 "key": "Cache-Control",
 "value": "no-cache"
 }
]
 },
 "method": "GET",
 "origin": {
 "custom": {
 "customHeaders": {},
 "domainName": "example.org",
 "keepaliveTimeout": 5,
 "path": "",
 "port": 443,
 "protocol": "https",
 "readTimeout": 30,
 "sslProtocols": [
 "TLSv1",
 "TLSv1.1",
 "TLSv1.2"
]
 }
 },

Event structure 707

Amazon CloudFront Developer Guide

 "querystring": "",
 "uri": "/"
 }
 }
 }
]
}

Request event fields

Request event object data is contained in two subobjects: config (Records.cf.config) and
request (Records.cf.request). The following lists describe each subobject's fields.

Fields in the config object

The following list describes the fields in the config object (Records.cf.config).

distributionDomainName (read-only)

The domain name of the distribution that's associated with the request.

distributionID (read-only)

The ID of the distribution that's associated with the request.

eventType (read-only)

The type of trigger that's associated with the request: viewer-request or origin-request.

requestId (read-only)

An encrypted string that uniquely identifies a viewer-to-CloudFront request. The requestId
value also appears in CloudFront access logs as x-edge-request-id. For more information,
see Configuring and using standard logs (access logs) and Standard log file fields.

Fields in the request object

The following list describes the fields in the request object (Records.cf.request).

clientIp (read-only)

The IP address of the viewer that made the request. If the viewer used an HTTP proxy or a load
balancer to send the request, the value is the IP address of the proxy or load balancer.

Event structure 708

Amazon CloudFront Developer Guide

headers (read/write)

The headers in the request. Note the following:

• The keys in the headers object are lowercase versions of standard HTTP header names.
Using lowercase keys gives you case-insensitive access to the header values.

• Each header object (for example, headers["accept"] or headers["host"]) is an array
of key–value pairs. For a given header, the array contains one key–value pair for each value in
the request.

• key contains the case-sensitive name of the header as it appeared in the HTTP request; for
example, Host, User-Agent, X-Forwarded-For, and so on.

• value contains the header value as it appeared in the HTTP request.

• When your Lambda function adds or modifies request headers and you don't include the
header key field, Lambda@Edge automatically inserts a header key using the header name
that you provide. Regardless of how you've formatted the header name, the header key that's
inserted automatically is formatted with initial capitalization for each part, separated by
hyphens (-).

For example, you can add a header like the following, without a header key:

"user-agent": [
 {
 "value": "ExampleCustomUserAgent/1.X.0"
 }
]

In this example, Lambda@Edge automatically inserts "key": "User-Agent".

For information about restrictions on header usage, see Restrictions on edge functions.

method (read-only)

The HTTP method of the request.

querystring (read/write)

The query string, if any, in the request. If the request doesn't include a query string, the event
object still includes querystring with an empty value. For more information about query
strings, see Caching content based on query string parameters.

Event structure 709

Amazon CloudFront Developer Guide

uri (read/write)

The relative path of the requested object. If your Lambda function modifies the uri value, note
the following:

• The new uri value must begin with a forward slash (/).

• When a function changes the uri value, that changes the object that the viewer is
requesting.

• When a function changes the uri value, that doesn't change the cache behavior for the
request or the origin that the request is sent to.

body (read/write)

The body of the HTTP request. The body structure can contain the following fields:

inputTruncated (read-only)

A Boolean flag that indicates whether the body was truncated by Lambda@Edge. For more
information, see Restrictions on the request body with the include body option.

action (read/write)

The action that you intend to take with the body. The options for action are the following:

• read-only: This is the default. When returning the response from the Lambda function,
if action is read-only, Lambda@Edge ignores any changes to encoding or data.

• replace: Specify this when you want to replace the body sent to the origin.

encoding (read/write)

The encoding for the body. When Lambda@Edge exposes the body to the Lambda function,
it first converts the body to base64-encoding. If you choose replace for the action to
replace the body, you can opt to use base64 (the default) or text encoding. If you specify
encoding as base64 but the body is not valid base64, CloudFront returns an error.

data (read/write)

The request body content.

origin (read/write) (origin events only)

The origin to send the request to. The origin structure must contain exactly one origin, which
can be a custom origin or an Amazon S3 origin. The origin structure can contain the following
fields:

Event structure 710

Amazon CloudFront Developer Guide

customHeaders (read/write) (custom and Amazon S3 origins)

You can include custom headers with the request by specifying a header name and value
pair for each custom header. You can't add headers that are disallowed, and a header with
the same name can't be present in Records.cf.request.headers. The notes about
request headers also apply to custom headers. For more information, see Custom headers
that CloudFront can’t add to origin requests and Restrictions on edge functions.

domainName (read/write) (custom and Amazon S3 origins)

The domain name of the origin. The domain name can't be empty.

• For custom origins – Specify a DNS domain name, such as www.example.com. The
domain name can't include a colon (:), and can't be an IP address. The domain name can
be up to 253 characters.

• For Amazon S3 origins – Specify the DNS domain name of the Amazon S3 bucket, such
as awsexamplebucket.s3.eu-west-1.amazonaws.com. The name can be up to 128
characters, and must be all lowercase.

path (read/write) (custom and Amazon S3 origins)

The directory path at the origin where the request should locate content. The path should
start with a forward slash (/) but shouldn't end with one (for example, it shouldn't end with
example-path/). For custom origins only, the path should be URL encoded and have a
maximum length of 255 characters.

keepaliveTimeout (read/write) (custom origins only)

How long, in seconds, that CloudFront should try to maintain the connection to the origin
after receiving the last packet of the response. The value must be a number from 1–60,
inclusive.

port (read/write) (custom origins only)

The port that CloudFront should connect to at your custom origin. The port must be 80, 443,
or a number in the range of 1024–65535, inclusive.

protocol (read/write) (custom origins only)

The connection protocol that CloudFront should use when connecting to your origin. The
value can be http or https.

Event structure 711

Amazon CloudFront Developer Guide

readTimeout (read/write) (custom origins only)

How long, in seconds, CloudFront should wait for a response after sending a request to your
origin. This also specifies how long CloudFront should wait after receiving a packet of a
response before receiving the next packet. The value must be a number from 4–60, inclusive.

If your use case requires more than 60 seconds, you can request a higher quota for
Response timeout per origin. For more information, see General quotas on
distributions.

sslProtocols (read/write) (custom origins only)

The minimum SSL/TLS protocol that CloudFront can use when establishing an HTTPS
connection with your origin. Values can be any of the following: TLSv1.2, TLSv1.1, TLSv1,
or SSLv3.

authMethod (read/write) (Amazon S3 origins only)

If you're using an origin access identity (OAI), set this field to origin-access-identity.
If you aren't using an OAI, set it to none. If you set authMethod to origin-access-
identity, there are several requirements:

• You must specify the region (see the following field).

• You must use the same OAI when you change the request from one Amazon S3 origin to
another.

• You can't use an OAI when you change the request from a custom origin to an Amazon S3
origin.

Note

This field does not support origin access control (OAC).

region (read/write) (Amazon S3 origins only)

The AWS Region of your Amazon S3 bucket. This is required only when you set authMethod
to origin-access-identity.

Event structure 712

Amazon CloudFront Developer Guide

Response events

The following topics show the structure of the object that CloudFront passes to a Lambda function
for viewer and origin response events. Following the examples is a list of all the possible fields in
viewer and origin response events.

Topics

• Example origin response

• Example viewer response

• Response event fields

Example origin response

The following example shows an origin response event object.

{
 "Records": [
 {
 "cf": {
 "config": {
 "distributionDomainName": "d111111abcdef8.cloudfront.net",
 "distributionId": "EDFDVBD6EXAMPLE",
 "eventType": "origin-response",
 "requestId": "4TyzHTaYWb1GX1qTfsHhEqV6HUDd_BzoBZnwfnvQc_1oF26ClkoUSEQ=="
 },
 "request": {
 "clientIp": "203.0.113.178",
 "headers": {
 "x-forwarded-for": [
 {
 "key": "X-Forwarded-For",
 "value": "203.0.113.178"
 }
],
 "user-agent": [
 {
 "key": "User-Agent",
 "value": "Amazon CloudFront"
 }
],
 "via": [

Event structure 713

Amazon CloudFront Developer Guide

 {
 "key": "Via",
 "value": "2.0 8f22423015641505b8c857a37450d6c0.cloudfront.net
 (CloudFront)"
 }
],
 "host": [
 {
 "key": "Host",
 "value": "example.org"
 }
],
 "cache-control": [
 {
 "key": "Cache-Control",
 "value": "no-cache"
 }
]
 },
 "method": "GET",
 "origin": {
 "custom": {
 "customHeaders": {},
 "domainName": "example.org",
 "keepaliveTimeout": 5,
 "path": "",
 "port": 443,
 "protocol": "https",
 "readTimeout": 30,
 "sslProtocols": [
 "TLSv1",
 "TLSv1.1",
 "TLSv1.2"
]
 }
 },
 "querystring": "",
 "uri": "/"
 },
 "response": {
 "headers": {
 "access-control-allow-credentials": [
 {
 "key": "Access-Control-Allow-Credentials",

Event structure 714

Amazon CloudFront Developer Guide

 "value": "true"
 }
],
 "access-control-allow-origin": [
 {
 "key": "Access-Control-Allow-Origin",
 "value": "*"
 }
],
 "date": [
 {
 "key": "Date",
 "value": "Mon, 13 Jan 2020 20:12:38 GMT"
 }
],
 "referrer-policy": [
 {
 "key": "Referrer-Policy",
 "value": "no-referrer-when-downgrade"
 }
],
 "server": [
 {
 "key": "Server",
 "value": "ExampleCustomOriginServer"
 }
],
 "x-content-type-options": [
 {
 "key": "X-Content-Type-Options",
 "value": "nosniff"
 }
],
 "x-frame-options": [
 {
 "key": "X-Frame-Options",
 "value": "DENY"
 }
],
 "x-xss-protection": [
 {
 "key": "X-XSS-Protection",
 "value": "1; mode=block"
 }

Event structure 715

Amazon CloudFront Developer Guide

],
 "content-type": [
 {
 "key": "Content-Type",
 "value": "text/html; charset=utf-8"
 }
],
 "content-length": [
 {
 "key": "Content-Length",
 "value": "9593"
 }
]
 },
 "status": "200",
 "statusDescription": "OK"
 }
 }
 }
]
}

Example viewer response

The following example shows a viewer response event object.

{
 "Records": [
 {
 "cf": {
 "config": {
 "distributionDomainName": "d111111abcdef8.cloudfront.net",
 "distributionId": "EDFDVBD6EXAMPLE",
 "eventType": "viewer-response",
 "requestId": "4TyzHTaYWb1GX1qTfsHhEqV6HUDd_BzoBZnwfnvQc_1oF26ClkoUSEQ=="
 },
 "request": {
 "clientIp": "203.0.113.178",
 "headers": {
 "host": [
 {
 "key": "Host",
 "value": "d111111abcdef8.cloudfront.net"
 }

Event structure 716

Amazon CloudFront Developer Guide

],
 "user-agent": [
 {
 "key": "User-Agent",
 "value": "curl/7.66.0"
 }
],
 "accept": [
 {
 "key": "accept",
 "value": "*/*"
 }
]
 },
 "method": "GET",
 "querystring": "",
 "uri": "/"
 },
 "response": {
 "headers": {
 "access-control-allow-credentials": [
 {
 "key": "Access-Control-Allow-Credentials",
 "value": "true"
 }
],
 "access-control-allow-origin": [
 {
 "key": "Access-Control-Allow-Origin",
 "value": "*"
 }
],
 "date": [
 {
 "key": "Date",
 "value": "Mon, 13 Jan 2020 20:14:56 GMT"
 }
],
 "referrer-policy": [
 {
 "key": "Referrer-Policy",
 "value": "no-referrer-when-downgrade"
 }
],

Event structure 717

Amazon CloudFront Developer Guide

 "server": [
 {
 "key": "Server",
 "value": "ExampleCustomOriginServer"
 }
],
 "x-content-type-options": [
 {
 "key": "X-Content-Type-Options",
 "value": "nosniff"
 }
],
 "x-frame-options": [
 {
 "key": "X-Frame-Options",
 "value": "DENY"
 }
],
 "x-xss-protection": [
 {
 "key": "X-XSS-Protection",
 "value": "1; mode=block"
 }
],
 "age": [
 {
 "key": "Age",
 "value": "2402"
 }
],
 "content-type": [
 {
 "key": "Content-Type",
 "value": "text/html; charset=utf-8"
 }
],
 "content-length": [
 {
 "key": "Content-Length",
 "value": "9593"
 }
]
 },
 "status": "200",

Event structure 718

Amazon CloudFront Developer Guide

 "statusDescription": "OK"
 }
 }
 }
]
}

Response event fields

Response event object data is contained in three subobjects: config (Records.cf.config),
request (Records.cf.request), and response (Records.cf.response). For more
information about the fields in the request object, see Fields in the request object. The following
lists describe the fields in the config and response subobjects.

Fields in the config object

The following list describes the fields in the config object (Records.cf.config).

distributionDomainName (read-only)

The domain name of the distribution that's associated with the response.

distributionID (read-only)

The ID of the distribution that's associated with the response.

eventType (read-only)

The type of trigger that's associated with the response: origin-response or viewer-
response.

requestId (read-only)

An encrypted string that uniquely identifies the viewer-to-CloudFront request that this
response is associated with. The requestId value also appears in CloudFront access logs as
x-edge-request-id. For more information, see Configuring and using standard logs (access
logs) and Standard log file fields.

Fields in the response object

The following list describes the fields in the response object (Records.cf.response). For
information about using a Lambda@Edge function to generate an HTTP response, see Generating
HTTP responses in request triggers.

Event structure 719

Amazon CloudFront Developer Guide

headers (read/write)

The headers in the response. Note the following:

• The keys in the headers object are lowercase versions of standard HTTP header names.
Using lowercase keys gives you case-insensitive access to the header values.

• Each header object (for example, headers["content-type"] or headers["content-
length"]) is an array of key–value pairs. For a given header, the array contains one key–
value pair for each value in the response.

• key contains the case-sensitive name of the header as it appears in the HTTP response; for
example, Content-Type, Content-Length, Cookie, and so on.

• value contains the header value as it appears in the HTTP response.

• When your Lambda function adds or modifies response headers and you don't include the
header key field, Lambda@Edge automatically inserts a header key using the header name
that you provide. Regardless of how you've formatted the header name, the header key that's
inserted automatically is formatted with initial capitalization for each part, separated by
hyphens (-).

For example, you can add a header like the following, without a header key:

"content-type": [
 {
 "value": "text/html;charset=UTF-8"
 }
]

In this example, Lambda@Edge automatically inserts "key": "Content-Type".

For information about restrictions on header usage, see Restrictions on edge functions.

status

The HTTP status code of the response.

statusDescription

The HTTP status description of the response.

Working with requests and responses

The topics in this section explain several ways to use Lambda@Edge requests and responses.

Working with requests and responses 720

Amazon CloudFront Developer Guide

Topics

• Using Lambda@Edge functions with origin failover

• Generating HTTP responses in request triggers

• Updating HTTP responses in origin response triggers

• Accessing the request body by choosing the include body option

Using Lambda@Edge functions with origin failover

You can use Lambda@Edge functions with CloudFront distributions that you've set up with origin
groups, for example, for origin failover that you configure to help ensure high availability. To use a
Lambda function with an origin group, specify the function in an origin request or origin response
trigger for an origin group when you create the cache behavior.

For more information, see the following:

• Creating origin groups: Creating an origin group

• How origin failover works with Lambda@Edge: Use origin failover with Lambda@Edge
functions

Generating HTTP responses in request triggers

When CloudFront receives a request, you can use a Lambda function to generate an HTTP response
that CloudFront returns directly to the viewer without forwarding the response to the origin.
Generating HTTP responses reduces the load on the origin, and typically also reduces latency for
the viewer.

Some common scenarios for generating HTTP responses include the following:

• Returning a small webpage to the viewer

• Returning an HTTP 301 or 302 status code to redirect the user to another webpage

• Returning an HTTP 401 status code to the viewer when the user hasn't authenticated

A Lambda@Edge function can generate an HTTP response when the following CloudFront events
occur:

Working with requests and responses 721

Amazon CloudFront Developer Guide

Viewer request events

When a function is triggered by a viewer request event, CloudFront returns the response to the
viewer and doesn't cache it.

Origin request events

When a function is triggered by an origin request event, CloudFront checks the edge cache for a
response that was previously generated by the function.

• If the response is in the cache, the function isn't executed and CloudFront returns the cached
response to the viewer.

• If the response isn't in the cache, the function is executed, CloudFront returns the response to
the viewer, and also caches it.

To see some sample code for generating HTTP responses, see Lambda@Edge example functions.
You can also replace the HTTP responses in response triggers. For more information, see Updating
HTTP responses in origin response triggers.

Programming model

This section describes the programming model for using Lambda@Edge to generate HTTP
responses.

Topics

• Response object

• Errors

• Required fields

Response object

The response you return as the result parameter of the callback method should have the
following structure (note that only the status field is required).

const response = {
 body: 'content',
 bodyEncoding: 'text' | 'base64',
 headers: {
 'header name in lowercase': [{
 key: 'header name in standard case',

Working with requests and responses 722

Amazon CloudFront Developer Guide

 value: 'header value'
 }],
 ...
 },
 status: 'HTTP status code (string)',
 statusDescription: 'status description'
};

The response object can include the following values:

body

The body, if any, that you want CloudFront to return in the generated response.

bodyEncoding

The encoding for the value that you specified in the body. The only valid encodings are text
and base64. If you include body in the response object but omit bodyEncoding, CloudFront
treats the body as text.

If you specify bodyEncoding as base64 but the body is not valid base64, CloudFront returns
an error.

headers

Headers that you want CloudFront to return in the generated response. Note the following:

• The keys in the headers object are lowercase versions of standard HTTP header names.
Using lowercase keys gives you case-insensitive access to the header values.

• Each header (for example, headers["accept"] or headers["host"]) is an array of key-
value pairs. For a given header, the array contains one key-value pair for each value in the
generated response.

• key (optional) is the case-sensitive name of the header as it appears in an HTTP request; for
example, accept or host.

• Specify value as a header value.

• If you do not include the header key portion of the key-value pair, Lambda@Edge
automatically inserts a header key using the header name that you provide. Regardless of
how you've formatted the header name, the header key that is inserted is automatically
formatted with initial capitalization for each part, separated by hyphens (-).

For example, you can add a header like the following, without a header key: 'content-
type': [{ value: 'text/html;charset=UTF-8' }]

Working with requests and responses 723

Amazon CloudFront Developer Guide

In this example, Lambda@Edge creates the following header key: Content-Type.

For information about restrictions on header usage, see Restrictions on edge functions.

status

The HTTP status code. Provide the status code as a string. CloudFront uses the provided status
code for the following:

• Return in the response

• Cache in the CloudFront edge cache, when the response was generated by a function that
was triggered by an origin request event

• Log in CloudFront Configuring and using standard logs (access logs)

If the status value isn't between 200 and 599, CloudFront returns an error to the viewer.

statusDescription

The description that you want CloudFront to return in the response, to accompany the HTTP
status code. You don't need to use standard descriptions, such as OK for an HTTP status code of
200.

Errors

The following are possible errors for generated HTTP responses.

Response Contains a Body and Specifies 204 (No Content) for Status

When a function is triggered by a viewer request, CloudFront returns an HTTP 502 status code
(Bad Gateway) to the viewer when both of the following are true:

• The value of status is 204 (No Content)

• The response includes a value for body

This is because Lambda@Edge imposes the optional restriction found in RFC 2616, which states
that an HTTP 204 response does not need to contain a message body.

Restrictions on the Size of the Generated Response

The maximum size of a response that is generated by a Lambda function depends on the event
that triggered the function:

• Viewer request events – 40 KB

Working with requests and responses 724

Amazon CloudFront Developer Guide

• Origin request events – 1 MB

If the response is larger than the allowed size, CloudFront returns an HTTP 502 status code (Bad
Gateway) to the viewer.

Required fields

The status field is required.

All other fields are optional.

Updating HTTP responses in origin response triggers

When CloudFront receives an HTTP response from the origin server, if there is an origin-response
trigger associated with the cache behavior, you can modify the HTTP response to override what
was returned from the origin.

Some common scenarios for updating HTTP responses include the following:

• Changing the status to set an HTTP 200 status code and creating static body content to return
to the viewer when an origin returns an error status code (4xx or 5xx). For sample code, see
Example: Using an origin response trigger to update the error status code to 200.

• Changing the status to set an HTTP 301 or HTTP 302 status code, to redirect the user to another
website when an origin returns an error status code (4xx or 5xx). For sample code, see Example:
Using an origin response trigger to update the error status code to 302.

Note

The function must return a status value between 200 and 599 (inclusive), otherwise
CloudFront returns an error to the viewer.

You can also replace the HTTP responses in viewer and origin request events. For more information,
see Generating HTTP responses in request triggers.

When you're working with the HTTP response, Lambda@Edge does not expose the body that is
returned by the origin server to the origin-response trigger. You can generate a static content body
by setting it to the desired value, or remove the body inside the function by setting the value to be

Working with requests and responses 725

Amazon CloudFront Developer Guide

empty. If you don't update the body field in your function, the original body returned by the origin
server is returned back to viewer.

Accessing the request body by choosing the include body option

You can opt to have Lambda@Edge expose the body in a request for writable HTTP methods
(POST, PUT, DELETE, and so on), so that you can access it in your Lambda function. You can choose
read-only access, or you can specify that you'll replace the body.

To enable this option, choose Include Body when you create a CloudFront trigger for your function
that's for a viewer request or origin request event. For more information, see Adding triggers
for a Lambda@Edge function, or to learn about using Include Body with your function, see
Lambda@Edge event structure.

Scenarios when you might want to use this feature include the following:

• Processing web forms, like "contact us" forms, without sending customer input data back to
origin servers.

• Gathering web beacon data that's sent by viewer browsers and processing it at the edge.

For sample code, see Lambda@Edge example functions.

Note

If the request body is large, Lambda@Edge truncates it. For detailed information about the
maximum size and truncation, see Restrictions on the request body with the include body
option.

Lambda@Edge example functions

See the following sections for examples of using Lambda functions with CloudFront.

Topics

• General examples

• Generating responses - examples

• Working with query strings - examples

• Personalize content by country or device type headers - examples

Example functions 726

Amazon CloudFront Developer Guide

• Content-based dynamic origin selection - examples

• Updating error statuses - examples

• Accessing the request body - examples

General examples

The examples in this section illustrate some common ways to use Lambda@Edge in CloudFront.

Topics

• Example: A/B testing

• Example: Overriding a response header

Example: A/B testing

You can use the following example to test two different versions of an image without creating
redirects or changing the URL. This example reads the cookies in the viewer request and modifies
the request URL accordingly. If the viewer doesn't send a cookie with one of the expected values,
the example randomly assigns the viewer to one of the URLs.

Node.js

'use strict';

exports.handler = (event, context, callback) => {
 const request = event.Records[0].cf.request;
 const headers = request.headers;

 if (request.uri !== '/experiment-pixel.jpg') {
 // do not process if this is not an A-B test request
 callback(null, request);
 return;
 }

 const cookieExperimentA = 'X-Experiment-Name=A';
 const cookieExperimentB = 'X-Experiment-Name=B';
 const pathExperimentA = '/experiment-group/control-pixel.jpg';
 const pathExperimentB = '/experiment-group/treatment-pixel.jpg';

 /*
 * Lambda at the Edge headers are array objects.

Example functions 727

Amazon CloudFront Developer Guide

 *
 * Client may send multiple Cookie headers, i.e.:
 * > GET /viewerRes/test HTTP/1.1
 * > User-Agent: curl/7.18.1 (x86_64-unknown-linux-gnu) libcurl/7.18.1
 OpenSSL/1.0.1u zlib/1.2.3
 * > Cookie: First=1; Second=2
 * > Cookie: ClientCode=abc
 * > Host: example.com
 *
 * You can access the first Cookie header at headers["cookie"][0].value
 * and the second at headers["cookie"][1].value.
 *
 * Header values are not parsed. In the example above,
 * headers["cookie"][0].value is equal to "First=1; Second=2"
 */
 let experimentUri;
 if (headers.cookie) {
 for (let i = 0; i < headers.cookie.length; i++) {
 if (headers.cookie[i].value.indexOf(cookieExperimentA) >= 0) {
 console.log('Experiment A cookie found');
 experimentUri = pathExperimentA;
 break;
 } else if (headers.cookie[i].value.indexOf(cookieExperimentB) >= 0) {
 console.log('Experiment B cookie found');
 experimentUri = pathExperimentB;
 break;
 }
 }
 }

 if (!experimentUri) {
 console.log('Experiment cookie has not been found. Throwing dice...');
 if (Math.random() < 0.75) {
 experimentUri = pathExperimentA;
 } else {
 experimentUri = pathExperimentB;
 }
 }

 request.uri = experimentUri;
 console.log(`Request uri set to "${request.uri}"`);
 callback(null, request);
};

Example functions 728

Amazon CloudFront Developer Guide

Python

import json
import random

def lambda_handler(event, context):
 request = event['Records'][0]['cf']['request']
 headers = request['headers']

 if request['uri'] != '/experiment-pixel.jpg':
 # Not an A/B Test
 return request

 cookieExperimentA, cookieExperimentB = 'X-Experiment-Name=A', 'X-Experiment-
Name=B'
 pathExperimentA, pathExperimentB = '/experiment-group/control-pixel.jpg', '/
experiment-group/treatment-pixel.jpg'

 '''
 Lambda at the Edge headers are array objects.

 Client may send multiple cookie headers. For example:
 > GET /viewerRes/test HTTP/1.1
 > User-Agent: curl/7.18.1 (x86_64-unknown-linux-gnu) libcurl/7.18.1
 OpenSSL/1.0.1u zlib/1.2.3
 > Cookie: First=1; Second=2
 > Cookie: ClientCode=abc
 > Host: example.com

 You can access the first Cookie header at headers["cookie"][0].value
 and the second at headers["cookie"][1].value.

 Header values are not parsed. In the example above,
 headers["cookie"][0].value is equal to "First=1; Second=2"
 '''

 experimentUri = ""

 for cookie in headers.get('cookie', []):
 if cookieExperimentA in cookie['value']:
 print("Experiment A cookie found")
 experimentUri = pathExperimentA
 break
 elif cookieExperimentB in cookie['value']:

Example functions 729

Amazon CloudFront Developer Guide

 print("Experiment B cookie found")
 experimentUri = pathExperimentB
 break

 if not experimentUri:
 print("Experiment cookie has not been found. Throwing dice...")
 if random.random() < 0.75:
 experimentUri = pathExperimentA
 else:
 experimentUri = pathExperimentB

 request['uri'] = experimentUri
 print(f"Request uri set to {experimentUri}")
 return request

Example: Overriding a response header

The following example shows how to change the value of a response header based on the value of
another header.

Node.js

'use strict';

exports.handler = (event, context, callback) => {
 const response = event.Records[0].cf.response;
 const headers = response.headers;

 const headerNameSrc = 'X-Amz-Meta-Last-Modified';
 const headerNameDst = 'Last-Modified';

 if (headers[headerNameSrc.toLowerCase()]) {
 headers[headerNameDst.toLowerCase()] = [
 headers[headerNameSrc.toLowerCase()][0],
];
 console.log(`Response header "${headerNameDst}" was set to ` +
 `"${headers[headerNameDst.toLowerCase()][0].value}"`);
 }

 callback(null, response);
};

Example functions 730

Amazon CloudFront Developer Guide

Python

import json

def lambda_handler(event, context):
 response = event["Records"][0]["cf"]["response"]
 headers = response["headers"]

 headerNameSrc = "X-Amz-Meta-Last-Modified"
 headerNameDst = "Last-Modified"

 if headers.get(headerNameSrc.lower(), None):
 headers[headerNameDst.lower()] = [headers[headerNameSrc.lower()][0]]
 print(f"Response header {headerNameDst.lower()} was set to
 {headers[headerNameSrc.lower()][0]}")

 return response

Generating responses - examples

The examples in this section show how you can use Lambda@Edge to generate responses.

Topics

• Example: Serving static content (generated response)

• Example: Generating an HTTP redirect (generated response)

Example: Serving static content (generated response)

The following example shows how to use a Lambda function to serve static website content, which
reduces the load on the origin server and reduces overall latency.

Note

You can generate HTTP responses for viewer request and origin request events. For more
information, see the section called “Generating HTTP responses in request triggers”.
You can also replace or remove the body of the HTTP response in origin response events.
For more information, see the section called “Updating HTTP responses in origin response
triggers”.

Example functions 731

Amazon CloudFront Developer Guide

Node.js

'use strict';

const content = `
<\!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Simple Lambda@Edge Static Content Response</title>
 </head>
 <body>
 <p>Hello from Lambda@Edge!</p>
 </body>
</html>
`;

exports.handler = (event, context, callback) => {
 /*
 * Generate HTTP OK response using 200 status code with HTML body.
 */
 const response = {
 status: '200',
 statusDescription: 'OK',
 headers: {
 'cache-control': [{
 key: 'Cache-Control',
 value: 'max-age=100'
 }],
 'content-type': [{
 key: 'Content-Type',
 value: 'text/html'
 }]
 },
 body: content,
 };
 callback(null, response);
};

Python

import json

Example functions 732

Amazon CloudFront Developer Guide

CONTENT = """
<\!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Simple Lambda@Edge Static Content Response</title>
</head>
<body>
 <p>Hello from Lambda@Edge!</p>
</body>
</html>
"""

def lambda_handler(event, context):
 # Generate HTTP OK response using 200 status code with HTML body.
 response = {
 'status': '200',
 'statusDescription': 'OK',
 'headers': {
 'cache-control': [
 {
 'key': 'Cache-Control',
 'value': 'max-age=100'
 }
],
 "content-type": [
 {
 'key': 'Content-Type',
 'value': 'text/html'
 }
]
 },
 'body': CONTENT
 }
 return response

Example: Generating an HTTP redirect (generated response)

The following example shows how to generate an HTTP redirect.

Example functions 733

Amazon CloudFront Developer Guide

Note

You can generate HTTP responses for viewer request and origin request events. For more
information, see Generating HTTP responses in request triggers.

Node.js

'use strict';

exports.handler = (event, context, callback) => {
 /*
 * Generate HTTP redirect response with 302 status code and Location header.
 */
 const response = {
 status: '302',
 statusDescription: 'Found',
 headers: {
 location: [{
 key: 'Location',
 value: 'https://docs.aws.amazon.com/lambda/latest/dg/lambda-
edge.html',
 }],
 },
 };
 callback(null, response);
};

Python

def lambda_handler(event, context):

 # Generate HTTP redirect response with 302 status code and Location header.

 response = {
 'status': '302',
 'statusDescription': 'Found',
 'headers': {
 'location': [{
 'key': 'Location',
 'value': 'https://docs.aws.amazon.com/lambda/latest/dg/lambda-
edge.html'

Example functions 734

Amazon CloudFront Developer Guide

 }]
 }
 }

 return response

Working with query strings - examples

The examples in this section include ways that you can use Lambda@Edge with query strings.

Topics

• Example: Adding a header based on a query string parameter

• Example: Normalizing query string parameters to improve the cache hit ratio

• Example: Redirecting unauthenticated users to a sign-in page

Example: Adding a header based on a query string parameter

The following example shows how to get the key-value pair of a query string parameter, and then
add a header based on those values.

Node.js

'use strict';

const querystring = require('querystring');
exports.handler = (event, context, callback) => {
 const request = event.Records[0].cf.request;

 /* When a request contains a query string key-value pair but the origin server
 * expects the value in a header, you can use this Lambda function to
 * convert the key-value pair to a header. Here's what the function does:
 * 1. Parses the query string and gets the key-value pair.
 * 2. Adds a header to the request using the key-value pair that the function
 got in step 1.
 */

 /* Parse request querystring to get javascript object */
 const params = querystring.parse(request.querystring);

 /* Move auth param from querystring to headers */

Example functions 735

Amazon CloudFront Developer Guide

 const headerName = 'Auth-Header';
 request.headers[headerName.toLowerCase()] = [{ key: headerName, value:
 params.auth }];
 delete params.auth;

 /* Update request querystring */
 request.querystring = querystring.stringify(params);

 callback(null, request);
};

Python

from urllib.parse import parse_qs, urlencode

def lambda_handler(event, context):
 request = event['Records'][0]['cf']['request']

 '''
 When a request contains a query string key-value pair but the origin server
 expects the value in a header, you can use this Lambda function to
 convert the key-value pair to a header. Here's what the function does:
 1. Parses the query string and gets the key-value pair.
 2. Adds a header to the request using the key-value pair that the function
 got in step 1.
 '''

 # Parse request querystring to get dictionary/json
 params = {k : v[0] for k, v in parse_qs(request['querystring']).items()}

 # Move auth param from querystring to headers
 headerName = 'Auth-Header'
 request['headers'][headerName.lower()] = [{'key': headerName, 'value':
 params['auth']}]
 del params['auth']

 # Update request querystring
 request['querystring'] = urlencode(params)

 return request

Example functions 736

Amazon CloudFront Developer Guide

Example: Normalizing query string parameters to improve the cache hit ratio

The following example shows how to improve your cache hit ratio by making the following
changes to query strings before CloudFront forwards requests to your origin:

• Alphabetize key-value pairs by the name of the parameter.

• Change the case of key-value pairs to lowercase.

For more information, see Caching content based on query string parameters.

Node.js

'use strict';

const querystring = require('querystring');

exports.handler = (event, context, callback) => {
 const request = event.Records[0].cf.request;
 /* When you configure a distribution to forward query strings to the origin and
 * to cache based on an allowlist of query string parameters, we recommend
 * the following to improve the cache-hit ratio:
 * - Always list parameters in the same order.
 * - Use the same case for parameter names and values.
 *
 * This function normalizes query strings so that parameter names and values
 * are lowercase and parameter names are in alphabetical order.
 *
 * For more information, see:
 * https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
QueryStringParameters.html
 */

 console.log('Query String: ', request.querystring);

 /* Parse request query string to get javascript object */
 const params = querystring.parse(request.querystring.toLowerCase());
 const sortedParams = {};

 /* Sort param keys */
 Object.keys(params).sort().forEach(key => {
 sortedParams[key] = params[key];
 });

Example functions 737

Amazon CloudFront Developer Guide

 /* Update request querystring with normalized */
 request.querystring = querystring.stringify(sortedParams);

 callback(null, request);
};

Python

from urllib.parse import parse_qs, urlencode

def lambda_handler(event, context):
 request = event['Records'][0]['cf']['request']
 '''
 When you configure a distribution to forward query strings to the origin and
 to cache based on an allowlist of query string parameters, we recommend
 the following to improve the cache-hit ratio:
 Always list parameters in the same order.
 - Use the same case for parameter names and values.

 This function normalizes query strings so that parameter names and values
 are lowercase and parameter names are in alphabetical order.

 For more information, see:
 https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
QueryStringParameters.html
 '''
 print("Query string: ", request["querystring"])

 # Parse request query string to get js object
 params = {k : v[0] for k, v in parse_qs(request['querystring'].lower()).items()}

 # Sort param keys
 sortedParams = sorted(params.items(), key=lambda x: x[0])

 # Update request querystring with normalized
 request['querystring'] = urlencode(sortedParams)

 return request

Example functions 738

Amazon CloudFront Developer Guide

Example: Redirecting unauthenticated users to a sign-in page

The following example shows how to redirect users to a sign-in page if they haven't entered their
credentials.

Node.js

'use strict';

function parseCookies(headers) {
 const parsedCookie = {};
 if (headers.cookie) {
 headers.cookie[0].value.split(';').forEach((cookie) => {
 if (cookie) {
 const parts = cookie.split('=');
 parsedCookie[parts[0].trim()] = parts[1].trim();
 }
 });
 }
 return parsedCookie;
}

exports.handler = (event, context, callback) => {
 const request = event.Records[0].cf.request;
 const headers = request.headers;

 /* Check for session-id in request cookie in viewer-request event,
 * if session-id is absent, redirect the user to sign in page with original
 * request sent as redirect_url in query params.
 */

 /* Check for session-id in cookie, if present then proceed with request */
 const parsedCookies = parseCookies(headers);
 if (parsedCookies && parsedCookies['session-id']) {
 callback(null, request);
 return;
 }

 /* URI encode the original request to be sent as redirect_url in query params */
 const encodedRedirectUrl = encodeURIComponent(`https://
${headers.host[0].value}${request.uri}?${request.querystring}`);
 const response = {
 status: '302',
 statusDescription: 'Found',

Example functions 739

Amazon CloudFront Developer Guide

 headers: {
 location: [{
 key: 'Location',
 value: `https://www.example.com/signin?redirect_url=
${encodedRedirectUrl}`,
 }],
 },
 };
 callback(null, response);
};

Python

import urllib

def parseCookies(headers):
 parsedCookie = {}
 if headers.get('cookie'):
 for cookie in headers['cookie'][0]['value'].split(';'):
 if cookie:
 parts = cookie.split('=')
 parsedCookie[parts[0].strip()] = parts[1].strip()
 return parsedCookie

def lambda_handler(event, context):
 request = event['Records'][0]['cf']['request']
 headers = request['headers']

 '''
 Check for session-id in request cookie in viewer-request event,
 if session-id is absent, redirect the user to sign in page with original
 request sent as redirect_url in query params.
 '''

 # Check for session-id in cookie, if present, then proceed with request
 parsedCookies = parseCookies(headers)

 if parsedCookies and parsedCookies['session-id']:
 return request

 # URI encode the original request to be sent as redirect_url in query params
 redirectUrl = "https://%s%s?%s" % (headers['host'][0]['value'], request['uri'],
 request['querystring'])

Example functions 740

Amazon CloudFront Developer Guide

 encodedRedirectUrl = urllib.parse.quote_plus(redirectUrl.encode('utf-8'))

 response = {
 'status': '302',
 'statusDescription': 'Found',
 'headers': {
 'location': [{
 'key': 'Location',
 'value': 'https://www.example.com/signin?redirect_url=%s' %
 encodedRedirectUrl
 }]
 }
 }
 return response

Personalize content by country or device type headers - examples

The examples in this section illustrate how you can use Lambda@Edge to customize behavior
based on location or the type of device used by the viewer.

Topics

• Example: Redirecting viewer requests to a country-specific URL

• Example: Serving different versions of an object based on the device

Example: Redirecting viewer requests to a country-specific URL

The following example shows how to generate an HTTP redirect response with a country-specific
URL and return the response to the viewer. This is useful when you want to provide country-
specific responses. For example:

• If you have country-specific subdomains, such as us.example.com and tw.example.com, you can
generate a redirect response when a viewer requests example.com.

• If you're streaming video but you don't have rights to stream the content in a specific country,
you can redirect users in that country to a page that explains why they can't view the video.

Note the following:

Example functions 741

Amazon CloudFront Developer Guide

• You must configure your distribution to cache based on the CloudFront-Viewer-Country
header. For more information, see Cache based on selected request headers.

• CloudFront adds the CloudFront-Viewer-Country header after the viewer request event. To
use this example, you must create a trigger for the origin request event.

Node.js

'use strict';

/* This is an origin request function */
exports.handler = (event, context, callback) => {
 const request = event.Records[0].cf.request;
 const headers = request.headers;

 /*
 * Based on the value of the CloudFront-Viewer-Country header, generate an
 * HTTP status code 302 (Redirect) response, and return a country-specific
 * URL in the Location header.
 * NOTE: 1. You must configure your distribution to cache based on the
 * CloudFront-Viewer-Country header. For more information, see
 * https://docs.aws.amazon.com/console/cloudfront/cache-on-selected-
headers
 * 2. CloudFront adds the CloudFront-Viewer-Country header after the
 viewer
 * request event. To use this example, you must create a trigger for
 the
 * origin request event.
 */

 let url = 'https://example.com/';
 if (headers['cloudfront-viewer-country']) {
 const countryCode = headers['cloudfront-viewer-country'][0].value;
 if (countryCode === 'TW') {
 url = 'https://tw.example.com/';
 } else if (countryCode === 'US') {
 url = 'https://us.example.com/';
 }
 }

 const response = {
 status: '302',
 statusDescription: 'Found',

Example functions 742

Amazon CloudFront Developer Guide

 headers: {
 location: [{
 key: 'Location',
 value: url,
 }],
 },
 };
 callback(null, response);
};

Python

This is an origin request function

def lambda_handler(event, context):
 request = event['Records'][0]['cf']['request']
 headers = request['headers']

 '''
 Based on the value of the CloudFront-Viewer-Country header, generate an
 HTTP status code 302 (Redirect) response, and return a country-specific
 URL in the Location header.
 NOTE: 1. You must configure your distribution to cache based on the
 CloudFront-Viewer-Country header. For more information, see
 https://docs.aws.amazon.com/console/cloudfront/cache-on-selected-headers
 2. CloudFront adds the CloudFront-Viewer-Country header after the viewer
 request event. To use this example, you must create a trigger for the
 origin request event.
 '''

 url = 'https://example.com/'
 viewerCountry = headers.get('cloudfront-viewer-country')
 if viewerCountry:
 countryCode = viewerCountry[0]['value']
 if countryCode == 'TW':
 url = 'https://tw.example.com/'
 elif countryCode == 'US':
 url = 'https://us.example.com/'

 response = {
 'status': '302',
 'statusDescription': 'Found',
 'headers': {

Example functions 743

Amazon CloudFront Developer Guide

 'location': [{
 'key': 'Location',
 'value': url
 }]
 }
 }

 return response

Example: Serving different versions of an object based on the device

The following example shows how to serve different versions of an object based on the type of
device that the user is using, for example, a mobile device or a tablet. Note the following:

• You must configure your distribution to cache based on the CloudFront-Is-*-Viewer
headers. For more information, see Cache based on selected request headers.

• CloudFront adds the CloudFront-Is-*-Viewer headers after the viewer request event. To use
this example, you must create a trigger for the origin request event.

Node.js

'use strict';

/* This is an origin request function */
exports.handler = (event, context, callback) => {
 const request = event.Records[0].cf.request;
 const headers = request.headers;

 /*
 * Serve different versions of an object based on the device type.
 * NOTE: 1. You must configure your distribution to cache based on the
 * CloudFront-Is-*-Viewer headers. For more information, see
 * the following documentation:
 * https://docs.aws.amazon.com/console/cloudfront/cache-on-selected-
headers
 * https://docs.aws.amazon.com/console/cloudfront/cache-on-device-type
 * 2. CloudFront adds the CloudFront-Is-*-Viewer headers after the viewer
 * request event. To use this example, you must create a trigger for
 the
 * origin request event.
 */

Example functions 744

Amazon CloudFront Developer Guide

 const desktopPath = '/desktop';
 const mobilePath = '/mobile';
 const tabletPath = '/tablet';
 const smarttvPath = '/smarttv';

 if (headers['cloudfront-is-desktop-viewer']
 && headers['cloudfront-is-desktop-viewer'][0].value === 'true') {
 request.uri = desktopPath + request.uri;
 } else if (headers['cloudfront-is-mobile-viewer']
 && headers['cloudfront-is-mobile-viewer'][0].value === 'true') {
 request.uri = mobilePath + request.uri;
 } else if (headers['cloudfront-is-tablet-viewer']
 && headers['cloudfront-is-tablet-viewer'][0].value === 'true') {
 request.uri = tabletPath + request.uri;
 } else if (headers['cloudfront-is-smarttv-viewer']
 && headers['cloudfront-is-smarttv-viewer'][0].value === 'true') {
 request.uri = smarttvPath + request.uri;
 }
 console.log(`Request uri set to "${request.uri}"`);

 callback(null, request);
};

Python

This is an origin request function
def lambda_handler(event, context):
 request = event['Records'][0]['cf']['request']
 headers = request['headers']

 '''
 Serve different versions of an object based on the device type.
 NOTE: 1. You must configure your distribution to cache based on the
 CloudFront-Is-*-Viewer headers. For more information, see
 the following documentation:
 https://docs.aws.amazon.com/console/cloudfront/cache-on-selected-headers
 https://docs.aws.amazon.com/console/cloudfront/cache-on-device-type
 2. CloudFront adds the CloudFront-Is-*-Viewer headers after the viewer
 request event. To use this example, you must create a trigger for the
 origin request event.
 '''

Example functions 745

Amazon CloudFront Developer Guide

 desktopPath = '/desktop';
 mobilePath = '/mobile';
 tabletPath = '/tablet';
 smarttvPath = '/smarttv';

 if 'cloudfront-is-desktop-viewer' in headers and headers['cloudfront-is-desktop-
viewer'][0]['value'] == 'true':
 request['uri'] = desktopPath + request['uri']
 elif 'cloudfront-is-mobile-viewer' in headers and headers['cloudfront-is-mobile-
viewer'][0]['value'] == 'true':
 request['uri'] = mobilePath + request['uri']
 elif 'cloudfront-is-tablet-viewer' in headers and headers['cloudfront-is-tablet-
viewer'][0]['value'] == 'true':
 request['uri'] = tabletPath + request['uri']
 elif 'cloudfront-is-smarttv-viewer' in headers and headers['cloudfront-is-
smarttv-viewer'][0]['value'] == 'true':
 request['uri'] = smarttvPath + request['uri']

 print("Request uri set to %s" % request['uri'])

 return request

Content-based dynamic origin selection - examples

The examples in this section show how you can use Lambda@Edge to route to different origins
based on information in the request.

Topics

• Example: Using an origin request trigger to change from a custom origin to an Amazon S3 origin

• Example: Using an origin-request trigger to change the Amazon S3 origin Region

• Example: Using an origin request trigger to change from an Amazon S3 origin to a custom origin

• Example: Using an origin request trigger to gradually transfer traffic from one Amazon S3 bucket
to another

• Example: Using an origin request trigger to change the origin domain name based on the country
header

Example functions 746

Amazon CloudFront Developer Guide

Example: Using an origin request trigger to change from a custom origin to an Amazon S3
origin

This function demonstrates how an origin-request trigger can be used to change from a custom
origin to an Amazon S3 origin from which the content is fetched, based on request properties.

Node.js

'use strict';

 const querystring = require('querystring');

 exports.handler = (event, context, callback) => {
 const request = event.Records[0].cf.request;

 /**
 * Reads query string to check if S3 origin should be used, and
 * if true, sets S3 origin properties.
 */

 const params = querystring.parse(request.querystring);

 if (params['useS3Origin']) {
 if (params['useS3Origin'] === 'true') {
 const s3DomainName = 'my-bucket.s3.amazonaws.com';

 /* Set S3 origin fields */
 request.origin = {
 s3: {
 domainName: s3DomainName,
 region: '',
 authMethod: 'none',
 path: '',
 customHeaders: {}
 }
 };
 request.headers['host'] = [{ key: 'host', value: s3DomainName}];
 }
 }

 callback(null, request);
};

Example functions 747

Amazon CloudFront Developer Guide

Python

from urllib.parse import parse_qs

def lambda_handler(event, context):
 request = event['Records'][0]['cf']['request']
 '''
 Reads query string to check if S3 origin should be used, and
 if true, sets S3 origin properties
 '''
 params = {k: v[0] for k, v in parse_qs(request['querystring']).items()}
 if params.get('useS3Origin') == 'true':
 s3DomainName = 'my-bucket.s3.amazonaws.com'

 # Set S3 origin fields
 request['origin'] = {
 's3': {
 'domainName': s3DomainName,
 'region': '',
 'authMethod': 'none',
 'path': '',
 'customHeaders': {}
 }
 }
 request['headers']['host'] = [{'key': 'host', 'value': s3DomainName}]
 return request

Example: Using an origin-request trigger to change the Amazon S3 origin Region

This function demonstrates how an origin-request trigger can be used to change the Amazon S3
origin from which the content is fetched, based on request properties.

In this example, we use the value of the CloudFront-Viewer-Country header to update the
S3 bucket domain name to a bucket in a Region that is closer to the viewer. This can be useful in
several ways:

• It reduces latencies when the Region specified is nearer to the viewer's country.

• It provides data sovereignty by making sure that data is served from an origin that's in the same
country that the request came from.

Example functions 748

Amazon CloudFront Developer Guide

To use this example, you must do the following:

• Configure your distribution to cache based on the CloudFront-Viewer-Country header. For
more information, see Cache based on selected request headers.

• Create a trigger for this function in the origin request event. CloudFront adds the CloudFront-
Viewer-Country header after the viewer request event, so to use this example, you must make
sure that the function executes for an origin request.

Node.js

'use strict';

exports.handler = (event, context, callback) => {
 const request = event.Records[0].cf.request;

 /**
 * This blueprint demonstrates how an origin-request trigger can be used to
 * change the origin from which the content is fetched, based on request
 properties.
 * In this example, we use the value of the CloudFront-Viewer-Country header
 * to update the S3 bucket domain name to a bucket in a Region that is closer to
 * the viewer.
 *
 * This can be useful in several ways:
 * 1) Reduces latencies when the Region specified is nearer to the viewer's
 * country.
 * 2) Provides data sovereignty by making sure that data is served from an
 * origin that's in the same country that the request came from.
 *
 * NOTE: 1. You must configure your distribution to cache based on the
 * CloudFront-Viewer-Country header. For more information, see
 * https://docs.aws.amazon.com/console/cloudfront/cache-on-selected-
headers
 * 2. CloudFront adds the CloudFront-Viewer-Country header after the
 viewer
 * request event. To use this example, you must create a trigger for
 the
 * origin request event.
 */

 const countryToRegion = {
 'DE': 'eu-central-1',

Example functions 749

Amazon CloudFront Developer Guide

 'IE': 'eu-west-1',
 'GB': 'eu-west-2',
 'FR': 'eu-west-3',
 'JP': 'ap-northeast-1',
 'IN': 'ap-south-1'
 };

 if (request.headers['cloudfront-viewer-country']) {
 const countryCode = request.headers['cloudfront-viewer-country'][0].value;
 const region = countryToRegion[countryCode];

 /**
 * If the viewer's country is not in the list you specify, the request
 * goes to the default S3 bucket you've configured.
 */
 if (region) {
 /**
 * If you've set up OAI, the bucket policy in the destination bucket
 * should allow the OAI GetObject operation, as configured by default
 * for an S3 origin with OAI. Another requirement with OAI is to provide
 * the Region so it can be used for the SIGV4 signature. Otherwise, the
 * Region is not required.
 */
 request.origin.s3.region = region;
 const domainName = `my-bucket-in-${region}.s3.amazonaws.com`;
 request.origin.s3.domainName = domainName;
 request.headers['host'] = [{ key: 'host', value: domainName }];
 }
 }

 callback(null, request);
};

Python

def lambda_handler(event, context):
 request = event['Records'][0]['cf']['request']

 '''
 This blueprint demonstrates how an origin-request trigger can be used to
 change the origin from which the content is fetched, based on request
 properties.
 In this example, we use the value of the CloudFront-Viewer-Country header

Example functions 750

Amazon CloudFront Developer Guide

 to update the S3 bucket domain name to a bucket in a Region that is closer to
 the viewer.

 This can be useful in several ways:
 1) Reduces latencies when the Region specified is nearer to the viewer's
 country.
 2) Provides data sovereignty by making sure that data is served from an
 origin that's in the same country that the request came from.

 NOTE: 1. You must configure your distribution to cache based on the
 CloudFront-Viewer-Country header. For more information, see
 https://docs.aws.amazon.com/console/cloudfront/cache-on-selected-headers
 2. CloudFront adds the CloudFront-Viewer-Country header after the viewer
 request event. To use this example, you must create a trigger for the
 origin request event.
 '''

 countryToRegion = {
 'DE': 'eu-central-1',
 'IE': 'eu-west-1',
 'GB': 'eu-west-2',
 'FR': 'eu-west-3',
 'JP': 'ap-northeast-1',
 'IN': 'ap-south-1'
 }

 viewerCountry = request['headers'].get('cloudfront-viewer-country')
 if viewerCountry:
 countryCode = viewerCountry[0]['value']
 region = countryToRegion.get(countryCode)

 # If the viewer's country in not in the list you specify, the request
 # goes to the default S3 bucket you've configured
 if region:
 '''
 If you've set up OAI, the bucket policy in the destination bucket
 should allow the OAI GetObject operation, as configured by default
 for an S3 origin with OAI. Another requirement with OAI is to provide
 the Region so it can be used for the SIGV4 signature. Otherwise, the
 Region is not required.
 '''
 request['origin']['s3']['region'] = region
 domainName = 'my-bucket-in-%s.s3.amazonaws.com' % region
 request['origin']['s3']['domainName'] = domainName

Example functions 751

Amazon CloudFront Developer Guide

 request['headers']['host'] = [{'key': 'host', 'value': domainName}]

 return request

Example: Using an origin request trigger to change from an Amazon S3 origin to a custom
origin

This function demonstrates how an origin-request trigger can be used to change the custom origin
from which the content is fetched, based on request properties.

Node.js

'use strict';

const querystring = require('querystring');

 exports.handler = (event, context, callback) => {
 const request = event.Records[0].cf.request;

 /**
 * Reads query string to check if custom origin should be used, and
 * if true, sets custom origin properties.
 */

 const params = querystring.parse(request.querystring);

 if (params['useCustomOrigin']) {
 if (params['useCustomOrigin'] === 'true') {

 /* Set custom origin fields*/
 request.origin = {
 custom: {
 domainName: 'www.example.com',
 port: 443,
 protocol: 'https',
 path: '',
 sslProtocols: ['TLSv1', 'TLSv1.1'],
 readTimeout: 5,
 keepaliveTimeout: 5,
 customHeaders: {}
 }
 };

Example functions 752

Amazon CloudFront Developer Guide

 request.headers['host'] = [{ key: 'host', value: 'www.example.com'}];
 }
 }
 callback(null, request);
};

Python

from urllib.parse import parse_qs

def lambda_handler(event, context):
 request = event['Records'][0]['cf']['request']

 # Reads query string to check if custom origin should be used, and
 # if true, sets custom origin properties

 params = {k: v[0] for k, v in parse_qs(request['querystring']).items()}

 if params.get('useCustomOrigin') == 'true':
 # Set custom origin fields
 request['origin'] = {
 'custom': {
 'domainName': 'www.example.com',
 'port': 443,
 'protocol': 'https',
 'path': '',
 'sslProtocols': ['TLSv1', 'TLSv1.1'],
 'readTimeout': 5,
 'keepaliveTimeout': 5,
 'customHeaders': {}
 }
 }
 request['headers']['host'] = [{'key': 'host', 'value':
 'www.example.com'}]

 return request

Example: Using an origin request trigger to gradually transfer traffic from one Amazon S3
bucket to another

This function demonstrates how you can gradually transfer traffic from one Amazon S3 bucket to
another, in a controlled way.

Example functions 753

Amazon CloudFront Developer Guide

Node.js

'use strict';

 function getRandomInt(min, max) {
 /* Random number is inclusive of min and max*/
 return Math.floor(Math.random() * (max - min + 1)) + min;
 }

exports.handler = (event, context, callback) => {
 const request = event.Records[0].cf.request;
 const BLUE_TRAFFIC_PERCENTAGE = 80;

 /**
 * This Lambda function demonstrates how to gradually transfer traffic from
 * one S3 bucket to another in a controlled way.
 * We define a variable BLUE_TRAFFIC_PERCENTAGE which can take values from
 * 1 to 100. If the generated randomNumber less than or equal to
 BLUE_TRAFFIC_PERCENTAGE, traffic
 * is re-directed to blue-bucket. If not, the default bucket that we've
 configured
 * is used.
 */

 const randomNumber = getRandomInt(1, 100);

if (randomNumber <= BLUE_TRAFFIC_PERCENTAGE) {
 const domainName = 'blue-bucket.s3.amazonaws.com';
 request.origin.s3.domainName = domainName;
 request.headers['host'] = [{ key: 'host', value: domainName}];
 }
 callback(null, request);
};

Python

import math
import random

def getRandomInt(min, max):
 # Random number is inclusive of min and max
 return math.floor(random.random() * (max - min + 1)) + min

Example functions 754

Amazon CloudFront Developer Guide

def lambda_handler(event, context):
 request = event['Records'][0]['cf']['request']
 BLUE_TRAFFIC_PERCENTAGE = 80

 '''
 This Lambda function demonstrates how to gradually transfer traffic from
 one S3 bucket to another in a controlled way.
 We define a variable BLUE_TRAFFIC_PERCENTAGE which can take values from
 1 to 100. If the generated randomNumber less than or equal to
 BLUE_TRAFFIC_PERCENTAGE, traffic
 is re-directed to blue-bucket. If not, the default bucket that we've configured
 is used.
 '''

 randomNumber = getRandomInt(1, 100)

 if randomNumber <= BLUE_TRAFFIC_PERCENTAGE:
 domainName = 'blue-bucket.s3.amazonaws.com'
 request['origin']['s3']['domainName'] = domainName
 request['headers']['host'] = [{'key': 'host', 'value': domainName}]

 return request

Example: Using an origin request trigger to change the origin domain name based on the
country header

This function demonstrates how you can change the origin domain name based on the
CloudFront-Viewer-Country header, so content is served from an origin closer to the viewer's
country.

Implementing this functionality for your distribution can have advantages such as the following:

• Reducing latencies when the Region specified is nearer to the viewer's country

• Providing data sovereignty by making sure that data is served from an origin that's in the same
country that the request came from

Note that to enable this functionality you must configure your distribution to cache based on the
CloudFront-Viewer-Country header. For more information, see the section called “Cache
based on selected request headers”.

Example functions 755

Amazon CloudFront Developer Guide

Node.js

'use strict';

exports.handler = (event, context, callback) => {
 const request = event.Records[0].cf.request;

 if (request.headers['cloudfront-viewer-country']) {
 const countryCode = request.headers['cloudfront-viewer-country'][0].value;
 if (countryCode === 'GB' || countryCode === 'DE' || countryCode === 'IE')
 {
 const domainName = 'eu.example.com';
 request.origin.custom.domainName = domainName;
 request.headers['host'] = [{key: 'host', value: domainName}];
 }
 }

 callback(null, request);
};

Python

def lambda_handler(event, context):
 request = event['Records'][0]['cf']['request']

 viewerCountry = request['headers'].get('cloudfront-viewer-country')
 if viewerCountry:
 countryCode = viewerCountry[0]['value']
 if countryCode == 'GB' or countryCode == 'DE' or countryCode == 'IE':
 domainName = 'eu.example.com'
 request['origin']['custom']['domainName'] = domainName
 request['headers']['host'] = [{'key': 'host', 'value': domainName}]
 return request

Updating error statuses - examples

The examples in this section provide guidance for how you can use Lambda@Edge to change the
error status that is returned to users.

Topics

• Example: Using an origin response trigger to update the error status code to 200

Example functions 756

Amazon CloudFront Developer Guide

• Example: Using an origin response trigger to update the error status code to 302

Example: Using an origin response trigger to update the error status code to 200

This function demonstrates how you can update the response status to 200 and generate static
body content to return to the viewer in the following scenario:

• The function is triggered in an origin response.

• The response status from the origin server is an error status code (4xx or 5xx).

Node.js

'use strict';

exports.handler = (event, context, callback) => {
 const response = event.Records[0].cf.response;

 /**
 * This function updates the response status to 200 and generates static
 * body content to return to the viewer in the following scenario:
 * 1. The function is triggered in an origin response
 * 2. The response status from the origin server is an error status code (4xx or
 5xx)
 */

 if (response.status >= 400 && response.status <= 599) {
 response.status = 200;
 response.statusDescription = 'OK';
 response.body = 'Body generation example';
 }

 callback(null, response);
};

Python

def lambda_handler(event, context):
 response = event['Records'][0]['cf']['response']

 '''
 This function updates the response status to 200 and generates static

Example functions 757

Amazon CloudFront Developer Guide

 body content to return to the viewer in the following scenario:
 1. The function is triggered in an origin response
 2. The response status from the origin server is an error status code (4xx or
 5xx)
 '''

 if int(response['status']) >= 400 and int(response['status']) <= 599:
 response['status'] = 200
 response['statusDescription'] = 'OK'
 response['body'] = 'Body generation example'
 return response

Example: Using an origin response trigger to update the error status code to 302

This function demonstrates how you can update the HTTP status code to 302 to redirect to
another path (cache behavior) that has a different origin configured. Note the following:

• The function is triggered in an origin response.

• The response status from the origin server is an error status code (4xx or 5xx).

Node.js

'use strict';

exports.handler = (event, context, callback) => {
 const response = event.Records[0].cf.response;
 const request = event.Records[0].cf.request;

 /**
 * This function updates the HTTP status code in the response to 302, to
 redirect to another
 * path (cache behavior) that has a different origin configured. Note the
 following:
 * 1. The function is triggered in an origin response
 * 2. The response status from the origin server is an error status code (4xx or
 5xx)
 */

 if (response.status >= 400 && response.status <= 599) {
 const redirect_path = `/plan-b/path?${request.querystring}`;

Example functions 758

Amazon CloudFront Developer Guide

 response.status = 302;
 response.statusDescription = 'Found';

 /* Drop the body, as it is not required for redirects */
 response.body = '';
 response.headers['location'] = [{ key: 'Location', value: redirect_path }];
 }

 callback(null, response);
};

Python

def lambda_handler(event, context):
 response = event['Records'][0]['cf']['response']
 request = event['Records'][0]['cf']['request']

 '''
 This function updates the HTTP status code in the response to 302, to redirect
 to another
 path (cache behavior) that has a different origin configured. Note the
 following:
 1. The function is triggered in an origin response
 2. The response status from the origin server is an error status code (4xx or
 5xx)
 '''

 if int(response['status']) >= 400 and int(response['status']) <= 599:
 redirect_path = '/plan-b/path?%s' % request['querystring']

 response['status'] = 302
 response['statusDescription'] = 'Found'

 # Drop the body as it is not required for redirects
 response['body'] = ''
 response['headers']['location'] = [{'key': 'Location', 'value':
 redirect_path}]

 return response

Example functions 759

Amazon CloudFront Developer Guide

Accessing the request body - examples

The examples in this section illustrate how you can use Lambda@Edge to work with POST requests.

Note

To use these examples, you must enable the include body option in the distribution's
Lambda function association. It is not enabled by default.

• To enable this setting in the CloudFront console, select the check box for Include Body in
the Lambda Function Association.

• To enable this setting in the CloudFront API or with AWS CloudFormation, set the
IncludeBody field to true in LambdaFunctionAssociation.

Topics

• Example: Using a request trigger to read an HTML form

• Example: Using a request trigger to modify an HTML form

Example: Using a request trigger to read an HTML form

This function demonstrates how you can process the body of a POST request generated by an
HTML form (web form), such as a "contact us" form. For example, you might have an HTML form
like the following:

<html>
 <form action="https://example.com" method="post">
 Param 1: <input type="text" name="name1">

 Param 2: <input type="text" name="name2">

 input type="submit" value="Submit">
 </form>
</html>

For the example function that follows, the function must be triggered in a CloudFront viewer
request or origin request.

Node.js

'use strict';

Example functions 760

Amazon CloudFront Developer Guide

const querystring = require('querystring');

/**
 * This function demonstrates how you can read the body of a POST request
 * generated by an HTML form (web form). The function is triggered in a
 * CloudFront viewer request or origin request event type.
 */

exports.handler = (event, context, callback) => {
 const request = event.Records[0].cf.request;

 if (request.method === 'POST') {
 /* HTTP body is always passed as base64-encoded string. Decode it. */
 const body = Buffer.from(request.body.data, 'base64').toString();

 /* HTML forms send the data in query string format. Parse it. */
 const params = querystring.parse(body);

 /* For demonstration purposes, we only log the form fields here.
 * You can put your custom logic here. For example, you can store the
 * fields in a database, such as Amazon DynamoDB, and generate a response
 * right from your Lambda@Edge function.
 */
 for (let param in params) {
 console.log(`For "${param}" user submitted "${params[param]}".\n`);
 }
 }
 return callback(null, request);
};

Python

import base64
from urllib.parse import parse_qs

'''
Say there is a POST request body generated by an HTML such as:

<html>
<form action="https://example.com" method="post">
 Param 1: <input type="text" name="name1">

 Param 2: <input type="text" name="name2">

Example functions 761

Amazon CloudFront Developer Guide

 input type="submit" value="Submit">
</form>
</html>

'''

'''
This function demonstrates how you can read the body of a POST request
generated by an HTML form (web form). The function is triggered in a
CloudFront viewer request or origin request event type.
'''

def lambda_handler(event, context):
 request = event['Records'][0]['cf']['request']

 if request['method'] == 'POST':
 # HTTP body is always passed as base64-encoded string. Decode it
 body = base64.b64decode(request['body']['data'])

 # HTML forms send the data in query string format. Parse it
 params = {k: v[0] for k, v in parse_qs(body).items()}

 '''
 For demonstration purposes, we only log the form fields here.
 You can put your custom logic here. For example, you can store the
 fields in a database, such as Amazon DynamoDB, and generate a response
 right from your Lambda@Edge function.
 '''
 for key, value in params.items():
 print("For %s use submitted %s" % (key, value))

 return request

Example: Using a request trigger to modify an HTML form

This function demonstrates how you can modify the body of a POST request generated by an
HTML form (web form). The function is triggered in a CloudFront viewer request or origin request.

Node.js

'use strict';

Example functions 762

Amazon CloudFront Developer Guide

const querystring = require('querystring');

exports.handler = (event, context, callback) => {
 var request = event.Records[0].cf.request;
 if (request.method === 'POST') {
 /* Request body is being replaced. To do this, update the following
 /* three fields:
 * 1) body.action to 'replace'
 * 2) body.encoding to the encoding of the new data.
 *
 * Set to one of the following values:
 *
 * text - denotes that the generated body is in text format.
 * Lambda@Edge will propagate this as is.
 * base64 - denotes that the generated body is base64 encoded.
 * Lambda@Edge will base64 decode the data before sending
 * it to the origin.
 * 3) body.data to the new body.
 */
 request.body.action = 'replace';
 request.body.encoding = 'text';
 request.body.data = getUpdatedBody(request);
 }
 callback(null, request);
};

function getUpdatedBody(request) {
 /* HTTP body is always passed as base64-encoded string. Decode it. */
 const body = Buffer.from(request.body.data, 'base64').toString();

 /* HTML forms send data in query string format. Parse it. */
 const params = querystring.parse(body);

 /* For demonstration purposes, we're adding one more param.
 *
 * You can put your custom logic here. For example, you can truncate long
 * bodies from malicious requests.
 */
 params['new-param-name'] = 'new-param-value';
 return querystring.stringify(params);
}

Example functions 763

Amazon CloudFront Developer Guide

Python

import base64
from urllib.parse import parse_qs, urlencode

def lambda_handler(event, context):
 request = event['Records'][0]['cf']['request']
 if request['method'] == 'POST':
 '''
 Request body is being replaced. To do this, update the following
 three fields:
 1) body.action to 'replace'
 2) body.encoding to the encoding of the new data.

 Set to one of the following values:

 text - denotes that the generated body is in text format.
 Lambda@Edge will propagate this as is.
 base64 - denotes that the generated body is base64 encoded.
 Lambda@Edge will base64 decode the data before sending
 it to the origin.
 3) body.data to the new body.
 '''
 request['body']['action'] = 'replace'
 request['body']['encoding'] = 'text'
 request['body']['data'] = getUpdatedBody(request)
 return request

def getUpdatedBody(request):
 # HTTP body is always passed as base64-encoded string. Decode it
 body = base64.b64decode(request['body']['data'])

 # HTML forms send data in query string format. Parse it
 params = {k: v[0] for k, v in parse_qs(body).items()}

 # For demonstration purposes, we're adding one more param

 # You can put your custom logic here. For example, you can truncate long
 # bodies from malicious requests
 params['new-param-name'] = 'new-param-value'
 return urlencode(params)

Example functions 764

Amazon CloudFront Developer Guide

Restrictions on edge functions

The following topics describe the restrictions that apply to CloudFront Functions and
Lambda@Edge. Some restrictions apply to all edge functions, while others apply only to
CloudFront Functions or Lambda@Edge.

For information about quotas (formerly referred to as limits), see Quotas on CloudFront Functions
and Quotas on Lambda@Edge.

Topics

• Restrictions on all edge functions

• Restrictions on CloudFront Functions

• Restrictions on Lambda@Edge

Restrictions on all edge functions

The following restrictions apply to all edge functions, both CloudFront Functions and
Lambda@Edge.

Topics

• AWS account ownership

• Combining CloudFront Functions with Lambda@Edge

• HTTP status codes

• HTTP headers

• Query strings

• URI

• URI and query string encoding

• Microsoft Smooth Streaming

• Tagging

AWS account ownership

To associate an edge function with a CloudFront distribution, the function and distribution must be
owned by the same AWS account.

Restrictions on edge functions 765

Amazon CloudFront Developer Guide

Combining CloudFront Functions with Lambda@Edge

For a given cache behavior, the following restrictions apply:

• Each event type (viewer request, origin request, origin response, and viewer response) can have
only one edge function association.

• You cannot combine CloudFront Functions and Lambda@Edge in viewer events (viewer request
and viewer response).

All other combinations of edge functions are allowed. The following table explains the allowed
combinations.

CloudFront Functions

Viewer request Viewer response

Viewer request Not allowed Not allowed

Origin request Allowed Allowed

Origin response Allowed Allowed
Lambda@Edge

Viewer response Not allowed Not allowed

HTTP status codes

CloudFront does not invoke edge functions for viewer response events when the origin returns
HTTP status code 400 or higher.

Lambda@Edge functions for origin response events are invoked for all origin responses, including
when the origin returns HTTP status code 400 or higher. For more information, see Updating HTTP
responses in origin response triggers.

HTTP headers

Certain HTTP headers are disallowed, which means they're not exposed to edge functions and
functions can't add them. Other headers are read-only, which means functions can read them but
can't add or modify them.

Restrictions on all edge functions 766

Amazon CloudFront Developer Guide

Topics

• Disallowed headers

• Read-only headers

Disallowed headers

The following HTTP headers are not exposed to edge functions, and functions can't add them.
If your function adds one of these headers, it fails CloudFront validation and CloudFront returns
HTTP status code 502 (Bad Gateway) to the viewer.

• Connection

• Expect

• Keep-Alive

• Proxy-Authenticate

• Proxy-Authorization

• Proxy-Connection

• Trailer

• Upgrade

• X-Accel-Buffering

• X-Accel-Charset

• X-Accel-Limit-Rate

• X-Accel-Redirect

• X-Amz-Cf-*

• X-Amzn-Auth

• X-Amzn-Cf-Billing

• X-Amzn-Cf-Id

• X-Amzn-Cf-Xff

• X-Amzn-Errortype

• X-Amzn-Fle-Profile

• X-Amzn-Header-Count

Restrictions on all edge functions 767

Amazon CloudFront Developer Guide

• X-Amzn-Header-Order

• X-Amzn-Lambda-Integration-Tag

• X-Amzn-RequestId

• X-Cache

• X-Edge-*

• X-Forwarded-Proto

• X-Real-IP

Read-only headers

The following headers are read-only. Your function can read them and use them as input to the
function logic, but it can't change the values. If your function adds or edits a read-only header, the
request fails CloudFront validation and CloudFront returns HTTP status code 502 (Bad Gateway) to
the viewer.

Read-only headers in viewer request events

The following headers are read-only in viewer request events.

• Content-Length

• Host

• Transfer-Encoding

• Via

Read-only headers in origin request events (Lambda@Edge only)

The following headers are read-only in origin request events, which exist only in Lambda@Edge.

• Accept-Encoding

• Content-Length

• If-Modified-Since

• If-None-Match

• If-Range

• If-Unmodified-Since

Restrictions on all edge functions 768

Amazon CloudFront Developer Guide

• Transfer-Encoding

• Via

Read-only headers in origin response events (Lambda@Edge only)

The following headers are read-only in origin response events, which exist only in Lambda@Edge.

• Transfer-Encoding

• Via

Read-only headers in viewer response events

The following headers are read-only in viewer response events for both CloudFront Functions and
Lambda@Edge.

• Warning

• Via

The following headers are read-only in viewer response events for Lambda@Edge.

• Content-Length

• Content-Encoding

• Transfer-Encoding

Query strings

The following restrictions apply to functions that read, update, or create a query string in a request
URI.

• (Lambda@Edge only) To access the query string in an origin request or origin response function,
your cache policy or origin request policy must be set to All for Query strings.

• A function can create or update a query string for viewer request and origin request events
(origin request events exist only in Lambda@Edge).

• A function can read a query string, but cannot create or update one, for origin response and
viewer response events (origin response events exist only in Lambda@Edge).

Restrictions on all edge functions 769

Amazon CloudFront Developer Guide

• If a function creates or updates a query string, the following restrictions apply:

• The query string can't include spaces, control characters, or the fragment identifier (#).

• The total size of the URI, including the query string, must be less than 8,192 characters.

• We recommend that you use percent encoding for the URI and query string. For more
information, see URI and query string encoding.

URI

If a function changes the URI for a request, that doesn't change the cache behavior for the request
or the origin that the request is forwarded to.

The total size of the URI, including the query string, must be less than 8,192 characters.

URI and query string encoding

URI and query string values passed to edge functions are UTF-8 encoded. Your function should use
UTF-8 encoding for the URI and query string values that it returns. Percent encoding is compatible
with UTF-8 encoding.

The following list explains how CloudFront handles URI and query string value encoding:

• When values in the request are UTF-8 encoded, CloudFront forwards the values to your function
without changing them.

• When values in the request are ISO-8859-1 encoded, CloudFront converts the values to UTF-8
encoding before forwarding them to your function.

• When values in the request are encoded using some other character encoding, CloudFront
assumes that they're ISO-8859-1 encoded and tries to convert from ISO-8859-1 to UTF-8.

Important

The converted characters might be an inaccurate interpretation of the values in the
original request. This might cause your function or your origin to produce an unintended
result.

The URI and query string values that CloudFront forwards to your origin depend on whether a
function changes the values:

Restrictions on all edge functions 770

https://en.wikipedia.org/wiki/ISO/IEC_8859-1

Amazon CloudFront Developer Guide

• If a function does not change the URI or query string, CloudFront forwards the values that it
received in the request to your origin.

• If a function changes the URI or query string, CloudFront forwards the UTF-8 encoded values.

Microsoft Smooth Streaming

You cannot use edge functions with a CloudFront distribution that you're using for streaming
media files that you've transcoded into the Microsoft Smooth Streaming format.

Tagging

You cannot add tags to edge functions. To learn more about tagging in CloudFront, see Tagging
Amazon CloudFront distributions.

Restrictions on CloudFront Functions

The following restrictions apply only to CloudFront Functions.

For information about quotas (formerly referred to as limits), see Quotas on CloudFront Functions.

Logs

Function logs in CloudFront Functions are truncated at 10 KB.

Request body

CloudFront Functions cannot access the body of the HTTP request.

Regional AWS Security Token Service endpoints when using the CloudFront
KeyValueStore API

When you call the CloudFront KeyValueStore API by using Signature Version 4A (SigV4A) with
temporary security credentials—for example, when using AWS Identity and Access Management
(IAM) roles—make sure that you request the temporary credentials from a Regional endpoint
in AWS STS. If you use the global endpoint for AWS STS (sts.amazonaws.com), AWS STS will
generate temporary credentials from a global endpoint, which isn't supported by SigV4A. As a
result, you will receive an authentication error. To resolve this issue, use any of the listed Regional
endpoints for AWS STS in the IAM User Guide. If you're configuring SAML to use AWS STS regional
endpoints, see the How to use regional SAML endpoints for failover blog post.

Restrictions on CloudFront Functions 771

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_Operations_Amazon_CloudFront_KeyValueStore.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html#id_credentials_region-endpoints
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html#id_credentials_region-endpoints
https://aws.amazon.com/blogs/security/how-to-use-regional-saml-endpoints-for-failover/

Amazon CloudFront Developer Guide

Runtime

The CloudFront Functions runtime environment does not support dynamic code evaluation, and
it restricts access to the network, file system, and timers. For more information, see Restricted
features.

Compute utilization

CloudFront Functions have a limit on the time they can take to run, measured as compute
utilization. Compute utilization is a number between 0 and 100 that indicates the amount of
time that the function took to run as a percentage of the maximum allowed time. For example,
a compute utilization of 35 means that the function completed in 35% of the maximum allowed
time.

When you test a function, you can see the compute utilization value in the output of the test event.
For production functions, you can view the compute utilization metric on the Monitoring page in
the CloudFront console, or in CloudWatch.

Restrictions on Lambda@Edge

The following restrictions apply only to Lambda@Edge.

For information about quotas, see Quotas on Lambda@Edge.

DNS resolution

CloudFront performs a DNS resolution on the origin domain name before it executes your origin
request Lambda@Edge function. If the DNS service for your domain is experiencing issues and
CloudFront can't resolve the domain name to get the IP address, your Lambda@Edge function will
not invoke. CloudFront will return an HTTP 502 status code (Bad Gateway) to the client. For more
information, see HTTP 502 status code (DNS error).

For more information about managing DNS failover, see Configuring DNS failover in the Amazon
Route 53 Developer Guide.

HTTP status codes

Lambda@Edge functions for viewer response events cannot modify the HTTP status code of the
response, regardless of whether the response came from the origin or the CloudFront cache.

Restrictions on Lambda@Edge 772

https://console.aws.amazon.com/cloudfront/v4/home?#/monitoring
https://console.aws.amazon.com/cloudfront/v4/home?#/monitoring
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-failover-configuring.html

Amazon CloudFront Developer Guide

Lambda function version

You must use a numbered version of the Lambda function, not $LATEST or aliases.

Lambda Region

The Lambda function must be in the US East (N. Virginia) Region.

Lambda role permissions

The IAM execution role associated with the Lambda function must allow the service principals
lambda.amazonaws.com and edgelambda.amazonaws.com to assume the role. For more
information, see Setting IAM permissions and roles for Lambda@Edge.

Lambda features

The following Lambda features are not supported by Lambda@Edge:

• Lambda runtime management configurations other than Auto (default)

• Configuration of your Lambda function to access resources inside your VPC

• Lambda function dead letter queues

• Lambda environment variables (except for reserved environment variables, which are
automatically supported)

• Lambda functions with AWS Lambda layers

• Using AWS X-Ray

• Lambda provisioned concurrency

Note

Lambda@Edge functions have the same Regional concurrency capabilities as Lambda
functions. However, when the quota is increased for concurrent Lambda@Edge
executions, the quota is increased for all the AWS Regions where the Lambda@Edge
function is replicated. For more information, see Quotas on Lambda@Edge.

• Lambda functions defined as container images

• Lambda functions that use the arm64 architecture

• Lambda functions with more than 512 MB of ephemeral storage

Restrictions on Lambda@Edge 773

https://docs.aws.amazon.com/lambda/latest/dg/runtimes-update.html#runtime-management-controls
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html#dlq
https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-images.html
https://docs.aws.amazon.com/lambda/latest/dg/foundation-arch.html

Amazon CloudFront Developer Guide

Supported runtimes

Lambda@Edge supports Lambda functions with the following runtimes:

Node.js Python

• Node.js 20

• Node.js 18

• Node.js 16¹

• Node.js 14²

• Node.js 12²

• Node.js 10²

• Node.js 8²

• Node.js 6²

• Python 3.12

• Python 3.11

• Python 3.10

• Python 3.9

• Python 3.8

• Python 3.7

¹This version of Node.js has reached end of life, and will soon be deprecated by AWS Lambda.

²This version of Node.js has reached end of life, and is fully deprecated by AWS Lambda.

You can’t create or update functions with deprecated versions of Node.js. You can only associate
existing functions with these versions with CloudFront distributions. Functions with these versions
that are associated with distributions will continue to run. However, we recommend that you move
your function to newer versions of Node.js. For more information, see Runtime deprecation policy
in the AWS Lambda Developer Guide and the Node.js release schedule on GitHub.

Tip

As a best practice, use the latest versions of the provided runtimes for performance
improvements and new features.

CloudFront headers

Lambda@Edge functions can read, edit, remove, or add any of the CloudFront headers listed in
Adding CloudFront request headers.

Restrictions on Lambda@Edge 774

https://docs.aws.amazon.com/lambda/latest/dg/runtime-support-policy.html
https://github.com/nodejs/Release#release-schedule

Amazon CloudFront Developer Guide

Notes

• If you want CloudFront to add these headers, you must configure CloudFront to add
them by using a cache policy or origin request policy.

• CloudFront adds the headers after the viewer request event, which means the headers
aren't available to Lambda@Edge functions in a viewer request. The headers are only
available to Lambda@Edge functions in an origin request and origin response.

• If the viewer request includes headers that have these names, and you configured
CloudFront to add these headers using a cache policy or origin request policy, then
CloudFront overwrites the header values that were in the viewer request. Viewer-facing
functions see the header value from the viewer request, while origin-facing functions see
the header value that CloudFront added.

• If a viewer request function adds the CloudFront-Viewer-Country header, it fails
validation and CloudFront returns HTTP status code 502 (Bad Gateway) to the viewer.

Restrictions on the request body with the include body option

When you choose the Include Body option to expose the request body to your Lambda@Edge
function, the following information and size quotas apply to the portions of the body that are
exposed or replaced.

• CloudFront always base64 encodes the request body before exposing it to Lambda@Edge.

• If the request body is large, CloudFront truncates it before exposing it to Lambda@Edge, as
follows:

• For viewer request events, the body is truncated at 40 KB.

• For origin request events, the body is truncated at 1 MB.

• If you access the request body as read-only, CloudFront sends the full original request body to
the origin.

• If your Lambda@Edge function replaces the request body, the following size quotas apply to the
body that the function returns:

• If the Lambda@Edge function returns the body as plain text:

• For viewer request events, the body is truncated at 40 KB.

• For origin request events, the body is truncated at 1 MB.
Restrictions on Lambda@Edge 775

Amazon CloudFront Developer Guide

• If the Lambda@Edge function returns the body as base64 encoded text:

• For viewer request events, the body is truncated at 53.2 KB.

• For origin request events, the body is truncated at 1.33 MB.

Restrictions on Lambda@Edge 776

Amazon CloudFront Developer Guide

Reports, metrics, and logs

CloudFront provides several options for reporting, monitoring, and logging your CloudFront
resources:

• You can view and download reports to see usage and activity for your CloudFront distributions,
including billing reports, cache statistics, popular content, and top referrers.

• You can monitor and track CloudFront, including your edge computing functions, directly in
the CloudFront console or by using Amazon CloudWatch. CloudFront sends various metrics to
CloudWatch for distributions and edge functions, both Lambda@Edge and CloudFront Functions.

• You can view logs for the viewer requests that your CloudFront distributions receive with
standard logs or real-time logs. In addition to viewer request logs, you can use CloudWatch Logs
to get logs for your edge functions, both Lambda@Edge and CloudFront Functions. You can also
use AWS CloudTrail to get logs of the CloudFront API activity in your AWS account.

• You can track configuration changes to your CloudFront resources using AWS Config.

For more information about each of these options, see the following topics.

Topics

• AWS billing and usage reports for CloudFront

• CloudFront reports in the console

• Monitoring CloudFront metrics with Amazon CloudWatch

• CloudFront and edge function logging

• Tracking configuration changes with AWS Config

AWS billing and usage reports for CloudFront

AWS provides two usage reports for CloudFront:

• The billing report is a high-level view of all of the activity for the AWS services that you're
using, including CloudFront. For more information, see the section called “AWS billing report for
CloudFront”.

AWS billing and usage reports for CloudFront 777

https://aws.amazon.com/cloudfront/features/#Edge_Computing

Amazon CloudFront Developer Guide

• The usage report is a summary of activity for a specific service, aggregated by hour, day, or
month. It also includes usage charts that provide a graphical representation of your CloudFront
usage. For more information, see the section called “AWS usage report for CloudFront”.

To help you understand these reports, see the detailed information in the section called
“Interpreting your AWS bill and the AWS usage report for CloudFront”.

Note

Like other AWS services, CloudFront charges you for only what you use. For more
information, see CloudFront pricing.

Topics

• AWS billing report for CloudFront

• AWS usage report for CloudFront

• Interpreting your AWS bill and the AWS usage report for CloudFront

AWS billing report for CloudFront

You can view a summary of your AWS usage and charges, listed by service, on the bills page in the
AWS Management Console.

You can also download a more detailed version of the report in CSV format. The detailed billing
report includes the following values that apply to CloudFront:

• ProductCode — AmazonCloudFront

• UsageType — One of the following values:

• A code that identifies the type of data transfer

• Invalidations

• SSL-Cert-Custom

For more information, see the section called “Interpreting your AWS bill and the AWS usage
report for CloudFront”.

• ItemDescription — A description of the billing rate for the UsageType.

AWS billing report for CloudFront 778

https://aws.amazon.com/cloudfront/pricing/

Amazon CloudFront Developer Guide

• Usage Start Date/Usage End Date — The day that the usage applies to, in Coordinated
Universal Time (UTC).

• Usage Quantity — One of the following values:

• The number of requests during the specified time period

• The amount of data transferred in gigabytes

• The number of objects invalidated

• The sum of the prorated months that you had SSL certificates associated with enabled
CloudFront distributions. For example, if you have one certificate associated with an
enabled distribution for an entire month and another certificate associated with an enabled
distribution for half of the month, this value will be 1.5.

To display summary billing information and download the detailed billing report

1. Sign in to the AWS Management Console at https://console.aws.amazon.com/console/home.

2. In the title bar, choose your user name, then choose Billing Dashboard.

3. In the navigation pane, choose Bills.

4. To view summary information for CloudFront, under Details, choose CloudFront.

5. To download a detailed billing report in CSV format, choose Download CSV, then follow the
on-screen prompts to save the report.

AWS usage report for CloudFront

AWS provides a CloudFront usage report that is more detailed than the billing report but less
detailed than CloudFront access logs. The usage report provides aggregate usage data by hour,
day, or month, and it lists operations by region and usage type, such as data transferred out of the
Australia region.

The CloudFront usage report includes the following values:

• Service — AmazonCloudFront

• Operation — HTTP method. Values include DELETE, GET, HEAD, OPTIONS, PATCH, POST, and
PUT.

• UsageType — One of the following values:

• A code that identifies the type of data transfer

AWS usage report for CloudFront 779

https://console.aws.amazon.com/console/home

Amazon CloudFront Developer Guide

• Invalidations

• SSL-Cert-Custom

For more information, see the section called “Interpreting your AWS bill and the AWS usage
report for CloudFront”.

• Resource — Either the ID of the CloudFront distribution associated with the usage or the
certificate ID of an SSL certificate that you have associated with a CloudFront distribution.

• StartTime/EndTime — The day that the usage applies to, in Coordinated Universal Time (UTC).

• UsageValue — (1) The number of requests during the specified time period or (2) the amount of
data transferred in bytes.

If you’re using Amazon S3 as the origin for CloudFront, consider running the usage report for
Amazon S3, too. However, if you use Amazon S3 for purposes other than as an origin for your
CloudFront distributions, it might not be clear what portion applies to your CloudFront usage.

Tip

For detailed information about every request that CloudFront receives for your objects,
turn on CloudFront access logs for your distribution. For more information, see the section
called “Using standard logs (access logs)”.

Interpreting your AWS bill and the AWS usage report for CloudFront

Your AWS bill for CloudFront includes codes and abbreviations that might not be immediately
obvious. The first column in the following table lists items that appear in your bill and explains
what each means.

In addition, you can get an AWS usage report for CloudFront that contains more detail than the
AWS bill for CloudFront. The second column in the table lists items that appear in the usage report
and shows the correlation between bill items and usage report items.

Most codes in both columns include a two-letter abbreviation that indicates the location of the
activity. In the following table, region in a code is replaced in your AWS bill and in the usage
report by one of the following two-letter abbreviations:

• AP: Hong Kong, Philippines, South Korea, Taiwan, and Singapore (Asia Pacific)

Interpreting your AWS bill and the AWS usage report for CloudFront 780

Amazon CloudFront Developer Guide

• AU: Australia

• CA: Canada

• EU: Europe and Israel

• IN: India

• JP: Japan

• ME: Middle East

• SA: South America

• US: United States

• ZA: South Africa

For more information about pricing by region, see Amazon CloudFront Pricing.

Note

This table doesn't include charges for transferring your objects from an Amazon S3 bucket
to CloudFront edge locations. These charges, if any, appear in the AWS Data Transfer
portion of your AWS bill.

Items in your CloudFront bill Values in the usage type column in the
CloudFront usage report

region-DataTransfer-Out-Bytes

Total bytes served from CloudFront edge
locations in region in response to user GET
and HEAD requests.

region-Out-Bytes-HTTP-Static:

Bytes served via HTTP for objects with TTL ≥
3,600 seconds.

region-Out-Bytes-HTTPS-Static:

Bytes served via HTTPS for objects with TTL ≥
3,600 seconds.

region-Out-Bytes-HTTP-Dynamic:

Bytes served via HTTP for objects with TTL <
3,600 seconds.

Interpreting your AWS bill and the AWS usage report for CloudFront 781

https://aws.amazon.com/cloudfront/pricing/

Amazon CloudFront Developer Guide

Items in your CloudFront bill Values in the usage type column in the
CloudFront usage report

region-Out-Bytes-HTTPS-Dynamic:

Bytes served via HTTPS for objects with TTL <
3,600 seconds.

region-Out-Bytes-HTTP-Proxy:

Bytes returned from CloudFront to viewers
via HTTP in response to DELETE, OPTIONS,
PATCH, POST, and PUT requests.

region-Out-Bytes-HTTPS-Proxy:

Bytes returned from CloudFront to viewers
via HTTPS in response to DELETE, OPTIONS,
PATCH, POST, and PUT requests.

region-DataTransfer-Out-OBytes

Total bytes transferred from CloudFront edge
locations to your origin or edge function in
response to DELETE, OPTIONS, PATCH, POST,
and PUT requests. The charges include data
transfer for WebSocket data from client to
 server.

region-Out-OBytes-HTTP-Proxy

Total bytes transferred via HTTP from
CloudFront edge locations to your origin
or edge function in response to DELETE,
OPTIONS, PATCH, POST, and PUT requests.

region-Out-OBytes-HTTPS-Proxy

Total bytes transferred via HTTPS from
CloudFront edge locations to your origin
or edge function in response to DELETE,
OPTIONS, PATCH, POST, and PUT requests.

Interpreting your AWS bill and the AWS usage report for CloudFront 782

Amazon CloudFront Developer Guide

Items in your CloudFront bill Values in the usage type column in the
CloudFront usage report

region-Requests-Tier1

Number of HTTP GET and HEAD requests.

region-Requests-HTTP-Static

Number of HTTP GET and HEAD requests
served for objects with TTL ≥ 3,600 seconds.

region-Requests-HTTP-Dynamic

Number of HTTP GET and HEAD requests
served for objects with TTL < 3,600 seconds.

region-Requests-Tier2-HTTPS

Number of HTTPS GET and HEAD requests.

region-Requests-HTTPS-Static

Number of HTTPS GET and HEAD requests
served for objects with TTL ≥ 3,600 seconds.

region-Requests-HTTPS-Dynamic

Number of HTTPS GET and HEAD requests
served for objects with TTL < 3,600 seconds.

region-Requests-HTTP-Proxy

Number of HTTP DELETE, OPTIONS, PATCH,
 POST, and PUT requests that CloudFront
 forwards to your origin or edge function.

Also includes the number of HTTP WebSocket
 requests (GET requests with the Upgrade:
 websocket header) that CloudFront
forwards to your origin or edge function.

region-Requests-HTTP-Proxy

Same as the corresponding item in your
CloudFront bill.

Interpreting your AWS bill and the AWS usage report for CloudFront 783

Amazon CloudFront Developer Guide

Items in your CloudFront bill Values in the usage type column in the
CloudFront usage report

region-Requests-HTTPS-Proxy

Number of HTTPS DELETE, OPTIONS, PATCH,
 POST, and PUT requests that CloudFront
 forwards to your origin or edge function.

Also includes the number of HTTPS
WebSocket requests (GET requests with the
Upgrade: websocket header) that
CloudFront forwards to your origin or edge
 function.

region-Requests-HTTPS-Proxy

Same as the corresponding item in your
CloudFront bill.

region-Requests-HTTPS-Proxy-FLE

Number of HTTPS DELETE, OPTIONS, PATCH,
and POST requests processed with field-level
encryption that CloudFront forwards to your
origin or edge function.

region-Requests-HTTPS-Proxy-FLE

Same as the corresponding item in your
CloudFront bill.

region-Bytes-OriginShield

Total bytes transferred from the origin to any
regional edge cache, including the regional
edge cache that is enabled as Origin Shield.

region-Bytes-OriginShield

Total bytes transferred from the origin to any
regional edge cache, including the regional
edge cache that is enabled as Origin Shield.

region-OBytes-OriginShield

Total bytes transferred to the origin from any
regional edge cache, including the regional
edge cache that is enabled as Origin Shield.

region-OBytes-OriginShield

Total bytes transferred to the origin from any
regional edge cache, including the regional
edge cache that is enabled as Origin Shield.

Interpreting your AWS bill and the AWS usage report for CloudFront 784

Amazon CloudFront Developer Guide

Items in your CloudFront bill Values in the usage type column in the
CloudFront usage report

region-Requests-OriginShield

Number of requests that go to Origin Shield
as an incremental layer. For dynamic (non-
cacheable) requests that are proxied to the
origin, Origin Shield is always an incremental
layer. For cacheable requests, Origin Shield is
sometimes an incremental layer.

For more information, see the section called
“Estimating Origin Shield costs”.

region-Requests-OriginShield

Number of requests that go to Origin Shield
as an incremental layer. For dynamic (non-
cacheable) requests that are proxied to the
origin, Origin Shield is always an incremental
layer. For cacheable requests, Origin Shield is
 sometimes an incremental layer.

For more information, see the section called
“Estimating Origin Shield costs”.

Invalidations

The charge for invalidating objects (removing
the objects from CloudFront edge locations
); for more information, see Paying for file
invalidation.

Invalidations

Same as the corresponding item in your
CloudFront bill.

SSL-Cert-Custom

The charge for using an SSL certificate with
a CloudFront alternate domain name such
as example.com instead of using the default
CloudFront SSL certificate and the domain
name that CloudFront assigned to your
distribution.

SSL-Cert-Custom

Same as the corresponding item in your
CloudFront bill.

CloudFront reports in the console

The CloudFront console includes a variety of reports about your CloudFront activity, including the
following:

• CloudFront cache statistics reports

• CloudFront popular objects report

CloudFront console reports 785

Amazon CloudFront Developer Guide

• CloudFront top referrers report

• CloudFront usage reports

• CloudFront viewers reports

Most of these reports are based on the data in CloudFront access logs, which contain detailed
information about every user request that CloudFront receives. You don't need to enable access
logs to view the reports. For more information, see Configuring and using standard logs (access
logs). The CloudFront usage report is based on the AWS usage report for CloudFront, which
also doesn't require any special configuration. For more information, see AWS usage report for
CloudFront.

CloudFront cache statistics reports

The CloudFront cache statistics report includes the following information:

• Total requests – Shows the total number of requests for all HTTP status codes (for example, 200
or 404) and all methods (for example, GET, HEAD, or POST).

• Percentage of viewer requests by result type – Shows hits, misses, and errors as a percentage of
total viewer requests for the selected CloudFront distribution.

• Bytes transferred to viewers – Shows total bytes and bytes from misses.

• HTTP status codes – Shows viewer requests by HTTP status code.

• Percentage of GET requests that didn't finish downloading– Shows viewer GET requests that
didn't finish downloading the requested object as a percentage of total requests.

For more information, see CloudFront cache statistics reports.

CloudFront popular objects report

The CloudFront popular objects report lists the 50 most popular objects and statistics about those
objects, including the number of requests for the object, the number of hits and misses, the hit
ratio, the number of bytes served for misses, the total bytes served, the number of incomplete
downloads, and the number of requests by HTTP status code (2xx, 3xx, 4xx, and 5xx).

For more information, see CloudFront popular objects report.

CloudFront top referrers report

CloudFront console reports 786

Amazon CloudFront Developer Guide

The CloudFront top referrers report includes the top 25 referrers, the number of requests from
a referrer, and the number of requests from a referrer as a percentage of the total number of
requests during the specified period.

For more information, see CloudFront top referrers report.

CloudFront usage reports

The CloudFront usage reports include the following information:

• Number of requests – Shows the total number of requests that CloudFront responds to from
edge locations in the selected region during each time interval for the specified CloudFront
distribution.

• Data transferred by protocol and data transferred by destination – Both show the total
amount of data transferred from CloudFront edge locations in the selected region during each
time interval for the specified CloudFront distribution. They separate the data differently, as
follows:

• By protocol – Separates the data by protocol: HTTP or HTTPS.

• By destination – Separates the data by destination: to your users or to your origin.

For more information, see CloudFront usage reports.

CloudFront viewers reports

The CloudFront viewers reports include the following information:

• Devices – Shows the types of devices (for example, Desktop or Mobile) that your users use to
access your content

• Browsers – Shows the name (or the name and version) of the browsers that your users use most
frequently to access your content, for example, Chrome or Firefox

• Operating systems – Shows the name (or the name and version) of the operating system that
viewers run on most frequently when accessing your content, for example, Linux, macOS, or
Windows

• Locations – Shows the locations, by country or by U.S. state/territory, of the viewers that access
your content most frequently

For more information, see CloudFront viewers reports.

CloudFront console reports 787

Amazon CloudFront Developer Guide

CloudFront cache statistics reports

You can use the Amazon CloudFront console to display a graphical representation of statistics
related to CloudFront edge locations. Data for these statistics are drawn from the same source as
CloudFront access logs. You can display charts for a specified date range in the last 60 days, with
data points every hour or every day. You can usually view data about requests that CloudFront
received as recently as an hour ago, but data can occasionally be delayed by as much as 24 hours.

Note

You don't need to enable access logging to view cache statistics.

To display CloudFront cache statistics

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. In the navigation pane, click Cache Statistics.

3. In the CloudFront Cache Statistics Reports pane, for Start Date and End Date, select the date
range for which you want to display cache statistics charts. Available ranges depend on the
value that you select for Granularity:

• Daily – To display charts with one data point per day, select any date range in the previous
60 days.

• Hourly – To display charts with one data point every hour, select any date range of up to 14
days within the previous 60 days.

Dates and times are in Coordinated Universal Time (UTC).

4. For Granularity, specify whether to display one data point per day or one data point per hour
in the charts. If you specify a date range greater than 14 days, the option to specify one data
point per hour is not available.

5. For Viewer Location, choose the continent from which viewer requests originated, or choose
All Locations. Cache statistics charts include data for requests that CloudFront received from
the specified location.

6. In the Distribution list, select the distributions for which you want to display data in the usage
charts:

CloudFront cache statistics reports 788

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

• An individual distribution – The charts display data for the selected CloudFront
distribution. The Distribution list displays the distribution ID and alternate domain names
(CNAMEs) for the distribution, if any. If a distribution has no alternate domain names, the list
includes origin domain names for the distribution.

• All distributions – The charts display summed data for all distributions that are associated
with the current AWS account, excluding distributions that you have deleted.

7. Click Update.

8. To view data for a daily or hourly data point within a chart, move your mouse pointer over the
data point.

9. For charts that show data transferred, note that you can change the vertical scale to gigabytes,
megabytes, or kilobytes for each chart.

Topics

• Downloading data in CSV format

• How cache statistics charts are related to data in the CloudFront standard logs (access logs)

Downloading data in CSV format

You can download the cache statistics report in CSV format. This section explains how to download
the report and describes the values in the report.

To download the cache statistics report in CSV format

1. While viewing the Cache Statistics report, click CSV.

2. In the Opening file name dialog box, choose whether to open or save the file.

Information about the report

The first few rows of the report include the following information:

Version

The version of the format for this CSV file.

Report

The name of the report.

CloudFront cache statistics reports 789

Amazon CloudFront Developer Guide

DistributionID

The ID of the distribution that you ran the report for, or ALL if you ran the report for all
distributions.

StartDateUTC

The beginning of the date range for which you ran the report, in Coordinated Universal Time
(UTC).

EndDateUTC

The end of the date range for which you ran the report, in Coordinated Universal Time (UTC).

GeneratedTimeUTC

The date and time on which you ran the report, in Coordinated Universal Time (UTC).

Granularity

Whether each row in the report represents one hour or one day.

ViewerLocation

The continent that viewer requests originated from, or ALL, if you chose to download the report
for all locations.

Data in the cache statistics report

The report includes the following values:

DistributionID

The ID of the distribution that you ran the report for, or ALL if you ran the report for all
distributions.

FriendlyName

An alternate domain name (CNAME) for the distribution, if any. If a distribution has no alternate
domain names, the list includes an origin domain name for the distribution.

ViewerLocation

The continent that viewer requests originated from, or ALL, if you chose to download the report
for all locations.

CloudFront cache statistics reports 790

Amazon CloudFront Developer Guide

TimeBucket

The hour or the day that data applies to, in Coordinated Universal Time (UTC).

RequestCount

The total number of requests for all HTTP status codes (for example, 200 or 404) and all
methods (for example, GET, HEAD, or POST).

HitCount

The number of viewer requests for which the object is served from a CloudFront edge cache.

MissCount

The number of viewer requests for which the object isn't currently in an edge cache, so
CloudFront must get the object from your origin.

ErrorCount

The number of viewer requests that resulted in an error, so CloudFront didn't serve the object.

IncompleteDownloadCount

The number of viewer requests for which the viewer started but didn't finish downloading the
object.

HTTP2xx

The number of viewer requests for which the HTTP status code was a 2xx value (succeeded).

HTTP3xx

The number of viewer requests for which the HTTP status code was a 3xx value (additional
action is required).

HTTP4xx

The number of viewer requests for which the HTTP status code was a 4xx value (client error).

HTTP5xx

The number of viewer requests for which the HTTP status code was a 5xx value (server error).

TotalBytes

The total number of bytes served to viewers by CloudFront in response to all requests for all
HTTP methods.

CloudFront cache statistics reports 791

Amazon CloudFront Developer Guide

BytesFromMisses

The number of bytes served to viewers for objects that were not in the edge cache at the time
of the request. This value is a good approximation of bytes transferred from your origin to
CloudFront edge caches. However, it excludes requests for objects that are already in the edge
cache but that have expired.

How cache statistics charts are related to data in the CloudFront standard logs
(access logs)

The following table shows how cache statistics charts in the CloudFront console correspond
with values in CloudFront access logs. For more information about CloudFront access logs, see
Configuring and using standard logs (access logs).

Total requests

This chart shows the total number of requests for all HTTP status codes (for example, 200 or
404) and all methods (for example, GET, HEAD, or POST). Total requests shown in this chart
equal the total number of requests in the access log files for the same time period.

Percentage of viewer requests by result type

This chart shows hits, misses, and errors as a percentage of total viewer requests for the
selected CloudFront distribution:

• Hit – A viewer request for which the object is served from a CloudFront edge cache. In access
logs, these are requests for which the value of x-edge-response-result-type is Hit.

• Miss – A viewer request for which the object isn't currently in an edge cache, so CloudFront
must get the object from your origin. In access logs, these are requests for which the value of
x-edge-response-result-type is Miss.

• Error – A viewer request that resulted in an error, so CloudFront didn't serve the object. In
access logs, these are requests for which the value of x-edge-response-result-type is
Error, LimitExceeded, or CapacityExceeded.

The chart does not include refresh hits—requests for objects that are in the edge cache but
that have expired. In access logs, refresh hits are requests for which the value of x-edge-
response-result-type is RefreshHit.

Bytes transferred to viewers

This chart shows two values:

CloudFront cache statistics reports 792

Amazon CloudFront Developer Guide

• Total bytes – The total number of bytes served to viewers by CloudFront in response to all
requests for all HTTP methods. In CloudFront access logs, Total Bytes is the sum of the values
in the sc-bytes column for all of the requests during the same time period.

• Bytes from misses – The number of bytes served to viewers for objects that were not in the
edge cache at the time of the request. In CloudFront access logs, bytes from misses is the
sum of the values in the sc-bytes column for requests for which the value of x-edge-
result-type is Miss. This value is a good approximation of bytes transferred from your
origin to CloudFront edge caches. However, it excludes requests for objects that are already in
the edge cache but that have expired.

HTTP status codes

This chart shows viewer requests by HTTP status code. In CloudFront access logs, status codes
appear in the sc-status column:

• 2xx – The request succeeded.

• 3xx – Additional action is required. For example, 301 (Moved Permanently) means that the
requested object has moved to a different location.

• 4xx – The client apparently made an error. For example, 404 (Not Found) means that the
client requested an object that could not be found.

• 5xx – The origin server didn't fill the request. For example, 503 (Service Unavailable) means
that the origin server is currently unavailable.

Percentage of GET requests that didn't finish downloading

This chart shows viewer GET requests that didn't finish downloading the requested object as
a percentage of total requests. Typically, downloading an object doesn't complete because
the viewer canceled the download, for example, by clicking a different link or by closing the
browser. In CloudFront access logs, these requests have a value of 200 in the sc-status
column and a value of Error in the x-edge-result-type column.

CloudFront popular objects report

The Amazon CloudFront console can display a list of the 50 most popular objects for a distribution
during a specified date range in the previous 60 days.

Data for the popular objects report is drawn from the same source as CloudFront access logs. To
get an accurate count of the top 50 objects, CloudFront counts the requests for all of your objects

CloudFront popular objects report 793

Amazon CloudFront Developer Guide

in 10-minute intervals beginning at midnight and keeps a running total of the top 150 objects for
the next 24 hours. (CloudFront also retains daily totals for the top 150 objects for 60 days.) Near
the bottom of the list, objects constantly rise onto or drop off of the list, so the totals for those
objects are approximations. The fifty objects at the top of the list of 150 objects may rise and fall
within the list, but they rarely drop off of the list altogether, so the totals for those objects typically
are more reliable.

When an object drops off of the list of the top 150 objects and then rises onto the list again over
the course of a day, CloudFront adds an estimated number of requests for the period that the
object was missing from the list. The estimate is based on the number of requests received by
whichever object was at the bottom of the list during that time period. If the object rises into the
top 50 objects later in the day, the estimates of the number of requests that CloudFront received
while the object was out of the top 150 objects usually causes the number of requests in the
popular objects report to exceed the number of requests that appear in the access logs for that
object.

Note

You don't need to enable access logging to view a list of popular objects.

To display popular objects for a distribution

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. In the navigation pane, click Popular Objects.

3. In the CloudFront Popular Objects Report pane, for Start Date and End Date, select the date
range for which you want to display a list of popular objects. You can choose any date range in
the previous 60 days.

Dates and times are in Coordinated Universal Time (UTC).

4. In the Distribution list, select the distribution for which you want to display a list of popular
objects.

5. Click Update.

Topics

• Downloading data in CSV format

CloudFront popular objects report 794

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

• How data in the popular objects report is related to data in the CloudFront standard logs (access
logs)

Downloading data in CSV format

You can download the popular objects report in CSV format. This section explains how to
download the report and describes the values in the report.

To download the popular objects report in CSV format

1. While viewing the popular objects report, click CSV.

2. In the Opening file name dialog box, choose whether to open or save the file.

Information about the report

The first few rows of the report include the following information:

Version

The version of the format for this CSV file.

Report

The name of the report.

DistributionID

The ID of the distribution that you ran the report for.

StartDateUTC

The beginning of the date range for which you ran the report, in Coordinated Universal Time
(UTC).

EndDateUTC

The end of the date range for which you ran the report, in Coordinated Universal Time (UTC).

GeneratedTimeUTC

The date and time on which you ran the report, in Coordinated Universal Time (UTC).

CloudFront popular objects report 795

Amazon CloudFront Developer Guide

Data in the popular objects report

The report includes the following values:

DistributionID

The ID of the distribution that you ran the report for.

FriendlyName

An alternate domain name (CNAME) for the distribution, if any. If a distribution has no alternate
domain names, the list includes an origin domain name for the distribution.

Object

The last 500 characters of the URL for the object.

RequestCount

The total number of requests for this object.

HitCount

The number of viewer requests for which the object is served from a CloudFront edge cache.

MissCount

The number of viewer requests for which the object isn't currently in an edge cache, so
CloudFront must get the object from your origin.

HitCountPct

The value of HitCount as a percentage of the value of RequestCount.

BytesFromMisses

The number of bytes served to viewers for this object when the object was not in the edge
cache at the time of the request.

TotalBytes

The total number of bytes served to viewers by CloudFront for this object in response to all
requests for all HTTP methods.

IncompleteDownloadCount

The number of viewer requests for this object for which the viewer started but didn't finish
downloading the object.

CloudFront popular objects report 796

Amazon CloudFront Developer Guide

HTTP2xx

The number of viewer requests for which the HTTP status code was a 2xx value (succeeded).

HTTP3xx

The number of viewer requests for which the HTTP status code was a 3xx value (additional
action is required).

HTTP4xx

The number of viewer requests for which the HTTP status code was a 4xx value (client error).

HTTP5xx

The number of viewer requests for which the HTTP status code was a 5xx value (server error).

How data in the popular objects report is related to data in the CloudFront
standard logs (access logs)

The following list shows how values in the popular objects report in the CloudFront console
correspond with values in CloudFront access logs. For more information about CloudFront access
logs, see Configuring and using standard logs (access logs).

URL

The last 500 characters of the URL that viewers use to access the object.

Requests

The total number of requests for the object. This value generally corresponds closely with the
number of GET requests for the object in CloudFront access logs.

Hits

The number of viewer requests for which the object was served from a CloudFront edge cache.
In access logs, these are requests for which the value of x-edge-response-result-type is
Hit.

Misses

The number of viewer requests for which the object wasn't in an edge cache, so CloudFront
retrieved the object from your origin. In access logs, these are requests for which the value of
x-edge-response-result-type is Miss.

CloudFront popular objects report 797

Amazon CloudFront Developer Guide

Hit ratio

The value of the Hits column as a percentage of the value of the Requests column.

Bytes from misses

The number of bytes served to viewers for objects that were not in the edge cache at the time
of the request. In CloudFront access logs, bytes from misses is the sum of the values in the sc-
bytes column for requests for which the value of x-edge-result-type is Miss.

Total bytes

The total number of bytes that CloudFront served to viewers in response to all requests for the
object for all HTTP methods. In CloudFront access logs, total bytes is the sum of the values in
the sc-bytes column for all of the requests during the same time period.

Incomplete downloads

The number of viewer requests that did not finish downloading the requested object. Typically,
the reason that a download doesn't complete is that the viewer canceled it, for example, by
clicking a different link or by closing the browser. In CloudFront access logs, these requests have
a value of 200 in the sc-status column and a value of Error in the x-edge-result-type
column.

2xx

The number of requests for which the HTTP status code is 2xx, Successful. In CloudFront
access logs, status codes appear in the sc-status column.

3xx

The number of requests for which the HTTP status code is 3xx, Redirection. 3xx status
codes indicate that additional action is required. For example, 301 (Moved Permanently) means
that the requested object has moved to a different location.

4xx

The number of requests for which the HTTP status code is 4xx, Client Error. 4xx status
codes indicate that the client apparently made an error. For example, 404 (Not Found) means
that the client requested an object that could not be found.

5xx

The number of requests for which the HTTP status code is 5xx, Server Error. 5xx
status codes indicate that the origin server didn't fill the request. For example, 503 (Service
Unavailable) means that the origin server is currently unavailable.

CloudFront popular objects report 798

Amazon CloudFront Developer Guide

CloudFront top referrers report

The CloudFront console can display a list of the 25 domains of the websites that originated
the most HTTP and HTTPS requests for objects that CloudFront is distributing for a specified
distribution. These top referrers can be search engines, other websites that link directly to your
objects, or your own website. For example, if https://example.com/index.html links to 10 graphics,
example.com is the referrer for all 10 graphics. You can display the top referrers report for any date
range in the previous 60 days.

Note

If a user enters a URL directly into the address line of a browser, there is no referrer for the
requested object.

Data for the top referrers report is drawn from the same source as CloudFront access logs. To get
an accurate count of the top 25 referrers, CloudFront counts the requests for all of your objects
in 10-minute intervals and keeps a running total of the top 75 referrers. Near the bottom of
the list, referrers constantly rise onto or drop off of the list, so the totals for those referrers are
approximations. The 25 referrers at the top of the list of 75 referrers may rise and fall within the
list, but they rarely drop off of the list altogether, so the totals for those referrers typically are
more reliable.

Note

You don't need to enable access logging to view a list of top referrers.

To display top referrers for a distribution

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. In the navigation pane, click Top Referrers.

3. In the CloudFront Top Referrers Report pane, for Start Date and End Date, select the date
range for which you want to display a list of top referrers.

Dates and times are in Coordinated Universal Time (UTC).

CloudFront top referrers report 799

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

4. In the Distribution list, select the distribution for which you want to display a list of top
referrers.

5. Click Update.

Topics

• Downloading data in CSV format

• How data in the top referrers report is related to data in the CloudFront standard logs (access
logs)

Downloading data in CSV format

You can download the top referrers report in CSV format. This section explains how to download
the report and describes the values in the report.

To download the top referrers report in CSV format

1. While viewing the Top Referrers report, click CSV.

2. In the Opening file name dialog box, choose whether to open or save the file.

Information about the report

The first few rows of the report include the following information:

Version

The version of the format for this CSV file.

Report

The name of the report.

DistributionID

The ID of the distribution that you ran the report for, or ALL if you ran the report for all
distributions.

StartDateUTC

The beginning of the date range for which you ran the report, in Coordinated Universal Time
(UTC).

CloudFront top referrers report 800

Amazon CloudFront Developer Guide

EndDateUTC

The end of the date range for which you ran the report, in Coordinated Universal Time (UTC).

GeneratedTimeUTC

The date and time on which you ran the report, in Coordinated Universal Time (UTC).

Data in the top referrers report

The report includes the following values:

DistributionID

The ID of the distribution that you ran the report for, or ALL if you ran the report for all
distributions.

FriendlyName

An alternate domain name (CNAME) for the distribution, if any. If a distribution has no alternate
domain names, the list includes an origin domain name for the distribution.

Referrer

The domain name of the referrer.

RequestCount

The total number of requests from the domain name in the Referrer column.

RequestsPct

The number of requests submitted by the referrer as a percentage of the total number of
requests during the specified period.

How data in the top referrers report is related to data in the CloudFront standard
logs (access logs)

The following list shows how values in the Top Referrers report in the CloudFront console
correspond with values in CloudFront access logs. For more information about CloudFront access
logs, see Configuring and using standard logs (access logs).

CloudFront top referrers report 801

Amazon CloudFront Developer Guide

Referrer

The domain name of the referrer. In access logs, referrers are listed in the cs(Referer)
column.

Request count

The total number of requests from the domain name in the Referrer column. This value
generally corresponds closely with the number of GET requests from the referrer in CloudFront
access logs.

Request %

The number of requests submitted by the referrer as a percentage of the total number of
requests during the specified period. If you have more than 25 referrers, then you can't
calculate Request % based on the data in this table because the request count column doesn't
include all of the requests during the specified period.

CloudFront usage reports

The Amazon CloudFront console can display a graphical representation of your CloudFront usage
that is based on a subset of the usage report data. You can display charts for a specified date
range in the last 60 days, with data points every hour or every day. You can usually view data
about requests that CloudFront received as recently as four hours ago, but data can occasionally be
delayed by as much as 24 hours.

For more information, see How the usage charts are related to data in the CloudFront usage report.

To display CloudFront usage charts

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. In navigation pane, click Usage Reports.

3. In the CloudFront Usage Reports pane, for Start Date and End Date, select the date range for
which you want to display usage charts. Available ranges depend on the value that you select
for Granularity:

• Daily — To display charts with one data point per day, select any date range in the previous
60 days.

CloudFront usage reports 802

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

• Hourly — To display charts with one data point every hour, select any date range of up to 14
days within the previous 60 days.

Dates and times are in Coordinated Universal Time (UTC).

4. For Granularity, specify whether to display one data point per day or one data point per hour
in the charts. If you specify a date range greater than 14 days, the option to specify one data
point per hour is not available.

5. For Billing Region, choose the CloudFront billing region that has the data you want to view, or
choose All Regions. Usage charts include data for requests that CloudFront processes in edge
locations in the specified region. The region where CloudFront processes requests might or
might not correspond with the location of your users.

Select only regions that are included in the price class for your distribution; otherwise, the
usage charts probably won't contain any data. For example, if you chose Price Class 200
for your distribution, the South America and Australia billing regions are not included, so
CloudFront generally won't process your requests from those regions. For more information
about price classes, see CloudFront pricing.

6. In the Distribution list, select the distributions for which you want to display data in the usage
charts:

• An individual distribution — The charts display data for the selected CloudFront
distribution. The Distribution list displays the distribution ID and alternate domain names
(CNAMEs) for the distribution, if any. If a distribution has no alternate domain names, the list
includes origin domain names for the distribution.

• All distributions (excludes deleted) — The charts display summed data for all distributions
that are associated with the current AWS account, excluding distributions that you have
deleted.

• All Deleted Distributions — The charts display summed data for all distributions that are
associated with the current AWS account and that were deleted in the last 60 days.

7. Click Update Graphs.

8. To view data for a daily or hourly data point within a chart, move your mouse pointer over the
data point.

9. For charts that show data transferred, note that you can change the vertical scale to gigabytes,
megabytes, or kilobytes for each chart.

CloudFront usage reports 803

https://aws.amazon.com/cloudfront/pricing/

Amazon CloudFront Developer Guide

Topics

• Downloading data in CSV format

• How the usage charts are related to data in the CloudFront usage report

Downloading data in CSV format

You can download the Usage report in CSV format. This section explains how to download the
report and describes the values in the report.

To download the usage report in CSV format

1. While viewing the Usage report, click CSV.

2. In the Opening file name dialog box, choose whether to open or save the file.

Information about the report

The first few rows of the report include the following information:

Version

The version of the format for this CSV file.

Report

The name of the report.

DistributionID

The ID of the distribution that you ran the report for, ALL if you ran the report for all
distributions, or ALL_DELETED if you ran the report for all deleted distributions.

StartDateUTC

The beginning of the date range for which you ran the report, in Coordinated Universal Time
(UTC).

EndDateUTC

The end of the date range for which you ran the report, in Coordinated Universal Time (UTC).

GeneratedTimeUTC

The date and time on which you ran the report, in Coordinated Universal Time (UTC).

CloudFront usage reports 804

Amazon CloudFront Developer Guide

Granularity

Whether each row in the report represents one hour or one day.

BillingRegion

The continent that viewer requests originated from, or ALL, if you chose to download the report
for all billing regions.

Data in the usage report

The report includes the following values:

DistributionID

The ID of the distribution that you ran the report for, ALL if you ran the report for all
distributions, or ALL_DELETED if you ran the report for all deleted distributions.

FriendlyName

An alternate domain name (CNAME) for the distribution, if any. If a distribution has no alternate
domain names, the list includes an origin domain name for the distribution.

BillingRegion

The CloudFront billing region that you ran the report for, or ALL.

TimeBucket

The hour or the day that data applies to, in Coordinated Universal Time (UTC).

HTTP

The number of HTTP requests that CloudFront responded to from edge locations in the
selected region during each time interval for the specified CloudFront distribution. Values
include:

• The number of GET and HEAD requests, which cause CloudFront to transfer data to your users

• The number of DELETE, OPTIONS, PATCH, POST, and PUT requests, which cause CloudFront
to transfer data to your origin

HTTPS

The number of HTTPS requests that CloudFront responded to from edge locations in the
selected region during each time interval for the specified CloudFront distribution. Values
include:

CloudFront usage reports 805

Amazon CloudFront Developer Guide

• The number of GET and HEAD requests, which cause CloudFront to transfer data to your users

• The number of DELETE, OPTIONS, PATCH, POST, and PUT requests, which cause CloudFront
to transfer data to your origin

HTTPBytes

The total amount of data transferred over HTTP from CloudFront edge locations in the selected
billing region during the time period for the specified CloudFront distribution. Values include:

• Data transferred from CloudFront to your users in response to GET and HEAD requests

• Data transferred from CloudFront to your origin for DELETE, OPTIONS, PATCH, POST, and
PUT requests

• Data transferred from CloudFront to your users in response to DELETE, OPTIONS, PATCH,
POST, and PUT requests

HTTPSBytes

The total amount of data transferred over HTTPS from CloudFront edge locations in the
selected billing region during the time period for the specified CloudFront distribution. Values
include:

• Data transferred from CloudFront to your users in response to GET and HEAD requests

• Data transferred from CloudFront to your origin for DELETE, OPTIONS, PATCH, POST, and
PUT requests

• Data transferred from CloudFront to your users in response to DELETE, OPTIONS, PATCH,
POST, and PUT requests

BytesIn

The total amount of data transferred from CloudFront to your origin for DELETE, OPTIONS,
PATCH, POST, and PUT requests in the selected region during each time interval for the
specified CloudFront distribution.

BytesOut

The total amount of data transferred over HTTP and HTTPS from CloudFront to your users in
the selected region during each time interval for the specified CloudFront distribution. Values
include:

• Data transferred from CloudFront to your users in response to GET and HEAD requests

• Data transferred from CloudFront to your users in response to DELETE, OPTIONS, PATCH,
POST, and PUT requests

CloudFront usage reports 806

Amazon CloudFront Developer Guide

How the usage charts are related to data in the CloudFront usage report

The following list shows how the usage charts in the CloudFront console correspond with values in
the Usage Type column in the CloudFront usage report.

Topics

• Number of requests

• Data transferred by protocol

• Data transferred by destination

Number of requests

This chart shows the total number of requests that CloudFront responds to from edge locations in
the selected region during each time interval for the specified CloudFront distribution, separated
by protocol (HTTP or HTTPS) and type (static, dynamic, or proxy).

Number of HTTP requests

• region-Requests-HTTP-Static: Number of HTTP GET and HEAD requests served for objects
with TTL ≥ 3600 seconds

• region-Requests-HTTP-Dynamic: Number of HTTP GET and HEAD requests served for
objects with TTL < 3600 seconds

• region-Requests-HTTP-Proxy: Number of HTTP DELETE, OPTIONS, PATCH, POST, and PUT
requests that CloudFront forwards to your origin

Number of HTTPS requests

• region-Requests-HTTPS-Static: Number of HTTPS GET and HEAD requests served for
objects with TTL ≥ 3600 seconds

• region-Requests-HTTPS-Dynamic: Number of HTTPS GET and HEAD requests served for
objects with TTL < 3600 seconds

• region-Requests-HTTPS-Proxy: Number of HTTPS DELETE, OPTIONS, PATCH, POST, and
PUT requests that CloudFront forwards to your origin

Data transferred by protocol

This chart shows the total amount of data transferred from CloudFront edge locations in the
selected region during each time interval for the specified CloudFront distribution, separated by
protocol (HTTP or HTTPS), type (static, dynamic, or proxy), and destination (users or origin).

CloudFront usage reports 807

Amazon CloudFront Developer Guide

Data transferred over HTTP

• region-Out-Bytes-HTTP-Static: Bytes served via HTTP for objects with TTL ≥ 3600 seconds

• region-Out-Bytes-HTTP-Dynamic: Bytes served via HTTP for objects with TTL < 3600
seconds

• region-Out-Bytes-HTTP-Proxy: Bytes returned from CloudFront to viewers via HTTP in
response to DELETE, OPTIONS, PATCH, POST, and PUT requests

• region-Out-OBytes-HTTP-Proxy: Total bytes transferred via HTTP from CloudFront edge
locations to your origin in response to DELETE, OPTIONS, PATCH, POST, and PUT requests

Data transferred over HTTPS

• region-Out-Bytes-HTTPS-Static: Bytes served via HTTPS for objects with TTL ≥ 3600
seconds

• region-Out-Bytes-HTTPS-Dynamic: Bytes served via HTTPS for objects with TTL < 3600
seconds

• region-Out-Bytes-HTTPS-Proxy: Bytes returned from CloudFront to viewers via HTTPS in
response to DELETE, OPTIONS, PATCH, POST, and PUT requests

• region-Out-OBytes-HTTPS-Proxy: Total bytes transferred via HTTPS from CloudFront edge
locations to your origin in response to DELETE, OPTIONS, PATCH, POST, and PUT requests

Data transferred by destination

This chart shows the total amount of data transferred from CloudFront edge locations in the
selected region during each time interval for the specified CloudFront distribution, separated by
destination (users or origin), protocol (HTTP or HTTPS), and type (static, dynamic, or proxy).

Data transferred from CloudFront to your users

• region-Out-Bytes-HTTP-Static: Bytes served via HTTP for objects with TTL ≥ 3600 seconds

• region-Out-Bytes-HTTPS-Static: Bytes served via HTTPS for objects with TTL ≥ 3600
seconds

• region-Out-Bytes-HTTP-Dynamic: Bytes served via HTTP for objects with TTL < 3600
seconds

• region-Out-Bytes-HTTPS-Dynamic: Bytes served via HTTPS for objects with TTL < 3600
seconds

• region-Out-Bytes-HTTP-Proxy: Bytes returned from CloudFront to viewers via HTTP in
response to DELETE, OPTIONS, PATCH, POST, and PUT requests

CloudFront usage reports 808

Amazon CloudFront Developer Guide

• region-Out-Bytes-HTTPS-Proxy: Bytes returned from CloudFront to viewers via HTTPS in
response to DELETE, OPTIONS, PATCH, POST, and PUT requests

Data transferred from CloudFront to your origin

• region-Out-OBytes-HTTP-Proxy: Total bytes transferred via HTTP from CloudFront edge
locations to your origin in response to DELETE, OPTIONS, PATCH, POST, and PUT requests

• region-Out-OBytes-HTTPS-Proxy: Total bytes transferred via HTTPS from CloudFront edge
locations to your origin in response to DELETE, OPTIONS, PATCH, POST, and PUT requests

CloudFront viewers reports

The CloudFront console can display four reports about the physical devices (desktop computers,
mobile devices) and about the viewers (typically web browsers) that are accessing your content:

• Devices – The type of the devices that your users use most frequently to access your content, for
example, Desktop or Mobile.

• Browsers – The name (or the name and version) of the browsers that your users use most
frequently to access your content, for example, Chrome or Firefox. The report lists the top 10
browsers.

• Operating systems – The name (or the name and version) of the operating system that viewers
run on most frequently when accessing your content, for example, Linux, macOS, or Windows.
The report lists the top 10 operating systems.

• Locations – The locations, by country or by U.S. state/territory, of the viewers that access your
content most frequently. The report lists the top 50 countries or U.S. states/territories.

You can display all four Viewers reports for any date range in the previous 60 days. For the
Locations report, you can also display the report with data points every hour for any date range of
up to 14 days in the previous 60 days.

Note

You don't need to enable access logging to view Viewers charts and reports.

Topics

• Displaying viewers charts and reports

CloudFront viewers reports 809

Amazon CloudFront Developer Guide

• Downloading data in CSV format

• How data in the locations report is related to data in the CloudFront standard logs (access logs)

Displaying viewers charts and reports

To display CloudFront viewers charts and reports, perform the following procedure.

To display CloudFront viewers charts and reports

1. Sign in to the AWS Management Console and open the CloudFront console at https://
console.aws.amazon.com/cloudfront/v4/home.

2. In the navigation pane, click Viewers.

3. In the CloudFront Viewers pane, for Start Date and End Date, select the date range for which
you want to display viewer charts and reports.

For the Locations chart, available ranges depend on the value that you select for Granularity:

• Daily – To display charts with one data point per day, select any date range in the previous
60 days.

• Hourly – To display charts with one data point every hour, select any date range of up to 14
days within the previous 60 days.

Dates and times are in Coordinated Universal Time (UTC).

4. (Browsers and Operating Systems charts only) For Grouping, specify whether you want to
group browsers and operating systems by name (Chrome, Firefox) or by name and version
(Chrome 40.0, Firefox 35.0).

5. (Locations chart only) For Granularity, specify whether to display one data point per day or
one data point per hour in the charts. If you specify a date range greater than 14 days, the
option to specify one data point per hour is not available.

6. (Locations chart only) For Details, specify whether to display the top locations by countries or
by U.S. states.

7. In the Distribution list, select the distribution for which you want to display data in the usage
charts:

• An individual distribution – The charts display data for the selected CloudFront
distribution. The Distribution list displays the distribution ID and an alternate domain name

CloudFront viewers reports 810

https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

(CNAME) for the distribution, if any. If a distribution has no alternate domain names, the list
includes an origin domain name for the distribution.

• All distributions (excludes deleted) – The charts display summed data for all distributions
that are associated with the current AWS account, excluding distributions that you have
deleted.

8. Click Update.

9. To view data for a daily or hourly data point within a chart, move your mouse pointer over the
data point.

Downloading data in CSV format

You can download each of the viewer reports in CSV format. This section explains how to download
the reports and describes the values in the report.

To download the viewer reports in CSV format

1. While viewing the Viewer report, click CSV.

2. Choose the data that you want to download, for example, Devices or Devices Trends.

3. In the Opening file name dialog box, choose whether to open or save the file.

Topics

• Information about the reports

• Devices report

• Device trends report

• Browsers report

• Browser trends report

• Operating systems report

• Operating system trends report

• Locations report

• Location trends report

Information about the reports

The first few rows of each report includes the following information:

CloudFront viewers reports 811

Amazon CloudFront Developer Guide

Version

The version of the format for this CSV file.

Report

The name of the report.

DistributionID

The ID of the distribution that you ran the report for, or ALL if you ran the report for all
distributions.

StartDateUTC

The beginning of the date range for which you ran the report, in Coordinated Universal Time
(UTC).

EndDateUTC

The end of the date range for which you ran the report, in Coordinated Universal Time (UTC).

GeneratedTimeUTC

The date and time on which you ran the report, in Coordinated Universal Time (UTC).

Grouping (browsers and operating systems reports only)

Whether the data is grouped by the name or by the name and version of the browser or
operating system.

Granularity

Whether each row in the report represents one hour or one day.

Details (locations report only)

Whether requests are listed by country or by U.S. state.

Devices report

The report includes the following values:

DistributionID

The ID of the distribution that you ran the report for, or ALL if you ran the report for all
distributions.

CloudFront viewers reports 812

Amazon CloudFront Developer Guide

FriendlyName

An alternate domain name (CNAME) for the distribution, if any. If a distribution has no alternate
domain names, the list includes an origin domain name for the distribution.

Requests

The number of requests that CloudFront received from each type of device.

RequestsPct

The number of requests that CloudFront received from each type of device as a percentage of
the total number of requests that CloudFront received from all devices.

Device trends report

The report includes the following values:

DistributionID

The ID of the distribution that you ran the report for, or ALL if you ran the report for all
distributions.

FriendlyName

An alternate domain name (CNAME) for the distribution, if any. If a distribution has no alternate
domain names, the list includes an origin domain name for the distribution.

TimeBucket

The hour or the day that the data applies to, in Coordinated Universal Time (UTC).

Desktop

The number of requests that CloudFront received from desktop computers during the period.

Mobile

The number of requests that CloudFront received from mobile devices during the period. Mobile
devices can include both tablets and mobile phones. If CloudFront can't determine whether a
request originated from a mobile device or a tablet, it's counted in the Mobile column.

Smart-TV

The number of requests that CloudFront received from smart TVs during the period.

CloudFront viewers reports 813

Amazon CloudFront Developer Guide

Tablet

The number of requests that CloudFront received from tablets during the period. If CloudFront
can't determine whether a request originated from a mobile device or a tablet, it's counted in
the Mobile column.

Unknown

Requests for which the value of the User-Agent HTTP header was not associated with one of
the standard device types, for example, Desktop or Mobile.

Empty

The number of requests that CloudFront received that didn't include a value in the HTTP User-
Agent header during the period.

Browsers report

The report includes the following values:

DistributionID

The ID of the distribution that you ran the report for, or ALL if you ran the report for all
distributions.

FriendlyName

An alternate domain name (CNAME) for the distribution, if any. If a distribution has no alternate
domain names, the list includes an origin domain name for the distribution.

Group

The browser or the browser and version that CloudFront received requests from, depending on
the value of Grouping. In addition to browser names, possible values include the following:

• Bot/Crawler – primarily requests from search engines that are indexing your content.

• Empty – requests for which the value of the User-Agent HTTP header was empty.

• Other – browsers that CloudFront identified but that aren't among the most popular. If Bot/
Crawler, Empty, and/or Unknown don't appear among the first nine values, then they're also
included in Other.

• Unknown – requests for which the value of the User-Agent HTTP header was not
associated with a standard browser. Most requests in this category come from custom
applications or scripts.

CloudFront viewers reports 814

Amazon CloudFront Developer Guide

Requests

The number of requests that CloudFront received from each type of browser.

RequestsPct

The number of requests that CloudFront received from each type of browser as a percentage of
the total number of requests that CloudFront received during the time period.

Browser trends report

The report includes the following values:

DistributionID

The ID of the distribution that you ran the report for, or ALL if you ran the report for all
distributions.

FriendlyName

An alternate domain name (CNAME) for the distribution, if any. If a distribution has no alternate
domain names, the list includes an origin domain name for the distribution.

TimeBucket

The hour or the day that the data applies to, in Coordinated Universal Time (UTC).

(Browsers)

The remaining columns in the report list the browsers or the browsers and their versions,
depending on the value of Grouping. In addition to browser names, possible values include the
following:

• Bot/Crawler – primarily requests from search engines that are indexing your content.

• Empty – requests for which the value of the User-Agent HTTP header was empty.

• Other – browsers that CloudFront identified but that aren't among the most popular. If Bot/
Crawler, Empty, and/or Unknown don't appear among the first nine values, then they're also
included in Other.

• Unknown – requests for which the value of the User-Agent HTTP header was not
associated with a standard browser. Most requests in this category come from custom
applications or scripts.

CloudFront viewers reports 815

Amazon CloudFront Developer Guide

Operating systems report

The report includes the following values:

DistributionID

The ID of the distribution that you ran the report for, or ALL if you ran the report for all
distributions.

FriendlyName

An alternate domain name (CNAME) for the distribution, if any. If a distribution has no alternate
domain names, the list includes an origin domain name for the distribution.

Group

The operating system or the operating system and version that CloudFront received requests
from, depending on the value of Grouping. In addition to operating system names, possible
values include the following:

• Bot/Crawler – primarily requests from search engines that are indexing your content.

• Empty – requests for which the value of the User-Agent HTTP header was empty.

• Other – operating systems that CloudFront identified but that aren't among the most
popular. If Bot/Crawler, Empty, and/or Unknown don't appear among the first nine values,
then they're also included in Other.

• Unknown – requests for which the value of the User-Agent HTTP header was not
associated with a standard browser. Most requests in this category come from custom
applications or scripts.

Requests

The number of requests that CloudFront received from each type of operating system.

RequestsPct

The number of requests that CloudFront received from each type of operating system as a
percentage of the total number of requests that CloudFront received during the time period.

Operating system trends report

The report includes the following values:

CloudFront viewers reports 816

Amazon CloudFront Developer Guide

DistributionID

The ID of the distribution that you ran the report for, or ALL if you ran the report for all
distributions.

FriendlyName

An alternate domain name (CNAME) for the distribution, if any. If a distribution has no alternate
domain names, the list includes an origin domain name for the distribution.

TimeBucket

The hour or the day that the data applies to, in Coordinated Universal Time (UTC).

(Operating systems)

The remaining columns in the report list the operating systems or the operating systems and
their versions, depending on the value of Grouping. In addition to operating system names,
possible values include the following:

• Bot/Crawler – primarily requests from search engines that are indexing your content.

• Empty – requests for which the value of the User-Agent HTTP header was empty.

• Other – operating systems that CloudFront identified but that aren't among the most
popular. If Bot/Crawler, Empty, and/or Unknown don't appear among the first nine values,
then they're also included in Other.

• Unknown – requests for which the operating system isn't specified in the User-Agent HTTP
header.

Locations report

The report includes the following values:

DistributionID

The ID of the distribution that you ran the report for, or ALL if you ran the report for all
distributions.

FriendlyName

An alternate domain name (CNAME) for the distribution, if any. If a distribution has no alternate
domain names, the list includes an origin domain name for the distribution.

CloudFront viewers reports 817

Amazon CloudFront Developer Guide

LocationCode

The abbreviation for the location that CloudFront received requests from. For more information
about possible values, see the description of Location in How data in the locations report is
related to data in the CloudFront standard logs (access logs).

LocationName

The name of the location that CloudFront received requests from.

Requests

The number of requests that CloudFront received from each location.

RequestsPct

The number of requests that CloudFront received from each location as a percentage of the
total number of requests that CloudFront received from all locations during the time period.

TotalBytes

The number of bytes that CloudFront served to viewers in this country or state, for the specified
distribution and period.

Location trends report

The report includes the following values:

DistributionID

The ID of the distribution that you ran the report for, or ALL if you ran the report for all
distributions.

FriendlyName

An alternate domain name (CNAME) for the distribution, if any. If a distribution has no alternate
domain names, the list includes an origin domain name for the distribution.

TimeBucket

The hour or the day that the data applies to, in Coordinated Universal Time (UTC).

(Locations)

The remaining columns in the report list the locations that CloudFront received requests from.
For more information about possible values, see the description of Location in How data in the
locations report is related to data in the CloudFront standard logs (access logs).

CloudFront viewers reports 818

Amazon CloudFront Developer Guide

How data in the locations report is related to data in the CloudFront standard
logs (access logs)

The following list shows how data in the Locations report in the CloudFront console corresponds
with values in CloudFront access logs. For more information about CloudFront access logs, see
Configuring and using standard logs (access logs).

Location

The country or U.S. state that the viewer is in. In access logs, the c-ip column contains the IP
address of the device that the viewer is running on. We use geolocation data to identify the
geographic location of the device based on the IP address.

If you're displaying the Locations report by country, note that the country list is based on
ISO 3166-2, Codes for the representation of names of countries and their subdivisions – Part 2:
Country subdivision code. The country list includes the following additional values:

• Anonymous Proxy – The request originated from an anonymous proxy.

• Satellite Provider – The request originated from a satellite provider that provides internet
service to multiple countries. Users might be in countries with a high risk of fraud.

• Europe (Unknown) – The request originated from an IP in a block that is used by multiple
European countries. The country that the request originated from cannot be determined.
CloudFront uses Europe (Unknown) as the default.

• Asia/Pacific (Unknown) – The request originated from an IP in a block that is used by
multiple countries in the Asia/Pacific region. The country that the request originated from
cannot be determined. CloudFront uses Asia/Pacific (Unknown) as the default.

If you display the Locations report by U.S. state, note that the report can include U.S. territories
and U.S. Armed Forces regions.

Note

If CloudFront can't determine a user's location, the location will appear as Unknown in
viewer reports.

CloudFront viewers reports 819

https://en.wikipedia.org/wiki/ISO_3166-2
https://en.wikipedia.org/wiki/ISO_3166-2

Amazon CloudFront Developer Guide

Request Count

The total number of requests from the country or U.S. state that the viewer is in, for the
specified distribution and period. This value generally corresponds closely with the number of
GET requests from IP addresses in that country or state in CloudFront access logs.

Request %

One of the following, depending on the value that you selected for Details:

• Countries – The requests from this country as a percentage of the total number of requests.

• U.S. States – The requests from this state as a percentage of the total number of requests
from the United States.

If requests came from more than 50 countries, then you can't calculate Request % based on the
data in this table because the Request Count column doesn't include all of the requests during
the specified period.

Bytes

The number of bytes that CloudFront served to viewers in this country or state, for the specified
distribution and period. To change the display of data in this column to KB, MB, or GB, click the
link in the column heading.

Monitoring CloudFront metrics with Amazon CloudWatch

Amazon CloudFront is integrated with Amazon CloudWatch and automatically publishes
operational metrics for distributions and edge functions (both Lambda@Edge and CloudFront
Functions). Many of these metrics are displayed in a set of graphs in the CloudFront console, and
are also accessible by using the CloudFront API or CLI. All of these metrics are available in the
CloudWatch console or through the CloudWatch API or CLI. The CloudFront metrics don't count
against CloudWatch quotas (formerly known as limits) and don't incur any additional cost.

In addition to the default metrics for CloudFront distributions, you can turn on additional metrics
for an additional cost. The additional metrics apply to CloudFront distributions, and must be turned
on for each distribution separately. For more information about the cost, see the section called
“Estimating cost for the additional CloudFront metrics”.

Viewing these metrics can help you troubleshoot, track, and debug issues. To view these metrics in
the CloudFront console, see the Monitoring page. To view graphs about the activity for a specific

Monitoring CloudFront metrics with Amazon CloudWatch 820

https://aws.amazon.com/cloudfront/features/#Edge_Computing
https://console.aws.amazon.com/cloudfront/v4/home
https://console.aws.amazon.com/cloudwatch/home
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_limits.html
https://console.aws.amazon.com/cloudfront/v4/home?#/monitoring

Amazon CloudFront Developer Guide

CloudFront distribution or edge function, choose one, and then choose View distribution metrics
or View metrics.

You can also set alarms based on these metrics in the CloudFront console, or in the CloudWatch
console, API, or CLI (standard CloudWatch pricing applies). For example, you can set an alarm based
on the 5xxErrorRate metric, which represents the percentage of all viewer requests for which the
response's HTTP status code is in the range of 500 to 599, inclusive. When the error rate reaches a
certain value for a certain amount of time, for example, 5% of requests for 5 continuous minutes,
the alarm is triggered. You specify the alarm's value and its time unit when you create the alarm.
For more information, see Creating alarms.

Note

When you create a CloudWatch alarm in the CloudFront console, it creates one for you in
the US East (N. Virginia) Region (us-east-1). If you create an alarm from the CloudWatch
console, you must use the same Region. Because CloudFront is a global service, metrics for
the service are sent to US East (N. Virginia).

Topics

• Viewing CloudFront and edge function metrics

• Creating alarms for metrics

• Downloading metrics data in CSV format

• Getting metrics using the CloudWatch API

Viewing CloudFront and edge function metrics

You can view operational metrics about your CloudFront distributions and edge functions in the
CloudFront console. To view these metrics, see the Monitoring page in the CloudFront console. To
view graphs about the activity for a specific CloudFront distribution or edge function, choose one,
and then choose View distribution metrics or View metrics.

Topics

• Viewing the default CloudFront distribution metrics

• Turning on additional CloudFront distribution metrics

• Viewing the default Lambda@Edge function metrics

Viewing CloudFront and edge function metrics 821

https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudfront/features/#Edge_Computing
https://console.aws.amazon.com/cloudfront/v4/home?#/monitoring

Amazon CloudFront Developer Guide

• Viewing the default CloudFront Functions metrics

Viewing the default CloudFront distribution metrics

The following default metrics are included for all CloudFront distributions, at no additional cost:

Requests

The total number of viewer requests received by CloudFront, for all HTTP methods and for both
HTTP and HTTPS requests.

Bytes downloaded

The total number of bytes downloaded by viewers for GET, HEAD, and OPTIONS requests.

Bytes uploaded

The total number of bytes that viewers uploaded to your origin with CloudFront, using POST
and PUT requests.

4xx error rate

The percentage of all viewer requests for which the response's HTTP status code is 4xx.

5xx error rate

The percentage of all viewer requests for which the response's HTTP status code is 5xx.

Total error rate

The percentage of all viewer requests for which the response's HTTP status code is 4xx or 5xx.

These metrics are shown in graphs for each CloudFront distribution on the Monitoring page in the
CloudFront console. On each graph, the totals are displayed at 1-minute granularity. In addition to
viewing the graphs, you can also download metrics reports as CSV files.

You can customize the graphs by doing the following:

• To change the time range for the information displayed in the graphs, choose 1h (1 hour), 3h (3
hours), or another range, or specify a custom range.

• To change how often CloudFront updates the information in the graph, choose the down arrow
next to the refresh icon, and then choose a refresh rate. The default refresh rate is 1 minute, but
you can choose 10 seconds, 2 minutes, or other options.

Viewing CloudFront and edge function metrics 822

https://console.aws.amazon.com/cloudfront/v4/home?#/monitoring
https://console.aws.amazon.com/cloudfront/v4/home?#/monitoring

Amazon CloudFront Developer Guide

To view CloudFront graphs in the CloudWatch console, choose Add to dashboard.

Turning on additional CloudFront distribution metrics

In addition to the default metrics, you can turn on additional metrics for an additional cost.
For more information about the cost, see the section called “Estimating cost for the additional
CloudFront metrics”.

These additional metrics must be turned on for each distribution separately:

Cache hit rate

The percentage of all cacheable requests for which CloudFront served the content from its
cache. HTTP POST and PUT requests, and errors, are not considered cacheable requests.

Origin latency

The total time spent from when CloudFront receives a request to when it starts providing a
response to the network (not the viewer), for requests that are served from the origin, not the
CloudFront cache. This is also known as first byte latency, or time-to-first-byte.

Error rate by status code

The percentage of all viewer requests for which the response's HTTP status code is a particular
code in the 4xx or 5xx range. This metric is available for all of the following error codes: 401,
403, 404, 502, 503, and 504.

Turning on additional metrics

You can turn on additional metrics in the CloudFront console, with AWS CloudFormation, with the
AWS Command Line Interface (AWS CLI), or with the CloudFront API.

Console

To turn on additional metrics (console)

1. Sign in to the AWS Management Console and open the Monitoring page in the CloudFront
console.

2. Choose the distribution to turn on additional metrics for, and then choose View
distribution metrics.

3. Choose Manage additional metrics.

Viewing CloudFront and edge function metrics 823

https://console.aws.amazon.com/cloudfront/v4/home?#/monitoring
https://console.aws.amazon.com/cloudfront/v4/home?#/monitoring

Amazon CloudFront Developer Guide

4. In the Manage additional metrics window, turn on Enabled. After you turn on the
additional metrics, you can close the Manage additional metrics window.

After you turn on the additional metrics, they are shown in graphs. On each graph, the totals
are displayed at 1-minute granularity. In addition to viewing the graphs, you can also download
metrics reports as CSV files.

You can customize the graphs by doing the following:

• To change the time range for the information displayed in the graphs, choose 1h (1 hour), 3h
(3 hours), or another range, or specify a custom range.

• To change how often CloudFront updates the information in the graph, choose the down
arrow next to the refresh icon, and then choose a refresh rate. The default refresh rate is 1
minute, but you can choose 10 seconds, 2 minutes, or other options.

To view CloudFront graphs in the CloudWatch console, choose Add to dashboard.

AWS CloudFormation

To turn on additional metrics with AWS CloudFormation, use the
AWS::CloudFront::MonitoringSubscription resource type. The following example
shows the AWS CloudFormation template syntax, in YAML format, for enabling additional
metrics.

Type: AWS::CloudFront::MonitoringSubscription
Properties:
 DistributionId: EDFDVBD6EXAMPLE
 MonitoringSubscription:
 RealtimeMetricsSubscriptionConfig:
 RealtimeMetricsSubscriptionStatus: Enabled

CLI

To manage additional metrics with the AWS Command Line Interface (AWS CLI), use one of the
following commands:

Viewing CloudFront and edge function metrics 824

Amazon CloudFront Developer Guide

To turn on additional metrics for a distribution (CLI)

• Use the create-monitoring-subscription command, as in the following example. Replace
EDFDVBD6EXAMPLE with the ID of the distribution that you are enabling additional metrics
for.

aws cloudfront create-monitoring-subscription --
distribution-id EDFDVBD6EXAMPLE --monitoring-subscription
 RealtimeMetricsSubscriptionConfig={RealtimeMetricsSubscriptionStatus=Enabled}

To see whether additional metrics are turned on for a distribution (CLI)

• Use the get-monitoring-subscription command, as in the following example. Replace
EDFDVBD6EXAMPLE with the ID of the distribution that you are checking.

aws cloudfront get-monitoring-subscription --distribution-id EDFDVBD6EXAMPLE

To turn off additional metrics for a distribution (CLI)

• Use the delete-monitoring-subscription command, as in the following example. Replace
EDFDVBD6EXAMPLE with the ID of the distribution that you are turning off additional
metrics for.

aws cloudfront delete-monitoring-subscription --distribution-id EDFDVBD6EXAMPLE

API

To manage additional metrics with the CloudFront API, use one of the following API operations.

• To turn on additional metrics for a distribution, use CreateMonitoringSubscription.

• To see whether additional metrics are turned on for a distribution, use
GetMonitoringSubscription.

• To turn off additional metrics for a distribution, use DeleteMonitoringSubscription.

Viewing CloudFront and edge function metrics 825

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateMonitoringSubscription.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_GetMonitoringSubscription.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_DeleteMonitoringSubscription.html

Amazon CloudFront Developer Guide

For more information about these API calls, see the API reference documentation for your AWS
SDK or other API client.

Estimating cost for the additional CloudFront metrics

When you turn on additional metrics for a distribution, CloudFront sends up to 8 metrics to
CloudWatch in the US East (N. Virginia) Region. CloudWatch charges a low, fixed rate for each
metric. This rate is charged only once per month, per metric (up to 8 metrics per distribution). This
is a fixed rate, so your cost remains the same regardless of the number of requests or responses
that the CloudFront distribution receives or sends. For the per-metric rate, see the Amazon
CloudWatch pricing page and the CloudWatch pricing calculator. Additional API charges apply
when you retrieve the metrics with the CloudWatch API.

Viewing the default Lambda@Edge function metrics

You can use CloudWatch metrics to monitor, in real time, problems with your Lambda@Edge
functions. There's no additional charge for these metrics.

When you attach a Lambda@Edge function to a cache behavior in a CloudFront distribution,
Lambda begins sending metrics to CloudWatch automatically. Metrics are available for all
Lambda Regions, but to view metrics in the CloudWatch console or get the metric data from the
CloudWatch API, you must use the US East (N. Virginia) Region (us-east-1). The metric group
name is formatted as: AWS/CloudFront/distribution-ID, where distribution-ID is the
ID of the CloudFront distribution that the Lambda@Edge function is associated with. For more
information about CloudWatch metrics, see the Amazon CloudWatch User Guide.

The following default metrics are shown in graphs for each Lambda@Edge function on the
Monitoring page in the CloudFront console:

• 5xx error rate for Lambda@Edge

• Lambda execution errors

• Lambda invalid responses

• Lambda throttles

The graphs include the number of invocations, errors, throttles, and so on. On each graph, the
totals are displayed at 1-minute granularity, grouped by AWS Region.

Viewing CloudFront and edge function metrics 826

https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/#Pricing_calculator
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://console.aws.amazon.com/cloudfront/v4/home?#/monitoring

Amazon CloudFront Developer Guide

If you see a spike in errors that you want to investigate, you can choose a function and then view
log files by AWS Region, until you determine which function is causing the problems and in which
AWS Region. For more information about troubleshooting Lambda@Edge errors, see:

• the section called “How to determine the type of failure”

• Four Steps for Debugging your Content Delivery on AWS

You can customize the graphs by doing the following:

• To change the time range for the information displayed in the graphs, choose 1h (1 hour), 3h (3
hours), or another range, or specify a custom range.

• To change how often CloudFront updates the information in the graph, choose the down arrow
next to the refresh icon, and then choose a refresh rate. The default refresh rate is 1 minute, but
you can choose 10 seconds, 2 minutes, or other options.

To view the graphs in the CloudWatch console, choose Add to dashboard. You must use the US
East (N. Virginia) Region (us-east-1) to view the graphs in the CloudWatch console.

Viewing the default CloudFront Functions metrics

CloudFront Functions sends operational metrics to Amazon CloudWatch so that you can monitor
your functions. Viewing these metrics can help you troubleshoot, track, and debug issues.
CloudFront Functions publishes the following metrics to CloudWatch:

• Invocations (FunctionInvocations) – The number of times the function was started (invoked)
in a given time period.

• Validation errors (FunctionValidationErrors) – The number of validation errors
produced by the function in a given time period. Validation errors occur when the function runs
successfully but returns invalid data (an invalid event object).

• Execution errors (FunctionExecutionErrors) – The number of execution errors that occurred
in a given time period. Execution errors occur when the function fails to complete successfully.

• Compute utilization (FunctionComputeUtilization) – The amount of time that the function
took to run as a percentage of the maximum allowed time. For example, a value of 35 means
that the function completed in 35% of the maximum allowed time. This metric is a number
between 0 and 100.

Viewing CloudFront and edge function metrics 827

https://aws.amazon.com/blogs/networking-and-content-delivery/four-steps-for-debugging-your-content-delivery-on-aws/

Amazon CloudFront Developer Guide

If this value reaches or is near 100, the function has used or is close to using the allowed
execution time and subsequent requests might be throttled. If your function is running at 80% or
more utilization, we recommend that you review your function to reduce the execution time and
improve utilization. For example, you might want to only log errors, simplify any complex regex
expressions, or remove unnecessary parsing of complex JSON objects.

• Throttles (FunctionThrottles) – The number of times that the function was throttled in a
given time period. Functions can be throttled for the following reasons:

• The function continuously exceeds the maximum time allowed for execution

• The function results in compilation errors

• There is an unusually high number of requests per second

CloudFront KeyValueStore also sends the following operational metrics to Amazon CloudWatch:

• Read requests (KvsReadRequests) – The number of times the function successfully read from
the key value store within a given time period.

• Read errors (KvsReadErrors) – The number of times the function failed to read from the key
value store within a given time period.

To view these metrics in the CloudFront console, go to the Monitoring page. To view graphs for a
specific function, choose Functions, select the function, and then choose View function metrics.

All of these metrics are published to CloudWatch in the US East (N. Virginia) Region (us-east-1),
in the CloudFront namespace. You can also view these metrics in the CloudWatch console. In the
CloudWatch console, you can view the metrics per function or per function per distribution.

You can also use CloudWatch to set alarms based on these metrics. For example, you can set an
alarm based on the execution time (FunctionComputeUilization) metric, which represents the
percentage of available time that your function took to run. When the execution time reaches a
certain value for a certain amount of time—for example, greater than 70% of available time for 15
continuous minutes—the alarm is triggered. You specify the alarms value and its time unit when
you create the alarm.

Note

CloudFront Functions sends metrics to CloudWatch only for functions in the LIVE stage
that run in response to production requests and responses. When you test a function,

Viewing CloudFront and edge function metrics 828

https://console.aws.amazon.com/cloudfront/v4/home?#/monitoring

Amazon CloudFront Developer Guide

CloudFront doesn't send any metrics to CloudWatch. The test output contains information
about errors, compute utilization, and function logs (console.log() statements), but this
information is not sent to CloudWatch.

For information about how to get these metrics with the CloudWatch API, see the section called
“Getting metrics using the API”.

Creating alarms for metrics

In the CloudFront console, you can set alarms to notify you by Amazon Simple Notification Service
(Amazon SNS) based on specific CloudFront metrics. You can set an alarm on the Alarms page in
the CloudFront console.

To create an alarm in the console, specify the following values:

Metric

The metric for which you are creating the alarm.

Distribution

The CloudFront distribution for which you are creating the alarm.

Name of alarm

A name for the alarm.

Send a notification to

The Amazon SNS topic to send notification to if this metric triggers an alarm.

Whenever <metric> <operator> <value>

Specify when CloudWatch should trigger an alarm and send a notification to the Amazon SNS
topic. For example, to receive a notification when the 5xx error rate exceeds 1%, specify the
following:

Whenever Average of 5xxErrorRate > 1

Note the following about specifying values:

• Enter only whole numbers without punctuation. For example, to specify one thousand, enter
1000.

Creating alarms 829

https://console.aws.amazon.com/cloudfront/v4/home#/alarms
https://console.aws.amazon.com/cloudfront/v4/home#/alarms

Amazon CloudFront Developer Guide

• For 4xx, 5xx, and total error rates, the value that you specify is a percentage.

• For requests, bytes downloaded, and bytes uploaded, the value that you specify is units. For
example, 1073742000 bytes.

For at least <number> consecutive periods of <time period>

Specify how many consecutive time periods of the specified duration the metric must meet the
criteria before CloudWatch triggers an alarm. When you choose a value, aim for an appropriate
balance between a value that does not alarm for temporary or fleeting problems, but does
alarm for sustained or real problems.

Downloading metrics data in CSV format

You can download the CloudWatch metrics data for a CloudFront distribution in CSV format. You
can download the data when you View distribution metrics for a particular distribution in the
CloudFront console.

Information about the report

The first few rows of the report include the following information:

Version

The CloudFront reporting version.

Report

The name of the report.

DistributionID

The ID of the distribution for which you ran the report.

StartDateUTC

The beginning of the date range for which you ran the report, in Coordinated Universal Time
(UTC).

EndDateUTC

The end of the date range for which you ran the report, in Coordinated Universal Time (UTC).

GeneratedTimeUTC

The date and time on which you ran the report, in Coordinated Universal Time (UTC).

Downloading metrics data 830

https://console.aws.amazon.com/cloudfront/v4/home

Amazon CloudFront Developer Guide

Granularity

The time period for each row in the report, for example, ONE_MINUTE.

Data in the metrics report

The report includes the following values:

DistributionID

The ID of the distribution for which you ran the report.

FriendlyName

An alternate domain name (CNAME) for the distribution, if any. If a distribution has no alternate
domain names, the list includes an origin domain name for the distribution.

TimeBucket

The hour or the day that the data applies to, in Coordinated Universal Time (UTC).

Requests

The total number of requests for all HTTP status codes (for example, 200, 404, and so on) and
all methods (for example, GET, HEAD, POST, and so on) during the time period.

BytesDownloaded

The number of bytes that viewers downloaded for the specified distribution during the time
period.

BytesUploaded

The number of bytes that viewers uploaded for the specified distribution during the time
period.

TotalErrorRatePct

The percentage of requests for which the HTTP status code was a 4xx or 5xx error for the
specified distribution during the time period.

4xxErrorRatePct

The percentage of requests for which the HTTP status code was a 4xx error for the specified
distribution during the time period.

Downloading metrics data 831

Amazon CloudFront Developer Guide

5xxErrorRatePct

The percentage of requests for which the HTTP status code was a 5xx error for the specified
distribution during the time period.

If you have turned on additional metrics for your distribution, then the report also includes the
following additional values:

401ErrorRatePct

The percentage of requests for which the HTTP status code was a 401 error for the specified
distribution during the time period.

403ErrorRatePct

The percentage of requests for which the HTTP status code was a 403 error for the specified
distribution during the time period.

404ErrorRatePct

The percentage of requests for which the HTTP status code was a 404 error for the specified
distribution during the time period.

502ErrorRatePct

The percentage of requests for which the HTTP status code was a 502 error for the specified
distribution during the time period.

503ErrorRatePct

The percentage of requests for which the HTTP status code was a 503 error for the specified
distribution during the time period.

504ErrorRatePct

The percentage of requests for which the HTTP status code was a 504 error for the specified
distribution during the time period.

OriginLatency

The total time spent, in milliseconds, from when CloudFront received a request to when it
started providing a response to the network (not the viewer), for requests that were served
from the origin, not the CloudFront cache. This is also known as first byte latency, or time-to-
first-byte.

Downloading metrics data 832

Amazon CloudFront Developer Guide

CacheHitRate

The percentage of all cacheable requests for which CloudFront served the content from its
cache. HTTP POST and PUT requests, and errors, are not considered cacheable requests.

Getting metrics using the CloudWatch API

You can use the Amazon CloudWatch API or CLI to get the CloudFront metrics in programs or
applications that you build. You can use the raw data to build your own custom dashboards, your
own alarming tools, and so on.

To get the CloudFront metrics from the CloudWatch API, you must use the US East (N. Virginia)
Region (us-east-1). You also need to know certain values and types for each metric.

Topics

• Values for all CloudFront metrics

• Values for CloudFront distribution metrics

• Values for CloudFront function metrics

Values for all CloudFront metrics

The following values apply to all CloudFront metrics:

Namespace

The value for Namespace is always AWS/CloudFront.

Dimensions

Each CloudFront metric has the following two dimensions:

DistributionId

The ID of the CloudFront distribution for which you want to get metrics.

FunctionName

The name of the function (in CloudFront Functions) for which you want to get metrics.

This dimension applies only to functions.

Getting metrics using the API 833

Amazon CloudFront Developer Guide

Region

The value for Region is always Global, because CloudFront is a global service.

Note

To get the CloudFront metrics from the CloudWatch API, you must use the US East (N.
Virginia) Region (us-east-1).

Values for CloudFront distribution metrics

Use information from the following list to get details about specific CloudFront distribution metrics
from the CloudWatch API. Some of these metrics are available only when you have turned on
additional metrics for the distribution.

Note

Only one statistic, Average or Sum, is applicable for each metric. The following list
specifies which statistic is applicable to that metric.

4xx error rate

The percentage of all viewer requests for which the response's HTTP status code is 4xx.

• Metric name: 4xxErrorRate

• Valid statistic: Average

• Unit: Percent

401 error rate

The percentage of all viewer requests for which the response's HTTP status code is 401. To get
this metric, you must first turn on additional metrics.

• Metric name: 401ErrorRate

• Valid statistic: Average

• Unit: Percent

Getting metrics using the API 834

Amazon CloudFront Developer Guide

403 error rate

The percentage of all viewer requests for which the response's HTTP status code is 403. To get
this metric, you must first turn on additional metrics.

• Metric name: 403ErrorRate

• Valid statistic: Average

• Unit: Percent

404 error rate

The percentage of all viewer requests for which the response's HTTP status code is 404. To get
this metric, you must first turn on additional metrics.

• Metric name: 404ErrorRate

• Valid statistic: Average

• Unit: Percent

5xx error rate

The percentage of all viewer requests for which the response's HTTP status code is 5xx.

• Metric name: 5xxErrorRate

• Valid statistic: Average

• Unit: Percent

502 error rate

The percentage of all viewer requests for which the response's HTTP status code is 502. To get
this metric, you must first turn on additional metrics.

• Metric name: 502ErrorRate

• Valid statistic: Average

• Unit: Percent

503 error rate

The percentage of all viewer requests for which the response's HTTP status code is 503. To get
this metric, you must first turn on additional metrics.

• Metric name: 503ErrorRate

• Valid statistic: Average

• Unit: Percent

Getting metrics using the API 835

Amazon CloudFront Developer Guide

504 error rate

The percentage of all viewer requests for which the response's HTTP status code is 504. To get
this metric, you must first turn on additional metrics.

• Metric name: 504ErrorRate

• Valid statistic: Average

• Unit: Percent

Bytes downloaded

The total number of bytes downloaded by viewers for GET, HEAD, and OPTIONS requests.

• Metric name: BytesDownloaded

• Valid statistic: Sum

• Unit: None

Bytes uploaded

The total number of bytes that viewers uploaded to your origin with CloudFront, using POST
and PUT requests.

• Metric name: BytesUploaded

• Valid statistic: Sum

• Unit: None

Cache hit rate

The percentage of all cacheable requests for which CloudFront served the content from its
cache. HTTP POST and PUT requests, and errors, are not considered cacheable requests. To get
this metric, you must first turn on additional metrics.

• Metric name: CacheHitRate

• Valid statistic: Average

• Unit: Percent

Origin latency

The total time spent, in milliseconds, from when CloudFront receives a request to when it starts
providing a response to the network (not the viewer), for requests that are served from the
origin, not the CloudFront cache. This is also known as first byte latency, or time-to-first-byte. To
get this metric, you must first turn on additional metrics.

Getting metrics using the API 836

Amazon CloudFront Developer Guide

• Metric name: OriginLatency

• Valid statistic: Percentile

• Unit: Milliseconds

Note

To get a Percentile statistic from the CloudWatch API, use the
ExtendedStatistics parameter, not Statistics. For more information, see
GetMetricStatistics in the Amazon CloudWatch API Reference, or the reference
documentation for the AWS SDKs.

Requests

The total number of viewer requests received by CloudFront, for all HTTP methods and for both
HTTP and HTTPS requests.

• Metric name: Requests

• Valid statistic: Sum

• Unit: None

Total error rate

The percentage of all viewer requests for which the response's HTTP status code is 4xx or 5xx.

• Metric name: TotalErrorRate

• Valid statistic: Average

• Unit: Percent

Values for CloudFront function metrics

Use information from the following list to get details about specific CloudFront function metrics
from the CloudWatch API.

Note

Only one statistic, Average or Sum, is applicable for each metric. The following list
specifies which statistic is applicable to that metric.

Getting metrics using the API 837

https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html
https://docs.aws.amazon.com/#sdks

Amazon CloudFront Developer Guide

Invocations

The number of times the function was started (invoked) in a given time period.

• Metric name: FunctionInvocations

• Valid statistic: Sum

• Unit: None

Validation errors

The number of validation errors produced by the function in a given time period. Validation
errors occur when the function runs successfully but returns invalid data (an invalid event
object).

• Metric name: FunctionValidationErrors

• Valid statistic: Sum

• Unit: None

Execution errors

The number of execution errors that occurred in a given time period. Execution errors occur
when the function fails to complete successfully.

• Metric name: FunctionExecutionErrors

• Valid statistic: Sum

• Unit: None

Compute utilization

The amount of time (0-100) that the function took to run as a percentage of the maximum
allowed time. For example, a value of 35 means that the function completed in 35% of the
maximum allowed time.

• Metric name: FunctionComputeUtilization

• Valid statistic: Average

• Unit: Percent

Throttles

The number of times that the function was throttled in a given time period.

• Metric name: FunctionThrottles

• Valid statistic: Sum

• Unit: None

Getting metrics using the API 838

Amazon CloudFront Developer Guide

CloudFront and edge function logging

Amazon CloudFront provides different kinds of logging. You can log the viewer requests that come
to your CloudFront distributions, or you can log the CloudFront service activity (API activity) in your
AWS account. You can also get logs from your edge computing functions.

Logging requests

CloudFront provides the following ways to log the requests that come to your distributions.

Standard logs (access logs)

CloudFront standard logs provide detailed records about every request that's made to a
distribution. These logs are useful for many scenarios, including security and access audits.

CloudFront standard logs are delivered to the Amazon S3 bucket of your choice. CloudFront
doesn't charge for standard logs, though you incur Amazon S3 charges for storing and accessing
the log files.

For more information, see Using standard logs (access logs).

Real-time logs

CloudFront real-time logs provide information about requests made to a distribution, in real
time (log records are delivered within seconds of receiving the requests). You can choose the
sampling rate for your real-time logs—that is, the percentage of requests for which you want to
receive real-time log records. You can also choose the specific fields that you want to receive in
the log records.

CloudFront real-time logs are delivered to the data stream of your choice in Amazon Kinesis
Data Streams. CloudFront charges for real-time logs, in addition to the charges you incur for
using Kinesis Data Streams.

For more information, see Real-time logs.

Logging edge functions

You can use Amazon CloudWatch Logs to get logs for your edge functions, both Lambda@Edge
and CloudFront Functions. You can access the logs using the CloudWatch console or the
CloudWatch Logs API. For more information, see the section called “Edge function logs”.

CloudFront and edge function logging 839

https://aws.amazon.com/cloudfront/features/#Edge_Computing

Amazon CloudFront Developer Guide

Logging service activity

You can use AWS CloudTrail to log the CloudFront service activity (API activity) in your AWS
account. CloudTrail provides a record of API actions taken by a user, role, or AWS service in
CloudFront. Using the information collected by CloudTrail, you can determine the API request that
was made to CloudFront, the IP address from which the request was made, who made the request,
when it was made, and additional details.

For more information, see Logging Amazon CloudFront API calls using AWS CloudTrail.

Topics

• Configuring and using standard logs (access logs)

• Real-time logs

• Edge function logs

• Logging Amazon CloudFront API calls using AWS CloudTrail

Configuring and using standard logs (access logs)

You can configure CloudFront to create log files that contain detailed information about every user
request that CloudFront receives. These are called standard logs, also known as access logs. If you
enable standard logs, you can also specify the Amazon S3 bucket that you want CloudFront to save
files in.

You can enable standard logs when you create or update a distribution. For more information, see
Values that you specify when you create or update a distribution.

CloudFront also offers real-time logs, which give you information about requests made to a
distribution in real time (logs are delivered within seconds of receiving the requests). You can use
real-time logs to monitor, analyze, and take action based on content delivery performance. For
more information, see Real-time logs.

Topics

• How standard logging works

• Choosing an Amazon S3 bucket for your standard logs

• Permissions required to configure standard logging and to access your log files

• Required key policy for SSE-KMS buckets

Logging service activity 840

Amazon CloudFront Developer Guide

• File name format

• Timing of standard log file delivery

• How requests are logged when the request URL or headers exceed the maximum size

• Analyzing standard logs

• Editing your standard logging settings

• Deleting standard log files from an Amazon S3 bucket

• Standard log file format

• Charges for standard logs

How standard logging works

The following diagram shows how CloudFront logs information about requests for your objects.

The following explains how CloudFront logs information about requests for your objects, as
illustrated in the previous diagram.

1. In this diagram, you have two websites, A and B, and two corresponding CloudFront
distributions. Users request your objects using URLs that are associated with your distributions.

2. CloudFront routes each request to the appropriate edge location.

Using standard logs (access logs) 841

Amazon CloudFront Developer Guide

3. CloudFront writes data about each request to a log file specific to that distribution. In this
example, information about requests related to Distribution A goes into a log file just for
Distribution A, and information about requests related to Distribution B goes into a log file just
for Distribution B.

4. CloudFront periodically saves the log file for a distribution in the Amazon S3 bucket that
you specified when you enabled logging. CloudFront then starts saving information about
subsequent requests in a new log file for the distribution.

If no users access your content during a given hour, you don't receive any log files for that hour.

Each entry in a log file gives details about a single request. For more information about log file
format, see Standard log file format.

Note

We recommend that you use the logs to understand the nature of the requests for your
content, not as a complete accounting of all requests. CloudFront delivers access logs on a
best-effort basis. The log entry for a particular request might be delivered long after the
request was actually processed and, in rare cases, a log entry might not be delivered at
all. When a log entry is omitted from access logs, the number of entries in the access logs
won't match the usage that appears in the AWS billing and usage reports.

Choosing an Amazon S3 bucket for your standard logs

When you enable logging for a distribution, you specify the Amazon S3 bucket that you want
CloudFront to store log files in. If you're using Amazon S3 as your origin, we recommend that you
don't use the same bucket for your log files; using a separate bucket simplifies maintenance.

Important

Don't choose an Amazon S3 bucket with S3 Object Ownership set to bucket owner
enforced. That setting disables ACLs for the bucket and the objects in it, which prevents
CloudFront from delivering log files to the bucket.

Using standard logs (access logs) 842

https://docs.aws.amazon.com/AmazonS3/latest/userguide/about-object-ownership.html

Amazon CloudFront Developer Guide

Important

Don't choose an Amazon S3 bucket in any of the following Regions, because CloudFront
doesn't deliver standard logs to buckets in these Regions:

• Africa (Cape Town)

• Asia Pacific (Hong Kong)

• Asia Pacific (Hyderabad)

• Asia Pacific (Jakarta)

• Asia Pacific (Melbourne)

• Canada West (Calgary)

• Europe (Milan)

• Europe (Spain)

• Europe (Zurich)

• Israel (Tel Aviv)

• Middle East (Bahrain)

• Middle East (UAE)

You can store the log files for multiple distributions in the same bucket. When you enable logging,
you can specify an optional prefix for the file names, so you can keep track of which log files are
associated with which distributions.

Permissions required to configure standard logging and to access your log files

Important

Starting in April 2023, you will need to enable S3 access control lists (ACLs) for new S3
buckets being used for CloudFront standard logs. ACLs can be enabled during the bucket
creation steps, or after a bucket has been created.
For more information about the changes, see Default settings for new S3 buckets FAQ in
the Amazon Simple Storage Service User Guide and Heads-Up: Amazon S3 Security Changes
Are Coming in April of 2023 in the AWS News Blog.

Your AWS account must have the following permissions for the bucket that you specify for log files:

Using standard logs (access logs) 843

https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-ownership-new-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-ownership-new-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-ownership-existing-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-faq.html
https://aws.amazon.com/blogs/aws/heads-up-amazon-s3-security-changes-are-coming-in-april-of-2023/
https://aws.amazon.com/blogs/aws/heads-up-amazon-s3-security-changes-are-coming-in-april-of-2023/

Amazon CloudFront Developer Guide

• The S3 access control list (ACL) for the bucket must grant you FULL_CONTROL. If you're the
bucket owner, your account has this permission by default. If you're not, the bucket owner must
update the ACL for the bucket.

• s3:GetBucketAcl

• s3:PutBucketAcl

Note the following:

ACL for the bucket

When you create or update a distribution and enable logging, CloudFront uses these
permissions to update the ACL for the bucket to give the awslogsdelivery account
FULL_CONTROL permission. The awslogsdelivery account writes log files to the bucket. If
your account doesn't have the required permissions to update the ACL, creating or updating the
distribution will fail.

In some circumstances, if you programmatically submit a request to create a bucket but a
bucket with the specified name already exists, S3 resets permissions on the bucket to the
default value. If you configured CloudFront to save access logs in an S3 bucket and you stop
getting logs in that bucket, check permissions on the bucket to ensure that CloudFront has the
necessary permissions.

Restoring the ACL for the bucket

If you remove permissions for the awslogsdelivery account, CloudFront won't be able to
save logs to the S3 bucket. To enable CloudFront to start saving logs for your distribution again,
restore the ACL permission by doing one of the following:

• Disable logging for your distribution in CloudFront, and then enable it again. For more
information, see Values that you specify when you create or update a distribution.

• Add the ACL permission for awslogsdelivery manually by navigating to the S3 bucket in
the Amazon S3 console and adding permission. To add the ACL for awslogsdelivery, you
must provide the canonical ID for the account, which is the following:

c4c1ede66af53448b93c283ce9448c4ba468c9432aa01d700d3878632f77d2d0

For more information about adding ACLs to S3 buckets, see How Do I Set ACL Bucket
Permissions? in the Amazon Simple Storage Service User Guide.

Using standard logs (access logs) 844

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/set-bucket-permissions.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/set-bucket-permissions.html

Amazon CloudFront Developer Guide

ACL for each log file

In addition to the ACL on the bucket, there's an ACL on each log file. The bucket owner has
FULL_CONTROL permission on each log file, the distribution owner (if different from the bucket
owner) has no permission, and the awslogsdelivery account has read and write permissions.

Disabling logging

If you disable logging, CloudFront doesn't delete the ACLs for either the bucket or the log files.
If you want, you can do that yourself.

Required key policy for SSE-KMS buckets

If the S3 bucket for your standard logs uses server-side encryption with AWS KMS keys (SSE-KMS)
using a customer managed key, you must add the following statement to the key policy for your
customer managed key. This allows CloudFront to write log files to the bucket. (You can't use SSE-
KMS with the AWS managed key because CloudFront won't be able to write log files to the bucket.)

{
 "Sid": "Allow CloudFront to use the key to deliver logs",
 "Effect": "Allow",
 "Principal": {
 "Service": "delivery.logs.amazonaws.com"
 },
 "Action": "kms:GenerateDataKey*",
 "Resource": "*"
}

If the S3 bucket for your standard logs uses SSE-KMS with an S3 Bucket Key, you also need to add
the kms:Decrypt permission to policy statement. In that case, the full policy statement looks like
the following.

{
 "Sid": "Allow CloudFront to use the key to deliver logs",
 "Effect": "Allow",
 "Principal": {
 "Service": "delivery.logs.amazonaws.com"
 },
 "Action": [
 "kms:GenerateDataKey*",
 "kms:Decrypt"

Using standard logs (access logs) 845

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-key.html

Amazon CloudFront Developer Guide

],
 "Resource": "*"
}

File name format

The name of each log file that CloudFront saves in your Amazon S3 bucket uses the following file
name format:

<optional prefix>/<distribution ID>.YYYY-MM-DD-HH.unique-ID.gz

The date and time are in Coordinated Universal Time (UTC).

For example, if you use example-prefix as the prefix, and your distribution ID is
EMLARXS9EXAMPLE, your file names look similar to this:

example-prefix/EMLARXS9EXAMPLE.2019-11-14-20.RT4KCN4SGK9.gz

When you enable logging for a distribution, you can specify an optional prefix for the file names, so
you can keep track of which log files are associated with which distributions. If you include a value
for the log file prefix and your prefix doesn't end with a forward slash (/), CloudFront appends one
automatically. If your prefix does end with a forward slash, CloudFront doesn't add another one.

The .gz at the end of the file name indicates that CloudFront has compressed the log file using
gzip.

Timing of standard log file delivery

CloudFront delivers standard logs for a distribution up to several times an hour. In general, a log
file contains information about the requests that CloudFront received during a given time period.
CloudFront usually delivers the log file for that time period to your Amazon S3 bucket within an
hour of the events that appear in the log. Note, however, that some or all log file entries for a time
period can sometimes be delayed by up to 24 hours. When log entries are delayed, CloudFront
saves them in a log file for which the file name includes the date and time of the period in which
the requests occurred, not the date and time when the file was delivered.

When creating a log file, CloudFront consolidates information for your distribution from all of
the edge locations that received requests for your objects during the time period that the log file
covers.

CloudFront can save more than one file for a time period depending on how many requests
CloudFront receives for the objects associated with a distribution.

Using standard logs (access logs) 846

Amazon CloudFront Developer Guide

CloudFront begins to reliably deliver access logs about four hours after you enable logging. You
might get a few access logs before that time.

Note

If no users request your objects during the time period, you don't receive any log files for
that period.

CloudFront also offers real-time logs, which give you information about requests made to a
distribution in real time (logs are delivered within seconds of receiving the requests). You can use
real-time logs to monitor, analyze, and take action based on content delivery performance. For
more information, see Real-time logs.

How requests are logged when the request URL or headers exceed the maximum
size

If the total size of all request headers, including cookies, exceeds 20 KB, or if the URL exceeds
8192 bytes, CloudFront can't parse the request completely and can't log the request. Because the
request isn't logged, you won't see in the log files the HTTP error status code returned.

If the request body exceeds the maximum size, the request is logged, including the HTTP error
status code.

Analyzing standard logs

Because you can receive multiple access logs per hour, we recommend that you combine all the log
files you receive for a given time period into one file. You can then analyze the data for that period
more accurately and completely.

One way to analyze your access logs is to use Amazon Athena. Athena is an interactive query
service that can help you analyze data for AWS services, including CloudFront. To learn more, see
Querying Amazon CloudFront Logs in the Amazon Athena User Guide.

In addition, the following AWS blog posts discuss some ways to analyze access logs.

• Amazon CloudFront Request Logging (for content delivered via HTTP)

• Enhanced CloudFront Logs, Now With Query Strings

Using standard logs (access logs) 847

https://aws.amazon.com/athena/
https://docs.aws.amazon.com/athena/latest/ug/cloudfront-logs.html
https://docs.aws.amazon.com/athena/latest/ug/cloudfront-logs.html
https://aws.amazon.com/blogs/aws/amazon-cloudfront-request-logging/
https://aws.amazon.com/blogs/aws/enhanced-cloudfront-logs-now-with-query-strings/

Amazon CloudFront Developer Guide

Important

We recommend that you use the logs to understand the nature of the requests for your
content, not as a complete accounting of all requests. CloudFront delivers access logs on a
best-effort basis. The log entry for a particular request might be delivered long after the
request was actually processed and, in rare cases, a log entry might not be delivered at
all. When a log entry is omitted from access logs, the number of entries in the access logs
won't match the usage that appears in the AWS usage and billing reports.

Editing your standard logging settings

You can enable or disable logging, change the Amazon S3 bucket where your logs are stored, and
change the prefix for log files by using the CloudFront console or the CloudFront API. Your changes
to logging settings take effect within 12 hours.

For more information, see the following topics:

• To update a distribution using the CloudFront console, see Updating a distribution.

• To update a distribution using the CloudFront API, see UpdateDistribution in the Amazon
CloudFront API Reference.

Deleting standard log files from an Amazon S3 bucket

CloudFront does not automatically delete log files from your Amazon S3 bucket. For information
about deleting log files from an Amazon S3 bucket, see the following topics:

• Using the Amazon S3 console: Deleting Objects in the Amazon Simple Storage Service Console
User Guide.

• Using the REST API: DeleteObject in the Amazon Simple Storage Service API Reference.

Standard log file format

Each entry in a log file gives details about a single viewer request. The log files have the following
characteristics:

• Use the W3C extended log file format.

• Contain tab-separated values.

Using standard logs (access logs) 848

https://console.aws.amazon.com/cloudfront/v4/home
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteObject.html
https://www.w3.org/TR/WD-logfile.html

Amazon CloudFront Developer Guide

• Contain records that are not necessarily in chronological order.

• Contain two header lines: one with the file format version, and another that lists the W3C fields
included in each record.

• Contain URL-encoded equivalents for spaces and certain other characters in field values.

URL-encoded equivalents are used for the following characters:

• ASCII character codes 0 through 32, inclusive

• ASCII character codes 127 and higher

• All characters in the following table

The URL encoding standard is defined in RFC 1738.

URL-Encoded value Character

%3C <

%3E >

%22 "

%23 #

%25 %

%7B {

%7D }

%7C |

%5C \

%5E ^

%7E ~

%5B [

%5D]

Using standard logs (access logs) 849

https://tools.ietf.org/html/rfc1738.html

Amazon CloudFront Developer Guide

URL-Encoded value Character

%60 `

%27 '

%20 space

Standard log file fields

The log file for a distribution contains 33 fields. The following list contains each field name, in
order, along with a description of the information in that field.

1. date

The date on which the event occurred in the format YYYY-MM-DD. For example, 2019-06-30.
The date and time are in Coordinated Universal Time (UTC). For WebSocket connections, this is
the date when the connection closed.

2. time

The time when the CloudFront server finished responding to the request (in UTC), for example,
01:42:39. For WebSocket connections, this is the time when the connection is closed.

3. x-edge-location

The edge location that served the request. Each edge location is identified by a three-letter
code and an arbitrarily assigned number (for example, DFW3). The three-letter code typically
corresponds with the International Air Transport Association (IATA) airport code for an airport
near the edge location's geographic location. (These abbreviations might change in the future.)

4. sc-bytes

The total number of bytes that the server sent to the viewer in response to the request,
including headers. For WebSocket connections, this is the total number of bytes sent from the
server to the client through the connection.

5. c-ip

The IP address of the viewer that made the request, for example, 192.0.2.183 or
2001:0db8:85a3::8a2e:0370:7334. If the viewer used an HTTP proxy or a load balancer to

Using standard logs (access logs) 850

Amazon CloudFront Developer Guide

send the request, the value of this field is the IP address of the proxy or load balancer. See also
the x-forwarded-for field.

6. cs-method

The HTTP request method received from the viewer.

7. cs(Host)

The domain name of the CloudFront distribution (for example, d111111abcdef8.cloudfront.net).

8. cs-uri-stem

The portion of the request URL that identifies the path and object (for example, /images/
cat.jpg). Question marks (?) in URLs and query strings are not included in the log.

9. sc-status

Contains one of the following values:

• The HTTP status code of the server's response (for example, 200).

• 000, which indicates that the viewer closed the connection before the server could respond to
the request. If the viewer closes the connection after the server starts to send the response,
this field contains the HTTP status code of the response that the server started to send.

10.cs(Referer)

The value of the Referer header in the request. This is the name of the domain that originated
the request. Common referrers include search engines, other websites that link directly to your
objects, and your own website.

11.cs(User-Agent)

The value of the User-Agent header in the request. The User-Agent header identifies the
source of the request, such as the type of device and browser that submitted the request or, if
the request came from a search engine, which search engine.

12.cs-uri-query

The query string portion of the request URL, if any.

When a URL doesn't contain a query string, this field's value is a hyphen (-). For more
information, see Caching content based on query string parameters.

13.cs(Cookie)
Using standard logs (access logs) 851

Amazon CloudFront Developer Guide

The Cookie header in the request, including name—value pairs and the associated attributes.

If you enable cookie logging, CloudFront logs the cookies in all requests regardless of which
cookies you choose to forward to the origin. When a request doesn't include a cookie header,
this field's value is a hyphen (-). For more information about cookies, see Caching content based
on cookies.

14.x-edge-result-type

How the server classified the response after the last byte left the server. In some cases, the
result type can change between the time that the server is ready to send the response and the
time that it finishes sending the response. See also the x-edge-response-result-type field.

For example, in HTTP streaming, suppose the server finds a segment of the stream in the cache.
In that scenario, the value of this field would ordinarily be Hit. However, if the viewer closes
the connection before the server has delivered the entire segment, the final result type (and the
value of this field) is Error.

WebSocket connections will have a value of Miss for this field because the content is not
cacheable and is proxied directly to the origin.

Possible values include:

• Hit – The server served the object to the viewer from the cache.

• RefreshHit – The server found the object in the cache but the object had expired, so the
server contacted the origin to verify that the cache had the latest version of the object.

• Miss – The request could not be satisfied by an object in the cache, so the server forwarded
the request to the origin and returned the result to the viewer.

• LimitExceeded – The request was denied because a CloudFront quota (formerly referred to
as a limit) was exceeded.

• CapacityExceeded – The server returned an HTTP 503 status code because it didn't have
enough capacity at the time of the request to serve the object.

• Error – Typically, this means the request resulted in a client error (the value of the sc-
status field is in the 4xx range) or a server error (the value of the sc-status field is in the
5xx range). If the value of the sc-status field is 200, or if the value of this field is Error
and the value of the x-edge-response-result-type field is not Error, it means the
HTTP request was successful but the client disconnected before receiving all of the bytes.

Using standard logs (access logs) 852

Amazon CloudFront Developer Guide

• Redirect – The server redirected the viewer from HTTP to HTTPS according to the
distribution settings.

15.x-edge-request-id

An opaque string that uniquely identifies a request. CloudFront also sends this string in the x-
amz-cf-id response header.

16.x-host-header

The value that the viewer included in the Host header of the request. If you're using the
CloudFront domain name in your object URLs (such as d111111abcdef8.cloudfront.net), this
field contains that domain name. If you're using alternate domain names (CNAMEs) in your
object URLs (such as www.example.com), this field contains the alternate domain name.

If you're using alternate domain names, see cs(Host) in field 7 for the domain name that is
associated with your distribution.

17.cs-protocol

The protocol of the viewer request (http, https, ws, or wss).

18.cs-bytes

The total number of bytes of data that the viewer included in the request, including headers. For
WebSocket connections, this is the total number of bytes sent from the client to the server on
the connection.

19.time-taken

The number of seconds (to the thousandth of a second, for example, 0.082) from when the
server receives the viewer's request to when the server writes the last byte of the response to
the output queue, as measured on the server. From the perspective of the viewer, the total
time to get the full response will be longer than this value because of network latency and TCP
buffering.

20.x-forwarded-for

If the viewer used an HTTP proxy or a load balancer to send the request, the value of the c-
ip field is the IP address of the proxy or load balancer. In that case, this field is the IP address
of the viewer that originated the request. This field can contain multiple comma-separated
IP addresses. Each IP address can be an IPv4 address (for example, 192.0.2.183) or an IPv6
address (for example, 2001:0db8:85a3::8a2e:0370:7334).

Using standard logs (access logs) 853

Amazon CloudFront Developer Guide

If the viewer did not use an HTTP proxy or a load balancer, the value of this field is a hyphen (-).

21.ssl-protocol

When the request used HTTPS, this field contains the SSL/TLS protocol that the viewer and
server negotiated for transmitting the request and response. For a list of possible values, see
the supported SSL/TLS protocols in Supported protocols and ciphers between viewers and
CloudFront.

When cs-protocol in field 17 is http, the value for this field is a hyphen (-).

22.ssl-cipher

When the request used HTTPS, this field contains the SSL/TLS cipher that the viewer and
server negotiated for encrypting the request and response. For a list of possible values, see the
supported SSL/TLS ciphers in Supported protocols and ciphers between viewers and CloudFront.

When cs-protocol in field 17 is http, the value for this field is a hyphen (-).

23.x-edge-response-result-type

How the server classified the response just before returning the response to the viewer. See also
the x-edge-result-type field. Possible values include:

• Hit – The server served the object to the viewer from the cache.

• RefreshHit – The server found the object in the cache but the object had expired, so the
server contacted the origin to verify that the cache had the latest version of the object.

• Miss – The request could not be satisfied by an object in the cache, so the server forwarded
the request to the origin server and returned the result to the viewer.

• LimitExceeded – The request was denied because a CloudFront quota (formerly referred to
as a limit) was exceeded.

• CapacityExceeded – The server returned a 503 error because it didn't have enough capacity
at the time of the request to serve the object.

• Error – Typically, this means the request resulted in a client error (the value of the sc-
status field is in the 4xx range) or a server error (the value of the sc-status field is in the
5xx range).

If the value of the x-edge-result-type field is Error and the value of this field is not
Error, the client disconnected before finishing the download.

Using standard logs (access logs) 854

Amazon CloudFront Developer Guide

• Redirect – The server redirected the viewer from HTTP to HTTPS according to the
distribution settings.

24.cs-protocol-version

The HTTP version that the viewer specified in the request. Possible values include HTTP/0.9,
HTTP/1.0, HTTP/1.1, HTTP/2.0, and HTTP/3.0.

25.fle-status

When field-level encryption is configured for a distribution, this field contains a code that
indicates whether the request body was successfully processed. When the server successfully
processes the request body, encrypts values in the specified fields, and forwards the request to
the origin, the value of this field is Processed. The value of x-edge-result-type can still
indicate a client-side or server-side error in this case.

Possible values for this field include:

• ForwardedByContentType – The server forwarded the request to the origin without parsing
or encryption because no content type was configured.

• ForwardedByQueryArgs – The server forwarded the request to the origin without parsing or
encryption because the request contains a query argument that wasn't in the configuration for
field-level encryption.

• ForwardedDueToNoProfile – The server forwarded the request to the origin without
parsing or encryption because no profile was specified in the configuration for field-level
encryption.

• MalformedContentTypeClientError – The server rejected the request and returned an
HTTP 400 status code to the viewer because the value of the Content-Type header was in an
invalid format.

• MalformedInputClientError – The server rejected the request and returned an HTTP 400
status code to the viewer because the request body was in an invalid format.

• MalformedQueryArgsClientError – The server rejected the request and returned an HTTP
400 status code to the viewer because a query argument was empty or in an invalid format.

• RejectedByContentType – The server rejected the request and returned an HTTP 400
status code to the viewer because no content type was specified in the configuration for field-
level encryption.

Using standard logs (access logs) 855

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/field-level-encryption.html

Amazon CloudFront Developer Guide

• RejectedByQueryArgs – The server rejected the request and returned an HTTP 400 status
code to the viewer because no query argument was specified in the configuration for field-
level encryption.

• ServerError – The origin server returned an error.

If the request exceeds a field-level encryption quota (formerly referred to as a limit), this field
contains one of the following error codes, and the server returns HTTP status code 400 to
the viewer. For a list of the current quotas on field-level encryption, see Quotas on field-level
encryption.

• FieldLengthLimitClientError – A field that is configured to be encrypted exceeded the
maximum length allowed.

• FieldNumberLimitClientError – A request that the distribution is configured to encrypt
contains more than the number of fields allowed.

• RequestLengthLimitClientError – The length of the request body exceeded the
maximum length allowed when field-level encryption is configured.

If field-level encryption is not configured for the distribution, the value of this field is a hyphen
(-).

26.fle-encrypted-fields

The number of field-level encryption fields that the server encrypted and forwarded to the
origin. CloudFront servers stream the processed request to the origin as they encrypt data, so
this field can have a value even if the value of fle-status is an error.

If field-level encryption is not configured for the distribution, the value of this field is a hyphen
(-).

27.c-port

The port number of the request from the viewer.

28.time-to-first-byte

The number of seconds between receiving the request and writing the first byte of the response,
as measured on the server.

29.x-edge-detailed-result-type

This field contains the same value as the x-edge-result-type field, except in the following
cases:

Using standard logs (access logs) 856

Amazon CloudFront Developer Guide

• When the object was served to the viewer from the Origin Shield layer, this field contains
OriginShieldHit.

• When the object was not in the CloudFront cache and the response was generated by an
origin request Lambda@Edge function, this field contains MissGeneratedResponse.

• When the value of the x-edge-result-type field is Error, this field contains one of the
following values with more information about the error:

• AbortedOrigin – The server encountered an issue with the origin.

• ClientCommError – The response to the viewer was interrupted due to a communication
problem between the server and the viewer.

• ClientGeoBlocked – The distribution is configured to refuse requests from the viewer's
geographic location.

• ClientHungUpRequest – The viewer stopped prematurely while sending the request.

• Error – An error occurred for which the error type doesn't fit any of the other categories.
This error type can occur when the server serves an error response from the cache.

• InvalidRequest – The server received an invalid request from the viewer.

• InvalidRequestBlocked – Access to the requested resource is blocked.

• InvalidRequestCertificate – The distribution doesn't match the SSL/TLS certificate
for which the HTTPS connection was established.

• InvalidRequestHeader – The request contained an invalid header.

• InvalidRequestMethod – The distribution is not configured to handle the HTTP request
method that was used. This can happen when the distribution supports only cacheable
requests.

• OriginCommError – The request timed out while connecting to the origin, or reading data
from the origin.

• OriginConnectError – The server couldn't connect to the origin.

• OriginContentRangeLengthError – The Content-Length header in the origin's
response doesn't match the length in the Content-Range header.

• OriginDnsError – The server couldn't resolve the origin's domain name.

• OriginError – The origin returned an incorrect response.

• OriginHeaderTooBigError – A header returned by the origin is too big for the edge
server to process.

• OriginInvalidResponseError – The origin returned an invalid response.Using standard logs (access logs) 857

Amazon CloudFront Developer Guide

• OriginReadError – The server couldn't read from the origin.

• OriginWriteError – The server couldn't write to the origin.

• OriginZeroSizeObjectError – A zero size object sent from the origin resulted in an
error.

• SlowReaderOriginError – The viewer was slow to read the message that caused the
origin error.

30.sc-content-type

The value of the HTTP Content-Type header of the response.

31.sc-content-len

The value of the HTTP Content-Length header of the response.

32.sc-range-start

When the response contains the HTTP Content-Range header, this field contains the range
start value.

33.sc-range-end

When the response contains the HTTP Content-Range header, this field contains the range end
value.

The following is an example log file for a distribution:

#Version: 1.0
#Fields: date time x-edge-location sc-bytes c-ip cs-method cs(Host) cs-uri-stem sc-
status cs(Referer) cs(User-Agent) cs-uri-query cs(Cookie) x-edge-result-type x-edge-
request-id x-host-header cs-protocol cs-bytes time-taken x-forwarded-for ssl-protocol
 ssl-cipher x-edge-response-result-type cs-protocol-version fle-status fle-encrypted-
fields c-port time-to-first-byte x-edge-detailed-result-type sc-content-type sc-
content-len sc-range-start sc-range-end
2019-12-04 21:02:31 LAX1 392 192.0.2.100 GET d111111abcdef8.cloudfront.net /
index.html 200 - Mozilla/5.0%20(Windows%20NT%2010.0;%20Win64;
%20x64)%20AppleWebKit/537.36%20(KHTML,%20like
%20Gecko)%20Chrome/78.0.3904.108%20Safari/537.36 - - Hit
 SOX4xwn4XV6Q4rgb7XiVGOHms_BGlTAC4KyHmureZmBNrjGdRLiNIQ== d111111abcdef8.cloudfront.net
 https 23 0.001 - TLSv1.2 ECDHE-RSA-AES128-GCM-SHA256 Hit HTTP/2.0 - - 11040 0.001 Hit
 text/html 78 - -

Using standard logs (access logs) 858

Amazon CloudFront Developer Guide

2019-12-04 21:02:31 LAX1 392 192.0.2.100 GET d111111abcdef8.cloudfront.net /
index.html 200 - Mozilla/5.0%20(Windows%20NT%2010.0;%20Win64;
%20x64)%20AppleWebKit/537.36%20(KHTML,%20like
%20Gecko)%20Chrome/78.0.3904.108%20Safari/537.36 - - Hit
 k6WGMNkEzR5BEM_SaF47gjtX9zBDO2m349OY2an0QPEaUum1ZOLrow== d111111abcdef8.cloudfront.net
 https 23 0.000 - TLSv1.2 ECDHE-RSA-AES128-GCM-SHA256 Hit HTTP/2.0 - - 11040 0.000 Hit
 text/html 78 - -
2019-12-04 21:02:31 LAX1 392 192.0.2.100 GET d111111abcdef8.cloudfront.net /
index.html 200 - Mozilla/5.0%20(Windows%20NT%2010.0;%20Win64;
%20x64)%20AppleWebKit/537.36%20(KHTML,%20like
%20Gecko)%20Chrome/78.0.3904.108%20Safari/537.36 - - Hit
 f37nTMVvnKvV2ZSvEsivup_c2kZ7VXzYdjC-GUQZ5qNs-89BlWazbw== d111111abcdef8.cloudfront.net
 https 23 0.001 - TLSv1.2 ECDHE-RSA-AES128-GCM-SHA256 Hit HTTP/2.0 - - 11040 0.001 Hit
 text/html 78 - -
2019-12-13 22:36:27 SEA19-C1 900 192.0.2.200 GET d111111abcdef8.cloudfront.net /
favicon.ico 502 http://www.example.com/ Mozilla/5.0%20(Windows
%20NT%2010.0;%20Win64;%20x64)%20AppleWebKit/537.36%20(KHTML,
%20like%20Gecko)%20Chrome/78.0.3904.108%20Safari/537.36 - - Error
 1pkpNfBQ39sYMnjjUQjmH2w1wdJnbHYTbag21o_3OfcQgPzdL2RSSQ== www.example.com http 675
 0.102 - - - Error HTTP/1.1 - - 25260 0.102 OriginDnsError text/html 507 - -
2019-12-13 22:36:26 SEA19-C1 900 192.0.2.200 GET d111111abcdef8.cloudfront.net / 502
 - Mozilla/5.0%20(Windows%20NT%2010.0;%20Win64;%20x64)%20AppleWebKit/537.36%20(KHTML,
%20like%20Gecko)%20Chrome/78.0.3904.108%20Safari/537.36 - - Error
 3AqrZGCnF_g0-5KOvfA7c9XLcf4YGvMFSeFdIetR1N_2y8jSis8Zxg== www.example.com http 735
 0.107 - - - Error HTTP/1.1 - - 3802 0.107 OriginDnsError text/html 507 - -
2019-12-13 22:37:02 SEA19-C2 900 192.0.2.200 GET d111111abcdef8.cloudfront.net / 502
 - curl/7.55.1 - - Error kBkDzGnceVtWHqSCqBUqtA_cEs2T3tFUBbnBNkB9El_uVRhHgcZfcw==
 www.example.com http 387 0.103 - - - Error HTTP/1.1 - - 12644 0.103 OriginDnsError
 text/html 507 - -

Charges for standard logs

Standard logging is an optional feature of CloudFront. There is no extra charge for enabling
standard logging. However, you accrue the usual Amazon S3 charges for storing and accessing the
files on Amazon S3 (you can delete them at any time).

For more information about Amazon S3 pricing, see Amazon S3 Pricing.

For more information about CloudFront pricing, see CloudFront Pricing.

Using standard logs (access logs) 859

https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/cloudfront/pricing/

Amazon CloudFront Developer Guide

Real-time logs

With CloudFront real-time logs, you can get information about requests made to a distribution in
real time (logs are delivered within seconds of receiving the requests). You can use real-time logs to
monitor, analyze, and take action based on content delivery performance.

CloudFront real-time logs are configurable. You can choose:

• The sampling rate for your real-time logs—that is, the percentage of requests for which you want
to receive real-time log records.

• The specific fields that you want to receive in the log records.

• The specific cache behaviors (path patterns) that you want to receive real-time logs for.

CloudFront real-time logs are delivered to the data stream of your choice in Amazon Kinesis Data
Streams. You can build your own Kinesis data stream consumer, or use Amazon Data Firehose to
send the log data to Amazon Simple Storage Service (Amazon S3), Amazon Redshift, Amazon
OpenSearch Service (OpenSearch Service), or a third-party log processing service.

CloudFront charges for real-time logs, in addition to the charges you incur for using Kinesis Data
Streams. For more information about pricing, see Amazon CloudFront Pricing and Amazon Kinesis
Data Streams pricing.

Important

We recommend that you use the logs to understand the nature of the requests for your
content, not as a complete accounting of all requests. CloudFront delivers real-time logs on
a best-effort basis. The log entry for a particular request might be delivered long after the
request was actually processed and, in rare cases, a log entry might not be delivered at all.
When a log entry is omitted from real-time logs, the number of entries in the real-time logs
won't match the usage that appears in the AWS billing and usage reports.

Understanding real-time log configurations

To use CloudFront real-time logs, you start by creating a real-time log configuration. The real-time
log configuration contains information about which log fields you want to receive, the sampling
rate for log records, and the Kinesis data stream where you want to deliver the logs.

Real-time logs 860

https://docs.aws.amazon.com/streams/latest/dev/amazon-kinesis-consumers.html
https://aws.amazon.com/cloudfront/pricing/
https://aws.amazon.com/kinesis/data-streams/pricing/
https://aws.amazon.com/kinesis/data-streams/pricing/

Amazon CloudFront Developer Guide

Specifically, a real-time log configuration contains the following settings:

• Name

• Sampling rate

• Fields

• Endpoint (Kinesis data stream)

• IAM role

Name

A name to identify the real-time log configuration.

Sampling rate

The sampling rate is a whole number between 1 and 100 (inclusive) that determines the
percentage of viewer requests that are sent to Kinesis Data Streams as real-time log records.
To include every viewer request in your real-time logs, specify 100 for the sampling rate. You
might choose a lower sampling rate to reduce costs while still receiving a representative sample
of request data in your real-time logs.

Fields

A list of the fields that are included in each real-time log record. Each log record can contain up
to 40 fields, and you can choose to receive all of the available fields, or only the fields that you
need for monitoring and analyzing performance.

The following list contains each field name and a description of the information in that field.
The fields are listed in the order in which they appear in the log records that are delivered to
Kinesis Data Streams.

Fields 46-63 are common media client data (CMCD) that media player clients can send to CDNs
with each request. You can use this data to understand each request, such as the media type
(audio, video), playback rate, and streaming length. These fields will only appear in your real-
time logs if they're sent to CloudFront.

1. timestamp

The date and time at which the edge server finished responding to the request.

2. c-ip

Real-time logs 861

Amazon CloudFront Developer Guide

The IP address of the viewer that made the request, for example, 192.0.2.183 or
2001:0db8:85a3::8a2e:0370:7334. If the viewer used an HTTP proxy or a load balancer to
send the request, the value of this field is the IP address of the proxy or load balancer. See also
the x-forwarded-for field.

3. time-to-first-byte

The number of seconds between receiving the request and writing the first byte of the response,
as measured on the server.

4. sc-status

The HTTP status code of the server's response (for example, 200).

5. sc-bytes

The total number of bytes that the server sent to the viewer in response to the request,
including headers. For WebSocket connections, this is the total number of bytes sent from the
server to the client through the connection.

6. cs-method

The HTTP request method received from the viewer.

7. cs-protocol

The protocol of the viewer request (http, https, ws, or wss).

8. cs-host

The value that the viewer included in the Host header of the request. If you're using the
CloudFront domain name in your object URLs (such as d111111abcdef8.cloudfront.net), this
field contains that domain name. If you're using alternate domain names (CNAMEs) in your
object URLs (such as www.example.com), this field contains the alternate domain name.

9. cs-uri-stem

The entire request URL, including the query string (if one exists), but without the domain name.
For example, /images/cat.jpg?mobile=true.

Note

In standard logs, the cs-uri-stem value doesn't include the query string.

Real-time logs 862

Amazon CloudFront Developer Guide

10.cs-bytes

The total number of bytes of data that the viewer included in the request, including headers. For
WebSocket connections, this is the total number of bytes sent from the client to the server on
the connection.

11.x-edge-location

The edge location that served the request. Each edge location is identified by a three-letter
code and an arbitrarily assigned number (for example, DFW3). The three-letter code typically
corresponds with the International Air Transport Association (IATA) airport code for an airport
near the edge location's geographic location. (These abbreviations might change in the future.)

12.x-edge-request-id

An opaque string that uniquely identifies a request. CloudFront also sends this string in the x-
amz-cf-id response header.

13.x-host-header

The domain name of the CloudFront distribution (for example, d111111abcdef8.cloudfront.net).

14.time-taken

The number of seconds (to the thousandth of a second, for example, 0.082) from when the
server receives the viewer's request to when the server writes the last byte of the response to
the output queue, as measured on the server. From the perspective of the viewer, the total
time to get the full response will be longer than this value because of network latency and TCP
buffering.

15.cs-protocol-version

The HTTP version that the viewer specified in the request. Possible values include HTTP/0.9,
HTTP/1.0, HTTP/1.1, HTTP/2.0, and HTTP/3.0.

16.c-ip-version

The IP version of the request (IPv4 or IPv6).

17.cs-user-agent

The value of the User-Agent header in the request. The User-Agent header identifies the
source of the request, such as the type of device and browser that submitted the request or, if
the request came from a search engine, which search engine.

Real-time logs 863

Amazon CloudFront Developer Guide

18.cs-referer

The value of the Referer header in the request. This is the name of the domain that originated
the request. Common referrers include search engines, other websites that link directly to your
objects, and your own website.

19.cs-cookie

The Cookie header in the request, including name—value pairs and the associated attributes.

Note

This field is truncated to 800 bytes.

20.cs-uri-query

The query string portion of the request URL, if any.

21.x-edge-response-result-type

How the server classified the response just before returning the response to the viewer. See also
the x-edge-result-type field. Possible values include:

• Hit – The server served the object to the viewer from the cache.

• RefreshHit – The server found the object in the cache but the object had expired, so the
server contacted the origin to verify that the cache had the latest version of the object.

• Miss – The request could not be satisfied by an object in the cache, so the server forwarded
the request to the origin server and returned the result to the viewer.

• LimitExceeded – The request was denied because a CloudFront quota (formerly referred to
as a limit) was exceeded.

• CapacityExceeded – The server returned a 503 error because it didn't have enough capacity
at the time of the request to serve the object.

• Error – Typically, this means the request resulted in a client error (the value of the sc-
status field is in the 4xx range) or a server error (the value of the sc-status field is in the
5xx range).

If the value of the x-edge-result-type field is Error and the value of this field is not
Error, the client disconnected before finishing the download.

• Redirect – The server redirected the viewer from HTTP to HTTPS according to the
distribution settings.

Real-time logs 864

Amazon CloudFront Developer Guide

22.x-forwarded-for

If the viewer used an HTTP proxy or a load balancer to send the request, the value of the c-
ip field is the IP address of the proxy or load balancer. In that case, this field is the IP address
of the viewer that originated the request. This field can contain multiple comma-separated
IP addresses. Each IP address can be an IPv4 address (for example, 192.0.2.183) or an IPv6
address (for example, 2001:0db8:85a3::8a2e:0370:7334).

23.ssl-protocol

When the request used HTTPS, this field contains the SSL/TLS protocol that the viewer and
server negotiated for transmitting the request and response. For a list of possible values, see
the supported SSL/TLS protocols in Supported protocols and ciphers between viewers and
CloudFront.

24.ssl-cipher

When the request used HTTPS, this field contains the SSL/TLS cipher that the viewer and
server negotiated for encrypting the request and response. For a list of possible values, see the
supported SSL/TLS ciphers in Supported protocols and ciphers between viewers and CloudFront.

25.x-edge-result-type

How the server classified the response after the last byte left the server. In some cases, the
result type can change between the time that the server is ready to send the response and the
time that it finishes sending the response. See also the x-edge-response-result-type field.

For example, in HTTP streaming, suppose the server finds a segment of the stream in the cache.
In that scenario, the value of this field would ordinarily be Hit. However, if the viewer closes
the connection before the server has delivered the entire segment, the final result type (and the
value of this field) is Error.

WebSocket connections will have a value of Miss for this field because the content is not
cacheable and is proxied directly to the origin.

Possible values include:

• Hit – The server served the object to the viewer from the cache.

• RefreshHit – The server found the object in the cache but the object had expired, so the
server contacted the origin to verify that the cache had the latest version of the object.

Real-time logs 865

Amazon CloudFront Developer Guide

• Miss – The request could not be satisfied by an object in the cache, so the server forwarded
the request to the origin and returned the result to the viewer.

• LimitExceeded – The request was denied because a CloudFront quota (formerly referred to
as a limit) was exceeded.

• CapacityExceeded – The server returned an HTTP 503 status code because it didn't have
enough capacity at the time of the request to serve the object.

• Error – Typically, this means the request resulted in a client error (the value of the sc-
status field is in the 4xx range) or a server error (the value of the sc-status field is in the
5xx range). If the value of the sc-status field is 200, or if the value of this field is Error
and the value of the x-edge-response-result-type field is not Error, it means the
HTTP request was successful but the client disconnected before receiving all of the bytes.

• Redirect – The server redirected the viewer from HTTP to HTTPS according to the
distribution settings.

26.fle-encrypted-fields

The number of field-level encryption fields that the server encrypted and forwarded to the
origin. CloudFront servers stream the processed request to the origin as they encrypt data, so
this field can have a value even if the value of fle-status is an error.

27.fle-status

When field-level encryption is configured for a distribution, this field contains a code that
indicates whether the request body was successfully processed. When the server successfully
processes the request body, encrypts values in the specified fields, and forwards the request to
the origin, the value of this field is Processed. The value of x-edge-result-type can still
indicate a client-side or server-side error in this case.

Possible values for this field include:

• ForwardedByContentType – The server forwarded the request to the origin without parsing
or encryption because no content type was configured.

• ForwardedByQueryArgs – The server forwarded the request to the origin without parsing or
encryption because the request contains a query argument that wasn't in the configuration for
field-level encryption.

• ForwardedDueToNoProfile – The server forwarded the request to the origin without
parsing or encryption because no profile was specified in the configuration for field-level
encryption.

Real-time logs 866

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/field-level-encryption.html

Amazon CloudFront Developer Guide

• MalformedContentTypeClientError – The server rejected the request and returned an
HTTP 400 status code to the viewer because the value of the Content-Type header was in an
invalid format.

• MalformedInputClientError – The server rejected the request and returned an HTTP 400
status code to the viewer because the request body was in an invalid format.

• MalformedQueryArgsClientError – The server rejected the request and returned an HTTP
400 status code to the viewer because a query argument was empty or in an invalid format.

• RejectedByContentType – The server rejected the request and returned an HTTP 400
status code to the viewer because no content type was specified in the configuration for field-
level encryption.

• RejectedByQueryArgs – The server rejected the request and returned an HTTP 400 status
code to the viewer because no query argument was specified in the configuration for field-
level encryption.

• ServerError – The origin server returned an error.

If the request exceeds a field-level encryption quota (formerly referred to as a limit), this field
contains one of the following error codes, and the server returns HTTP status code 400 to
the viewer. For a list of the current quotas on field-level encryption, see Quotas on field-level
encryption.

• FieldLengthLimitClientError – A field that is configured to be encrypted exceeded the
maximum length allowed.

• FieldNumberLimitClientError – A request that the distribution is configured to encrypt
contains more than the number of fields allowed.

• RequestLengthLimitClientError – The length of the request body exceeded the
maximum length allowed when field-level encryption is configured.

28.sc-content-type

The value of the HTTP Content-Type header of the response.

29.sc-content-len

The value of the HTTP Content-Length header of the response.

30.sc-range-start

When the response contains the HTTP Content-Range header, this field contains the range
start value.

Real-time logs 867

Amazon CloudFront Developer Guide

31.sc-range-end

When the response contains the HTTP Content-Range header, this field contains the range end
value.

32.c-port

The port number of the request from the viewer.

33.x-edge-detailed-result-type

This field contains the same value as the x-edge-result-type field, except in the following
cases:

• When the object was served to the viewer from the Origin Shield layer, this field contains
OriginShieldHit.

• When the object was not in the CloudFront cache and the response was generated by an
origin request Lambda@Edge function, this field contains MissGeneratedResponse.

• When the value of the x-edge-result-type field is Error, this field contains one of the
following values with more information about the error:

• AbortedOrigin – The server encountered an issue with the origin.

• ClientCommError – The response to the viewer was interrupted due to a communication
problem between the server and the viewer.

• ClientGeoBlocked – The distribution is configured to refuse requests from the viewer's
geographic location.

• ClientHungUpRequest – The viewer stopped prematurely while sending the request.

• Error – An error occurred for which the error type doesn't fit any of the other categories.
This error type can occur when the server serves an error response from the cache.

• InvalidRequest – The server received an invalid request from the viewer.

• InvalidRequestBlocked – Access to the requested resource is blocked.

• InvalidRequestCertificate – The distribution doesn't match the SSL/TLS certificate
for which the HTTPS connection was established.

• InvalidRequestHeader – The request contained an invalid header.

• InvalidRequestMethod – The distribution is not configured to handle the HTTP request
method that was used. This can happen when the distribution supports only cacheable
requests.

Real-time logs 868

Amazon CloudFront Developer Guide

• OriginCommError – The request timed out while connecting to the origin, or reading data
from the origin.

• OriginConnectError – The server couldn't connect to the origin.

• OriginContentRangeLengthError – The Content-Length header in the origin's
response doesn't match the length in the Content-Range header.

• OriginDnsError – The server couldn't resolve the origin's domain name.

• OriginError – The origin returned an incorrect response.

• OriginHeaderTooBigError – A header returned by the origin is too big for the edge
server to process.

• OriginInvalidResponseError – The origin returned an invalid response.

• OriginReadError – The server couldn't read from the origin.

• OriginWriteError – The server couldn't write to the origin.

• OriginZeroSizeObjectError – A zero size object sent from the origin resulted in an
error.

• SlowReaderOriginError – The viewer was slow to read the message that caused the
origin error.

34.c-country

A country code that represents the viewer's geographic location, as determined by the viewer's
IP address. For a list of country codes, see ISO 3166-1 alpha-2.

35.cs-accept-encoding

The value of the Accept-Encoding header in the viewer request.

36.cs-accept

The value of the Accept header in the viewer request.

37.cache-behavior-path-pattern

The path pattern that identifies the cache behavior that matched the viewer request.

38.cs-headers

The HTTP headers (names and values) in the viewer request.

Real-time logs 869

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Amazon CloudFront Developer Guide

Note

This field is truncated to 800 bytes.

39.cs-header-names

The names of the HTTP headers (not values) in the viewer request.

Note

This field is truncated to 800 bytes.

40.cs-headers-count

The number of HTTP headers in the viewer request.

41.origin-fbl

The number of seconds of first-byte latency between CloudFront and your origin.

42.origin-lbl

The number of seconds of last-byte latency between CloudFront and your origin.

43.asn

The autonomous system number (ASN) of the viewer.

44.primary-distribution-id

When continuous deployment is enabled, this ID identifies which distribution is the primary in
the current distribution.

45.primary-distribution-dns-name

When continuous deployment is enabled, this value shows the primary domain name that is
related to the current CloudFront distribution (for example, d111111abcdef8.cloudfront.net).

CMCD fields in real-time logs

For more information about these fields, see the CTA Specification Web Application
Video Ecosystem - Common Media Client Data CTA-5004 document.

Real-time logs 870

https://cdn.cta.tech/cta/media/media/resources/standards/pdfs/cta-5004-final.pdf
https://cdn.cta.tech/cta/media/media/resources/standards/pdfs/cta-5004-final.pdf

Amazon CloudFront Developer Guide

46.cmcd-encoded-bitrate

The encoded bitrate of the requested audio or video object.

47.cmcd-buffer-length

The buffer length of the requested media object.

48.cmcd-buffer-starvation

Whether the buffer was starved at some point between the prior request and the object request.
This can cause the player to be in a rebuffering stat, which can stall the video or audio playback.

49.cmcd-content-id

A unique string that identifies the current content.

50.cmcd-object-duration

The playback duration of the requested object (in milliseconds).

51.cmcd-deadline

The deadline from the request time that the first sample of this object must be available, so that
a buffer underrun state or other playback problems are avoided.

52.cmcd-measured-throughput

The throughput between the client and server, as measured by the client.

53.cmcd-next-object-request

The relative path of the next requested object.

54.cmcd-next-range-request

If the next request is a partial object request, this string denotes the byte range to be requested.

55.cmcd-object-type

The media type of the current object being requested.

56.cmcd-playback-rate

1 if real-time, 2 if double-speed, 0 if not playing.

57.cmcd-requested-maximum-throughput

The requested maximum throughput that the client considers sufficient for asset delivery.

Real-time logs 871

Amazon CloudFront Developer Guide

58.cmcd-streaming-format

The streaming format that defines the current request.

59.cmcd-session-id

A GUID identifying the current playback session.

60.cmcd-stream-type

Token identifying segment availability. v = all segments are available. l = segments become
available over time.

61.cmcd-startup

Key is included without a value if the object is needed urgently during startup, seeking, or
recovery after a buffer-empty event.

62.cmcd-top-bitrate

The highest bitrate rendition that the client can play.

63.cmcd-version

The version of this specification used for interpreting the defined key names and values. If this
key is omitted, the client and server must interpret the values as being defined by version 1.

Endpoint (Kinesis data stream)

The endpoint contains information about the Kinesis data stream where you want to send real-
time logs. You provide the Amazon Resource Name (ARN) of the data stream.

For more information about creating a Kinesis data stream, see the following topics in the
Amazon Kinesis Data Streams Developer Guide.

• Managing Streams Using the Console

• Perform Basic Kinesis Data Stream Operations Using the AWS CLI

• Creating a Stream (uses the AWS SDK for Java)

When you create a data stream, you need to specify the number of shards. Use the following
information to help you estimate the number of shards you need.

Real-time logs 872

https://docs.aws.amazon.com/streams/latest/dev/managing-streams-console.html
https://docs.aws.amazon.com/streams/latest/dev/fundamental-stream.html
https://docs.aws.amazon.com/streams/latest/dev/kinesis-using-sdk-java-create-stream.html

Amazon CloudFront Developer Guide

To estimate the number of shards for your Kinesis data stream

1. Calculate (or estimate) the number of requests per second that your CloudFront
distribution receives.

You can use the CloudFront usage reports (in the CloudFront console) and the CloudFront
metrics (in the CloudFront and Amazon CloudWatch consoles) to help you calculate your
requests per second.

2. Determine the typical size of a single real-time log record.

In general, a single log record is around 500 bytes. A large record that includes all available
fields is generally around 1 KB.

If you're not sure what your log record size is, you can enable real-time logs with a
low sampling rate (for example, 1%), and then calculate the average record size using
monitoring data in Kinesis Data Streams (total incoming bytes divided by total number of
records).

3. In the Pricing calculator on the Amazon Kinesis Data Streams pricing page, enter the
number of requests (records) per second, and the average record size of a single log record.
Then choose Show calculations.

The pricing calculator shows you the number of shards you need. (It also shows you the
estimated cost.)

The following example shows that for an average record size of 0.5 KB, and 50,000
requests per second, you need 50 shards.

Real-time logs 873

https://console.aws.amazon.com/cloudfront/v4/home#/usage
https://aws.amazon.com/kinesis/data-streams/pricing/#Pricing_calculator

Amazon CloudFront Developer Guide

IAM role

The AWS Identity and Access Management (IAM) role that gives CloudFront permission to
deliver real-time logs to your Kinesis data stream.

When you create a real-time log configuration with the CloudFront console, you can choose
Create new service role to let the console create the IAM role for you.

When you create a real-time log configuration with AWS CloudFormation or the CloudFront API
(AWS CLI or SDK), you must create the IAM role yourself and provide the role ARN. To create the
IAM role yourself, use the following policies.

IAM role trust policy

To use the following IAM role trust policy, replace 111122223333 with your AWS account
number. The Condition element in this policy helps to prevent the confused deputy problem
because CloudFront can only assume this role on behalf of a distribution in your AWS account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Real-time logs 874

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon CloudFront Developer Guide

 "Principal": {
 "Service": "cloudfront.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333"
 }
 }
 }
]
}

IAM role permissions policy for an unencrypted data stream

To use the following policy, replace arn:aws:kinesis:us-
east-2:123456789012:stream/StreamName with the ARN of your Kinesis data stream.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStreamSummary",
 "kinesis:DescribeStream",
 "kinesis:PutRecord",
 "kinesis:PutRecords"
],
 "Resource": [
 "arn:aws:kinesis:us-east-2:123456789012:stream/StreamName"
]
 }
]
}

IAM role permissions policy for an encrypted data stream

To use the following policy, replace arn:aws:kinesis:us-
east-2:123456789012:stream/StreamName with the ARN of your Kinesis data stream
and arn:aws:kms:us-east-2:123456789012:key/e58a3d0b-fe4f-4047-a495-
ae03cc73d486 with the ARN of your AWS KMS key.

Real-time logs 875

Amazon CloudFront Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStreamSummary",
 "kinesis:DescribeStream",
 "kinesis:PutRecord",
 "kinesis:PutRecords"
],
 "Resource": [
 "arn:aws:kinesis:us-east-2:123456789012:stream/StreamName"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey"
],
 "Resource": [
 "arn:aws:kms:us-east-2:123456789012:key/e58a3d0b-fe4f-4047-a495-
ae03cc73d486"
]
 }
]
}

Creating and using real-time log configurations

You can use a real-time log configurations to get information about requests made to a
distribution in real time (logs are delivered within seconds of receiving the requests). You can create
a real-time log configuration in the CloudFront console, with the AWS Command Line Interface
(AWS CLI), or with the CloudFront API.

To use a real-time log configuration, you attach it to one or more cache behaviors in a CloudFront
distribution.

Real-time logs 876

Amazon CloudFront Developer Guide

Create a real-time log configuration (console)

To create a real-time log configuration

1. Sign in to the AWS Management Console and open the Logs page in the CloudFront console at
https://console.aws.amazon.com/cloudfront/v4/home?#/logs.

2. Choose the Real-time configurations tab.

3. Choose Create configuration.

4. For Name, enter a name for the configuration.

5. For Sampling rate, enter the percentage of requests for which you want to receive log records.

6. For Fields, choose the fields to receive in the real-time logs.

• To include all CMCD fields for your logs, choose CMCD all keys.

7. For Endpoint, choose one or more Kinesis data streams to receive real-time logs.

Note

CloudFront real-time logs are delivered to the data stream that you specify in Kinesis
Data Streams. To read and analyze your real-time logs, you can build your own Kinesis
data stream consumer. You can also use Firehose to send the log data to Amazon S3,
Amazon Redshift, Amazon OpenSearch Service, or a third-party log processing service.

8. For IAM role, choose Create new service role or choose an existing role. You must have
permission to create IAM roles.

9. (Optional) For Distribution, choose a CloudFront distribution and cache behavior to attach to
the real-time log configuration.

10. Choose Create configuration.

If successful, the console shows the details of the real-time log configuration that you just created.

For more information, see Understanding real-time log configurations.

Create a real-time log configuration (AWS CLI)

To create a real-time log configuration with the AWS Command Line Interface (AWS CLI), use the
aws cloudfront create-realtime-log-config command. You can use an input file to provide the
command's input parameters, rather than specifying each individual parameter as command line
input.

Real-time logs 877

https://console.aws.amazon.com/cloudfront/v4/home?#/logs

Amazon CloudFront Developer Guide

To create a real-time log configuration (CLI with input file)

1. Use the following command to create a file named rtl-config.yaml that contains all of the
input parameters for the create-realtime-log-config command.

aws cloudfront create-realtime-log-config --generate-cli-skeleton yaml-input > rtl-
config.yaml

2. Open the file named rtl-config.yaml that you just created. Edit the file to specify the real-
time log configuration settings that you want, then save the file. Note the following:

• For StreamType, the only valid value is Kinesis.

For more information about the real-time long configuration settings, see Understanding real-
time log configurations.

3. Use the following command to create the real-time log configuration using input parameters
from the rtl-config.yaml file.

aws cloudfront create-realtime-log-config --cli-input-yaml file://rtl-config.yaml

If successful, the command's output shows the details of the real-time log configuration that you
just created.

To attach a real-time log configuration to an existing distribution (CLI with input file)

1. Use the following command to save the distribution configuration for the CloudFront
distribution that you want to update. Replace distribution_ID with the distribution's ID.

aws cloudfront get-distribution-config --id distribution_ID --output yaml > dist-
config.yaml

2. Open the file named dist-config.yaml that you just created. Edit the file, making the
following changes to each cache behavior that you are updating to use a real-time log
configuration.

Real-time logs 878

Amazon CloudFront Developer Guide

• In the cache behavior, add a field named RealtimeLogConfigArn. For the field's value, use
the ARN of the real-time log configuration that you want to attach to this cache behavior.

• Rename the ETag field to IfMatch, but don't change the field's value.

Save the file when finished.

3. Use the following command to update the distribution to use the real-time log configuration.
Replace distribution_ID with the distribution's ID.

aws cloudfront update-distribution --id distribution_ID --cli-input-yaml file://
dist-config.yaml

If successful, the command's output shows the details of the distribution that you just updated.

Create a real-time log configuration (API)

To create a real-time log configuration with the CloudFront API, use CreateRealtimeLogConfig. For
more information about the parameters that you specify in this API call, see Understanding real-
time log configurations and the API reference documentation for your AWS SDK or other API client.

After you create a real-time log configuration, you can attach it to a cache behavior, using one of
the following API calls:

• To attach it to a cache behavior in an existing distribution, use UpdateDistribution.

• To attach it to a cache behavior in a new distribution, use CreateDistribution.

For both of these API calls, provide the ARN of the real-time log configuration in the
RealtimeLogConfigArn field, inside a cache behavior. For more information about the other
fields that you specify in these API calls, see Values that you specify when you create or update a
distribution and the API reference documentation for your AWS SDK or other API client.

Creating a Kinesis Data Streams consumer

To read and analyze your real-time logs, you build or use a Kinesis Data Streams consumer. When
you build a consumer for CloudFront real-time logs, it's important to know that the fields in every
real-time log record are always delivered in the same order, as listed in the Fields section. Make
sure that you build your consumer to accommodate this fixed order.

Real-time logs 879

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateRealtimeLogConfig.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_CreateDistribution.html

Amazon CloudFront Developer Guide

For example, consider a real-time log configuration that includes only these three fields: time-
to-first-byte, sc-status, and c-country. In this scenario, the last field, c-country, is
always field number 3 in every log record. However, if you later add fields to the real-time log
configuration, the placement of each field in a record can change.

For example, if you add the fields sc-bytes and time-taken to the real-time log configuration,
these fields are inserted into each log record according to the order shown in the Fields section.
The resulting order of all five fields is time-to-first-byte, sc-status, sc-bytes, time-
taken, and c-country. The c-country field was originally field number 3, but is now field
number 5. Make sure that your consumer application can handle fields that change position in a
log record, in case you add fields to your real-time log configuration.

Troubleshooting real-time logs

After you create a real-time log configuration, you might find that no records (or not all records)
are delivered to Kinesis Data Streams. In this case, you should first verify that your CloudFront
distribution is receiving viewer requests. If it is, you can check the following setting to continue
troubleshooting.

IAM role permissions

To deliver real-time log records to your Kinesis data stream, CloudFront uses the IAM role in the
real-time log configuration. Make sure that the role trust policy and the role permissions policy
match the policies shown in IAM role.

Kinesis Data Streams throttling

If CloudFront writes real-time log records to your Kinesis data stream faster than the stream can
handle, Kinesis Data Streams might throttle the requests from CloudFront. In this case, you can
increase the number of shards in your Kinesis data stream. Each shard can support writes up to
1,000 records per second, up to a maximum data write of 1 MB per second.

Edge function logs

You can use Amazon CloudWatch Logs to get logs for your edge functions, both Lambda@Edge
and CloudFront Functions. Access the logs using the CloudWatch console or the CloudWatch Logs
API.

Edge function logs 880

Amazon CloudFront Developer Guide

Important

We recommend that you use the logs to understand the nature of the requests for your
content, not as a complete accounting of all requests. CloudFront delivers edge function
logs on a best-effort basis. The log entry for a particular request might be delivered
long after the request was actually processed and, in rare cases, a log entry might not be
delivered at all. When a log entry is omitted from edge function logs, the number of entries
in the edge function logs won't match the usage that appears in the AWS billing and usage
reports.

Lambda@Edge logs

Lambda@Edge automatically sends function logs to CloudWatch Logs, creating log streams in the
AWS Regions where the functions are run. The log group name is formatted as /aws/lambda/us-
east-1.function-name, where function-name is the name that you gave to the function
when you created it, and us-east-1 is the Region code for the AWS Region where the function
ran.

Note

Lambda@Edge throttles logs based on the request volume and the size of logs.

You must review CloudWatch log files in the correct AWS Region to see your Lambda@Edge
function log files. To see the Regions where your Lambda@Edge function is running, view graphs
of metrics for the function in the CloudFront console. Metrics are displayed for each AWS Region.
On the same page, you can choose a Region and then view log files for that Region to investigate
issues.

To learn more about how to use CloudWatch Logs with Lambda@Edge functions, see the following:

• For more information about viewing graphs in the Monitoring section of the CloudFront console,
see the section called “Monitoring CloudFront metrics with Amazon CloudWatch”.

• For information about the permissions required to send data to CloudWatch Logs, see the
section called “Setting IAM permissions and roles”.

Edge function logs 881

Amazon CloudFront Developer Guide

• For information about adding logging to a Lambda@Edge function, see AWS Lambda function
logging in Node.js or AWS Lambda function logging in Python in the AWS Lambda Developer
Guide.

• For information about CloudWatch Logs quotas (formerly known as limits), see CloudWatch Logs
quotas in the Amazon CloudWatch Logs User Guide.

CloudFront Functions logs

If a CloudFront function's code contains console.log() statements, CloudFront Functions
automatically sends these log lines to CloudWatch Logs. If there are no console.log()
statements, nothing is sent to CloudWatch Logs.

CloudFront Functions always creates log streams in the US East (N. Virginia) Region (us-east-1),
no matter which edge location ran the function. The log group name is in the format /aws/
cloudfront/function/FunctionName, where FunctionName is the name that you gave to the
function when you created it. The log stream name is in the format YYYY/M/D/UUID.

The following shows an example log message sent to CloudWatch Logs. Each line begins with an ID
that uniquely identifies a CloudFront request. The message begins with a START line that includes
the CloudFront distribution ID, and ends with an END line. Between the START and END lines are
the log lines generated by console.log() statements in the function.

U7b4hR_RaxMADupvKAvr8_m9gsGXvioUggLV5Oyq-vmAtH8HADpjhw== START DistributionID:
 E3E5D42GADAXZZ
U7b4hR_RaxMADupvKAvr8_m9gsGXvioUggLV5Oyq-vmAtH8HADpjhw== Example function log output
U7b4hR_RaxMADupvKAvr8_m9gsGXvioUggLV5Oyq-vmAtH8HADpjhw== END

Note

CloudFront Functions sends logs to CloudWatch only for functions in the LIVE stage
that run in response to production requests and responses. When you test a function,
CloudFront doesn't send any logs to CloudWatch. The test output contains information
about errors, compute utilization, and function logs (console.log() statements), but this
information is not sent to CloudWatch.

CloudFront Functions uses an AWS Identity and Access Management (IAM) service-linked role to
send logs to CloudWatch Logs in your account. A service-linked role is an IAM role that is linked

Edge function logs 882

https://docs.aws.amazon.com/lambda/latest/dg/nodejs-logging.html
https://docs.aws.amazon.com/lambda/latest/dg/nodejs-logging.html
https://docs.aws.amazon.com/lambda/latest/dg/python-logging.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

Amazon CloudFront Developer Guide

directly to an AWS service. Service-linked roles are predefined by the service and include all of
the permissions that the service requires to call other AWS services on your behalf. CloudFront
Functions uses a service-linked role called AWSServiceRoleForCloudFrontLogger. For more
information about this role, see the section called “Service-linked roles for Lambda@Edge”
(Lambda@Edge uses the same service-linked role).

When a function fails with a validation error or an execution error, information is logged in
CloudFront's standard logs and real-time logs. Information about the error is logged in the x-
edge-result-type, x-edge-response-result-type, and x-edge-detailed-result-type
fields.

Logging Amazon CloudFront API calls using AWS CloudTrail

CloudFront is integrated with AWS CloudTrail, a service that provides a record of actions taken
by a user, role, or an AWS service. CloudTrail captures all API calls for CloudFront as events. The
calls captured include calls from the CloudFront console and code calls to the CloudFront API
operations. Using the information collected by CloudTrail, you can determine the request that was
made to CloudFront, the IP address from which the request was made, when it was made, and
additional details.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root user or user credentials.

• Whether the request was made on behalf of an IAM Identity Center user.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

CloudTrail is active in your AWS account when you create the account and you automatically
have access to the CloudTrail Event history. The CloudTrail Event history provides a viewable,
searchable, downloadable, and immutable record of the past 90 days of recorded management
events in an AWS Region. For more information, see Working with CloudTrail Event history in the
AWS CloudTrail User Guide. There are no CloudTrail charges for viewing the Event history.

For an ongoing record of events in your AWS account past 90 days, create a trail or a CloudTrail
Lake event data store.

CloudTrail logs 883

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html

Amazon CloudFront Developer Guide

CloudTrail trails

A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. All trails created using the
AWS Management Console are multi-Region. You can create a single-Region or a multi-Region
trail by using the AWS CLI. Creating a multi-Region trail is recommended because you capture
activity in all AWS Regions in your account. If you create a single-Region trail, you can view only
the events logged in the trail's AWS Region. For more information about trails, see Creating a
trail for your AWS account and Creating a trail for an organization in the AWS CloudTrail User
Guide.

You can deliver one copy of your ongoing management events to your Amazon S3 bucket at no
charge from CloudTrail by creating a trail, however, there are Amazon S3 storage charges. For
more information about CloudTrail pricing, see AWS CloudTrail Pricing. For information about
Amazon S3 pricing, see Amazon S3 Pricing.

CloudTrail Lake event data stores

CloudTrail Lake lets you run SQL-based queries on your events. CloudTrail Lake converts existing
events in row-based JSON format to Apache ORC format. ORC is a columnar storage format
that is optimized for fast retrieval of data. Events are aggregated into event data stores, which
are immutable collections of events based on criteria that you select by applying advanced
event selectors. The selectors that you apply to an event data store control which events persist
and are available for you to query. For more information about CloudTrail Lake, see Working
with AWS CloudTrail Lake in the AWS CloudTrail User Guide.

CloudTrail Lake event data stores and queries incur costs. When you create an event data
store, you choose the pricing option you want to use for the event data store. The pricing
option determines the cost for ingesting and storing events, and the default and maximum
retention period for the event data store. For more information about CloudTrail pricing, see
AWS CloudTrail Pricing.

Note

CloudFront is a global service. CloudTrail records events for CloudFront in the US East (N.
Virginia) Region. For more information, see Global service events in the AWS CloudTrail User
Guide.
If you use temporary security credentials by using AWS Security Token Service, calls to
regional endpoints, such as us-west-2, are logged in CloudTrail to their appropriate
Region.

CloudTrail logs 884

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html
https://aws.amazon.com/cloudtrail/pricing/
https://aws.amazon.com/s3/pricing/
https://orc.apache.org/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake-concepts.html#adv-event-selectors
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake-concepts.html#adv-event-selectors
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake-manage-costs.html#cloudtrail-lake-manage-costs-pricing-option
https://aws.amazon.com/cloudtrail/pricing/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-concepts.html#cloudtrail-concepts-global-service-events

Amazon CloudFront Developer Guide

For more information about CloudFront endpoints, see CloudFront endpoints and quotas in
the AWS General Reference.

CloudFront data events in CloudTrail

Data events provide information about the resource operations performed on or in a resource
(for example, reading or writing to a CloudFront distribution). These are also known as data plane
operations. Data events are often high-volume activities. By default, CloudTrail doesn’t log data
events. The CloudTrail Event history doesn't record data events.

Additional charges apply for data events. For more information about CloudTrail pricing, see AWS
CloudTrail Pricing.

You can log data events for the CloudFront resource types by using the CloudTrail console, AWS
CLI, or CloudTrail API operations. For more information about how to log data events, see Logging
data events with the AWS Management Console and Logging data events with the AWS Command
Line Interface in the AWS CloudTrail User Guide.

The following table lists the CloudFront resource types for which you can log data events. The
Data event type (console) column shows the value to choose from the Data event type list on the
CloudTrail console. The resources.type value column shows the resources.type value, which
you would specify when configuring advanced event selectors using the AWS CLI or CloudTrail
APIs. The Data APIs logged to CloudTrail column shows the API calls logged to CloudTrail for the
resource type.

Data event type (console) resources.type value Data APIs logged to
CloudTrail

CloudFront KeyValueStore AWS::CloudFront::K
eyValueStore

• DeleteKeys

• DescribeKeyValueStore

• GetKey

• ListKeys

• PutKeys

• UpdateKeys

CloudTrail logs 885

https://docs.aws.amazon.com/general/latest/gr/cf_region.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events
https://aws.amazon.com/cloudtrail/pricing/
https://aws.amazon.com/cloudtrail/pricing/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-console
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-console
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-with-the-AWS-CLI
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-with-the-AWS-CLI
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_kvs_DeleteKey.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_kvs_DescribeKeyValueStore.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_kvs_GetKey.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_kvs_ListKeys.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_kvs_PutKey.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_kvs_UpdateKeys.html

Amazon CloudFront Developer Guide

You can configure advanced event selectors to filter on the eventName, readOnly, and
resources.ARN fields to log only those events that are important to you. For more information
about these fields, see AdvancedFieldSelector in the AWS CloudTrail API Reference.

CloudFront management events in CloudTrail

Management events provide information about management operations that are performed on
resources in your AWS account. These are also known as control plane operations. By default,
CloudTrail logs management events.

Amazon CloudFront logs all CloudFront control plane operations as management events. For a list
of the Amazon CloudFront control plane operations that CloudFront logs to CloudTrail, see the
Amazon CloudFront API Reference.

CloudFront event examples

An event represents a single request from any source and includes information about the requested
API operation, the date and time of the operation, request parameters, and so on. CloudTrail log
files aren't an ordered stack trace of the public API calls, so events don't appear in any specific
order.

Contents

• Example: UpdateDistribution

• Example: UpdateKeys

Example: UpdateDistribution

The following example shows a CloudTrail event that demonstrates the UpdateDistribution
operation.

For calls to the CloudFront API, the eventSource is cloudfront.amazonaws.com.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE:role-session-name",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/role-session-name",
 "accountId": "111122223333",
 "accessKeyId": "ASIAIOSFODNN7EXAMPLE",
 "sessionContext": {

CloudTrail logs 886

https://docs.aws.amazon.com/awscloudtrail/latest/APIReference/API_AdvancedFieldSelector.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html#logging-management-events
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_Operations_Amazon_CloudFront.html
https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_UpdateDistribution.html

Amazon CloudFront Developer Guide

 "sessionIssuer": {
 "type": "Role",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::111122223333:role/Admin",
 "accountId": "111122223333",
 "userName": "Admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2024-02-02T19:23:50Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2024-02-02T19:26:01Z",
 "eventSource": "cloudfront.amazonaws.com",
 "eventName": "UpdateDistribution",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "52.94.133.137",
 "userAgent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
 like Gecko) Chrome/121.0.0.0 Safari/537.36",
 "requestParameters": {
 "distributionConfig": {
 "defaultRootObject": "",
 "aliases": {
 "quantity": 3,
 "items": [
 "alejandro_rosalez.awsps.myinstance.com",
 "cross-testing.alejandro_rosalez.awsps.myinstance.com",
 "*.alejandro_rosalez.awsps.myinstance.com"
]
 },
 "cacheBehaviors": {
 "quantity": 0,
 "items": []
 },
 "httpVersion": "http2and3",
 "originGroups": {
 "quantity": 0,
 "items": []
 },
 "viewerCertificate": {
 "minimumProtocolVersion": "TLSv1.2_2021",
 "cloudFrontDefaultCertificate": false,

CloudTrail logs 887

Amazon CloudFront Developer Guide

 "aCMCertificateArn": "arn:aws:acm:us-east-1:111122223333:certificate/
a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "sSLSupportMethod": "sni-only"
 },
 "webACLId": "arn:aws:wafv2:us-east-1:111122223333:global/webacl/testing-
acl/a1b2c3d4-5678-90ab-cdef-EXAMPLE22222",
 "customErrorResponses": {
 "quantity": 0,
 "items": []
 },
 "logging": {
 "includeCookies": false,
 "prefix": "",
 "enabled": false,
 "bucket": ""
 },
 "priceClass": "PriceClass_All",
 "restrictions": {
 "geoRestriction": {
 "restrictionType": "none",
 "quantity": 0,
 "items": []
 }
 },
 "isIPV6Enabled": true,
 "callerReference": "1578329170895",
 "continuousDeploymentPolicyId": "",
 "enabled": true,
 "defaultCacheBehavior": {
 "targetOriginId": "d111111abcdef8",
 "minTTL": 0,
 "compress": false,
 "maxTTL": 31536000,
 "functionAssociations": {
 "quantity": 0,
 "items": []
 },
 "trustedKeyGroups": {
 "quantity": 0,
 "items": [],
 "enabled": false
 },
 "smoothStreaming": false,
 "fieldLevelEncryptionId": "",

CloudTrail logs 888

Amazon CloudFront Developer Guide

 "defaultTTL": 86400,
 "lambdaFunctionAssociations": {
 "quantity": 0,
 "items": []
 },
 "viewerProtocolPolicy": "redirect-to-https",
 "forwardedValues": {
 "cookies": {"forward": "none"},
 "queryStringCacheKeys": {
 "quantity": 0,
 "items": []
 },
 "queryString": false,
 "headers": {
 "quantity": 1,
 "items": ["*"]
 }
 },
 "trustedSigners": {
 "items": [],
 "enabled": false,
 "quantity": 0
 },
 "allowedMethods": {
 "quantity": 2,
 "items": [
 "HEAD",
 "GET"
],
 "cachedMethods": {
 "quantity": 2,
 "items": [
 "HEAD",
 "GET"
]
 }
 }
 },
 "staging": false,
 "origins": {
 "quantity": 1,
 "items": [
 {
 "originPath": "",

CloudTrail logs 889

Amazon CloudFront Developer Guide

 "connectionTimeout": 10,
 "customOriginConfig": {
 "originReadTimeout": 30,
 "hTTPSPort": 443,
 "originProtocolPolicy": "https-only",
 "originKeepaliveTimeout": 5,
 "hTTPPort": 80,
 "originSslProtocols": {
 "quantity": 3,
 "items": [
 "TLSv1",
 "TLSv1.1",
 "TLSv1.2"
]
 }
 },
 "id": "d111111abcdef8",
 "domainName": "d111111abcdef8.cloudfront.net",
 "connectionAttempts": 3,
 "customHeaders": {
 "quantity": 0,
 "items": []
 },
 "originShield": {"enabled": false},
 "originAccessControlId": ""
 }
]
 },
 "comment": "HIDDEN_DUE_TO_SECURITY_REASONS"
 },
 "id": "EDFDVBD6EXAMPLE",
 "ifMatch": "E1RTLUR9YES76O"
 },
 "responseElements": {
 "distribution": {
 "activeTrustedSigners": {
 "quantity": 0,
 "enabled": false
 },
 "id": "EDFDVBD6EXAMPLE",
 "domainName": "d111111abcdef8.cloudfront.net",
 "distributionConfig": {
 "defaultRootObject": "",
 "aliases": {

CloudTrail logs 890

Amazon CloudFront Developer Guide

 "quantity": 3,
 "items": [
 "alejandro_rosalez.awsps.myinstance.com",
 "cross-testing.alejandro_rosalez.awsps.myinstance.com",
 "*.alejandro_rosalez.awsps.myinstance.com"
]
 },
 "cacheBehaviors": {"quantity": 0},
 "httpVersion": "http2and3",
 "originGroups": {"quantity": 0},
 "viewerCertificate": {
 "minimumProtocolVersion": "TLSv1.2_2021",
 "cloudFrontDefaultCertificate": false,
 "aCMCertificateArn": "arn:aws:acm:us-
east-1:111122223333:certificate/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "sSLSupportMethod": "sni-only",
 "certificateSource": "acm",
 "certificate": "arn:aws:acm:us-east-1:111122223333:certificate/
a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"
 },
 "webACLId": "arn:aws:wafv2:us-east-1:111122223333:global/webacl/
testing-acl/a1b2c3d4-5678-90ab-cdef-EXAMPLE22222",
 "customErrorResponses": {"quantity": 0},
 "logging": {
 "includeCookies": false,
 "prefix": "",
 "enabled": false,
 "bucket": ""
 },
 "priceClass": "PriceClass_All",
 "restrictions": {
 "geoRestriction": {
 "restrictionType": "none",
 "quantity": 0
 }
 },
 "isIPV6Enabled": true,
 "callerReference": "1578329170895",
 "continuousDeploymentPolicyId": "",
 "enabled": true,
 "defaultCacheBehavior": {
 "targetOriginId": "d111111abcdef8",
 "minTTL": 0,
 "compress": false,

CloudTrail logs 891

Amazon CloudFront Developer Guide

 "maxTTL": 31536000,
 "functionAssociations": {"quantity": 0},
 "trustedKeyGroups": {
 "quantity": 0,
 "enabled": false
 },
 "smoothStreaming": false,
 "fieldLevelEncryptionId": "",
 "defaultTTL": 86400,
 "lambdaFunctionAssociations": {"quantity": 0},
 "viewerProtocolPolicy": "redirect-to-https",
 "forwardedValues": {
 "cookies": {"forward": "none"},
 "queryStringCacheKeys": {"quantity": 0},
 "queryString": false,
 "headers": {
 "quantity": 1,
 "items": ["*"]
 }
 },
 "trustedSigners": {
 "enabled": false,
 "quantity": 0
 },
 "allowedMethods": {
 "quantity": 2,
 "items": [
 "HEAD",
 "GET"
],
 "cachedMethods": {
 "quantity": 2,
 "items": [
 "HEAD",
 "GET"
]
 }
 }
 },
 "staging": false,
 "origins": {
 "quantity": 1,
 "items": [
 {

CloudTrail logs 892

Amazon CloudFront Developer Guide

 "originPath": "",
 "connectionTimeout": 10,
 "customOriginConfig": {
 "originReadTimeout": 30,
 "hTTPSPort": 443,
 "originProtocolPolicy": "https-only",
 "originKeepaliveTimeout": 5,
 "hTTPPort": 80,
 "originSslProtocols": {
 "quantity": 3,
 "items": [
 "TLSv1",
 "TLSv1.1",
 "TLSv1.2"
]
 }
 },
 "id": "d111111abcdef8",
 "domainName": "d111111abcdef8.cloudfront.net",
 "connectionAttempts": 3,
 "customHeaders": {"quantity": 0},
 "originShield": {"enabled": false},
 "originAccessControlId": ""
 }
]
 },
 "comment": "HIDDEN_DUE_TO_SECURITY_REASONS"
 },
 "aliasICPRecordals": [
 {
 "cNAME": "alejandro_rosalez.awsps.myinstance.com",
 "iCPRecordalStatus": "APPROVED"
 },
 {
 "cNAME": "cross-testing.alejandro_rosalez.awsps.myinstance.com",
 "iCPRecordalStatus": "APPROVED"
 },
 {
 "cNAME": "*.alejandro_rosalez.awsps.myinstance.com",
 "iCPRecordalStatus": "APPROVED"
 }
],
 "aRN": "arn:aws:cloudfront::111122223333:distribution/EDFDVBD6EXAMPLE",
 "status": "InProgress",

CloudTrail logs 893

Amazon CloudFront Developer Guide

 "lastModifiedTime": "Feb 2, 2024 7:26:01 PM",
 "activeTrustedKeyGroups": {
 "enabled": false,
 "quantity": 0
 },
 "inProgressInvalidationBatches": 0
 },
 "eTag": "E1YHBLAB2BJY1G"
 },
 "requestID": "4e6b66f9-d548-11e3-a8a9-73e33example",
 "eventID": "5ab02562-0fc5-43d0-b7b6-90293example",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "apiVersion": "2020_05_31",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management",
 "tlsDetails": {
 "tlsVersion": "TLSv1.3",
 "cipherSuite": "TLS_AES_128_GCM_SHA256",
 "clientProvidedHostHeader": "cloudfront.amazonaws.com"
 },
 "sessionCredentialFromConsole": "true"
}

Example: UpdateKeys

The following example shows a CloudTrail event that demonstrates the UpdateKeys operation.

For calls to the CloudFront KeyValueStore API, the eventSource is
edgekeyvaluestore.amazonaws.com instead of cloudfront.amazonaws.com.

{
 "eventVersion": "1.09",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE:role-session-name",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/role-session-name",
 "accountId": "111122223333",
 "accessKeyId": "ASIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",

CloudTrail logs 894

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_kvs_UpdateKeys.html

Amazon CloudFront Developer Guide

 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::111122223333:role/Admin",
 "accountId": "111122223333",
 "userName": "Admin"
 },
 "attributes": {
 "creationDate": "2023-11-01T23:41:14Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2023-11-01T23:41:28Z",
 "eventSource": "edgekeyvaluestore.amazonaws.com",
 "eventName": "UpdateKeys",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "3.235.183.252",
 "userAgent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
 like Gecko) Chrome/121.0.0.0 Safari/537.36,
 "requestParameters": {
 "kvsARN": "arn:aws:cloudfront::111122223333:key-value-store/a1b2c3d4-5678-90ab-
cdef-EXAMPLE11111",
 "ifMatch": "KV3O6B1CX531EBP",
 "deletes": [
 {"key": "key1"}
]
 },
 "responseElements": {
 "itemCount": 0,
 "totalSizeInBytes": 0,
 "eTag": "KVDC9VEVZ71ZGO"
 },
 "requestID": "5ccf104c-acce-4ea1-b7fc-73e33example",
 "eventID": "a0b1b5c7-906c-439d-9925-90293example",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::CloudFront::KeyValueStore",
 "ARN": "arn:aws:cloudfront::111122223333:key-value-store/
a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": false,

CloudTrail logs 895

Amazon CloudFront Developer Guide

 "recipientAccountId": "111122223333",
 "eventCategory": "Data",
 "tlsDetails": {
 "tlsVersion": "TLSv1.3",
 "cipherSuite": "TLS_AES_128_GCM_SHA256",
 "clientProvidedHostHeader": "111122223333.cloudfront-kvs.global.api.aws"
 }
}

For information about CloudTrail record contents, see CloudTrail record contents in the AWS
CloudTrail User Guide.

Tracking configuration changes with AWS Config

You can use AWS Config to record configuration changes for CloudFront distribution settings
changes. For example, you can capture changes to distribution states, price classes, origins,
geographic restriction settings, and Lambda@Edge configurations.

Note

AWS Config does not record key–value tags for CloudFront streaming distributions.

Set up AWS Config with CloudFront

When you set up AWS Config, you can choose to record all supported AWS resources, or you can
specify only certain resources to record configuration changes for, such as just recording changes
for CloudFront. To see the specific resources supported for CloudFront, see the list of Supported
AWS Resource Types in the AWS Config Developer Guide.

To track configuration changes to your CloudFront distribution, you must log in to the AWS
Console in the US East (N. Virginia) public region.

Note

There might be a delay in recording resources with AWS Config. AWS Config records
resources only after it discovers the resources.

Tracking configuration changes with AWS Config 896

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-record-contents.html
https://docs.aws.amazon.com/config/latest/developerguide/resource-config-reference.html#supported-resources
https://docs.aws.amazon.com/config/latest/developerguide/resource-config-reference.html#supported-resources

Amazon CloudFront Developer Guide

Set up AWS Config with CloudFront by using the AWS Management Console

1. Sign in to the AWS Management Console and open the AWS Config console at https://
console.aws.amazon.com/config/.

2. Choose Get Started Now.

3. On the Settings page, for Resource types to record, specify the AWS resource types that you
want AWS Config to record. If you want to record only CloudFront changes, choose Specific
types, and then, under CloudFront, choose the distribution or streaming distribution that you
want to track changes for.

To add or change which distributions to track, choose Settings on the left, after completing
your initial setup.

4. Specify additional required options for AWS Config: set up a notification, specify a location for
the configuration information, and add rules for evaluating resource types.

For more information, see Setting up AWS Config with the Console in the AWS Config Developer
Guide.

To set up AWS Config with CloudFront by using the AWS CLI or by using an API, see one of the
following:

• Use the AWS CLI: Setting up AWS Config with the AWS CLI in the AWS Config Developer Guide

• Use an API: The StartConfigurationRecorder action and other information in the AWS Config API
Reference

View CloudFront configuration history

After AWS Config starts recording configuration changes to your distributions, you can get the
configuration history of any distribution that you have configured for CloudFront.

You can view configuration histories in any of the following ways:

• Use the AWS Config console. For each recorded resource, you can view a timeline page, which
provides a history of configuration details. To view this page, choose the gray icon in the Config
Timeline column of the Dedicated Hosts page. For more information, see Viewing Configuration
Details in the AWS Config Console in the AWS Config Developer Guide.

View CloudFront configuration history 897

https://console.aws.amazon.com/config/
https://console.aws.amazon.com/config/
https://docs.aws.amazon.com/config/latest/developerguide/gs-console.html
https://docs.aws.amazon.com/config/latest/developerguide/gs-cli.html
https://docs.aws.amazon.com/config/latest/APIReference/API_StartConfigurationRecorder.html
https://docs.aws.amazon.com/config/latest/developerguide/view-manage-resource-console.html
https://docs.aws.amazon.com/config/latest/developerguide/view-manage-resource-console.html

Amazon CloudFront Developer Guide

• Run AWS CLI commands. To get a list of all your distributions, use the list-discovered-resources
command. To get the configuration details of a distribution for a specific time interval, use the
get-resource-config-history command. For more information, see View Configuration Details
Using the CLI in the AWS Config Developer Guide.

• Use the AWS Config API in your applications. To get a list of all your distributions use the
ListDiscoveredResources action. To get the configuration details of a distribution for a specific
time interval, use the GetResourceConfigHistory action. For more information, see the AWS
Config API Reference.

For example, to get a list of all of your distributions from AWS Config, you could run a CLI
command such as the following:

aws configservice list-discovered-resources --resource-type
AWS::CloudFront::Distribution

View CloudFront configuration history 898

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/configservice/list-discovered-resources.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/configservice/get-resource-config-history.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/configservice/get-resource-config-history.html
https://docs.aws.amazon.com/config/latest/developerguide/resource-config-reference.html
https://docs.aws.amazon.com/config/latest/developerguide/resource-config-reference.html
https://docs.aws.amazon.com/config/latest/APIReference/API_ListDiscoveredResources.html
https://docs.aws.amazon.com/config/latest/APIReference/API_GetResourceConfigHistory.html
https://docs.aws.amazon.com/config/latest/APIReference/
https://docs.aws.amazon.com/config/latest/APIReference/

Amazon CloudFront Developer Guide

Security in Amazon CloudFront

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely.
Third-party auditors regularly test and verify the effectiveness of our security as part of the
AWS compliance programs. To learn about the compliance programs that apply to Amazon
CloudFront, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your organization’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using CloudFront. The following topics show you how to configure CloudFront to meet your
security and compliance objectives. You also learn how to use other AWS services that help you to
monitor and secure your CloudFront resources.

Topics

• Data protection in Amazon CloudFront

• Identity and Access Management for Amazon CloudFront

• Logging and monitoring in Amazon CloudFront

• Compliance validation for Amazon CloudFront

• Resilience in Amazon CloudFront

• Infrastructure security in Amazon CloudFront

Data protection in Amazon CloudFront

The AWS shared responsibility model applies to data protection in Amazon CloudFront. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all

Data protection 899

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/

Amazon CloudFront Developer Guide

of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with CloudFront or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

Amazon CloudFront provides several options that you can use to help secure the content that it
delivers:

• Configure HTTPS connections.

• Configure field-level encryption to provide additional security for specific data during transit.

• Restrict access to content so that only specific people, or people in a specific area, can view it.

The following topics explain the options in more detail.

Data protection 900

https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

Amazon CloudFront Developer Guide

Topics

• Encryption in transit

• Encryption at rest

• Restrict access to content

Encryption in transit

To encrypt your data during transit, you configure Amazon CloudFront to require that viewers use
HTTPS to request your files, so that connections are encrypted when CloudFront communicates
with viewers. You also can configure CloudFront to use HTTPS to get files from your origin, so that
connections are encrypted when CloudFront communicates with your origin.

For more information, see Using HTTPS with CloudFront.

Field-level encryption adds an additional layer of security along with HTTPS that lets you protect
specific data throughout system processing so that only certain applications can see it. By
configuring field-level encryption in CloudFront, you can securely upload user-submitted sensitive
information to your web servers. The sensitive information provided by your clients is encrypted at
the edge closer to the user. It remains encrypted throughout your entire application stack, ensuring
that only applications that need the data—and have the credentials to decrypt it—are able to do
so.

For more information, see Using field-level encryption to help protect sensitive data.

The CloudFront API endpoints, cloudfront.amazonaws.com and cloudfront-
fips.amazonaws.com, only accept HTTPS traffic. This means that when you send and receive
information using the CloudFront API, your data—including distribution configurations, cache
policies and origin request policies, key groups and public keys, and function code in CloudFront
Functions—is always encrypted in transit. In addition, all requests sent to the CloudFront API
endpoints are signed with AWS credentials and logged in AWS CloudTrail.

Function code and configuration in CloudFront Functions is always encrypted in transit when
copied to the edge location points of presence (POPs), and between other storage locations used
by CloudFront.

Encryption at rest

Function code and configuration in CloudFront Functions is always stored in an encrypted format
on the edge location POPs, and in other storage locations used by CloudFront.

Encryption in transit 901

Amazon CloudFront Developer Guide

Restrict access to content

Many companies that distribute content over the internet want to restrict access to documents,
business data, media streams, or content that is intended for a subset of users. To securely serve
this content by using Amazon CloudFront, you can do one or more of the following:

Use signed URLs or cookies

You can restrict access to content that is intended for selected users—for example, users who
have paid a fee—by serving this private content through CloudFront using signed URLs or
signed cookies. For more information, see Serving private content with signed URLs and signed
cookies.

Restrict access to content in Amazon S3 buckets

If you restrict access to your content by using, for example, CloudFront signed URLs or signed
cookies, you also won't want people to view files by using the direct URL for the file. Instead,
you want them to access the files only by using the CloudFront URL, so that your protections
work.

If you use an Amazon S3 bucket as the origin for a CloudFront distribution, you can set up an
origin access control (OAC) which makes it possible to restrict access to the S3 bucket. For more
information, see the section called “Restricting access to an Amazon Simple Storage Service
origin”.

Restrict access to content served by an Application Load Balancer

When you use CloudFront with an Application Load Balancer in Elastic Load Balancing as the
origin, you can configure CloudFront to prevent users from directly accessing the Application
Load Balancer. This allows users to access the Application Load Balancer only through
CloudFront, ensuring that you get the benefits of using CloudFront. For more information, see
Restricting access to Application Load Balancers.

Use AWS WAF web ACLs

You can use AWS WAF, a web application firewall service, to create a web access control list
(web ACL) to restrict access to your content. Based on conditions that you specify, such as the
IP addresses that requests originate from or the values of query strings, CloudFront responds
to requests either with the requested content or with an HTTP 403 status code (Forbidden). For
more information, see Using AWS WAF protections.

Restrict access to content 902

Amazon CloudFront Developer Guide

Use geo restriction

You can use geo restriction, also known as geoblocking, to prevent users in specific geographic
locations from accessing content that you serve through a CloudFront distribution. There are
several options to choose from when you configure geo restrictions. For more information, see
Restricting the geographic distribution of your content.

Identity and Access Management for Amazon CloudFront

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use CloudFront resources. IAM is an AWS service that you can
use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon CloudFront works with IAM

• Identity-based policy examples for Amazon CloudFront

• AWS managed policies for Amazon CloudFront

• Troubleshooting Amazon CloudFront identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in CloudFront.

Service user – If you use the CloudFront service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more CloudFront features to
do your work, you might need additional permissions. Understanding how access is managed can
help you request the right permissions from your administrator. If you cannot access a feature in
CloudFront, see Troubleshooting Amazon CloudFront identity and access.

Identity and Access Management 903

Amazon CloudFront Developer Guide

Service administrator – If you're in charge of CloudFront resources at your company, you probably
have full access to CloudFront. It's your job to determine which CloudFront features and resources
your service users should access. You must then submit requests to your IAM administrator to
change the permissions of your service users. Review the information on this page to understand
the basic concepts of IAM. To learn more about how your company can use IAM with CloudFront,
see How Amazon CloudFront works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to CloudFront. To view example CloudFront identity-based
policies that you can use in IAM, see Identity-based policy examples for Amazon CloudFront.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

Authenticating with identities 904

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

Amazon CloudFront Developer Guide

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Authenticating with identities 905

https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html

Amazon CloudFront Developer Guide

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an

Authenticating with identities 906

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon CloudFront Developer Guide

action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

Managing access using policies 907

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon CloudFront Developer Guide

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Managing access using policies 908

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon CloudFront Developer Guide

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Managing access using policies 909

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

Amazon CloudFront Developer Guide

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon CloudFront works with IAM

Before you use IAM to manage access to CloudFront, learn what IAM features are available to use
with CloudFront.

IAM features you can use with Amazon CloudFront

IAM feature CloudFront support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) Yes

ACLs No

ABAC (tags in policies) Partial

Temporary credentials Yes

Forward access sessions (FAS) No

Service roles No

Service-linked roles Yes

To get a high-level view of how CloudFront and other AWS services work with most IAM features,
see AWS services that work with IAM in the IAM User Guide.

How Amazon CloudFront works with IAM 910

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon CloudFront Developer Guide

Identity-based policies for CloudFront

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for CloudFront

To view examples of CloudFront identity-based policies, see Identity-based policy examples for
Amazon CloudFront.

Resource-based policies within CloudFront

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant

How Amazon CloudFront works with IAM 911

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon CloudFront Developer Guide

the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see How IAM roles differ from resource-based policies in the IAM User Guide.

Policy actions for CloudFront

Supports policy actions Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of CloudFront actions, see Actions defined by Amazon CloudFront in the Service
Authorization Reference.

Policy actions in CloudFront use the following prefix before the action:

cloudfront

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "cloudfront:action1",
 "cloudfront:action2"
]

To view examples of CloudFront identity-based policies, see Identity-based policy examples for
Amazon CloudFront.

How Amazon CloudFront works with IAM 912

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudfront.html#amazoncloudfront-actions-as-permissions

Amazon CloudFront Developer Guide

Policy resources for CloudFront

Supports policy resources Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of CloudFront resource types and their ARNs, see Resources defined by Amazon
CloudFront in the Service Authorization Reference. To learn with which actions you can specify the
ARN of each resource, see Actions defined by Amazon CloudFront.

To view examples of CloudFront identity-based policies, see Identity-based policy examples for
Amazon CloudFront.

Policy condition keys for CloudFront

Supports service-specific policy condition keys Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

How Amazon CloudFront works with IAM 913

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudfront.html#amazoncloudfront-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudfront.html#amazoncloudfront-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudfront.html#amazoncloudfront-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html

Amazon CloudFront Developer Guide

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of CloudFront condition keys, see Condition keys for Amazon CloudFront in the Service
Authorization Reference. To learn with which actions and resources you can use a condition key, see
Actions defined by Amazon CloudFront.

To view examples of CloudFront identity-based policies, see Identity-based policy examples for
Amazon CloudFront.

ACLs in CloudFront

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with CloudFront

Supports ABAC (tags in policies) Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

How Amazon CloudFront works with IAM 914

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudfront.html#amazoncloudfront-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudfront.html#amazoncloudfront-actions-as-permissions

Amazon CloudFront Developer Guide

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Using temporary credentials with CloudFront

Supports temporary credentials Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Forward access sessions for CloudFront

Supports forward access sessions (FAS) No

How Amazon CloudFront works with IAM 915

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

Amazon CloudFront Developer Guide

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for CloudFront

Supports service roles No

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break CloudFront functionality. Edit
service roles only when CloudFront provides guidance to do so.

Service-linked roles for CloudFront

Supports service-linked roles Yes

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

How Amazon CloudFront works with IAM 916

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon CloudFront Developer Guide

Identity-based policy examples for Amazon CloudFront

By default, users and roles don't have permission to create or modify CloudFront resources. They
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface
(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they
need, an IAM administrator can create IAM policies. The administrator can then add the IAM
policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by CloudFront, including the format of
the ARNs for each of the resource types, see Actions, resources, and condition keys for Amazon
CloudFront in the Service Authorization Reference.

Topics

• Policy best practices

• Using the CloudFront console

• Allow users to view their own permissions

• Permissions to access CloudFront programmatically

• Permissions required to use the CloudFront console

• AWS managed (predefined) policies for CloudFront

• Customer managed policy examples

Policy best practices

Identity-based policies determine whether someone can create, access, or delete CloudFront
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

Identity-based policy examples 917

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudfront.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudfront.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

Amazon CloudFront Developer Guide

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the CloudFront console

To access the Amazon CloudFront console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the CloudFront resources in your AWS
account. If you create an identity-based policy that is more restrictive than the minimum required
permissions, the console won't function as intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

Identity-based policy examples 918

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon CloudFront Developer Guide

To ensure that users and roles can still use the CloudFront console, also attach the CloudFront
ConsoleAccess or ReadOnly AWS managed policy to the entities. For more information, see
Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Identity-based policy examples 919

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon CloudFront Developer Guide

Permissions to access CloudFront programmatically

The following shows a permissions policy. The Sid, or statement ID, is optional.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAllCloudFrontPermissions",
 "Effect": "Allow",
 "Action": ["cloudfront:*"],
 "Resource": "*"
 }
]
}

The policy grants permissions to perform all CloudFront operations, which is sufficient to access
CloudFront programmatically. If you're using the console to access CloudFront, see Permissions
required to use the CloudFront console.

For a list of actions and the ARN that you specify to grant or deny permission to use each action,
see Actions, resources, and condition keys for Amazon CloudFront in the Service Authorization
Reference.

Permissions required to use the CloudFront console

To grant full access to the CloudFront console, you grant the permissions in the following
permissions policy:

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "acm:ListCertificates",
 "cloudfront:*",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:GetMetricStatistics",
 "elasticloadbalancing:DescribeLoadBalancers",
 "iam:ListServerCertificates",

Identity-based policy examples 920

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudfront.html

Amazon CloudFront Developer Guide

 "sns:ListSubscriptionsByTopic",
 "sns:ListTopics",
 "waf:GetWebACL",
 "waf:ListWebACLs"
],
 "Resource":"*"
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:ListAllMyBuckets",
 "s3:PutBucketPolicy"
],
 "Resource":"arn:aws:s3:::*"
 }
]
}

Here's why the permissions are required:

acm:ListCertificates

When you're creating and updating distributions by using the CloudFront console and you want
to configure CloudFront to require HTTPS between the viewer and CloudFront or between
CloudFront and the origin, lets you view a list of ACM certificates.

This permission isn't required if you aren't using the CloudFront console.

cloudfront:*

Lets you perform all CloudFront actions.

cloudwatch:DescribeAlarms and cloudwatch:PutMetricAlarm

Let you create and view CloudWatch alarms in the CloudFront console. See also
sns:ListSubscriptionsByTopic and sns:ListTopics.

These permissions aren't required if you aren't using the CloudFront console.

cloudwatch:GetMetricStatistics

Lets CloudFront render CloudWatch metrics in the CloudFront console.

This permission isn't required if you aren't using the CloudFront console.

Identity-based policy examples 921

Amazon CloudFront Developer Guide

elasticloadbalancing:DescribeLoadBalancers

When creating and updating distributions, lets you view a list of Elastic Load Balancing load
balancers in the list of available origins.

This permission isn't required if you aren't using the CloudFront console.

iam:ListServerCertificates

When you're creating and updating distributions by using the CloudFront console and you want
to configure CloudFront to require HTTPS between the viewer and CloudFront or between
CloudFront and the origin, lets you view a list of certificates in the IAM certificate store.

This permission isn't required if you aren't using the CloudFront console.

s3:ListAllMyBuckets

When you're creating and updating distributions, lets you perform the following operations:

• View a list of S3 buckets in the list of available origins

• View a list of S3 buckets that you can save access logs in

This permission isn't required if you aren't using the CloudFront console.

S3:PutBucketPolicy

When you're creating or updating distributions that restrict access to S3 buckets, lets a user
update the bucket policy to grant access to the CloudFront origin access identity. For more
information, see the section called “Using an origin access identity (legacy, not recommended)”.

This permission isn't required if you aren't using the CloudFront console.

sns:ListSubscriptionsByTopic and sns:ListTopics

When you create CloudWatch alarms in the CloudFront console, lets you choose an SNS topic
for notifications.

These permissions aren't required if you aren't using the CloudFront console.

waf:GetWebACL and waf:ListWebACLs

Lets you view a list of AWS WAF web ACLs in the CloudFront console.

These permissions aren't required if you aren't using the CloudFront console.

Identity-based policy examples 922

Amazon CloudFront Developer Guide

AWS managed (predefined) policies for CloudFront

AWS addresses many common use cases by providing standalone IAM policies that are created
and administered by AWS. These AWS managed policies grant necessary permissions for common
use cases so that you can avoid having to investigate what permissions are needed. For more
information, see AWS Managed Policies in the IAM User Guide. For CloudFront, IAM provides two
managed policies:

• CloudFrontFullAccess – Grants full access to CloudFront resources.

Important

If you want CloudFront to create and save access logs, you need to grant additional
permissions. For more information, see Permissions required to configure standard
logging and to access your log files.

• CloudFrontReadOnlyAccess – Grants read-only access to CloudFront resources.

Customer managed policy examples

You can create your own custom IAM policies to allow permissions for CloudFront API actions. You
can attach these custom policies to the IAM users or groups that require the specified permissions.
These policies work when you are using the CloudFront API, the AWS SDKs, or the AWS CLI. The
following examples show permissions for a few common use cases. For the policy that grants a user
full access to CloudFront, see Permissions required to use the CloudFront console.

Examples

• Example 1: Allow read access to all distributions

• Example 2: Allow creating, updating, and deleting distributions

• Example 3: Allow creating and listing invalidations

• Example 4: Allow creating a distribution

Example 1: Allow read access to all distributions

The following permissions policy grants the user permissions to view all distributions in the
CloudFront console:

Identity-based policy examples 923

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon CloudFront Developer Guide

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "acm:ListCertificates",
 "cloudfront:GetDistribution",
 "cloudfront:GetDistributionConfig",
 "cloudfront:ListDistributions",
 "cloudfront:ListCloudFrontOriginAccessIdentities",
 "elasticloadbalancing:DescribeLoadBalancers",
 "iam:ListServerCertificates",
 "sns:ListSubscriptionsByTopic",
 "sns:ListTopics",
 "waf:GetWebACL",
 "waf:ListWebACLs"
],
 "Resource":"*"
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:ListAllMyBuckets"
],
 "Resource":"arn:aws:s3:::*"
 }
]
}

Example 2: Allow creating, updating, and deleting distributions

The following permissions policy allows users to create, update, and delete distributions by using
the CloudFront console:

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "acm:ListCertificates",
 "cloudfront:CreateDistribution",

Identity-based policy examples 924

Amazon CloudFront Developer Guide

 "cloudfront:DeleteDistribution",
 "cloudfront:GetDistribution",
 "cloudfront:GetDistributionConfig",
 "cloudfront:ListDistributions",
 "cloudfront:UpdateDistribution",
 "cloudfront:ListCloudFrontOriginAccessIdentities",
 "elasticloadbalancing:DescribeLoadBalancers",
 "iam:ListServerCertificates",
 "sns:ListSubscriptionsByTopic",
 "sns:ListTopics",
 "waf:GetWebACL",
 "waf:ListWebACLs"
],
 "Resource":"*"
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:ListAllMyBuckets",
 "s3:PutBucketPolicy"
],
 "Resource":"arn:aws:s3:::*"
 }
]
}

The cloudfront:ListCloudFrontOriginAccessIdentities permission allows users to
automatically grant to an existing origin access identity the permission to access objects in an
Amazon S3 bucket. If you also want users to be able to create origin access identities, you also need
to allow the cloudfront:CreateCloudFrontOriginAccessIdentity permission.

Example 3: Allow creating and listing invalidations

The following permissions policy allows users to create and list invalidations. It includes read access
to CloudFront distributions because you create and view invalidations by first displaying settings
for a distribution:

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",

Identity-based policy examples 925

Amazon CloudFront Developer Guide

 "Action":[
 "acm:ListCertificates",
 "cloudfront:GetDistribution",
 "cloudfront:GetStreamingDistribution",
 "cloudfront:GetDistributionConfig",
 "cloudfront:ListDistributions",
 "cloudfront:ListCloudFrontOriginAccessIdentities",
 "cloudfront:CreateInvalidation",
 "cloudfront:GetInvalidation",
 "cloudfront:ListInvalidations",
 "elasticloadbalancing:DescribeLoadBalancers",
 "iam:ListServerCertificates",
 "sns:ListSubscriptionsByTopic",
 "sns:ListTopics",
 "waf:GetWebACL",
 "waf:ListWebACLs"
],
 "Resource":"*"
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:ListAllMyBuckets"
],
 "Resource":"arn:aws:s3:::*"
 }
]
}

Example 4: Allow creating a distribution

The following permission policy grants the user permission to create and list distributions
in the CloudFront console. For the CreateDistribution action, specify the
wildcard (*) character for the Resource instead of a wildcard for the distribution ARN
(arn:aws:cloudfront::123456789012:distribution/*). For more information about the
Resource element, see IAM JSON policy elements: Resource in the IAM User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",

Identity-based policy examples 926

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_resource.html

Amazon CloudFront Developer Guide

 "Action": "cloudfront:CreateDistribution",
 "Resource": "*"
 },
 {
 "Sid": "VisualEditor1",
 "Effect": "Allow",
 "Action": "cloudfront:ListDistributions",
 "Resource": "*"
 }
]
}

AWS managed policies for Amazon CloudFront

To add permissions to users, groups, and roles, it’s easier to use AWS managed policies than to
write policies yourself. It takes time and expertise to create IAM customer managed policies that
provide your users with only the permissions they need. To get started quickly, you can use our
AWS managed policies. These policies cover common use cases and are available in your AWS
account. For more information about AWS managed policies, see AWS managed policies in the IAM
User Guide.

AWS services maintain and update AWS managed policies. You can’t change the permissions in
AWS managed policies. Services occasionally add additional permissions to an AWS managed
policy to support new features. This type of update affects all identities (users, groups, and roles)
where the policy is attached. Services are most likely to update an AWS managed policy when
a new feature is launched or when new permissions become available. Services do not remove
permissions from an AWS managed policy, so policy updates won’t break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services
and resources. When a service launches a new feature, AWS adds read-only permissions for new
operations and resources. For a list and descriptions of job function policies, see AWS managed
policies for job functions in the IAM User Guide.

AWS managed policies 927

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

Amazon CloudFront Developer Guide

AWS managed policy: CloudFrontReadOnlyAccess

You can attach the CloudFrontReadOnlyAccess policy to your IAM identities. This policy allows
read-only permissions to CloudFront resources. It also allows read-only permissions to other AWS
service resources that are related to CloudFront and that are visible in the CloudFront console.

Permissions details

This policy includes the following permissions.

• cloudfront:Describe* – Allows principals to get information about metadata about
CloudFront resources.

• cloudfront:Get* – Allows principals to get detailed information and configurations for
CloudFront resources.

• cloudfront:List* – Allows principals to get lists of CloudFront resources.

• cloudfront-keyvaluestore:Describe* - Allows principals to get information about the
key value store.

• cloudfront-keyvaluestore:Get* - Allows principals to get detailed information and
configurations for the key value store.

• cloudfront-keyvaluestore:List* - Allows principals to get lists of the key value stores.

• acm:ListCertificates – Allows principals to get a list of ACM certificates.

• iam:ListServerCertificates – Allows principals to get a list of server certificates stored in
IAM.

• route53:List* – Allows principals to get lists of Route 53 resources.

• waf:ListWebACLs – Allows principals to get a list of web ACLs in AWS WAF.

• waf:GetWebACL – Allows principals to get detailed information about web ACLs in AWS WAF.

• wafv2:ListWebACLs – Allows principals to get a list of web ACLs in AWS WAF.

• wafv2:GetWebACL – Allows principals to get detailed information about web ACLs in AWS WAF.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "cfReadOnly",
 "Effect": "Allow",
 "Action": [

AWS managed policies 928

Amazon CloudFront Developer Guide

 "acm:ListCertificates",
 "cloudfront:Describe*",
 "cloudfront:Get*",
 "cloudfront:List*",
 "cloudfront-keyvaluestore:Describe*",
 "cloudfront-keyvaluestore:Get*",
 "cloudfront-keyvaluestore:List*",
 "iam:ListServerCertificates",
 "route53:List*",
 "waf:ListWebACLs",
 "waf:GetWebACL",
 "wafv2:ListWebACLs",
 "wafv2:GetWebACL"
],
 "Resource": "*"
 }
]
}

AWS managed policy: CloudFrontFullAccess

You can attach the CloudFrontFullAccess policy to your IAM identities. This policy allows
administrative permissions to CloudFront resources. It also allows read-only permissions to other
AWS service resources that are related to CloudFront and that are visible in the CloudFront console.

Permissions details

This policy includes the following permissions.

• s3:ListAllMyBuckets – Allows principals to get a list of all Amazon S3 buckets.

• acm:ListCertificates – Allows principals to get a list of ACM certificates.

• cloudfront:* – Allows principals to perform all actions on all CloudFront resources.

• cloudfront-keyvaluestore:* - Allows principals to perform all actions on the key value
store.

• iam:ListServerCertificates – Allows principals to get a list of server certificates stored in
IAM.

• waf:ListWebACLs – Allows principals to get a list of web ACLs in AWS WAF.

• waf:GetWebACL – Allows principals to get detailed information about web ACLs in AWS WAF.

• wafv2:ListWebACLs – Allows principals to get a list of web ACLs in AWS WAF.

AWS managed policies 929

Amazon CloudFront Developer Guide

• wafv2:GetWebACL – Allows principals to get detailed information about web ACLs in AWS WAF.

• kinesis:ListStreams – Allows principals to get a list of Amazon Kinesis streams.

• kinesis:DescribeStream – Allows principals to get detailed information about a Kinesis
stream.

• iam:ListRoles – Allows principals to get a list of roles in IAM.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "cfflistbuckets",
 "Action": [
 "s3:ListAllMyBuckets"
],
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Sid": "cffullaccess",
 "Action": [
 "acm:ListCertificates",
 "cloudfront:*",
 "cloudfront-keyvaluestore:*",
 "iam:ListServerCertificates",
 "waf:ListWebACLs",
 "waf:GetWebACL",
 "wafv2:ListWebACLs",
 "wafv2:GetWebACL",
 "kinesis:ListStreams"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Sid": "cffdescribestream",
 "Action": [
 "kinesis:DescribeStream"
],
 "Effect": "Allow",
 "Resource": "arn:aws:kinesis:*:*:*"
 },

AWS managed policies 930

Amazon CloudFront Developer Guide

 {
 "Sid": "cfflistroles",
 "Action": [
 "iam:ListRoles"
],
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:*"
 }
]
}

AWS managed policy: AWSCloudFrontLogger

You can’t attach the AWSCloudFrontLogger policy to your IAM identities. This policy is attached
to a service-linked role that allows CloudFront to perform actions on your behalf. For more
information, see the section called “Service-linked roles for Lambda@Edge”.

This policy allows CloudFront to push log files to Amazon CloudWatch. For details about the
permissions included in this policy, see the section called “Service-linked role permissions for
CloudFront logger”.

AWS managed policy: AWSLambdaReplicator

You can’t attach the AWSLambdaReplicator policy to your IAM identities. This policy is attached
to a service-linked role that allows CloudFront to perform actions on your behalf. For more
information, see the section called “Service-linked roles for Lambda@Edge”.

This policy allows CloudFront to create, delete, and disable functions in AWS Lambda to replicate
Lambda@Edge functions to AWS Regions. For details about the permissions included in this policy,
see the section called “Service-linked role permissions for Lambda replicator”.

CloudFront updates to AWS managed policies

View details about updates to AWS managed policies for CloudFront since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the CloudFront Document history page.

AWS managed policies 931

Amazon CloudFront Developer Guide

Change Description Date

CloudFrontReadOnlyAccess
and CloudFrontFullAccess
- Update to two existing
policies.

CloudFront added new
permissions for key value
stores.

The new permissions allow
users to get information
about, and take action on, key
value stores.

December 19, 2023

CloudFrontReadOnlyAccess –
Update to an existing policy

CloudFront added a new
permission to describe
CloudFront Functions.

This permission allows the
user, group, or role to read
information and metadata
about a function, but not the
function’s code.

September 8, 2021

CloudFront started tracking
changes

CloudFront started tracking
changes for its AWS managed
policies.

September 8, 2021

Troubleshooting Amazon CloudFront identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with CloudFront and IAM.

Topics

• I am not authorized to perform an action in CloudFront

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my CloudFront resources

Troubleshooting 932

Amazon CloudFront Developer Guide

I am not authorized to perform an action in CloudFront

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
cloudfront:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 cloudfront:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the cloudfront:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to CloudFront.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in CloudFront. However, the action requires the service to have permissions
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

Troubleshooting 933

Amazon CloudFront Developer Guide

I want to allow people outside of my AWS account to access my CloudFront
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether CloudFront supports these features, see How Amazon CloudFront works with
IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

Logging and monitoring in Amazon CloudFront

Monitoring is an important part of maintaining the availability and performance of CloudFront and
your AWS solutions. You should collect monitoring data from all of the parts of your AWS solution
so that you can more easily debug a multi-point failure if one occurs. AWS provides several tools
for monitoring your CloudFront resources and activity, and responding to potential incidents:

Amazon CloudWatch alarms

Using CloudWatch alarms, you watch a single metric over a time period that you specify. If the
metric exceeds a given threshold, a notification is sent to an Amazon SNS topic or AWS Auto
Scaling policy. CloudWatch alarms do not invoke actions when a metric is in a particular state.
Rather the state must have changed and been maintained for a specified number of periods. For
more information, see Monitoring CloudFront metrics with Amazon CloudWatch.

Logging and monitoring 934

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon CloudFront Developer Guide

AWS CloudTrail logs

CloudTrail provides a record of API actions taken by a user, role, or an AWS service in
CloudFront. Using the information collected by CloudTrail, you can determine the API request
that was made to CloudFront, the IP address from which the request was made, who made the
request, when it was made, and additional details. For more information, see Logging Amazon
CloudFront API calls using AWS CloudTrail.

CloudFront standard logs and real-time logs

CloudFront logs provide detailed records about requests that are made to a distribution. These
logs are useful for many applications. For example, log information can be useful in security and
access audits. For more information, see CloudFront and edge function logging.

Edge function logs

Logs generated by edge functions, both CloudFront Functions and Lambda@Edge, are sent
directly to Amazon CloudWatch Logs and are not stored anywhere by CloudFront. CloudFront
Functions uses an AWS Identity and Access Management (IAM) service-linked role to send
customer-generated logs directly to CloudWatch Logs in your account.

CloudFront console reports

The CloudFront console includes a variety of reports, including the cache statistics report, the
popular objects report, and the top referrers report. Most CloudFront console reports are based
on the data in CloudFront access logs, which contain detailed information about every user
request that CloudFront receives. However, you don't need to enable access logs to view the
reports. For more information, see CloudFront reports in the console.

Compliance validation for Amazon CloudFront

Third-party auditors assess the security and compliance of Amazon CloudFront as part of multiple
AWS compliance programs. These include SOC, PCI, HIPAA, and others.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Compliance validation 935

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html

Amazon CloudFront Developer Guide

Your compliance responsibility when using CloudFront is determined by the sensitivity of your
data, your company’s compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance on AWS – This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

The AWS HIPAA compliance program includes CloudFront (excluding content delivery through
CloudFront Embedded POPs) as a HIPAA eligible service. If you have an executed Business
Associate Addendum (BAA) with AWS, you can use CloudFront (excluding content delivery
through CloudFront Embedded POPs) to deliver content that contains protected health
information (PHI). For more information, see HIPAA Compliance.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Config – This AWS service assesses how well your resource configurations comply with
internal practices, industry guidelines, and regulations.

• AWS Security Hub – This AWS service uses security controls to evaluate resource configurations
and security standards to help you comply with various compliance frameworks. For more
information about using Security Hub to evaluate CloudFront resources, see Amazon CloudFront
controls in the AWS Security Hub User Guide.

CloudFront compliance best practices

This section provides best practices and recommendations for compliance when you use Amazon
CloudFront to serve your content.

If you run PCI-compliant or HIPAA-compliant workloads that are based on the AWS shared
responsibility model, we recommend that you log your CloudFront usage data for the last 365 days
for future auditing purposes. To log usage data, you can do the following:

• Enable CloudFront access logs. For more information, see Configuring and using standard logs
(access logs).

• Capture requests that are sent to the CloudFront API. For more information, see Logging Amazon
CloudFront API calls using AWS CloudTrail.

CloudFront compliance best practices 936

https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/hipaa-compliance/
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/cloudfront-controls.html
https://docs.aws.amazon.com/securityhub/latest/userguide/cloudfront-controls.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/

Amazon CloudFront Developer Guide

In addition, see the following for details about how CloudFront is compliant with the PCI DSS and
SOC standards.

Payment Card Industry Data Security Standard (PCI DSS)

CloudFront (excluding content delivery through CloudFront Embedded POPs) supports the
processing, storage, and transmission of credit card data by a merchant or service provider, and has
been validated as being compliant with Payment Card Industry (PCI) Data Security Standard (DSS).
For more information about PCI DSS, including how to request a copy of the AWS PCI Compliance
Package, see PCI DSS Level 1.

As a security best practice, we recommend that you don't cache credit card information in
CloudFront edge caches. For example, you can configure your origin to include a Cache-
Control:no-cache="field-name" header in responses that contain credit card information,
such as the last four digits of a credit card number and the card owner's contact information.

System and Organization Controls (SOC)

CloudFront (excluding content delivery through CloudFront Embedded POPs) is compliant with
System and Organization Controls (SOC) measures, including SOC 1, SOC 2, and SOC 3. SOC
reports are independent, third-party examination reports that demonstrate how AWS achieves
key compliance controls and objectives. These audits ensure that the appropriate safeguards and
procedures are in place to protect against risks that might affect the security, confidentiality, and
availability of customer and company data. The results of these third-party audits are available
on the AWS SOC Compliance website, where you can view the published reports to get more
information about the controls that support AWS operations and compliance.

Resilience in Amazon CloudFront

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between Availability
Zones without interruption. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Resilience 937

https://aws.amazon.com/compliance/pci-dss-level-1-faqs/
https://aws.amazon.com/compliance/soc-faqs/
https://aws.amazon.com/about-aws/global-infrastructure/

Amazon CloudFront Developer Guide

CloudFront origin failover

In addition to the support of AWS global infrastructure, Amazon CloudFront offers an origin
failover feature to help support your data resiliency needs. CloudFront is a global service that
delivers your content through a worldwide network of data centers called edge locations or points
of presence (POPs). If your content is not already cached in an edge location, CloudFront retrieves it
from an origin that you've identified as the source for the definitive version of the content.

You can improve resiliency and increase availability for specific scenarios by setting up CloudFront
with origin failover. To get started, you create an origin group in which you designate a primary
origin for CloudFront plus a second origin. CloudFront automatically switches to the second origin
when the primary origin returns specific HTTP status code failure responses. For more information,
see Optimizing high availability with CloudFront origin failover.

Infrastructure security in Amazon CloudFront

As a managed service, Amazon CloudFront is protected by AWS global network security. For
information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access CloudFront through the network. Clients must support
the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

CloudFront Functions uses a highly secure isolation barrier between AWS accounts, ensuring
that customer environments are secure against side-channel attacks like Spectre and Meltdown.
Functions cannot access or modify data belonging to other customers. Functions run in a dedicated
single-threaded process on a dedicated CPU without hyperthreading. In any given CloudFront edge

CloudFront origin failover 938

https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon CloudFront Developer Guide

location point of presence (POP), CloudFront Functions only serves one customer at a time, and all
customer-specific data is cleared between function executions.

Infrastructure security 939

Amazon CloudFront Developer Guide

Quotas

CloudFront is subject to the following quotas.

Topics

• General quotas

• General quotas on distributions

• General quotas on policies

• Quotas on CloudFront Functions

• Quotas on key value stores

• Quotas on Lambda@Edge

• Quotas on SSL certificates

• Quotas on invalidations

• Quotas on key groups

• Quotas on WebSocket connections

• Quotas on field-level encryption

• Quotas on cookies (legacy cache settings)

• Quotas on query strings (legacy cache settings)

• Quotas on headers

General quotas

Entity Default quota

Data transfer rate per distribution 150 Gbps

Request a higher
quota

Requests per second per distribution 250,000

Request a higher
quota

General quotas 940

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions

Amazon CloudFront Developer Guide

Entity Default quota

Tags that can be added to a distribution 50

Files that you can serve per distribution No quota

Maximum length of a request or an origin response, including headers
and query strings, but not including the body content

20,480 bytes

Maximum length of a URL 8,192 bytes

General quotas on distributions

Entity Default quota

Alternate domain names (CNAMEs) per distribution

For more information, see Using custom URLs by adding alternate
domain names (CNAMEs).

100

Request a higher
quota

Cache behaviors per distribution 25

Request a higher
quota

Connection attempts per origin

For more information, see Connection attempts.

1-3

Connection timeout per origin

For more information, see Connection timeout.

1-10 seconds

Distributions per AWS account

For more information, see Creating a distribution.

200

Request a higher
quota

Distributions per origin access control 100

General quotas on distributions 941

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions

Amazon CloudFront Developer Guide

Entity Default quota

Request a higher quo
ta

File compression: range of file sizes that CloudFront compresses

For more information, see Serving compressed files.

1,000 to 10,000,000
bytes

Keep-alive timeout per origin

For more information, see Keep-alive timeout (custom origins only).

1-60 seconds

Request a higher
quota

Maximum cacheable file size per HTTP GET response.

Only the responses for an HTTP GET are cached. Responses for POST
 or PUT are not cached.

50 GB

Origin access controls per AWS account 100

Origin access identities per AWS account 100

Request a higher
quota

Origins per distribution 25

Request a higher
quota

Origin groups per distribution 10

Request a higher
quota

Response timeout per origin

For more information, see Response timeout (custom origins only).

1-60 seconds

Request a higher
quota

General quotas on distributions 942

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions

Amazon CloudFront Developer Guide

Entity Default quota

Staging distributions per AWS account

For more information, see the section called “Using continuous
deployment to safely test changes”.

20

Request a higher quo
ta

General quotas on policies

Entity Default quota

Cache policies per AWS account 20

Distributions associated with the same cache policy 100

Query strings per cache policy 10

Request a higher quo
ta

Headers per cache policy 10

Request a higher quo
ta

Cookies per cache policy 10

Request a higher quo
ta

Total combined length of all query string, header, and cookie names in
a cache policy

1024

Origin request policies per AWS account 20

Distributions associated with the same origin request policy 100

Query strings per origin request policy 10

General quotas on policies 943

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions

Amazon CloudFront Developer Guide

Entity Default quota

Request a higher quo
ta

Headers per origin request policy 10

Request a higher quo
ta

Cookies per origin request policy 10

Request a higher quo
ta

Total combined length of all query string, header, and cookie names in
an origin request policy

1024

Response headers policies per AWS account 20

Request a higher quo
ta

Distributions associated with the same response headers policy 100

Request a higher quo
ta

Custom headers per response headers policy 10

Request a higher quo
ta

Continuous deployment policies per AWS account 20

Request a higher quo
ta

General quotas on policies 944

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions

Amazon CloudFront Developer Guide

Quotas on CloudFront Functions

Entity Default quota

Functions per AWS account 100

Maximum function size 10 KB

Request a higher quo
ta

Maximum function memory 2 MB

Distributions associated with the same function 100

In addition to these quotas, there are some other restrictions when using CloudFront Functions. For
more information, see Restrictions on CloudFront Functions.

Quotas on key value stores

Entity Default quota

Maximum size of a key in a key-value pair 512 Bytes

Maximum size of the value in a key-value pair 1 KB

Maximum key values pairs that you can update in a single API request 50 keys or 3 MB
payload, whichever is
reached first

Maximum size of an individual key value store 5 MB

Maximum number of functions that a single key value store can be
 associated with

10

Maximum number of key value stores per function 1

Maximum number of key value stores per account 50

Quotas on CloudFront Functions 945

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase

Amazon CloudFront Developer Guide

Entity Default quota

Request a higher qu
ota

Quotas on Lambda@Edge

The quotas in this section apply to Lambda@Edge. These quotas are in addition to the default
AWS Lambda quotas, which also apply. For the Lambda quotas, see Quotas in the AWS Lambda
Developer Guide.

Note

Lambda dynamically scales capacity in response to increased traffic, within your AWS
account's quotas. For more information, see Function scaling in the AWS Lambda Developer
Guide.

General quotas

Entity Default quota

Distributions per AWS account that can have Lambda@Edge functions 500

Request a higher
quota

Lambda@Edge functions per distribution 100

Request a higher
quota

Requests per second 10,000 (in each AWS
Region)

Request a higher
quota

Quotas on Lambda@Edge 946

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://docs.aws.amazon.com/lambda/latest/dg/scaling.html
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-aws-lambda-edge
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-aws-lambda-edge
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-aws-lambda-edge
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-aws-lambda-edge
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-aws-lambda-edge
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-aws-lambda-edge

Amazon CloudFront Developer Guide

Entity Default quota

Concurrent executions

For more information, see Function scaling in the AWS Lambda
Developer Guide.

1,000 (in each AWS
Region)

Request a higher
quota

Distributions associated with the same function 500

Quotas that differ by event type

Entity Viewer request and
viewer response
events

Origin request and
origin response
events

Function memory size 128 MB Same as Lambda
quotas

Function timeout. The function can make
network calls to resources such as Amazon S3
 buckets, DynamoDB tables, or Amazon EC2
instances in AWS Regions.

5 seconds 30 seconds

Size of a response that is generated by a
Lambda function, including headers and body

40 KB 1 MB

Maximum compressed size of a Lambda
function and any included libraries

1 MB 50 MB

In addition to these quotas, there are some other restrictions when using Lambda@Edge functions.
For more information, see Restrictions on Lambda@Edge.

Quotas on Lambda@Edge 947

https://docs.aws.amazon.com/lambda/latest/dg/scaling.html
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-aws-lambda-edge
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-aws-lambda-edge
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://docs.aws.amazon.com/lambda/latest/dg/limits.html

Amazon CloudFront Developer Guide

Quotas on SSL certificates

Entity Default quota

SSL certificates per AWS account when serving HTTPS requests using
dedicated IP addresses (no quota when serving HTTPS requests using
SNI)

For more information, see Using HTTPS with CloudFront.

2

Request a higher quo
ta

SSL certificates that can be associated with a CloudFront distribution 1

Quotas on invalidations

Entity Default quota

File invalidation: maximum number of files allowed in active inv
alidation requests, excluding wildcard invalidations

For more information, see Invalidating files.

3,000

File invalidation: maximum number of active wildcard invalidations
 allowed

15

File invalidation: maximum number of files that one wildcard invalidati
on can process

No quota

Quotas on key groups

Entity Default quota

Public keys in a single key group 5

Request a higher quo
ta

Quotas on SSL certificates 948

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions

Amazon CloudFront Developer Guide

Entity Default quota

Key groups associated with a single cache behavior 4
Request a higher
 quota

Key groups per AWS account 10
Request a higher
 quota

Distributions associated with a single key group 100
Request a higher
 quota

Quotas on WebSocket connections

Entity Default quota

Origin response timeout (idle timeout) 10 minutes

If CloudFront hasn't
detected any bytes
sent from the origin
to the client within
the past 10 minutes
, the connection is
assumed to be idle
and is closed.

Quotas on field-level encryption

Entity Default quota

Maximum length of a field to encrypt 16 KB

Quotas on WebSocket connections 949

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions

Amazon CloudFront Developer Guide

Entity Default quota

For more information, see Using field-level encryption to help protect
sensitive data.

Maximum number of fields in a request body when field-level encrypt
ion is configured

10

Maximum length of a request body when field-level encryption is
 configured

1 MB

Maximum number of field-level encryption configurations that can be
associated with one AWS account

10

Maximum number of field-level encryption profiles that can be
associated with one AWS account

10

Maximum number of public keys that can be added to one AWS
account

10

Maximum number of fields to encrypt that can be specified in one
 profile

10

Maximum number of CloudFront distributions that can be associated
with a field-level encryption configuration

20

Maximum number of query argument profile mappings that can be
 included in a field-level encryption configuration

5

Quotas on cookies (legacy cache settings)

These quotas apply to CloudFront's legacy cache settings. We recommend using a cache policy or
origin request policy instead of the legacy settings.

Entity Default quota

Cookies per cache behavior

For more information, see Caching content based on cookies.

10

Quotas on cookies (legacy cache settings) 950

Amazon CloudFront Developer Guide

Entity Default quota

Request a higher
quota

Total number of bytes in cookie names (doesn't apply if you configure
CloudFront to forward all cookies to the origin)

512 minus the
number of cookies

Quotas on query strings (legacy cache settings)

These quotas apply to CloudFront's legacy cache settings. We recommend using a cache policy or
origin request policy instead of the legacy settings.

Entity Default quota

Maximum number of characters in a query string 128 characters

Maximum number of characters total for all query strings in the same
parameter

512 characters

Query strings per cache behavior

For more information, see Caching content based on query string
parameters.

10

Request a higher
quota

Quotas on headers

Entity Default quota

Headers per cache behavior (legacy cache settings)

For more information, see the section called “Caching content based on
request headers”.

10

Request a higher
quota

Custom headers: maximum number of custom headers that you can
configure CloudFront to add to origin requests

10

Quotas on query strings (legacy cache settings) 951

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions

Amazon CloudFront Developer Guide

Entity Default quota

For more information, see the section called “Adding custom headers to
origin requests”.

Request a higher
quota

Custom headers: maximum number of custom headers that you can
 add to a response headers policy

10

Request a higher quo
ta

Custom headers: maximum length of a header name 256 characters

Custom headers: maximum length of a header value 1,783 characters

Custom headers: maximum length of all header values and names
combined

10,240 characters

Maximum length of the value of the Content-Security-Policy
header

1,783 characters

Request a higher quo
ta

Quotas on headers 952

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-cloudfront-distributions
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase

Amazon CloudFront Developer Guide

Code examples for CloudFront using AWS SDKs

The following code examples show how to use CloudFront with an AWS software development kit
(SDK).

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios and
cross-service examples.

Scenarios are code examples that show you how to accomplish a specific task by calling multiple
functions within the same service.

For a complete list of AWS SDK developer guides and code examples, see Using CloudFront with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Code examples

• Actions for CloudFront using AWS SDKs

• Use CreateDistribution with an AWS SDK or command line tool

• Use CreateFunction with an AWS SDK or command line tool

• Use CreateInvalidation with an AWS SDK or command line tool

• Use CreateKeyGroup with an AWS SDK or command line tool

• Use CreatePublicKey with an AWS SDK or command line tool

• Use DeleteDistribution with an AWS SDK or command line tool

• Use GetCloudFrontOriginAccessIdentity with an AWS SDK or command line tool

• Use GetCloudFrontOriginAccessIdentityConfig with an AWS SDK or command line tool

• Use GetDistribution with an AWS SDK or command line tool

• Use GetDistributionConfig with an AWS SDK or command line tool

• Use ListCloudFrontOriginAccessIdentities with an AWS SDK or command line tool

• Use ListDistributions with an AWS SDK or command line tool

• Use UpdateDistribution with an AWS SDK or command line tool

• Scenarios for CloudFront using AWS SDKs

• Delete CloudFront signing resources using AWS SDK

• Create signed URLs and cookies using an AWS SDK

953

Amazon CloudFront Developer Guide

Actions for CloudFront using AWS SDKs

The following code examples demonstrate how to perform individual CloudFront actions with
AWS SDKs. These excerpts call the CloudFront API and are code excerpts from larger programs that
must be run in context. Each example includes a link to GitHub, where you can find instructions for
setting up and running the code.

The following examples include only the most commonly used actions. For a complete list, see the
Amazon CloudFront API Reference.

Examples

• Use CreateDistribution with an AWS SDK or command line tool

• Use CreateFunction with an AWS SDK or command line tool

• Use CreateInvalidation with an AWS SDK or command line tool

• Use CreateKeyGroup with an AWS SDK or command line tool

• Use CreatePublicKey with an AWS SDK or command line tool

• Use DeleteDistribution with an AWS SDK or command line tool

• Use GetCloudFrontOriginAccessIdentity with an AWS SDK or command line tool

• Use GetCloudFrontOriginAccessIdentityConfig with an AWS SDK or command line tool

• Use GetDistribution with an AWS SDK or command line tool

• Use GetDistributionConfig with an AWS SDK or command line tool

• Use ListCloudFrontOriginAccessIdentities with an AWS SDK or command line tool

• Use ListDistributions with an AWS SDK or command line tool

• Use UpdateDistribution with an AWS SDK or command line tool

Use CreateDistribution with an AWS SDK or command line tool

The following code examples show how to use CreateDistribution.

CLI

AWS CLI

To create a CloudFront distribution

Actions 954

https://docs.aws.amazon.com/cloudfront/latest/APIReference/Welcome.html

Amazon CloudFront Developer Guide

The following example creates a distribution for an S3 bucket named awsexamplebucket,
and also specifies index.html as the default root object, using command line arguments:

aws cloudfront create-distribution \
 --origin-domain-name awsexamplebucket.s3.amazonaws.com \
 --default-root-object index.html

Instead of using command line arguments, you can provide the distribution configuration in
a JSON file, as shown in the following example:

aws cloudfront create-distribution \
 --distribution-config file://dist-config.json

The file dist-config.json is a JSON document in the current folder that contains the
following:

{
 "CallerReference": "cli-example",
 "Aliases": {
 "Quantity": 0
 },
 "DefaultRootObject": "index.html",
 "Origins": {
 "Quantity": 1,
 "Items": [
 {
 "Id": "awsexamplebucket.s3.amazonaws.com-cli-example",
 "DomainName": "awsexamplebucket.s3.amazonaws.com",
 "OriginPath": "",
 "CustomHeaders": {
 "Quantity": 0
 },
 "S3OriginConfig": {
 "OriginAccessIdentity": ""
 }
 }
]
 },
 "OriginGroups": {
 "Quantity": 0
 },
 "DefaultCacheBehavior": {

CreateDistribution 955

Amazon CloudFront Developer Guide

 "TargetOriginId": "awsexamplebucket.s3.amazonaws.com-cli-example",
 "ForwardedValues": {
 "QueryString": false,
 "Cookies": {
 "Forward": "none"
 },
 "Headers": {
 "Quantity": 0
 },
 "QueryStringCacheKeys": {
 "Quantity": 0
 }
 },
 "TrustedSigners": {
 "Enabled": false,
 "Quantity": 0
 },
 "ViewerProtocolPolicy": "allow-all",
 "MinTTL": 0,
 "AllowedMethods": {
 "Quantity": 2,
 "Items": [
 "HEAD",
 "GET"
],
 "CachedMethods": {
 "Quantity": 2,
 "Items": [
 "HEAD",
 "GET"
]
 }
 },
 "SmoothStreaming": false,
 "DefaultTTL": 86400,
 "MaxTTL": 31536000,
 "Compress": false,
 "LambdaFunctionAssociations": {
 "Quantity": 0
 },
 "FieldLevelEncryptionId": ""
 },
 "CacheBehaviors": {
 "Quantity": 0

CreateDistribution 956

Amazon CloudFront Developer Guide

 },
 "CustomErrorResponses": {
 "Quantity": 0
 },
 "Comment": "",
 "Logging": {
 "Enabled": false,
 "IncludeCookies": false,
 "Bucket": "",
 "Prefix": ""
 },
 "PriceClass": "PriceClass_All",
 "Enabled": true,
 "ViewerCertificate": {
 "CloudFrontDefaultCertificate": true,
 "MinimumProtocolVersion": "TLSv1",
 "CertificateSource": "cloudfront"
 },
 "Restrictions": {
 "GeoRestriction": {
 "RestrictionType": "none",
 "Quantity": 0
 }
 },
 "WebACLId": "",
 "HttpVersion": "http2",
 "IsIPV6Enabled": true
}

Whether you provide the distribution information with a command line argument or a JSON
file, the output is the same:

{
 "Location": "https://cloudfront.amazonaws.com/2019-03-26/distribution/
EMLARXS9EXAMPLE",
 "ETag": "E9LHASXEXAMPLE",
 "Distribution": {
 "Id": "EMLARXS9EXAMPLE",
 "ARN": "arn:aws:cloudfront::123456789012:distribution/EMLARXS9EXAMPLE",
 "Status": "InProgress",
 "LastModifiedTime": "2019-11-22T00:55:15.705Z",
 "InProgressInvalidationBatches": 0,
 "DomainName": "d111111abcdef8.cloudfront.net",

CreateDistribution 957

Amazon CloudFront Developer Guide

 "ActiveTrustedSigners": {
 "Enabled": false,
 "Quantity": 0
 },
 "DistributionConfig": {
 "CallerReference": "cli-example",
 "Aliases": {
 "Quantity": 0
 },
 "DefaultRootObject": "index.html",
 "Origins": {
 "Quantity": 1,
 "Items": [
 {
 "Id": "awsexamplebucket.s3.amazonaws.com-cli-example",
 "DomainName": "awsexamplebucket.s3.amazonaws.com",
 "OriginPath": "",
 "CustomHeaders": {
 "Quantity": 0
 },
 "S3OriginConfig": {
 "OriginAccessIdentity": ""
 }
 }
]
 },
 "OriginGroups": {
 "Quantity": 0
 },
 "DefaultCacheBehavior": {
 "TargetOriginId": "awsexamplebucket.s3.amazonaws.com-cli-
example",
 "ForwardedValues": {
 "QueryString": false,
 "Cookies": {
 "Forward": "none"
 },
 "Headers": {
 "Quantity": 0
 },
 "QueryStringCacheKeys": {
 "Quantity": 0
 }
 },

CreateDistribution 958

Amazon CloudFront Developer Guide

 "TrustedSigners": {
 "Enabled": false,
 "Quantity": 0
 },
 "ViewerProtocolPolicy": "allow-all",
 "MinTTL": 0,
 "AllowedMethods": {
 "Quantity": 2,
 "Items": [
 "HEAD",
 "GET"
],
 "CachedMethods": {
 "Quantity": 2,
 "Items": [
 "HEAD",
 "GET"
]
 }
 },
 "SmoothStreaming": false,
 "DefaultTTL": 86400,
 "MaxTTL": 31536000,
 "Compress": false,
 "LambdaFunctionAssociations": {
 "Quantity": 0
 },
 "FieldLevelEncryptionId": ""
 },
 "CacheBehaviors": {
 "Quantity": 0
 },
 "CustomErrorResponses": {
 "Quantity": 0
 },
 "Comment": "",
 "Logging": {
 "Enabled": false,
 "IncludeCookies": false,
 "Bucket": "",
 "Prefix": ""
 },
 "PriceClass": "PriceClass_All",
 "Enabled": true,

CreateDistribution 959

Amazon CloudFront Developer Guide

 "ViewerCertificate": {
 "CloudFrontDefaultCertificate": true,
 "MinimumProtocolVersion": "TLSv1",
 "CertificateSource": "cloudfront"
 },
 "Restrictions": {
 "GeoRestriction": {
 "RestrictionType": "none",
 "Quantity": 0
 }
 },
 "WebACLId": "",
 "HttpVersion": "http2",
 "IsIPV6Enabled": true
 }
 }
}

• For API details, see CreateDistribution in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

The following example uses an Amazon Simple Storage Service (Amazon S3) bucket as a
content origin.

After creating the distribution, the code creates a CloudFrontWaiter to wait until the
distribution is deployed before returning the distribution.

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import software.amazon.awssdk.core.internal.waiters.ResponseOrException;
import software.amazon.awssdk.services.cloudfront.CloudFrontClient;

CreateDistribution 960

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudfront/create-distribution.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cloudfront#readme
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/cloudfront/waiters/CloudFrontWaiter.html

Amazon CloudFront Developer Guide

import
 software.amazon.awssdk.services.cloudfront.model.CreateDistributionResponse;
import software.amazon.awssdk.services.cloudfront.model.Distribution;
import software.amazon.awssdk.services.cloudfront.model.GetDistributionResponse;
import software.amazon.awssdk.services.cloudfront.model.ItemSelection;
import software.amazon.awssdk.services.cloudfront.model.Method;
import software.amazon.awssdk.services.cloudfront.model.ViewerProtocolPolicy;
import software.amazon.awssdk.services.cloudfront.waiters.CloudFrontWaiter;
import software.amazon.awssdk.services.s3.S3Client;

import java.time.Instant;

public class CreateDistribution {

 private static final Logger logger =
 LoggerFactory.getLogger(CreateDistribution.class);

 public static Distribution createDistribution(CloudFrontClient
 cloudFrontClient, S3Client s3Client,
 final String bucketName, final String keyGroupId, final
 String originAccessControlId) {

 final String region = s3Client.headBucket(b ->
 b.bucket(bucketName)).sdkHttpResponse().headers()
 .get("x-amz-bucket-region").get(0);
 final String originDomain = bucketName + ".s3." + region +
 ".amazonaws.com";
 String originId = originDomain; // Use the originDomain value for
 the originId.

 // The service API requires some deprecated methods, such as
 // DefaultCacheBehavior.Builder#minTTL and #forwardedValue.
 CreateDistributionResponse createDistResponse =
 cloudFrontClient.createDistribution(builder -> builder
 .distributionConfig(b1 -> b1
 .origins(b2 -> b2
 .quantity(1)
 .items(b3 -> b3

 .domainName(originDomain)

 .id(originId)

 .s3OriginConfig(builder4 -> builder4

CreateDistribution 961

Amazon CloudFront Developer Guide

 .originAccessIdentity(

 ""))

 .originAccessControlId(

 originAccessControlId)))
 .defaultCacheBehavior(b2 -> b2

 .viewerProtocolPolicy(ViewerProtocolPolicy.ALLOW_ALL)

 .targetOriginId(originId)
 .minTTL(200L)

 .forwardedValues(b5 -> b5

 .cookies(cp -> cp

 .forward(ItemSelection.NONE))

 .queryString(true))

 .trustedKeyGroups(b3 -> b3

 .quantity(1)

 .items(keyGroupId)

 .enabled(true))

 .allowedMethods(b4 -> b4

 .quantity(2)

 .items(Method.HEAD, Method.GET)

 .cachedMethods(b5 -> b5

 .quantity(2)

 .items(Method.HEAD,

 Method.GET))))

CreateDistribution 962

Amazon CloudFront Developer Guide

 .cacheBehaviors(b -> b
 .quantity(1)
 .items(b2 -> b2

 .pathPattern("/index.html")

 .viewerProtocolPolicy(

 ViewerProtocolPolicy.ALLOW_ALL)

 .targetOriginId(originId)

 .trustedKeyGroups(b3 -> b3

 .quantity(1)

 .items(keyGroupId)

 .enabled(true))

 .minTTL(200L)

 .forwardedValues(b4 -> b4

 .cookies(cp -> cp

 .forward(ItemSelection.NONE))

 .queryString(true))

 .allowedMethods(b5 -> b5.quantity(2)

 .items(Method.HEAD,

 Method.GET)

 .cachedMethods(b6 -> b6

 .quantity(2)

 .items(Method.HEAD,

 Method.GET)))))
 .enabled(true)

CreateDistribution 963

Amazon CloudFront Developer Guide

 .comment("Distribution built with
 java")

 .callerReference(Instant.now().toString())));

 final Distribution distribution =
 createDistResponse.distribution();
 logger.info("Distribution created. DomainName: [{}] Id: [{}]",
 distribution.domainName(),
 distribution.id());
 logger.info("Waiting for distribution to be deployed ...");
 try (CloudFrontWaiter cfWaiter =
 CloudFrontWaiter.builder().client(cloudFrontClient).build()) {
 ResponseOrException<GetDistributionResponse>
 responseOrException = cfWaiter
 .waitUntilDistributionDeployed(builder ->
 builder.id(distribution.id()))
 .matched();
 responseOrException.response()
 .orElseThrow(() -> new
 RuntimeException("Distribution not created"));
 logger.info("Distribution deployed. DomainName: [{}] Id:
 [{}]", distribution.domainName(),
 distribution.id());
 }
 return distribution;
 }
}

• For API details, see CreateDistribution in AWS SDK for Java 2.x API Reference.

PowerShell

Tools for PowerShell

Example 1: Creates a basic CloudFront distribution, configured with logging and caching.

$origin = New-Object Amazon.CloudFront.Model.Origin
$origin.DomainName = "ps-cmdlet-sample.s3.amazonaws.com"
$origin.Id = "UniqueOrigin1"
$origin.S3OriginConfig = New-Object Amazon.CloudFront.Model.S3OriginConfig
$origin.S3OriginConfig.OriginAccessIdentity = ""

CreateDistribution 964

https://docs.aws.amazon.com/goto/SdkForJavaV2/cloudfront-2020-05-31/CreateDistribution

Amazon CloudFront Developer Guide

New-CFDistribution `
 -DistributionConfig_Enabled $true `
 -DistributionConfig_Comment "Test distribution" `
 -Origins_Item $origin `
 -Origins_Quantity 1 `
 -Logging_Enabled $true `
 -Logging_IncludeCookie $true `
 -Logging_Bucket ps-cmdlet-sample-logging.s3.amazonaws.com `
 -Logging_Prefix "help/" `
 -DistributionConfig_CallerReference Client1 `
 -DistributionConfig_DefaultRootObject index.html `
 -DefaultCacheBehavior_TargetOriginId $origin.Id `
 -ForwardedValues_QueryString $true `
 -Cookies_Forward all `
 -WhitelistedNames_Quantity 0 `
 -TrustedSigners_Enabled $false `
 -TrustedSigners_Quantity 0 `
 -DefaultCacheBehavior_ViewerProtocolPolicy allow-all `
 -DefaultCacheBehavior_MinTTL 1000 `
 -DistributionConfig_PriceClass "PriceClass_All" `
 -CacheBehaviors_Quantity 0 `
 -Aliases_Quantity 0

• For API details, see CreateDistribution in AWS Tools for PowerShell Cmdlet Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudFront with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateFunction with an AWS SDK or command line tool

The following code example shows how to use CreateFunction.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

CreateFunction 965

https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cloudfront#readme

Amazon CloudFront Developer Guide

import software.amazon.awssdk.core.SdkBytes;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.cloudfront.CloudFrontClient;
import software.amazon.awssdk.services.cloudfront.model.CloudFrontException;
import software.amazon.awssdk.services.cloudfront.model.CreateFunctionRequest;
import software.amazon.awssdk.services.cloudfront.model.CreateFunctionResponse;
import software.amazon.awssdk.services.cloudfront.model.FunctionConfig;
import software.amazon.awssdk.services.cloudfront.model.FunctionRuntime;
import java.io.InputStream;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class CreateFunction {

 public static void main(String[] args) {
 final String usage = """

 Usage:
 <functionName> <filePath>

 Where:
 functionName - The name of the function to create.\s
 filePath - The path to a file that contains the application
 logic for the function.\s
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String functionName = args[0];
 String filePath = args[1];
 CloudFrontClient cloudFrontClient = CloudFrontClient.builder()
 .region(Region.AWS_GLOBAL)
 .build();

CreateFunction 966

Amazon CloudFront Developer Guide

 String funArn = createNewFunction(cloudFrontClient, functionName,
 filePath);
 System.out.println("The function ARN is " + funArn);
 cloudFrontClient.close();
 }

 public static String createNewFunction(CloudFrontClient cloudFrontClient,
 String functionName, String filePath) {
 try {
 InputStream fileIs =
 CreateFunction.class.getClassLoader().getResourceAsStream(filePath);
 SdkBytes functionCode = SdkBytes.fromInputStream(fileIs);

 FunctionConfig config = FunctionConfig.builder()
 .comment("Created by using the CloudFront Java API")
 .runtime(FunctionRuntime.CLOUDFRONT_JS_1_0)
 .build();

 CreateFunctionRequest functionRequest =
 CreateFunctionRequest.builder()
 .name(functionName)
 .functionCode(functionCode)
 .functionConfig(config)
 .build();

 CreateFunctionResponse response =
 cloudFrontClient.createFunction(functionRequest);
 return response.functionSummary().functionMetadata().functionARN();

 } catch (CloudFrontException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 return "";
 }
}

• For API details, see CreateFunction in AWS SDK for Java 2.x API Reference.

CreateFunction 967

https://docs.aws.amazon.com/goto/SdkForJavaV2/cloudfront-2020-05-31/CreateFunction

Amazon CloudFront Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using CloudFront with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateInvalidation with an AWS SDK or command line tool

The following code examples show how to use CreateInvalidation.

CLI

AWS CLI

To create an invalidation for a CloudFront distribution

The following create-invalidation example creates an invalidation for the specified
files in the specified CloudFront distribution:

aws cloudfront create-invalidation \
 --distribution-id EDFDVBD6EXAMPLE \
 --paths "/example-path/example-file.jpg" "/example-path/example-file2.png"

Output:

{
 "Location": "https://cloudfront.amazonaws.com/2019-03-26/distribution/
EDFDVBD6EXAMPLE/invalidation/I1JLWSDAP8FU89",
 "Invalidation": {
 "Id": "I1JLWSDAP8FU89",
 "Status": "InProgress",
 "CreateTime": "2019-12-05T18:24:51.407Z",
 "InvalidationBatch": {
 "Paths": {
 "Quantity": 2,
 "Items": [
 "/example-path/example-file2.png",
 "/example-path/example-file.jpg"
]
 },
 "CallerReference": "cli-1575570291-670203"
 }
 }
}

CreateInvalidation 968

Amazon CloudFront Developer Guide

In the previous example, the AWS CLI automatically generated a random
CallerReference. To specify your own CallerReference, or to avoid passing the
invalidation parameters as command line arguments, you can use a JSON file. The following
example creates an invalidation for two files, by providing the invalidation parameters in a
JSON file named inv-batch.json:

aws cloudfront create-invalidation \
 --distribution-id EDFDVBD6EXAMPLE \
 --invalidation-batch file://inv-batch.json

Contents of inv-batch.json:

{
 "Paths": {
 "Quantity": 2,
 "Items": [
 "/example-path/example-file.jpg",
 "/example-path/example-file2.png"
]
 },
 "CallerReference": "cli-example"
}

Output:

{
 "Location": "https://cloudfront.amazonaws.com/2019-03-26/distribution/
EDFDVBD6EXAMPLE/invalidation/I2J0I21PCUYOIK",
 "Invalidation": {
 "Id": "I2J0I21PCUYOIK",
 "Status": "InProgress",
 "CreateTime": "2019-12-05T18:40:49.413Z",
 "InvalidationBatch": {
 "Paths": {
 "Quantity": 2,
 "Items": [
 "/example-path/example-file.jpg",
 "/example-path/example-file2.png"
]
 },
 "CallerReference": "cli-example"
 }

CreateInvalidation 969

Amazon CloudFront Developer Guide

 }
}

• For API details, see CreateInvalidation in AWS CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This example creates a new invalidation on a distribution with an ID of
EXAMPLENSTXAXE. The CallerReference is a unique ID chosen by the user; in this
case, a time stamp representing May 15, 2019 at 9:00 a.m. is used. The $Paths variable
stores three paths to image and media files that the user does not want as part of the
distribution's cache. The -Paths_Quantity parameter value is the total number of paths
specified in the -Paths_Item parameter.

$Paths = "/images/*.gif", "/images/image1.jpg", "/videos/*.mp4"
New-CFInvalidation -DistributionId "EXAMPLENSTXAXE" -
InvalidationBatch_CallerReference 20190515090000 -Paths_Item $Paths -
Paths_Quantity 3

Output:

Invalidation Location

------------ --------

Amazon.CloudFront.Model.Invalidation https://cloudfront.amazonaws.com/2018-11-05/
distribution/EXAMPLENSTXAXE/invalidation/EXAMPLE8NOK9H

• For API details, see CreateInvalidation in AWS Tools for PowerShell Cmdlet Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudFront with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateKeyGroup with an AWS SDK or command line tool

The following code example shows how to use CreateKeyGroup.

CreateKeyGroup 970

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudfront/create-invalidation.html
https://docs.aws.amazon.com/powershell/latest/reference

Amazon CloudFront Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

A key group requires at least one public key that is used to verify signed URLs or cookies.

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import software.amazon.awssdk.services.cloudfront.CloudFrontClient;

import java.util.UUID;

public class CreateKeyGroup {
 private static final Logger logger =
 LoggerFactory.getLogger(CreateKeyGroup.class);

 public static String createKeyGroup(CloudFrontClient cloudFrontClient, String
 publicKeyId) {
 String keyGroupId = cloudFrontClient.createKeyGroup(b ->
 b.keyGroupConfig(c -> c
 .items(publicKeyId)
 .name("JavaKeyGroup" + UUID.randomUUID())))
 .keyGroup().id();
 logger.info("KeyGroup created with ID: [{}]", keyGroupId);
 return keyGroupId;
 }
}

• For API details, see CreateKeyGroup in AWS SDK for Java 2.x API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudFront with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

CreateKeyGroup 971

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cloudfront#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/cloudfront-2020-05-31/CreateKeyGroup

Amazon CloudFront Developer Guide

Use CreatePublicKey with an AWS SDK or command line tool

The following code examples show how to use CreatePublicKey.

CLI

AWS CLI

To create a CloudFront public key

The following example creates a CloudFront public key by providing the parameters in a
JSON file named pub-key-config.json. Before you can use this command, you must
have a PEM-encoded public key. For more information, see Create an RSA Key Pair in the
Amazon CloudFront Developer Guide.

aws cloudfront create-public-key \
 --public-key-config file://pub-key-config.json

The file pub-key-config.json is a JSON document in the current folder that contains the
following. Note that the public key is encoded in PEM format.

{
 "CallerReference": "cli-example",
 "Name": "ExampleKey",
 "EncodedKey": "-----BEGIN PUBLIC KEY-----
\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAxPMbCA2Ks0lnd7IR+3pw
\nwd3H/7jPGwj8bLUmore7bX+oeGpZ6QmLAe/1UOWcmZX2u70dYcSIzB1ofZtcn4cJ
\nenHBAzO3ohBY/L1tQGJfS2A+omnN6H16VZE1JCK8XSJyfze7MDLcUyHZETdxuvRb
\nA9X343/vMAuQPnhinFJ8Wdy8YBXSPpy7r95ylUQd9LfYTBzVZYG2tSesplcOkjM3\n2Uu
+oMWxQAw1NINnSLPinMVsutJy6ZqlV3McWNWe4T+STGtWhrPNqJEn45sIcCx4\nq
+kGZ2NQ0FyIyT2eiLKOX5Rgb/a36E/aMk4VoDsaenBQgG7WLTnstb9sr7MIhS6A\nrwIDAQAB\n-----
END PUBLIC KEY-----\n",
 "Comment": "example public key"
}

Output:

{
 "Location": "https://cloudfront.amazonaws.com/2019-03-26/public-key/
KDFB19YGCR002",

CreatePublicKey 972

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/field-level-encryption.html#field-level-encryption-setting-up-step1

Amazon CloudFront Developer Guide

 "ETag": "E2QWRUHEXAMPLE",
 "PublicKey": {
 "Id": "KDFB19YGCR002",
 "CreatedTime": "2019-12-05T18:51:43.781Z",
 "PublicKeyConfig": {
 "CallerReference": "cli-example",
 "Name": "ExampleKey",
 "EncodedKey": "-----BEGIN PUBLIC KEY-----
\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAxPMbCA2Ks0lnd7IR+3pw
\nwd3H/7jPGwj8bLUmore7bX+oeGpZ6QmLAe/1UOWcmZX2u70dYcSIzB1ofZtcn4cJ
\nenHBAzO3ohBY/L1tQGJfS2A+omnN6H16VZE1JCK8XSJyfze7MDLcUyHZETdxuvRb
\nA9X343/vMAuQPnhinFJ8Wdy8YBXSPpy7r95ylUQd9LfYTBzVZYG2tSesplcOkjM3\n2Uu
+oMWxQAw1NINnSLPinMVsutJy6ZqlV3McWNWe4T+STGtWhrPNqJEn45sIcCx4\nq
+kGZ2NQ0FyIyT2eiLKOX5Rgb/a36E/aMk4VoDsaenBQgG7WLTnstb9sr7MIhS6A\nrwIDAQAB\n-----
END PUBLIC KEY-----\n",
 "Comment": "example public key"
 }
 }
}

• For API details, see CreatePublicKey in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

The following code example reads in a public key and uploads it to Amazon CloudFront.

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import software.amazon.awssdk.services.cloudfront.CloudFrontClient;
import software.amazon.awssdk.services.cloudfront.model.CreatePublicKeyResponse;
import software.amazon.awssdk.utils.IoUtils;

import java.io.IOException;
import java.io.InputStream;

CreatePublicKey 973

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudfront/create-public-key.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cloudfront#readme

Amazon CloudFront Developer Guide

import java.util.UUID;

public class CreatePublicKey {
 private static final Logger logger =
 LoggerFactory.getLogger(CreatePublicKey.class);

 public static String createPublicKey(CloudFrontClient cloudFrontClient,
 String publicKeyFileName) {
 try (InputStream is =
 CreatePublicKey.class.getClassLoader().getResourceAsStream(publicKeyFileName)) {
 String publicKeyString = IoUtils.toUtf8String(is);
 CreatePublicKeyResponse createPublicKeyResponse = cloudFrontClient
 .createPublicKey(b -> b.publicKeyConfig(c -> c
 .name("JavaCreatedPublicKey" + UUID.randomUUID())
 .encodedKey(publicKeyString)
 .callerReference(UUID.randomUUID().toString())));
 String createdPublicKeyId = createPublicKeyResponse.publicKey().id();
 logger.info("Public key created with id: [{}]", createdPublicKeyId);
 return createdPublicKeyId;

 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 }
}

• For API details, see CreatePublicKey in AWS SDK for Java 2.x API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudFront with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteDistribution with an AWS SDK or command line tool

The following code examples show how to use DeleteDistribution.

CLI

AWS CLI

To delete a CloudFront distribution

DeleteDistribution 974

https://docs.aws.amazon.com/goto/SdkForJavaV2/cloudfront-2020-05-31/CreatePublicKey

Amazon CloudFront Developer Guide

The following example deletes the CloudFront distribution with the ID EDFDVBD6EXAMPLE.
Before you can delete a distribution, you must disable it. To disable a distribution, use the
update-distribution command. For more information, see the update-distribution examples.

When a distribution is disabled, you can delete it. To delete a distribution, you must use
the --if-match option to provide the distribution's ETag. To get the ETag, use the get-
distribution or get-distribution-config command.

aws cloudfront delete-distribution \
 --id EDFDVBD6EXAMPLE \
 --if-match E2QWRUHEXAMPLE

When successful, this command has no output.

• For API details, see DeleteDistribution in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

The following code example updates a distribution to disabled, uses a waiter that waits for
the change to be deployed, then deletes the distribution.

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import software.amazon.awssdk.core.internal.waiters.ResponseOrException;
import software.amazon.awssdk.services.cloudfront.CloudFrontClient;
import
 software.amazon.awssdk.services.cloudfront.model.DeleteDistributionResponse;
import software.amazon.awssdk.services.cloudfront.model.DistributionConfig;
import software.amazon.awssdk.services.cloudfront.model.GetDistributionResponse;
import software.amazon.awssdk.services.cloudfront.waiters.CloudFrontWaiter;

public class DeleteDistribution {

DeleteDistribution 975

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudfront/delete-distribution.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cloudfront#readme

Amazon CloudFront Developer Guide

 private static final Logger logger =
 LoggerFactory.getLogger(DeleteDistribution.class);

 public static void deleteDistribution(final CloudFrontClient
 cloudFrontClient, final String distributionId) {
 // First, disable the distribution by updating it.
 GetDistributionResponse response =
 cloudFrontClient.getDistribution(b -> b
 .id(distributionId));
 String etag = response.eTag();
 DistributionConfig distConfig =
 response.distribution().distributionConfig();

 cloudFrontClient.updateDistribution(builder -> builder
 .id(distributionId)
 .distributionConfig(builder1 -> builder1

 .cacheBehaviors(distConfig.cacheBehaviors())

 .defaultCacheBehavior(distConfig.defaultCacheBehavior())
 .enabled(false)
 .origins(distConfig.origins())
 .comment(distConfig.comment())

 .callerReference(distConfig.callerReference())

 .defaultCacheBehavior(distConfig.defaultCacheBehavior())

 .priceClass(distConfig.priceClass())
 .aliases(distConfig.aliases())
 .logging(distConfig.logging())

 .defaultRootObject(distConfig.defaultRootObject())

 .customErrorResponses(distConfig.customErrorResponses())

 .httpVersion(distConfig.httpVersion())

 .isIPV6Enabled(distConfig.isIPV6Enabled())

 .restrictions(distConfig.restrictions())

 .viewerCertificate(distConfig.viewerCertificate())
 .webACLId(distConfig.webACLId())

DeleteDistribution 976

Amazon CloudFront Developer Guide

 .originGroups(distConfig.originGroups()))
 .ifMatch(etag));

 logger.info("Distribution [{}] is DISABLED, waiting for
 deployment before deleting ...",
 distributionId);
 GetDistributionResponse distributionResponse;
 try (CloudFrontWaiter cfWaiter =
 CloudFrontWaiter.builder().client(cloudFrontClient).build()) {
 ResponseOrException<GetDistributionResponse>
 responseOrException = cfWaiter
 .waitUntilDistributionDeployed(builder ->
 builder.id(distributionId)).matched();
 distributionResponse = responseOrException.response()
 .orElseThrow(() -> new
 RuntimeException("Could not disable distribution"));
 }

 DeleteDistributionResponse deleteDistributionResponse =
 cloudFrontClient
 .deleteDistribution(builder -> builder
 .id(distributionId)

 .ifMatch(distributionResponse.eTag()));
 if (deleteDistributionResponse.sdkHttpResponse().isSuccessful())
 {
 logger.info("Distribution [{}] DELETED", distributionId);
 }
 }
}

• For API details, see DeleteDistribution in AWS SDK for Java 2.x API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudFront with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

DeleteDistribution 977

https://docs.aws.amazon.com/goto/SdkForJavaV2/cloudfront-2020-05-31/DeleteDistribution

Amazon CloudFront Developer Guide

Use GetCloudFrontOriginAccessIdentity with an AWS SDK or
command line tool

The following code examples show how to use GetCloudFrontOriginAccessIdentity.

CLI

AWS CLI

To get a CloudFront origin access identity

The following example gets the CloudFront origin access identity (OAI) with the ID
E74FTE3AEXAMPLE, including its ETag and the associated S3 canonical ID. The OAI ID is
returned in the output of the create-cloud-front-origin-access-identity and list-cloud-front-
origin-access-identities commands.

aws cloudfront get-cloud-front-origin-access-identity --id E74FTE3AEXAMPLE

Output:

{
 "ETag": "E2QWRUHEXAMPLE",
 "CloudFrontOriginAccessIdentity": {
 "Id": "E74FTE3AEXAMPLE",
 "S3CanonicalUserId":
 "cd13868f797c227fbea2830611a26fe0a21ba1b826ab4bed9b7771c9aEXAMPLE",
 "CloudFrontOriginAccessIdentityConfig": {
 "CallerReference": "cli-example",
 "Comment": "Example OAI"
 }
 }
}

• For API details, see GetCloudFrontOriginAccessIdentity in AWS CLI Command Reference.

GetCloudFrontOriginAccessIdentity 978

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudfront/get-cloud-front-origin-access-identity.html

Amazon CloudFront Developer Guide

PowerShell

Tools for PowerShell

Example 1: This example returns a specific Amazon CloudFront origin access identity,
specified by the -Id parameter. Although the -Id parameter is not required, if you do not
specify it, no results are returned.

Get-CFCloudFrontOriginAccessIdentity -Id E3XXXXXXXXXXRT

Output:

 CloudFrontOriginAccessIdentityConfig Id
 S3CanonicalUserId
 ------------------------------------ --

 Amazon.CloudFront.Model.CloudFrontOr... E3XXXXXXXXXXRT
 4b6e...

• For API details, see GetCloudFrontOriginAccessIdentity in AWS Tools for PowerShell Cmdlet
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudFront with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetCloudFrontOriginAccessIdentityConfig with an AWS
SDK or command line tool

The following code examples show how to use GetCloudFrontOriginAccessIdentityConfig.

CLI

AWS CLI

To get a CloudFront origin access identity configuration

The following example gets metadata about the CloudFront origin access identity (OAI)
with the ID E74FTE3AEXAMPLE, including its ETag. The OAI ID is returned in the output of

GetCloudFrontOriginAccessIdentityConfig 979

https://docs.aws.amazon.com/powershell/latest/reference

Amazon CloudFront Developer Guide

the create-cloud-front-origin-access-identity and list-cloud-front-origin-access-identities
commands.

aws cloudfront get-cloud-front-origin-access-identity-config --id E74FTE3AEXAMPLE

Output:

{
 "ETag": "E2QWRUHEXAMPLE",
 "CloudFrontOriginAccessIdentityConfig": {
 "CallerReference": "cli-example",
 "Comment": "Example OAI"
 }
}

• For API details, see GetCloudFrontOriginAccessIdentityConfig in AWS CLI Command
Reference.

PowerShell

Tools for PowerShell

Example 1: This example returns configuration information about a single Amazon
CloudFront origin access identity, specified by the -Id parameter. Errors occur if no -Id
parameter is specified..

Get-CFCloudFrontOriginAccessIdentityConfig -Id E3XXXXXXXXXXRT

Output:

 CallerReference Comment
 --------------- -------
 mycallerreference: 2/1/2011 1:16:32 PM Caller
 reference: 2/1/2011 1:16:32 PM

• For API details, see GetCloudFrontOriginAccessIdentityConfig in AWS Tools for PowerShell
Cmdlet Reference.

GetCloudFrontOriginAccessIdentityConfig 980

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudfront/get-cloud-front-origin-access-identity-config.html
https://docs.aws.amazon.com/powershell/latest/reference

Amazon CloudFront Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using CloudFront with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetDistribution with an AWS SDK or command line tool

The following code examples show how to use GetDistribution.

CLI

AWS CLI

To get a CloudFront distribution

The following example gets the CloudFront distribution with the ID EDFDVBD6EXAMPLE,
including its ETag. The distribution ID is returned in the create-distribution and list-
distributions commands.

aws cloudfront get-distribution --id EDFDVBD6EXAMPLE

Output:

{
 "ETag": "E2QWRUHEXAMPLE",
 "Distribution": {
 "Id": "EDFDVBD6EXAMPLE",
 "ARN": "arn:aws:cloudfront::123456789012:distribution/EDFDVBD6EXAMPLE",
 "Status": "Deployed",
 "LastModifiedTime": "2019-12-04T23:35:41.433Z",
 "InProgressInvalidationBatches": 0,
 "DomainName": "d111111abcdef8.cloudfront.net",
 "ActiveTrustedSigners": {
 "Enabled": false,
 "Quantity": 0
 },
 "DistributionConfig": {
 "CallerReference": "cli-example",
 "Aliases": {
 "Quantity": 0
 },
 "DefaultRootObject": "index.html",
 "Origins": {

GetDistribution 981

Amazon CloudFront Developer Guide

 "Quantity": 1,
 "Items": [
 {
 "Id": "awsexamplebucket.s3.amazonaws.com-cli-example",
 "DomainName": "awsexamplebucket.s3.amazonaws.com",
 "OriginPath": "",
 "CustomHeaders": {
 "Quantity": 0
 },
 "S3OriginConfig": {
 "OriginAccessIdentity": ""
 }
 }
]
 },
 "OriginGroups": {
 "Quantity": 0
 },
 "DefaultCacheBehavior": {
 "TargetOriginId": "awsexamplebucket.s3.amazonaws.com-cli-
example",
 "ForwardedValues": {
 "QueryString": false,
 "Cookies": {
 "Forward": "none"
 },
 "Headers": {
 "Quantity": 0
 },
 "QueryStringCacheKeys": {
 "Quantity": 0
 }
 },
 "TrustedSigners": {
 "Enabled": false,
 "Quantity": 0
 },
 "ViewerProtocolPolicy": "allow-all",
 "MinTTL": 0,
 "AllowedMethods": {
 "Quantity": 2,
 "Items": [
 "HEAD",
 "GET"

GetDistribution 982

Amazon CloudFront Developer Guide

],
 "CachedMethods": {
 "Quantity": 2,
 "Items": [
 "HEAD",
 "GET"
]
 }
 },
 "SmoothStreaming": false,
 "DefaultTTL": 86400,
 "MaxTTL": 31536000,
 "Compress": false,
 "LambdaFunctionAssociations": {
 "Quantity": 0
 },
 "FieldLevelEncryptionId": ""
 },
 "CacheBehaviors": {
 "Quantity": 0
 },
 "CustomErrorResponses": {
 "Quantity": 0
 },
 "Comment": "",
 "Logging": {
 "Enabled": false,
 "IncludeCookies": false,
 "Bucket": "",
 "Prefix": ""
 },
 "PriceClass": "PriceClass_All",
 "Enabled": true,
 "ViewerCertificate": {
 "CloudFrontDefaultCertificate": true,
 "MinimumProtocolVersion": "TLSv1",
 "CertificateSource": "cloudfront"
 },
 "Restrictions": {
 "GeoRestriction": {
 "RestrictionType": "none",
 "Quantity": 0
 }
 },

GetDistribution 983

Amazon CloudFront Developer Guide

 "WebACLId": "",
 "HttpVersion": "http2",
 "IsIPV6Enabled": true
 }
 }
}

• For API details, see GetDistribution in AWS CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: Retrieves the information for a specific distribution.

Get-CFDistribution -Id EXAMPLE0000ID

• For API details, see GetDistribution in AWS Tools for PowerShell Cmdlet Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudFront with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetDistributionConfig with an AWS SDK or command line tool

The following code examples show how to use GetDistributionConfig.

CLI

AWS CLI

To get a CloudFront distribution configuration

The following example gets metadata about the CloudFront distribution with the ID
EDFDVBD6EXAMPLE, including its ETag. The distribution ID is returned in the create-
distribution and list-distributions commands.

aws cloudfront get-distribution-config --id EDFDVBD6EXAMPLE

Output:

GetDistributionConfig 984

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudfront/get-distribution.html
https://docs.aws.amazon.com/powershell/latest/reference

Amazon CloudFront Developer Guide

{
 "ETag": "E2QWRUHEXAMPLE",
 "DistributionConfig": {
 "CallerReference": "cli-example",
 "Aliases": {
 "Quantity": 0
 },
 "DefaultRootObject": "index.html",
 "Origins": {
 "Quantity": 1,
 "Items": [
 {
 "Id": "awsexamplebucket.s3.amazonaws.com-cli-example",
 "DomainName": "awsexamplebucket.s3.amazonaws.com",
 "OriginPath": "",
 "CustomHeaders": {
 "Quantity": 0
 },
 "S3OriginConfig": {
 "OriginAccessIdentity": ""
 }
 }
]
 },
 "OriginGroups": {
 "Quantity": 0
 },
 "DefaultCacheBehavior": {
 "TargetOriginId": "awsexamplebucket.s3.amazonaws.com-cli-example",
 "ForwardedValues": {
 "QueryString": false,
 "Cookies": {
 "Forward": "none"
 },
 "Headers": {
 "Quantity": 0
 },
 "QueryStringCacheKeys": {
 "Quantity": 0
 }
 },
 "TrustedSigners": {
 "Enabled": false,

GetDistributionConfig 985

Amazon CloudFront Developer Guide

 "Quantity": 0
 },
 "ViewerProtocolPolicy": "allow-all",
 "MinTTL": 0,
 "AllowedMethods": {
 "Quantity": 2,
 "Items": [
 "HEAD",
 "GET"
],
 "CachedMethods": {
 "Quantity": 2,
 "Items": [
 "HEAD",
 "GET"
]
 }
 },
 "SmoothStreaming": false,
 "DefaultTTL": 86400,
 "MaxTTL": 31536000,
 "Compress": false,
 "LambdaFunctionAssociations": {
 "Quantity": 0
 },
 "FieldLevelEncryptionId": ""
 },
 "CacheBehaviors": {
 "Quantity": 0
 },
 "CustomErrorResponses": {
 "Quantity": 0
 },
 "Comment": "",
 "Logging": {
 "Enabled": false,
 "IncludeCookies": false,
 "Bucket": "",
 "Prefix": ""
 },
 "PriceClass": "PriceClass_All",
 "Enabled": true,
 "ViewerCertificate": {
 "CloudFrontDefaultCertificate": true,

GetDistributionConfig 986

Amazon CloudFront Developer Guide

 "MinimumProtocolVersion": "TLSv1",
 "CertificateSource": "cloudfront"
 },
 "Restrictions": {
 "GeoRestriction": {
 "RestrictionType": "none",
 "Quantity": 0
 }
 },
 "WebACLId": "",
 "HttpVersion": "http2",
 "IsIPV6Enabled": true
 }
}

• For API details, see GetDistributionConfig in AWS CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: Retrieves the configuration for a specific distribution.

Get-CFDistributionConfig -Id EXAMPLE0000ID

• For API details, see GetDistributionConfig in AWS Tools for PowerShell Cmdlet Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class CloudFrontWrapper:
 """Encapsulates Amazon CloudFront operations."""

GetDistributionConfig 987

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudfront/get-distribution-config.html
https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/cloudfront#code-examples

Amazon CloudFront Developer Guide

 def __init__(self, cloudfront_client):
 """
 :param cloudfront_client: A Boto3 CloudFront client
 """
 self.cloudfront_client = cloudfront_client

 def update_distribution(self):
 distribution_id = input(
 "This script updates the comment for a CloudFront distribution.\n"
 "Enter a CloudFront distribution ID: "
)

 distribution_config_response =
 self.cloudfront_client.get_distribution_config(
 Id=distribution_id
)
 distribution_config = distribution_config_response["DistributionConfig"]
 distribution_etag = distribution_config_response["ETag"]

 distribution_config["Comment"] = input(
 f"\nThe current comment for distribution {distribution_id} is "
 f"'{distribution_config['Comment']}'.\n"
 f"Enter a new comment: "
)
 self.cloudfront_client.update_distribution(
 DistributionConfig=distribution_config,
 Id=distribution_id,
 IfMatch=distribution_etag,
)
 print("Done!")

• For API details, see GetDistributionConfig in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudFront with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

GetDistributionConfig 988

https://docs.aws.amazon.com/goto/boto3/cloudfront-2020-05-31/GetDistributionConfig

Amazon CloudFront Developer Guide

Use ListCloudFrontOriginAccessIdentities with an AWS SDK or
command line tool

The following code examples show how to use ListCloudFrontOriginAccessIdentities.

CLI

AWS CLI

To list CloudFront origin access identities

The following example gets a list of the CloudFront origin access identities (OAIs) in your
AWS account:

aws cloudfront list-cloud-front-origin-access-identities

Output:

{
 "CloudFrontOriginAccessIdentityList": {
 "Items": [
 {
 "Id": "E74FTE3AEXAMPLE",
 "S3CanonicalUserId":
 "cd13868f797c227fbea2830611a26fe0a21ba1b826ab4bed9b7771c9aEXAMPLE",
 "Comment": "Example OAI"
 },
 {
 "Id": "EH1HDMBEXAMPLE",
 "S3CanonicalUserId":
 "1489f6f2e6faacaae7ff64c4c3e6956c24f78788abfc1718c3527c263bf7a17EXAMPLE",
 "Comment": "Test OAI"
 },
 {
 "Id": "E2X2C9TEXAMPLE",
 "S3CanonicalUserId":
 "cbfeebb915a64749f9be546a45b3fcfd3a31c779673c13c4dd460911ae402c2EXAMPLE",
 "Comment": "Example OAI #2"
 }
]
 }
}

ListCloudFrontOriginAccessIdentities 989

Amazon CloudFront Developer Guide

• For API details, see ListCloudFrontOriginAccessIdentities in AWS CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This example returns a list of Amazon CloudFront origin access identities.
Because the -MaxItem parameter specifies a value of 2, the results include two identities.

Get-CFCloudFrontOriginAccessIdentityList -MaxItem 2

Output:

IsTruncated : True
Items : {E326XXXXXXXXXT, E1YWXXXXXXX9B}
Marker :
MaxItems : 2
NextMarker : E1YXXXXXXXXX9B
Quantity : 2

• For API details, see ListCloudFrontOriginAccessIdentities in AWS Tools for PowerShell
Cmdlet Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudFront with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListDistributions with an AWS SDK or command line tool

The following code examples show how to use ListDistributions.

CLI

AWS CLI

To list CloudFront distributions

The following example gets a list of the CloudFront distributions in your AWS account:

aws cloudfront list-distributions

ListDistributions 990

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudfront/list-cloud-front-origin-access-identities.html
https://docs.aws.amazon.com/powershell/latest/reference

Amazon CloudFront Developer Guide

Output:

{
 "DistributionList": {
 "Items": [
 {
 "Id": "EMLARXS9EXAMPLE",
 "ARN": "arn:aws:cloudfront::123456789012:distribution/
EMLARXS9EXAMPLE",
 "Status": "InProgress",
 "LastModifiedTime": "2019-11-22T00:55:15.705Z",
 "InProgressInvalidationBatches": 0,
 "DomainName": "d111111abcdef8.cloudfront.net",
 "ActiveTrustedSigners": {
 "Enabled": false,
 "Quantity": 0
 },
 "DistributionConfig": {
 "CallerReference": "cli-example",
 "Aliases": {
 "Quantity": 0
 },
 "DefaultRootObject": "index.html",
 "Origins": {
 "Quantity": 1,
 "Items": [
 {
 "Id": "awsexamplebucket.s3.amazonaws.com-cli-
example",
 "DomainName":
 "awsexamplebucket.s3.amazonaws.com",
 "OriginPath": "",
 "CustomHeaders": {
 "Quantity": 0
 },
 "S3OriginConfig": {
 "OriginAccessIdentity": ""
 }
 }
]
 },
 "OriginGroups": {
 "Quantity": 0
 },

ListDistributions 991

Amazon CloudFront Developer Guide

 "DefaultCacheBehavior": {
 "TargetOriginId": "awsexamplebucket.s3.amazonaws.com-cli-
example",
 "ForwardedValues": {
 "QueryString": false,
 "Cookies": {
 "Forward": "none"
 },
 "Headers": {
 "Quantity": 0
 },
 "QueryStringCacheKeys": {
 "Quantity": 0
 }
 },
 "TrustedSigners": {
 "Enabled": false,
 "Quantity": 0
 },
 "ViewerProtocolPolicy": "allow-all",
 "MinTTL": 0,
 "AllowedMethods": {
 "Quantity": 2,
 "Items": [
 "HEAD",
 "GET"
],
 "CachedMethods": {
 "Quantity": 2,
 "Items": [
 "HEAD",
 "GET"
]
 }
 },
 "SmoothStreaming": false,
 "DefaultTTL": 86400,
 "MaxTTL": 31536000,
 "Compress": false,
 "LambdaFunctionAssociations": {
 "Quantity": 0
 },
 "FieldLevelEncryptionId": ""
 },

ListDistributions 992

Amazon CloudFront Developer Guide

 "CacheBehaviors": {
 "Quantity": 0
 },
 "CustomErrorResponses": {
 "Quantity": 0
 },
 "Comment": "",
 "Logging": {
 "Enabled": false,
 "IncludeCookies": false,
 "Bucket": "",
 "Prefix": ""
 },
 "PriceClass": "PriceClass_All",
 "Enabled": true,
 "ViewerCertificate": {
 "CloudFrontDefaultCertificate": true,
 "MinimumProtocolVersion": "TLSv1",
 "CertificateSource": "cloudfront"
 },
 "Restrictions": {
 "GeoRestriction": {
 "RestrictionType": "none",
 "Quantity": 0
 }
 },
 "WebACLId": "",
 "HttpVersion": "http2",
 "IsIPV6Enabled": true
 }
 },
 {
 "Id": "EDFDVBD6EXAMPLE",
 "ARN": "arn:aws:cloudfront::123456789012:distribution/
EDFDVBD6EXAMPLE",
 "Status": "InProgress",
 "LastModifiedTime": "2019-12-04T23:35:41.433Z",
 "InProgressInvalidationBatches": 0,
 "DomainName": "d930174dauwrn8.cloudfront.net",
 "ActiveTrustedSigners": {
 "Enabled": false,
 "Quantity": 0
 },
 "DistributionConfig": {

ListDistributions 993

Amazon CloudFront Developer Guide

 "CallerReference": "cli-example",
 "Aliases": {
 "Quantity": 0
 },
 "DefaultRootObject": "index.html",
 "Origins": {
 "Quantity": 1,
 "Items": [
 {
 "Id": "awsexamplebucket1.s3.amazonaws.com-cli-
example",
 "DomainName":
 "awsexamplebucket1.s3.amazonaws.com",
 "OriginPath": "",
 "CustomHeaders": {
 "Quantity": 0
 },
 "S3OriginConfig": {
 "OriginAccessIdentity": ""
 }
 }
]
 },
 "OriginGroups": {
 "Quantity": 0
 },
 "DefaultCacheBehavior": {
 "TargetOriginId": "awsexamplebucket1.s3.amazonaws.com-
cli-example",
 "ForwardedValues": {
 "QueryString": false,
 "Cookies": {
 "Forward": "none"
 },
 "Headers": {
 "Quantity": 0
 },
 "QueryStringCacheKeys": {
 "Quantity": 0
 }
 },
 "TrustedSigners": {
 "Enabled": false,
 "Quantity": 0

ListDistributions 994

Amazon CloudFront Developer Guide

 },
 "ViewerProtocolPolicy": "allow-all",
 "MinTTL": 0,
 "AllowedMethods": {
 "Quantity": 2,
 "Items": [
 "HEAD",
 "GET"
],
 "CachedMethods": {
 "Quantity": 2,
 "Items": [
 "HEAD",
 "GET"
]
 }
 },
 "SmoothStreaming": false,
 "DefaultTTL": 86400,
 "MaxTTL": 31536000,
 "Compress": false,
 "LambdaFunctionAssociations": {
 "Quantity": 0
 },
 "FieldLevelEncryptionId": ""
 },
 "CacheBehaviors": {
 "Quantity": 0
 },
 "CustomErrorResponses": {
 "Quantity": 0
 },
 "Comment": "",
 "Logging": {
 "Enabled": false,
 "IncludeCookies": false,
 "Bucket": "",
 "Prefix": ""
 },
 "PriceClass": "PriceClass_All",
 "Enabled": true,
 "ViewerCertificate": {
 "CloudFrontDefaultCertificate": true,
 "MinimumProtocolVersion": "TLSv1",

ListDistributions 995

Amazon CloudFront Developer Guide

 "CertificateSource": "cloudfront"
 },
 "Restrictions": {
 "GeoRestriction": {
 "RestrictionType": "none",
 "Quantity": 0
 }
 },
 "WebACLId": "",
 "HttpVersion": "http2",
 "IsIPV6Enabled": true
 }
 },
 {
 "Id": "E1X5IZQEXAMPLE",
 "ARN": "arn:aws:cloudfront::123456789012:distribution/
E1X5IZQEXAMPLE",
 "Status": "Deployed",
 "LastModifiedTime": "2019-11-06T21:31:48.864Z",
 "DomainName": "d2e04y12345678.cloudfront.net",
 "Aliases": {
 "Quantity": 0
 },
 "Origins": {
 "Quantity": 1,
 "Items": [
 {
 "Id": "awsexamplebucket2",
 "DomainName": "awsexamplebucket2.s3.us-
west-2.amazonaws.com",
 "OriginPath": "",
 "CustomHeaders": {
 "Quantity": 0
 },
 "S3OriginConfig": {
 "OriginAccessIdentity": ""
 }
 }
]
 },
 "OriginGroups": {
 "Quantity": 0
 },
 "DefaultCacheBehavior": {

ListDistributions 996

Amazon CloudFront Developer Guide

 "TargetOriginId": "awsexamplebucket2",
 "ForwardedValues": {
 "QueryString": false,
 "Cookies": {
 "Forward": "none"
 },
 "Headers": {
 "Quantity": 0
 },
 "QueryStringCacheKeys": {
 "Quantity": 0
 }
 },
 "TrustedSigners": {
 "Enabled": false,
 "Quantity": 0
 },
 "ViewerProtocolPolicy": "allow-all",
 "MinTTL": 0,
 "AllowedMethods": {
 "Quantity": 2,
 "Items": [
 "HEAD",
 "GET"
],
 "CachedMethods": {
 "Quantity": 2,
 "Items": [
 "HEAD",
 "GET"
]
 }
 },
 "SmoothStreaming": false,
 "DefaultTTL": 86400,
 "MaxTTL": 31536000,
 "Compress": false,
 "LambdaFunctionAssociations": {
 "Quantity": 0
 },
 "FieldLevelEncryptionId": ""
 },
 "CacheBehaviors": {
 "Quantity": 0

ListDistributions 997

Amazon CloudFront Developer Guide

 },
 "CustomErrorResponses": {
 "Quantity": 0
 },
 "Comment": "",
 "PriceClass": "PriceClass_All",
 "Enabled": true,
 "ViewerCertificate": {
 "CloudFrontDefaultCertificate": true,
 "MinimumProtocolVersion": "TLSv1",
 "CertificateSource": "cloudfront"
 },
 "Restrictions": {
 "GeoRestriction": {
 "RestrictionType": "none",
 "Quantity": 0
 }
 },
 "WebACLId": "",
 "HttpVersion": "HTTP1_1",
 "IsIPV6Enabled": true
 }
]
 }
}

• For API details, see ListDistributions in AWS CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: Returns distributions.

Get-CFDistributionList

• For API details, see ListDistributions in AWS Tools for PowerShell Cmdlet Reference.

ListDistributions 998

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudfront/list-distributions.html
https://docs.aws.amazon.com/powershell/latest/reference

Amazon CloudFront Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class CloudFrontWrapper:
 """Encapsulates Amazon CloudFront operations."""

 def __init__(self, cloudfront_client):
 """
 :param cloudfront_client: A Boto3 CloudFront client
 """
 self.cloudfront_client = cloudfront_client

 def list_distributions(self):
 print("CloudFront distributions:\n")
 distributions = self.cloudfront_client.list_distributions()
 if distributions["DistributionList"]["Quantity"] > 0:
 for distribution in distributions["DistributionList"]["Items"]:
 print(f"Domain: {distribution['DomainName']}")
 print(f"Distribution Id: {distribution['Id']}")
 print(
 f"Certificate Source: "
 f"{distribution['ViewerCertificate']['CertificateSource']}"
)
 if distribution["ViewerCertificate"]["CertificateSource"] ==
 "acm":
 print(
 f"Certificate: {distribution['ViewerCertificate']
['Certificate']}"
)
 print("")
 else:
 print("No CloudFront distributions detected.")

ListDistributions 999

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/cloudfront#code-examples

Amazon CloudFront Developer Guide

• For API details, see ListDistributions in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudFront with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use UpdateDistribution with an AWS SDK or command line tool

The following code examples show how to use UpdateDistribution.

CLI

AWS CLI

To update a CloudFront distribution's default root object

The following example updates the default root object to index.html for the CloudFront
distribution with the ID EDFDVBD6EXAMPLE:

aws cloudfront update-distribution --id EDFDVBD6EXAMPLE \
 --default-root-object index.html

Output:

{
 "ETag": "E2QWRUHEXAMPLE",
 "Distribution": {
 "Id": "EDFDVBD6EXAMPLE",
 "ARN": "arn:aws:cloudfront::123456789012:distribution/EDFDVBD6EXAMPLE",
 "Status": "InProgress",
 "LastModifiedTime": "2019-12-06T18:55:39.870Z",
 "InProgressInvalidationBatches": 0,
 "DomainName": "d111111abcdef8.cloudfront.net",
 "ActiveTrustedSigners": {
 "Enabled": false,
 "Quantity": 0
 },
 "DistributionConfig": {
 "CallerReference": "6b10378d-49be-4c4b-a642-419ccaf8f3b5",
 "Aliases": {
 "Quantity": 0
 },

UpdateDistribution 1000

https://docs.aws.amazon.com/goto/boto3/cloudfront-2020-05-31/ListDistributions

Amazon CloudFront Developer Guide

 "DefaultRootObject": "index.html",
 "Origins": {
 "Quantity": 1,
 "Items": [
 {
 "Id": "example-website",
 "DomainName": "www.example.com",
 "OriginPath": "",
 "CustomHeaders": {
 "Quantity": 0
 },
 "CustomOriginConfig": {
 "HTTPPort": 80,
 "HTTPSPort": 443,
 "OriginProtocolPolicy": "match-viewer",
 "OriginSslProtocols": {
 "Quantity": 2,
 "Items": [
 "SSLv3",
 "TLSv1"
]
 },
 "OriginReadTimeout": 30,
 "OriginKeepaliveTimeout": 5
 }
 }
]
 },
 "OriginGroups": {
 "Quantity": 0
 },
 "DefaultCacheBehavior": {
 "TargetOriginId": "example-website",
 "ForwardedValues": {
 "QueryString": false,
 "Cookies": {
 "Forward": "none"
 },
 "Headers": {
 "Quantity": 1,
 "Items": [
 "*"
]
 },

UpdateDistribution 1001

Amazon CloudFront Developer Guide

 "QueryStringCacheKeys": {
 "Quantity": 0
 }
 },
 "TrustedSigners": {
 "Enabled": false,
 "Quantity": 0
 },
 "ViewerProtocolPolicy": "allow-all",
 "MinTTL": 0,
 "AllowedMethods": {
 "Quantity": 2,
 "Items": [
 "HEAD",
 "GET"
],
 "CachedMethods": {
 "Quantity": 2,
 "Items": [
 "HEAD",
 "GET"
]
 }
 },
 "SmoothStreaming": false,
 "DefaultTTL": 86400,
 "MaxTTL": 31536000,
 "Compress": false,
 "LambdaFunctionAssociations": {
 "Quantity": 0
 },
 "FieldLevelEncryptionId": ""
 },
 "CacheBehaviors": {
 "Quantity": 0
 },
 "CustomErrorResponses": {
 "Quantity": 0
 },
 "Comment": "",
 "Logging": {
 "Enabled": false,
 "IncludeCookies": false,
 "Bucket": "",

UpdateDistribution 1002

Amazon CloudFront Developer Guide

 "Prefix": ""
 },
 "PriceClass": "PriceClass_All",
 "Enabled": true,
 "ViewerCertificate": {
 "CloudFrontDefaultCertificate": true,
 "MinimumProtocolVersion": "TLSv1",
 "CertificateSource": "cloudfront"
 },
 "Restrictions": {
 "GeoRestriction": {
 "RestrictionType": "none",
 "Quantity": 0
 }
 },
 "WebACLId": "",
 "HttpVersion": "http1.1",
 "IsIPV6Enabled": true
 }
 }
}

To update a CloudFront distribution

The following example disables the CloudFront distribution with the ID EMLARXS9EXAMPLE
by providing the distribution configuration in a JSON file named dist-config-
disable.json. To update a distribution, you must use the --if-match option to provide
the distribution's ETag. To get the ETag, use the get-distribution or get-distribution-config
command.

After you use the following example to disable a distribution, you can use the delete-
distribution command to delete it.

aws cloudfront update-distribution \
 --id EMLARXS9EXAMPLE \
 --if-match E2QWRUHEXAMPLE \
 --distribution-config file://dist-config-disable.json

The file dist-config-disable.json is a JSON document in the current folder that
contains the following. Note that the Enabled field is set to false:

{

UpdateDistribution 1003

Amazon CloudFront Developer Guide

 "CallerReference": "cli-1574382155-496510",
 "Aliases": {
 "Quantity": 0
 },
 "DefaultRootObject": "index.html",
 "Origins": {
 "Quantity": 1,
 "Items": [
 {
 "Id": "awsexamplebucket.s3.amazonaws.com-1574382155-273939",
 "DomainName": "awsexamplebucket.s3.amazonaws.com",
 "OriginPath": "",
 "CustomHeaders": {
 "Quantity": 0
 },
 "S3OriginConfig": {
 "OriginAccessIdentity": ""
 }
 }
]
 },
 "OriginGroups": {
 "Quantity": 0
 },
 "DefaultCacheBehavior": {
 "TargetOriginId": "awsexamplebucket.s3.amazonaws.com-1574382155-273939",
 "ForwardedValues": {
 "QueryString": false,
 "Cookies": {
 "Forward": "none"
 },
 "Headers": {
 "Quantity": 0
 },
 "QueryStringCacheKeys": {
 "Quantity": 0
 }
 },
 "TrustedSigners": {
 "Enabled": false,
 "Quantity": 0
 },
 "ViewerProtocolPolicy": "allow-all",
 "MinTTL": 0,

UpdateDistribution 1004

Amazon CloudFront Developer Guide

 "AllowedMethods": {
 "Quantity": 2,
 "Items": [
 "HEAD",
 "GET"
],
 "CachedMethods": {
 "Quantity": 2,
 "Items": [
 "HEAD",
 "GET"
]
 }
 },
 "SmoothStreaming": false,
 "DefaultTTL": 86400,
 "MaxTTL": 31536000,
 "Compress": false,
 "LambdaFunctionAssociations": {
 "Quantity": 0
 },
 "FieldLevelEncryptionId": ""
 },
 "CacheBehaviors": {
 "Quantity": 0
 },
 "CustomErrorResponses": {
 "Quantity": 0
 },
 "Comment": "",
 "Logging": {
 "Enabled": false,
 "IncludeCookies": false,
 "Bucket": "",
 "Prefix": ""
 },
 "PriceClass": "PriceClass_All",
 "Enabled": false,
 "ViewerCertificate": {
 "CloudFrontDefaultCertificate": true,
 "MinimumProtocolVersion": "TLSv1",
 "CertificateSource": "cloudfront"
 },
 "Restrictions": {

UpdateDistribution 1005

Amazon CloudFront Developer Guide

 "GeoRestriction": {
 "RestrictionType": "none",
 "Quantity": 0
 }
 },
 "WebACLId": "",
 "HttpVersion": "http2",
 "IsIPV6Enabled": true
}

Output:

{
 "ETag": "E9LHASXEXAMPLE",
 "Distribution": {
 "Id": "EMLARXS9EXAMPLE",
 "ARN": "arn:aws:cloudfront::123456789012:distribution/EMLARXS9EXAMPLE",
 "Status": "InProgress",
 "LastModifiedTime": "2019-12-06T18:32:35.553Z",
 "InProgressInvalidationBatches": 0,
 "DomainName": "d111111abcdef8.cloudfront.net",
 "ActiveTrustedSigners": {
 "Enabled": false,
 "Quantity": 0
 },
 "DistributionConfig": {
 "CallerReference": "cli-1574382155-496510",
 "Aliases": {
 "Quantity": 0
 },
 "DefaultRootObject": "index.html",
 "Origins": {
 "Quantity": 1,
 "Items": [
 {
 "Id":
 "awsexamplebucket.s3.amazonaws.com-1574382155-273939",
 "DomainName": "awsexamplebucket.s3.amazonaws.com",
 "OriginPath": "",
 "CustomHeaders": {
 "Quantity": 0
 },
 "S3OriginConfig": {

UpdateDistribution 1006

Amazon CloudFront Developer Guide

 "OriginAccessIdentity": ""
 }
 }
]
 },
 "OriginGroups": {
 "Quantity": 0
 },
 "DefaultCacheBehavior": {
 "TargetOriginId":
 "awsexamplebucket.s3.amazonaws.com-1574382155-273939",
 "ForwardedValues": {
 "QueryString": false,
 "Cookies": {
 "Forward": "none"
 },
 "Headers": {
 "Quantity": 0
 },
 "QueryStringCacheKeys": {
 "Quantity": 0
 }
 },
 "TrustedSigners": {
 "Enabled": false,
 "Quantity": 0
 },
 "ViewerProtocolPolicy": "allow-all",
 "MinTTL": 0,
 "AllowedMethods": {
 "Quantity": 2,
 "Items": [
 "HEAD",
 "GET"
],
 "CachedMethods": {
 "Quantity": 2,
 "Items": [
 "HEAD",
 "GET"
]
 }
 },
 "SmoothStreaming": false,

UpdateDistribution 1007

Amazon CloudFront Developer Guide

 "DefaultTTL": 86400,
 "MaxTTL": 31536000,
 "Compress": false,
 "LambdaFunctionAssociations": {
 "Quantity": 0
 },
 "FieldLevelEncryptionId": ""
 },
 "CacheBehaviors": {
 "Quantity": 0
 },
 "CustomErrorResponses": {
 "Quantity": 0
 },
 "Comment": "",
 "Logging": {
 "Enabled": false,
 "IncludeCookies": false,
 "Bucket": "",
 "Prefix": ""
 },
 "PriceClass": "PriceClass_All",
 "Enabled": false,
 "ViewerCertificate": {
 "CloudFrontDefaultCertificate": true,
 "MinimumProtocolVersion": "TLSv1",
 "CertificateSource": "cloudfront"
 },
 "Restrictions": {
 "GeoRestriction": {
 "RestrictionType": "none",
 "Quantity": 0
 }
 },
 "WebACLId": "",
 "HttpVersion": "http2",
 "IsIPV6Enabled": true
 }
 }
}

• For API details, see UpdateDistribution in AWS CLI Command Reference.

UpdateDistribution 1008

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudfront/update-distribution.html

Amazon CloudFront Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.cloudfront.CloudFrontClient;
import software.amazon.awssdk.services.cloudfront.model.GetDistributionRequest;
import software.amazon.awssdk.services.cloudfront.model.GetDistributionResponse;
import software.amazon.awssdk.services.cloudfront.model.Distribution;
import software.amazon.awssdk.services.cloudfront.model.DistributionConfig;
import
 software.amazon.awssdk.services.cloudfront.model.UpdateDistributionRequest;
import software.amazon.awssdk.services.cloudfront.model.CloudFrontException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class ModifyDistribution {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <id>\s

 Where:
 id - the id value of the distribution.\s
 """;

 if (args.length != 1) {
 System.out.println(usage);

UpdateDistribution 1009

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cloudfront#readme

Amazon CloudFront Developer Guide

 System.exit(1);
 }

 String id = args[0];
 CloudFrontClient cloudFrontClient = CloudFrontClient.builder()
 .region(Region.AWS_GLOBAL)
 .build();

 modDistribution(cloudFrontClient, id);
 cloudFrontClient.close();
 }

 public static void modDistribution(CloudFrontClient cloudFrontClient, String
 idVal) {
 try {
 // Get the Distribution to modify.
 GetDistributionRequest disRequest = GetDistributionRequest.builder()
 .id(idVal)
 .build();

 GetDistributionResponse response =
 cloudFrontClient.getDistribution(disRequest);
 Distribution disObject = response.distribution();
 DistributionConfig config = disObject.distributionConfig();

 // Create a new DistributionConfig object and add new values to
 comment and
 // aliases
 DistributionConfig config1 = DistributionConfig.builder()
 .aliases(config.aliases()) // You can pass in new values here
 .comment("New Comment")
 .cacheBehaviors(config.cacheBehaviors())
 .priceClass(config.priceClass())
 .defaultCacheBehavior(config.defaultCacheBehavior())
 .enabled(config.enabled())
 .callerReference(config.callerReference())
 .logging(config.logging())
 .originGroups(config.originGroups())
 .origins(config.origins())
 .restrictions(config.restrictions())
 .defaultRootObject(config.defaultRootObject())
 .webACLId(config.webACLId())
 .httpVersion(config.httpVersion())
 .viewerCertificate(config.viewerCertificate())

UpdateDistribution 1010

Amazon CloudFront Developer Guide

 .customErrorResponses(config.customErrorResponses())
 .build();

 UpdateDistributionRequest updateDistributionRequest =
 UpdateDistributionRequest.builder()
 .distributionConfig(config1)
 .id(disObject.id())
 .ifMatch(response.eTag())
 .build();

 cloudFrontClient.updateDistribution(updateDistributionRequest);

 } catch (CloudFrontException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see UpdateDistribution in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class CloudFrontWrapper:
 """Encapsulates Amazon CloudFront operations."""

 def __init__(self, cloudfront_client):
 """
 :param cloudfront_client: A Boto3 CloudFront client
 """
 self.cloudfront_client = cloudfront_client

UpdateDistribution 1011

https://docs.aws.amazon.com/goto/SdkForJavaV2/cloudfront-2020-05-31/UpdateDistribution
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/cloudfront#code-examples

Amazon CloudFront Developer Guide

 def update_distribution(self):
 distribution_id = input(
 "This script updates the comment for a CloudFront distribution.\n"
 "Enter a CloudFront distribution ID: "
)

 distribution_config_response =
 self.cloudfront_client.get_distribution_config(
 Id=distribution_id
)
 distribution_config = distribution_config_response["DistributionConfig"]
 distribution_etag = distribution_config_response["ETag"]

 distribution_config["Comment"] = input(
 f"\nThe current comment for distribution {distribution_id} is "
 f"'{distribution_config['Comment']}'.\n"
 f"Enter a new comment: "
)
 self.cloudfront_client.update_distribution(
 DistributionConfig=distribution_config,
 Id=distribution_id,
 IfMatch=distribution_etag,
)
 print("Done!")

• For API details, see UpdateDistribution in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudFront with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Scenarios for CloudFront using AWS SDKs

The following code examples show you how to implement common scenarios in CloudFront with
AWS SDKs. These scenarios show you how to accomplish specific tasks by calling multiple functions
within CloudFront. Each scenario includes a link to GitHub, where you can find instructions on how
to set up and run the code.

Scenarios 1012

https://docs.aws.amazon.com/goto/boto3/cloudfront-2020-05-31/UpdateDistribution

Amazon CloudFront Developer Guide

Examples

• Delete CloudFront signing resources using AWS SDK

• Create signed URLs and cookies using an AWS SDK

Delete CloudFront signing resources using AWS SDK

The following code example shows how to delete resources that are used to gain access to
restricted content in an Amazon Simple Storage Service (Amazon S3) bucket.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import software.amazon.awssdk.services.cloudfront.CloudFrontClient;
import software.amazon.awssdk.services.cloudfront.model.DeleteKeyGroupResponse;
import
 software.amazon.awssdk.services.cloudfront.model.DeleteOriginAccessControlResponse;
import software.amazon.awssdk.services.cloudfront.model.DeletePublicKeyResponse;
import software.amazon.awssdk.services.cloudfront.model.GetKeyGroupResponse;
import
 software.amazon.awssdk.services.cloudfront.model.GetOriginAccessControlResponse;
import software.amazon.awssdk.services.cloudfront.model.GetPublicKeyResponse;

public class DeleteSigningResources {
 private static final Logger logger =
 LoggerFactory.getLogger(DeleteSigningResources.class);

 public static void deleteOriginAccessControl(final CloudFrontClient
 cloudFrontClient,
 final String originAccessControlId) {
 GetOriginAccessControlResponse getResponse = cloudFrontClient
 .getOriginAccessControl(b -> b.id(originAccessControlId));

Delete signing resources 1013

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cloudfront#readme

Amazon CloudFront Developer Guide

 DeleteOriginAccessControlResponse deleteResponse =
 cloudFrontClient.deleteOriginAccessControl(builder -> builder
 .id(originAccessControlId)
 .ifMatch(getResponse.eTag()));
 if (deleteResponse.sdkHttpResponse().isSuccessful()) {
 logger.info("Successfully deleted Origin Access Control [{}]",
 originAccessControlId);
 }
 }

 public static void deleteKeyGroup(final CloudFrontClient cloudFrontClient,
 final String keyGroupId) {

 GetKeyGroupResponse getResponse = cloudFrontClient.getKeyGroup(b ->
 b.id(keyGroupId));
 DeleteKeyGroupResponse deleteResponse =
 cloudFrontClient.deleteKeyGroup(builder -> builder
 .id(keyGroupId)
 .ifMatch(getResponse.eTag()));
 if (deleteResponse.sdkHttpResponse().isSuccessful()) {
 logger.info("Successfully deleted Key Group [{}]", keyGroupId);
 }
 }

 public static void deletePublicKey(final CloudFrontClient cloudFrontClient,
 final String publicKeyId) {
 GetPublicKeyResponse getResponse = cloudFrontClient.getPublicKey(b ->
 b.id(publicKeyId));

 DeletePublicKeyResponse deleteResponse =
 cloudFrontClient.deletePublicKey(builder -> builder
 .id(publicKeyId)
 .ifMatch(getResponse.eTag()));

 if (deleteResponse.sdkHttpResponse().isSuccessful()) {
 logger.info("Successfully deleted Public Key [{}]", publicKeyId);
 }
 }
}

• For API details, see the following topics in AWS SDK for Java 2.x API Reference.

• DeleteKeyGroup

Delete signing resources 1014

https://docs.aws.amazon.com/goto/SdkForJavaV2/cloudfront-2020-05-31/DeleteKeyGroup

Amazon CloudFront Developer Guide

• DeleteOriginAccessControl

• DeletePublicKey

For a complete list of AWS SDK developer guides and code examples, see Using CloudFront with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create signed URLs and cookies using an AWS SDK

The following code example shows how to create signed URLs and cookies that allow access to
restricted resources.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Use the CannedSignerRequest class to sign URLs or cookies with a canned policy.

import software.amazon.awssdk.services.cloudfront.model.CannedSignerRequest;

import java.net.URL;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.time.Instant;
import java.time.temporal.ChronoUnit;

public class CreateCannedPolicyRequest {

 public static CannedSignerRequest createRequestForCannedPolicy(String
 distributionDomainName,
 String fileNameToUpload,
 String privateKeyFullPath, String publicKeyId) throws Exception {
 String protocol = "https";
 String resourcePath = "/" + fileNameToUpload;

Sign URLs and cookies 1015

https://docs.aws.amazon.com/goto/SdkForJavaV2/cloudfront-2020-05-31/DeleteOriginAccessControl
https://docs.aws.amazon.com/goto/SdkForJavaV2/cloudfront-2020-05-31/DeletePublicKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cloudfront#readme
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/cloudfront/model/CannedSignerRequest.html

Amazon CloudFront Developer Guide

 String cloudFrontUrl = new URL(protocol, distributionDomainName,
 resourcePath).toString();
 Instant expirationDate = Instant.now().plus(7, ChronoUnit.DAYS);
 Path path = Paths.get(privateKeyFullPath);

 return CannedSignerRequest.builder()
 .resourceUrl(cloudFrontUrl)
 .privateKey(path)
 .keyPairId(publicKeyId)
 .expirationDate(expirationDate)
 .build();
 }
}

Use the CustomSignerRequest class to sign URLs or cookies with a custom policy. The
activeDate and ipRange are optional methods.

import software.amazon.awssdk.services.cloudfront.model.CustomSignerRequest;

import java.net.URL;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.time.Instant;
import java.time.temporal.ChronoUnit;

public class CreateCustomPolicyRequest {

 public static CustomSignerRequest createRequestForCustomPolicy(String
 distributionDomainName,
 String fileNameToUpload,
 String privateKeyFullPath, String publicKeyId) throws Exception {
 String protocol = "https";
 String resourcePath = "/" + fileNameToUpload;

 String cloudFrontUrl = new URL(protocol, distributionDomainName,
 resourcePath).toString();
 Instant expireDate = Instant.now().plus(7, ChronoUnit.DAYS);
 // URL will be accessible tomorrow using the signed URL.
 Instant activeDate = Instant.now().plus(1, ChronoUnit.DAYS);
 Path path = Paths.get(privateKeyFullPath);

Sign URLs and cookies 1016

https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/cloudfront/model/CustomSignerRequest.html

Amazon CloudFront Developer Guide

 return CustomSignerRequest.builder()
 .resourceUrl(cloudFrontUrl)
 .privateKey(path)
 .keyPairId(publicKeyId)
 .expirationDate(expireDate)
 .activeDate(activeDate) // Optional.
 // .ipRange("192.168.0.1/24") // Optional.
 .build();
 }
}

The following example demonstrates the use of the CloudFrontUtilities class to produce
signed cookies and URLs. View this code example on GitHub.

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import software.amazon.awssdk.services.cloudfront.CloudFrontUtilities;
import software.amazon.awssdk.services.cloudfront.cookie.CookiesForCannedPolicy;
import software.amazon.awssdk.services.cloudfront.cookie.CookiesForCustomPolicy;
import software.amazon.awssdk.services.cloudfront.model.CannedSignerRequest;
import software.amazon.awssdk.services.cloudfront.model.CustomSignerRequest;
import software.amazon.awssdk.services.cloudfront.url.SignedUrl;

public class SigningUtilities {
 private static final Logger logger =
 LoggerFactory.getLogger(SigningUtilities.class);
 private static final CloudFrontUtilities cloudFrontUtilities =
 CloudFrontUtilities.create();

 public static SignedUrl signUrlForCannedPolicy(CannedSignerRequest
 cannedSignerRequest) {
 SignedUrl signedUrl =
 cloudFrontUtilities.getSignedUrlWithCannedPolicy(cannedSignerRequest);
 logger.info("Signed URL: [{}]", signedUrl.url());
 return signedUrl;
 }

 public static SignedUrl signUrlForCustomPolicy(CustomSignerRequest
 customSignerRequest) {
 SignedUrl signedUrl =
 cloudFrontUtilities.getSignedUrlWithCustomPolicy(customSignerRequest);
 logger.info("Signed URL: [{}]", signedUrl.url());

Sign URLs and cookies 1017

https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/cloudfront/CloudFrontUtilities.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javav2/example_code/cloudfront/src/main/java/com/example/cloudfront/SigningUtilities.java

Amazon CloudFront Developer Guide

 return signedUrl;
 }

 public static CookiesForCannedPolicy
 getCookiesForCannedPolicy(CannedSignerRequest cannedSignerRequest) {
 CookiesForCannedPolicy cookiesForCannedPolicy = cloudFrontUtilities
 .getCookiesForCannedPolicy(cannedSignerRequest);
 logger.info("Cookie EXPIRES header [{}]",
 cookiesForCannedPolicy.expiresHeaderValue());
 logger.info("Cookie KEYPAIR header [{}]",
 cookiesForCannedPolicy.keyPairIdHeaderValue());
 logger.info("Cookie SIGNATURE header [{}]",
 cookiesForCannedPolicy.signatureHeaderValue());
 return cookiesForCannedPolicy;
 }

 public static CookiesForCustomPolicy
 getCookiesForCustomPolicy(CustomSignerRequest customSignerRequest) {
 CookiesForCustomPolicy cookiesForCustomPolicy = cloudFrontUtilities
 .getCookiesForCustomPolicy(customSignerRequest);
 logger.info("Cookie POLICY header [{}]",
 cookiesForCustomPolicy.policyHeaderValue());
 logger.info("Cookie KEYPAIR header [{}]",
 cookiesForCustomPolicy.keyPairIdHeaderValue());
 logger.info("Cookie SIGNATURE header [{}]",
 cookiesForCustomPolicy.signatureHeaderValue());
 return cookiesForCustomPolicy;
 }
}

• For API details, see CloudFrontUtilities in AWS SDK for Java 2.x API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudFront with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Sign URLs and cookies 1018

https://docs.aws.amazon.com/goto/SdkForJavaV2/cloudfront-2020-05-31/CloudFrontUtilities

Amazon CloudFront Developer Guide

Amazon CloudFront related information

The information and resources listed here can help you learn more about CloudFront.

Topics

• Additional Amazon CloudFront documentation

• Getting support

• CloudFront developer tools and SDKs

• Tips from the Amazon Web Services blog

Additional Amazon CloudFront documentation

The following related resources can help you as you work with this service.

• Amazon CloudFront API Reference – Gives complete descriptions of the API actions, parameters,
and data types, and a list of errors that the service returns.

• CloudFront What's New – Announcements of new CloudFront features and recently added edge
locations.

• Amazon CloudFront product information – The primary web page for information about
CloudFront, including features and pricing information.

Getting support

Support for CloudFront is available in a number of forms.

• AWS re:Post – A community-based question and answer site for developers to discuss technical
questions related to CloudFront.

• AWS Support Center – This site brings together information about your recent support cases
and results from AWS Trusted Advisor and health checks, as well as providing links to discussion
forums, technical FAQs, the service health dashboard, and information about AWS support plans.

• AWS Premium Support – The primary web page for information about AWS Premium Support, a
one-on-one, fast-response support channel to help you build and run applications on AWS.

• AWS IQ – Get help from AWS Certified professionals and experts.

Additional Amazon CloudFront documentation 1019

https://docs.aws.amazon.com/cloudfront/latest/APIReference/Welcome.html
https://aws.amazon.com/cloudfront/whats-new/
https://aws.amazon.com/cloudfront/
https://repost.aws/tags/TA8pHF0m5aQdawzT2gwPcVYQ/amazon-cloud-front
https://console.aws.amazon.com/support/home
https://aws.amazon.com/premiumsupport/
https://iq.aws.amazon.com/?utm=docs

Amazon CloudFront Developer Guide

• Contact Us – Links for inquiring about your billing or account. For technical questions, use the
discussion forums or support links above.

CloudFront developer tools and SDKs

See the Tools page for links to developer resources that provide documentation, code samples,
release notes, and other information to help you build innovative applications with AWS.

In addition, Amazon Web Services provides software development kits for accessing CloudFront
programmatically. The SDK libraries automate a number of common tasks, including
cryptographically signing your service requests, retrying requests, and handling error responses.

Tips from the Amazon Web Services blog

The AWS Blog has a number of posts to help you use CloudFront, in the Networking & Content
Delivery category.

CloudFront developer tools and SDKs 1020

https://aws.amazon.com/contact-us/
https://aws.amazon.com/developertools/
https://aws.amazon.com/blogs/networking-and-content-delivery/
https://aws.amazon.com/blogs/networking-and-content-delivery/

Amazon CloudFront Developer Guide

Document history

The following table describes the important changes made to CloudFront documentation. For
notification of updates, you can subscribe to the RSS feed.

Change Description Date

Added origin access control
support

You can now create an origin
access control (OAC) for AWS
Elemental MediaPackage V2
and AWS Lambda function
URL.

April 11, 2024

Real-time log fields for CMCD Added 18 common media
client data (CMCD) fields for
real-time logging.

April 9, 2024

Getting started with a basic
CloudFront distribution

Updated tutorial for a basic
distribution that uses an
Amazon S3 origin with origin
access control (OAC).

March 18, 2024

Code examples for CloudFron
t using AWS SDKs

Added code examples that
show how to use CloudFron
t with an AWS software
development kit (SDK). The
examples are divided into
code excerpts that show you
how to call individual service
functions and examples that
show you how to accomplis
h a specific task by calling
multiple functions within the
same service.

February 16, 2024

AWS managed policy update The CloudFrontReadOnly
Access and CloudFron

December 19, 2023

1021

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/amazon-cf-doc-releases.rss
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-origin.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-origin.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/real-time-logs.html#understand-real-time-log-config
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/service_code_examples.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/service_code_examples.html

Amazon CloudFront Developer Guide

tFullAccess IAM policies
now support KeyValueS
tore operations.

JavaScript runtime 2.0 Added JavaScript runtime
2.0 features for CloudFront
Functions.

November 21, 2023

CloudFront KeyValueStore Amazon CloudFront now
supports CloudFront
KeyValueStore. This feature
is a secure, global, low-laten
cy key value datastore that
allows read access from
within CloudFront Functions,
enabling advanced customiza
ble logic at the CloudFront
edge locations.

November 21, 2023

Lambda@Edge supports
newer runtime version

Lambda@Edge now supports
Lambda functions with the
Node.js 20 runtime.

November 15, 2023

Security dashboard CloudFront creates a security
dashboard when you create
a distribution. Enable AWS
WAF, manage geo restrictions,
and view high-level data for
requests, bots, and logs.

November 8, 2023

Sorting query strings in
functions

CloudFront now supports
query string sorting using
CloudFront Functions

October 3, 2023

AWS WAF security
recommendations

Amazon CloudFront now
displays AWS WAF security
recommendations on the
CloudFront console.

September 26, 2023

1022

Amazon CloudFront Developer Guide

Support for serving stale
(expired) cache content

CloudFront supports the
Stale-While-Revali
date and Stale-If-
Error cache control
directives.

May 15, 2023

Enable AWS WAF protections
with one click

A streamlined method for
adding AWS WAF security
protections to CloudFront
distributions.

May 10, 2023

Enable ACLs for new S3
buckets used for standard
logs

Added note and links to
address the default ACL
setting for new S3 buckets.

April 11, 2023

Create an origin using
Amazon S3 Object Lambda

You can use an Amazon S3
Object Lambda Access Point
alias as an origin for your
distribution.

March 31, 2023

Customize HTTP status
and body using CloudFront
Functions

You can use CloudFront
Functions to update the
viewer response status code
and replace or remove the
response body.

March 29, 2023

Added CORS headers wildcard
options for ports

You can now include wildcard
configurations for ports in
CORS access-control headers.

March 20, 2023

Added new link for the AWS
Security Hub User Guide

Updated language and
added link to the reorganized
Amazon CloudFront controls
in the AWS Security Hub User
 Guide.

March 9, 2023

1023

Amazon CloudFront Developer Guide

CloudFront now supports
block lists ("all except") in
origin request policies

Use block lists in origin
request policies to include all
query strings, HTTP headers,
or cookies, except for the
ones specified, in requests
that CloudFront sends to the
origin.

February 22, 2023

CloudFront adds a new
managed origin request
policy to forward all viewer
headers except the Host
header

Use CloudFront's new
managed origin request policy
to include all headers from
the viewer request, except for
the Host header, in requests
that CloudFront sends to the
origin.

February 22, 2023

Updated restrictions on
Lambda@Edge

Lambda@Edge supports
Lambda runtime managemen
t configurations set to Auto.

February 16, 2023

Updated the IAM guidance for
CloudFront

Updated guide to align
with the IAM best practices
. For more information, see
Security best practices in IAM.

February 15, 2023

Enhanced security with origin
access control

You can now secure
MediaStore origins by
permitting access to only
the designated CloudFront
distributions.

February 9, 2023

New headers for determining
viewer's header structure

You can now add header
order and header count to
help identify the viewer based
on the headers that it sends.

January 13, 2023

1024

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon CloudFront Developer Guide

Lambda@Edge supports
newer runtime version

Lambda@Edge now supports
Lambda functions with the
Node.js 18 runtime.

January 12, 2023

Remove response headers
using a response headers
policy

You can now use a CloudFron
t response headers policy
to remove headers that
CloudFront received in the
response from the origin.
The specified headers are not
included in the response that
CloudFront sends to viewers.

January 3, 2023

New managed origin request
policy

Added the AllViewer
AndCloudFrontHeade
rs-2022-06 origin access
policy.

December 2, 2022

Continuous deployment for
safely testing configuration
changes

You can now deploy changes
to your CDN configuration
by testing with a subset of
production traffic.

November 18, 2022

Release of CloudFron
t-Viewer-JA3-Finge
rprint header

You can now use the JA3
fingerprint to help determine
whether the request comes
from a known client.

November 16, 2022

Added CORS headers wildcard
options

You can now use various
wildcard configurations in
some CORS access-control
headers.

November 11, 2022

Additional metrics for
CloudFront distributions

Support for Monitorin
gSubscription in the
CloudFront API and AWS
CloudFormation.

October 3, 2022

1025

Amazon CloudFront Developer Guide

Enhanced security with origin
access control

You can now secure Amazon
S3 origins by permitting
access to only the designated
CloudFront distributions.

August 24, 2022

HTTP/3 support for
CloudFront distributions

You can now choose HTTP/3
for your CloudFront distribut
ion.

August 15, 2022

Add handshake details to
CloudFront-Viewer-TLS
header

You can new view information
about the SSL/TLS handshake
used.

June 27, 2022

New metric in Server-Timing
header

Added the new cdn-downs
tream-fbl metric to
Server-Timing headers.

June 13, 2022

New header to get informati
on about TLS version and
cipher

You can now use the
CloudFront-Viewer-
TLS header to get informati
on about the version of TLS
(or SSL) and the cipher that
was used for the connectio
n between the viewer and
CloudFront.

May 23, 2022

New FunctionThrottles metric
for CloudFront Functions

With Amazon CloudWatc
h, you can now monitor
the number of times that
a CloudFront Function was
throttled in a given time
period.

May 4, 2022

CloudFront supports Lambda
function URLs

If you build a serverless web
application using Lambda
functions with function URLs,
you can now add CloudFront
for an array of benefits.

April 6, 2022

1026

Amazon CloudFront Developer Guide

Server-Timing header in HTTP
responses

You can now enable the
Server-Timing header
in HTTP responses sent
from CloudFront to view
metrics that can help you
gain insights about the
behavior and performance of
CloudFront.

March 30, 2022

Use AWS-managed prefix list
to limit inbound traffic

You can now limit the
inbound HTTP and HTTPS
traffic to your origins from
only the IP addresses that
belong to CloudFront’s origin-
facing servers.

February 7, 2022

For earlier entries, see Updates before 2022.

Updates before 2022

The following table describes the important changes made to CloudFront documentation before
2022.

Change Description Date

New feature CloudFront adds support for response headers policies, which
allow you to specify the HTTP headers that CloudFront adds
to HTTP responses that it sends to viewers (web browsers or
other clients). You can specify the desired headers (and their
values) without making any changes to the origin or writing
any code. For more information, see the section called “Adding
or removing response headers”.

November 2,
2021

New
CloudFron
t-Viewer-

CloudFront adds support for a new header, CloudFront-
Viewer-Address , that contains the IP address of the viewer

October 25,
2021

Updates before 2022 1027

Amazon CloudFront Developer Guide

Change Description Date

Address
request
header

that sent the HTTP request to CloudFront. For more informati
on, see the section called “Adding CloudFront request headers”.

Lambda@Ed
ge supports
new runtime
version

Lambda@Edge now supports Lambda functions with the
Python 3.9 runtime. For more information, see the section
called “Supported runtimes”.

September
22, 2021

AWS
managed
policy update

CloudFront updated the CloudFrontReadOnlyAccess policy.
For more information, see the section called “Policy updates”.

September 8,
2021

New feature CloudFront now supports ECDSA certificates for viewer-facing
HTTPS connections. For more information, see the section
called “Supported protocols and ciphers between viewers and
CloudFront” and the section called “Requirements for using
SSL/TLS certificates with CloudFront”.

July 14, 2021

New feature CloudFront now supports more ways to move an alternate
domain name from one distribution to another, without
contacting AWS Support. For more information, see the section
called “Moving an alternate domain name to a different
distribution”.

July 7, 2021

New security
policy

CloudFront now supports a new security policy, TLSv1.2_2021,
with a smaller set of supported ciphers. For more informati
on, see Supported protocols and ciphers between viewers and
CloudFront.

June 23,
2021

New feature Amazon CloudFront now supports CloudFront Functions
, a native feature of CloudFront that enables you to write
lightweight functions in JavaScript for high-scale, latency-
sensitive CDN customizations. For more information, see
Customizing at the edge with CloudFront Functions.

May 3, 2021

Updates before 2022 1028

Amazon CloudFront Developer Guide

Change Description Date

Lambda@Ed
ge supports
newer
runtime
versions

Lambda@Edge now supports Lambda functions with the
Node.js 14 runtime. For more information, see Supported
runtimes.

April 29,
2021

Remove
documenta
tion for
RTMP
distributions

Amazon CloudFront deprecated real-time messaging protocol
(RTMP) distributions on December 31, 2020. Documentation
for RTMP distributions is now removed from the Amazon
CloudFront Developer Guide.

February 10,
2021

New pricing
option

Amazon CloudFront introduces the CloudFront security savings
bundle, a simple way to save up to 30% on the CloudFron
t charges on your AWS bill. For more information, see the
Savings Bundle FAQs.

February 5,
2021

New tutorial The Amazon CloudFront Developer Guide now includes a
tutorial for using Amazon CloudFront to restrict access to
an Application Load Balancer in Elastic Load Balancing. For
more information, see Restricting access to Application Load
Balancers.

December
18, 2020

New option
for public key
management

CloudFront now supports public key management for signed
URLs and signed cookies through the CloudFront console and
API, without requiring access to the AWS account root user. For
more information, see Specifying the signers that can create
signed URLs and signed cookies.

October 22,
2020

New feature
– Origin
Shield

CloudFront now supports CloudFront Origin Shield, an
additional layer in the CloudFront caching infrastructure that
helps to minimize your origin’s load, improve its availability,
and reduce its operating costs. For more information, see Using
Amazon CloudFront Origin Shield.

October 20,
2020

Updates before 2022 1029

https://forums.aws.amazon.com/ann.jspa?annID=7356
https://forums.aws.amazon.com/ann.jspa?annID=7356
https://aws.amazon.com/cloudfront/faqs/

Amazon CloudFront Developer Guide

Change Description Date

New
compression
format

CloudFront now supports the Brotli compression formation
when you configure CloudFront to compress objects at
CloudFront edge locations. You can also configure CloudFron
t to cache Brotli objects using a normalized Accept-En
coding header. For more information, see Serving compresse
d files and Compression support.

September
14, 2020

New TLS
protocol

CloudFront now supports the TLS 1.3 protocol for HTTPS
connections between viewers and CloudFront distributions.
TLS 1.3 is enabled by default in all CloudFront security policies.
For more information, see Supported protocols and ciphers
between viewers and CloudFront.

September 3,
2020

New real-
time logs

CloudFront now supports configurable real-time logs. With
real-time logs, you can get information about requests made
to a distribution in real time. You can use real-time logs to
monitor, analyze, and take action based on content delivery
performance. For more information, see Real-time logs.

August 31,
2020

API support
for additiona
l metrics

CloudFront now supports enabling eight additional real-time
metrics with the CloudFront API. For more information, see
Turning on additional metrics.

August 28,
2020

New
CloudFron
t HTTP
headers

CloudFront added additional HTTP headers for determining
information about the viewer such as device type, geographi
c location, and more. For more information, see the section
called “Adding CloudFront request headers”.

July 23, 2020

New feature CloudFront now supports cache policies and origin request
polices, which give you more granular control over the cache
key and origin requests for your CloudFront distributions. For
more information, see Working with policies.

July 22, 2020

Updates before 2022 1030

Amazon CloudFront Developer Guide

Change Description Date

New security
policy

CloudFront now supports a new security policy, TLSv1.2_2019,
with a smaller set of supported ciphers. For more informati
on, see Supported protocols and ciphers between viewers and
CloudFront.

July 8, 2020

New settings
to control
origin
timeouts and
attempts

CloudFront added new settings that control origin timeouts
and attempts. For more information, see Controlling origin
timeouts and attempts.

June 5, 2020

New
documenta
tion for
getting
started with
CloudFront
by creating a
secure static
website

Get started with CloudFront by creating a secure static website
using Amazon S3, CloudFront, Lambda@Edge, and more, all
deployed with AWS CloudFormation. For more information, see
Getting started with a secure static website.

June 2, 2020

Lambda@Ed
ge supports
newer
runtime
versions

Lambda@Edge now supports Lambda functions with the
Node.js 12 and Python 3.8 runtimes. For more information, see
Supported runtimes.

February 27,
2020

New real-
time metrics
in CloudWatc
h

Amazon CloudFront now offers eight additional real-time
metrics in Amazon CloudWatch. For more information, see
Turning on additional CloudFront distribution metrics.

December
19, 2019

New fields in
access logs

CloudFront adds seven new fields to access logs. For more
information, see Standard log file fields.

December
12, 2019

Updates before 2022 1031

Amazon CloudFront Developer Guide

Change Description Date

AWS
WordPress
plugin

You can use the AWS WordPress plugin to provide visitors to
your WordPress website an accelerated viewing experience
using CloudFront. (Update: as of September 30, 2022, the AWS
for WordPress plugin is deprecated.)

October 30,
2019

Tag-based
and resource-
level IAM
permissions
policies

CloudFront now supports two additional ways of specifying
IAM permission policies: tag-based and resource-level policy
permissions. For more information, see Managing Access to
Resources.

August 8,
2019

Support
for Python
programmi
ng language

You can now use the Python programming language to
develop functions in Lambda@Edge, in addition to Node.js.
For example functions that cover a variety of scenarios, see
Lambda@Edge Example Functions.

August 1,
2019

Updated
monitoring
graphs

Content updates to describe new ways for you to monitor
Lambda functions associated with your CloudFront distribut
ions directly from the CloudFront console to more easily
track and debug errors. For more information, see Monitoring
CloudFront.

June 20,
2019

Consolida
ted security
content

A new Security chapter consolidates information about
CloudFront's features around and implementation of data
protection, IAM, logging, compliance, and more. For more
information, see Security.

May 24, 2019

Domain
validation is
now required

CloudFront now requires that you use an SSL certificate to
verify that you have permission to use an alternate domain
name with a distribution. For more information, see Using
Alternate Domain Names and HTTPS.

April 9, 2019

Updated PDF
filename

The new filename for the Amazon CloudFront Developer Guide
is: AmazonCloudFront_DevGuide. The previous name was: cf-
dg.

January 7,
2019

Updates before 2022 1032

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/access-control-manage-access-intro.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/access-control-manage-access-intro.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-examples.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/monitoring-using-cloudwatch.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/monitoring-using-cloudwatch.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/security.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/CNAMEs.html#alternate-domain-names-requirements
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/CNAMEs.html#alternate-domain-names-requirements

Amazon CloudFront Developer Guide

Change Description Date

New features CloudFront now supports WebSocket, a TCP-based protocol
that is useful when you need long-lived connections between
clients and servers. You can also now set up CloudFront with
origin failover for scenarios that require high availability. For
more information, see Using WebSocket with CloudFront
Distributions and Optimizing High Availability with CloudFront
Origin Failover.

November
20, 2018

New feature CloudFront now supports detailed error logging for HTTP
requests that run Lambda functions. You can store the logs
in CloudWatch and use them to help troubleshoot HTTP 5xx
errors when your function returns an invalid response. For
more information, see CloudWatch Metrics and CloudWatch
Logs for Lambda Functions.

October 8,
2018

New feature You can now opt to have Lambda@Edge expose the body in
a request for writable HTTP methods (POST, PUT, DELETE,
and so on), so that you can access it in your Lambda function.
You can choose read-only access, or you can specify that you’ll
replace the body. For more information, see Accessing the
Request Body by Choosing the Include Body Option.

August 14,
2018

New feature CloudFront now supports serving content compressed by
using brotli or other compression algorithms, in addition to or
instead of gzip. For more information, see Serving Compressed
Files.

July 25, 2018

Reorganiz
ation

The Amazon CloudFront Developer Guide has been reorganized
to simplify finding related content, and to improve scanability
and navigation.

June 28,
2018

Updates before 2022 1033

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-working-with.websockets.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-working-with.websockets.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/high_availability_origin_failover.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/high_availability_origin_failover.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-cloudwatch-metrics-logging.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-cloudwatch-metrics-logging.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-include-body-access.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-include-body-access.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/ServingCompressedFiles.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/ServingCompressedFiles.html

Amazon CloudFront Developer Guide

Change Description Date

New Feature Lambda@Edge now enables you to further customize the
delivery of content stored in an Amazon S3 bucket, by allowing
you to access additional headers, including custom headers,
within origin-facing events. For more information, see these
examples showing personalization of content based on viewer
location and viewer device type.

March 20,
2018

New Feature You can now use Amazon CloudFront to negotiate HTTPS
connections to origins using Elliptic Curve Digital Signature
Algorithm (ECDSA). ECDSA uses smaller keys that are faster,
yet, just as secure, as the older RSA algorithm. For more
information, see Supported SSL/TLS Protocols and Ciphers
for Communication Between CloudFront and Your Origin and
About RSA and ECDSA Ciphers.

March 15,
2018

New Feature Lambda@Edge enables you to customize error responses from
your origin, by allowing you to execute Lambda functions in
response to HTTP errors that Amazon CloudFront receives from
your origin. For more information, see these examples showing
redirects to another location and response generation with 200
status code (OK).

December
21, 2017

New Feature A new CloudFront capability, field-level encryption, helps you
to further enhance the security of sensitive data, like credit
card numbers or personally identifiable information (PII) like
social security numbers. For more information, see Using field-
level encryption to help protect sensitive data.

December
14, 2017

Doc history
archived

Older doc history was archived. December,
2017

Updates before 2022 1034

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-examples.html#lambda-examples-redirect-based-on-country
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-examples.html#lambda-examples-redirect-based-on-country
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-examples.html#lambda-examples-vary-on-device-type
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/secure-connections-supported-viewer-protocols-ciphers.html#secure-connections-supported-ciphers-cloudfront-to-origin
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/secure-connections-supported-viewer-protocols-ciphers.html#secure-connections-supported-ciphers-cloudfront-to-origin
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https-cloudfront-to-custom-origin.html#using-https-cloudfront-to-origin-about-ciphers
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https-cloudfront-to-custom-origin.html#using-https-cloudfront-to-origin-about-ciphers
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-examples.html#lambda-examples-custom-error-new-site
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-examples.html#lambda-examples-custom-error-static-body
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-examples.html#lambda-examples-custom-error-static-body

Amazon CloudFront Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

1035

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon CloudFront
	Table of Contents
	What is Amazon CloudFront?
	How you set up CloudFront to deliver content
	Pricing
	CloudFront use cases
	Accelerate static website content delivery
	Serve video on demand or live streaming video
	Encrypt specific fields throughout system processing
	Customize at the edge
	Serve private content by using Lambda@Edge customizations

	How CloudFront delivers content
	How CloudFront delivers content to your users
	How CloudFront works with regional edge caches

	Locations and IP address ranges of CloudFront edge servers
	Use the CloudFront managed prefix list

	Accessing CloudFront
	Using CloudFront with an AWS SDK

	Getting started with Amazon CloudFront
	Setting up
	Sign up for an AWS account
	Create an administrative user
	Set up the AWS Command Line Interface or AWS Tools for Windows PowerShell
	Download an AWS SDK

	Getting started with a basic CloudFront distribution
	Prerequisites
	Step 1: Create an Amazon S3 bucket
	Step 2: Upload the content to the bucket
	Step 3: Create a CloudFront distribution that uses an Amazon S3 origin with OAC
	Step 4: Access your content through CloudFront
	Step 5: Clean up
	Tips

	Getting started with a secure static website
	Solution overview
	Deploying the solution
	Prerequisites
	Using the AWS CloudFormation console
	Cloning the solution locally
	Finding access logs

	Working with distributions
	Overview of distributions
	Actions you can use with distributions
	Required API fields for creating and updating distributions

	Creating, updating, and deleting distributions
	Steps for creating a distribution (overview)
	Creating a distribution
	Values that you specify when you create or update a distribution
	Origin settings
	Origin domain
	Origin path
	Name
	Add custom header
	Enable Origin Shield
	Connection attempts
	Connection timeout
	Response timeout (custom origins only)
	Keep-alive timeout (custom origins only)
	Origin access (Amazon S3 origins only)
	Protocol (custom origins only)
	HTTP port
	HTTPS port
	Minimum origin SSL protocol

	Cache behavior settings
	Path pattern
	Path normalization

	Origin or origin group
	Viewer protocol policy
	Allowed HTTP methods
	Field-level encryption config
	Cached HTTP methods
	Cache based on selected request headers
	Allowlist headers
	Object caching
	Minimum TTL
	Maximum TTL
	Default TTL
	Forward cookies
	Allowlist cookies
	Query string forwarding and caching
	Query string allowlist
	Smooth Streaming
	Restrict viewer access (use signed URLs or signed cookies)
	Trusted signers
	AWS account numbers
	Compress objects automatically
	CloudFront event
	Lambda function ARN

	Distribution settings
	Price class
	AWS WAF web ACL
	Alternate domain names (CNAMEs)
	SSL certificate
	Custom SSL client support
	Security policy
	Supported HTTP versions
	Default root object
	Logging
	Bucket for logs
	Log prefix
	Cookie logging
	Enable IPv6
	Comment
	Distribution state

	Custom error pages and error caching
	HTTP error code
	Error caching minimum TTL (seconds)
	Response page path
	HTTP response code

	Geographic restrictions

	Values that CloudFront displays in the console
	Distribution ID
	Deploying and status
	Last modified
	Domain name

	Testing a distribution
	Updating a distribution
	Tagging Amazon CloudFront distributions
	Tag restrictions
	Adding, editing, and deleting tags for distributions

	Deleting a distribution

	Using CloudFront continuous deployment to safely test CDN configuration changes
	Workflow for using CloudFront continuous deployment
	Working with a staging distribution and continuous deployment policy
	Monitoring a staging distribution
	Understanding how continuous deployment works
	Routing requests to the staging distribution
	Session stickiness for weight-based configurations
	Updating primary and staging distributions
	Primary and staging distributions don't share a cache

	Quotas and other considerations for continuous deployment
	Quotas
	HTTP/3
	Cases when CloudFront sends all requests to the primary distribution

	Using various origins with CloudFront distributions
	Using an Amazon S3 bucket
	Using a standard Amazon S3 bucket
	Using Amazon S3 Object Lambda
	Using Amazon S3 Access Point
	Using an Amazon S3 bucket that's configured as a website endpoint
	Adding CloudFront to an existing Amazon S3 bucket
	Moving an Amazon S3 bucket to a different AWS Region

	Using a MediaStore container or a MediaPackage channel
	Using an Application Load Balancer
	Using a Lambda function URL
	Using Amazon EC2 (or another custom origin)
	Using CloudFront origin groups

	Using custom URLs by adding alternate domain names (CNAMEs)
	Adding an alternate domain name
	Moving an alternate domain name to a different distribution
	Set up the target distribution
	Find the source distribution
	Move the alternate domain name
	Use associate-alias to move an alternate domain name
	Use a wildcard to move an alternate domain name
	Contact AWS Support to move an alternate domain name

	Removing an alternate domain name
	Using wildcards in alternate domain names
	Requirements for using alternate domain names
	Restrictions on using alternate domain names

	Using WebSockets with CloudFront distributions
	How the WebSocket protocol works
	WebSocket requirements
	Recommended settings

	Working with policies
	Controlling the cache key
	Creating cache policies
	Understanding cache policies
	Policy information
	Time to live (TTL) settings
	Cache key settings

	Using the managed cache policies
	Attaching a managed cache policy
	Available managed cache policies
	Amplify
	CachingDisabled
	CachingOptimized
	CachingOptimizedForUncompressedObjects
	Elemental-MediaPackage

	Understanding the cache key
	The default cache key
	Customizing the cache key

	Controlling origin requests
	Creating origin request policies
	Understanding origin request policies
	Policy information
	Origin request settings

	Using the managed origin request policies
	Attaching a managed origin request policy
	Available managed origin request policies
	AllViewer
	AllViewerAndCloudFrontHeaders-2022-06
	AllViewerExceptHostHeader
	CORS-CustomOrigin
	CORS-S3Origin
	Elemental-MediaTailor-PersonalizedManifests
	UserAgentRefererHeaders

	Adding CloudFront request headers
	Headers for determining the viewer's device type
	Headers for determining the viewer's location
	Headers for determining the viewer's header structure
	Other CloudFront headers

	Understanding how origin request policies and cache policies work together

	Adding or removing HTTP headers in CloudFront responses
	Creating response headers policies
	Using the managed response headers policies
	Attaching a managed response headers policy
	Available managed response headers policies
	CORS-and-SecurityHeadersPolicy
	CORS-With-Preflight
	CORS-with-preflight-and-SecurityHeadersPolicy
	SecurityHeadersPolicy
	SimpleCORS

	Understanding response headers policies
	Policy details (metadata)
	CORS headers
	Security headers
	Custom headers
	Remove headers
	Headers that you can't remove

	Server-Timing header
	Sampling rate and Pragma request header
	Server-Timing header from the origin
	Server-Timing header metrics
	Server-Timing header examples

	Adding, removing, or replacing content that CloudFront distributes
	Adding and accessing content that CloudFront distributes
	Updating existing content with a CloudFront distribution
	Updating existing files using versioned file names
	Updating existing content using the same file names

	Removing content so CloudFront won’t distribute it
	Customizing the URL format for files in CloudFront
	Using your own domain name (example.com)
	Using a trailing slash (/) in URLs
	Creating signed URLs for restricted content

	Specifying a default root object
	How to specify a default root object
	How default root object works
	How CloudFront works if you don’t define a root object

	Invalidating files
	Choosing between invalidating files and using versioned file names
	Determining which files to invalidate
	Specifying the files to invalidate
	Invalidating files using the console
	Invalidating files
	Copying, editing, and rerunning an existing invalidation
	Canceling invalidations
	Listing invalidations
	Displaying information about an invalidation

	Invalidating files using the CloudFront API
	Concurrent invalidation request maximum
	Paying for file invalidation

	Serving compressed files
	Configuring CloudFront to compress objects
	How CloudFront compression works
	Notes about CloudFront compression
	File types that CloudFront compresses
	ETag header conversion

	Generating custom error responses
	Configuring error response behavior
	Configure custom error responses (CloudFront console)
	Configure custom error responses (CloudFront API or AWS CloudFormation)

	Creating a custom error page for specific HTTP status codes
	Storing objects and custom error pages in different locations
	Changing response codes returned by CloudFront
	Controlling how long CloudFront caches errors

	Using AWS WAF protections
	Enabling AWS WAF for new distributions
	Using an existing web ACL

	Enabling AWS WAF for existing distributions
	Using an existing web ACL

	Disabling AWS WAF security protections
	Setting up rate limiting
	Using CloudFront security dashboards
	Enabling AWS WAF
	Understanding trend data
	Enabling bot control
	Understanding logs
	Managing CloudFront geographic restrictions
	Security dashboard pricing

	Configuring secure access and restricting access to content
	Using HTTPS with CloudFront
	Requiring HTTPS for communication between viewers and CloudFront
	Requiring HTTPS for communication between CloudFront and your custom origin
	Changing CloudFront settings
	Installing an SSL/TLS certificate on your custom origin

	Requiring HTTPS for communication between CloudFront and your Amazon S3 origin
	Supported protocols and ciphers between viewers and CloudFront
	OpenSSL, s2n, and RFC cipher names
	Supported signature schemes between viewers and CloudFront

	Supported protocols and ciphers between CloudFront and the origin
	Charges for HTTPS connections

	Using alternate domain names and HTTPS
	Choosing how CloudFront serves HTTPS requests
	Using SNI to serve HTTPS requests (works for most clients)
	Using a dedicated IP address to serve HTTPS requests (works for all clients)
	Requesting permission to use three or more dedicated IP SSL/TLS certificates

	Requirements for using SSL/TLS certificates with CloudFront
	Certificate issuer
	AWS Region for AWS Certificate Manager
	Certificate format
	Intermediate certificates
	Key type
	Private key
	Permissions
	Size of the certificate key
	Supported types of certificates
	Certificate expiration date and renewal
	Domain names in the CloudFront distribution and in the certificate
	Minimum SSL/TLS protocol version
	Supported HTTP versions

	Quotas on using SSL/TLS certificates with CloudFront (HTTPS between viewers and CloudFront only)
	Configuring alternate domain names and HTTPS
	Getting an SSL/TLS certificate
	Importing an SSL/TLS certificate
	Updating your CloudFront distribution

	Determining the size of the public key in an SSL/TLS RSA certificate
	Increasing the quotas for SSL/TLS certificates
	Certificates that you can import into ACM
	Certificates that you can upload to IAM
	Certificates that you can use with dedicated IP addresses

	Rotating SSL/TLS certificates
	Reverting from a custom SSL/TLS certificate to the default CloudFront certificate
	Switching from a custom SSL/TLS certificate with dedicated IP addresses to SNI

	Serving private content with signed URLs and signed cookies
	Overview of serving private content
	Restricting access to files in CloudFront caches
	Restricting access to files in Amazon S3 buckets
	Restricting access to files on custom origins

	Task list for serving private content
	Specifying the signers that can create signed URLs and signed cookies
	Choosing between trusted key groups (recommended) and AWS accounts
	Creating key pairs for your signers
	Create a key pair for a trusted key group (recommended)
	Create a CloudFront key pair (not recommended, requires the AWS account root user)

	Reformatting the private key (.NET and Java only)
	Adding a signer to a distribution
	Adding a signer to a distribution using the CloudFront console
	Adding a signer to a distribution using the CloudFront API

	Rotating key pairs

	Choosing between signed URLs and signed cookies
	Using both signed URLs and signed cookies

	Using signed URLs
	Choosing between canned and custom policies for signed URLs
	How signed URLs work
	Choosing how long signed URLs are valid
	When does CloudFront check the expiration date and time in a signed URL?
	Example code and third-party tools
	Creating a signed URL using a canned policy
	Creating a signature for a signed URL that uses a canned policy
	Creating a policy statement for a signed URL that uses a canned policy
	Values that you specify in the policy statement for a signed URL that uses a canned policy
	Example policy statement for a signed URL that uses a canned policy

	Creating a signature for a signed URL that uses a canned policy

	Creating a signed URL using a custom policy
	Creating a policy statement for a signed URL that uses a custom policy
	Values that you specify in the policy statement for a signed URL that uses a custom policy

	Example policy statements for a signed URL that uses a custom policy
	Example policy statement: accessing one file from a range of IP addresses
	Example policy statement: accessing all files in a directory from a range of IP addresses
	Example policy statement: accessing all files associated with a key pair ID from one IP address

	Creating a signature for a signed URL that uses a custom policy

	Using signed cookies
	Choosing between canned and custom policies for signed cookies
	How signed cookies work
	Preventing misuse of signed cookies
	When does CloudFront check the expiration date and time in a signed cookie?
	Sample code and third-party tools
	Setting signed cookies using a canned policy
	Creating a signature for a signed cookie that uses a canned policy
	Creating a policy statement for a signed cookie that uses a canned policy
	Values that you specify in the policy statement for a canned policy for signed cookies
	Example policy statement for a canned policy

	Signing the policy statement to create a signature for a signed cookie that uses a canned policy

	Setting signed cookies using a custom policy
	Example Set-Cookie headers for custom policies
	Creating a policy statement for a signed cookie that uses a custom policy
	Values that you specify in the policy statement for a custom policy for signed cookies

	Example policy statements for a signed cookie that uses a custom policy
	Example policy statement: accessing one file from a range of IP addresses
	Example policy statement: accessing all files in a directory from a range of IP addresses
	Example policy statement: accessing all files associated with a key pair ID from one IP address

	Creating a signature for a signed cookie that uses a custom policy

	Using Linux commands and OpenSSL for base64 encoding and encryption
	Code examples for creating a signature for a signed URL
	Create a URL signature using Perl
	Source for the Perl script to create a signed URL

	Create a URL signature using PHP
	Sample: RSA SHA-1 signature
	Example: create a canned policy
	Example: create a custom policy
	Full code example

	Create a URL signature using C# and the .NET Framework
	Create a URL signature using Java

	Restricting access to an AWS origin
	Restricting access to an AWS Elemental MediaPackage v2 origin
	Creating a new OAC
	Prerequisites
	Giving the OAC permission to access the MediaPackage v2 origin
	Creating the OAC

	Advanced settings for origin access control

	Restricting access to an AWS Elemental MediaStore origin
	Creating a new origin access control
	Prerequisites
	Giving the origin access control permission to access the MediaStore origin
	Creating the origin access control

	Advanced settings for origin access control

	Restricting access to an AWS Lambda function URL origin
	Creating a new OAC
	Prerequisites
	Giving the OAC permission to access the Lambda function URL
	Creating the OAC

	Advanced settings for origin access control

	Restricting access to an Amazon Simple Storage Service origin
	Creating a new origin access control
	Prerequisites
	Giving the origin access control permission to access the S3 bucket
	SSE-KMS

	Creating the origin access control

	Deleting a distribution with an OAC attached to an S3 bucket
	Migrating from origin access identity (OAI) to origin access control (OAC)
	Advanced settings for origin access control
	Using an origin access identity (legacy, not recommended)
	Overview of origin access identity
	Giving an origin access identity permission to read files in the Amazon S3 bucket
	Using Amazon S3 bucket policies
	Specify an OAI as the Principal in a bucket policy
	Give permissions to an OAI
	Amazon S3 bucket policy examples

	Using Amazon S3 object ACLs (not recommended)

	Using an origin access identity in Amazon S3 regions that support only signature version 4 authentication

	Restricting access to Application Load Balancers
	Configuring CloudFront to add a custom HTTP header to requests
	Configuring an Application Load Balancer to only forward requests that contain a specific header
	(Optional) Improve the security of this solution
	(Optional) Limit access to origin by using the AWS-managed prefix list for CloudFront

	Restricting the geographic distribution of your content
	Using CloudFront geographic restrictions
	Using a third-party geolocation service

	Using field-level encryption to help protect sensitive data
	Overview of field-level encryption
	Setting up field-level encryption
	Step 1: Create an RSA key pair
	Step 2: Add your public key to CloudFront
	Step 3: Create a profile for field-level encryption
	Step 4: Create a configuration
	Step 5: Add a configuration to a cache behavior

	Decrypting data fields at your origin
	Sample code

	Optimizing caching and availability
	How caching works with CloudFront edge locations
	Increasing the proportion of requests that are served directly from the CloudFront caches (cache hit ratio)
	Specifying how long CloudFront caches your objects
	Using Origin Shield
	Caching based on query string parameters
	Caching based on cookie values
	Caching based on request headers
	Remove Accept-Encoding header when compression is not needed
	Serving media content by using HTTP

	Using Amazon CloudFront Origin Shield
	Use cases for Origin Shield
	Viewers in different geographical regions
	Multiple CDNs

	Choosing the AWS Region for Origin Shield
	For origins in an AWS Region
	For origins outside of AWS

	Enabling Origin Shield
	Estimating Origin Shield costs
	Origin Shield high availability
	How Origin Shield interacts with other CloudFront features
	Origin Shield and CloudFront logging
	Origin Shield and origin groups
	Origin Shield and Lambda@Edge

	Optimizing high availability with CloudFront origin failover
	Creating an origin group
	Controlling origin timeouts and attempts
	How to change these settings

	Use origin failover with Lambda@Edge functions
	Use custom error pages with origin failover

	Managing how long content stays in the cache (expiration)
	Using headers to control cache duration for individual objects
	Serving stale (expired) content
	Specifying the amount of time that CloudFront caches objects
	Adding headers to your objects using the Amazon S3 console

	Caching content based on query string parameters
	Console and API settings for query string forwarding and caching
	Optimizing caching
	Query string parameters and CloudFront standard logs (access logs)

	Caching content based on cookies
	Caching content based on request headers
	Headers and distributions – overview
	Selecting the headers to base caching on
	Configuring CloudFront to respect CORS settings
	Configuring caching based on the device type
	Configuring caching based on the language of the viewer
	Configuring caching based on the location of the viewer
	Configuring caching based on the protocol of the request
	Configuring caching for compressed files
	How caching based on headers affects performance
	How the case of headers and header values affects caching
	Headers that CloudFront returns to the viewer

	Troubleshooting
	Troubleshooting distribution issues
	CloudFront returns an InvalidViewerCertificate error when I try to add an alternate domain name
	I can't view the files in my distribution
	Did you sign up for both CloudFront and Amazon S3?
	Are your Amazon S3 bucket and object permissions set correctly?
	Is your alternate domain name (CNAME) correctly configured?
	Are you referencing the correct URL for your CloudFront distribution?
	Do you need help troubleshooting a custom origin?

	Error message: Certificate: <certificate-id> is being used by CloudFront

	Troubleshooting error responses from your origin
	HTTP 400 status code (Bad Request)
	HTTP 502 status code (Bad Gateway)
	SSL/TLS negotiation failure between CloudFront and a custom origin server
	Online SSL checker
	OpenSSL

	Origin is not responding with supported ciphers/protocols
	SSL/TLS certificate on the origin is expired, invalid, self-signed, or the certificate chain is in the wrong order
	Origin is not responding on specified ports in origin settings

	HTTP 502 status code (Lambda validation error)
	HTTP 502 status code (DNS error)
	HTTP 503 status code (function execution error)
	HTTP 503 status code (Lambda limit exceeded)
	HTTP 503 status code (Service Unavailable)
	Origin server does not have enough capacity to support the request rate
	CloudFront caused the error due to resource constraints at the edge location

	HTTP 504 status code (Gateway Timeout)
	Configure the firewall on your origin server to allow CloudFront traffic
	Configure the security groups on your origin server to allow CloudFront traffic
	Make your custom origin server accessible on the internet
	Find and fix delayed responses from applications on your origin server
	Measure typical and high-load latency
	Add resources, and tune servers and databases
	If needed, adjust the CloudFront timeout value

	Load testing CloudFront

	Request and response behavior
	Request and response behavior for Amazon S3 origins
	How CloudFront processes HTTP and HTTPS requests
	How CloudFront processes and forwards requests to your Amazon S3 origin
	Caching duration and minimum TTL
	Client IP addresses
	Conditional GETs
	Cookies
	Cross-origin resource sharing (CORS)
	GET requests that include a body
	HTTP methods
	HTTP request headers that CloudFront removes or updates
	Maximum length of a request and maximum length of a URL
	OCSP stapling
	Protocols
	Query strings
	Origin connection timeout and attempts
	Origin response timeout
	Simultaneous requests for the same object (request collapsing)

	How CloudFront processes responses from your Amazon S3 origin
	Canceled requests
	HTTP response headers that CloudFront removes or updates
	Maximum cacheable file size
	Redirects

	Request and response behavior for custom origins
	How CloudFront processes and forwards requests to your custom origin
	Authentication
	Caching duration and minimum TTL
	Client IP addresses
	Client-side SSL authentication
	Compression
	Conditional requests
	Cookies
	Cross-origin resource sharing (CORS)
	Encryption
	GET requests that include a body
	HTTP methods
	HTTP request headers and CloudFront behavior (custom and Amazon S3 origins)
	HTTP version
	Maximum length of a request and maximum length of a URL
	OCSP stapling
	Persistent connections
	Protocols
	Query strings
	Origin connection timeout and attempts
	Origin response timeout
	Simultaneous requests for the same object (request collapsing)
	User-Agent header

	How CloudFront processes responses from your custom origin
	100 Continue responses
	Caching
	Canceled requests
	Content negotiation
	Cookies
	Dropped TCP connections
	HTTP response headers that CloudFront removes or replaces
	Maximum cacheable file size
	Origin unavailable
	Redirects
	Transfer-Encoding header

	Request and response behavior for origin groups
	Adding custom headers to origin requests
	Use cases for origin custom headers
	Configuring CloudFront to add custom headers to origin requests
	Custom headers that CloudFront can’t add to origin requests
	Configuring CloudFront to forward the Authorization header

	How CloudFront processes partial requests for an object (range GETs)
	Use range requests to cache large objects

	How CloudFront processes HTTP 3xx status codes from your origin
	How CloudFront processes and caches HTTP 4xx and 5xx status codes from your origin
	How CloudFront processes errors when you have configured custom error pages
	The requested object is not in the edge cache
	The requested object is in the edge cache

	How CloudFront processes errors when you have not configured custom error pages
	The requested object is not in the edge cache
	The requested object is in the edge cache

	HTTP 4xx and 5xx status codes that CloudFront caches
	HTTP 4xx and 5xx status codes that CloudFront always caches
	HTTP 4xx status codes that CloudFront caches based on Cache-Control headers

	Video on demand and live streaming video with CloudFront
	About streaming video: video on demand and live streaming
	Delivering video on demand (VOD) with CloudFront
	Configuring video on demand for Microsoft Smooth Streaming

	Delivering live streaming video with CloudFront and AWS Media Services
	Serving video using AWS Elemental MediaStore as the origin
	Serving live video formatted with AWS Elemental MediaPackage
	Step 1: Create and configure a CloudFront distribution
	Step 2: Add Origins for the domains of your MediaPackage endpoints
	Step 3: Configure cache behaviors for all endpoints
	Step 4: Enable header-based MediaPackage CDN Authorization
	Step 5: Use CloudFront to serve the live stream channel

	Customizing at the edge with functions
	Choosing between CloudFront Functions and Lambda@Edge
	Customizing at the edge with CloudFront Functions
	Tutorial: Creating a simple function with CloudFront Functions
	Prerequisites
	Creating the function
	Verifying the function

	Tutorial: Creating a function that includes key values
	Prerequisites
	Set up the key value store
	Set up in the function

	Writing function code
	Determine the purpose of your function
	Modify the HTTP request in a viewer request event type
	Generate an HTTP response in a viewer request event type
	Modify the HTTP response in a viewer response event type

	CloudFront Functions event structure
	Version field
	Context object
	Viewer object
	Request object
	Response object
	Status code and body
	Structure for a query string, header, or cookie
	Query strings values or query string objects
	Special considerations for headers
	Duplicate query strings, headers, and cookies (multiValue array)
	Cookie attributes

	Example response object
	Example event object

	JavaScript runtime features for CloudFront Functions
	JavaScript runtime 1.0 features for CloudFront Functions
	Core features
	Primitive objects
	Built-in objects
	Error types
	Globals
	Built-in modules
	Crypto (hash and HMAC)
	Query string

	Restricted features

	JavaScript runtime 2.0 features for CloudFront Functions
	Core features
	Primitive objects
	Built-in objects
	Error types
	Globals
	Built-in modules
	Buffer
	Query string
	Crypto

	Restricted features

	Helper methods for key value stores
	The get() method
	The exists() method
	Error handling

	The meta() method

	Example code for CloudFront Functions
	Add a Cache-Control header to the response
	Add a cross-origin resource sharing (CORS) header to the response
	Add cross-origin resource sharing (CORS) header to the request
	Add security headers to the response
	Add a True-Client-IP header to the request
	Redirect the viewer to a new URL
	Add index.html to request URLs that don’t include a file name
	Validate a simple token in the request
	Using async and await
	Normalize query string parameters
	Use key value pairs in a function

	Managing functions in CloudFront Functions
	Creating functions
	Testing functions
	Set up the event object
	Test the function
	Understanding compute utilization

	Updating functions
	Publishing functions
	Associating functions with distributions

	Amazon CloudFront KeyValueStore
	Working with key value store
	Creating key value stores
	Key value store statuses

	Associating a key value store with a function
	Modifying a key value stores
	Using the CloudFront console
	Modifying a store programmatically

	Deleting a key value store
	Obtaining a reference to a key value store
	Creating a file of key-value pairs

	Working with key value data
	Working with key-value pairs by using the CloudFront console
	Working with key-value pairs programmatically
	Obtaining a reference to a key value store
	Changing key-value pairs in a key value stores
	About CloudFront KeyValueStore
	Example code for CloudFront KeyValueStore

	Customizing at the edge with Lambda@Edge
	Get started creating and using Lambda@Edge functions
	Tutorial: Creating a simple Lambda@Edge function
	Step 1: Sign up for an AWS account
	Step 2: Create a CloudFront distribution
	Step 3: Create your function
	Step 4: Add a CloudFront trigger to run the function
	Step 5: Verify that the function runs
	Step 6: Troubleshoot issues
	Step 7: Clean up your example resources
	Delete the S3 bucket
	Delete the Lambda function
	Delete the CloudFront distribution

	Resources for learning more

	Setting IAM permissions and roles for Lambda@Edge
	IAM permissions required to associate Lambda@Edge functions with CloudFront distributions
	Function execution role for service principals
	Service-linked roles for Lambda@Edge
	Service-linked role permissions for Lambda@Edge
	Service-linked role permissions for Lambda replicator
	Service-linked role permissions for CloudFront logger

	Creating service-linked roles for Lambda@Edge
	Editing Lambda@Edge service-linked roles
	Supported AWS Regions for CloudFront service-linked roles

	Writing and creating a Lambda@Edge function
	Writing content of a Lambda@Edge function
	Creating a Lambda@Edge function in the Lambda console
	Creating Lambda@Edge functions and CloudFront triggers programmatically
	Editing a Lambda@Edge function

	Adding triggers for a Lambda@Edge function
	CloudFront events that can trigger a Lambda@Edge function
	How to decide which CloudFront event to use to trigger a Lambda@Edge function
	Adding triggers by using the Lambda console
	Adding triggers by using the CloudFront console

	Testing and debugging Lambda@Edge functions
	Testing your Lambda@Edge functions
	Identifying Lambda@Edge function errors in CloudFront
	What causes Lambda@Edge function errors in CloudFront
	How to determine the type of failure

	Troubleshooting invalid Lambda@Edge function responses (validation errors)
	Troubleshooting Lambda@Edge function execution errors
	Determining the Lambda@Edge Region
	Determining if your account pushes logs to CloudWatch

	Deleting Lambda@Edge functions and replicas
	Lambda@Edge event structure
	Dynamic origin selection
	Request events
	Example viewer request
	Example origin request
	Request event fields
	Fields in the config object
	Fields in the request object

	Response events
	Example origin response
	Example viewer response
	Response event fields
	Fields in the config object
	Fields in the response object

	Working with requests and responses
	Using Lambda@Edge functions with origin failover
	Generating HTTP responses in request triggers
	Programming model
	Response object
	Errors
	Required fields

	Updating HTTP responses in origin response triggers
	Accessing the request body by choosing the include body option

	Lambda@Edge example functions
	General examples
	Example: A/B testing
	Example: Overriding a response header

	Generating responses - examples
	Example: Serving static content (generated response)
	Example: Generating an HTTP redirect (generated response)

	Working with query strings - examples
	Example: Adding a header based on a query string parameter
	Example: Normalizing query string parameters to improve the cache hit ratio
	Example: Redirecting unauthenticated users to a sign-in page

	Personalize content by country or device type headers - examples
	Example: Redirecting viewer requests to a country-specific URL
	Example: Serving different versions of an object based on the device

	Content-based dynamic origin selection - examples
	Example: Using an origin request trigger to change from a custom origin to an Amazon S3 origin
	Example: Using an origin-request trigger to change the Amazon S3 origin Region
	Example: Using an origin request trigger to change from an Amazon S3 origin to a custom origin
	Example: Using an origin request trigger to gradually transfer traffic from one Amazon S3 bucket to another
	Example: Using an origin request trigger to change the origin domain name based on the country header

	Updating error statuses - examples
	Example: Using an origin response trigger to update the error status code to 200
	Example: Using an origin response trigger to update the error status code to 302

	Accessing the request body - examples
	Example: Using a request trigger to read an HTML form
	Example: Using a request trigger to modify an HTML form

	Restrictions on edge functions
	Restrictions on all edge functions
	AWS account ownership
	Combining CloudFront Functions with Lambda@Edge
	HTTP status codes
	HTTP headers
	Disallowed headers
	Read-only headers
	Read-only headers in viewer request events
	Read-only headers in origin request events (Lambda@Edge only)
	Read-only headers in origin response events (Lambda@Edge only)
	Read-only headers in viewer response events

	Query strings
	URI
	URI and query string encoding
	Microsoft Smooth Streaming
	Tagging

	Restrictions on CloudFront Functions
	Logs
	Request body
	Regional AWS Security Token Service endpoints when using the CloudFront KeyValueStore API
	Runtime
	Compute utilization

	Restrictions on Lambda@Edge
	DNS resolution
	HTTP status codes
	Lambda function version
	Lambda Region
	Lambda role permissions
	Lambda features
	Supported runtimes
	CloudFront headers
	Restrictions on the request body with the include body option

	Reports, metrics, and logs
	AWS billing and usage reports for CloudFront
	AWS billing report for CloudFront
	AWS usage report for CloudFront
	Interpreting your AWS bill and the AWS usage report for CloudFront

	CloudFront reports in the console
	CloudFront cache statistics reports
	Downloading data in CSV format
	Information about the report
	Data in the cache statistics report

	How cache statistics charts are related to data in the CloudFront standard logs (access logs)

	CloudFront popular objects report
	Downloading data in CSV format
	Information about the report
	Data in the popular objects report

	How data in the popular objects report is related to data in the CloudFront standard logs (access logs)

	CloudFront top referrers report
	Downloading data in CSV format
	Information about the report
	Data in the top referrers report

	How data in the top referrers report is related to data in the CloudFront standard logs (access logs)

	CloudFront usage reports
	Downloading data in CSV format
	Information about the report
	Data in the usage report

	How the usage charts are related to data in the CloudFront usage report
	Number of requests
	Data transferred by protocol
	Data transferred by destination

	CloudFront viewers reports
	Displaying viewers charts and reports
	Downloading data in CSV format
	Information about the reports
	Devices report
	Device trends report
	Browsers report
	Browser trends report
	Operating systems report
	Operating system trends report
	Locations report
	Location trends report

	How data in the locations report is related to data in the CloudFront standard logs (access logs)

	Monitoring CloudFront metrics with Amazon CloudWatch
	Viewing CloudFront and edge function metrics
	Viewing the default CloudFront distribution metrics
	Turning on additional CloudFront distribution metrics
	Turning on additional metrics
	Estimating cost for the additional CloudFront metrics

	Viewing the default Lambda@Edge function metrics
	Viewing the default CloudFront Functions metrics

	Creating alarms for metrics
	Downloading metrics data in CSV format
	Information about the report
	Data in the metrics report

	Getting metrics using the CloudWatch API
	Values for all CloudFront metrics
	Values for CloudFront distribution metrics
	Values for CloudFront function metrics

	CloudFront and edge function logging
	Logging requests
	Logging edge functions
	Logging service activity
	Configuring and using standard logs (access logs)
	How standard logging works
	Choosing an Amazon S3 bucket for your standard logs
	Permissions required to configure standard logging and to access your log files
	Required key policy for SSE-KMS buckets
	File name format
	Timing of standard log file delivery
	How requests are logged when the request URL or headers exceed the maximum size
	Analyzing standard logs
	Editing your standard logging settings
	Deleting standard log files from an Amazon S3 bucket
	Standard log file format
	Standard log file fields

	Charges for standard logs

	Real-time logs
	Understanding real-time log configurations
	Creating and using real-time log configurations
	Create a real-time log configuration (console)
	Create a real-time log configuration (AWS CLI)
	Create a real-time log configuration (API)

	Creating a Kinesis Data Streams consumer
	Troubleshooting real-time logs

	Edge function logs
	Lambda@Edge logs
	CloudFront Functions logs

	Logging Amazon CloudFront API calls using AWS CloudTrail
	CloudFront data events in CloudTrail
	CloudFront management events in CloudTrail
	CloudFront event examples
	Example: UpdateDistribution
	Example: UpdateKeys

	Tracking configuration changes with AWS Config
	Set up AWS Config with CloudFront
	View CloudFront configuration history

	Security in Amazon CloudFront
	Data protection in Amazon CloudFront
	Encryption in transit
	Encryption at rest
	Restrict access to content

	Identity and Access Management for Amazon CloudFront
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon CloudFront works with IAM
	Identity-based policies for CloudFront
	Identity-based policy examples for CloudFront

	Resource-based policies within CloudFront
	Policy actions for CloudFront
	Policy resources for CloudFront
	Policy condition keys for CloudFront
	ACLs in CloudFront
	ABAC with CloudFront
	Using temporary credentials with CloudFront
	Forward access sessions for CloudFront
	Service roles for CloudFront
	Service-linked roles for CloudFront

	Identity-based policy examples for Amazon CloudFront
	Policy best practices
	Using the CloudFront console
	Allow users to view their own permissions
	Permissions to access CloudFront programmatically
	Permissions required to use the CloudFront console
	AWS managed (predefined) policies for CloudFront
	Customer managed policy examples
	Example 1: Allow read access to all distributions
	Example 2: Allow creating, updating, and deleting distributions
	Example 3: Allow creating and listing invalidations
	Example 4: Allow creating a distribution

	AWS managed policies for Amazon CloudFront
	AWS managed policy: CloudFrontReadOnlyAccess
	AWS managed policy: CloudFrontFullAccess
	AWS managed policy: AWSCloudFrontLogger
	AWS managed policy: AWSLambdaReplicator
	CloudFront updates to AWS managed policies

	Troubleshooting Amazon CloudFront identity and access
	I am not authorized to perform an action in CloudFront
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my CloudFront resources

	Logging and monitoring in Amazon CloudFront
	Compliance validation for Amazon CloudFront
	CloudFront compliance best practices
	Payment Card Industry Data Security Standard (PCI DSS)
	System and Organization Controls (SOC)

	Resilience in Amazon CloudFront
	CloudFront origin failover

	Infrastructure security in Amazon CloudFront

	Quotas
	General quotas
	General quotas on distributions
	General quotas on policies
	Quotas on CloudFront Functions
	Quotas on key value stores
	Quotas on Lambda@Edge
	Quotas on SSL certificates
	Quotas on invalidations
	Quotas on key groups
	Quotas on WebSocket connections
	Quotas on field-level encryption
	Quotas on cookies (legacy cache settings)
	Quotas on query strings (legacy cache settings)
	Quotas on headers

	Code examples for CloudFront using AWS SDKs
	Actions for CloudFront using AWS SDKs
	Use CreateDistribution with an AWS SDK or command line tool
	Use CreateFunction with an AWS SDK or command line tool
	Use CreateInvalidation with an AWS SDK or command line tool
	Use CreateKeyGroup with an AWS SDK or command line tool
	Use CreatePublicKey with an AWS SDK or command line tool
	Use DeleteDistribution with an AWS SDK or command line tool
	Use GetCloudFrontOriginAccessIdentity with an AWS SDK or command line tool
	Use GetCloudFrontOriginAccessIdentityConfig with an AWS SDK or command line tool
	Use GetDistribution with an AWS SDK or command line tool
	Use GetDistributionConfig with an AWS SDK or command line tool
	Use ListCloudFrontOriginAccessIdentities with an AWS SDK or command line tool
	Use ListDistributions with an AWS SDK or command line tool
	Use UpdateDistribution with an AWS SDK or command line tool

	Scenarios for CloudFront using AWS SDKs
	Delete CloudFront signing resources using AWS SDK
	Create signed URLs and cookies using an AWS SDK

	Amazon CloudFront related information
	Additional Amazon CloudFront documentation
	Getting support
	CloudFront developer tools and SDKs
	Tips from the Amazon Web Services blog

	Document history
	Updates before 2022

	AWS Glossary

