Table of Contents

What is Amazon GameLift? .. 1
Why Amazon GameLift? .. 1
Key Features .. 1
How GameLift Works .. 2
 Key Components .. 2
 Configuring Computing Resources ... 2
 Handling Capacity and Utilization ... 3
 Automatic Scaling .. 3
 Monitoring Fleet Activity and Troubleshooting .. 4
Networking With AWS Resources .. 4
Game Architecture with GameLift ... 4
How Players Connect to Games ... 6
 Game and Player Session Features ... 6
GameLift FlexMatch .. 8
 How GameLift FlexMatch Works .. 8
Tools and Resources .. 10
 Core Tools ... 10
 Additional Resources ... 10
GameLift SDKs ... 11
 For Game Servers .. 11
 For Game Clients and Game Services ... 12
 SDK Compatibility .. 12
Free Tier and Billing Alerts .. 13
Setting Up ... 14
 Set Up Your Project .. 14
 Set up an AWS Account ... 14
 IAM Policy Examples ... 15
 Install the AWS CLI ... 15
Integrating GameLift ... 17
 Integration Plan ... 17
 Game Engines and GameLift .. 19
 Amazon Lumberyard ... 19
 Unreal Engine .. 19
 Unity .. 20
 Other Engines .. 20
 Lumberyard: Prep a Game Client ... 20
 Unreal Engine: Add GameLift to a Game Server Project .. 21
 Unity: Add GameLift to a Game Server Project .. 24
 Integrating a Game Server .. 26
 Add GameLift to a Game Server ... 27
 Integrating a Game Client ... 30
 Add GameLift to a Game Client ... 30
 Create Game Sessions with Queues .. 33
 Generate Player IDs .. 34
 GameLift Interactions .. 34
 Setting Up a New Server Process ... 34
 Creating a Game Session .. 34
 Adding a Player to a Game Session ... 35
 Removing a Player From a Game Session .. 35
 Shutting down a Game Session .. 35
 Terminating a Server Process ... 36
 Responding to a Shutdown Request .. 36
 GameLift–Game Server/Client Interactions ... 37
Testing Your Integration .. 38
What is Amazon GameLift?

Amazon GameLift is a fully managed service for deploying, operating, and scaling your session-based multiplayer game servers in the cloud. Amazon GameLift replaces the work required to host your own game servers, including buying and setting up hardware, and managing ongoing activity, security, storage, and performance tracking. Amazon GameLift's automatic scaling features provide additional protection from having to pay for more resources than you need, while helping to ensure that your players can find and join games fast.

Why Amazon GameLift?

Here are some of the benefits of using Amazon GameLift:

- Provide low-latency player experience to support fast-action game play.
- Release session-based, multiplayer games fast, with little or no back-end experience required.
- Enhance your matchmaking services with intelligent queuing and game session placement.
- Reduce engineering and operational effort to deploy and operate game servers.
- Get started fast and pay as you go, with no upfront costs and no long-term commitments.
- Reduce the risks involved in handling fluctuating player traffic.
- Rely on Amazon Web Services (AWS), including Amazon Elastic Compute Cloud (Amazon EC2) for web-scale cloud computing resources and automatic scaling to manage your hosting capacity.

Key Features

Amazon GameLift includes these features:

- Use FlexMatch and Queues to build a custom matchmaking service for your game.
- Use game session queues to place new game sessions more effectively across Amazon GameLift resources.
- Deploy game servers to run on either Amazon Linux or Windows Server operating systems.
- Provide high-quality game hosting to players around the world by deploying to computing resources in multiple regions.
- Use automatic scaling tools to adjust your game hosting capacity to meet actual player usage and balance player experience against cost savings.
- Configure game session characteristics, such as maximum number of players allowed, join rules, and game-specific properties.
- Help players find sessions to join quickly with game session search features.
- Analyze game performance using the Amazon GameLift console to track metrics, view game session logs, and review data on individual game sessions and player sessions.
- Set up customized health tracking for server processes to detect problems fast and resolve poor-performing processes.

For more product information about Amazon GameLift, including specifications and pricing, see the Amazon GameLift product pages.
How Amazon GameLift Works

This topic provides an overview of Amazon GameLift components and how the service works to deploy your multiplayer game servers and manage player traffic.

Key Components

Setting up Amazon GameLift to host your game involves working with the following components:

- **A game server** is your game's server software running in the cloud. You provide your game servers to Amazon GameLift by uploading a **game build**, which includes the server executables, supporting assets, libraries, and dependencies. Amazon GameLift deploys the game server as a set of server processes, each of which hosts a game session for players.

- **The Amazon GameLift service** manages the virtual resources needed to host your game server processes, and makes it possible for players to connect to games. It does this by regulating resources to accommodate player activity, handling players' join requests and directing them to appropriate server processes, and enforcing rules that control which game servers can be joined. The service also collects performance data on server process health and player usage.

- **A game client** is your game's software running on a player's device. It enables a player to connect to one of your game server processes on Amazon GameLift and play your game.

- **Optional game services** might communicate with the Amazon GameLift service for a variety of purposes. For example, you might create a game service to act as an intermediary between game clients and servers, such as to manage matchmaking or player authentication.

See Amazon GameLift and Game Client/Server Interactions (p. 34) for a detailed description of how these components interact.

Configuring Computing Resources

To deploy a game server on Amazon GameLift, you create a **fleet** of virtual computing resources and specify how you want Amazon GameLift to use those resources to host your game. You configure the fleet to use a specific type of **Amazon Elastic Compute Cloud (Amazon EC2) resource**, called an **instance**, based on how much computing power you need for your game. When running your game server, Amazon GameLift creates and terminates instances as needed to manage capacity. (See Amazon GameLift service limits for more information on how many instances can be used with your AWS account.)

Your fleet configuration also specifies the game build to deploy, and describes how many game server processes should be run on each instance in the fleet. You'll need to balance the size and type of instance you're using against the computing requirements of the total number of server processes for an instance.

Note

Amazon GameLift supports multiple **regions** to optimize gaming performance for players around the world. Each fleet you set up is configured to deploy your game to a specific region. To make your game available to players in multiple regions, you must set up a separate fleet for each region. See a list of available regions for Amazon GameLift at AWS Regions and Endpoints.

You may want to assign an **alias** to a fleet. An alias is a convenient way to genericize how game clients connect to game servers. Because an alias can be changed to point to any fleet you want, referencing an alias ID in your client instead of a fleet ID helps you gracefully transition players from one fleet to another—without having to deploy game client updates.

Once a fleet is active, Amazon GameLift is ready to start accepting requests for new game sessions. From this point on, you can manage fleet configuration, capacity, and utilization as demand requires.
Use game session queues to manage how game sessions are created across multiple fleets running the same game server build. Queues allow you to respond to increased player demand by taking advantage of alternate fleets, including those in other regions.

Handling Capacity and Utilization

Here's how Amazon GameLift handles capacity and utilization for multiplayer game sessions in real time.

You can change a fleet's capacity at any time, increasing or decreasing the number of desired instances. When you increase capacity, Amazon GameLift immediately begins the process of starting a new instance and a new set of idle server processes, which can then host new game sessions as they are requested. This continues until the new capacity setting is reached.

When you decrease fleet capacity, a scale down event is triggered. GameLift selects instances to terminate in order to meet the reduced capacity setting. Any instance in the fleet may be terminated, regardless of whether the instance is hosting active game sessions. You can choose to avoid terminating instances with active game sessions by turning on a feature called game session protection, either for an individual game session or for an entire fleet. An instance can only be terminated when none of its server processes are hosting protected game sessions. If a scale down event is triggered but all instances in the fleet have at least one protected game session, no scale down action takes place.

In addition to setting fleet capacity to control overall usage and costs for your GameLift resources, it is also possible to control how players are allowed to consume fleet resources (that is, create new game sessions). For games where individual players can create game sessions, you can add a resource creation limit policy to a fleet to restrict the number of game sessions that any one player can create over a span of time.

Automatic Scaling

Automatic scaling simply automates the process of increasing or decreasing capacity, enabling the fleet to quickly accommodate changes in player demand. Usage peaks and valleys can fluctuate unpredictably, making it difficult to manually adjust capacity that strikes a balance between maintaining enough fleet capacity to accommodate incoming players and avoiding paying for unused resources during idle times.

The goal of automatic scaling is to have Amazon GameLift change capacity on the fly in response to player demand. Automatic scaling is a set of rules, based on actual player activity, that you define to tell Amazon GameLift when to increase or reduce capacity. With the right rules in place, Amazon GameLift can maintain a capacity level that always has room for new players without running idle servers. Automatic scaling rules, called policies, are based on certain Amazon GameLift metrics that track player utilization. These include the number of current players, the number of available player slots, and the number of idle instances, as well as others.

An automatic scaling policy statement takes the following form: "If a specified metric hits or exceeds a specified threshold value for a specified number of minutes, then change fleet capacity a specified amount." So, for example, you might decide to use available player slots as an indicator of when demand is spiking up: "If the number of available player slots falls below 50 for more than 10 consecutive minutes, then increase capacity by 1 instance."

A fleet can have multiple policies in force; each one is evaluated independently. For example, you might have a policy that tells Amazon GameLift to decrease capacity by 10% if the number of idle instances is more than 5 for 15 minutes. If you also have a policy to decrease capacity based on number of available player slots, both policies can be triggered as demand decreases. A more common scenario is to have a set of policies, each of which responds to either increasing demand or decreasing demand.

Automatic scaling and game session protection work together to ensure that players are not arbitrarily dropped as Amazon GameLift automatically adjusts capacity and takes down unneeded game servers to save you money. If automatic scaling triggers a scale down but all available instances are hosting active
game sessions and are protected, the scale down fails and capacity does not change. However, the policy will continue to be evaluated with each metric report; if it continues to trigger a scale down, one will occur the next time a game session ends. As a result, capacity is automatically adjusted without affecting active players.

Monitoring Fleet Activity and Troubleshooting

Once you have fleets up and running, Amazon GameLift collects a variety of information to help you monitor the performance of your deployed game servers. Use this information to optimize your use of resources, troubleshoot issues, and gain insight into how players are active in your games.

- **Fleet, game session, and player session details** – This data includes status, which can help identify health issues, as well as details such as game session length and player connection time.

- **Utilization metrics** – Amazon GameLift tracks fleet metrics over time:
 - For instances: network activity and CPU utilization
 - For server processes: number of active processes, new activations, and terminations
 - For games and players: number of active game sessions and player sessions

- **Server process health** – Amazon GameLift tracks the health of each server process running on a fleet, including the number of healthy processes, percent of active processes that are healthy, and number of abnormal terminations.

- **Game session logs** – You can have your game servers log session data and set Amazon GameLift to collect and store the logs once the game session ends. Logs can then be downloaded from the service.

All of this data is available through the Amazon GameLift console. The console dashboard presents an overview of activity across all your builds and fleets as well as the option to drill down to more detailed information.

Networking With AWS Resources

If your game server communicates with other resources that are hosted on AWS, you can use Amazon Virtual Private Cloud (VPC) peering to establish fast and secure connections. An Amazon VPC is a virtual network, defined by you, that includes a set of resources managed with your AWS account. In addition, each Amazon GameLift fleet, including the game server processes running on each instance in the fleet, has its own VPC. With VPC peering, you can establish a direct network connection between a VPC for your game server processes and a VPC for your other AWS resources.

For example, you might have a set of web services that support your game, such as for player authentication or social networking. You can set up a VPC for these resources, and then use Amazon GameLift’s VPC peering feature to enable your game servers to make direct network calls to the web services. With VPC peering, calls from your game server processes incur minimal latency and, since they are not routed over the public Internet, are not exposed externally.

See more information on Amazon’s virtual private clouds and VPC peering. You can peer your Amazon GameLift fleets with VPCs in any AWS account that you have access to.

Amazon GameLift streamlines the process of setting up VPC peering connections for your game servers. It handles peering requests, updates route tables, and configures the connections as required. For more information on how to set up VPC peering for your game servers, see Set Up VPC Peering (p. 59).

Game Architecture with Amazon GameLift

The diagram shown below illustrates the key components of an Amazon GameLift-hosted game and how they interact.
Key components are described as follows.

Amazon GameLift service

The service deploys your game servers to Amazon GameLift hosting resources and controls capacity based on your settings. It manages player demand by starting new game sessions and reserving game slots for new players. It continually tracks the status of game resources, game sessions, and players in order to maintain game availability and balance player traffic.

Game clients
Your game client may interact with Amazon GameLift in two ways:

- It communicates with the Amazon GameLift service to retrieve information on current game sessions, request new game sessions, and request player slots in games. Game clients can communicate directly with the service (as shown by a dotted line), but it is common to have game services handle this communication as part of other core tasks and then relay information as needed to the game client.
- It connects directly to a game session running on a game server. A game session's connection details are provided in response to a player slot request. If you use a game service to handle player requests to the Amazon GameLift service, it must relay the connection information to the game client.

Game services

Your game may choose to handle certain tasks through game services rather than in the game client. These services are developed and managed by you. Game services are often used for tasks like player authentication and authorization, team building and matchmaking, and inventory or currency control. If your game uses services, it may make sense to call the Amazon GameLift service from a game service instead of from the game client. For example, when a player wants to join a game, your game client might call your authentication service to first verify the player's identity, and only then send a player slot request to the Amazon GameLift service.

Game servers

Your game server software is deployed by Amazon GameLift based on your configuration. You can tell Amazon GameLift to deploy one or multiple game servers in as many AWS regions as you need. Game servers communicate with the Amazon GameLift service to start new game sessions, validate newly connected players, and report on the status of game sessions, player connections, and available resources.

External services

Your game may rely on an external service, such as for validating a subscription membership. The architecture diagram illustrates how information from an external service can be passed to your game servers (via a custom game service and the Amazon GameLift service) without going through the game client.

Developer tools

The Amazon GameLift developer tool set is used to configure your hosting resources and game deployment, scale capacity, monitor current status of resources, and track metrics on game server performance and game and player activity.

How Players Connect to Games

A *game session* is an instance of your game running on Amazon GameLift. To play your game, players can either find and join an existing game session or create a new game session and join it. Players join by creating a *player session* for the game session. If the game session is open for players—that is, it is accepting new players and has an open player slot—Amazon GameLift reserves a slot for the player and provides connection information back to the player. The player can then connect to the game session and claim the reserved slot.

For detailed information on creating and managing games sessions and player sessions, see Add Amazon GameLift to Your Game Client (p. 30).

Game and Player Session Features

Amazon GameLift provides several features related to game and player sessions:
Host game sessions on best available resources across multiple regions

Choose from multiple options when configuring how Amazon GameLift selects resources to host new game sessions. If you're running multiple fleets in more than one region, you can set up game session queues that can place a new game session on any fleet regardless of region. This feature can significantly improve Amazon GameLift's ability to efficiently balance resource usage and respond to changes in player demand, decreased capacity, outage events, and other issues. As a result, using queues can decrease the manual overhead needed to monitor and balance resources. You can manage queues and track queue performance metrics in the Amazon GameLift Console.

With the queues feature, you have the option of placing game sessions based on player latency information. This feature is particularly effective when supporting a matchmaking service. Requests for a new game session can also request new player sessions for one or more players. If you include latency data for each player by region, Amazon GameLift can choose a fleet in a region that provides the best possible experience for all the players.

Control player access to game sessions

Set a game session to allow or deny join requests from new players, regardless of the number of players currently connected. You might use this feature to enable private sessions, to limit access for troubleshooting or other problem resolution, etc.

Add custom game and player data

You can add custom data to game session and player session objects, which contain all the settings and metadata for a session. Custom data is stored with Amazon GameLift and can be retrieved by other components as needed. The Amazon GameLift service passes game session data to a game server when starting a new game session, and passes player session data to the game server when a player connects to the game session. Custom game and player data is not used by Amazon GameLift; it can be formatted as needed for use by your game client, game server, or other game services.

Game data may be useful for a variety of reasons. For example, when matching prospective players to game sessions, your game might use game properties to inform a best-match algorithm or help players choose from a list of game sessions. Alternatively, you might use game properties to pass information that a game server needs when setting up a new game session, such as a game mode or map.

Player data has a range of uses as well. For example, a matchmaking service might use player data to select a best match or team placement. A game server might customize a player's experience based on their guild membership. Another use for player data is to provide secure information to a game server from a source other than a game client; for example, when communication between game client and game server is encrypted, such as with certain devices, encryption keys can be passed directly to the game server.

Filter and sort available game sessions

Use session search and sort to find the best match for a prospective player or allow players to browse a list of available game sessions. Adding this feature can effectively lead players to sessions that are most likely to result in a positive gaming experience. For example, if your game requires a certain number of players before launching, you'll want to place new players into sessions that are closest to that number in order to minimize wait time for all players. For games with a short session lifespan, you might hide sessions based on how long the session has been running. Session search can be very useful for implementing a "join now" feature backed by a well-formulated search and sort expression that gets players into positive gaming experiences fast. Use session search and sort to find game sessions based on characteristics like session age, available player slots, current player count, and maximum players allowed.
Track game and player usage data

Have Amazon GameLift automatically store logs for completed game sessions. Set up log storage when integrating Amazon GameLift into your game servers. You can access stored logs by downloading them through the Amazon GameLift console or programmatically with the AWS SDK for Amazon GameLift.

Use the Amazon GameLift console to view detailed information on game sessions, including session metadata and settings as well as player session data. For each game session, you can view a list of player sessions along with total times played. You can also view metrics data and graphs that track the number of active game sessions and player sessions over time. See more information at View Data on Game and Player Sessions (p. 101) and Metrics (p. 97).

Amazon GameLift FlexMatch

FlexMatch is Amazon GameLift’s new customizable matchmaking service. Together with GameLift Queues, FlexMatch lets you manage the full matchmaking experience in a way that best fits your game. FlexMatch manages the process from building matches and selecting players to placing matches with the best available hosting resources for an optimum player experience.

With FlexMatch you can create and run multiple matchmakers. Each matchmaker is configured with a set of rules, a game session queue, and other options features enabled. Matchmaking requests can be sent to any matchmaker for processing. Set up multiple matchmakers to build the type of matches that best suit your game and your players.

For more information on adding FlexMatch to your game, see Matchmaking with FlexMatch (p. 74).

Key FlexMatch Features

- How Amazon GameLift FlexMatch Works (p. 8)
- Customizable player matching. Design and build the types of game experiences that your players will find most compelling. Specify game attributes, including number and size of teams. Build a set of meaningful rules for evaluating player attributes (such as skill level or role) and use them to form the best possible player matches for a game session.
- Support for player parties. Generate matches for a group of players who want to play together on the same team. Find players to fill out team and/or build opposing teams as needed.
- Latency-based matching. Use player latency information to ensure that matched players have similar latencies. This feature is valuable in games where disparities in lag time may give players undue advantage.
- Relax player matching rules over time. Strike the right balance for your game between getting players into great matches for the best possible gaming experience and getting players into good enough matches with minimal waiting. This feature lets you decide where and when to relax strict matching rules into order to get players into games in a reasonable amount of time.
- Enable player acceptance. Allow all players to accept a proposed match before starting. If this feature is enabled, FlexMatch waits for all players assigned to a match to accept it before the match begins.
- Best possible game session placement. When you provide player latency information, FlexMatch places games in the best available AWS region to ensure players get maximum responsiveness when playing.

How Amazon GameLift FlexMatch Works

This topic provides a general description of FlexMatch components and how FlexMatch processes matchmaking requests. For detailed help with adding FlexMatch to your game, including how to set up a matchmaker and customize player matching, see Matchmaking with FlexMatch (p. 74).
Setting up Amazon GameLift FlexMatch for matchmaking involves working with the following components:

- Your game service sends a **matchmaking request** to find a match for one player or a group of players. The request provides information on each player and identifies which matchmaker to use. Each request is tracked through the matchmaker process using a **matchmaking ticket**.
- Your FlexMatch **matchmaker** processes matchmaking requests. When you set up a matchmaker, you configure it with (1) the type of match to build (number and size of teams), (2) rules for selecting players, and (3) where to host a game session for the match. You can create multiple matchmakers to fit different kinds of games. As part of setting up a matchmaker, you need to create a **rule set** for player matching and a **game session queue** for game session placement.

Here's how a FlexMatch matchmaker processes matchmaking requests:

1. Your game service submits a matchmaking request for one or more players. The matchmaker specified in the request determines which rule set and queue will be used to make the match.
2. FlexMatch creates a ticket for the request and hands it to the matchmaker. Your service tracks the request ticket status as it is processed. A ticket remains in the matchmaker's request pool until it is either matched or reaches the matchmaker's time limit.
3. The matchmaker continually runs through the tickets in the pool to fill a match. With each pass, it selects one ticket as an "anchor" and then evaluates all other tickets against the anchor to find acceptable matches and fill a match. The matchmaking process does not simply assign the first acceptable players to each match; FlexMatch ensures that each match contains the best possible collection of players from the available pool for that match.

 The matchmaker's rule set tells it how many teams to create and the number of players to select for each team, such as two teams of four (4v4). The rule set may also have rules that tell the matchmaker how to evaluate prospective players for a match. Rules might specify an individual player requirement, such as minimum skill level or the same map preference as the anchor ticket. They may also specify team-wide or match-wide requirements; for example, a rule might require that there be no more than two players of one character in the match. As the matchmaker evaluates a ticket, the ticket either passes or fails each rule (you can track metrics on rules performance). For example, a matchmaker's rule set might require that all players in a match must be with 10 skill points of each other. If the matchmaker selects an anchor ticket for a player with a skill level of 85, the next ticket that is evaluated must have a skill level between 75 and 95 to pass the rule. As players are assigned to the match, the range of acceptable skill levels change until the match is full.

4. A matchmaker may be configured to require acceptance from players in a potential match. If so, FlexMatch cannot proceed to start a game session for the match until every player in the match accepts it. When this point is reached, the matchmaking ticket status indicates that acceptance is required. This is a trigger to your game service to request player acceptances. Players have the option of accepting or rejecting a match. Once received your service must report their response back to FlexMatch. All players in all tickets must accept for the match to continue. If any player rejects the match or fails to respond before a specified timeout, the matchmaker drops the potential match. Tickets for players who accepted the match are returned to the matchmaker's request pool; tickets for players who did not accept the match fail and are no longer processed.

5. When a potential match is made and accepted by the players (if required), it moves to the placement phase of matchmaking. The matchmaker, which is configured to use a specific game session queue, passes the tickets for the potential match to the queue. The queue locates the best available resources for a game session to host the match. When an available game server process is found, the queue sends a request to the server process to start a new game session. The request includes detailed information that describes the match, including team sizes, player assignments, and custom game properties.
6. The game server process takes the match data and starts a new game session. Part of integrating FlexMatch into your game is adding code to ingest this information and use it to build a game session for your matches. When the game session is started, the server process notifies Amazon GameLift that the game session is ready to accept players.

7. Once the game session is ready for players, Amazon GameLift updates the matchmaking tickets for the match. This includes changing the status to indicate a successful match, and adding connection information for the players. Matched players can now use the connection information to join the game and claim their team assignment.

Tools and Resources

Amazon GameLift provides a collection of tools and resources for you to use.

Core Tools

Use these tools to work with Amazon GameLift.

Amazon GameLift SDKs

The Amazon GameLift SDKs contain the libraries needed to communicate with the Amazon GameLift service from your game clients, game servers and game services. Versions of these SDKs are available with Lumberyard or you can download the latest versions separately. See details in Amazon GameLift SDKs (p. 11).

AWS console for Amazon GameLift

Use the AWS Management Console for Amazon GameLift to manage your game deployments, configure resources, and track player usage and performance metrics. The Amazon GameLift console provides a GUI alternative to managing resources programmatically with the AWS SDK.

AWS CLI for Amazon GameLift

Use this command line tool to make calls to the AWS SDK, including the Amazon GameLift API. Download the AWS Command Line Interface or view the AWS CLI Command Reference for Amazon GameLift.

Amazon GameLift Local

This client-side debugging tool emulates a subset of the Amazon GameLift API on your local development machine. You can test iterative code changes without needing to upload and run your game server on Amazon GameLift instances. Amazon GameLift Local can be used on Windows and Linux devices to test game clients and servers that use the Amazon GameLift SDKs. Amazon GameLift Local is available in the Server SDK download. See details in Testing Your Integration (p. 38).

Additional Resources

Use these resources to learn and experiment with Amazon GameLift for your multiplayer games.

Five-click sample

Get a sample multiplayer game up and running on Amazon GameLift in under an hour. With this tool, you can start experimenting with Amazon GameLift tools in real time with minimal setting up. You can find this tool in the Amazon GameLift console; from the intro page click "Test Amazon GameLift", or from any other page select "Sample game" from the Amazon GameLift navigation menu.
Getting Started tutorials

Use these tutorials to walk through the process of getting a sample multiplayer game up and running on Amazon GameLift. Once you complete the series, you can use the game to explore other Amazon GameLift features and tools, such as automatic scaling and performance metrics (no charge if you use the Amazon GameLift free tier).

Amazon GameLift forum

Use the Amazon GameLift forum to exchange ideas and knowledge, pick up tips, and get help with issues.

Amazon Lumberyard game engine

Amazon Lumberyard comes with the Amazon GameLift SDKs built in, and integration is handled automatically. It is bundled with a sample multiplayer game that illustrates how to use Lumberyard to integrate a game with Amazon GameLift. Find more information about this sample project in the Lumberyard User Guide.

GameDev blog

Watch this game development blog to keep up with new features about Amazon GameLift, Amazon Lumberyard, learn more about game development with AWS, and get expert tips from the teams.

Amazon GameLift product information

Check these pages for detailed descriptions of Amazon GameLift, service overview, FAQ, and pricing details.

Amazon GameLift SDKs

Use Amazon GameLift software development kits (SDKs) to develop Amazon GameLift-enabled multiplayer game servers, game clients and game services that need to connect to the Amazon GameLift service.

For detailed information on using the Amazon GameLift SDKs with your game engine, see Game Engines and Amazon GameLift (p. 19).

For Game Servers

Create and deploy 64-bit game servers with the Amazon GameLift Server SDK. This SDK enables the Amazon GameLift service to deploy and manage game server processes across Amazon GameLift virtual resources. To use the Amazon GameLift Server SDK in your game project, download the Server SDK and review the API documentation (p. 27).

SDK support

The Amazon GameLift Server SDK download contains source for the following versions:

- C++
- C++ for Unreal Engine (plugin)
- C# (.NET)

Development environments>

Build the SDK from source as needed for these supported development OSs and game engines:

- Operating systems – Windows, Linux
- Game engines – Amazon Lumberyard, Unreal Engine, Unity, engines that support C++ or C# libraries
Game server operating systems

Use the Amazon GameLift Server SDK to create game servers that run on the following platforms:

- Windows Server 2012 R2
- Amazon Linux

For Game Clients and Game Services

Create 64-bit game clients and services using the AWS SDK with the Amazon GameLift API. This SDK enables client apps and services to find and manage game sessions and connect players to games being hosted on Amazon GameLift. Download the AWS SDK or view the Amazon GameLift API reference documentation.

SDK support

The AWS SDK with Amazon GameLift is available in the following languages. See documentation for each language for details on support for development environments and game client platforms.

- C++ (SDK docs) (Amazon GameLift)
- Java (SDK docs) (Amazon GameLift)
- .NET (SDK docs) (Amazon GameLift)
- Go (SDK docs) (Amazon GameLift)
- Python (SDK docs) (Amazon GameLift)
- Ruby (SDK docs) (Amazon GameLift)
- PHP (SDK docs) (Amazon GameLift)
- JavaScript/Node.js ((SDK docs) (Amazon GameLift)

SDK Compatibility

If you use the Amazon GameLift SDKs bundled inside a version of Amazon Lumberyard, your game clients and servers will be compatible. If you upgrade the Amazon GameLift Server SDK independently, however, you need to use a compatible version of the AWS SDK to ensure that your game clients and services can successfully connect to your game servers on Amazon GameLift.

<table>
<thead>
<tr>
<th>If your game server uses this Server SDK version:</th>
<th>It can host game clients built with this AWS SDK for C++ version*:</th>
<th>Server SDK versions are available in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versions bundled into Amazon Lumberyard.</td>
<td>Versions bundled into Amazon Lumberyard.</td>
<td>Lumberyard 1.0 to 1.3 (beta)</td>
</tr>
<tr>
<td>version 3.0.7</td>
<td>version 0.12.16 (commit) or later</td>
<td>Lumberyard 1.4 to 1.5 (beta)</td>
</tr>
<tr>
<td>version 3.1.0</td>
<td>version 0.14.9 (commit) or later</td>
<td>• Lumberyard 1.6 to 1.7 (beta)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Downloaded from Amazon GameLift</td>
</tr>
<tr>
<td>version 3.1.5</td>
<td>version 1.0.72 (commit) or later</td>
<td>• Lumberyard 1.8 (beta or later)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Download from Amazon GameLift</td>
</tr>
</tbody>
</table>
Free Tier and Billing Alerts

Amazon GameLift includes a free tier for one year with a c4.large instance. It is possible for the free tier to expire mid-month; therefore, you may want to set up and configure a billing alert to notify you of billing events, such as when you have reached the free tier threshold. For more information, see Creating a Billing Alarm.

In addition to receiving billing alerts, you can view your current estimated bill for Amazon GameLift on the Billing and Cost Management console at https://console.aws.amazon.com/billing/. This will allow you to review your resource consumption and determine if you would like to continue using these resources beyond the free tier allowance and incur charges, or if you would like to scale down your fleet and avoid incurring charges.

To avoid incurring charges in excess of the free tier, you may want to scale down your fleet (p. 53) when not in use.
Setting Up

The topics in this section describe the basic steps needed to begin using Amazon GameLift.

Topics
- Set Up Your Amazon Lumberyard Game Project (p. 14)
- Set up an AWS Account (p. 14)
- Install the AWS CLI (p. 15)

Set Up Your Amazon Lumberyard Game Project

Get your project ready for Amazon GameLift with the following steps. If you have installed Lumberyard, you may have already completed some of these tasks.

- Install Visual Studio 2013 runtime. Run the installer from the \3rdParty\Redistributables \Visual Studio 2013 directory or download and run the installer directly from Microsoft.
- Run Setup Assistant to validate that you have installed the appropriate third-party software and SDKs, including the Amazon GameLift client. LumberyardLauncherBatch.exe is provided in \dev\Bin64.
- Configure your Lumberyard game project to ensure it compiles properly. Follow these guidelines:
 - The server and client executables must link aws-cpp-sdk-core and aws-cpp-sdk-gamelift.
 - The server executable must be built on a platform supported by Amazon GameLift. See Amazon GameLift SDKs (p. 11) for a list of allowed platforms.
 - Your project must set the AWS_CUSTOM_MEMORY_MANAGEMENT pre-processor flag to 0 or 1, depending on your use of a custom memory manager.

Set up an AWS Account

Amazon GameLift is an AWS service, and you must have an AWS account to use Amazon GameLift. Creating an AWS account is free.

For more information on what you can do with an AWS account, see Getting Started with AWS.

Set up your account for Amazon GameLift

1. Get an account. Open Amazon Web Services and choose Sign In to the Console. Follow the prompts to either create a new account or sign into an existing one.
2. Set up user groups and access permissions. Open the AWS Identity and Access Management (IAM) service console and follow these steps to define a set of users or user groups and assign access permissions to them. Permissions are extended to a user or user group by attaching an IAM policy, which specifies the set of AWS services and actions a user should have access to. For detailed instructions on using the Console (or the AWS CLI or other tools) to set up your user groups, see Creating IAM Users.
 1. Create an administrative user or user group. Administrative users include anyone who manages core Amazon GameLift resources, such as builds and fleets. To set permissions, you must create your own policy from scratch. This example (p. 15) illustrates an administrator policy for Amazon GameLift services.
2. **Create a player user.** A player user represents your game client(s). It enables access to Amazon GameLift client functionality, such as acquiring game session information and joining players to games. Your game client must use the player user credentials when communicating with the Amazon GameLift service. To set permissions, you must create your own policy from scratch. This example (p. 15) illustrates a player policy for Amazon GameLift services.

IAM Policy Examples for Amazon GameLift

You can use the following examples to create policies and add the appropriate permissions to your IAM users or user groups.

Simple Policy for Administrators

This policy provides full administrative access to a user. Attach it to a user or user group to permit all Amazon GameLift actions on all Amazon GameLift resources (fleets, aliases, game sessions, player sessions, etc.).

```json
{
  "Version": "2012-10-17",
  "Statement":
  {
    "Effect": "Allow",
    "Action": "gamelift:*",
    "Resource": "*"
  }
}
```

Simple Policy for Players

This policy enables access only to functionality needed by players who are using a game client to connect to an Amazon GameLift-hosted game server. This policy allows a user to get game session information, create new game sessions, and join a game session.

```json
{
  "Version": "2012-10-17",
  "Statement":
  {
    "Effect": "Allow",
    "Action": [ "gamelift:CreateGameSession", "gamelift:DescribeGameSessions", "gamelift:SearchGameSessions", "gamelift:CreatePlayerSession" ],
    "Resource": "*"
  }
}
```

Install the AWS CLI

You can use the AWS command line interface (AWS CLI) tool to make calls to any action in the AWS SDK, including the Amazon GameLift API. At a minimum, you'll need to use this tool to upload your game builds to the Amazon GameLift service.

To install the AWS CLI for Amazon GameLift

1. **Get the tool.** Download the latest version of the AWS CLI tool and follow the instructions to install it. This tool runs on Windows, Linux, OS X, and Unix.
2. **Verify installation.** Open a command line window or terminal and type `aws gamelift help`. If the CLI is correctly installed, you will see a "Welcome to the Amazon GameLift API Reference" message, followed by a list of Amazon GameLift commands.

3. **Configure the tool.** Type `aws configure` and enter the following values at the prompts:

 - **AWS access key ID** – Half of the AWS account user credentials, which are generated using the IAM service. For help, see [Get your access key ID and secret access key](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_create.html).

 - **AWS secret access key** – Half of the AWS account user credentials, along with the AWS access key ID.

 - **Default region name** – Name of a region, such as "us-west-2" you want to set as default. If you don't set a default region, every command must specify a region using the `--region` parameter. See a list of available regions for Amazon GameLift at [AWS Regions and Endpoints](https://docs.aws.amazon.com/AmazonGameLift/latest/DevGuide/).

 - **Default output format** – Format to receive API responses. Options include "json", "text" or "table". If you don't enter a default format, the CLI processes your requests but doesn't display any results.
Integrating the Amazon GameLift SDKs into Your Games

The Amazon GameLift SDKs provide the libraries needed to enable your game clients and servers to communicate with the Amazon GameLift service. The SDKs are available as part of the Amazon Lumberyard game engine download or can be downloaded separately. For more details on the SDKs and where to get them, see Amazon GameLift SDKs (p. 11).

The topics in this section describe how game clients and servers interact with the Amazon GameLift service, and provide instruction on adding Amazon GameLift functionality to your game clients and servers.

Test Out Amazon GameLift

Before you prepare your own game to use Amazon GameLift, you can experiment with the service and console tools using the five-click sample wizard. This wizard uses a sample game to quickly step through the tasks of uploading and deploying a game server and connecting to it with a game client. Once you have the sample game server deployed and are connected, you can browse the Amazon GameLift console tools, view or edit configuration settings, and see Amazon GameLift's metrics and other tools in action. To access the sample wizard, sign into the Amazon GameLift console and select Sample Game from the Amazon GameLift menu.

Integration Plan

Are you ready to start using Amazon GameLift to run your multiplayer games? Follow the steps in this workflow to integrate Amazon GameLift into your games and deploy them. If you're new to Amazon GameLift, we recommend that you read What is Amazon GameLift? (p. 1) If you're unsure whether Amazon GameLift supports your operating systems and development environments, see For Game Servers (p. 11) and Game Engines and Amazon GameLift (p. 19).

Tip

You don't need to have a game ready to start experimenting with Amazon GameLift. The Amazon GameLift console offers a quick sample setup that gets you up and running with a sample game server and client in five easy steps. In addition, the Amazon GameLift Getting Started tutorials, in text and video format, walk you through each step in the process: You create and upload a build, set up a fleet, create game sessions, and connect a client. The tutorials use a sample multiplayer game, which is included in the Lumberyard download.

1. **Get set up to use Amazon GameLift.**
 - Create and configure your AWS account for Amazon GameLift. See Set up an AWS Account (p. 14)
 - Install the AWS Command Line Interface (AWS CLI) tool. See Install the AWS CLI (p. 15).
2. **Prepare your game server for hosting on Amazon GameLift.**
• Download the Amazon GameLift Server SDK. Build the version for your preferred programming language and game engine, and add it to your game server project. If you’re using the Amazon Lumberyard game engine, a version of the SDK is built in. See Game Engines and Amazon GameLift (p. 19).

• Add code to your game server project to enable communication with the Amazon GameLift service. At a minimum, a game server should be able to do the following: (1) Notify Amazon GameLift when it is ready to host a game session, (2) Start game sessions when prompted by Amazon GameLift, (3) Notify Amazon GameLift when players connect and disconnect from a game session, and (4) Notify when a game session is ending or it is shutting down. See Add Amazon GameLift to Your Game Server (p. 27).

3. Prepare your game client to connect to Amazon GameLift-hosted game sessions.

• Set up your game client or game service projects with the AWS SDK. These include any projects that find or create game sessions and add players to games. The AWS SDK is available in several languages. See the Amazon GameLift SDKs For Game Clients and Game Services (p. 12).

• Configure your game client or service projects to connect to the Amazon GameLift. Determine the region to connect to, set a target fleet and/or queue, and store AWS credentials. See Set Up Amazon GameLift on a Client or Service (p. 30).

• Add functionality to retrieve information on game sessions, create new game sessions, and reserve space for players on a game session. See Get Game Sessions (p. 31).

4. Test your Amazon GameLift integration.

• Use Amazon GameLift Local to test your game client and game server integration using a version of the Amazon GameLift service running locally. You can use this tool to test your integration without having to upload game builds and set up fleets. You can verify that your game components are communicating with the Amazon GameLift service, and test core functionality. See Testing Your Integration (p. 38)

5. Upload your game server to the Amazon GameLift service.

• Package the game server binaries, dependencies, install instructions, and other files needed to run your game server. See Package Build Files (p. 43).

• Test the game build installation process on the target operating system to check for missing dependencies.

• Upload the build to the Amazon GameLift service. Be sure to upload your build to each region where you plan to deploy your game. See Upload Build Files to Amazon GameLift (p. 44).

6. Build a fleet of computing resources to host your game.

• Design a fleet configuration for your game. You need to decide, for example, the type of computing resources to use, which regions to deploy to, how to allocate available resources, whether to use a fleet alias, and preferred settings for a variety of features. See Choose Computing Resources (p. 48) and Run Multiple Processes on a Fleet (p. 61).

• Create a fleet based on your configuration design. You can create a fleet (and edit it) from either the Amazon GameLift console or the AWS CLI tool. When you create a fleet, it takes a few minutes before it is active, that is, ready to host game sessions. See Create a Fleet (p. 49).

• Resolve fleet creation issues that might indicate problems with your game server integration. See Debug Fleet Creation Issues (p. 53).

• Experiment with your Amazon GameLift fleet configuration settings and refine as needed. For example, change a fleet's capacity allocation to optimize your use of resources and set up automatic scaling policies to manage expected player demand. See Remotely Access Fleet Instances (p. 63).

Once you've fully integrated Amazon GameLift into your game components, it's a matter of managing your game server fleets for optimal availability and performance over the long term. Use
Amazon GameLift tools to track things like how quickly and efficiently players can find and connect to a game session, overall performance of your game servers over time, and player usage patterns. See Viewing Your Game Data in the Console (p. 94).

Game Engines and Amazon GameLift

You can use Amazon GameLift with most major game engines that support C++ or C# libraries, including Amazon Lumberyard, Unreal Engine, and Unity. For more information on available SDKs, supported development platforms and

In addition to the engine-specific information provided in this topic, find additional help with integrating Amazon GameLift into your game servers, clients and services in the following topics:

- Integration Plan (p. 17) – A six-step workflow for successfully integrating Amazon GameLift into your game and setting up hosting resources.
- Add Amazon GameLift to Your Game Server (p. 27) – Detailed instructions on integrating Amazon GameLift into a game server.
- Add Amazon GameLift to Your Game Client (p. 30) – Detailed instructions on integrating into a game client or service, including creating game sessions and joining players to games.

Amazon Lumberyard

Amazon GameLift SDKs and functionality are fully incorporated into the Lumberyard product.

Game servers

Prepare your game servers for hosting on Amazon GameLift using the Amazon GameLift Server SDK for C++ (p. 115). See Add Amazon GameLift to Your Game Server (p. 27) to get help with integrating the required functionality into your game server.

Game clients and services

Enable your game clients and/or game services to interact with Amazon GameLift service, such as to find available game sessions or create new ones, and add players to games. Core client functionality is provided in the AWS SDK for C++. To integrate Amazon GameLift into your Lumberyard game project, see Prepare Your Game Client in Amazon Lumberyard (p. 20) and Add Amazon GameLift to Your Game Client (p. 30).

Unreal Engine

Game servers

Prepare your game servers for hosting on Amazon GameLift by adding the Amazon GameLift Server SDK for Unreal Engine (p. 136) to your project and implementing the required server functionality. For help setting up the Unreal Engine plugin and adding Amazon GameLift code, see Add Amazon GameLift to an Unreal Engine Game Server Project (p. 21).

Game clients and services

Enable your game clients and/or game services to interact with Amazon GameLift service, such as to find available game sessions or create new ones, and add players to games. Core client functionality is provided in the AWS SDK for C++. To integrate Amazon GameLift into your Unreal Engine game project, see Add Amazon GameLift to Your Game Client (p. 30).
Unity

Game servers

Prepare your game servers for hosting on Amazon GameLift by adding the Amazon GameLift Server SDK for C# (p. 126) to your project and implementing the required server functionality. For help setting up with Unity and adding Amazon GameLift code, see Add Amazon GameLift to a Unity Game Server Project (p. 24).

Game clients and services

Enable your game clients and/or game services to interact with Amazon GameLift service, such as to find available game sessions or create new ones, and add players to games. Core client functionality is provided in the AWS SDK for .NET. To integrate Amazon GameLift into your Unity game project, see Add Amazon GameLift to Your Game Client (p. 30).

Other Engines

For a full list of the Amazon GameLift SDKs available for game servers and clients, see the section called “GameLift SDKs” (p. 11).

Prepare Your Game Client in Amazon Lumberyard

All game clients must be configured to enable communication with the Amazon GameLift service, including specifics on which fleet to use, access credentials, how to connect, etc. The simplest method is to create a batch file that sets the console variables listed as follows.

Tip

You don’t need to have a game ready to start experimenting with Amazon GameLift. The Amazon GameLift console offers a quick sample setup that gets you up and running with a sample game server and client in five easy steps. In addition, the Amazon GameLift Getting Started tutorials, in text and video format, walk you through each step in the process: You create and upload a build, set up a fleet, create game sessions, and connect a client. The tutorials use a sample multiplayer game, which is included in the Lumberyard download.

To prepare the game client

1. In your batch file, set the following console variables to launch the game client. These variables have been added to `\dev\Code\CryEngine\CryNetwork\Lobby\LobbyCvars`

 - `gamelift_aws_access_key` = part of the IAM security credentials (p. 14) for a user with "player" access in your AWS account
 - `gamelift_aws_secret_key` = part of the IAM security credentials (p. 14) for a user with "player" access in your AWS account
 - `gamelift_fleet_id` = Unique ID of an active fleet to connect to
 - `gamelift_alias_id` = Unique ID of an alias pointing to a fleet to connect to
 - (Optional) `gamelift_endpoint` = Amazon GameLift server endpoint; the default value is `gamelift.us-west-2.amazonaws.com`
 - (Optional) `gamelift_aws_region` = AWS region name; default value is `us-west-2`
 - (Optional) `gamelift_player_id` = ID that you generate to uniquely identify a player (p. 34)

2. Add the following command to launch the server browser:

   ```
   Follow this pattern when using an Amazon GameLift fleet ID (gamelift_fleet_id):
   ```
Add Amazon GameLift to an Unreal Engine Game Server Project

This topic helps you set up and use the Amazon GameLift Server SDK plugin for Unreal Engine in your game server projects. If you're unsure whether Amazon GameLift supports the operating systems you're using, see For Game Servers (p. 11).

Set Up the Unreal Engine Server SDK Plugin

Follow these steps to get the Amazon GameLift Server SDK plugin for Unreal Engine ready for your game server projects.

To set up the Amazon GameLift SDK plugin for Unreal Engine

1. **Download the Amazon GameLift Server SDK.** To verify that your game system requirements are supported, see Amazon GameLift SDKs (p. 11).

2. **Build the C++ Server SDK libraries for Unreal.** The SDK download contains the source code for C++ (see GameLift_<release date>\GameLift-SDK-Release-<version>\GameLift-cpp-ServerSDK-<version>).

 To build the SDK libraries, go to the directory containing the C++ source code and compile it with the flag -DBUILD_FOR_UNREAL set to true. The following instructions show how to compile using cmake.

 For Linux users:

   ```
   mkdir out
cd out
cmake -DBUILD_FOR_UNREAL=1 ..
make
   ```

 The following binary files are generated:

 - out/prefix/lib/aws-cpp-sdk-gamelift-server.so

 For Windows users:

   ```
   mkdir out
cd out
cmake -G "Visual Studio 14 2015 Win64" -DBUILD_FOR_UNREAL=1 ..
mssbuild ALL_BUILD.vcxproj /p:Configuration=Release
   ```
The following binary files are generated:

- out\prefix\bin\aws-cpp-sdk-gamelift-server.dll
- out\prefix\lib\aws-cpp-sdk-gamelift-server.lib

For more details on building the C++ SDK, including minimum requirements and build options, see the README.md file included in the download.

3. **Add the binaries to the Amazon GameLift plugin files.** Copy the new binary files into the ThirdParty directory of the Unreal plugin, with the following paths:

 In Linux use these paths:

 - ThirdParty/GameLiftServerSDK/Linux/x86_64-unknown-linux-gnu/aws-cpp-sdk-gamelift-server.so

 In Windows use these paths:

 - ThirdParty/GameLiftServerSDK\Win64\aws-cpp-sdk-gamelift-server.dll
 - ThirdParty/GameLiftServerSDK\Win64\aws-cpp-sdk-gamelift-server.lib

4. **Import the Amazon GameLift plugin into a project.** Although you have many ways to import a plugin into Unreal Engine, the following method does not require the Unreal Editor.

 a. Add the plugin to your game project. The plugin files must contain everything in the plugin's GameLiftServerSDK directory, including the generated binary files.

 b. Add the plugin to your game's .uproject file:

   ```
   "Plugins": [
   
   "Name": "GameLiftServerSDK",
   "Enabled": true
   
   ]
   ```

 c. Add the plugin as a dependency to your game's ModuleRules:

   ```
   using UnrealBuildTool;
   
   public class MyAwesomeGame : ModuleRules
   
   
   { public MyAwesomeGame(TargetInfo Target)
   
   
   PublicDependencyModuleNames.AddRange(new string[] { "Core", "CoreUObject", "Engine", "InputCore", "GameLiftServerSDK" });
   
   }
   ```

Add Amazon GameLift Code

For more information on adding Amazon GameLift functionality, see these topics:

- Add Amazon GameLift to Your Game Server (p. 27)
- Amazon GameLift Server API Reference for Unreal Engine (p. 136)
When adding Amazon GameLift-specific code to your Unreal Engine game project, enclose the code using the preprocessor flag `WITH_GAMELIFT=1`. This flag ensures that only server builds invoke the Amazon GameLift backplane API and allows you to write code that is executed correctly regardless of the build target type you might produce with it.

Code enclosed with the `WITH_GAMELIFT=1` flag is only processed if the following are true:

- The plugin found the Amazon GameLift server SDK binary files.
- The build is a game server: `Target.Type == TargetRules.TargetType.Server`

The following code snippet illustrates how to initialize an Unreal Engine game server with Amazon GameLift.

```cpp
#include "GameLiftFPS.h"
#include "Engine.h"
#include "EngineGlobals.h"
#include "GameLiftFPSGameMode.h"
#include "GameLiftFPSHUD.h"
#include "GameLiftFPSCharacter.h"
#include "GameLiftServerSDK.h"

AGameLiftFPSGameMode::AGameLiftFPSGameMode()
    : Super()
{
    // Let's run this code only if GAMELIFT is enabled. Only with Server targets!
    #if WITH_GAMELIFT
        // Getting the module first.
        FGameLiftServerSDKModule* gameLiftSdkModule =
            &FModuleManager::LoadModuleChecked<FGameLiftServerSDKModule>(FName("GameLiftServerSDK"));

        // InitSDK establishes a local connection with GameLift's agent to enable further communication.
        gameLiftSdkModule->InitSDK();

        // When a game session is created, GameLift sends an activation request to the game server and passes along the game session object containing game properties and other settings.
        // Here is where a game server should take action based on the game session object.
        // Once the game server is ready to receive incoming player connections, it should invoke GameLiftServerAPI.ActivateGameSession()
        auto onGameSession = [=](Aws::GameLift::Server::Model::GameSession gameSession)
        {
            gameLiftSdkModule->ActivateGameSession();
        };

        FProcessParameters* params = new FProcessParameters();
        params->OnStartGameSession.BindLambda(onGameSession);

        // OnProcessTerminate callback. GameLift invokes this callback before shutting down an instance hosting this game server.
        // It gives this game server a chance to save its state, communicate with services, etc., before being shut down.
        // In this case, we simply tell GameLift we are indeed going to shut down.
        params->OnTerminate.BindLambda(=)()
        ;

        gameLiftSdkModule->ProcessEnding();
    #endif
}
```

Version 23
//The game server has 60 seconds to respond with its health status. GameLift defaults to 'false' if the game server doesn't respond in time.
//In this case, we're always healthy!
params->OnHealthCheck.BindLambda([](){return true; });

//This game server tells GameLift that it listens on port 7777 for incoming player connections.
params->port = 7777;

//Here, the game server tells GameLift what set of files to upload when the game session ends.
//GameLift uploads everything specified here for the developers to fetch later.
TArray<FString> logfiles;
logfiles.Add(TEXT("aLogFile.txt"));
params->logParameters = logfiles;

//Calling ProcessReady tells GameLift this game server is ready to receive incoming game sessions!
gameLiftSdkModule->ProcessReady(*params);
#endif

Add Amazon GameLift to a Unity Game Server Project

This topic helps you set up the Amazon GameLift C# Server SDK and integrate Amazon GameLift into your Unity game server projects. If you're unsure whether Amazon GameLift supports the operating systems you're using, see For Game Servers (p. 11).

Set up the C# Server SDK for Unity

Follow these steps to build the Amazon GameLift Server SDK for C# and add it to your Unity game server projects.

To set up the Amazon GameLift Server SDK for Unity

1. **Download the Amazon GameLift Server SDK.** To verify that your game system requirements are supported, see Amazon GameLift SDKs (p. 11). The Server SDK includes the following two solutions:
 - GameLiftServerSDKNet35.sln for .Net framework 3.5
 - GameLiftServerSDKNet45.sln for .Net framework 4.5

 Only the .Net 3.5 solution is compatible with Unity.

2. **Build the C# SDK libraries.** See the README.md file for the C# Server SDK for minimum requirements and additional build options. In an IDE, load the .Net 3.5 solution file. To generate the SDK libraries, restore the NuGet packages and build the solution.

3. **Check the API compatibility setting.** In the Unity Editor, go to File, Build Settings, Player Settings. In the Other Settings section, under Optimization, make sure that the API compatibility level is set to .Net 2.0.

4. **Add the Amazon GameLift libraries to Unity.** In the Unity Editor, import the following libraries into the Assets/Plugins directory:
 - EngineIoClientDotNet.dll
 - GameLiftServerSDKNet35.dll
 - log4net.dll
 - Newtonsoft.Json.dll
Add Amazon GameLift Server Code

For more information on adding Amazon GameLift functionality, see these topics:

- Add Amazon GameLift to Your Game Server (p. 27)
- Amazon GameLift Server API (C#) Reference (p. 126)

The following code example uses a `MonoBehavior` to illustrate a simple game server initialization with Amazon GameLift.

```csharp
using UnityEngine;
using Aws.GameLift.Server;
using System.Collections.Generic;
public class GameLiftServerExampleBehavior : MonoBehaviour
{
    // This is an example of a simple integration with GameLift server SDK that makes game
    // server processes go active on Amazon GameLift
    public void Start()
    {
        var listeningPort = 7777;
        // InitSDK establishes a local connection with Amazon GameLift's agent to enable
        // further communication.
        var initSDKOutcome = GameLiftServerAPI.InitSDK();
        if (initSDKOutcome.Success)
        {
            ProcessParameters processParameters = new ProcessParameters(
                (gameSession) => {
                    // When a game session is created, GameLift sends an activation request
                    // to the game server and passes along the game session object containing game properties and
                    // other settings.
                    // Here is where a game server should take action based on the game
                    // session object.
                    // Once the game server is ready to receive incoming player connections,
                    // it should invoke GameLiftServerAPI.ActivateGameSession()
                    GameLiftServerAPI.ActivateGameSession();
                },
                () => {
                    // OnProcessTerminate callback. GameLift invokes this callback before
                    // shutting down an instance hosting this game server.
                    // It gives this game server a chance to save its state, communicate
                    // with services, etc., before being shut down.
                    // In this case, we simply tell GameLift we are indeed going to shut
                    // down.
                    GameLiftServerAPI.ProcessEnding();
                },
                () => {
                    // This is the HealthCheck callback.
                    // GameLift invokes this callback every 60 seconds or so.
                    // Here, a game server might want to check the health of dependencies
                    // and such.
                    // Simply return true if healthy, false otherwise.
                    // The game server has 60 seconds to respond with its health status.
                    GameLift will default to 'false' if the game server doesn't respond in time.
                });
        }
    }
}
```
In this case, we're always healthy!
 return true;
},
listeningPort, //This game server tells GameLift that it will listen on
port 7777 for incoming player connections.
new LogParameters(new List<string>()
{
 //Here, the game server tells GameLift what set of files to upload when
 the game session ends.
 //GameLift uploads everything specified here for the developers to
 fetch later.
 "/local/game/logs/myserver.log"
});

//Calling ProcessReady tells GameLift this game server is ready to receive
incoming game sessions!
var processReadyOutcome = GameLiftServerAPI.ProcessReady(processParameters);
if (processReadyOutcome.Success)
{
 print("ProcessReady success.");
}
else
{
 print("ProcessReady failure : " + processReadyOutcome.Error.ToString());
}
else
{
 print("InitSDK failure : " + initSDKOutcome.Error.ToString());
}

void OnApplicationQuit()
{
 //Make sure to call GameLiftServerAPI.Destroy() when the application quits. This
 resets the local connection with GameLift's agent.
 GameLiftServerAPI.Destroy();
}

Integrating your Game Server for Amazon GameLift

The topics in this section describe how to integrate Amazon GameLift into a multiplayer game server.

Adding Amazon GameLift to your game server is Step 2 on the Integration Plan (p. 17) roadmap. The
integration topics in this section assume that you've created an AWS account and have an existing game
server project.

Topics
- Add Amazon GameLift to Your Game Server (p. 27)
- Amazon GameLift Server API (C++) Reference (p. 115)
- Amazon GameLift Server API (C#) Reference (p. 126)
- Amazon GameLift Server API Reference for Unreal Engine (p. 136)
Add Amazon GameLift to Your Game Server

Your game server needs to interact with the Amazon GameLift service once it is deployed and running as multiple server processes on an Amazon GameLift fleet. The code you add enables each server process to communicate with the Amazon GameLift service. Server processes must be able to respond to certain events triggered by the Amazon GameLift service and keep Amazon GameLift informed about player activity and server process status. See this complete description of Amazon GameLift interactions (p. 34).

Use the Amazon GameLift Server SDK for your preferred language to add Amazon GameLift functionality to your game server. See the following Server API references for more complete information:

- C++ Server API Reference (p. 115)
- C# Server API Reference (p. 126)
- Unreal Engine Plugin API Reference (p. 136)

To integrate Amazon GameLift into your game server, add the Amazon GameLift Server SDK to your game server project and build the functionality described in this topic.

Prepare a Server Process

Add code to initialize an Amazon GameLift client and notify the Amazon GameLift service that the server is ready to host a game session. This code should run automatically before any Amazon GameLift-dependent code, such as on launch.

Note
Server API action names are the same in all available languages.

1. Initialize the Server SDK. Call `InitSdk()`.
2. Notify Amazon GameLift that a game server process is ready to host a game session. Each server process started on an Amazon GameLift instance must call `ProcessReady()` with the following information:

 - Port number being used by the server process. This port number, along with an IP address, is stored in a game session object, which game clients use when connecting to an active game session.

 - Location of files generated during an active game session that you want Amazon GameLift to retain, such as game session logs. Files generated by a server process when hosting a game session are saved to the Amazon GameLift instance, but lost when an instance is shut down. Amazon GameLift will upload any of these files you request; once uploaded, they are accessible through the Amazon GameLift console or by calling the Amazon GameLift API `GetGameSessionLogUrl()`. Consider using a file naming scheme that uniquely identifies game sessions if your fleet is configured to run multiple concurrent server processes per instance.

 - Names of three callback functions used by Amazon GameLift to trigger certain actions on the server process. Your game server code must implement these callback functions. The names shown are used for convenience; include the functions' actual names in your `ProcessReady()` call. More information on implementing these functions is provided in the following sections.

 - `onHealthCheck` is called regularly to request a health status report from the server process.
 - `onStartGameSession` is called when the Amazon GameLift service receives request to start a new game session (`CreateGameSession()`).
 - `onProcessTerminate` is called when Amazon GameLift service needs to force the server process to terminate, allowing the server process to shut down gracefully.
Depending on how you configure your fleets, there may be multiple server processes running concurrently on a fleet instance. Once one server process on an instance calls `ProcessReady()` successfully, the Amazon GameLift service sets the instance's status to ACTIVE.

Report Server Process Health

Add code to implement the callback function `onHealthCheck()`. This function is invoked by the Amazon GameLift service regularly to collect health metrics from the server process. The server process's response to a health check is a binary: healthy or unhealthy. When implementing this callback function, do the following:

- Evaluate the status of the server process using whatever measures make sense for your game. For example, you might report the server process as unhealthy if any external dependencies have failed or if metrics such as memory capacity fall outside a defined limit.
- Complete the health evaluation and respond to the callback within 60 seconds. If the Amazon GameLift service does not receive a response in that time, it will automatically consider the server process to be unhealthy.
- Return a boolean value: true for healthy, false for unhealthy.

If you do not implement a health check callback, the Amazon GameLift service considers the server process to be healthy unless the process is not responding, in which case it is considered unhealthy.

Server process health is used by Amazon GameLift to efficiently end unhealthy processes and free up resources. If a server process continues to report unhealthy or does not respond for three consecutive health checks, the Amazon GameLift service may shut down the process and start a new one. Metrics on a fleet's server process health is collected and viewable on the Amazon GameLift console.

Start a Game Session

Add code to implement the callback function `onStartGameSession()`. This function is invoked by the Amazon GameLift service when creating a new game session, which may occur in response to a `CreateGameSession()` request or as part of game session placement or matchmaking activities.

The `onStartGameSession` function takes a `GameSession` object, provided by the Amazon GameLift service, as an input parameter. This object contains the game session ID and other information that defines the requested game session. The function should accomplish the following tasks:

- Perform whatever actions are needed to create a new game session. The new game session should reflect the `GameSession` object, including creating slots for the specified maximum number of players and referencing the game session name and ID. The Amazon GameLift service provides the same game session information to the game client.
- Process the game property values specified by the game client in its request. The game properties are contained in the `GameSession` object.
- At some point after the new game session is ready to accept players, the server process must call the server API action `ActivateGameSession()`. In response to a successful call, the Amazon GameLift service changes the game session status to ACTIVE.

Validate a New Player

Add code to verify a player connection request with the Amazon GameLift service. This code should run whenever a new player attempts to connect to the server process and before accepting the connection.
Connection requests from a game client must reference a player session ID. This ID is issued by the Amazon GameLift service and used to reserve a player slot in the game session (in response to an AWS SDK call to `CreatePlayerSession()`). The game server must call `AcceptPlayerSession()` with the referenced player session ID to verify that the connection request is coming from the authorized player.

Once the player session ID is validated by the Amazon GameLift service, the server process can accept the connection and allow the player to join the game session. If the player session ID is not validated by the Amazon GameLift service, the server process should deny the connection.

To acquire player data associated with the game session, call `DescribePlayerSessions()`.

Report a Player Session Ending

Add code to notify the Amazon GameLift service when a player disconnects from the game session. This code should run whenever the server process detects a dropped connection.

In the code handling the dropped connection, add a call to the server API action `RemovePlayerSession()` with the player session ID associated with the dropped connection. This notification enables the Amazon GameLift service to accurately track the number of current players and available slots in the game session.

Stop a Game Session

Add code to notify the Amazon GameLift service when a game session is ending. The notification enables the Amazon GameLift service to accurately track a server process's availability for new game sessions. This code should be added to the normal game session ending process.

At the end of the code to stop a game session, add a call to the server API action `TerminateGameSession()`. On successful receipt of this notification, the Amazon GameLift service changes the game session status to TERMINATED and may immediately start a new game session.

Note

If stopping a game session will be immediately followed by shutting down the server process, you can call the server API action `ProcessEnding()`, which terminates both the game session and the server process.

Shut Down a Server Process

Add code to notify the Amazon GameLift service when a server process will shut down. Once called, the server process can safely end. Shut down may be initiated by the server process or in response to the Amazon GameLift service invoking the `onProcessTerminate()` callback function.

Add the following code:

- At the end of the game server code that shuts down a server process, add a call to the server API action `ProcessEnding()`. On receipt of this notification, the Amazon GameLift service changes the server process status to TERMINATED and recycles the instance's resources as needed.

- Implement the callback function `onProcessTerminate()`. This function simply needs to call the game server termination code, which now includes the call to `ProcessEnding()`. This callback function is invoked by the Amazon GameLift service prior to terminating the instance hosting the server process. A common reason for Amazon GameLift service to invoke this call is to shut down an unhealthy server process. After receiving this call, the server process has five minutes to gracefully disconnect players, preserve game state data, and perform other cleanup tasks. If the server process calls `ProcessEnding()` before five minutes has elapsed, the Amazon GameLift service may immediately shut down the process.
Integrating your Game Client for Amazon GameLift

The topics in this section describe the Amazon GameLift functionality you can add to a game client or game service that handles the following tasks:

- Requests information about active game sessions from the Amazon GameLift service.
- Joins a player to an existing game session.
- Creates a new game session.
- Changes metadata about an existing game session.

Adding Amazon GameLift to your multiplayer game client is Step 5 in the Integration Plan (p. 17). The following instructions assume that you've created an AWS account, generated an Amazon GameLift-enabled game server and uploaded it to Amazon GameLift, and used Amazon GameLift tools (such as the Amazon GameLift console) to create and configure a virtual fleet to host your game sessions. When adding Amazon GameLift to your game client, you must be able to provide AWS account credentials and specify a fleet to be used with the client.

For more information on how game clients interact with the Amazon GameLift service and game servers running on Amazon GameLift, see Amazon GameLift and Game Client/Server Interactions (p. 34).

Topics

- Add Amazon GameLift to Your Game Client (p. 30)
- Create Game Sessions with Queues (p. 33)
- Generate Player IDs (p. 34)

Add Amazon GameLift to Your Game Client

You can integrate Amazon GameLift into game components that need to acquire game session information, create new game sessions, and/or join players to games. Depending on your game architecture, this functionality might be placed in the game client or in game services that handle tasks such as player authentication, matchmaking, or game placement.

To do this, use the AWS SDK with Amazon GameLift API. This SDK is available in C++, C#, and several other languages. For details on the AWS SDK, version information, and language support, see Amazon GameLift SDKs (p. 11). Most of the links in this topic go to the Amazon GameLift Service API Reference, which describes the low-level service API for Amazon GameLift-related actions and includes links to language-specific reference guides.

Note

Interested in using matchmaking to get players into games? Once you've set up Amazon GameLift on your game client or a service, add FlexMatch to match players and create custom game sessions. See more at Matchmaking with FlexMatch (p. 74).

Set Up Amazon GameLift on a Client or Service

You add code to initialize an Amazon GameLift client or game service and store some key settings for use with Amazon GameLift. This code needs to be located so that it runs before any Amazon GameLift-dependent code, such as on launch.

Note

To set up your game client for testing using Amazon GameLift Local, see Testing Your Integration (p. 38)
1. Decide whether to use the default client configuration or create custom settings. For custom settings, you must create a custom `ClientConfiguration` object. See AWS `ClientConfiguration` (C++) for object structure and the default settings.

A client configuration specifies a target region and endpoint. The region determines which resources (fleets, queues, matchmakers, etc.) Amazon GameLift interacts with when responding to requests. The default client configuration specifies the US East (N. Virginia) region. To use any other region, create a custom configuration. See this list of AWS regions supported by Amazon GameLift for names and endpoints. If your client or service needs to make requests for multiple regions, create a separate client configuration object for each target region and each as needed. See Using Regions with the AWS SDKs for language-specific examples.

2. Initialize an Amazon GameLift client. Call `Aws::GameLift::GameLiftClient()` (C++) using either a client configuration with the default settings or a custom configuration.

3. Add a mechanism to generate a unique identifier for each player. Amazon GameLift requires a unique player ID to connect to a game session. For more details, see Generate Player IDs (p. 34).

4. Collect and store the following information to use when contacting Amazon GameLift:

 - **Target fleet** – Most Amazon GameLift API requests must specify a fleet, such as when getting information on available game sessions or managing game sessions and player sessions. How you define the optimal target fleet (for example, setting a static fleet, or choosing a fleet based on a device's physical location). To specify a target fleet, use either a fleet ID or an alias ID that points to the target fleet. Fleet aliases are highly useful in that you can switch players from one fleet to another without issuing a game client update. The combination of target fleet and region (specified in the client configuration) uniquely identifies the fleet.

 - **Target queue** – If your game uses multi-fleet queues to place new game sessions, you can specify which queue to use. To specify a target queue, use the queue name. The queue must be configured in the region

 - **AWS credentials** – All calls to the Amazon GameLift service must provide credentials for the AWS account that hosts the game. This is the account you used to set up your Amazon GameLift fleets, and you should have created an IAM user or user group for players with a permissions policy. You need to create an `Aws::Auth::AWSCredentials` (C++) object containing an IAM access key and secret key for the player user group. For help finding the keys, see Managing Access Keys for IAM Users.

Get Game Sessions

Add code to discover available game sessions and manage game sessions settings and metadata. See Game and Player Session Features (p. 6) for more on game session features.

Search for active game sessions.

Use `SearchGameSessions` to get information on a specific game session, all active sessions, or sessions that meet a set of search criteria. This call returns a `GameSession` object for each active game session that matches your search request.

Use search criteria to get a filtered list of active game sessions for players to join. For example, you can filter sessions as follows:

- Exclude game sessions that are not accepting new players: `PlayerSessionCreationPolicy = DENY_ALL`
- Exclude game sessions that are full: `CurrentPlayerSessionCount = MaximumPlayerSessionCount`
- Choose game sessions based on length of time the session has been running: `Evaluate CreationTime`

Manage game sessions.
Use any of the following operations to retrieve or update game session information.

- **DescribeGameSessionDetails()** – Get a game session’s protection status in addition to game session information.
- **UpdateGameSession()** – Change a game session’s metadata and settings as needed.
- **GetGameSessionLogUrl** – Access stored game session logs.

Create Game Sessions

Add code to start new game sessions on your deployed fleets and make them available to players. There are two options for creating game sessions, depending on whether you are deploying your game in multiple regions or in a single region.

Create a game session using a multi-region queue.

Use **StartGameSessionPlacement** to place a request for a new game session in a queue. To use this feature, you’ll need to set up a queue, which determines where (on which fleets) the new game session can be placed. A queue processes a game session placement request by trying each possible fleet, in turn, until it finds one with available resources to host the new game session. For more detailed information on queues and how to use them, see Create Game Sessions with Queues (p. 33).

When creating a game session placement, specify the name of the queue to use, a game session name, a maximum number of concurrent players for the game, and an optional set of game properties. You can optionally provide a list of players to automatically join to the game session. If you include player latency data for relevant regions, Amazon GameLift uses this information to place the new game session on a fleet that provides the best possible gameplay experience for players.

Game session placement is an asynchronous process. Once you’ve placed a request, you can let it succeed or time out. You can also cancel the request at any time using **StopGameSessionPlacement**. To check the status of your placement request, call **DescribeGameSessionPlacement** to retrieve an updated GameSessionPlacement object. When a new game session is created, the GameSessionPlacement reflects the following changes: (1) Status changes from Pending to Fulfilled; (2) New game session information is added, including game session ID and region; and (3) New player session information is added (if requested).

Create a game session on a specific fleet.

Use **CreateGameSession** to create a new session on a specified fleet. This synchronous operation succeeds or fails depending on whether the fleet has resources available to host a new game session. Your game should handle failures as best suits your game and players. For example, you might repeat the request until resources are freed or scaled up, or you might switch to a different fleet. Once Amazon GameLift has created the new game session and returned a GameSession object, you can start joining players to it.

When you use this method to create a game session, specify a fleet ID or alias ID, a session name, and a maximum number of concurrent players for the game. Optionally, you can include a set of game properties. Game properties are defined in an array of key–value pairs in which you define the keys and a set of values that are meaningful to your game. This information is passed to the server process hosting the new game session, to be used as designed in your game server. For example, you might use game properties to direct the game session to use a certain game map or a particular set of rules.

If you use Amazon GameLift's resource protection feature to limit the number of game sessions one player can create, you'll need to indicate the creator's player ID.

Join a Player to a Game Session

Add code to reserve player slots in active game sessions and connect game clients to game sessions.
1. **Reserve a player slot in a game session.**

 To reserve a player slot, create a new player session for the game session. See *How Players Connect to Games (p. 6)* for more on player sessions. You have two ways to create new player sessions:

 - If you're using `StartGameSessionPlacement` to create game sessions, as described in the previous section, you can reserve slots for one or more players in the new game session.
 - Reserve player slots for one or more players using `CreatePlayerSession` or `CreatePlayerSessions` with a game session ID.

 With both methods, Amazon GameLift first verifies that the game session is accepting new players and has an available player slot. If successful, Amazon GameLift reserves a slot for the player, creates the new player session, and returns a `PlayerSession` object containing the IP address and port that a game client needs to connect to the game session.

 A player session request must include a unique ID for each player. See *Generate Player IDs (p. 34)* for more on player IDs.

 Optionally, a player session request can include a set of custom player data. This data is stored in the newly created player session object, which can be retrieved by calling `DescribePlayerSessions()`. It is also passed from the Amazon GameLift service to the game server when the player connects directly to the game session. Player data is not used by Amazon GameLift; it is a simple string of characters that is available to your game components for interpretation. When requesting multiple player sessions, you can provide a string of player data for each player, mapped to the player ID in the request.

2. **Connect to a game session.**

 Add code to the game client to retrieve the `PlayerSession` object, which contains the game session's IP address and port. Use this information to connect directly to the server process. In order to claim the reserved player slot, the connection request must reference the player session ID. Once connected, the game client and server process communicate directly, without involving Amazon GameLift. This framework minimizes the amount of latency in gameplay.

 The server process maintains communication with the Amazon GameLift service about the player connection in order to track availability of player slots. On initial connection, it contacts the service to verify that the player session ID is valid and in a reserved status. If validated, the reservation is claimed and the player connection is accepted. Later, when the player disconnects, the server process reports the dropped connection.

Create Game Sessions with Queues

This set of features lets you place new game sessions more efficiently across Amazon GameLift resources, and better supports matchmaking services. Previously, new game session requests were limited to a single fleet (`CreateGameSession`), and the request failed if the fleet was at full capacity or otherwise compromised.

Use a queue to place new game sessions on any one of a group of fleets that can span regions. Increased player demand can be shifted to lesser used fleets in other regions as needed. Queues also decrease the overhead needed to monitor fleets and balance resources across multiple fleets and regions. You can manage queues and track queue performance metrics in the Amazon GameLift Console.

Create a new game session placement request and add it to a queue. A game session placement request includes standard game session properties, and also lets you add one or more players to the new game session.
When creating a game session placement request, include player latency data to help Amazon GameLift choose a fleet in a region that provides the best possible experience for all the players.

Generate Player IDs

Amazon GameLift uses a player session to represent a player connected to a game session. A player session must be created each time a player connects to a game session. When a player leaves a game, the player session ends and is not reused.

Amazon GameLift provides a file called *Lobby.cpp* in the Amazon Lumberyard sample project *MultiplayerSample* that demonstrates how to generate a new, random ID number for every player in every new game session. You are not required to use the sample code; we provide it as an example. You can also rewrite the code to persist your own unique, non-personally identifiable player IDs.

The following sample code in *Lobby.cpp* randomly generates unique player IDs:

```cpp
bool includeBrackets = false;
bool includeDashes = true;
string playerId = AZ::Uuid::CreateRandom().ToString<string>(includeBrackets, includeDashes);
```

You can view player sessions by Player ID in the **AWS Management Console** for Amazon GameLift. For more information on player sessions, see [View Data on Game and Player Sessions (p. 101)](##).

Amazon GameLift and Game Client/Server Interactions

This topic describes the interactions between a client app, a game server, and the Amazon GameLift service. See also the [Amazon GameLift–Game Server/Client Interactions (p. 37)](##) diagram.

Setting Up a New Server Process

1. The **Amazon GameLift service** launches a new server process on an Amazon Elastic Compute Cloud (Amazon EC2) instance.
2. The **server process**, as part of the launch process, calls these server API actions:
 - `InitSDK()` to initialize the server SDK.
 - `ProcessReady()` to communicate readiness to accept a game session and specify connection port and location of game session log files.

 It then waits for a callback from the Amazon GameLift service.
3. The **Amazon GameLift service** changes the status of the EC2 instance to ACTIVE, with 0 game sessions and 0 players.
4. The **Amazon GameLift service** begins calling the `onHealthCheck` callback regularly while the server process is active. The server process must report either healthy or not healthy within one minute.

Creating a Game Session

1. The **Client app** calls the client API action `CreateGameSession()`.
2. The **Amazon GameLift service** searches for an active server with 0 game sessions. When found, it does the following:
Adding a Player to a Game Session

1. The **Client app** calls the client API action `CreatePlayerSession()` with a game session ID.
2. The **Amazon GameLift service** checks the game session status (must be ACTIVE), and looks for an open player slot in the game session. If a slot is available, it does the following:
 - Creates a new `PlayerSession` object and sets its status to RESERVED.
 - Responds to the client app request with the `PlayerSession` object.
3. The **Client app** connects directly to the server process with the player session ID.
4. The **server process** calls the Server API action `AcceptPlayerSession()` to validate the player session ID. If validated, the Amazon GameLift service passes the `PlayerSession` object to the server process. The server process either accepts or rejects the connection.
5. The **Amazon GameLift service** does one of the following:
 - If the connection is accepted, sets the `PlayerSession` status to ACTIVE.
 - If no response is received within 60 seconds of the client app's original `CreatePlayerSession()` call, changes the `PlayerSession` status to TIMEDOUT and reopens the player slot in the game session.

Removing a Player From a Game Session

1. The **Client app** disconnects from the server process.
2. The **server process** detects the lost connection and calls the server API action `RemovePlayerSession()`.
3. The **Amazon GameLift service** changes the `PlayerSession` status to COMPLETED and reopens the player slot in the game session.

Shutting down a Game Session

Shutting down a game session

1. The **server process** calls the server API action `TerminateGameSession()`.
2. The **Amazon GameLift service** does the following:
 - Changes the GameSession status to TERMINATED.
 - Uploads game session logs to Amazon Simple Storage Service (Amazon S3).
 - Updates fleet utilization to indicate the server is idle (0 game sessions, 0 players).
Terminating a Server Process

1. The server process does the following:
 - Runs code that gracefully shuts down the server process.
 - Calls the server API action `ProcessEnding()` to inform the Amazon GameLift service.

2. The Amazon GameLift service does the following:
 - Uploads game session logs (if any) to Amazon S3.
 - Changes the server process status to TERMINATED.
 - Recycles instance resources based on the fleet's runtime configuration.

Responding to a Shutdown Request

1. The Amazon GameLift service invokes the server process's `onProcessTerminate` callback. This call is used to shut down a server process that has reported unhealthy or not responded with health status for three consecutive minutes.

2. The server process runs the `onProcessTerminate` callback function, which triggers the server's termination process, ending with a call to `ProcessEnding()`.

3. The Amazon GameLift service does the following, either in response to receiving the `ProcessEnding()` call or after five minutes:
 - Uploads game session logs (if any) to Amazon S3.
 - Changes the server process status to TERMINATED.
 - Recycles instance resources based on the fleet's runtime configuration.
Testing Your Integration

Use Amazon GameLift Local to run a limited version of the Amazon GameLift service on a local device and test your game integration against it. This tool is useful when doing iterative development on your game integration. The alternative—uploading each new build to Amazon GameLift and configuring a fleet to host your game—can take 30 minutes or more each time.

With Amazon GameLift Local, you can verify the following:

• Your game server is correctly integrated with the Server SDK and is properly communicating with the Amazon GameLift service to start new game sessions, accept new players, and report health and status.
• Your game client is correctly integrated with the AWS SDK for Amazon GameLift and is able to retrieve information on existing game sessions, start new game sessions, join players to games and connect to the game session.

Amazon GameLift Local is a command-line tool that starts a self-contained version of the Amazon GameLift service. Amazon GameLift Local also provides a running event log of server process initialization, health checks, and API calls and responses. Amazon GameLift Local recognizes a subset of the AWS SDK actions for Amazon GameLift. You can make calls from the AWS CLI or from your game client. All API actions perform locally just as they do in the Amazon GameLift web service.

Set Up Amazon GameLift Local

Amazon GameLift Local is provided as an executable .jar file bundled with the Server SDK. It can be run on Windows or Linux and used with any Amazon GameLift-supported language.

Before running Local, you must also have the following installed.

• A build of the Amazon GameLift Server SDK version 3.1.5 or higher
• Java 8

Test a Game Server

If you want to test your game server only, you can use the AWS CLI to simulate game client calls to the Amazon GameLift Local service. This verifies that your game server is performing as expected with the following:

• The game server launches properly and initializes the Amazon GameLift Server SDK.
• As part of the launch process, the game server notifies Amazon GameLift that the server is ready to host game sessions.
• The game server sends health status to Amazon GameLift every minute while running.
• The game server responds to requests to start a new game session.

1. Start Amazon GameLift Local.

Open a command prompt window, navigate to the directory containing the file GameLiftLocal.jar and run it. By default, Local listens for requests from game clients on port 8080. To specify a different port number, use the -p parameter, as shown in the following example:

 java -jar GameLiftLocal-3.1.6.jar -p 9080
Once Local starts, you see logs indicating that two local servers were started, one listening for your game server and one listening for your game client or the AWS CLI. Logs continue to report activity on the two local servers, including communication to and from your game components.

2. **Start your game server.**

Start your Amazon GameLift-integrated game server locally. You don't need to change the endpoint for the game server.

In the Local command prompt window, log messages indicate that your game server has connected to the Amazon GameLift Local service. This means that your game server successfully initialized the Amazon GameLift Server SDK (with `InitSDK()`). It has called `ProcessReady()` with the log paths shown and, if successful, is ready to host a game session. While the game server is running, Amazon GameLift logs each health status report from the game server. The following log messaging example shows a successfully integrated game server:

```
16:50:53,217  INFO || - [SDKListenerImpl] nioEventLoopGroup-3-1 - SDK connected: /127.0.0.1:64247
16:50:53,217  INFO || - [SDKListenerImpl] nioEventLoopGroup-3-1 - SDK pid is 17040, sdkVersion is 3.1.5 and sdkLanguage is CSharp
16:50:53,543  INFO || - [SDKListenerImpl] nioEventLoopGroup-3-1 - onProcessReady data: logPathsToUpload: "C:\game\logs"
  logPathsToUpload: "C:\game\error"
  port: 1935
16:50:53,544  INFO || - [HostProcessManager] nioEventLoopGroup-3-1 - Registered new process true, true,
16:50:53,558  INFO || - [SDKListenerImpl] nioEventLoopGroup-3-1 - onReportHealth received from /127.0.0.1:64247 with health status: healthy
```

Potential error and warning messages include the following:

- Error: "ProcessReady did not find a process with pID: `<process ID>`! Was InitSDK() invoked?"
- Warning: "Process state already exists for process with pID: `<process ID>`! Is ProcessReady(...) invoked more than once?"

3. **Start the AWS CLI.**

Once your game server successfully calls `ProcessReady()`, you can start making client calls. Open another command prompt window and start the AWS CLI tool. If you haven't already set it up, see [Install the AWS CLI (p. 15)](). The AWS CLI by default uses the Amazon GameLift web service endpoint. You must override this with the Local endpoint in every request using the `--endpoint-url` parameter, as shown in the following example request.

```
aws gamelift describe-game-sessions --endpoint-url http://localhost:9080  --fleet-id fleet-123
```

In the AWS CLI command prompt window, calls to AWS SDK APIs result in responses as documented in the .

4. **Create a game session.**

With the AWS CLI, submit a `CreateGameSession()` request. The request should follow the expected syntax. For Local, the `FleetId` parameter can be set to any valid string (`^fleet-\S+$`).

Version
39
Test a Game Server and Client

To check your full game integration, including connecting players to games, you can run both your game server and client locally. This allows you to test programmatic calls from your game client to the Amazon GameLift Local. You can verify the following actions:

- The game client is successfully making AWS SDK requests to the Amazon GameLift Local service, including to create game sessions, retrieve information on existing game sessions, and create player sessions.
- The game server is correctly validating players when they try to join a game session. For validated players, the game server may retrieve player data (if implemented).
- The game server reports a dropped connection when a player leaves the game.
- The game server reports ending a game session.

In the AWS CLI window, Amazon GameLift responds with a game session object including a game session ID. Notice that the new game session's status is Activating. The status changes to Active once your game server invokes ActivateGameSession. If you want to see the changed status, use the AWS CLI to call DescribeGameSessions().
1. **Start Amazon GameLift Local.**

 Open a command prompt window, navigate to the directory containing the file `GameLiftLocal.jar` and run it. By default, Local listens for requests from game clients on port 8080. To specify a different port number, use the `-p` parameter, as shown in the following example.

   ```bash
   ./gamelft-local -p 9080
   ```

 Once Local starts, you see logs showing that two local servers were started, one listening for your game server and one listening for your game client or the AWS CLI.

2. **Start your game server.**

 Start your Amazon GameLift-integrated game server locally. See Test a Game Server (p. 38) for more detail on message logs.

3. **Configure your game client for Local and start it.**

 To use your game client with the Amazon GameLift Local service, you must make the following changes to your game client's setup, as described in Set Up Amazon GameLift on a Client or Service (p. 30):

 - Change the `ClientConfiguration` object to point to your Local endpoint, such as `http://localhost:9080`.
 - Set a target fleet ID value. For Local, you do not need a real fleet ID; set the target fleet to any valid string (`^fleet-\S+`), such as `fleet-1a2b3c4d-5e6f-7a8b-9c0d-1e2f3a4b5c6d`.
 - Set AWS credentials. For Local, you do not need real AWS credentials; you can set the access key and secret key to any string.

 In the Local command prompt window, once you start the game client, log messages should indicate that it has initialized the `GameLiftClient` and is successfully communicated with the Amazon GameLift service.

4. **Test game client calls to the Amazon GameLift service.**

 Verify that your game client is successfully making any or all of the following API calls:

 - `CreateGameSession()`
 - `DescribeGameSessions()`
 - `CreatePlayerSession()`
 - `CreatePlayerSessions()`
 - `DescribePlayerSessions()`

 In the Local command prompt window, only calls to `CreateGameSession()` result in log messages. Log messages show when Amazon GameLift Local prompts your game server to start a game session (`onStartGameSession` callback) and gets a successful `ActivateGameSession` when your game server invokes it. In the AWS CLI window, all API calls result in responses or error messages as documented.

5. **Verify that your game server is validating new player connections.**

 After creating a game session and a player session, establish a direct connection to the game session.

 In the Local command prompt window, log messages should show that the game server has sent an `AcceptPlayerSession()` request to validate the new player connection. If you use the AWS CLI to call `DescribePlayerSessions()`, the player session status should change from `Reserved` to `Active`.
Variations with Local

When using Amazon GameLift Local, keep in mind the following:

- Unlike the Amazon GameLift web service, Local does not track a server’s health status and initiate the onProcessTerminate callback. Local simply stops logging health reports for the game server.
- For calls to the AWS SDK, fleet IDs are not validated, and can be any string value that meets the parameter requirements (\^fleet-\S+).
- Game session IDs created with Local have a different structure. They include the string local, as shown here:

 `arn:aws:gamelift:local::gamesession/fleet-123/gsess-56961f8e-db9c-4173-97e7-270b82f0daa6`
Uploading Your Game to Amazon GameLift

Before setting up computing resources to host your Amazon GameLift-enabled multiplayer game, you first need to create a game build and upload it to the Amazon GameLift service. A game build includes all the server executables and dependent files needed to run server processes and host game sessions. Once you've uploaded a build to Amazon GameLift, you can then create a fleet of computing resources to operate your game.

The topics in this section describe how to package your game build and how to use the AWS CLI tool to upload it to Amazon GameLift.

Tip
You don't need to have a game ready to start experimenting with Amazon GameLift. The Amazon GameLift console offers a quick sample setup that gets you up and running with a sample game server and client in five easy steps. In addition, the Amazon GameLift Getting Started tutorials, in text and video format, walk you through each step in the process: You create and upload a build, set up a fleet, create game sessions, and connect a client. The tutorials use a sample multiplayer game, which is included in the Lumberyard download.

Topics
• Package Build Files (p. 43)
• Upload Build Files to Amazon GameLift (p. 44)

Package Build Files

Before uploading your Amazon GameLift-enabled game server to the Amazon GameLift service for hosting, you need to package all game server files into a build folder. This folder must include all components required to run your game servers, including the following:

• Game server binaries – The binary files required to run the game server. A build can include binaries for multiple game servers, as long as they are built to run on the same platform (see supported platforms (p. 11)).
• Dependencies – Any dependent files required by your game server executables to run. Examples include assets, configuration files, and dependent libraries.
• Installation instructions – Script file that performs tasks required to configure a fleet instance for the game, such as installing dependent libraries. This script is run once, immediately after the build files are copied to the instance. Installation tasks must not require any user input. For Windows-based games, create an install batch file named “install.bat”. For Linux games, create a shell script file named “install.sh”. These files must be located at the root of the build folder.

Once you've packaged your build files, make sure your game server can run on a clean installation of your target operating system before uploading to Amazon GameLift. This step helps ensure that you include all required dependencies in your package and that your installation instructions are accurate.

To observe the build packaging process in action, see the Amazon GameDev tutorials for Amazon GameLift.
Upload Build Files to Amazon GameLift

Once your game server files are packaged (p. 43), you must provide them to Amazon GameLift for hosting. This is done by creating an Amazon GameLift build. You have two options for creating a build:

- Create a build with game build files stored in a directory.
- Create a build with game build files stored an Amazon S3 account.

When you create a build, a new game build record is created. This record contains a unique build ID (example: build-75bf99cd-2dd8-2039-8074-ab24da1f80e4), creation time stamp, uploaded file size, status, and other metadata. The build is immediately placed in **Initialized** status, and it remains there until Amazon GameLift acquires the build files. Once the game server files are successfully acquired, the build moves to **Ready** status.

Once a build is in **Ready** status, you can deploy it with a new Amazon GameLift fleet. When you create a fleet for the build, Amazon GameLift sets up new fleet instances and installs the game server build on each instance. Build files are installed in the following locations:

- For Windows fleets: `C:\game`
- For Linux fleets: `/local/game`

To troubleshoot fleet activation problems that might be related to build installation, you can remotely access a fleet instance for debugging. See Remotely Access Fleet Instances (p. 63).

Create a Build with Files in a Directory

To create a build with packaged game server files stored in any location, including a local directory, use the AWS Command Line Interface (AWS CLI) command `upload-build`. This command creates a new build record in Amazon GameLift and uploads files from a location you specify.

1. **Send an upload request.** In a command line window, type the following command and parameters.

   ```
   aws gamelift upload-build --operating-system [supported OS] --build-root [build path]
   --name [user-defined name of build] --build-version [user-defined build number] --
   region [region name]
   ```

 --build-root

 The directory path of your build files.

 --operating-system

 The operating system that all server executables in the build run on. All fleets created with this build automatically use this OS. Valid values are `WINDOWS_2012` and `AMAZON_LINUX`. This parameter is optional. If an operating system is not specified, Amazon GameLift uses the default value (WINDOWS_2012). This value cannot be changed later.

 --region

 Name of the region that you want to create your build in. You must create the build in the region that you want to deploy fleets in. To deploy in multiple regions, you must create a build
Create a Build with Files in Amazon S3

To create a game build with packaged game server files stored in an Amazon S3 bucket in your AWS account, use the AWS CLI command `create-build`. This operation creates a new build in Amazon GameLift and acquires your build files from the Amazon S3 bucket that you specify.

1. **Store your build files in Amazon S3.** Create a `.zip` file containing the packaged build files and upload it to an Amazon S3 bucket in your AWS account. Take note of the bucket label and the file name; you'll need these when creating an Amazon GameLift build.

2. **Give Amazon GameLift access to your build files.** Using the AWS Identity and Access Management (IAM) service, set up a new role that allows Amazon GameLift to access to your build files. This step requires the following tasks: (1) create the role and give it a name, (2) attach a trust policy, and (3) set the region.

Examples

- **Make a Build with Files in Amazon S3**

  ```bash
  aws gamelift upload-build --operating-system AMAZON_LINUX --build-root ~/mygame --name "My Game Nightly Build" --build-version "build 255" --region us-west-2
  
  aws gamelift upload-build --operating-system WINDOWS_2012 --build-root "C:\mygame" --name "My Game Nightly Build" --build-version "build 255" --region us-west-2
  ```

2. **Check build status.** View the new build record, including current status, using `describe-build` (or `DescribeBuild`). You can also view status on the Amazon GameLift console.

 In a command line window, type the following command and parameters.
   ```bash
   aws gamelift describe-build --build-id [build ID returned with the upload request] --region [region name]
   
   Example:
   
   ```bash
 aws gamelift describe-build --build-id "build-75bf99cd-2dd8-2039-8074-ab24da1f80e4" --region us-west-2
   ```

   In response to your request, the Amazon GameLift service returns the requested build record. This record contains a set of build metadata including status, size of the uploaded files, and a creation time stamp.

### Create a Build with Files in Amazon S3

and upload files for each region. If you configured your AWS CLI with a default region, you can omit this parameter.

**Note**
If you work in multiple regions, it is always a good idea to check your current default region. Use the AWS CLI command `configure get` (aws configure get region) to see your current default region. Use the command `configure set` (aws configure set region [region name]) to set a default region.

**--name** and **--build-version**

Use these parameters to describe your build. These metadata values can be changed later using `update-build` (or the AWS SDK operation `UpdateBuild`).

In response to your upload request, the Amazon GameLift service provides upload progress, and on a successful upload returns the new build record ID. Upload time depends on the size of your game files and the connection speed.

**Examples:**

```bash
aws gamelift upload-build --operating-system AMAZON_LINUX --build-root ~/mygame --name "My Game Nightly Build" --build-version "build 255" --region us-west-2
```
relationship policy that allows Amazon GameLift to assume the role, and (3) attach an access policy that limits the role's access. You can limit access as tightly as you need to, even to one specific file in a bucket. Once you've created the role, take note of the new role's Amazon Resource Name (ARN), which you'll need when creating a build.

**Note**
You can use the IAM console or AWS CLI tool to set up the role. If you use the console Create Role wizard, the easiest method is to create a simple AWS service role (select any service and do not attach a policy). Then add the trust relationship and access policy (shown as follows) to the newly created role. See the IAM user guide topic Creating a Role for help using the IAM console or AWS CLI tool.

Attach the following policies to the role:

- Trust relationship limited to Amazon GameLift:

  ```json
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "gamelift.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
  ```

- Inline policy limiting access to read-only rights for a specified S3 bucket:

  ```json
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:GetObjectMetadata"
],
 "Resource": "arn:aws:s3:::[BucketName]/*",
 "Effect": "Allow"
 }
]
 }
  ```

3. **Send a request to create a new build.** Use the AWS CLI command `create-build` (or the AWS SDK operation `CreateBuild`) to create a new build record and tell Amazon GameLift where your build files are stored. In this request, you must specify an Amazon S3 location, including the following information (which you collected when setting up your bucket and access role):

   - Bucket: The name of the bucket that contains your build. Example: "my_build_files".

   - Key: The name of the `.zip` file that contains your build files. Example: "mygame_build_7.0.1, 7.0.2".
• Role ARN: The ARN assigned to the access role you created. Example: "arn:aws:iam::111122223333:role/GameLiftAccess".

In a command line window, type the following command and parameters.

```bash
aws gamelift create-build --operating-system [supported OS] --storage-location "Bucket=[S3 bucket label],Key=[Build zip file name],RoleArn=[Access role ARN]" --name [user-defined name of build] --build-version [user-defined build number] --region [region name]
```

**Example:**

```bash
aws gamelift create-build --operating-system WINDOWS_2012 --storage-location "Bucket=gamelift-builds,Key=MyGame.zip,RoleArn=arn:aws:iam::401680102694:role/gamelift" --name "My Game NIGHTLY Build" --build-version "build 255" --region us-west-2
```

In response to your request, the Amazon GameLift service returns the newly created build record.

## Update Your Build Files

Once an Amazon GameLift build has been created, the build files associated with it cannot be changed. Instead, you must create a new Amazon GameLift build for each new set of files. If you provide build files using the `upload-build` command, you don't need to do anything special because Amazon GameLift automatically creates a new build record for each request. If you provide build files using the `create-build` command, upload a new build .zip file with a different name to Amazon S3 and create a build by referencing the new file name.

Try these tips for deploying updated builds:

- **Use aliases to seamlessly transfer players to a new game build.** When integrating your game client with Amazon GameLift, specify a fleet alias instead of a fleet ID. That way you can move players to a new build in just three steps: (1) Create the new build. (2) Create a fleet to deploy the new build. (3) Change the alias target from the old fleet to the new fleet. For more information, see Working with Aliases (p. 66).

- **Set up automated build updates.** Follow the GameDev blog post Automating Deployments to Amazon GameLift, with sample scripts, to incorporate Amazon GameLift deployments into your build system.
Working with Fleets

Amazon GameLift uses the concept of fleets to represent the deployed state of a single server build across zero or more Amazon Elastic Compute Cloud (Amazon EC2) instances. You can have multiple fleets per account with the same or different configurations (see AWS service limits on resources per account). You can delete fleets when you no longer need them. Use the AWS Command Line Interface (CLI) or the Amazon GameLift console to create a fleet.

Tip
You don't need to have a game ready to start experimenting with Amazon GameLift. The Amazon GameLift console offers a quick sample setup that gets you up and running with a sample game server and client in five easy steps. In addition, the Amazon GameLift Getting Started tutorials, in text and video format, walk you through each step in the process: You create and upload a build, set up a fleet, create game sessions, and connect a client. The tutorials use a sample multiplayer game, which is included in the Lumberyard download.

Topics
- Choose Computing Resources (p. 48)
- Create a Fleet (p. 49)
- Change Fleet Capacity (p. 53)
- Update a Fleet (p. 54)
- Delete a Fleet (p. 55)
- Set Up Fleet Automatic Scaling (p. 56)
- Set Up VPC Peering (p. 59)
- Run Multiple Processes on a Fleet (p. 61)
- Remotely Access Fleet Instances (p. 63)

Choose Computing Resources

Amazon GameLift uses Amazon Elastic Compute Cloud (Amazon EC2) resources to deploy your game servers and host game sessions for your players. When creating a fleet, you decide what type of resources to use and how many instances to maintain in the fleet. The more Amazon EC2 instances you have in your fleet, the more game sessions you can run concurrently. Keep in mind that each instance type has a cost associated with it, and you pay for each instance dedicated to your fleet. You can increase or decrease the number of instances in a fleet at any time (see Change Fleet Capacity (p. 53)) but the instance type is fixed once the fleet is created.

When you choose an instance type, you're determining the hardware that will be dedicated to each instance in the fleet, including computing power, memory, storage, and networking capacity. All instances in a fleet use the same instance type, so if you have game servers with different computing requirements, you need to set up separate fleets.

The platform for a fleet's instances depends on the operating system of the fleet's build (see supported game server platforms (p. 11)). Learn more about instance types for:
- Microsoft Windows
- Amazon Linux
AWS Service Limits

AWS places limits how many Amazon EC2 instances can be use by an AWS account. Each instance type has a maximum number allowed per account, and this limit varies by AWS region. Each account also is limited in the total number of instances used regardless of type of instance. You can access information on limits in several ways:

- Find general limits for Amazon GameLift, as well as all other AWS services on the AWS Service Limits page.
- See limits for a specific region in the Amazon GameLift console: Select a region and choose Service limits from the Amazon GameLift menu. You can also view the total number of instances currently in use in the region.
- Retrieve the maximum number of instances per AWS account (by region) by using the Amazon GameLift API action DescribeEC2InstanceLimits. This action also returns the number for instances currently active in the region.

If you need more instances than allowed by AWS service limits, you can request an increase on the Amazon GameLift Service limits page of the AWS Management Console.

Create a Fleet

You can create a new fleet to host game servers for any game build that has been uploaded to the Amazon GameLift service and is in a Ready status. Use either the Amazon GameLift console or the AWS Command Line Interface (p. 15) (CLI) to create a fleet. You can change a fleet's configuration by editing a fleet (p. 54).

Create a Fleet (Console)

To create a fleet with the Amazon GameLift console:

1. Open the Amazon GameLift console at https://console.aws.amazon.com/gamelift/.
2. On the Builds page, find the build that you want to create a fleet for and verify that its status is Ready.
3. Select the build (use the option button to the left of the build status) and click Create fleet from build to open the Create fleet page.
4. On the Create fleet page, complete the Fleet Details section:
   - **Name** – Create a meaningful fleet name so you can easily identify it in a list and in metrics.
   - **Description** – (Optional) Add a short description for your fleet to further aid identification.
   - **Metric group** – (Optional) Enter the name of a new or existing fleet metric group. When using Amazon CloudWatch to track your Amazon GameLift metrics, you can aggregate the metrics for multiple fleets by adding them to the same metric group.
   - **Build** – If you Note that the build information, including name, ID and operating system, is automatically filled in.
5. In the Instance type section, select an Amazon EC2 instance type from the list. Only instance types matching the selected build's operating system are listed. For help choosing an instance type, see Choose Computing Resources (p. 48). You cannot change a fleet's instance type once the fleet is created.

Amazon GameLift provides a free tier for one year with a c4.large instance. To avoid incurring charges in excess of the free tier, you may want to set up billing alerts or turn on safe scaling for the fleet. For more information, see Free Tier and Billing Alerts (p. 13).
6. In the **Process management** section, configure how you want server processes to run on each instance.

   **1. Server process allocation:**

   Specify the type and number of game server processes you want to run on each instance. Each fleet must have at least one server process configuration defined, and can have multiple configurations. For example, if you have multiple server executables in your game build, you must have a configuration for each executable.

   - **Launch path** – Type the path to the game executable in your build. All launch paths must start with the game server location, which varies based on the operating system in use. On Windows instances, game servers are built to the path `C:\game`. On Linux instances, game servers are built to `/local/game`, so all launch paths must start with this location. Examples: `C:\game\MyGame\server.exe` or `/local/game/MyGame/server.exe`.
   - **Launch parameters** – (Optional) You can pass information to your game executable at launch time. Type the information as a set of command line parameters here. Example: `+sv_port 33435 +start_lobby`.
   - **Concurrent processes** – Indicate how many server processes with this configuration to run concurrently on each instance in the fleet. Check Amazon GameLift's limits on number of concurrent server processes; they depend on which SDK your game server uses.

   Once you enter a process configuration, click the green checkmark button to save the configuration. To add additional server process configurations, click **Add configuration**.

   Limits on concurrent server processes per instance apply to the total of concurrent processes for all configurations. If you're limited to one process, you can have only one configuration, and concurrent processes must be set to 1. If you configure the fleet to exceed the limit, the fleet will not be activated.

   **2. Game session activation:**

   Set the following limits to determine how new game sessions are activated on the instances in this fleet:

   - **Max concurrent game session activation** – This setting limits the number of game sessions on an instance that can be in status ACTIVATING at any time. When an instance has the maximum number of activating game sessions, no new game sessions can be started on that instance. This limit is useful when launching new game servers has an impact on the performance of other game servers running on the instance.
   - **New activation timeout** – This setting limits the amount of time Amazon GameLift allows for a new game session activate. If the game session does not complete activation an move to status ACTIVE, the game session activation is terminated.

7. In the **Safe scaling policy** section, turn on this automatic scaling policy to ensure that your fleet scales down to zero instances when there is no activity. Once the fleet is created, you can turn this policy on or off or set custom automatic scaling policies on the fleet's detail page (see the **Scaling** tab).

8. In the **EC2 port settings** section, click **Add port settings** to define access permissions for inbound traffic connecting to server processes deployed on this fleet. You can create multiple port settings for a fleet. At least one port setting must be set for the fleet before access is allowed. If you don't specify port settings at this time, you can edit the fleet later.

   - **Port range** – Specify a range of port numbers that your game servers can use to allow inbound connections. A port range must use the format `nnnnn[-nnnnn]`, with values between 1025 and 60000. Example: `1500` or `1500-20000`.
   - **Protocol** – Select the type of communication protocol for the fleet to use.
• **IP address range** – Specify a range of IP addresses valid for instances in this fleet. Use CIDR notation. Example: 0.0.0.0/0 (This example allows access to anyone trying to connect.)

9. In the **Resource creation limit** section, click **Add resource creation limits** to set up a policy that limits the number of game sessions any one player can create in a specified period of time. This limit protects your available fleet resources from excessive consumption. To use this feature, requests for new game sessions must specify a creator.

- **Game sessions per policy period** – Specify the number of game sessions one player (based on player ID) is allowed to create during the policy period.

- **Policy period** – Specify the amount of time, in minutes, over which to limit game session creation per player. Amazon GameLift evaluates each new game session request to determine whether the creator has exceeded the creation limit in the most recent span of time.

10. In the **Protection policy** section, choose whether to apply game session protection to instances in this fleet. Instances with protection are not terminated during a scale down event if they are hosting an active game session. You can also set protection for individual game sessions. Once the fleet is created, you can edit the fleet to change the fleet-wide protection policy.

11. Once you've finished setting the configuration for your new fleet, click **Initialize fleet**. Amazon GameLift assigns an ID to the new fleet and begins the fleet activation process. You can view the new fleet's status on the **Fleets** page. Once the fleet is active, you can change the fleet's capacity (p. 53) and other configuration settings as needed.

### Create a Fleet (AWS CLI)

To create a fleet with the AWS CLI, open a command line window and use the `create-fleet` command to define a new fleet. See complete documentation on this command in the AWS CLI Command Reference. If you haven’t yet installed the AWS CLI, see the topic Install the AWS CLI (p. 15).

This example creates a new fleet for an uploaded game build that is in a **Ready** status. The operating system used for the fleet depends on which OS was defined for the game build.

```bash
aws gamelift create-fleet
--name "SampleFleet123"
--description "The sample test fleet"
--MetricGroups "EMEAfleets"
--build-id "build-92f061ed-27c9-4a02-b1f4-6f85b2385620"
--ec2-instance-type "c4.large"
--runtime-configuration "GameSessionActivationTimeoutSeconds=300,
MaxConcurrentGameSessionActivations=2,
ServerProcesses={[LaunchPath=C:\game\Bin64.dedicated
\MultiplayerSampleProjectLauncher_Server.exe,
Parameters=+sv_port 33435 +start_lobby,
ConcurrentExecutions=1]}
--new-game-session-protection-policy "FullProtection"
--resource-creation-limit-policy "NewGameSessionsPerCreator=3,
PolicyPeriodInMinutes=15"
--ec2-inbound-permissions "FromPort=33435,ToPort=33435,IpRange=0.0.0.0/0,Protocol=UDP"
"FromPort=33235,ToPort=33235,IpRange=0.0.0.0/0,Protocol=UDP"
```

**Copiable version:**

```bash
aws gamelift create-fleet --name "SampleFleet123" --description "The sample test fleet" --MetricGroups "EMEAfleets" --build-id "build-92f061ed-27c9-4a02-b1f4-6f85b2385620" --ec2-instance-type "c4.large" --runtime-configuration "GameSessionActivationTimeoutSeconds=300,MaxConcurrentGameSessionActivations=2,ServerProcesses={[\game\Bin64.dedicated\MultiplayerSampleProjectLauncher_Server.exe,Parameters=+sv_port 33435 +start_lobby,ConcurrentExecutions=1]}
--new-game-session-protection-policy "FullProtection"
--resource-creation-limit-policy
```

Version

51
If the create-fleet request is successful, Amazon GameLift returns a set of fleet attributes that includes the configuration settings you requested and a new fleet ID. Amazon GameLift immediately initiates the fleet activation process and sets the fleet status to New. You can track the fleet's status and view other fleet information using these CLI commands:

- describe-fleet-events
- describe-fleet-attributes
- describe-fleet-capacity
- describe-fleet-port-settings
- describe-fleet-utilization
- describe-runtime-configuration

Once the fleet is active, you can change the fleet's capacity and other configuration settings as needed using these commands:

- update-fleet-attributes
- update-fleet-capacity
- update-fleet-port-settings
- update-runtime-configuration

Create a VPC Peering Connection with a New Fleet

You can create a new fleet and request a VPC peering connection for the new fleet at the same time. For more information on using VPC peering with Amazon GameLift, see Set Up VPC Peering (p. 59).

Before requesting a peering connection for a new fleet, you must first take the following steps: (1) Create a VPC for a set of resources on your AWS account (if you don't already have one) and get the VPC ID; and (2) call the Amazon GameLift command create-vpc-peering-authorization to pre-authorize the peering request from Amazon GameLift.

A successful call to create-fleet with the VPC peering parameters generates both a new fleet and a new VPC peering request. The fleet's status is set to New and the fleet activation process is initiated. The peering request's status is set to initiating-request. You can track the success or failure of the peering request by calling DescribeVpcPeeringConnections(). Please note that the VPC peering connection is not completed until the fleet is ready to become active; as a result, it is not available when the game server build is being installed on the new fleet.

When requesting a VPC peering connection with a new fleet, both actions either succeed or fail. If a fleet fails during the fleet creation process, the VPC peering connection will not complete successfully. Likewise, if a VPC peering connection fails for any reason, the new fleet will fail to move from status Activating to Active.

Using the example from the previous section, add the following parameters for VPC on your AWS account that you've authorized. This generates a VPC peering connection between the VPC that is created for the new fleet and the VPC on your AWS account. The combination of your AWS account ID and VPC ID uniquely identifies the VPC to peer with. This VPC must be in the same region as the fleet you're creating.

```
--peer-vpc-aws-account-id "111122223333"
--peer-vpc-id "vpc-a12bc345"
```
Debug Fleet Creation Issues

Understanding how Amazon GameLift sets up a new fleet can help you resolve fleet activation errors.

When a new fleet is created, the Amazon GameLift service prepares to build the fleet, passing through a series of statuses. Problems occurring during this stage will cause the fleet status to move to Error with meaningful error messaging (for example, an incorrect build path or a service error). Once the preparation stage is complete, Amazon GameLift moves the fleet status to Activating.

To activate the new fleet, Amazon GameLift starts a new instance and attempts to deploy the build to it: copying build files, running an installation script, and launching server processes (as defined in the runtime configuration). Each server process launched on an instance must report to the Amazon GameLift service when it is ready to host a game session. Once a server process notifies Amazon GameLift that it is ready, the instance status moves to Active, which in turn moves the fleet status to Active.

The most common problem that game developers experience when creating a new fleet is having a fleet get stuck in an Activating status. Common reasons that a fleet might fail to activate include:

- **Server processes start but fail quickly or report poor health.** Other than issues with your game build, this outcome can happen when trying to run too many server processes simultaneously on the instance. The optimum number of concurrent processes depends on both the instance type and your game server's resource requirements. Try reducing the number of concurrent processes, which is set in the fleet's runtime configuration, to see if performance improves. You can change a fleet's runtime configuration using either the Amazon GameLift console (edit the fleet's capacity allocation settings) or by calling the AWS CLI command `update-runtime-configuration`.

- **Server processes fail to start.** Assuming there are no issues with your game build and installation script (if you provided one), check that you've correctly set the launch path and optional parameters in the fleet's runtime configuration. You can view the fleet's current runtime configuration using either the Amazon GameLift console (see the Fleet detail page, Capacity Allocation tab) or by calling the AWS CLI command `describe-runtime-configuration`.

- **Server processes start but fleet fails to activate.** If server processes start and continue to run successfully, but the fleet does not move to Active status, a likely cause is that the server process is failing to notify Amazon GameLift that it is ready to host game sessions. Check that your game server is correctly calling the Server API action `ProcessReady()` (see Prepare a Server Process).

For additional troubleshooting, you can also remotely access a fleet instance. See Remotely Access Fleet Instances.

Change Fleet Capacity

You can change a fleet's capacity as needed (within the service limits) as long as the fleet's status is Active. When you create a new fleet, Amazon GameLift automatically sets the capacity to 1, which allows it to start one new instance of your game server. You can make these changes from either the Amazon GameLift console or the AWS CLI. Once you change the fleet's desired capacity, Amazon GameLift immediately takes action to make the number of active instances match desired instances by creating new instances (scaling up) or terminating existing ones (scaling down).

If you want to manually set your fleet capacity, use the following instructions. To set up automatic scaling, or modify your automatic scaling policies, see Set Up Fleet Automatic Scaling.

**To change capacity (console)**

1. Open the Amazon GameLift console at [https://console.aws.amazon.com/gamelift/](https://console.aws.amazon.com/gamelift/).
2. On the **Fleets** page, click the name of an active fleet you want to change capacity for. This opens the fleet's detail page. You can also access a fleet's detail page via the **Dashboard**.

3. **Click Scaling.** On this tab, you can view current and historical information and set your fleet capacity. Scroll down past the graph to the **Scaling** section.

4. **Under Limits,** you can set a minimum and maximum allowed number of instances for the fleet. While these limits are particularly important if you are using automatic scaling, they also apply to manual scaling. Adjust these limits to allow for the fleet capacity you want to set.

5. **Under Scaling policy,** select the option "I want to manually set my desired instances count to..." and specify a number of instances. This value tells Amazon GameLift how many active instances to maintain in the fleet and make ready to host game sessions. To save your change, click the check mark.

As soon as you save changes to scaling limits and policies, you'll see the new values reflected in the graph at the top of the tab. Amazon GameLift immediately begins deploying additional instances or shutting down unneeded ones. As this process is completed, you should start to see the number of **Active** instances change to match the newly updated desired value. This process may take a little time.

**To change capacity (AWS CLI)**

- In a command line window, type the `update-fleet-capacity` command with the following parameters. If you've set a minimum or maximum size, you must enter a **desired-instances** value that is within that range. You can view the current fleet capacity settings with `describe-fleet-capacity`.

```
--fleet-id <unique fleet identifier>
--desired-instances <fleet capacity as an integer>
--max-size <maximum capacity for automatic scaling> [Optional]
--min-size <minimum capacity for automatic scaling> [Optional]
```

Example:

```
aws gamelift update-fleet-capacity
--fleet-id fleet-eead767f-acb4-4c2a-9280-a3c523cbe50f
--desired-capacity 5
--max-size 10
--min-size 1
```

If your request is successful, the fleet ID is returned.

**Update a Fleet**

Use the **Edit fleet** page in the Amazon GameLift console to change a fleet's configuration. All fleet properties can be changed except for the build ID and the instance type. To change scaling settings, see **Set Up Fleet Automatic Scaling** (p. 56).

**Note**

If a fleet's build has been deleted or an error occurred while retrieving the build, you may see one of the following **Build** statuses:

- **Deleted** – The build for this fleet was deleted. Your fleet will still run properly despite the build having been deleted.
- **Error** – An error occurred while attempting to retrieve build information for the fleet.
To update a fleet configuration

1. Open the Amazon GameLift console at https://console.aws.amazon.com/gamelift/.
2. Choose Fleets from the menu bar to open the Fleets page, which displays a list of all fleets created for this account.
3. On the Fleets page, click the name of the fleet you want to edit. Only fleets in status ACTIVE can be edited.
4. On the selected fleet page, under Actions, choose Edit fleet. The selected fleet's current configuration is displayed.
5. On the Edit fleet page, you can change the following fields:
   - **Name** – Change the friendly name for your fleet.
   - **Description** – Add or change the description of the fleet.
   - **Metric group** – Add or change a metric group name. Names can be new or existing metric groups. Metric groups are used in Amazon CloudWatch to track aggregated Amazon GameLift metrics for all fleets in a metric group.
   - **Process management** – Change how you want server processes to run on each instance in the fleet.
     - Server process allocation – Add, change, or remove the type and number of game server processes you want to run on each instance.
     - Game session activation – Reset the limits on game session activations for each instance in the fleet.
   - **EC2 port settings** – Add, change, or remove port settings to define access permissions for inbound traffic connecting to server processes deployed on this fleet. A fleet must have at least one setting to enable access, and it can have multiple port settings.
   - **Resource creation limit** – Add, change or remove policies that limit the number of game sessions any one player can create in a specified period of time.
   - **Protection policy** – Add or remove game session protection for this fleet. Instances with protection are not terminated during a scale down event if they are hosting an active game session.
6. Click Submit.

Delete a Fleet

In the process of testing or running multiple versions of your game, you might create dozens of fleets that eventually become unnecessary to maintain. You can delete fleets that you no longer need. Deleting a fleet also permanently removes associated game sessions and collected data.

**Note**
You can delete a fleet only after you have scaled it down to 0. Set the desired number of EC2 instances to 0 and then wait for the scaled down state to take effect before you delete the fleet.

To delete a fleet

1. In the Amazon GameLift console, choose Fleets from the menu bar.
2. On the Fleets page, select the fleet you want to delete.
3. On the selected fleet page, for Actions, choose Terminate fleet.
4. In the Terminate fleet dialog box, confirm the deletion by typing the name of the fleet.
5. Click Delete.
Set Up Fleet Automatic Scaling

Use automatic scaling to have Amazon GameLift automatically scale your fleet capacity in response to activity on your game servers. This topic provides help with creating an automatic scaling policy and offers tips on configuring your fleet to optimize the benefits of automatic scaling. For more information on how automatic scaling works, see the Automatic Scaling (p. 3) section in "How Amazon GameLift Works" overview.

To activate Amazon GameLift’s automatic scaling feature for a fleet, define one or more automatic scaling policies. The Amazon GameLift console offers a simple tool for creating, updating, and viewing your automatic scaling policies. You can also manage your policies using the AWS Command Line Interface (CLI).

Set Automatic Scaling With the Console

1. Sign in to the AWS Management Console and open the Amazon GameLift console at https://console.aws.amazon.com/gamelift/.
2. On the Fleets page, click the name of the fleet you want to set an automatic scaling policy for. This opens the fleet's detail page.
3. Click the Scaling tab. This tab lets you to adjust the fleet's scaling settings and displays current scaling settings and fleet capacity history.
4. Under Scaling: Limits, set the minimum and maximum number of instances to allow in the fleet. These limits are primarily useful to restrain automatic scaling, but also prevent users from manually setting capacity outside the limits. Click Add Policy to start a new policy statement. Type a policy name that is unique to this fleet.
5. Under Scaling policy, choose whether to use manual or automatic scaling. If you choose manual scaling, specify the target number of instances to maintain in the fleet.
6. If you choose automatic scaling, add one or multiple scaling policies.
7. Create a policy by setting the policy statement parameters. For help, see Create an Automatic Scaling Policy Statement (p. 57). To save the policy, click the checkmark icon. Once saved, Amazon GameLift begins evaluating metric data against the policy within ten minutes.

As an example, the following policy statement ensures that fleet capacity will always be increased if the number of idle instances (instances that are not currently hosting game sessions) drops below two for longer than 10 minutes: "If Idle Instances are < 2 for 10 minutes, then scale up by 1 instance".

Set Automatic Scaling with the AWS CLI

1. In a command line window, type the put-scaling-policy command with the following parameters. For help setting parameters, see Create an Automatic Scaling Policy Statement (p. 57).

```
--fleet-id <unique fleet identifier>
--name "<unique policy name>"
--metric-name <name of metric>
--comparison-operator <comparison operator>
--threshold <threshold integer value>
--evaluation-periods <number of minutes>
--scaling-adjustment-type <adjustment type>
--scaling-adjustment <adjustment amount>
```

Example:
Create an Automatic Scaling Policy Statement

An automatic scaling policy for a fleet makes the following statement: "If a fleet metric meets or crosses a threshold value for a certain length of time, then change the fleet's capacity by a certain amount."

To construct an automatic scaling policy statement, you must specify six key variables:

- **If** <metric name> remains at <comparison operator> <threshold value> for <evaluation period>, then change fleet capacity using <adjustment type> to/by <adjustment value>.

For example:

If AvailablePlayerSessions remains at less than 50 for 60 minutes, then change fleet capacity using ChangeInCapacity by 1 instance.

**Metric name**

Metrics track some type of fleet-specific activity in your game servers. Each minute, Amazon GameLift records a heartbeat from every instance, game session, and player session in the fleet. This data, in aggregate, represents the metric data that automatic scaling can use to trigger an increase or decrease in capacity. An automatic scaling policy can be linked to one of the following metrics. To see fleet metric descriptions, see Amazon GameLift Metrics for Fleets (p. 104).

- Activating game sessions
- Active game sessions
- Available game sessions
- Percent available game sessions
- Active instances
- Available player sessions
- Current player sessions
• Idle instances
• Percent idle instances
• Queue depth – Fleet-specific queue depth the number of pending game session requests for which this fleet is the best available hosting location.
• Wait time – Fleet-specific wait time indicates the length of time that game session requests are currently waiting to be fulfilled. As with queue depth, this metric reflects only game session requests for which this fleet is the best available hosting location. A fleet's wait time is equal to the oldest current request's time in queue.

Comparison operator

This variable tells Amazon GameLift how to compare the metric data to the threshold. Valid comparison operators include greater than (>), less than (<), greater than or equal (>=), or less than or equal (<=).

Threshold value

Threshold value is used to trigger scaling events when the metric value meets or crosses it. This value is always a positive integer. Depending on the metric selected, it indicates an amount of player sessions, game sessions, or instances.

Evaluation period

To trigger a scaling event, the metric must meet or cross the threshold for the entire length of an evaluation period. If the metric retreats from the threshold, the evaluation period starts over again.

Adjustment type and value

This set of variables works together to specify how you want Amazon GameLift to adjust fleet capacity when this policy triggers a scaling event. An automatic scaling policy can make one of three types of adjustments:
• Change in capacity – Increase or decrease current capacity by a specified number of instances. Set the adjustment value to the number of instances to add or subtract from the fleet.
• Percent change in capacity – Increase or decrease current capacity by a specified percentage. Set the adjustment value to the percentage you want to increase or decrease the fleet by. For example, with an adjustment value of 15 percent, a 20-instance fleet is reduced by three instances.
• Exact capacity – Set capacity to a specified size. Set the adjustment value to the exact number of instances that you want in the fleet.

Note

If you're using the AWS CLI or the AWS SDK for Amazon GameLift, use positive adjustment values to scale up and negative values to scale down. If you're using the Amazon GameLift console, choose the scale up by or scale down by options.

Tips on Automatic Scaling

The following suggestions can help you get the most out of automatic scaling.

Use multiple policies

You can have multiple automatic scaling policies in force for a fleet at the same time. The most common scenario is to have one policy to manage scaling up and one to manage scaling down. However, there are no limits on combining policies.

Multiple policies behave independently. Keep in mind that there is no way to control the sequence of scaling events. For example, if you have multiple policies driving scaling up, it is possible that player
activity could trigger multiple scaling events simultaneously. For example, the effects of two scale up policies can easily be compounded if it is possible for player activity to trigger both metrics. Also watch for policies that trigger each other. For example, you can create an infinite loop if you create scale up and scale down policies that sets capacity beyond the threshold of each other.

**Set maximum and minimum capacity**

Each fleet has a maximum and minimum capacity setting. This feature is particularly important when using automatic scaling. Automatic scaling will never set capacity to a value outside of this range. By default, newly created fleets have a minimum of 0 and a maximum of 1. For your automatic scaling policy to affect capacity as intended, you must increase the maximum value.

Fleet capacity is also constrained by limits on the fleet's instance type and on your AWS account. You cannot set a minimum and maximum that is outside the service and account limits.

**Track metrics after a change in capacity**

After changing capacity in response to an automatic scaling policy, Amazon GameLift waits ten minutes before responding to triggers from that policy. This wait allows Amazon GameLift time to add the new instances, launch the game servers, connect players, and start collecting data from the new instances. During this time, Amazon GameLift continues to evaluate the policy against the metric and track the evaluation period, which restarts once a scaling event is triggered. This means that a scaling policy could trigger another scaling event immediately after the wait time is over.

There is no wait time between scaling events triggered by different automatic scaling policies.

### Set Up VPC Peering

Use Amazon Virtual Private Cloud (VPC) peering connections to enable your game servers to communicate directly and privately with your other AWS resources, such as a web service or a repository. This topic provides guidance on setting up a peering connection between the VPC for your Amazon GameLift game servers and a VPC for non-Amazon GameLift resources. For more information on how VPC peering works with Amazon GameLift, see Networking With AWS Resources (p. 4).

If you're already familiar with Amazon VPCs and VPC peering, please note that setting up peering with Amazon GameLift game servers is somewhat different. Since you don't have access to the VPC for your game server processes (it is controlled by the Amazon GameLift service), you can't create a VPC peering connection request for it. Instead, you first pre-authorize a VPC with non-Amazon GameLift resources to accept a peering request from Amazon GameLift. You then have Amazon GameLift request the VPC peering that you just authorized. Amazon GameLift automatically creates the peering connection, sets up the route tables, and configures the connection as needed.

#### To set up a VPC peering connection:

1. **Get identifiers for each VPC.**

   Get the following information for the two VPCs to be peered:

   - VPC for your Amazon GameLift game servers – Your game server processes are deployed in Amazon GameLift as a fleet of EC2 instances. Each fleet is automatically placed in its own VPC, which is managed by the Amazon GameLift service. Since you don't have access to the VPC for your game server processes, you identify a VPC by it's associated fleet. To identify the set of game server processes you want to establish a VPC peering for, you need the Amazon GameLift fleet ID.
   - VPC for your non-Amazon GameLift AWS resources – You can establish a VPC peering with any resources that run on AWS and are managed by an AWS account that you have access to. If you
haven’t already created a VPC for these resources, see Getting Started with Amazon VPC for help creating a VPC and adding resources to it. Once you have created a VPC, you can find the VPC ID by signing into the AWS Management Console for Amazon VPC and viewing your VPCs.

**Note**

When requesting a peering, both VPCs must exist in the same region. The VPC for your Amazon GameLift fleet game server processes is in the same region as the fleet.

2. **Get AWS Account ID(s) and credentials.**

You need an ID and sign-in credentials for the following two AWS accounts. You can find AWS account IDs by signing into the AWS Management Console and viewing your account settings. To get credentials, go to the IAM console.

- AWS account that is used to manage your Amazon GameLift game servers.
- AWS account that is used to manage your non-Amazon GameLift resources.

If you’re using the same account for Amazon GameLift and non-Amazon GameLift resources, you’ll need the ID and credentials for only one account.

3. **Authorize a VPC peering with non-Amazon GameLift resources.**

In this step, you are accepting a future request from Amazon GameLift to peer to your VPC for non-Amazon GameLift resources. For this action, use credentials for the account that manages your non-Amazon GameLift resources.

To authorize the VPC peering, call the Amazon GameLift service API `CreateVpcPeeringAuthorization()` or use the AWS CLI command `create-vpc-peering-authorization`. Identify the following information:

- Peer VPC ID – This is for the VPC with the non-Amazon GameLift resources.
- Amazon GameLift AWS account ID – This is for the account that you use to manage your Amazon GameLift fleet.

Once you’ve authorized a VPC peering, the authorization remains valid for 24 hours unless revoked. You can manage your VPC peering authorizations using the following operations:

- `DescribeVpcPeeringAuthorizations()` (AWS CLI `describe-vpc-peering-authorizations`).

4. **Request a peering between VPCs for an Amazon GameLift fleet and the non-Amazon GameLift resources.**

Once you have a valid authorization for a VPC peering, you can trigger Amazon GameLift to request the peering. For this action, use credentials for the account that manages your Amazon GameLift game servers.

To request a VPC peering, call the Amazon GameLift service API `CreateVpcPeeringConnection()` or use the AWS CLI command `create-vpc-peering-connection`. Identify the following information, which identifies the two VPCs to peer:

- Peer VPC ID and AWS account ID – This is the VPC for your non-Amazon GameLift resources and the account that you use to manage them. The VPC ID used must match one on a valid authorization.
- Fleet ID – This identifies the VPC for your Amazon GameLift game server processes.

You can manage your VPC peering connections using the following operations:
Run Multiple Processes

This topic provides additional information on how multiple processes per instance are managed on a fleet and how you can make use of this feature for your games. Depending on how you configure your fleet, running multiple processes gives you greater control over how efficiently you use your Amazon GameLift resources, which can potentially reduce overall operating costs for your game.

Optimizing for Multiple Processes

At a minimum, you must do the following to enable multiple processes:

- **Create a build** (p. 43) that contains all of the game server executables that you want to deploy to a fleet and upload it to Amazon GameLift. All game servers in a build must run on the same platform and be integrated with Amazon GameLift using the Amazon GameLift Server SDK for C++, version 3.0.7 or later.

- Create a runtime configuration with one or more server process configurations and multiple concurrent processes.

- Game clients connecting to games hosted on this fleet must be integrated using the AWS SDK, version 2016-08-04 or later.
In addition, implement the following in your game servers to optimize fleet performance:

- Handle server process shutdown scenarios to ensure that Amazon GameLift can recycle processes efficiently. If you don’t do this, server processes can’t be shut down until they fail.
- Add a shutdown procedure to your game server code, ending with the server API call to `ProcessEnding()`.
- Implement the callback function `OnProcessTerminate()` in your game server code to gracefully handle termination requests from Amazon GameLift.
- Make sure that "unhealthy" server processes are shut down and relaunched quickly by defining what "healthy" and "unhealthy" mean and reporting this status back to Amazon GameLift. You do this by implementing the `OnHealthCheck()` callback function in your game server code. Amazon GameLift automatically shuts down server processes that are reported unhealthy for three consecutive minutes. If you don’t implement `OnHealthCheck()`, Amazon GameLift assumes a server process is healthy unless it fails to respond. As a result, poorly performing server processes can continue to exist, using up resources until they finally fail.

### How a Fleet Manages Multiple Processes

Amazon GameLift uses a fleet runtime configuration to manage what processes to maintain on each instance in the fleet. A runtime configuration is actually made up of one or multiple server process configurations, each of which identifies the following:

- The path and file name of a server executable in the game build deployed on the fleet
- (Optional) Parameters to pass to the server process on launch
- The number of this server process to maintain concurrently on the instance

When an instance is started in the fleet, the instance immediately begins launching server processes called for in the runtime configuration. Server process launches on an instance are staggered by a few seconds, so depending on the total number of server processes configured for an instance, it may take a few minutes to achieve full capacity.

Over time, server processes end, either by self-terminating (calling the Server SDK `ProcessEnding()`) or by being terminated by Amazon GameLift. An instance regularly checks that it is running the number and type of server processes specified in the runtime configuration. If not, the instance automatically launches server processes as needed to meet the runtime configuration requirements. As a result, as server processes end, their resources are continually recycled to support new server processes, and instances generally maintain the expected complement of active server processes.

You can change a fleet's runtime configuration at any time by adding, changing, or removing server process configurations. Here's how Amazon GameLift adopts runtime configuration changes.

1. Before an instance checks that it is running the correct type and number of server processes, it first requests the latest version of the fleet's runtime configuration from the Amazon GameLift service. If you've changed the runtime configuration, the instance acquires the new version and implements it.
2. The instance checks its active processes against the current runtime configuration and handles discrepancies as follows:
   - The updated runtime configuration removes a server process type. Active server processes that no longer match the runtime configuration continue to run until they end.
   - The updated runtime configuration decreases the number of concurrent processes for a server process type. Excess server processes of that type continue to run until they end.
   - The updated runtime configuration adds a new server process type or increases the concurrent processes setting for an existing type. New server processes are launched immediately to match the updated runtime configuration, unless the instance is already running the maximum number of server processes. In this case, new server processes are launched only when existing processes end.
Choosing the Number of Processes per Instance

There are effectively three limits to keep in mind when deciding on the number of concurrent processes:

- **Amazon GameLift limits each instance to a maximum number of concurrent processes.** Whether your runtime configuration has one or multiple server process configurations specified, the sum of all concurrent processes for a fleet’s server process configurations can’t exceed this limit.

- The Amazon EC2 instance type that you choose may limit the number of processes that can run concurrently while offering acceptable performance levels. You need to test different configurations for your game to find the optimal number of processes for your preferred instance type. Factors that may affect your choice include the resource requirements of your game server, the number of players to be hosted in each game session, and player performance expectations.

- When changing a fleet's runtime configuration, keep in mind that Amazon GameLift will never run more concurrent processes than the total number configured. This means that the transition from old runtime configuration to new may happen gradually, with new processes starting only as existing processes end. Here's an example: You have a fleet that is configured to run 10 concurrent processes of your server executable, *myGame.exe*, with launch parameters set to "-loglevel=1". You update the configuration to continue running 10 concurrent processes of *myGame.exe* but change the launch parameters to "-loglevel=4". Since instances in the fleet are already running 10 processes, Amazon GameLift waits to start a process with the new launch parameters until a process with the old launch parameters ends.

Remotely Access Fleet Instances

You can remotely access any fleet instance that is currently running in an Amazon GameLift fleet. This capability is useful for troubleshooting fleet activation issues. You can also use this feature to get real-time game server activity, such as track log updates or run benchmarking tools using actual player traffic.

When remotely accessing individual Amazon GameLift instances, keep the following in mind:

- **The Amazon GameLift service continues to manage fleet activity and capacity.** Establishing a remote connection to an instance does not affect how Amazon GameLift manages it in any way. As a result, the instance continues to execute the fleet runtime configuration, stop and start server processes, create and terminate game sessions, and allow player connections. In addition, the Amazon GameLift service may terminate the instance at any time as part of a scale down event.

- **Making local changes to an instance that is hosting active game sessions and has live players connected may significantly affect player experience.** For example, your local changes have the potential to drop individual players, crash game sessions or even shut down the entire instance with multiple game sessions and players affected.

For more information on how games are deployed and managed on Amazon GameLift instances, see the following topics:

- **How Amazon GameLift Works (p. 2)**
- **Debug Fleet Creation Issues (p. 53)**
- **How a Fleet Manages Multiple Processes (p. 62)**

Connect to an Instance

You can access remote instances that are running either Windows or Linux. To connect to a Windows instance, use a remote desktop protocol (RDP) client. To connect to a Linux instance, use an SSH client.
Use the AWS CLI get the information you need to access a remote instance. For help, see the AWS CLI Command Reference. If you haven't yet installed the AWS CLI, see the topic Install the AWS CLI (p. 15).

1. **Find the ID of the instance you want to connect to.** When requesting access, you must specify an instance ID. You can get information on all fleet instances using the command `describe-instances` with a fleet ID. This example retrieves the first three instances in a fleet:

   ```bash
 $ aws gamelift describe-instances
 --fleet-id "fleet-a7abc071-5537-4f0f-b5ee-1b5c1187565f"
 --limit 3
   ```

2. **Request access credentials for the instance.** Once you have an instance ID, use the command `get-instance-access` to request access credentials and other information. If successful, Amazon GameLift returns the instance's operating system, IP address, and a set of credentials (user name and secret key). The credentials format depends on the instance operating system. Use the following instructions to retrieve credentials for either RDP or SSH.

   **For Windows instances** – To connect to a Windows instance, RDP requires a user name and password. The `get-instance-access` request returns these values as simple strings, so you can use the returned values as is. Example:

   ```bash
 $ aws gamelift get-instance-access
 --fleet-id "fleet-a7abc071-5537-4f0f-b5ee-1b5c1187565f"
 --instance-id "i-01463992e435d836c"
   ```

   **For Linux instances** – To connect to a Linux instance, SSH requires a user name and private key. Amazon GameLift issues RSA private keys and returns them as a single string, with the newline character (`\n`) indicating line breaks. To make the private key usable, you must (1) convert the string to a `.pem` file, and (2) set permissions for the new file.

   - To convert the string to a properly formatted `.pem` file, add special parameters to your `get-instance-access` request, as shown in the following example. This example automatically outputs the returned value of `Secret` to a text file named `MyPrivateKey.pem`, and replaces all the `\n` characters with line breaks.

   ```bash
 $ aws gamelift get-instance-access
 --fleet-id "fleet-a7abc071-5537-4f0f-b5ee-1b5c1187565f"
 --instance-id "i-01463992e435d836c"
 --query 'InstanceAccess.Credentials.Secret'
 --output text > MyPrivateKey.pem
   ```

   - To set permissions on the new file, run the following command

     ```bash
 $ chmod 400 MyPrivateKey.pem
     ```

3. **Open a port for the remote connection.** Instances in Amazon GameLift fleets can only be accessed through ports authorized in the fleet configuration. You can view a fleet's port settings using the command `describe-fleet-port-settings`.

   As a best practice, we recommend opening ports for remote access only when you need them and closing them when you're finished. Use the command `update-fleet-port-settings` to add a port setting for the remote connection (such as 22 for SSH or 3389 for RDP). For the IP range value, specify the IP addresses for the devices you plan to use to connect (converted to CIDR format). Example:

   ```bash
 $ aws gamelift update-fleet-port-settings
 --fleet-id "fleet-a7abc071-5537-4f0f-b5ee-1b5c1187565f"
   ```
4. **Open a remote connection client.** Use Remote Desktop for Windows or SSH for Linux instances. Connect to the instance using the IP address, port setting, and access credentials.

**View and Update Remote Instances**

When connected to an instance remotely, you have full user and administrative access. This means you also have the ability to cause errors and failures in game hosting. If the instance is hosting games with active players, you run the risk of crashing game sessions and dropping players, as well as disrupting game shutdown processes and causing errors in saved game data and logs.

Hosting resources on an instance can be found in the following locations:

- **Game build files.** These are the files included in the game build you uploaded to Amazon GameLift. They include one or more game server executables, assets and dependencies. These files are located in a root directory called `game`:
  - On Windows: `c:\game`
  - On Linux: `/local/game`

- **Game log files.** Any log files your game server generates are stored in the `game` root directory at whatever directory path you designated.

- **Amazon GameLift hosting resources.** Files used by the Amazon GameLift service to manage game hosting are located in a root directory called Whetwater. These files should not be changed for any reason.

- **Runtime configuration.** The fleet runtime configuration is not accessible for individual instances. To test changes to a runtime configuration (launch path, launch parameters, maximum number of concurrent processes), you must update the fleet-wide runtime configuration (see the AWS SDK action `UpdateRuntimeConfiguration` or the AWS CLI `update-runtime-configuration`).
Working with Aliases

Amazon GameLift uses the term alias to refer to the redirecting of player sessions to a fleet that you specify. You can use aliases to direct player sessions to fleets that you're testing for launch or to support multiple game client sessions.

Amazon GameLift uses the term alias to refer to the redirect connection between a fleet and players. You can decide which fleet you want an alias to resolve to, and you can embed the alias ID into your game client to control the flow of players to the designated fleet.

There are two types of routing strategies for aliases:

- **Simple** – A simple alias routes player traffic to the associated fleet. You can update the fleet to which the alias resolves at any time.
- **Terminal** – A terminal alias does not resolve to a fleet. Instead, it passes a message back to the client. For example, you may want to notify players to upgrade their game client versions if they are attempting to connect to a fleet that is no longer supported.

Create an Alias

You can create a new alias to resolve to a fleet.

**To create a new alias**

1. Open the Amazon GameLift console at [https://console.aws.amazon.com/gamelift/](https://console.aws.amazon.com/gamelift/).
2. Choose **Aliases** from the menu bar.
3. On the **Aliases** page, click **Create alias**.
4. On the **Create alias** page, in the **Alias details** section, do the following:
   - **Alias name** – Type a friendly name so you can easily identify the alias in the catalog.
   - **Description** – (Optional) Type a short description for your alias to add further identification.
5. In the **Routing options** section, for **Type**, choose **Simple** or **Terminal**:
   - If you choose **Simple**, select an available fleet to associate with your alias. A simple alias routes player traffic to the associated fleet.
   - If you select **Terminal**, type a message that will be displayed to players. A terminal alias does not resolve to a fleet but only passes your message to the client.
6. Click **Configure alias**.

Edit an Alias

Use the **Edit alias** page in the Amazon GameLift console to update the information for your alias.

**To edit an alias**

1. Open the Amazon GameLift console at [https://console.aws.amazon.com/gamelift/](https://console.aws.amazon.com/gamelift/).
2. Choose **Aliases** from the menu bar.
3. On the **Aliases** page, click the name of the alias you want to edit.
4. On the selected alias page, for **Actions**, choose **Edit alias**.

5. On the **Edit alias** page, you can edit the following:

   - **Alias name** – Friendly name for your alias.
   - **Description** – Short description for your alias.
   - **Type** – Routing strategy for player traffic. Select **Simple** to change the associated fleet or select **Terminal** to edit the termination message.

6. Click **Submit**.
Working with Queues

Amazon GameLift uses the queues feature to efficiently place new game sessions on any fleet in a group of fleets that can span multiple regions. When a game client or game service requests a new game session, it specifies a queue to process the request. You can have multiple queues per account. Use the AWS Command Line Interface (CLI) or the Amazon GameLift console to create, edit, or track metrics for a queue.

Topics
- Create a Queue (p. 68)
- View Your Queues (p. 71)
- View Queue Details (p. 72)

Create a Queue

You create a queue to place new game sessions by searching for available hosting resources across multiple fleets and regions. To request new game sessions using a queue, call StartGameSessionPlacement and specify the queue name. For tips on designing queues for your game, see the section called “Create Game Sessions with Queues” (p. 33).

To create a queue, you can use either the Amazon GameLift console or the AWS Command Line Interface (p. 15) (CLI).

Set destinations

A destination is either a fleet or an alias. Destinations determine where Amazon GameLift searches for available hosting resources when trying to place a new game session. A queue usually has several destinations that are deployed in different regions. When choosing destinations for the queue, consider the following:

- A destination can be any fleet or alias in any region. If you assign aliases to your fleets (as recommended), it is a good idea to use alias names here.
- All destinations in the queue must be running game builds that are compatible with the game clients that use the queue.
- New game session requests processed by the queue might be placed on any destination in the queue.
- The list order of destinations in a queue matters. When Amazon GameLift searches for a fleet with available resources to host the new game session, by default it follows the list order. This means that game sessions will always be hosted on the first fleet, if resources are available, and only fall back to secondary fleets as needed. Individual game session placement requests can override a queue's default order and instead find the best available fleet based on player latency data.
- If you're requesting new game sessions from a game service (such as for matchmaking), create your queue in a region that is geographically near where the service is deployed. This arrangement minimizes latency when submitting game session placement requests.

Set player latency policies (optional)

If you're using the queue to place sessions based on player latency data, it's a good idea to set up player latency policies. Amazon GameLift uses player latency data (when provided) to place game sessions in destinations with the best average latency for all players. In contrast, a player latency policy prevents placement in destinations where an individual player is reporting unacceptably high latency.

You can set more than one latency policy. Multiple policies are enforced consecutively, starting with the policy that has the lowest maximum latency value. For example, you might define the following policies
for a queue with a 10-minute timeout. This set of policies raises the latency maximum gradually to strike a balance between ensuring a low latency gameplay experience and limiting the amount of time that players must wait for a game.

1. Spend 120 seconds searching for a destination where all player latencies are less than 50 milliseconds, then...
2. Spend 120 seconds searching for a destination where all player latencies are less than 100 milliseconds, then...
3. Spend the remaining queue timeout searching for a destination where all player latencies are less than 150 milliseconds.

In this example, the first policy is in force for the first two minutes, the second policy is in force for the third and fourth minute, and the third policy is in force for six minutes until the placement request times out.

While player latency policies do protect players from high-latency game sessions, they also increase the risk that game sessions will time out when any players report high latency. To ensure that your latency policies do not prevent game session placements, you can set the "remaining queue timeout" policy to a very high maximum value.

Create a Queue (Console)

You can create a queue from the AWS Management Console.

To create a queue

1. Open the Amazon GameLift console at https://console.aws.amazon.com/gamelift/, and choose the region you want to create your queue in.
2. From the Amazon GameLift menu, choose Create a queue.
3. On the Create queue page, complete the Queue Details section:
   a. Queue Name – Create a meaningful queue name so you can identify it in a list and in metrics. Requests for new a game session (using StartGameSessionPlacement) must specify a queue by this name. Spaces and special characters are not allowed.
   b. Queue Timeout – Specify how long you want Amazon GameLift to try to place a new game session before stopping. Amazon GameLift continues to search for available resources on any fleet until the request times out.
4. Under Player latency policies, define zero or more policies for the queue. Player latency policies are only evaluated when game session placement requests include player latency data.
   a. To add a first policy, choose Add player latency policy. Enter a maximum player latency value for this policy (default is 150 milliseconds). As indicated in the policy language, this first policy will be enforced at the end of a placement period, after all other policies. If you set just this one policy, it will be enforced for the entire queue placement effort.
   b. To add another player latency policy, choose Add player latency policy again. For additional policies, set the maximum player latency value and a length of time (in seconds) to enforce it. Maximum latency values for these policies must be lower than the first policy.

   As you add policies, the console automatically reorders the polices based on the maximum player latency value, lowest value listed first. This is the order in which the policies are enforced during a game session placement effort.
5. Under Destinations, add one or more destinations to the queue. Fleets and aliases must already exist before you can add them as destinations.
   a. Choose Add destination.
b. Use the columns to specify the region and type (fleet or alias) for your destination. From the resulting list of fleet or alias names, select the one you want to add.

c. To save the destination, choose the green checkmark icon. You must save each destination before adding another one, changing the default order, or saving the queue.

d. If you have multiple destinations, set the default order by using the arrow icons in the **Priority** column. This order is used by Amazon GameLift when searching destinations for available resources to place a new game session. (The default order is overridden if a game session placement request includes player latency data.)

6. Once you’ve finished configuring your new queue, choose **Create queue**. Your new queue is saved and the **Queues** page shows the new queue and any other queues that exist. You can choose a queue from this page to view detailed information, including queue metrics. You can edit a queue configuration at any time.

### Create a Queue (AWS CLI)

You can use the AWS Command Line Interface (AWS CLI) to create a queue. If you haven't yet installed the AWS CLI, see the topic **Install the AWS CLI (p. 15).**

#### To create a queue

- Open a command line window and use the `create-game-session-queue` command to define a new queue. For more information, see the **AWS CLI Command Reference.**

The following example creates a queue for placing new game sessions on any of several fleets before timing out at five minutes. Fleets are listed as destinations and identified by either a fleet ARN or alias ARN. All fleets and aliases must already exist. Amazon GameLift tries to place new game sessions on fleets in the order they are listed here unless the order is overridden by individual game session placement requests.

**Note**

You can get fleet and alias ARN values by calling either `describe-fleet-attributes` or `describe-alias` with the fleet or alias ID. For more information on ARN (Amazon Resource Name) formats, see [ARNs and AWS Service Namespaces](https://docs.aws.amazon.com/general/latest/usingaws/arns.html).

```
$ aws gamelift create-game-session-queue
 --name "Sample test queue"
 --timeout-in-seconds 300
 --destinations DestinationArn=arn:aws:gamelift:us-east-1::alias/alias-a1234567-b8c9-0d1e-2fa3-b45c6d7e8910
 DestinationArn=arn:aws:gamelift:us-west-2::alias/alias-b0234567-c8d9-0e1f-2ab3-c45d6e7f8901
 DestinationArn=arn:aws:gamelift:us-west-2::fleet/fleet-f1234567-b8c9-0d1e-2fa3-b45c6d7e8912

Copiable version:

```
aws gamelift create-game-session-queue --name "Sample test queue" --timeout-in-seconds 300 --destinations DestinationArn=arn:aws:gamelift:us-east-1::alias/alias-a1234567-b8c9-0d1e-2fa3-b45c6d7e8910 DestinationArn=arn:aws:gamelift:us-west-2::alias/alias-b0234567-c8d9-0e1f-2ab3-c45d6e7f8901 DestinationArn=arn:aws:gamelift:us-west-2::fleet/fleet-f1234567-b8c9-0d1e-2fa3-b45c6d7e8912
```

If the `create-game-session-queue` request is successful, Amazon GameLift returns a `GameSessionQueue` object with the new queue configuration. You can now submit requests to the queue using `StartGameSessionPlacement`.
To create a queue with player latency policies

- Open a command line window and use the `create-game-session-queue` command to define a new queue. For more information, see the AWS CLI Command Reference.

The following example creates a queue with a 10-minute timeout, three destinations, and a set of player latency policies. In this example, the first player latency policy is in force for the first two minutes, the second policy is in force for the third and fourth minute, and the third policy is in force for six minutes until the placement request times out.

```
$ aws gamelift create-game-session-queue
  --name "matchmaker-queue"
  --timeout-in-seconds 600
  --destinations DestinationArn=arn:aws:gamelift:us-east-1::alias/alias-a1234567-b8c9-0d1e-2fa3-b45c6d7e8910
    DestinationArn=arn:aws:gamelift:us-west-2::alias/alias-b0234567-c8d9-0e1f-2ab3-c45d6e7f8901
    DestinationArn=arn:aws:gamelift:us-west-2::fleet/fleet-f1234567-b8c9-0d1e-2fa3-b45c6d7e8912
  --player-latency-policies
    "MaximumIndividualPlayerLatencyMilliseconds=50,PolicyDurationSeconds=120"
    "MaximumIndividualPlayerLatencyMilliseconds=100,PolicyDurationSeconds=120"
    "MaximumIndividualPlayerLatencyMilliseconds=150"
```

Copiable version:

```
aws gamelift create-game-session-queue
  --name "matchmaker-queue"
  --timeout-in-seconds 600
  --destinations DestinationArn=arn:aws:gamelift:us-east-1::alias/alias-a1234567-b8c9-0d1e-2fa3-b45c6d7e8910
    DestinationArn=arn:aws:gamelift:us-west-2::alias/alias-b0234567-c8d9-0e1f-2ab3-c45d6e7f8901
    DestinationArn=arn:aws:gamelift:us-west-2::fleet/fleet-f1234567-b8c9-0d1e-2fa3-b45c6d7e8912
  --player-latency-policies
    "MaximumIndividualPlayerLatencyMilliseconds=50,PolicyDurationSeconds=120"
    "MaximumIndividualPlayerLatencyMilliseconds=100,PolicyDurationSeconds=120"
    "MaximumIndividualPlayerLatencyMilliseconds=150"
```

If the `create-game-session-queue` request is successful, Amazon GameLift returns a `GameSessionQueue` object with the new queue configuration.

View Your Queues

You can view information on all existing game session placement queues (p. 68). Queues shown include only those created in the selected region. From the Queues page, you can create a new queue, delete existing queues, or open a details page for a selected queue. A Queue detail page contains the queue's configuration and metrics data. You can also edit or delete the queue.

To view the Queues page

1. Choose Queues from the Amazon GameLift console's menu.

The Queues page displays the following summary information for each queue:

- **Queue name** – The name assigned to the queue. Requests for new game sessions specify a queue by this name.
- **Queue timeout** – Maximum length of time, in seconds, that a game session placement request remains in the queue before timing out.
View Queue Details

You can access detailed information on any queue, including the queue configuration and metrics. To open a Queue detail page, go to the main Queues page and choose a queue name.

The queue detail page displays a summary table and tabs containing additional information. On this page you can do the following:

- Update the queue's configuration, list of destinations and player latency policies. Choose Actions, Edit queue.
- Remove a queue. After a queue is removed, all requests for new game sessions that reference that queue name will fail. (Note that deleted queues can be restored by simply creating a queue with the deleted queue's name.) Choose Actions, Delete queue.

Summary

The summary table includes the following information:

- **Queue name** – The name assigned to the queue. Requests for new game sessions specify a queue by this name.
- **Queue timeout** – Maximum length of time, in seconds, that a game session placement request remains in the queue before timing out.
- **Destinations in queue** – Number of fleets listed in the queue configuration. New game sessions can be placed on any fleet in the queue.

Destinations

The Destinations tab shows all fleets or aliases listed for the queue. Fleets are identified by either a fleet ARN or an alias ARN, which specifies the fleet or alias ID and the region.

When Amazon GameLift searches the destinations for available resources to host a new game session, it searches in the order listed here. As long as there is capacity on the first destination listed, new game sessions are placed there. This is the default order for destinations. You can have individual game session placement requests override the default order by providing player latency data. This data tells Amazon GameLift to search for an available destination with the lowest average player latency. For help understanding how queues process game session placement requests, see the section called “Create Game Sessions with Queues” (p. 33).

To add, edit, or delete destinations, choose Actions, Edit queue.

Player Latency Policies

The Player latency policies tab shows all policies that have been defined for the queue. Policies are listed in the order they are enforced during a game session placement effort.

To add, edit, or delete player latency policies, choose Actions, Edit queue.
Queue Metrics

The Metrics tab shows a graphical representation of queue metrics over time.

To display metrics information in the graph

1. Click one or more of the metric names that are listed to the left of the graph area. Metric names shown in black are displayed in the graph, while those shown in gray are turned off. Use the color key to identify which graphed line matches a selected metric. The following metrics are available:

 - **Queue** – These metrics show game session placement activity across the entire queue.
 - **Average wait time** – Average length of time that the requests currently in the queue have been waiting for placement.
 - **Queue depth** – Total number of requests that are currently in the queue.
 - **Placements started** – Number of new requests that were added to the queue.
 - **Placements succeeded** – Number of requests that resulted in successfully starting a new game session.
 - **Placements cancelled** – Number of requests that were cancelled before succeeding.
 - **Placements time out** – Number of requests that waited for the full timeout period without resulting in a new game session.
 - **Placements failed** – Number of requests that failed for other reasons.

 - **Fleet-specific (listed by ARN)** – These metrics show game session placement activity broken down by hosting location. Each placement request in a queue is assigned a "preferred" fleet, which is based on either the default queue order (the first available fleet listed) or on the request’s player latency data. These metrics show how successfully the queue is handling the task of placing new game sessions on the best available fleet.
 - **Queue depth** – Number of game session placement requests that are waiting to be hosted on this fleet.
 - **Average wait time** – Average length of time that a game session request is currently spending in the queue.

2. Use the following filters, shown above the graph area, to change how metric data is displayed:

 - **Data and Period** – Offers two options for selecting a date range:
 - Use Relative to select a period of time relative to the current time, such as Last hour, Last day, Last week.
 - Use Absolute to specify a period with an arbitrary start and end date/time.
 - **Granularity** – Select a length of time to aggregate data points.
 - **Refresh rate** – Select how often you want the graph display to be updated.
 - **Format** – Select which time format to use in the graph display: UTC (universal coordinated time) or Browser time (local time).
 - **Show points** – Toggle to display discrete data points as circles or display lines only.
Matchmaking with FlexMatch

Use Amazon GameLift's FlexMatch feature to add player matchmaking to your games. FlexMatch pairs the matchmaking service with a customizable rules engine. This lets you design how to match players together based on player attributes and game modes that make sense for your game, and rely on FlexMatch to manage the nuts and bolts of forming player groups and placing them into games.

In addition, FlexMatch builds on the Queues feature. Once a match is created, FlexMatch hands the match details to a queue of your choice. The queue then searches for available hosting resources on your Amazon GameLift fleets and starts a new game session for the match.

For more information on FlexMatch's key features and how it works, see Amazon GameLift FlexMatch (p. 8).

Topics
- FlexMatch Integration Plan (p. 74)
- Design a FlexMatch Matchmaker (p. 75)
- Build a FlexMatch Rule Set (p. 78)
- Set up FlexMatch Event Notification (p. 87)
- Add FlexMatch to a Game Client (p. 88)
- Add FlexMatch to a Game Server (p. 91)

FlexMatch Integration Plan

To add FlexMatch matchmaking to your game, you need to complete the following tasks.

- **Set up a matchmaker.** A matchmaker receives matchmaking requests from players and processes them. It groups players based on a set of defined rules and, for each successful match, creates a new game sessions and player sessions. Follow these steps to set up a matchmaker:
 - Create a rule set. A rule set tells the matchmaker how to construct a valid match. It specifies team structure and specifies how to evaluate players for inclusion in a match. See these topics:
 - Build a FlexMatch Rule Set (p. 78)
 - FlexMatch Rule Set Examples (p. 80)
 - Create a game session queue. A queue locates the best region for each match and creates a new game session in that region. You can use an existing queue or create a new one for matchmaking. See these topics:
 - Create a Queue (p. 68)
 - Set up notifications (optional). Since matchmaking requests are asynchronous, you need a way to track the status of requests. Notifications is the preferred option. See these topics:
 - Set up FlexMatch Event Notification (p. 87)
 - Configure a matchmaker. Once you have a rule set, queue, and notifications target, create the configuration for your matchmaker. See these topics:
 - Design a FlexMatch Matchmaker (p. 75)
 - Create a Matchmaking Configuration (p. 76)

- **Integrate FlexMatch into your game server.** To create a new game session for a match, Amazon GameLift sends a start request to your game server with a set of information about the game and match. Your game server must be able to activate a new game session for the match based on this information. See these topics:
 - Add FlexMatch to a Game Server (p. 91)
• **Integrate FlexMatch into your game client or service.** Matchmaking requests are initiated by a player through a game client service. You need to add functionality to make matchmaking requests and provide the necessary player attributes for the match. Each matchmaking request specifies which matchmaker to submit the request to, which determines what rule set and queue are used to fulfill the requests. See these topics:
 • Add FlexMatch to a Game Client (p. 88)

Design a FlexMatch Matchmaker

A FlexMatch matchmaker process does the work of building a game match. It manages the pool of matchmaking requests received, forms teams for a match, processes and selects players to find the best possible player groups, and initiates the process of placing and starting a game session for the match. This topic describes the key aspects of a matchmaker and how to configure one customized for your game.

To create a matchmaker, define a matchmaking configuration using either the Amazon GameLift console or the AWS CLI (see Create a Matchmaking Configuration (p. 76)). You can configure as many matchmakers as you need for your game.

For a detailed description of how a FlexMatch matchmaker processes the matchmaking requests it receives, see How Amazon GameLift FlexMatch Works (p. 8).

Matchmaker Configurations

At a minimum, a matchmaker needs three elements:

• The **rule set** determines the size and scope of teams for a match and defines a set of rules to use when evaluating players for a match. Each matchmaker is configured to use one rule set. For more information on creating rule sets, see Build a FlexMatch Rule Set (p. 78).

• The **game session queue** determines where matches created by this matchmaker will be hosted. The matchmaker uses the queue to find available resources and to place a game session for the match. A queue specifies which regions to use when placing a game session. For more information on creating queues, see Create a Queue (p. 68).

• The **request timeout** determines how long matchmaking requests can remain in the request pool and be evaluated for potential matches. Once a request has timed out, it has failed to make a match and is removed from the pool.

In addition to these minimum requirements, you can configure your matchmaker with the following additional options.

Player Acceptance

You can configure a matchmaker to require that all players selected for a match must accept participation. If acceptance is required, all players must be given the option to accept or reject a proposed match. A match must receive acceptances from all players in the proposed match before it can be completed. If any player rejects or fails to accept a match, the proposed match is discarded. The matchmaking requests are handled as follows: requests where all players accepted the match are returned to the matchmaking pool for continued processing; requests where at least one player rejected the match or failed to respond fail and are no longer processed. Player acceptance requires a time limit, which you can define; all players must accept a proposed match within the time limit for the match to continue.

Matchmaking Notification

This feature emits all matchmaking-related events to a designated Amazon Simple Notification Service (SNS) topic. Since matchmaking requests are asynchronous, all games must have a way to track the
status of matchmaking requests, and setting up notifications is simple and efficient. See more on options for tracking requests in Add FlexMatch to a Game Client (p. 88). To use notifications, you first need to set up an SNS topic, and then provide the topic ARN as the notification target in the matchmaking configuration. See more information on setting up notifications at Set up FlexMatch Event Notification (p. 87).

Game Properties

When requesting a new game session, you can pass additional information to your game server about the type of game session to create. Game properties can be delivered with any type of game session request--with a placement request or with a matchmaking request. With matchmaking, game properties are included in the matchmaker configuration. All game sessions created using a matchmaker use the same game properties. If you need to vary game properties, create separate matchmakers and send matchmaking requests to the matchmaker with the appropriate game properties.

Reserved Player Slots

You can designate that certain player slots in each match be reserved and filled at a later time. This is done by configuring the “additional player count” property of a matchmaking configuration.

Custom Event Data

Use this property to include a set of custom information in all matchmaking-related events for the matchmaker. This feature can be useful for tracking certain activity unique to your game, including tracking performance of your matchmakers.

Create a Matchmaking Configuration

To set up a FlexMatch matchmaker, you create a new matchmaking configuration. Use either the Amazon GameLift console or the AWS Command Line Interface (AWS CLI). For more detailed information on configuring a matchmaker, see the section called “Design a Matchmaker” (p. 75).

Note

Before you can create a matchmaking configuration, you must have already created the rule set and queue that you want to use with the matchmaker.

Choosing a Region for the Matchmaker

A matchmaker is hosted in the region where its configuration is created. It’s worth considering how the location of a matchmaker might affect its performance and how to refine the match experience for its intended players. We recommend that you place a matchmaker in a region close to the clients or client service that will be requesting matchmaking. As a best practice, we also recommend putting the matchmaker and the queue it uses in the same region. This helps to minimize communication latency between the matchmaker and queue.

Create a Matchmaking Configuration (Console)

Follow these steps to create a matchmaking configuration from the AWS Management Console.

To create a matchmaking configuration with the Amazon GameLift console:

1. Open the Amazon GameLift console at https://console.aws.amazon.com/gamelift/home.
2. Switch to the region where you want to place your matchmaker.
3. From the main menu, choose Create matchmaking configuration. Fill in the matchmaking configuration details.

 • **Name** – Create a meaningful matchmaker name so you can easily identify it in a list and in metrics. The matchmaker name must be unique within a region. Matchmaking requests identify which matchmaker to use by its name and region.
Create a Matchmaking Configuration

- **Description** – (Optional) Add a description of the matchmaker. The description is used for identification only; it is not used in the matchmaking process.
- **Queue** – Choose the game session queue to use with this matchmaker. To find the queue, first choose the region where the queue is configured. Then choose the queue you want from the list of available queues in that region.
- **Request timeout** – Type the maximum amount of time, in seconds, for the matchmaker to complete a match for each request. Matchmaking requests that exceed this time are terminated.
- **Acceptance required** – (Optional) Indicate whether to require each player in a proposed match to actively accept participation in the match. If you chose yes, indicate how long you want the matchmaker to wait for player acceptances before canceling the match.
- **Rule set name** – Choose the rule set to use with this matchmaker. The list contains all rule sets that have been created in the current region.
- **Notification target** – (Optional) Type the ARN of an SNS topic for receiving matchmaking event notifications. If you haven't set one up yet, you can add this information later by editing the matchmaking configuration. See Set up FlexMatch Event Notification (p. 87)
- **Additional players** – (Optional) Specify the number of player slots to remain unfilled in each new match. These slots can be filled with players in the future.
- **Custom event data** – (Optional) Specify any data you want to associate with this matchmaker in event messaging. This data is included in every event that is associated with the matchmaker.

4. Once you’ve finished configuring a matchmaker, click **Create**. If the creation is successful, the matchmaker is immediately ready to accept matchmaking requests.

Create a Matchmaking Configuration (AWS CLI)

To create a matchmaking configuration with the AWS CLI, open a command line window and use the `create-matchmaking-configuration` command to define a new matchmaker. See complete documentation on this command in the **AWS CLI Command Reference**. If you haven't yet installed the AWS CLI, see **Install the AWS CLI** (p. 15).

This example creates a new matchmaking configuration that requires player acceptance and uses notifications to track the status of matchmaking requests. It also reserves two player slots for additional players to be added later.

```
$ aws gamelift create-matchmaking-configuration
   --name "SampleMatchmaker123"
   --description "The sample test matchmaker with acceptance"
   --rule-set-name "My_Rule_Set_One"
   --request-timeout-seconds "120"
   --acceptance-required "true"
   --acceptance-timeout-seconds "30"
   --additional-player-count "2"
   --game-session-data "key=map,value=winter444"
```

Copiable version:

```
aws gamelift create-matchmaking-configuration --name "SampleMatchmaker123" --
description "The sample test matchmaker with acceptance" --game-session-queue-arns
   "arn:aws:gamelift:us-west-2:111122223333:gamesessionqueue/My_Game_Session_Queue_One"
   --rule-set-name "My_Rule_Set_One" --request-timeout-seconds "120" --acceptance-required
   "true" --acceptance-timeout-seconds "30" --notification-target "arn:aws:sns:us-
   west-2:111122223333:My_Matchmaking_SNS_Topic" --additional-player-count "2" --game-session-
   data "key=map,value=winter444"
```
Build a Rule Set

If the matchmaking configuration creation request is successful, Amazon GameLift returns a MatchmakingConfiguration object with the settings that you requested for the matchmaker. The new matchmaker is immediately ready to accept matchmaking requests.

Build a FlexMatch Rule Set

Every FlexMatch matchmaker must have a rule set. The rule set determines the two key elements of a match: (1) team structure and size, and (2) how to group players for the best possible match and gameplay experience.

For example, a rule set might describe a match like this: Create a match with two teams of five players each, one team is the defenders and the other team the invaders. All players in both teams must be equally (or nearly) skilled. All players must be able to play with a latency of 20 milliseconds or less. If no match is found after 30 seconds, gradually relax the skill and latency requirements.

To create a matchmaking rule set, you can use either the Amazon GameLift console or the AWS CLI. You can create multiple rule sets and use them in different matchmakers, or use the same rule set in more than one matchmaker.

Topics

- Create a Matchmaking Rule Set (p. 79)
- FlexMatch Rule Set Examples (p. 80)
- FlexMatch Rules Reference (p. 142)

Rule Set Components

Each rule set contains the following components:

- **Name** (optional) – This is a descriptive label within the rule set syntax and is not used by Amazon GameLift in any meaningful way. Do not confuse this value with the rule set name, which is set, along with the rule set syntax, when you create a rule set.
- **Rule language version** (required) – This is the version of the property expression language used to create FlexMatch rules. The value must be equal to “1.0”.
- **Player attributes** (optional) – Rules may choose players for matches based on individual player characteristics. If you create rules that rely on player attributes, they must be declared in this section. Values for these player attribute must be included in every matchmaking request that is sent a matchmaker using this rule set. When declaring a player attribute, include the following information:
 - **Name** (required) – This value must be unique to the rule set.
 - **Type** (required) – This is the data type of the attribute value. Valid data types are number, string, or string map.
 - **Default** (optional) – Enter a default value to use if none is provided for a player. If no default is declared and a player does not provide a value, the player cannot be matched.
- **Teams** (required) – This section defines the structure and size of teams for the match.
 - You can define as many teams as you want.
 - Each team must have a unique name
 - **Rule language version** (required): Value must be equal to 1.0.
 - Each team must have a minimum and maximum size. Use the same value for each if you want to require a specific size. Alternatively set a range if you want to be flexible. FlexMatch will always try to fill teams to the maximum player size. If you use a range but want all teams in the match to have
Create a Matchmaking Rule Set

Create matchmaking rule sets for your FlexMatch matchmakers. Use either the Amazon GameLift console or the AWS Command Line Interface (CLI). For more detailed information on configuring a matchmaker, see the section called “Build a Rule Set” (p. 78).

Once created, matchmaking rule sets cannot be changed or deleted, so we recommend checking the rule set syntax before creating the rule set. Both the console and the AWS CLI provide a validation option.

Create a Matchmaking Rule Set (Console)

To create a rule set with the Amazon GameLift console:

1. Open the Amazon GameLift console at https://console.aws.amazon.com/gamelift/.
2. Switch to the region where you want to place your rule set. Rule sets must be defined in the same region as the matchmaking configuration they will be used with.
3. From the Amazon GameLift main menu, choose Create matchmaking rule set and fill in the rule set details.
 - **Rule set name** – Create a meaningful name so you can easily identify it in a list and in events and metrics. The rule set name must be unique within a region. Matchmaking configurations identify which rule set to use by its name. Note: This is not the same as the “name” field in the rule set body, which is not currently used.
 - **Rule set** – Enter the JSON text of a rule set body. Create your own rule set body or copy from the FlexMatch Rule Set Examples (p. 80) page.
4. Since rule sets can't be edited once they're created, it's a good idea to validate your rule set first. Click Validate rule set to verify that the syntax of your rule set body is correct.
5. Once you've finished configuring a matchmaker, click Create rule set. If creation is successful, the rule set can be used by a matchmaker.
Create a Matchmaking Rule Set (AWS CLI)

To create a matchmaking rule set with the AWS CLI, open a command line window and use the `create-matchmaking-rule-set` command to define a new rule set. See complete documentation on this command in the AWS CLI Command Reference. If you haven’t yet installed the AWS CLI, see Install the AWS CLI (p. 15).

This example creates a simple matchmaking rule set that sets up a single team. Be sure to create the rule set in the same region as the matchmaking configurations that will reference it.

```bash
$ aws gamelift create-matchmaking-rule-set
--name "SampleRuleSet123"
--rule-set-body '{"name": "aliens_vs_cowboys",
"ruleLanguageVersion": "1.0",
"teams": [{
  "name": "cowboys",
  "maxPlayers": 8,
  "minPlayers": 4}]}'
```

Copiable version:

```bash
aws gamelift create-matchmaking-rule-set --name "SampleRuleSet123" --rule-set-body
'{"name": "aliens_vs_cowboys", "ruleLanguageVersion": "1.0", "teams": [{"name": "cowboys",
  "maxPlayers": 8, "minPlayers": 4}]}'
```

If the creation request is successful, Amazon GameLift returns a `MatchmakingRuleSet` object that includes the settings you specified. The new rule set can now be used by a matchmaker.

FlexMatch Rule Set Examples

FlexMatch rule sets can cover a variety of matchmaking scenarios. The following examples conform to the FlexMatch configuration structure and property expression language. Copy these rule sets in their entirety or choose components as needed.

For more information on using FlexMatch rules and rule sets, see the following topics:

- Build a FlexMatch Rule Set (p. 78)
- FlexMatch Rules Reference (p. 142)

Note
When evaluating a matchmaking ticket that includes multiple players, all players in the request must meet the match requirements.

Example 1: Two Teams with Evenly Matched Players

This example illustrates how to set up two equally matched teams of players with the following instructions.

- Create two teams of players.
- Include between four and eight players in each team.
- Final teams must have the same number of players.
- Include a player's skill level (if not provided, default to 10).
- Choose players based on whether their skill level is similar to other players. Ensure that both teams have an average player skill within 10 points of each other.
Rule Set Examples

• If the match is not filled quickly, relax the player skill requirement to complete a match in reasonable time.
• After 5 seconds, expand the search to allow teams with average player skills within 50 points.
• After 15 seconds, expand the search to allow teams with average player skills within 100 points.

Notes on using this rule set:

• This example allows for teams to be any size between four and eight players (although they must be the same size). For teams with a range of valid sizes, the matchmaker makes a best-effort attempt to match the maximum number of allowed players.
• The FairTeamSkill rule ensures that teams are evenly matched based on player skill. To evaluate this rule for each new prospective player, FlexMatch tentatively adds the player to a team and calculates the averages. If rule fails, the prospective player is not added to the match.

```json
{
  "name": "aliens_vs_cowboys",
  "ruleLanguageVersion": "1.0",
  "playerAttributes": [{
    "name": "skill",
    "type": "number",
    "default": 10
  }],
  "teams": [{
    "name": "cowboys",
    "maxPlayers": 8,
    "minPlayers": 4
  },
  { "name": "aliens",
    "maxPlayers": 8,
    "minPlayers": 4
  }],
  "rules": [{
    "name": "FairTeamSkill",
    "description": "The average skill of players in each team is within 10 points from the average skill of all players in the match",
    "type": "distance",
    // get skill values for players in each team and average separately to produce list of two numbers
    "measurements": [ "avg(teams[*].players.attributes[skill])" ],
    // get skill values for players in each team, flatten into a single list, and average to produce an overall average
    "referenceValue": "avg(flatten(teams[*].players.attributes[skill]))",
    "maxDistance": 10 // minDistance would achieve the opposite result
  },
  { "name": "EqualTeamSizes",
    "description": "Only launch a game when the number of players in each team matches, e.g. 4v4, 5v5, 6v6, 7v7, 8v8",
    "type": "comparison",
    "measurements": [ "count(teams[cowboys].players)" ],
    "referenceValue": "count(teams[aliens].players)",
    "operation": "==" // other operations: !=, <, <=, >, >=
  }],
  "expansions": [{
    "target": "rules[FairTeamSkill].maxDistance",
    "steps": [{
      "waitTimeSeconds": 5,
      "value": 50
    },
    { "waitTimeSeconds": 15,
      "value": 100
    }
  ]
}
```
Example 2: Uneven Teams (Hunters vs. Monster)

This example describes a game mode in which a group of players hunt a single monster. People choose either a hunter or a monster role. Hunters specify the minimum skill level for the monster that they want to face. The minimum size of the hunter team can be relaxed over time to complete the match. This scenario sets out the following instructions:

- Create one team of exactly five hunters.
- Create a separate team of exactly one monster.
- Include the following player attributes:
 - A player’s skill level (if not provided, default to 10).
 - A player’s preferred monster skill level (if not provided, default to 10).
 - Whether the player wants to be the monster (if not provided, default to 0 or false).
- Choose a player to be the monster based on the following criteria:
 - Player must request the monster role.
 - Player must meet or exceed the highest skill level preferred by the players who are already added to the hunter team.
- Choose players for the hunter team based on the following criteria:
 - Players who request a monster role cannot join the hunter team.
 - If the monster role is already filled, player must want a monster skill level that is lower than the skill of the proposed monster.
- If a match is not filled quickly, relax the hunter team’s minimum size as follows:
 - After 30 seconds, allow a game to start with only four players in the hunter team.
 - After 60 seconds, allow a game to start with only three people in the hunter team.

Notes on using this rule set:

- By using two separate teams for hunters and monster, you can evaluate membership based on different sets of criteria.

```json
{
  "name": "players_vs_monster_5_vs_1",
  "ruleLanguageVersion": "1.0",
  "playerAttributes": [{
    "name": "skill",
    "type": "number",
    "default": 10
  },
  {"name": "desiredSkillOfMonster",
    "type": "number",
    "default": 10
  },
  {"name": "wantsToBeMonster",
    "type": "number",
    "default": 0
  }],
  "teams": [{
    "name": "players",
    "maxPlayers": 5,
    "minPlayers": 5
  },
  {
```
Example 3: Team Requirements and Latency Limits

This example illustrates how to set up three equally matched teams of players and apply a set of rules to a team instead of each individual player. It also establishes a maximum latency for all players. Latency maximums can be relaxed over time to complete the match. This scenario sets out the following instructions:

- Create three teams of players.
 - Include between three and five players in each team.
 - Final teams must contain the same or nearly the same number of players (within one).
- Include the following player attributes:
 - A player’s skill level (if not provided, default to 10).
 - A player’s character role (if not provided, default to “peasant”).
- Choose players based on whether their skill level is similar to other players in the match.
 - Ensure that each team has an average player skill within 10 points of each other.
- Limit teams to the following number of “medic” characters:
 - An entire match can have a maximum of five medics.
 - Only match players with 50ms latency at most.
- If a match is not filled quickly, relax the player latency requirement as follows:
• After 10 seconds, allow player latency values up to 100 ms.
• After 20 seconds, allow player latency values up to 150 ms.

Notes on using this rule set:

• The rule set ensures that teams are evenly matched based on player skill. To evaluate the FairTeamSkill rule, FlexMatch tentatively adds the prospective player to a team, calculates the average skill of players in the team, and compares it against the average skill of players in both teams. If rule fails, the prospective player is not added to the match.

• The team- and match-level requirements (total number of medics) are achieved through a collection rule. This rule type takes a list of character attributes for all players and checks against the maximum counts. Use flatten to create a list for all players in all teams.

• When evaluating based on latency, note the following:
 • Latency data is provided in the matchmaking request but not as a player attribute.
 • The matchmaker evaluates latency by region. Any region with a latency higher than the maximum is ignored. To be accepted for a match, a player must have at least one region with a latency below the maximum.
 • If a matchmaking request omits latency data one or more players, the request is rejected for all matches.

```json
{
  "name": "three_team_game",
  "ruleLanguageVersion": "1.0",
  "playerAttributes": [{
    "name": "skill",
    "type": "number",
    "default": 10
  },{
    "name": "character",
    "type": "string_list",
    "default": [ "peasant" ]
  }],
  "teams": [{
    "name": "red",
    "minPlayers": 3,
    "maxPlayers": 5
  }, {
    "name": "blue",
    "minPlayers": 3,
    "maxPlayers": 5
  }, {
    "name": "green",
    "minPlayers": 3,
    "maxPlayers": 5
  }],
  "rules": [{
    "name": "FairTeamSkill",
    "description": "The average skill of players in each team is within 10 points from the average skill of players in the match",
    "type": "distance",
    // get players for each team, and average separately to produce list of 3 measurements: [ "avg(teams[*.players.attributes[skill]])"
    // get players for each team, flatten into a single list, and average to produce overall average
    "referenceValue": "avg(flatten(teams[*.players.attributes[skill]]))",
    "maxDistance": 10 // minDistance would achieve the opposite result
  }, {
    "name": "CloseTeamSizes",
```
"description": "Only launch a game when the team sizes are within 1 of each other. e.g. 3 v 3 v 4 is okay, but not 3 v 5 v 5",
"type": "distance",
"measurements": ["max(count(teams[*].players))"],
"referenceValue": "min(count(teams[*].players))",
"maxDistance": 1
}
{
"name": "OverallMedicLimit",
"description": "Don't allow more than 5 medics in the game",
"type": "collection",
// This is similar to above, but the flatten flattens everything into a single
// list of characters in the game.
"measurements": ["flatten(teams[*].players.attributes[character])"],
"operation": "contains",
"referenceValue": "medic",
"maxCount": 5
}
{
"name": "FastConnection",
"description": "Prefer matches with fast player connections first",
"type": "latency",
"maxLatency": 50
}
```

Example 4: Explicit Sorting to Find Best Matches

This example sets up a simple match with two teams of three players. It illustrates how to use explicit sorting rules to help find the best possible matches as quickly as possible. These rules presort all active matchmaking tickets to create the best matches based on certain key requirements. This scenario is implemented with the following instructions:

- Create two teams of players.
- Include exactly three players in each team.
- Include the following player attributes:
  - Experience level (if not provided, default to 50).
  - Preferred game modes (can list multiple values) (if not provided, default to “coop” and “deathmatch”).
  - Preferred game maps, including map name and preference weighting (if not provided, default to "defaultMap" with a weight of 100).
- Set up presorting:
  - Sort players based on their preference for the same game map as the anchor player. Players can have multiple favorite game maps, so this example uses a preference value.
  - Sort players based on how closely their experience level matches the anchor player. With this sort, all players in all teams will have experience levels that are as close as possible.
- All players across all teams must have selected at least one game mode in common.
- All players across all teams must have selected at least one game map in common.

Notes on using this rule set:
• The game map sort uses an absolute sort that compares the mapPreference attribute value. It is placed first in the rule set to prioritize it.

• The experience sort uses a distance sort that compares the distance of a prospective player from the anchor player.

• The order of the sorting rules determines the order that each sort is performed. In this scenario, players are sorted by game map preference, and then by experience level.

```json
{
 "name": "multi_map_game",
 "ruleLanguageVersion": "1.0",
 "playerAttributes": [
 {
 "name": "experience",
 "type": "number",
 "default": 50
 },
 {
 "name": "gameMode",
 "type": "string_list",
 "default": ["deathmatch", "coop"]
 },
 {
 "name": "mapPreference",
 "type": "string_number_map",
 "default": { "defaultMap": 100 }
 },
 {
 "name": "acceptableMaps",
 "type": "string_list",
 "default": ["defaultMap"]
 }],
 "teams": [
 {
 "name": "red",
 "maxPlayers": 3,
 "minPlayers": 3
 },
 {
 "name": "blue",
 "maxPlayers": 3,
 "minPlayers": 3
 }
],
 "rules": [
 // We placed this rule first since we want to prioritize players preferring the same map
 { "name": "MapPreference",
 "description": "Favor grouping players that have the highest map preference aligned with the anchor's favorite",
 // This rule is just for sorting potential matches. We sort by the absolute value of a field.
 "type": "absoluteSort",
 // Highest values go first
 "sortDirection": "descending",
 // Sort is based on the mapPreference attribute.
 "sortAttribute": "mapPreference",
 // We find the key in the anchor's mapPreference attribute that has the highest value.
 // That's the key that we use for all players when sorting.
 "mapKey": "maxValue"
 },
 // This rule is second because any tie-breakers should be ordered by similar experience values
 { "name": "ExperienceAffinity",
 "description": "Favor players with similar experience",
 // This rule is just for sorting potential matches. We sort by the distance from the anchor.
 "type": "distanceSort",
 // Lowest distance goes first
 "sortAttribute": "distance",
 "sortDirection": "ascending"
 }
]
}
```
Set up FlexMatch Event Notification

If you're using FlexMatch matchmaking in your game, you need a way to track the status of individual matchmaking requests and take action as appropriate. Sometimes, such as when players are required to accept a proposed match, these actions are time sensitive. The simplest method for tracking each request's status is to continuously poll using DescribeMatchmaking. However, for a faster solution, we recommend using notifications to track matchmaking events. Event notifications are simple to set up and are significantly faster and more efficient.

There are two options for setting up event notifications. You can use Amazon CloudWatch Events, which has a suite of tools available for managing events and taking action on them. Alternatively, you can set up your own SNS topic(s) and attach them to your matchmaker to receive matchmaking event notifications directly.

See the list of FlexMatch events emitted by Amazon GameLift in FlexMatch Events Reference (p. 146).

Set up CloudWatch Events

Amazon GameLift automatically posts all matchmaking events to CloudWatch Events. With CloudWatch Events you can set up rules to have matchmaking events routed to a range of targets, including SNS topics and other AWS services for processing. For example, you might set a rule to route the event "PotentialMatchCreated" to an AWS Lambda function that handles player acceptances. Learn more about how to use CloudWatch Events in the Getting Started guide, which includes a collection of tutorials.

If you plan to use CloudWatch Events, when configuring your matchmakers, you can leave the notification target field empty, or reference an SNS topic if you want to use both options.

To access Amazon GameLift matchmaking events in CloudWatch Events, go to the Amazon CloudWatch console and open Events. Be sure that you're in the region where you've set up your matchmaking configuration. For more information about getting account credentials to access CloudWatch Events, see Sign in to the Amazon CloudWatch Console. Each matchmaking event is identified by the service (GameLift), the matchmaking name, and the matchmaking ticket.

Set up an SNS Topic

You can ask Amazon GameLift to publish all events generated by a FlexMatch matchmaker to an Amazon Simple Notification Service (SNS) topic. When configuring the matchmaker, set the notification target field to an SNS topic ARN.
To set up an SNS topic for Amazon GameLift event notification

1. Go to the Amazon Simple Notification Service console.
2. Create a topic. From the SNS dashboard, choose Create topic and follow the instructions to create your topic. When the topic is created, the console automatically opens the Topic details page for the new topic.
3. Allow Amazon GameLift to publish to the topic. If you're not already in the Topic details page for your topic, choose Topics from the navigation bar and click the topics ARN to open it. Choose the topic action Edit topic policy, and go to the Advanced view tab.

Add the bolded syntax below to the end of your existing policy. (The entire policy is shown for clarity.)

```json
{
"Version": "2008-10-17",
"Id": "__default_policy_ID",
"Statement": [
 {
 "Sid": "__default_statement_ID",
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": [
 "SNS:GetTopicAttributes",
 "SNS:SetTopicAttributes",
 "SNS:AddPermission",
 "SNS:RemovePermission",
 "SNS:DeleteTopic",
 "SNS:Subscribe",
 "SNS:ListSubscriptionsByTopic",
 "SNS:Publish",
 "SNS:Receive"
],
 "Resource": "arn:aws:sns:your_region:your_account:your_topic_name",
 "Condition": {
 "StringEquals": {
 "AWS:SourceOwner": "your_account"
 }
 }
 },
 {
 "Sid": "__console_pub_0",
 "Effect": "Allow",
 "Principal": {
 "Service": "gamelift.amazonaws.com"
 },
 "Action": "SNS:Publish",
 "Resource": "arn:aws:sns:your_region:your_account:your_topic_name"
 }
]
}
```

Add FlexMatch to a Game Client

This topic describes how to add Amazon GameLift FlexMatch functionality to your game client services. Use FlexMatch to customize a matchmaking experience for your players.

To set up your game clients to request matchmaking for your players, you must have first completed the following tasks:
• Successfully integrate Amazon GameLift into your client service. See Add Amazon GameLift to Your Game Client (p. 30) for more details.
• Create a matchmaking configuration, rule set, and game session queue. See Design a FlexMatch Matchmaker (p. 75) for more details.
• Integrate your game server with FlexMatch. Although you don't need to do this step before integrating your game client, you won't be able to test your integration without it.

As with other client functionality, to enable FlexMatch for a client service, you'll use the AWS SDK with Amazon GameLift API. This SDK is available in C++, C#, and several other languages. For a general description of client APIs, see the Amazon GameLift Service API Reference, which describes the low-level service API for Amazon GameLift-related actions and includes links to language-specific reference guides.

To enable FlexMatch for your game clients, you'll need to add the following functionality:
• Send matchmaking requests to Amazon GameLift for one or more players.
• Track the status of matchmaking requests.
• Request player acceptance for a proposed match.
• Once a match is created, get the player connection information and connect to the game server.

**Note**
We highly recommend that all matchmaking requests come from a trusted source. This means making all matchmaking-related calls from a game service rather than from individual game clients. Accepting matchmaking from non-trusted sources invites hacking and fake player attributes that can ruin the game experience for your players.

**Start a Matchmaking Request**

Add code to create and send a matchmaking request to a FlexMatch matchmaker. To manage matchmaking requests, use these APIs:

• **StartMatchmaking**
• **StopMatchmaking**

To create a matchmaking request, call StartMatchmaking with the following information.

**Matchmaker**

Specify the name of the matchmaking configuration to use for the request. FlexMatch places each request into the request pool for the specified matchmaker, and the request will be processed according to the matchmaker's configuration and rule set.

**Ticket ID**

Specify a ticket ID. All matchmaking requests must be given a unique ticket ID. You are responsible for generating, assigning, and managing ticket IDs. You can use any string format, up to a maximum of 128 characters. Ticket IDs are attached to all requests, events and notifications related to matchmaking.

**Player data**

Specify one or more players you want to create a match for. If you include multiple players in a single request, FlexMatch tries to create a match for all the players and place them into the same team. All players in a request must pass matchmaking rules for the request to be matched.
**Note**

A player (identified by their player ID) can only be included in one active matchmaking request at a time. If you create a new request for a player, any active matchmaking tickets with the same player ID are automatically cancelled.

- **Player ID** – Each player must have a unique player ID, generated by you. For more information, see [Generate Player IDs](p. 34).

- **Player attributes** – Player attributes are optional, but may be critical to matchmaking success. The matchmaker may be configured to evaluate potential matches based on player attributes, such as a skill level. For each player in a request, there should be a set of player attribute values as required by the matchmaker. The attribute name, and data type must match the matchmaker’s configuration. Matchmakers may be configured with default attribute values in case they are not provided; however, if no default is configured and no player value is provided, the player cannot be matched. For more information on matchmaker configurations of player attributes, see the section called “Build a Rule Set” (p. 78).

- **Player latencies** – Player latency data contains reported latency values for one or more regions. Player latency data may be used to find matches between players who report similar latencies; when provided, it is also used to place a match’s game session in a region that offers the lowest possible latency for all players in the match.

If a matchmaker has a rule that evaluates player latency, players must report latency to be matched. In this case, players can only be matched in regions that a latency value is provided for.

Additional factors that affect a matchmaking request are set in the matchmaking configuration, including a time limit for requests, and optional player acceptance of matches. All matchmaking requests sent to a matchmaker are processed as configured. For more information on configuring a matchmaker and setting match rules, see [Design a FlexMatch Matchmaker](p. 75).

A matchmaking request can be cancelled at any time using **StopMatchmaking**.

### Track Matchmaking Request Status

Add code to game service to track the status of all matchmaking requests and respond as needed. There are a couple of options available for tracking status.

**Event notifications**

Set up notifications to track events that Amazon GameLift emits for matchmaking processes. This is the recommended method; it is simple to set up and an efficient use of resources. You can set up notifications either directly, by creating an SNS topic, or by using CloudWatch Events. For more information on setting up notifications, see [Set up FlexMatch Event Notification](p. 87). Once you’ve set up notifications, you need to add a listener on your game service to detect the events and respond as needed. It’s also a good idea to poll for status updates if you haven’t received a notification after 30 seconds.

**Continuous polling**

Retrieve a matchmaking request ticket, including current status, by calling **DescribeMatchmaking**. This call returns complete information about the matchmaking request. Once a request has been successfully completed, the ticket also contains the information needed to connect a player to the match. We recommend polling no more than once every 10 seconds.

### Request Player Acceptance

For requests that use a matchmaker with player acceptance turned on, your game service must be able to do the following:
1. **Detect when player acceptance is required.** Your game service must be able to detect when a matchmaking ticket's status is `REQUIRES_ACCEPTANCE`. If you're monitoring notifications, a change to this status triggers the FlexMatch event `MatchmakingRequiresAcceptance`.

2. **Get acceptances from all players.** Your game service must have a mechanism to present the match details to each player in the matchmaking ticket and solicit an acceptance or rejection. You can retrieve match details by calling `DescribeMatchmaking`.

3. **Report player responses to FlexMatch.** Report each player acceptance by calling `AcceptMatch` with either accept or reject. All players in a matchmaking request must accept the match for it to go forward.

4. **Handle tickets with failed acceptances.** Your game service should have a way to handle matchmaking requests that fail player acceptance. This includes requests where any player in the request either rejects the match or fails to respond by the acceptance time limit.

**Connect to a Match**

Add code to your game service to detect a successfully completed match (status `COMPLETED` or event `MatchmakingSucceeded`) and retrieve connection information. Once a matchmaking request has been completed, the connection information is added to the matchmaking ticket. It can be retrieved by calling `DescribeMatchmaking`. The connection information (API `GameSessionConnectionInfo`) includes the game session IP address and port, as well as a set of player IDs and player session IDs for each player in the original request.

Use this information to connect directly to the server process that is hosting the match. Player slots are reserved for all matched players; to claim the reserved player slot, the connection request must reference the player session ID. Once connected, the game client and server process communicate directly, without involving Amazon GameLift. This framework minimizes the amount of latency in gameplay.

**Add FlexMatch to a Game Server**

This topic describes how to add Amazon GameLift FlexMatch functionality to your game server. Use FlexMatch to customize a matchmaking experience for your players.

To set up your game server for matchmaking for your players, you must have first completed the following tasks:

- Successfully integrate Amazon GameLift into your game server. See Add Amazon GameLift to Your Game Server (p. 27) for more details.
- Create a matchmaking configuration, rule set, and game session queue. See Design a FlexMatch Matchmaker (p. 75) for more details.
- Integrate your game client to make matchmaking requests. You'll need to make requests in order to test your game server integration.

Once you've integrated Amazon GameLift into your game server, most of the mechanisms you'll need to communicate with Amazon GameLift about matched games are already in place. To enable your game server to accommodate matchmaking requests, you need to change your code for starting a game session. This code is in your implementation of the callback function `onStartGameSession()`. For more details on implementing this function, see Start a Game Session (p. 28).

**To set up your game server for matchmaking:**

1. **Add code to create a game session based on the matchmaking request.** When Amazon GameLift sends an `onStartGameSession()` request to your game server to start a new game session, it includes a game session object (see `GameSession`). This object contains information your game
server needs to start a game session for the match, including custom game session data and match data generated by the matchmaker which includes team structure and player assignments.

2. **Report ready.** When the game session is started and ready to accept players, report back to the Amazon GameLift service with the API call `ActivateGameSession()` (p. 116). This step is the same as when starting a non-matched game session.

3. **Handle player connections.** As with non-matched games, players connect to the new game session with a player session ID and must be validated (see Validate a New Player (p. 28)). In addition, a player connection request must include a player ID for matched games. Add code to your game server to match a connected player's player ID to their correct team assignment in the match.

## Game Data

The `GameSession` object is passed to your game server when Amazon GameLift calls the callback function `onStartGameSession`.

All game session start requests include the following information: game session ID, name, maximum player count, and the IP address and port that players will use to connect to the new game session. If provided, developer-defined game properties (key:value pairs) and game session data (strings) are also included.

For matched games, the `GameSession` object contains the following additional information:

- **Matchmaker data** – This set of information specifies the match details, including the players, teams, and player and team attributes. For example, the following matchmaker data describes a match with two teams, red team and blue team, with two players on each team.

```json
{
 "matchId": "123456-abcd-4324-922f-88cd8c490422",
 "teams": [{
 "name": "red",
 "players": [{
 "playerId": "Player-1",
 "attributes": {
 "skill": {
 "attributeType": "DOUBLE",
 "valueAttribute": 2.0
 }
 }
 }, {
 "playerId": "Player-2",
 "attributes": {
 "skill": {
 "attributeType": "DOUBLE",
 "valueAttribute": 3.0
 }
 }
 }]
 }, {
 "name": "blue",
 "players": [{
 "playerId": "Player-3",
 "attributes": {
 "skill": {
 "attributeType": "DOUBLE",
 "valueAttribute": 3.0
 }
 }
 }, {
 "playerId": "Player-4",
 }]
]
}
```
"attributes": {
    "skill": {
        "attributeType": "DOUBLE",
        "valueAttribute": 2.0
    }
}
}
Viewing Your Game Data in the Console

Amazon GameLift continually collects data for active games to help you understand player behavior and performance. With the Amazon GameLift console, you can view, manage, and analyze this information for your builds, fleets, game sessions, and player sessions.

Topics
- View Your Current Amazon GameLift Status (p. 94)
- View Your Builds (p. 95)
- View Your Fleets (p. 96)
- View Fleet Details (p. 96)
- View Data on Game and Player Sessions (p. 101)
- View Your Aliases (p. 102)

View Your Current Amazon GameLift Status

The Dashboard provides a grid view showing the following:
- Uploaded builds
- Created fleets in all statuses
- Created aliases and the fleets they point to (if any)

To open the Amazon GameLift dashboard
- In the Amazon GameLift console, choose Dashboard from the menu bar.

From the dashboard you can take the following actions:
- Create a new fleet or alias.
- View relationships among items. Click anywhere inside an item box to show the relationships between that item and others on the dashboard. For example, click a build to display all fleets that were created with that build. Click a fleet to see the build it was created with and the alias it points to. To reset the dashboard, click the Reset overview button.
- View details on a build, fleet, or alias. Click the ID number for a item to open the details page.
View Your Builds

You can view information about all the game server builds you have uploaded to Amazon GameLift and take actions on them. Builds shown include only those uploaded for the selected region.

Build Catalog

Uploaded builds are shown on the Builds page. To view this page, choose Builds from the Amazon GameLift console menu bar.

The Builds page provides the following summary information for all builds:

- **Status** – Displays one of three possible status messages:
  - **Initialized** – The build has been created, but the upload has not yet started or the upload is still in progress.
  - **Ready** – The build has been successfully received and is ready for fleet creation.
  - **Failed** – The build timed out before the binaries were received.
- **Build name** – Name associated with the uploaded build. A build name is provided when uploading the build to Amazon GameLift, and can be changed using the AWS SDK action UpdateBuild.
- **Build ID** – Unique ID assigned to the build on upload.
- **Version** – Version label associated with the uploaded build. A build name is provided when uploading the build to Amazon GameLift, and can be changed using the AWS SDK action UpdateBuild.
- **OS** – Operating system that the build runs on. The build OS determines what operating system is installed on a fleet's instances.
- **Size** – Size, in megabytes (MB) of the build file uploaded to Amazon GameLift.
- **Date created** – Date and time that the build was uploaded to Amazon GameLift.
- **Fleets** – Number of fleets currently deployed with this build.
From this page you can do any of the following:

- Create a new fleet from a build. Select a build and click **Create fleet from build**.
- Delete a fleet. Select a build and click **Delete build**.
- Filter and sort the build list. Use the controls at the top of the table.
- View build details. Click a build name to open the build detail page.

## Build Detail

Access a build's detail page from either the console dashboard or the **Builds** page by clicking the build name. The **Build** detail page displays the same build summary information as the **Builds** page. It also shows a list of fleets created with the build. This list is essentially the fleets catalog, filtered by build. It includes the same summary information as the **Fleets** page (p. 96).

## View Your Fleets

You can view information on all the fleets created to host your games on Amazon GameLift under your AWS account. Fleets shown include only those created in the selected region. From the **Fleets** page, you can create a new fleet or view additional detail on one selected fleet. A **Fleet** detail page contains usage information and metrics; it also lets you view and edit fleet configuration settings, create or remove the fleet, and access the fleet's game session and player session data.

To view the **Fleets** page, choose **Fleets** from the Amazon GameLift console's menu bar.

The **Fleets** page displays the following summary information:

- **Status** – The status of the fleet, which can be one of these states: **New**, **Downloading**, **Building**, and **Active**. A fleet must be in Active status to be able to host game sessions and allow player connections.
- **Fleet name** – Friendly name given to the fleet.
- **EC2 type** – The Amazon EC2 instance type, which determines the computing capacity of fleet's instances.
- **OS** – Operating system on each instances in the fleet. A fleet's OS is determined by the build deployed to it.
- **Active** – The number of EC2 instances in use for the fleet.
- **Desired** – The number of EC2 instances Amazon GameLift should maintain in the fleet. This value is configurable (within service limits). Amazon GameLift starts or terminates instances as needed to maintain the desired number of instances.
- **Active game sessions** – The number of game sessions currently running in the fleet. The data is delayed five minutes.
- **Player sessions** – The number of players connected to game sessions in the fleet. The data is delayed five minutes.
- **Uptime** – The total length of time the fleet has been running.
- **Date created** – The date and time the fleet was created.

## View Fleet Details

You can access detailed information on any fleet, including configuration settings, scaling settings, metrics, and game and player data. Access a **Fleet** detail page from either the console dashboard or the **Fleets** page by clicking the fleet name.
The fleet detail page displays a summary table and tabs containing additional information. On this page you can do the following:

- Update the fleet's metadata and runtime configuration. Choose Actions: Edit fleet.
- Change fleet capacity settings. On the Scaling page, edit values from Minimum, Maximum, and Desired instances.
- Set or change automatic scaling policies. On the Scaling page, add or edit a policy.
- Shut down a fleet. Choose Actions: Terminate fleet.

Summary

The summary table includes the following information:

- **Status** – Current status of the fleet, which may be New, Downloading, Building, and Active. A fleet must be active before it can host game sessions or accept player connections.
- **Fleet ID** – Unique identifier assigned to the fleet.
- **EC2 type** – Amazon EC2 instance type selected for the fleet when it was created. A fleet's instance type specifies the computing hardware and capacity used for each instance in the fleet and determines the instance limits for the fleet.
- **OS** – Operating system on each instances in the fleet. A fleet's OS is determined by the build deployed to it.
- **Active instances** – Number of instances in Active status, which means they are currently running game sessions or are ready to run game sessions.
- **Active servers** – Number of server processes currently in an Active status in the fleet. The data has a five-minute delay.
- **Active game sessions** – Number of game sessions currently running on instances in the fleet. The data has a five-minute delay.
- **Current player sessions** – Number of players currently connected along with the total number of player slots in active game sessions across the fleet. For example: 25 (connected players) of 100 (possible players) means the fleet can support 75 additional players. The data has a five-minute delay.
- **Protection** – Current setting for game session protection (p. 3) for the fleet.
- **Uptime** – Total length of time the fleet has been active.
- **Date created** – Date and time indicating when the fleet was created.

Metrics

The Metrics tab shows a graphical representation of fleet metrics over time.

To display metrics information in the graph

1. Click one or more metric name to the left of the graph area to add it to the graph display. Metric names that are turned off are gray. Use the color key to identify which graphed line matches a selected metric. The following metrics are available:

   - **Game** – These metrics show utilization of the fleet's capacity over time.
     - **Available player sessions** – Number of unused player slots in active game sessions across the fleet. This number includes open slots in all game sessions regardless of whether the game is currently accepting new players.
     - **Current player sessions** – Number of players currently connected to active game sessions across the fleet.
• **Player session activations** – Number of players joining an active game session. This metric is useful for tracking how the influx of new players changes over time.

• **Active game sessions** – Number of game sessions currently running across the fleet.

• **Activating game sessions** – Number of new game sessions in an **Activating** status across the fleet. Game sessions cannot accept player connections until they are active.

• **Server processes** – These metrics track the status and health of server processes across the fleet. The Amazon GameLift service regularly polls each active server process for its health.
  • **Active** – Number of server processes in an **Active** status. Active server processes are able to host game sessions.
  • **Healthy** – Number of active server processes that reported healthy in the last health check.
  • **Percent healthy** – Percentage of active server processes that reported healthy in the last health check.

• **Activations** – Number of new server processes in an **Activating** status across the fleet. Server processes cannot host a game session until they are active.

• **Terminations** – Number of server processes that were shut down. This metric includes all process terminations regardless of reason.

• **Abnormal Terminations** – Number of server processes that did not terminate cleanly; that is, the server process did not call `ProcessEnding()` (p. 119) and/or terminated with a non-zero exit code.

• **Hardware** – These metrics reflect utilization of the fleet's computing resources. CPU utilization is expressed as a percentage.

2. Use the following filters, shown above the graph area, to change how metric data is displayed:

• **Data & Period** – Offers two options for selecting a date range:
  • Use **Relative** to select a period of time relative to the current time, such as Last hour, Last day, Last week.
  • Use **Absolute** to specify a period with an arbitrary start and end date/time.

• **Granularity** – Select a length of time to aggregate data points.

• **Refresh rate** – Select how often you want the graph display to be updated.

• **Format** – Select which time format to use in the graph display: **UTC** (universal coordinated time) or **Browser time** (local time).

• **Show Points** – Toggle on or off to display discrete data points (as circles) or display lines only.

---

**Events**

The **Events** tab provides a log of all events that have occurred on the fleet, including the event code, message, and time stamp.

---

**Scaling**

The **Scaling** tab contains information related to fleet capacity, including the current status and a graphical representation of capacity changes over time. It also provides tools to update capacity limits and manage automatic scaling.

**To view current and historical scaling information**

1. Go to the top of the **Scaling** tab. To view the current capacity status for this fleet, look at the scaling values at the left. These values are defined as follows:

   • **Scaling Limits** – These metrics track the history of changes to capacity limits.
• **Minimum** – Hard lower limit on the number of instances to maintain in the fleet. Fleet capacity will not drop below the current minimum during automatic scaling or even if desired capacity is set below the minimum.

• **Desired** – The number of active instances currently *wanted* in the fleet. Amazon GameLift's goal is to make the number of *Active* instances (explained later) match the number of desired instances; it achieves this by creating or terminating instances as needed.

• **Maximum** – Hard upper limit on the number of instances to maintain in the fleet. Fleet capacity will not exceed the current maximum during automatic scaling or if desired capacity is set above the maximum.

• **Instance Counts** – These metrics track actual changes in capacity over time.
  - **Active** – Number of instances in the fleet that are running a game server. This number should match the number of *Desired* instances; if it does not, then Amazon GameLift may be in the process of scaling up or down, or at the fleet's minimum or maximum limit.
  - **Idle** – Number of active instances in the fleet that are not currently hosting game sessions. This metric indicates available capacity that is not being utilized.
  - **Pending** – Number of instances Amazon GameLift is currently starting up to host game sessions (scaling up).
  - **Terminating** – Number of instances Amazon GameLift is currently in the process of shutting down (scaling down).

2. To view how fleet capacity has changed over time, display in the graph any or all of the scaling metrics listed on the left. Click the metric name to add it to the graph. (Metric names are gray when not in use.) Use the color key to identify which graphed line matches a selected metric.

3. (Optional) Use the following filters, shown above the graph area, to specify how metric data is displayed in the graph:
  - **Data & Period** – Offers two options for selecting a date range:
    - Use *Relative* to select a period of time relative to the current time, such as *Last hour, Last day, Last week.*
    - Use *Absolute* to specify a period with an arbitrary start and end date/time.
  - **Granularity** – Select a length of time to aggregate data points.
  - **Refresh rate** – Select how often you want the graph display to be updated.
  - **Format** – Select which time format to use in the graph display: UTC (universal coordinated time) or Browser time (local time).
  - **Show Points** – Toggle on or off to display discrete data points (as circles) or display lines only.

To change fleet capacity

1. Go to the top of the **Scaling** tab. You can manually set the fleet's capacity by changing the current values of the fleet's scaling limits. You can edit these values, which are shown along the left side of the **Scaling** tab.

2. To specify the number of instances that you want available to host game sessions, set the value of **Desired**. Amazon GameLift immediately attempts to scale instances up or down to meet the new value. If the new value you set is above the maximum or below the minimum limits, then Amazon GameLift attempts to scale up or down to that limit.

3. Set the maximum and minimum scaling limits as needed. If the value of **Desired** instances was or is now outside the range of your limits, changing these limits causes Amazon GameLift to immediately try to scale up or down to get closer to the **Desired** value while staying inside the new limit range.
To manage automatic scaling

- Go to the end of the Scaling tab to find tools for setting up automatic scaling policies. See Set Up Fleet Automatic Scaling (p. 56) for more details on automatic scaling and how to manage policies.

Game sessions

The Game sessions tab lists past and present contains game sessions hosted on the fleet, including some detail information. Click a game session ID to access additional game session information, including player sessions.

- Status – Game session status. Valid statuses are:
  - Activating – A game session has been initiated and is preparing to run.
  - Active – A game session is running and available to receive players (depending on the session’s player creation policy).
  - Terminated – Game session has ended.
- Name – Game generated for the game session.
- ID – Unique identifier assigned by Amazon GameLift to the game session.
- IP address – IP address specified for the game session.
- Port – Port number used to connect to the game session.
- Player sessions – Number of players connected to the game sessions along with total possible players the game session can support. For example: 2 (connected players) of 10 (possible players) means the fleet can support 8 additional players.
- Uptime – Total length of time the game session has been running.
- Date created – Date and time stamp indicating when the fleet was created.

Build

The Build tab displays the fleet’s build-related configuration, which was set when the fleet was created. Select the build ID to see the full build detail page.

If your build has been deleted or an error has occurred while attempting to retrieve your build, you may see one of the following status messages:

- Deleted – The build for this fleet was deleted. Your fleet will still run properly despite the build having been deleted.
- Error – An error occurred while attempting to retrieve build information for the fleet.

Capacity allocation

The Capacity allocation tab displays the runtime configuration for the fleet, which specifies what server processes to launch on each instance and how. It includes the path for the game server executable and optional launch parameters. You can change the fleet's capacity allocation either by editing the fleet in the console or by using the AWS CLI to update the runtime configuration.

Ports

The Ports tab displays the fleet’s connection permissions, including IP address and port setting ranges. You can change connection permissions by either editing the fleet in the console or using the AWS CLI to update the fleet's port settings.
Logs

The Logs tab lists the locations of log files that Amazon GameLift uploads at the end of a game session. Log paths can only be specified when creating a new fleet from the AWS CLI.

View Data on Game and Player Sessions

You can view information about the games running on a fleet and as well as individual players. For more information about game sessions and player sessions, see How Players Connect to Games (p. 6).

To view game session data

1. In the Amazon GameLift console, open the detail page for the fleet you want to study. (Choose Fleets in the menu bar and click on a fleet name.)
2. Open the Game sessions tab. This tab lists all game sessions hosted on the fleet along with summary information.
3. Click a game session to view additional information about the game session as well as a list of players that were connected to the game.

Game sessions

A summary of your game session information is displayed at the top of the page and includes:

- **Status** – The status of the game session. Valid statuses include:
  - **Activating** – Amazon GameLift has created a game session and passed your game properties to the game server process. The game server interprets the game properties and calls back to Amazon GameLift when it is ready for potential player sessions to connect.
  - **Active** – The game session can support game play with zero or more player sessions connected to it.
  - **Terminated** – The game session has ended, and player sessions are no longer permitted to connect to the terminated game session.
- **Name** – The name automatically generated for the game session.
- **IP address** – For game sessions with a status of Activating or Active, the IP address used to connect to the game.
- **Port** – The port number used to connect to the game session.
- **Player sessions** – The number of players currently connected to the game session along with the total number of player slots in the game session. For example, the value 10 of 15 indicates that of the 15 available slots in the game, 10 are filled and 5 are open.
- **Player session creation policy** – The policy that determines whether new players can connect to the game. Values are Accept all or Deny all. For more information, see the GameSession object.
- **Uptime** – The total length of time the game session has been running.
- **Date created** – The date and time the game session was created.

Player sessions

The following player session data is collected for each game session:

- **Status** – The status of the player session. Options include:
  - **Reserved** – Player session has been reserved, but the player has not yet connected.
  - **Active** – Player session is currently connected to the game server.
• **Completed** – Player session has ended; player is no longer connected.
• **Timed Out** – Player session was reserved, but the player failed to connect.
• **ID** – The identifier assigned to the player session.
• **Player ID** – A unique identifier for the player. Click this ID to get additional player information.
• **Start time** – The time the player connected to the game session.
• **End time** – The time the player disconnected from the game session.
• **Total time** – The total length of time the player has been active in the player session.

### Player information

View additional information for a selected player, including a list of all games the player connected to across all fleets in the current region. This information includes the status, start and end times, and total connected time for each player session. You can click to view data for the relevant game sessions and fleets.

### View Your Aliases

You can view information on all of the fleet aliases you have created and take actions on them on the Aliases page. Aliases shown include only those created for the selected region.

### Alias Catalog

All created aliases are shown on the Aliases catalog page. To view the Aliases page, choose **Aliases** from the Amazon GameLift console's menu bar.

The Aliases page provides summary information on all builds, including type. From this page you can:

• Create a new alias. click **Create alias**.
• Filter and sort the aliases list. Use the controls at the top of the table.
• View alias details. Click an alias name to open the alias detail page.

### Alias Detail

Access an alias's detail page from either the console dashboard or the Aliases catalog page by clicking the alias name. The Alias detail page displays a summary of information on the alias.

From this page you can:

• Edit an alias, including changing the name, description, and the fleet ID the alias is associated with. Click **Actions: Edit alias**.
• View information on the fleet the alias is currently associated with. This includes the fleet’s status and current utilization (active game sessions and players).
• Delete an alias. Click **Actions: Delete alias**.

Alias detail information includes:

• **Type** – The routing option for the alias, which can be one of these:
  • **Simple** – A simple alias routes a player to games on an associated fleet. You can update the alias to point to a different fleet at any time.
• **Terminal** – A terminal alias does not point to a fleet. Instead it passes a message back to the client. This alias type is useful for gracefully notifying players when a set of game servers is no longer available. For example, a terminal alias might inform players that their game clients are out of date and provide upgrade options.

• **Alias ID** – The unique number used to identify the alias.

• **Description** – The description of the alias.

• **Date created** – The date and time the alias was created.
Monitoring Amazon GameLift

Monitoring is an important part of maintaining the reliability, availability, and performance of Amazon GameLift and your other AWS solutions. There are three primary uses for metrics with Amazon GameLift: to monitor system health and set up alarms, to track game server performance and usage, and to manage capacity using manual or automatic scaling.

AWS provides the following monitoring tools to watch Amazon GameLift, report when something is wrong, and take automatic actions when appropriate:

- Amazon GameLift Console
- **Amazon CloudWatch** — You can monitor Amazon GameLift metrics in real time, as well as metrics for other AWS resources and applications that you're running on AWS services. CloudWatch offers a suite of monitoring features, including tools to create customized dashboards and the ability to set alarms that notify or take action when a metric reaches a specified threshold.
- **AWS CloudTrail** — captures all API calls and related events made by or on behalf of your AWS account for Amazon GameLift and other AWS services. Data is delivered as log files to an Amazon S3 bucket that you specify. You can identify which users and accounts called AWS, the source IP address from which the calls were made, and when the calls occurred.

**Topics**
- Monitor Amazon GameLift with Amazon CloudWatch (p. 104)
- Logging Amazon GameLift API Calls with AWS CloudTrail (p. 112)

Monitor Amazon GameLift with Amazon CloudWatch

You can monitor Amazon GameLift using Amazon CloudWatch, an AWS service that collects raw data and processes it into readable, near real-time metrics. These statistics are kept for 15 months, so that you can access historical information and gain a better perspective on how your game server hosting with Amazon GameLift is performing. You can also set alarms that watch for certain thresholds and send notifications or take actions when those thresholds are met. For more information, see the Amazon CloudWatch User Guide.

To access CloudWatch metrics for your games, you can use the AWS Management Console, the AWS CLI, or the CloudWatch API. The following tables list the metrics and dimensions for Amazon GameLift. All metrics that are available in CloudWatch are also available in the Amazon GameLift console, which provides the data as a set of customizable graphs.

Amazon GameLift Metrics for Fleets

The **AWS/GameLift** namespace includes the following metrics related to activity across a fleet or a group of fleets. The Amazon GameLift service sends metrics to CloudWatch every minute.

**Instances**

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActiveInstances</td>
<td>Instances with ACTIVE status, which means they are running active server processes. The count includes idle instances and those that are hosting one or more game</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>sessions</td>
<td>This metric measures current total instance capacity. This metric can be used with automatic scaling.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Average, Minimum, Maximum</td>
</tr>
<tr>
<td>DesiredInstances</td>
<td>Target number of active instances that Amazon GameLift is working to maintain in the fleet. With automatic scaling, this value is determined based on the scaling policies currently in force. Without automatic scaling, this value is set manually. This metric is not available when viewing data for fleet metric groups.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Average, Minimum, Maximum</td>
</tr>
<tr>
<td>IdleInstances</td>
<td>Active instances that are currently hosting zero (0) game sessions. This metric measures capacity that is available but unused. This metric can be used with automatic scaling.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Average, Minimum, Maximum</td>
</tr>
<tr>
<td>MaxInstances</td>
<td>Maximum number of instances that are allowed for the fleet. A fleet's instance maximum determines the capacity ceiling during manual or automatic scaling up. This metric is not available when viewing data for fleet metric groups.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Average, Minimum, Maximum</td>
</tr>
<tr>
<td>MinInstances</td>
<td>Minimum number of instances allowed for the fleet. A fleet's instance minimum determines the capacity floor during manual or automatic scaling down. This metric is not available when viewing data for fleet metric groups.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Average, Minimum, Maximum</td>
</tr>
</tbody>
</table>
### Amazon GameLift Metrics for Fleets

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PercentIdleInstances</td>
<td>Percentage of all active instances that are idle (calculated as (\frac{\text{IdleInstances}}{\text{ActiveInstances}})). This metric can be used for automatic scaling.</td>
</tr>
<tr>
<td></td>
<td>Units: Percent</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Average, Minimum, Maximum</td>
</tr>
</tbody>
</table>

### Server Processes

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActiveServerProcesses</td>
<td>Server processes with ACTIVE status, which means they are running and able to host game sessions. The count includes idle server processes and those that are hosting game sessions. This metric measures current total server process capacity.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Average, Minimum, Maximum</td>
</tr>
<tr>
<td>HealthyServerProcesses</td>
<td>Active server processes that are reporting healthy. This metric is useful for tracking the overall health of the fleet’s game servers.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Average, Minimum, Maximum</td>
</tr>
<tr>
<td>PercentHealthyServerProcesses</td>
<td>Percentage of all active server processes that are reporting healthy (calculated as (\frac{\text{HealthyServerProcesses}}{\text{ActiveServerProcesses}})).</td>
</tr>
<tr>
<td></td>
<td>Units: Percent</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Average, Minimum, Maximum</td>
</tr>
<tr>
<td>ServerProcessAbnormalTerminations</td>
<td>Server processes that were shut down due to abnormal circumstances since the last report. This metric includes terminations that were initiated by the Amazon GameLift service. This occurs when a server process stops responding, consistently reports failed health checks, or does not terminate cleanly (by calling \text{ProcessEnding}()).</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Sum, Average, Minimum, Maximum</td>
</tr>
<tr>
<td>ServerProcessActivations</td>
<td>Server processes that successfully transitioned from ACTIVATING to ACTIVE status since the last report. Server processes cannot host game sessions until they are active.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Sum, Average, Minimum, Maximum</td>
</tr>
<tr>
<td>ServerProcessTerminations</td>
<td>Server processes that were shut down since the last report. This includes all server processes that transitioned to TERMINATED status for any reason, including normal and abnormal process terminations.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Sum, Average, Minimum, Maximum</td>
</tr>
</tbody>
</table>

**Game Sessions**

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActivatingGameSessions</td>
<td>Game sessions with ACTIVATING status, which means they are in the process of starting up. Game sessions cannot host players until they are active. High numbers for a sustained period of time may indicate that game sessions are not transitioning from ACTIVATING to ACTIVE status. This metric can be used with automatic scaling.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Average, Minimum, Maximum</td>
</tr>
<tr>
<td>ActiveGameSessions</td>
<td>Game sessions with ACTIVE status, which means they are able to host players, and are hosting zero or more players. This metric measures the total number of game sessions currently being hosted. This metric can be used with automatic scaling.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Average, Minimum, Maximum</td>
</tr>
<tr>
<td>AvailableGameSessions</td>
<td>Game session slots on active, healthy server processes that are not currently being used. This metric measures the number of new game sessions that could be started.</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>immediately.</td>
<td>This metric can be used with automatic scaling.</td>
</tr>
<tr>
<td>Units: Count</td>
<td></td>
</tr>
<tr>
<td>Relevant CloudWatch statistics: Average, Minimum, Maximum</td>
<td></td>
</tr>
<tr>
<td>PercentAvailableGameSessions</td>
<td>Percentage of game session slots on all active server processes (healthy or unhealthy) that are not currently being used (calculated as AvailableGameSessions / [ActiveGameSessions + AvailableGameSessions + unhealthy server processes]). This metric can be used with automatic scaling.</td>
</tr>
<tr>
<td>Units: Percent</td>
<td></td>
</tr>
<tr>
<td>Relevant CloudWatch statistics: Average</td>
<td></td>
</tr>
</tbody>
</table>

**Player Sessions**

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CurrentPlayerSessions</td>
<td>Player sessions with either ACTIVE status (player is connected to an active game session) or RESERVED status (player has been given a slot in a game session but hasn't yet connected). This metric can be used with automatic scaling.</td>
</tr>
<tr>
<td>Units: Count</td>
<td></td>
</tr>
<tr>
<td>Relevant CloudWatch statistics: Average, Minimum, Maximum</td>
<td></td>
</tr>
<tr>
<td>PlayerSessionActivations</td>
<td>Player sessions that transitioned from RESERVED status to ACTIVE since the last report. This occurs when a player successfully connects to an active game session.</td>
</tr>
<tr>
<td>Units: Count</td>
<td></td>
</tr>
<tr>
<td>Relevant CloudWatch statistics: Sum, Average, Minimum, Maximum</td>
<td></td>
</tr>
</tbody>
</table>

**Amazon GameLift Metrics for Queues**

The GameLift namespace includes the following metrics related to activity across a game session placement queue. The Amazon GameLift service sends metrics to CloudWatch every minute.
## Amazon GameLift Metrics for Matchmaking

The GameLift namespace includes the following metrics related to matchmaking activity. The Amazon GameLift service sends metrics to CloudWatch every minute.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AverageWaitTime</td>
<td>Average amount of time that game session placement requests in the queue with status PENDING have been waiting to be fulfilled.</td>
</tr>
<tr>
<td></td>
<td>Units: Seconds</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Average, Minimum, Maximum</td>
</tr>
<tr>
<td>PlacementsCanceled</td>
<td>Game session placement requests that were canceled before timing out since the last report.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Average, Minimum, Maximum</td>
</tr>
<tr>
<td>PlacementsStarted</td>
<td>New game session placement requests that were added to the queue since the last report.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Average, Minimum, Maximum</td>
</tr>
<tr>
<td>PlacementsSucceeded</td>
<td>Game session placement requests that resulted in a new game session since the last report.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Average, Minimum, Maximum</td>
</tr>
<tr>
<td>PlacementsTimedOut</td>
<td>Game session placement requests that reached the queue's timeout limit without being fulfilled since the last report.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Average, Minimum, Maximum</td>
</tr>
<tr>
<td>QueueDepth</td>
<td>Number of game session placement requests in the queue with status PENDING.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Average, Minimum, Maximum</td>
</tr>
</tbody>
</table>

### Amazon GameLift Developer Guide

Amazon GameLift Metrics for Matchmaking
For more information on the sequence of matchmaking activity, see How Amazon GameLift FlexMatch Works.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CurrentTickets</td>
<td>Matchmaking requests currently being processed or waiting to be processed.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Average, Minimum, Maximum</td>
</tr>
<tr>
<td>MatchAcceptancesTimedOut</td>
<td>For matchmaking configurations that require acceptance, the potential matches that timed out during acceptance since the last report.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Sum</td>
</tr>
<tr>
<td>MatchesAccepted</td>
<td>For matchmaking configurations that require acceptance, the potential matches that were accepted since the last report.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Sum</td>
</tr>
<tr>
<td>MatchesCreated</td>
<td>Potential matches that were created since the last report.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Sum</td>
</tr>
<tr>
<td>MatchesPlaced</td>
<td>Matches that were successfully placed into a game session since the last report.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Sum</td>
</tr>
<tr>
<td>MatchesRejected</td>
<td>For matchmaking configurations that require acceptance, the potential matches that were rejected by at least one player since the last report.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Sum</td>
</tr>
<tr>
<td>PlayersStarted</td>
<td>Players in matchmaking tickets that were added since the last report.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Sum</td>
</tr>
<tr>
<td>RuleEvaluationsPassed</td>
<td>Rule evaluations during the matchmaking process that passed since the last report. This metric is limited to the top 50 rules.</td>
</tr>
</tbody>
</table>

Version
110
<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Sum</td>
</tr>
<tr>
<td>RuleEvaluationsFailed</td>
<td>Rule evaluations during matchmaking that failed since the last report. This metric is limited to the top 50 rules.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Sum</td>
</tr>
<tr>
<td>TicketsFailed</td>
<td>Matchmaking requests that resulted in failure since the last report.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Sum</td>
</tr>
<tr>
<td>TicketsStarted</td>
<td>New matchmaking requests that were created since the last report.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Sum</td>
</tr>
<tr>
<td>TicketsTimedOut</td>
<td>Matchmaking requests that reached the timeout limit since the last report.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Sum</td>
</tr>
<tr>
<td>TimeToMatch</td>
<td>For matchmaking requests that were put into a potential match before the last report, the amount of time between ticket creation and potential match creation.</td>
</tr>
<tr>
<td></td>
<td>Units: Seconds</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Data Samples, Average, Minimum, Maximum, p99</td>
</tr>
<tr>
<td>TimeToTicketCancel</td>
<td>For matchmaking requests that were canceled before the last report, the amount of time between ticket creation and cancellation.</td>
</tr>
<tr>
<td></td>
<td>Units: Seconds</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Data Samples, Average, Minimum, Maximum, p99</td>
</tr>
<tr>
<td>TimeToTicketSuccess</td>
<td>For matchmaking requests that succeeded before the last report, the amount of time between ticket creation and successful match placement.</td>
</tr>
<tr>
<td></td>
<td>Units: Seconds</td>
</tr>
<tr>
<td></td>
<td>Relevant CloudWatch statistics: Data Samples, Average, Minimum, Maximum, p99</td>
</tr>
</tbody>
</table>
Dimensions for Amazon GameLift Metrics

Amazon GameLift supports filtering metrics by the following dimensions.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FleetId</td>
<td>Unique identifier for a single fleet. This dimension is used with all metrics for instances, server processes, game sessions, and player sessions. It is not used with metrics for queues and matchmaking.</td>
</tr>
<tr>
<td>FleetMetricsGroup</td>
<td>Unique identifier for a collection of fleets. A fleet is included in a fleet metric group by adding the metric group name to the fleet's attributes (see UpdateFleetAttributes()). This dimension is used with all metrics for instances, server processes, game sessions, and player sessions. It is not used with metrics for queues and matchmaking.</td>
</tr>
<tr>
<td>QueueName</td>
<td>Unique identifier for a single queue. This dimension is used with metrics for game session placement queues only.</td>
</tr>
<tr>
<td>MatchmakingConfigurationName</td>
<td>Unique identifier for a single matchmaking configuration. This dimension is used with metrics for matchmaking only.</td>
</tr>
<tr>
<td>MatchmakingConfigurationName-RuleName</td>
<td>Unique identifier for the intersect of a matchmaking configuration and a matchmaking rule. This dimension is used with metrics for matchmaking only.</td>
</tr>
</tbody>
</table>

Logging Amazon GameLift API Calls with AWS CloudTrail

Amazon GameLift is integrated with AWS CloudTrail, a service that captures all of the API calls made by or on behalf of Amazon GameLift in your AWS account. CloudTrail delivers the log files to an Amazon S3 bucket that you specify. CloudTrail captures API calls from the Amazon GameLift console or from the Amazon GameLift API. Using the information collected by CloudTrail, you can determine what request was made to Amazon GameLift, the source IP address from which the request was made, who made the request, when it was made, and so on. To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail User Guide.

Amazon GameLift Information in CloudTrail

When CloudTrail logging is enabled in your AWS account, API calls made to Amazon GameLift actions are tracked in log files. Amazon GameLift records are written together with other AWS service records in a log file. CloudTrail determines when to create and write to a new file based on a time period and file size.

All Amazon GameLift actions are logged by CloudTrail. For example, calls to CreateGameSession, CreatePlayerSession and UpdateGameSession generate entries in the CloudTrail log files. For the complete list of actions, see the Amazon GameLift API Reference.

Every log entry contains information about who generated the request. The user identity information in the log helps you determine whether the request was made with AWS account root or IAM user
Understanding Amazon GameLift Log File Entries

CloudTrail log files can contain one or more log entries where each entry is made up of multiple JSON-formatted events. A log entry represents a single request from any source and includes information about the requested action, any parameters, the date and time of the action, and so on. The log entries are not guaranteed to be in any particular order. That is, they are not an ordered stack trace of the public API calls.

The following example shows a CloudTrail log entry that demonstrates the CreateFleet and DescribeFleetAttributes actions.

```json
{
 "Records": [
 {
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::111122223333:user/myUserName",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "myUserName"
 },
 "eventTime": "2015-12-29T23:40:15Z",
 "eventSource": "gamelift.amazonaws.com",
 "eventName": "CreateFleet",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "[]",
 "requestParameters": {
 "buildId": "build-92b6e8af-37a2-4c10-93bd-4698ea23de8d",
 "eC2InboundPermissions": [
 {
 "ipRange": "10.24.34.0/23",
 "fromPort": 1935,
 "protocol": "TCP",
 "toPort": 1935
 }
],
 "logPaths": [
 "C:\game\serverErr.log",
 "C:\game\serverOut.log"
],
 "eC2InstanceType": "c4.large",
 "serverLaunchPath": "C:\game\MyServer.exe",
 "description": "Test fleet",
 "serverLaunchParameters": "-paramX=baz"
 }
 }
]
}
```
"name": "My_Test_Server_Fleet",
"responseElements": {
  "fleetAttributes": {
    "fleetId": "fleet-0bb84136-4f69-4bb2-bfec-a9b9a7c3d52e",
    "serverLaunchPath": "C:\game\MyServer.exe",
    "status": "NEW",
    "logPaths": [
      "C:\game\serverErr.log",
      "C:\game\serverOut.log"
    ],
    "description": "Test fleet",
    "serverLaunchParameters": "-paramX=baz",
    "creationTime": "Dec 29, 2015 11:40:14 PM",
    "name": "My_Test_Server_Fleet",
    "buildId": "build-92b6e8af-37a2-4c10-93bd-4698ea23de8d"
  }
},
"requestID": "824a2a4b-ae85-11e5-a8d6-61d5cafb25f2",
"eventID": "c8fbeda01-fbf9-4c4e-a0fe-ad7dc205ce11",
"eventType": "AwsApiCall",
"recipientAccountId": "111122223333"
},
"eventVersion": "1.04",
"userIdentity": {
  "type": "IAMUser",
  "principalId": "AIDACK876Q56C2EXAMPLE",
  "arn": "arn:aws:iam::111122223333:user/myUserName",
  "accountId": "111122223333",
  "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
  "userName": "myUserName"
},
"eventTime": "2015-12-29T23:40:15Z",
"eventSource": "gamelift.amazonaws.com",
"eventName": "DescribeFleetAttributes",
"awsRegion": "us-west-2",
"sourceIPAddress": "192.0.2.0",
"userAgent": "[]",
"requestParameters": {
  "fleetIds": [
    "fleet-0bb84136-4f69-4bb2-bfec-a9b9a7c3d52e"
  ]
},
"responseElements": null,
"requestID": "82e7f00c-ac85-11e5-a8d6-61d5cafb25f2",
"eventID": "11daabb0-0094-49f2-bb3d-3a63c6bad86f",
"eventType": "AwsApiCall",
"recipientAccountId": "111122223333"}
Amazon GameLift Reference Guides

This section contains the set of reference guides available for using Amazon GameLift.

**Topics**
- Amazon GameLift Server API (C++) Reference (p. 115)
- Amazon GameLift Server API (C#) Reference (p. 126)
- Amazon GameLift Server API Reference for Unreal Engine (p. 136)
- FlexMatch Rules Reference (p. 142)
- FlexMatch Events Reference (p. 146)

Amazon GameLift Server API (C++) Reference

This Amazon GameLift C++ Server API reference can help you prepare your multiplayer game for use with Amazon GameLift. For details on the integration process, see Add Amazon GameLift to Your Game Server (p. 27).

This API is defined in `GameLiftServerAPI.h`, `LogParameters.h`, and `ProcessParameters.h`.

- Actions (p. 115)
- Data Types (p. 123)

Amazon GameLift Server API (C++) Reference: Actions

This Amazon GameLift C++ Server API reference can help you prepare your multiplayer game for use with Amazon GameLift. For details on the integration process, see Add Amazon GameLift to Your Game Server (p. 27).

This API is defined in `GameLiftServerAPI.h`, `LogParameters.h`, and `ProcessParameters.h`.

- Actions
- Data Types (p. 123)

**AcceptPlayerSession()**

Notifies the Amazon GameLift service that a player with the specified player session ID has connected to the server process and needs validation. Amazon GameLift verifies that the player session ID is valid—that is, that the player ID has reserved a player slot in the game session. Once validated, Amazon GameLift changes the status of the player slot from RESERVED to ACTIVE.

**Syntax**

```
GenericOutcome AcceptPlayerSession(const std::string& playerSessionId);
```
Parameters

playerSessionId

Unique ID issued by the Amazon GameLift service in response to a call to the AWS SDK Amazon GameLift API action CreatePlayerSession. The game client references this ID when connecting to the server process.

Type: std::string

Required: Yes

Return Value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example illustrates a function for handling a connection request, including validating and rejecting invalid player session IDs.

```cpp
void ReceiveConnectingPlayerSessionID (Connection& connection, const std::string& playerSessionId){
 Aws::GameLift::GenericOutcome connectOutcome =
 Aws::GameLift::Server::AcceptPlayerSession(playerSessionId);
 if(connectOutcome.IsSuccess())
 {
 connectionToSessionMap.emplace(connection, playerSessionId);
 connection.Accept();
 }
 else
 {
 connection.Reject(connectOutcome.GetError().GetMessage();
 }
}
```

ActivateGameSession()

Notifies the Amazon GameLift service that the server process has activated a game session and is now ready to receive player connections. This action should be called as part of the onStartGameSession() callback function, after all game session initialization has been completed.

Syntax

```cpp
GenericOutcome ActivateGameSession();
```

Parameters

This action has no parameters.

Return Value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example shows ActivateGameSession() being called as part of the onStartGameSession() callback function.
void onStartGameSession(Aws::GameLift::Model::GameSession myGameSession)
{
    // game-specific tasks when starting a new game session, such as loading map
    GenericOutcome outcome = Aws::GameLift::Server::ActivateGameSession();
}

DescribePlayerSessions()

Retrieves player session data, including settings, session metadata, and player data. Use this action to get information for a single player session, for all player sessions in a game session, or for all player sessions associated with a single player ID.

Syntax

DescribePlayerSessionsOutcome DescribePlayerSessions (  
    const Aws::GameLift::Server::Model::DescribePlayerSessionsRequest &describePlayerSessionsRequest);

Parameters

describePlayerSessionsRequest

A DescribePlayerSessionsRequest (p. 124) object describing which player sessions to retrieve.

Required: Yes

Return Value

If successful, returns a DescribePlayerSessionsOutcome object containing a set of player session objects that fit the request parameters. Player session objects have a structure identical to the AWS SDK Amazon GameLift API PlayerSession data type.

Example

This example illustrates a request for all player sessions actively connected to a specified game session. By omitting NextToken and setting the Limit value to 10, Amazon GameLift returns the first 10 player sessions records matching the request.

    // Set request parameters
    Aws::GameLift::Server::Model::DescribePlayerSessionsRequest request;
    request.SetPlayerSessionStatusFilter(Aws::GameLift::Server::Model::PlayerSessionStatusMapper::GetNameForPlayerSessionStatus(Aws::GameLift::Server::Model::PlayerSessionStatus::Active));
    request.SetLimit(10);
    request.SetGameSessionId("the game session ID"); // can use GetGameSessionId()

    // Call DescribePlayerSessions
    Aws::GameLift::DescribePlayerSessionsOutcome playerSessionsOutcome = 
    Aws::GameLift::Server::Model::DescribePlayerSessions(request);

GetGameSessionId()

Retrieves the ID of the game session currently being hosted by the server process, if the server process is active.

Syntax

AwsStringOutcome GetGameSessionId();
Parameters

This action has no parameters.

Return Value

If successful, returns the game session ID as an AwsStringOutcome object. If not successful, returns an error message.

Example

```cpp
Aws::GameLift::AwsStringOutcome sessionIdOutcome =
 Aws::GameLift::Server::GetGameSessionId();
```

GetSdkVersion()

Returns the current version number of the SDK built into the server process.

Syntax

```cpp
AwsStringOutcome GetSdkVersion();
```

Parameters

This action has no parameters.

Return Value

If successful, returns the current SDK version as an AwsStringOutcome object. The returned string includes the version number only (ex. "3.1.5"). If not successful, returns an error message.

Example

```cpp
Aws::GameLift::AwsStringOutcome SdkVersionOutcome =
 Aws::GameLift::Server::GetSdkVersion();
```

InitSDK()

Initializes the Amazon GameLift SDK. This method should be called on launch, before any other Amazon GameLift-related initialization occurs.

Syntax

```cpp
InitSDKOutcome InitSDK();
```

Parameters

This action has no parameters.

Return Value

If successful, returns an InitSdkOutcome object indicating that the server process is ready to call ProcessReady() (p. 119).
Example

```cpp
Aws::GameLift::Server::InitSDKOutcome initOutcome =
 Aws::GameLift::Server::InitSDK();
```

### ProcessEnding()

Notifies the Amazon GameLift service that the server process is shutting down. The call triggers Amazon GameLift to change the instance's status from ACTIVE to TERMINATING. This method should be called after all other cleanup tasks, including shutting down all active game sessions. Amazon GameLift waits at least 30 seconds after receiving this call before terminating the instance. This method should exit with an exit code of 0; a non-zero exit code results in an event message that the process did not exit cleanly.

**Syntax**

```cpp
GenericOutcome ProcessEnding();
```

**Parameters**

This action has no parameters.

**Return Value**

Returns a generic outcome consisting of success or failure with an error message.

**Example**

```cpp
Aws::GameLift::GenericOutcome outcome = Aws::GameLift::Server::ProcessEnding();
```

### ProcessReady()

Notifies the Amazon GameLift service that the server process is ready to host game sessions. This method should be called after successfully invoking `InitSDK()` and completing any setup tasks required before the server process can host a game session.

This call is synchronous. To make an asynchronous call, use `ProcessReadyAsync()` (p. 120). See Prepare a Server Process (p. 27) for more details.

**Syntax**

```cpp
GenericOutcome ProcessReady(
 const Aws::GameLift::Server::ProcessParameters &processParameters);
```

**Parameters**

`processParameters`

A `ProcessParameters` object communicating the following information about the server process:

- Names of callback methods, implemented in the game server code, that the Amazon GameLift service invokes to communicate with the server process.
- Port number that the server process is listening on.
- Path to any game session-specific files that you want Amazon GameLift to capture and store.
Required: Yes

**Return Value**

Returns a generic outcome consisting of success or failure with an error message.

**Example**

This example illustrates both the `ProcessReady()` (p. 119) call and callback function implementations.

```cpp
// Set parameters and call ProcessReady
std::string serverLog("serverOut.log"); // Example of a log file written by the game
server
std::vector<std::string> logPaths;
logPaths.push_back(serverLog);

int listenPort = 9339;

Aws::GameLift::Server::ProcessParameters processReadyParameter =
 Aws::GameLift::Server::ProcessParameters(
 std::bind(&Server::onStartGameSession, this, std::placeholders::_1),
 std::bind(&Server::onProcessTerminate, this),
 std::bind(&Server::OnHealthCheck, this),
 listenPort,
 Aws::GameLift::Server::LogParameters(logPaths));

Aws::GameLift::GenericOutcome outcome =
 Aws::GameLift::Server::ProcessReady(processReadyParameter);

// Implement callback functions
void Server::onStartGameSession(Aws::GameLift::Model::GameSession myGameSession)
{
 // game-specific tasks when starting a new game session, such as loading map
 GenericOutcome outcome =
 Aws::GameLift::Server::ActivateGameSession (maxPlayers);
}

void Server::onProcessTerminate()
{
 // game-specific tasks required to gracefully shut down a game session,
 // such as notifying players, preserving game state data, and other cleanup
 GenericOutcome outcome = Aws::GameLift::Server::ProcessEnding();
}

bool Server::onHealthCheck()
{
 bool health;
 // complete health evaluation within 60 seconds and set health
 return health;
}
```

**ProcessReadyAsync()**

Notifies the Amazon GameLift service that the server process is ready to host game sessions. This method should be called once the server process is ready to host a game session. The parameters specify the names of callback functions for Amazon GameLift to call in certain circumstances. Game server code must implement these functions.

This call is asynchronous. To make a synchronous call, use `ProcessReady()` (p. 119). See Prepare a Server Process (p. 27) for more details.
Syntax

```cpp
GenericOutcomeCallable ProcessReadyAsync(
 const Aws::GameLift::Server::ProcessParameters &processParameters);
```

Parameters

**processParameters**

A `ProcessParameters` (p. 125) object communicating the following information about the server process:

- Names of callback methods, implemented in the game server code, that the Amazon GameLift service invokes to communicate with the server process.
- Port number that the server process is listening on.
- Path to any game session-specific files that you want Amazon GameLift to capture and store.

Required: Yes

Return Value

Returns a generic outcome consisting of success or failure with an error message.

Example

```cpp
// Set parameters and call ProcessReady
std::string serverLog("serverOut.log"); // This is an example of a log file written
by the game server
std::vector<std::string> logPaths;
logPaths.push_back(serverLog);
int listenPort = 9339;

Aws::GameLift::Server::ProcessParameters processReadyParameter =
 Aws::GameLift::Server::ProcessParameters(
 std::bind(&Server::onStartGameSession, this, std::placeholders::_1),
 std::bind(&Server::onProcessTerminate, this),
 std::bind(&Server::OnHealthCheck, this),
 listenPort,
 Aws::GameLift::Server::LogParameters(logPaths));

Aws::GameLift::GenericOutcomeCallable outcome =
 Aws::GameLift::Server::ProcessReadyAsync(processReadyParameter);

// Implement callback functions
void onStartGameSession(Aws::GameLift::Model::GameSession myGameSession)
{
 // game-specific tasks when starting a new game session, such as loading map
 GenericOutcome outcome = Aws::GameLift::Server::ActivateGameSession (maxPlayers);
}

void onProcessTerminate()
{
 // game-specific tasks required to gracefully shut down a game session,
 // such as notifying players, preserving game state data, and other cleanup
 GenericOutcome outcome = Aws::GameLift::Server::ProcessEnding();
}

bool onHealthCheck()
{
 // perform health evaluation and complete within 60 seconds
```
return health;
}

### RemovePlayerSession()

Notifies the Amazon GameLift service that a player with the specified player session ID has disconnected from the server process. In response, Amazon GameLift changes the player slot to available, which allows it to be assigned to a new player.

**Syntax**

```
GenericOutcome RemovePlayerSession(
 const std::string& playerSessionId);
```

**Parameters**

- **playerSessionId**
  - Unique ID issued by the Amazon GameLift service in response to a call to the AWS SDK Amazon GameLift API action `CreatePlayerSession`. The game client references this ID when connecting to the server process.
  - Type: std::string
  - Required: Yes

**Return Value**

Returns a generic outcome consisting of success or failure with an error message.

**Example**

```
Aws::GameLift::GenericOutcome disconnectOutcome =
 Aws::GameLift::Server::RemovePlayerSession(playerSessionId);
```

### TerminateGameSession()

Notifies the Amazon GameLift service that the server process has shut down the game session. (Currently, each server process hosts only one game session at a time, so there’s no need to specify which session.) This action should be called at the end of the game session shutdown process. After calling this action, the server process can call `ProcessReady()` (p. 119) to signal its availability to host a new game session. Alternatively it can call `ProcessEnding()` (p. 119) to shut down the server process and terminate the instance.

**Syntax**

```
GenericOutcome TerminateGameSession();
```

**Parameters**

This action has no parameters.

**Return Value**

Returns a generic outcome consisting of success or failure with an error message.
Example

This example illustrates a server process at the end of a game session.

```cpp
// game-specific tasks required to gracefully shut down a game session,
// such as notifying players, preserving game state data, and other cleanup
Aws::GameLift::GenericOutcome outcome =
 Aws::GameLift::Server::TerminateGameSession();
Aws::GameLift::GenericOutcome outcome =
 Aws::GameLift::Server::ProcessReady(onStartGameSession, onProcessTerminate);
```

**UpdatePlayerSessionCreationPolicy()**

Updates the current game session’s ability to accept new player sessions. A game session can be set to either accept or deny all new player sessions. (See also the UpdateGameSession() action in the *Amazon GameLift Service API Reference*).

**Syntax**

```cpp
GenericOutcome UpdatePlayerSessionCreationPolicy(
 Aws::GameLift::Model::PlayerSessionCreationPolicy newPlayerSessionPolicy);
```

**Parameters**

**newPlayerSessionPolicy**

String value indicating whether the game session accepts new players.

Type: `Aws::GameLift::Model::PlayerSessionCreationPolicy` enum. Valid values include:

- **ACCEPT_ALL** – Accept all new player sessions.
- **DENY_ALL** – Deny all new player sessions.

Required: Yes

**Return Value**

Returns a generic outcome consisting of success or failure with an error message.

**Example**

This example sets the current game session's join policy to accept all players.

```cpp
Aws::GameLift::GenericOutcome outcome =
 Aws::GameLift::Server::UpdatePlayerSessionCreationPolicy(Aws::GameLift::Model::PlayerSessionCreationPolicy::ACCEPT_ALL);
```

Amazon GameLift Server API (C++) Reference: Data Types

This Amazon GameLift C++ Server API reference can help you prepare your multiplayer game for use with Amazon GameLift. For details on the integration process, see *Add Amazon GameLift to Your Game Server* (p. 27).

This API is defined in GameLiftServerAPI.h, LogParameters.h, and ProcessParameters.h.
• Actions (p. 115)
• Data Types

DescribePlayerSessionsRequest

This data type is used to specify which player session(s) to retrieve. You can use it as follows:

• Provide a PlayerSessionId to request a specific player session.
• Provide a GameSessionId to request all player sessions in the specified game session.
• Provide a PlayerId to request all player sessions for the specified player.

For large collections of player sessions, use the pagination parameters to retrieve results in sequential blocks.

Contents

GameSessionId

Unique game session identifier. Use this parameter to request all player sessions for the specified game session. Game session ID format is as follows:
arn:aws:gamelift:<region>::gamesession/fleet-<fleet ID>/<ID string>. The value of <ID string> is either a custom ID string (if one was specified when the game session was created) a generated string.

Type: String
Required: No

Limit

Maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages. If a player session ID is specified, this parameter is ignored.

Type: Integer
Required: No

NextToken

Token indicating the start of the next sequential page of results. Use the token that is returned with a previous call to this action. To specify the start of the result set, do not specify a value. If a player session ID is specified, this parameter is ignored.

Type: String
Required: No

PlayerId

Unique identifier for a player. Player IDs are defined by the developer. See Generate Player IDs (p. 34).

Type: String
Required: No

PlayerSessionId

Unique identifier for a player session.

Type: String
Data Types

PlayerSessionStatusFilter

Player session status to filter results on. Possible player session statuses include the following:
- RESERVED – The player session request has been received, but the player has not yet connected to the server process and/or been validated.
- ACTIVE – The player has been validated by the server process and is currently connected.
- COMPLETED – The player connection has been dropped.
- TIMEDOUT – A player session request was received, but the player did not connect and/or was not validated within the time-out limit (60 seconds).

Type: String
Required: No

LogParameters

This data type is used to identify which files generated during a game session that you want Amazon GameLift to upload and store once the game session ends. This information is communicated to the Amazon GameLift service in a `ProcessReady()` (p. 119) call.

Contents

logPaths

Directory paths to game server log files that you want Amazon GameLift to store for future access. These files are generated during each game session. File paths and names are defined in your game server and stored in the root game build directory. For example, if your game build stores game session logs in a path like `MyGame\sessionlogs\`, then the log path would be `c:\game\MyGame\sessionLogs` (on a Windows instance) or `/local/game/MyGame/sessionLogs` (on a Linux instance).

Type: `std::vector<std::string>`
Required: No

ProcessParameters

This data type contains the set of parameters sent to the Amazon GameLift service in a `ProcessReady()` (p. 119) call.

Contents

port

Port number the server process listens on for new player connections. The value must fall into the port range configured for any fleet deploying this game server build. This port number is included in game session and player session objects, which game sessions use when connecting to a server process.

Type: Integer
Required: Yes

logParameters

Object with a list of directory paths to game session log files.
onStartGameSession

Name of callback function that the Amazon GameLift service calls to activate a new game session. Amazon GameLift calls this function in response to the client request CreateGameSession. The callback function takes a GameSession object (defined in the Amazon GameLift Service API Reference).

Type: const std::function<void(Aws::GameLift::Model::GameSession)> onStartGameSession

Required: Yes

onProcessTerminate

Name of callback function that the Amazon GameLift service calls to force the server process to shut down. After calling this function, Amazon GameLift waits five minutes for the server process to shut down and respond with a ProcessEnding() (p. 119) call. If no response is receive, it shuts down the server process.

Type: std::function<void()> onProcessTerminate

Required: No

onHealthCheck

Name of callback function that the Amazon GameLift service calls to request a health status report from the server process. Amazon GameLift calls this function every 60 seconds. After calling this function Amazon GameLift waits 60 seconds for a response, and if none is received. records the server process as unhealthy.

Type: std::function<bool()> onHealthCheck

Required: No

Amazon GameLift Server API (C#) Reference

This Amazon GameLift C# Server API reference can help you prepare your multiplayer game for use with Amazon GameLift. For details on the integration process, see Add Amazon GameLift to Your Game Server (p. 27).

This API is defined in GameLiftServerAPI.cs, LogParameters.cs, and ProcessParameters.cs.

- Actions (p. 126)
- Data Types (p. 133)

Amazon GameLift Server API (C#) Reference: Actions

This Amazon GameLift C# Server API reference can help you prepare your multiplayer game for use with Amazon GameLift. For details on the integration process, see Add Amazon GameLift to Your Game Server (p. 27).

This API is defined in GameLiftServerAPI.cs, LogParameters.cs, and ProcessParameters.cs.

- Actions
- Data Types (p. 133)
AcceptPlayerSession()

Notifies the Amazon GameLift service that a player with the specified player session ID has connected to the server process and needs validation. Amazon GameLift verifies that the player session ID is valid—that is, that the player ID has reserved a player slot in the game session. Once validated, Amazon GameLift changes the status of the player slot from RESERVED to ACTIVE.

Syntax

GenericOutcome AcceptPlayerSession(String playerSessionId)

Parameters

playerSessionId

Unique ID issued by the Amazon GameLift service in response to a call to the AWS SDK Amazon GameLift API action CreatePlayerSession. The game client references this ID when connecting to the server process.

Type: String

Required: Yes

Return Value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example illustrates a function for handling a connection request, including validating and rejecting invalid player session IDs.

```java
void ReceiveConnectingPlayerSessionID (Connection connection, String playerSessionId){
 var acceptPlayerSessionOutcome = GameLiftServerAPI.AcceptPlayerSession(playerSessionId);
 if(acceptPlayerSessionOutcome.Success)
 {
 connectionToSessionMap.emplace(connection, playerSessionId);
 connection.Accept();
 }
 else
 {
 connection.Reject(acceptPlayerSessionOutcome.Error.ErrorMessage);
 }
}
```

ActivateGameSession()

Notifies the Amazon GameLift service that the server process has activated a game session and is now ready to receive player connections. This action should be called as part of the onStartGameSession() callback function, after all game session initialization has been completed.

Syntax

GenericOutcome ActivateGameSession()
Parameters

This action has no parameters.

Return Value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example shows ActivateGameSession() being called as part of the onStartGameSession() delegate function.

```csharp
void OnStartGameSession(GameSession gameSession)
{
 // game-specific tasks when starting a new game session, such as loading map
 // When ready to receive players
 var activateGameSessionOutcome = GameLiftServerAPI.ActivateGameSession();
}
```

DescribePlayerSessions()

Retrieves player session data, including settings, session metadata, and player data. Use this action to get information for a single player session, for all player sessions in a game session, or for all player sessions associated with a single player ID.

Syntax

```
DescribePlayerSessionsOutcome DescribePlayerSessions(DescribePlayerSessionsRequest describePlayerSessionsRequest)
```

Parameters

describePlayerSessionsRequest

A DescribePlayerSessionsRequest (p. 134) object describing which player sessions to retrieve.

Required: Yes

Return Value

If successful, returns a DescribePlayerSessionsOutcome object containing a set of player session objects that fit the request parameters. Player session objects have a structure identical to the AWS SDK Amazon GameLift API PlayerSession data type.

Example

This example illustrates a request for all player sessions actively connected to a specified game session. By omitting NextToken and setting the Limit value to 10, Amazon GameLift will return the first 10 player sessions records matching the request.

```csharp
// Set request parameters
var describePlayerSessionsRequest = new
```
GetGameSessionId()

Retrieves the ID of the game session currently being hosted by the server process, if the server process is active.

Syntax

```
AwsStringOutcome GetGameSessionId()
```

Parameters

This action has no parameters.

Return Value

If successful, returns the game session ID as an AwsStringOutcome object. If not successful, returns an error message.

Example

```
var getGameSessionIdOutcome = GameLiftServerAPI.GetGameSessionId();
```

GetSdkVersion()

Returns the current version number of the SDK built into the server process.

Syntax

```
AwsStringOutcome GetSdkVersion()
```

Parameters

This action has no parameters.

Return Value

If successful, returns the current SDK version as an AwsStringOutcome object. The returned string includes the version number only (ex. "3.1.5"). If not successful, returns an error message.

Example

```
var getSdkVersionOutcome = GameLiftServerAPI.GetSdkVersion();
```
InitSDK()

Initializes the Amazon GameLift SDK. This method should be called on launch, before any other Amazon GameLift-related initialization occurs.

Syntax

```plaintext
InitSDKOutcome InitSDK()
```

Parameters

This action has no parameters.

Return Value

If successful, returns an InitSdkOutcome object indicating that the server process is ready to call ProcessReady() (p. 119).

Example

```plaintext
var initSDKOutcome = GameLiftServerAPI.InitSDK();
```

ProcessEnding()

Notifies the Amazon GameLift service that the server process is shutting down. The call triggers Amazon GameLift to change the instance's status from ACTIVE to TERMINATING. This method should be called after all other cleanup tasks, including shutting down all active game sessions. Amazon GameLift waits at least 30 seconds after receiving this call before terminating the instance. This method should exit with an exit code of 0; a non-zero exit code results in an event message that the process did not exit cleanly.

Syntax

```plaintext
GenericOutcome ProcessEnding()
```

Parameters

This action has no parameters.

Return Value

Returns a generic outcome consisting of success or failure with an error message.

Example

```plaintext
var processEndingOutcome = GameLiftServerAPI.ProcessEnding();
```

ProcessReady()

Notifies the Amazon GameLift service that the server process is ready to host game sessions. This method should be called after successfully invoking InitSDK() (p. 130) and completing any setup tasks required before the server process can host a game session.
Syntax

```csharp
GenericOutcome ProcessReady(ProcessParameters processParameters)
```

Parameters

**processParameters**

A `ProcessParameters (p. 135)` object communicating the following information about the server process:

- Names of callback methods, implemented in the game server code, that the Amazon GameLift service invokes to communicate with the server process.
- Port number that the server process is listening on.
- Path to any game session-specific files that you want Amazon GameLift to capture and store.

Required: Yes

Return Value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example illustrates both the `ProcessReady()` (p. 130) call and delegate function implementations.

```csharp
// Set parameters and call ProcessReady
var processParams = new ProcessParameters(
 this.OnGameSession,
 this.OnProcessTerminate,
 this.OnHealthCheck,
 port,
 new LogParameters(new List<string>() // Examples of log and error files written
 { by the game server
 "C:\game\logs",
 "C:\game\error"
 })
);
var processReadyOutcome = GameLiftServerAPI.ProcessReady(processParams);

// Implement callback functions
void OnGameSession(GameSession gameSession)
{
 // game-specific tasks when starting a new game session, such as loading map
 // When ready to receive players
 var activateGameSessionOutcome = GameLiftServerAPI.ActivateGameSession();
}

void OnProcessTerminate()
{
 // game-specific tasks required to gracefully shut down a game session,
 // such as notifying players, preserving game state data, and other cleanup
 var ProcessEndingOutcome = GameLiftServerAPI.ProcessEnding();
 GameLiftServerAPI.Destroy();
}

bool OnHealthCheck()
{
 bool isHealthy;
}
// complete health evaluation within 60 seconds and set health
 return isHealthy;
}

RemovePlayerSession()

Notifies the Amazon GameLift service that a player with the specified player session ID has disconnected from the server process. In response, Amazon GameLift changes the player slot to available, which allows it to be assigned to a new player.

Syntax

GenericOutcome RemovePlayerSession(String playerSessionId)

Parameters

playerSessionId

Unique ID issued by the Amazon GameLift service in response to a call to the AWS SDK Amazon GameLift API action CreatePlayerSession. The game client references this ID when connecting to the server process.

Type: String

Required: Yes

Return Value

Returns a generic outcome consisting of success or failure with an error message.

Example

```java
Aws::GameLift::GenericOutcome disconnectOutcome =
    Aws::GameLift::Server::RemovePlayerSession(playerSessionId);
```

TerminateGameSession()

Notifies the Amazon GameLift service that the server process has shut down the game session. (Currently, each server process hosts only one game session at a time, so there's no need to specify which session.) This action should be called at the end of the game session shutdown process. After calling this action, the server process can call ProcessReady() (p. 130) to signal its availability to host a new game session. Alternatively, it can call ProcessEnding() (p. 130) to shut down the server process and terminate the instance.

Syntax

GenericOutcome TerminateGameSession()

Parameters

This action has no parameters.

Return Value

Returns a generic outcome consisting of success or failure with an error message.
Data Types

Example
This example illustrates a server process at the end of a game session.

```csharp
// game-specific tasks required to gracefully shut down a game session,
// such as notifying players, preserving game state data, and other cleanup
var terminateGameSessionOutcome = GameLiftServerAPI.TerminateGameSession();
var processReadyOutcome = GameLiftServerAPI.ProcessReady(processParams);
```

UpdatePlayerSessionCreationPolicy()

Updates the current game session's ability to accept new player sessions. A game session can be set to either accept or deny all new player sessions. (See also the UpdateGameSession() action in the Amazon GameLift Service API Reference).

Syntax

```
GenericOutcome UpdatePlayerSessionCreationPolicy(PlayerSessionCreationPolicy playerSessionPolicy)
```

Parameters

newPlayerSessionPolicy

String value indicating whether the game session accepts new players.

Type: `PlayerSessionCreationPolicy` enum. Valid values include:

- **ACCEPT_ALL** – Accept all new player sessions.
- **DENY_ALL** – Deny all new player sessions.

Required: Yes

Return Value

Returns a generic outcome consisting of success or failure with an error message.

Example

This example sets the current game session's join policy to accept all players.

```csharp
var updatePlayerSessionCreationPolicyOutcomex =
    GameLiftServerAPI.UpdatePlayerSessionCreationPolicy(PlayerSessionCreationPolicy.ACCEPT_ALL);
```

Amazon GameLift Server API (C#) Reference: Data Types

This Amazon GameLift C# Server API reference can help you prepare your multiplayer game for use with Amazon GameLift. For details on the integration process, see Add Amazon GameLift to Your Game Server (p. 27).

This API is defined in `GameLiftServerAPI.h`, `LogParameters.h`, and `ProcessParameters.h`.

- Actions (p. 126)
Data Types

LogParameters

This data type is used to identify which files generated during a game session that you want Amazon GameLift to upload and store once the game session ends. This information is communicated to the Amazon GameLift service in a `ProcessReady()` (p. 130) call.

Contents

logPaths

List of directory paths to game server log files you want Amazon GameLift to store for future access. These files are generated by a server process during each game session; file paths and names are defined in your game server and stored in the root game build directory. For example, if your game build stores game session logs in a path like `c:\game\MyGame\sessionLogs` (on a Windows instance) or `/local/game/MyGame/sessionLogs` (on a Linux instance).

Type: List<String>

Required: No

DescribePlayerSessionsRequest

This data type is used to specify which player session(s) to retrieve. It can be used in several ways: (1) provide a PlayerSessionId to request a specific player session; (2) provide a GameSessionId to request all player sessions in the specified game session; or (3) provide a PlayerId to request all player sessions for the specified player. For large collections of player sessions, use the pagination parameters to retrieve results as sequential pages.

Contents

GameSessionId

Unique game session identifier. Use this parameter to request all player sessions for the specified game session. Game session ID format is as follows: `arn:aws:gamelift:<region>::gamesession/fleet-<fleet ID>/<ID string>`. The value of `<ID string>` is either a custom ID string (if one was specified when the game session was created) a generated string.

Type: String

Required: No

Limit

Maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages. If a player session ID is specified, this parameter is ignored.

Type: Integer

Required: No

NextToken

Token indicating the start of the next sequential page of results. Use the token that is returned with a previous call to this action. To specify the start of the result set, do not specify a value. If a player session ID is specified, this parameter is ignored.
Data Types

PlayerId

Unique identifier for a player. Player IDs are defined by the developer. See Generate Player IDs (p. 34).

Type: String
Required: No

PlayerSessionId

Unique identifier for a player session.

Type: String
Required: No

PlayerSessionStatusFilter

Player session status to filter results on. Possible player session statuses include the following:
- RESERVED – The player session request has been received, but the player has not yet connected to the server process and/or been validated.
- ACTIVE – The player has been validated by the server process and is currently connected.
- COMPLETED – The player connection has been dropped.
- TIMEDOUT – A player session request was received, but the player did not connect and/or was not validated within the time-out limit (60 seconds).

Type: String
Required: No

ProcessParameters

This data type contains the set of parameters sent to the Amazon GameLift service in a ProcessReady() (p. 130) call.

Contents

port

Port number the server process will listen on for new player connections. The value must fall into the port range configured for any fleet deploying this game server build. This port number is included in game session and player session objects, which game sessions use when connecting to a server process.

Type: Integer
Required: Yes

logParameters

Object with a list of directory paths to game session log files.

Type: Aws::GameLift::Server::LogParameters (p. 134)
Required: Yes
onStartGameSession

Name of callback function that the Amazon GameLift service calls to activate a new game session. Amazon GameLift calls this function in response to the client request CreateGameSession. The callback function takes a GameSession object (defined in the Amazon GameLift Service API Reference).

Type: void OnStartGameSessionDelegate(GameSession gameSession)

Required: Yes

onProcessTerminate

Name of callback function that the Amazon GameLift service calls to force the server process to shut down. After calling this function, Amazon GameLift waits five minutes for the server process to shut down and respond with a ProcessEnding() (p. 130) call before it shuts down the server process.

Type: void OnProcessTerminateDelegate()

Required: Yes

onHealthCheck

Name of callback function that the Amazon GameLift service calls to request a health status report from the server process. Amazon GameLift calls this function every 60 seconds. After calling this function Amazon GameLift waits 60 seconds for a response, and if none is received, records the server process as unhealthy.

Type: bool OnHealthCheckDelegate()

Required: Yes

Amazon GameLift Server API Reference for Unreal Engine

This Amazon GameLift Server API reference can help you prepare your Unreal Engine game projects for use with Amazon GameLift. For details on the integration process, see Add Amazon GameLift to Your Game Server (p. 27).

This API is defined in GameLiftServerSDK.h and GameLiftServerSDKModels.h.

To set up the Unreal Engine plugin and see code examples Add Amazon GameLift to an Unreal Engine Game Server Project (p. 21).

- Actions (p. 136)
- Data Types (p. 141)

Amazon GameLift Server API Reference for Unreal Engine: Actions

This Amazon GameLift Server API reference can help you prepare your Unreal Engine game projects for use with Amazon GameLift. For details on the integration process, see Add Amazon GameLift to Your Game Server (p. 27).
This API is defined in GameLiftServerSDK.h and GameLiftServerSDKModels.h.

To set up the Unreal Engine plugin and see code examples Add Amazon GameLift to an Unreal Engine Game Server Project (p. 21).

- Actions
- Data Types (p. 141)

AcceptPlayerSession()

Notifies the Amazon GameLift service that a player with the specified player session ID has connected to the server process and needs validation. Amazon GameLift verifies that the player session ID is valid—that is, that the player ID has reserved a player slot in the game session. Once validated, Amazon GameLift changes the status of the player slot from RESERVED to ACTIVE.

Syntax

```cpp
FGameLiftGenericOutcome AcceptPlayerSession(const FString& playerSessionId)
```

Parameters

- **playerSessionId**

 Unique ID issued by the Amazon GameLift service in response to a call to the AWS SDK Amazon GameLift API action CreatePlayerSession. The game client references this ID when connecting to the server process.

 Type: FString

 Required: Yes

Return Value

Returns a generic outcome consisting of success or failure with an error message.

ActivateGameSession()

Notifies the Amazon GameLift service that the server process has activated a game session and is now ready to receive player connections. This action should be called as part of the onStartGameSession() callback function, after all game session initialization has been completed.

Syntax

```cpp
FGameLiftGenericOutcome ActivateGameSession()
```

Parameters

This action has no parameters.

Return Value

Returns a generic outcome consisting of success or failure with an error message.
GetGameSessionId()

Retrieves the ID of the game session currently being hosted by the server process, if the server process is active.

Syntax

```
FGameliftStringOutcome GetGameSessionId()
```

Parameters

This action has no parameters.

Return Value

If successful, returns the game session ID as an FGameLiftStringOutcome object. If not successful, returns an error message.

GetSdkVersion()

Returns the current version number of the SDK built into the server process.

Syntax

```
FGameliftStringOutcome GetSdkVersion();
```

Parameters

This action has no parameters.

Return Value

If successful, returns the current SDK version as an FGameLiftStringOutcome object. The returned string includes the version number only (ex. "3.1.5"). If not successful, returns an error message.

Example

```
Aws::GameLift::AwsStringOutcome SdkVersionOutcome = 
    Aws::GameLift::Server::GetSdkVersion();
```

InitSDK()

Initializes the Amazon GameLift SDK. This method should be called on launch, before any other Amazon GameLift-related initialization occurs.

Syntax

```
FGameliftGenericOutcome InitSDK()
```

Parameters

This action has no parameters.
Return Value

Returns a generic outcome consisting of success or failure with an error message.

ProcessEnding()

Notifies the Amazon GameLift service that the server process is shutting down. The call triggers Amazon GameLift to change the instance's status from ACTIVE to TERMINATING. This method should be called after all other cleanup tasks, including shutting down all active game sessions. Amazon GameLift waits at least 30 seconds after receiving this call before terminating the instance. This method should exit with an exit code of 0; a non-zero exit code results in an event message that the process did not exit cleanly.

Syntax

```csharp
FGameLiftGenericOutcome ProcessEnding()
```

Parameters

This action has no parameters.

Return Value

Returns a generic outcome consisting of success or failure with an error message.

ProcessReady()

Notifies the Amazon GameLift service that the server process is ready to host game sessions. This method should be called after successfully invoking `InitSDK()` (p. 138) and completing any setup tasks required before the server process can host a game session.

Syntax

```csharp
FGameLiftGenericOutcome ProcessReady(FProcessParameters &processParameters)
```

Parameters

- **FProcessParameters**

 A `FProcessParameters` (p. 141) object communicating the following information about the server process:
 - Names of callback methods, implemented in the game server code, that the Amazon GameLift service invokes to communicate with the server process.
 - Port number that the server process is listening on.
 - Path to any game session-specific files that you want Amazon GameLift to capture and store.

 Required: Yes

Return Value

Returns a generic outcome consisting of success or failure with an error message.

Example

See the sample code in *Using the Unreal Engine Plugin* (p. 22).
RemovePlayerSession()

Notifies the Amazon GameLift service that a player with the specified player session ID has disconnected from the server process. In response, Amazon GameLift changes the player slot to available, which allows it to be assigned to a new player.

Syntax

```cpp
FGameLiftGenericOutcome RemovePlayerSession(const FString& playerSessionId)
```

Parameters

playerSessionId

Unique ID issued by the Amazon GameLift service in response to a call to the AWS SDK Amazon GameLift API action `CreatePlayerSession`. The game client references this ID when connecting to the server process.

Type: FString

Required: Yes

Return Value

Returns a generic outcome consisting of success or failure with an error message.

TerminateGameSession()

Notifies the Amazon GameLift service that the server process has shut down the game session. (Currently, each server process hosts only one game session at a time, so there's no need to specify which session.) This action should be called at the end of the game session shutdown process. After calling this action, the server process can call `ProcessReady()` (p. 139) to signal its availability to host a new game session. Alternatively, it can call `ProcessEnding()` (p. 139) to shut down the server process and terminate the instance.

Syntax

```cpp
FGameLiftGenericOutcome TerminateGameSession()
```

Parameters

This action has no parameters.

Return Value

Returns a generic outcome consisting of success or failure with an error message.

UpdatePlayerSessionCreationPolicy()

Updates the current game session's ability to accept new player sessions. A game session can be set to either accept or deny all new player sessions. (See also the `UpdateGameSession()` action in the Amazon GameLift Service API Reference.)
Syntax

```
FGameLiftGenericOutcome UpdatePlayerSessionCreationPolicy(EPlayerSessionCreationPolicy policy)
```

Parameters

Policy

Value indicating whether the game session accepts new players.

Type: `EPlayerSessionCreationPolicy` enum. Valid values include:

- `ACCEPT_ALL` – Accept all new player sessions.
- `DENY_ALL` – Deny all new player sessions.

Required: Yes

Return Value

Returns a generic outcome consisting of success or failure with an error message.

Amazon GameLift Server API Reference for Unreal

This Amazon GameLift Server API reference can help you prepare your Unreal Engine game projects for use with Amazon GameLift. For details on the integration process, see Add Amazon GameLift to Your Game Server (p. 27).

This API is defined in `GameLiftServerSDK.h` and `GameLiftServerSDKModels.h`.

To set up the Unreal Engine plugin and see code examples Add Amazon GameLift to an Unreal Engine Game Server Project (p. 21).

- Actions (p. 136)
- Data Types

FProcessParameters

This data type contains the set of parameters sent to the Amazon GameLift service in a `ProcessReady()` (p. 139) call.

Contents

port

Port number the server process will listen on for new player connections. The value must fall into the port range configured for any fleet deploying this game server build. This port number is included in game session and player session objects, which game sessions use when connecting to a server process.

Type: Integer

Required: Yes

logParameters

Object with a list of directory paths to game session log files.
onStartGameSession

Name of callback function that the Amazon GameLift service calls to activate a new game session. Amazon GameLift calls this function in response to the client request CreateGameSession. The callback function takes a GameSession object (defined in the Amazon GameLift Service API Reference).

Type: FOnStartGameSession

Required: Yes

onProcessTerminate

Name of callback function that the Amazon GameLift service calls to force the server process to shut down. After calling this function, Amazon GameLift waits five minutes for the server process to shut down and respond with a ProcessEnding() (p. 139) call before it shuts down the server process.

Type: FSimpleDelegate

Required: No

onHealthCheck

Name of callback function that the Amazon GameLift service calls to request a health status report from the server process. Amazon GameLift calls this function every 60 seconds. After calling this function Amazon GameLift waits 60 seconds for a response, and if none is received, records the server process as unhealthy.

Type: FOnHealthCheck

Required: No

FlexMatch Rules Reference

Use the following property expressions when writing rules for FlexMatch rule sets.

Rule Types

The following rule types are allowed. Each rule type requires a set of properties as defined here.

Distance rule (distance)

Distance is used to measure the difference between two values, such as the distance between two skill levels. For example, a rule might specify that matched players must be within one level of each other.

- referenceValue – Reference point to use when measuring distance.
- minDistance/maxDistance – Distance constraints that must be satisfied for a successful match.
- partyAggregation – How to sort multiple-player (party) requests. Valid options are to use the minimum (min), maximum (max), or average (avg) values for a request's players. Default is avg.

Comparison rule (comparison)

Comparison is used to compare two values. For example, a rule might specify that all matched players must have a certain map choice have achieved at least level 24.

- referenceValue – Value to evaluate the measurement against for a prospective match.
• **operation** – How to evaluate the measurement against the reference value. Valid operations include:
 `<, <=, =, !=, >, >=`.

• **partyAggregation** – How to sort multiple-player (party) requests. Valid options are to use the
 minimum (min), maximum (max), or average (avg) values for a request's players. Default is avg.

Collection rule (collection)

Collection is used for evaluating the player attributes of multiple players. For example, a rule might
specify that each team include at least one player playing a certain character.

• **operation** – How to evaluate the collection against the reference value.
 - **intersection** measures the number of strings that are common among all players.
 - **contains** measures the number of players that contain a certain reference value.

• **referenceValue** – Value to evaluate the collection against for a prospective match.

• **minCount/maxCount** – Constraints on the acceptability of values resulting from the operation.

• **partyAggregation** – How to sort multiple-player (party) requests. Valid options are to use the
 union or intersection of values for a request's players. Default is union.

Latency rule (latency)

Latency is used to evaluate player latency settings for acceptable matches. For example, a rule might
specify that all matched players must have a regional latency under a maximum limit.

• **maxLatency** – Highest acceptable latency for a region. For each player, ignore all regions that exceed
 this latency.

• **maxDistance** – Maximum difference between the latency of a prospective match and the latency of
 players already in the match (based on the distance reference).

• **distanceReference** – How to compare latency values of multiple players. Valid options are to use
 the minimum (min) or average (avg) values for the players.

• **partyAggregation** – How to sort multiple-player (party) requests. Valid options are to use the
 minimum (min), maximum (max), or average (avg) values for a request's players. Default is avg.

Distance sort rule (distanceSort)

Distance sort is an explicit sort option, which directs the matchmaker to pre-sort matchmaking requests
based on a player attribute. The distance sort evaluates matchmaking requests based on the distance
from the anchor request.

• **sortDirection** – Direction to sort matchmaking requests. Valid options are ascending or
 descending.

• **sortAttribute** – Player attribute to sort players by.

• **mapKey** – How to evaluate the player attribute if it’s a map. Valid options include:
 - **minValue** – For the anchor player, find the key with the lowest value.
 - **maxValue** – For the anchor player, find the key with the highest value.

• **partyAggregation** – How to sort multiple-player (party) requests. Valid options are to use the
 minimum (min), maximum (max), or average (avg) values for a request's players. Default is avg.

Absolute sort rule (absoluteSort)

Absolute sort is an explicit sort option, which directs the matchmaker to pre-sort matchmaking requests
based on a player attribute. An absolute sort evaluates matchmaking requests based on whether its
player attribute matches that of the anchor request.
• **sortDirection** – Direction to sort matchmaking requests. Valid options are ascending or descending.
• **sortAttribute** – Player attribute to sort players by.
• **mapKey** – How to evaluate the player attribute if it's a map. Valid options include:
 • *minValue*: For the anchor player, find the key with the lowest value.
 • *maxValue*: For the anchor player, find the key with the highest value.
• **partyAggregation** – How to sort multiple-player (party) requests. Valid options are to use the minimum (**min**), maximum (**max**), or average (**avg**) values for a request's players. Default is **avg**.

Property Expressions

Property expressions are used in a rule set to refer to certain properties related to matchmaking. Property expressions can be used in rules and expansions. For example, either a rule or an expansion might use a property expression to reference a specific player attribute to evaluate.

Matchmaking-related properties can include the player attribute values from matchmaking requests. They generally take one of two forms:

- Individual player data
- Calculated team data, which takes the form of collections of individual player data.

A valid property expression identifies a specific value for a single player, team, or match. The following partial expressions illustrate how to identify teams and players:

<table>
<thead>
<tr>
<th>To identify a specific team in a match:</th>
<th>teams[red]</th>
<th>The Red team</th>
<th>Team</th>
</tr>
</thead>
<tbody>
<tr>
<td>To identify all teams in a match:</td>
<td>teams[*]</td>
<td>All teams</td>
<td>List<Team></td>
</tr>
<tr>
<td>To identify players in a specific team:</td>
<td>team[red].players</td>
<td>Players in the Red team</td>
<td>List<Player></td>
</tr>
<tr>
<td>To identify players in a match:</td>
<td>team[*].players</td>
<td>Players in the match, grouped by team</td>
<td>List<List<Player>></td>
</tr>
</tbody>
</table>

The following table illustrates some valid property expressions that build on the previous examples:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Meaning</th>
<th>Resulting Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>teams[red].players[playerid]</td>
<td>The player IDs of all players on the red team</td>
<td>List<string></td>
</tr>
<tr>
<td>teams[red].players.attributes[skill]</td>
<td>The "skill" attributes of all players on the red team</td>
<td>List<number></td>
</tr>
<tr>
<td>teams[*].players.attributes[skill]</td>
<td>The "skill" attributes of all players in the match, grouped by team</td>
<td>List<List<number>></td>
</tr>
</tbody>
</table>

Property expressions can be used to aggregate team data by using the following functions or combinations of functions:
Property Expressions

<table>
<thead>
<tr>
<th>Aggregation</th>
<th>Input</th>
<th>Meaning</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>List<number></td>
<td>Get the minimum of all numbers in the list.</td>
<td>number</td>
</tr>
<tr>
<td>max</td>
<td>List<number></td>
<td>Get the maximum of all numbers in the list.</td>
<td>number</td>
</tr>
<tr>
<td>avg</td>
<td>List<number></td>
<td>Get the average of all numbers in the list.</td>
<td>number</td>
</tr>
<tr>
<td>median</td>
<td>List<number></td>
<td>Get the median of all numbers in the list.</td>
<td>number</td>
</tr>
<tr>
<td>sum</td>
<td>List<number></td>
<td>Get the sum of all numbers in the list.</td>
<td>number</td>
</tr>
<tr>
<td>count</td>
<td>List<?></td>
<td>Get the number of elements in the list.</td>
<td>number</td>
</tr>
<tr>
<td>stddev</td>
<td>List<number></td>
<td>Get the standard deviation of all numbers in the list.</td>
<td>number</td>
</tr>
<tr>
<td>flatten</td>
<td>List<List<?>></td>
<td>Turn a collection of nested lists into a single list containing all elements.</td>
<td>List<?></td>
</tr>
<tr>
<td>All above</td>
<td>List<List<?>></td>
<td>All operations on a nested list operate on each sublist individually to produce a list of results.</td>
<td>List<?></td>
</tr>
</tbody>
</table>

The following table illustrates some valid property expressions that use aggregation functions:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Meaning</th>
<th>Resulting Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>flatten(teams[*].players.attributes[skill])</td>
<td>The "skill" attributes of all players in the match (not grouped)</td>
<td>List<number></td>
</tr>
<tr>
<td>avg(teams[red].players.attributes[skill])</td>
<td>Average skill of the red team players</td>
<td>number</td>
</tr>
<tr>
<td>avg(teams[*].players.attributes[skill])</td>
<td>The average skill of each team in the match</td>
<td>List<number></td>
</tr>
<tr>
<td>avg(flatten(teams[*].players.attributes[skill]))</td>
<td>The skill level of all players in the match. This expression gets a flattened list of player skills and then averages them.</td>
<td>number</td>
</tr>
<tr>
<td>count(teams[red].players)</td>
<td>The number of players on the red team</td>
<td>number</td>
</tr>
<tr>
<td>Expression</td>
<td>Meaning</td>
<td>Resulting Type</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>count (teams[*].players)</td>
<td>The number of players on each team in the match</td>
<td>List<number></td>
</tr>
<tr>
<td>max(avg(teams[*].players.attribute[skill]))</td>
<td>The highest skill level in the match</td>
<td>number</td>
</tr>
</tbody>
</table>

FlexMatch Events Reference

Amazon GameLift emits events that are related to the processing of matchmaking tickets. All the events that are listed here can be published to an Amazon SNS topic. These events are also emitted to Amazon CloudWatch Events. For more details working with matchmaking events, see Set up FlexMatch Event Notification (p. 87). For more information on matchmaking ticket statuses, see MatchmakingTicket in the Amazon GameLift Service API Reference.

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Description</th>
<th>Resource</th>
<th>Detail</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>MatchmakingSearching</td>
<td>Ticket has been entered into matchmaking. This includes new requests and requests that were part of a proposed match that failed.</td>
<td>ConfigurationArn, tickets, estimatedWaitMillis, gameSessionInfo</td>
<td>"Version": "0", "id": "cc3d33e6-d90-48f3-b268-c96655b86f013", "detail-type": "GameLift Matchmaking Event", "source": "aws.gamelift", "account": "123456789012", "time": "2017-08-08T21:15:36.421Z", "region": "us-west-2", "resources": ["arn:aws:gamelift:us-west-2:123456789012:matchmakingconfiguration/SampleConfiguration"], "detail": { "tickets": [{ "ticketId": "ticket-1", "startTime": "2017-08-08T21:15:35.676Z", "players": [{ "playerId": "player-1" }] }, "estimatedWaitMillis": "NOTAVAILABLE", "type": "MatchmakingSearching", "gameSessionInfo": { "players": [{ "playerId": "player-1" }] } }] }</td>
<td></td>
</tr>
<tr>
<td>Event Name</td>
<td>Description</td>
<td>Resource</td>
<td>Detail</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>----------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>PotentialMatchCreated</td>
<td>A potential match has been created. This is emitted for all new potential matches, regardless of whether acceptance is required.</td>
<td></td>
<td>{</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"version": "0",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"id": "fce863f-aea3-45bc-96e3d9cad2d4",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"detail-type": "GameLift Matchmaking Event",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"source": "aws.gamelift",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"account": "123456789012",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"time": "2017-08-08T21:17:41.178Z",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"region": "us-west-2",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"resources": [</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SampleConfiguration"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>},</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"detail": {</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"tickets": [</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>{</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"ticketId": "ticket-1",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"startTime": "2017-08-08T21:15:35.676Z",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"players": [</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>{</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"playerId": "player-1",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"team": "red"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>},</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>{</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"ticketId": "ticket-2",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"startTime": "2017-08-08T21:17:40.657Z",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"players": [</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>{</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"playerId": "player-2",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"team": "blue"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>},</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"acceptanceTimeout": 600,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"ruleEvaluationMetrics": [</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>{</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"ruleName": "EvenSkill",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"passedCount": 3,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"failedCount": 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>},</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>{</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"ruleName": "EvenTeams",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"passedCount": 3,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"failedCount": 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>},</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>{</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"ruleName": "FastConnection",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"passedCount": 3,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"failedCount": 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>},</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>{</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"ruleName": "NoobsSegregation",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"passedCount": 3,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"failedCount": 0</td>
<td></td>
</tr>
</tbody>
</table>

Version 147
<table>
<thead>
<tr>
<th>Event Name</th>
<th>Description</th>
<th>Resource</th>
<th>Detail</th>
<th>Example</th>
</tr>
</thead>
</table>
| | | | | ```json

```

```json

`{`

 "acceptanceRequired": true,

 "type": "PotentialMatchCreated",

 "gameSessionInfo": {

 "players": [

 { "playerId": "player-1",
 "team": "red"
 },

 { "playerId": "player-2",
 "team": "blue"
 }
]

 "matchId": "3faf26ac-f06e-43e5-8d86-08eff26f692"

}

```
<table>
<thead>
<tr>
<th>Event Name</th>
<th>Description</th>
<th>Resource</th>
<th>Detail</th>
<th>Example</th>
</tr>
</thead>
</table>
| AcceptMatch | Players have accepted a potential match. This event contains the current acceptance status of each player in the match. Missing data means that AcceptMatch hasn't been called for that player. | ConfigurationArn, tickets, matchId, gameSessionInfo | | ```json
{
  "version": "0",
  "id": "b3f76d66-c8e5-416a-aa4c-aa1278153edc",
  "detail-type": "GameLift Matchmaking Event",
  "source": "aws.gamelift",
  "account": "123456789012",
  "time": "2017-08-09T20:04:42.660Z",
  "region": "us-west-2",
  "resources": [
    "arn:aws:gamelift:us-west-2:123456789012:matchmakingconfiguration/SampleConfiguration"
  ],
  "detail": {
    "tickets": [
      {
        "ticketId": "ticket-1",
        "startTime": "2017-08-09T20:01:35.305Z",
        "players": [
          {
            "playerId": "player-1",
            "team": "red"
          }
        ]
      },
      {
        "ticketId": "ticket-2",
        "startTime": "2017-08-09T20:04:16.637Z",
        "players": [
          {
            "playerId": "player-2",
            "team": "blue",
            "accepted": false
          }
        ]
      }
    ],
    "type": "AcceptMatch",
    "gameSessionInfo": {
      "players": [
        {
          "playerId": "player-1",
          "team": "red"
        },
        {
          "playerId": "player-2",
          "team": "blue",
          "accepted": false
        }
      ],
      "matchId": "848b5f1f-0460-488e-8631-2960934d13e5"
    }
  }
``` |
FlexMatch Events

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Description</th>
<th>Resource Type</th>
<th>Resource Details</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcceptMatchCompleted</td>
<td>Acceptance is complete due to player acceptance, player rejection, or acceptance timeout.</td>
<td>ConfigurationArn</td>
<td>Acceptance, tickets, matchId, gameSessionInfo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>`{ "version": "0", "id": "b1990d3d-f737-4d6c-b150-5ace8c35d3", "detail-type": "GameLift Matchmaking Event", "source": "aws.gamelift", "account": "123456789012", "time": "2017-08-08T20:43:14.621Z", "region": "us-west-2", "resources": ["arn:aws:gamelift:us-west-2:123456789012:matchmakingconfiguration/SampleConfiguration"], "detail": { "tickets": [{ "ticketId": "ticket-1", "startTime": "2017-08-08T20:30:40.972Z", "players": [{ "playerId": "player-1", "team": "red" }] }, { "ticketId": "ticket-2", "startTime": "2017-08-08T20:33:14.111Z", "players": [{ "playerId": "player-2", "team": "blue" }] }], "acceptance": "TimedOut", "type": "AcceptMatchCompleted", "gameSessionInfo": { "players": [{ "playerId": "player-1", "team": "red" }, { "playerId": "player-2", "team": "blue" }] }, "matchId": "a0d9bd24-4695-4f12-876f-ee6388dd6dce" } }</td>
<td></td>
</tr>
<tr>
<td>Event Name</td>
<td>Description</td>
<td>Resource</td>
<td>Detail</td>
<td>Example</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>-------------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>MatchmakingSucceeded</td>
<td>Matchmaking has successfully completed and a game session has been created.</td>
<td>Configuration</td>
<td>type, tickets, matchid, gameSessionInfo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>{</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"version": "0",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"id": "5ccbd523-0566-4132-6b3b-1569e00d23d",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"detail-type": "GameLift Matchmaking Event",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"source": "aws.gamelift",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"account": "133456789012",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"time": "2017-08-09T19:59:09.159Z",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"region": "us-west-2",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"resources": [</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"arn:aws:gamelift:us-west-2:123456789012:matchmakingconfiguration/SampleConfiguration"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"detail": {</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"tickets": [</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>{</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"ticketId": "ticket-1",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"startTime": "2017-08-09T19:58:59.277Z",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"players": [</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>{</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"playerId": "player-1",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"playerSessionId": "psess-6e7c13cf-10d6-4756-a53fd-db7de782ed67",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"team": "red"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>},</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>{</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"ticketId": "ticket-2",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"startTime": "2017-08-09T19:59:08.663Z",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"players": [</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>{</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"playerId": "player-2",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"playerSessionId": "psess-786b342f-9c94-44eb-bb9c-1de46c472ce",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"team": "blue"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>},</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"type": "MatchmakingSucceeded",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"gameSessionInfo": {</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"gameSessionArn":</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"ipAddress": "192.168.1.1",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"port": 10777,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"players": [</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>{</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"playerId": "player-1",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"playerSessionId":</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"psess-6e7c13cf-10d6-4756-a53fd-db7de782ed67",</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"team": "red"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>},</td>
<td></td>
</tr>
<tr>
<td>Event Name</td>
<td>Description</td>
<td>Resource</td>
<td>Detail</td>
<td>Example</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| | | | | {
| | | | | "playerId": "player-2",
| | | | | "playerSessionId":
| | | | | "psess-786b342f-9c94-44eb-bb9e-c1de46c472ce",
| | | | | "team": "blue"
| | | | | }
| | | | | } |
| | | | | {
| | | | | "matchId":
| | | | | "c0ec1a54-7fec-4b55-8583-76d67adb7754"
<p>| | | | | } |</p>
<table>
<thead>
<tr>
<th>Event Name</th>
<th>Description</th>
<th>Resource</th>
<th>Detail</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>MatchmakingTimedOut</td>
<td>Matchmaking ticket has failed by timing out.</td>
<td>ConfigurationArn</td>
<td>tickets, ruleEvaluationMetrics, message, matchId, gameSessionInfo</td>
<td><code>{version": "0", "id": "fe528a7d-46ad-4bdc-96cb-b094b5f6bf56", "detail-type": "GameLift Matchmaking Event", "source": "aws.gamelift", "account": "123456789012", "time": "2017-08-09T20:11:35.598Z", "region": "us-west-2", "resources": ["arn:aws:gamelift:us-west-2:123456789012:matchmakingconfiguration/SampleConfiguration"], "detail": { "reason": "TimedOut", "tickets": [{ "ticketId": "ticket-1", "startTime": "2017-08-09T20:01:35.305Z", "players": [{ "playerId": "player-1", "team": "red" }] }], "ruleEvaluationMetrics": [{ "ruleName": "EvenSkill", "passedCount": 3, "failedCount": 0 }, { "ruleName": "EvenTeams", "passedCount": 3, "failedCount": 0 }, { "ruleName": "FastConnection", "passedCount": 3, "failedCount": 0 }, { "ruleName": "NoobSegregation", "passedCount": 3, "failedCount": 0 }], "type": "MatchmakingTimedOut", "message": "Removed from matchmaking due to timing out.", "gameSessionInfo": { "players": [{ "playerId": "player-1", "team": "red" }] }</code></td>
</tr>
<tr>
<td>Event Name</td>
<td>Description</td>
<td>Resource</td>
<td>Detail</td>
<td>Example</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```json
}
}
}
```
FlexMatch Events

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Description</th>
<th>Resource</th>
<th>Detail</th>
<th>Example</th>
</tr>
</thead>
</table>
| MatchmakingCancelled | Matchmaking ticket has been cancelled. | Configuration | - type, tickets, ruleEvaluationMetrics, message, matchId, gameSessionInfo | ```json
"version": "0",
"id": "8d6f84da-5e15-4741-8d5c-5ac99091c27f",
"detail-type": "GameLift Matchmaking Event",
"source": "aws.gamelift",
"account": "123456789012",
"time": "2017-08-09T20:00:07.843Z",
"region": "us-west-2",
"resources": [
 "arn:aws:gamelift:us-west-2:123456789012:matchmakingconfiguration/SampleConfiguration"
],
"detail": {
 "reason": "Cancelled",
 "tickets": [
 {
 "ticketId": "ticket-1",
 "startTime": "2017-08-09T19:59:26.118Z",
 "players": [
 {
 "playerId": "player-1"
 }
]
 }
],
 "ruleEvaluationMetrics": [
 {
 "ruleName": "EvenSkill",
 "passedCount": 0,
 "failedCount": 0
 },
 {
 "ruleName": "EvenTeams",
 "passedCount": 0,
 "failedCount": 0
 },
 {
 "ruleName": "FastConnection",
 "passedCount": 0,
 "failedCount": 0
 },
 {
 "ruleName": "NoobSegregation",
 "passedCount": 0,
 "failedCount": 0
 }
],
 "type": "MatchmakingCancelled",
 "message": "Cancelled by request."
},
"gameSessionInfo": {
 "players": [
 {
 "playerId": "player-1"
 }
]
}``
<table>
<thead>
<tr>
<th>Event Name</th>
<th>Description</th>
<th>Resource</th>
<th>Detail</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>MatchmakingFailed</td>
<td>Matchmaking ticket has encountered an error. This may be due to the game session queue not accessible or to an internal error.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration:

```json
{
    "version": "0",
    "id": "025b55a4-41ac-4cf4-89d1-f2b36f88f9d",
    "detail-type": "GameLift Matchmaking Event",
    "source": "aws.gamelift",
    "account": "123456789012",
    "time": "2017-08-16T18:41:09.970Z",
    "region": "us-west-2",
    "resources": [
        "arn:aws:gamelift:us-west-2:123456789012:matchmakingconfiguration/SampleConfiguration"
    ],
    "detail": {
        "tickets": [
            {
                "ticketId": "ticket-1",
                "startTime": "2017-08-16T18:41:02.631Z",
                "players": [
                    {
                        "playerId": "player-1",
                        "team": "red"
                    }
                ]
            }
        ],
        "customEventData": "foo",
        "type": "MatchmakingFailed",
        "reason": "UNEXPECTED_ERROR",
        "message": "An unexpected error was encountered during match placing."
    },
    "gameSessionInfo": {
        "players": [
            {
                "playerId": "player-1",
                "team": "red"
            }
        ],
        "matchId": "3ea83c13-218b-43a3-936e-135cc570cba7"
    }
}
```
Document History for Amazon GameLift

The following table describes important changes to the Amazon GameLift documentation. For details on releases of new and updated features, see the Amazon GameLift Release Notes.

<table>
<thead>
<tr>
<th>Date</th>
<th>Change</th>
<th>Documentation updates</th>
<th>API Versions</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 1, 2017</td>
<td>New Features:</td>
<td>Developer Guide:</td>
<td>AWS SDK: 2017-09-01</td>
</tr>
<tr>
<td></td>
<td>VPC Peering for Amazon GameLift fleets – You can now use VPC peering</td>
<td>• Networking With AWS Resources (p. 4)</td>
<td>Server SDK 3.1.7</td>
</tr>
<tr>
<td></td>
<td>to set up direct, private connections between your Amazon GameLift</td>
<td>• Set Up VPC Peering (p. 59) – Learn more about how to set up VPC peering.</td>
<td>GameLiftLocal 1.0.0</td>
</tr>
<tr>
<td></td>
<td>game servers and other resources on AWS.</td>
<td>Service API Reference for the AWS SDK:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Developer Guide:</td>
<td>• Amazon GameLift Server API – New APIs for managing VPC peering:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Networking With AWS Resources (p. 4)</td>
<td>• CreateVpcPeeringAuthorization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Set Up VPC Peering (p. 59) – Learn more about how to set up VPC</td>
<td>• DescribeVpcPeeringAuthorizations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>peering.</td>
<td>• DeleteVpcPeeringAuthorization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Service API Reference for the AWS SDK:</td>
<td>• CreateVpcPeeringConnection</td>
<td></td>
</tr>
<tr>
<td>August 16, 2017</td>
<td>New Features:</td>
<td>• DescribeVpcPeeringConnections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amazon GameLift FlexMatch – Add matchmaking to your games using</td>
<td>• DeleteVpcPeeringConnection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amazon GameLift’s new customizable matchmaking</td>
<td>Other API updates include:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Developer Guide:</td>
<td>• MatchingTicket has two new properties:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Amazon GameLift FlexMatch (p. 8) – Get more information on FlexMatch</td>
<td>• EndTime indicates when the matchmaking request stopped being processed;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>key features and how it works.</td>
<td>• EstimatedWaitTime is the current estimate of how long players are waiting to be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Matching with FlexMatch (p. 74) – Learn more about how to set up</td>
<td>• The documentation for DescribeMatchmaking has been corrected. This operation can</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>be used to retrieve a maximum of 10 matchmaking tickets.</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Change</td>
<td>Documentation updates</td>
<td>API Versions</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>May 16, 2017</td>
<td>New Features:</td>
<td>Service API Reference:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Amazon GameLiftMetrics are now supported in Amazon CloudWatch. This</td>
<td>• Amazon GameLift Server API – New APIs for managing FlexMatch resources and starting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>includes the ability to work with aggregated metrics for a group of</td>
<td>new games with matchmaking.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fleets.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Limit game session activations on instances in a fleet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Updates:</td>
<td>Service API Reference:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Take advantage of additional metrics for automatic scaling.</td>
<td>• New MetricGroups parameter added to enable aggregated metrics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Use new console UI to set fleet scaling.</td>
<td>• CreateFleet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• UpdateFleetAttributes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FleetAttributes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• New parameters for game session activation limits added to RuntimeConfiguration.</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Change</td>
<td>Documentation updates</td>
<td>API Versions</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>April 11, 2017</td>
<td>New Features:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Amazon GameLift Local – Test your game integration locally.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Set a Queue policy that limits the latency allowed for individual players.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Updates:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Changes to the Amazon GameLift Service API (part of the AWS SDK) to improve usability.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Developer Guide:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Testing Your Integration (p. 38) – New topic on setting up and using Amazon GameLift Local.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Create a Queue (p. 68) – Updated topic on creating queues, with new information on player latency policies.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Service API Reference:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• New data type PlayerLatencyPolicy used with CreateGameSessionQueue and UpdateGameSessionQueue.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• New data type PlacedPlayerSession describes a player session that was created while fulfilling a game session placement request.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Revised data type GameSessionPlacement now includes these properties after a game session placement request has been fulfilled: GameSessionId, IpAddress, Port, and PlacedPlayerSessions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CreateGameSession has a new parameter, IdempotencyToken, to replace GameSessionId.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• GameSessionQueue has a new unique identifier, GameSessionQueueArn, with region and game session ID.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>February 21, 2017</td>
<td>New features:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Multiple game engine support, including Unreal Engine, Unity, and custom C++ and C# game engines</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Language support for the Server SDK is expanded to include C#.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• New game session creation using game session placements and cross-region queues</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Custom player data support, with delivery directly to game server</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Developer Guide:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Game Architecture with Amazon GameLift (p. 4) – Architecture diagram.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Game Engines and Amazon GameLift (p. 19) – Help with using Amazon GameLift with various game engines, and plugin setup instructions for Unreal Engine and Unity.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Working with Queues (p. 68) – Help with creating, managing, and tracking metrics for queues.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AWS SDK:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017-04-11</td>
<td>Server SDK 3.1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GameLiftLocal 1.0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017-02-21</td>
<td>Server SDK 3.1.5</td>
<td></td>
</tr>
</tbody>
</table>

Version 159
<table>
<thead>
<tr>
<th>Date</th>
<th>Change</th>
<th>Documentation updates</th>
<th>API Versions</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 18, 2016</td>
<td>New features:</td>
<td>Developer Guide:</td>
<td>AWS SDK:</td>
</tr>
<tr>
<td></td>
<td>• Remote access to Amazon GameLift fleet instances</td>
<td>• New topics:</td>
<td>2016-11-18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Remotely Access Fleet Instances (p. 63) – How to get access and remotely connect to Amazon GameLift instances.</td>
<td>Server SDK for C++: 3.1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Debug Fleet Creation Issues (p. 53) – Troubleshooting tips for new fleets that fail to activate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Service API Reference:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For remote access:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GetInstanceAccess (new)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• InstanceAccess (new)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• InstanceCredentials (new)</td>
<td></td>
</tr>
<tr>
<td>October 13, 2016</td>
<td>New features:</td>
<td>Developer Guide:</td>
<td>AWS SDK:</td>
</tr>
<tr>
<td></td>
<td>• Resource creation protection</td>
<td>• Revised topics:</td>
<td>2016-10-13</td>
</tr>
<tr>
<td></td>
<td>• Access to instance data</td>
<td>• How Amazon GameLift Works (p. 2) – Added description of resource protection, and improved description of capacity handling.</td>
<td>Server SDK for C++: 3.1.0</td>
</tr>
<tr>
<td></td>
<td>Updates and corrections:</td>
<td>• Added Linux-specific help:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Additional help for Linux.</td>
<td>• Package Build Files (p. 43) – Install scripts for Linux.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Service API Reference:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CreateFleet and UpdateFleetAttributes – New ResourceCreationLimitPolicy parameter.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ResourceCreationLimitPolicy (new)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CreateGameSession – New CreatorId parameter.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DescribeInstances (new)</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Change</td>
<td>Documentation updates</td>
<td>API Versions</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>September 1, 2016</td>
<td>New features:</td>
<td>Developer Guide:</td>
<td>AWS SDK: 2016-09-01</td>
</tr>
<tr>
<td></td>
<td>• Game servers can now run on Linux</td>
<td>• New topics:</td>
<td>Server SDK for C++: 3.1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Amazon GameLift SDKs (p. 11) – Reference topic describing all Amazon GameLift SDKs, including supported languages and operating systems.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Service API Reference:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• New OS parameters were added to the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• upload-build (p. 44) (CLI only)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CreateBuild()</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Build</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FleetAttributes</td>
<td></td>
</tr>
<tr>
<td>August 4, 2016</td>
<td>New features:</td>
<td>Developer Guide:</td>
<td>AWS SDK: 2016-08-04</td>
</tr>
<tr>
<td></td>
<td>• Game session search</td>
<td>• New topics:</td>
<td>Server SDK for C++: 3.0.7</td>
</tr>
<tr>
<td></td>
<td>• Customized health checks</td>
<td>• Amazon GameLift Server API (C++) Reference (p. 115) – Complete reference documentation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Run Multiple Processes on a Fleet (p. 61) – Technical overview of capacity allocation and how to configure a fleet to run multiple processes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Updates:</td>
<td>• Tools and Resources (p. 10) – Comprehensive list of tools & resources, including SDK version compatibility.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Expanded support for capacity allocation (multiple processes per fleet instance)</td>
<td>• Revised topics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Amazon GameLift Server SDK for C++ now available for download</td>
<td>• How Players Connect to Games (p. 6) – Expanded topic describes features related to game sessions, including the new search feature.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• All APIs for game client integration are now included in the AWS SDK.</td>
<td>• Add Amazon GameLift to Your Game Server (p. 27) – Integration steps have been revised for use with version 3.0.7 Server SDK for C++.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add Amazon GameLift to Your Game Client (p. 30) – Integration steps have been revised for use with the AWS SDK for C++.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Service API Reference:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SearchGameSessions() (new)</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Change</td>
<td>Documentation updates</td>
<td>API Versions</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>June 28, 2016</td>
<td>Updates:</td>
<td></td>
<td>AWS SDK: 2016-06-28</td>
</tr>
<tr>
<td></td>
<td>• New server process health metrics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Revised processes for fleet capacity allocation and game server launch settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Revised build packaging instructions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Developer Guide:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Revised topics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Package Build Files (p. 43) – Description now reflects how Amazon GameLift handles an <code>install.bat</code> file in a game build.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Create a Fleet (Console) (p. 49) and Create a Fleet (AWS CLI) (p. 51) – Instructions for creating a fleet now cover capacity allocation using a runtime configuration.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• View Fleet Details (p. 96) and View Data on Game and Player Sessions (p. 101) – Console page descriptions now reflect current metrics and scaling tabs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Amazon GameLift and Game Client/Server Interactions (p. 34) – Descriptions and diagram (p. 37) have been corrected to use callback function names from the samples, and to clarify that the <code>onProcessTerminate()</code> callback refers to shutting down a game server, not a game session.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Service API Reference:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For new capacity allocation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CreateFleet() – Runtime configuration added.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DescribeRuntimeConfiguration (new)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UpdateRuntimeConfiguration (new)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For game server launch process:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• GameSession – Port number added. PlayerSession – Port number added.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For health metrics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FleetUtilization – New count added for active server processes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Change</td>
<td>Documentation updates</td>
<td>API Versions</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>-------------------------</td>
</tr>
<tr>
<td>March 10, 2016</td>
<td>New features:</td>
<td>Developer Guide:</td>
<td>AWS SDK 2016-03-10</td>
</tr>
<tr>
<td></td>
<td>• Automatic scaling</td>
<td>• New topics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Game session protection</td>
<td>• Set Up Fleet Automatic Scaling (p. 56) – How to set up</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fleet capacity limits</td>
<td>and manage automatic scaling policies.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Change Fleet Capacity (p. 53) – How to change the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>number of instances in a fleet and set limits.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• How Amazon GameLift Works (p. 2) – A technical</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>overview of how Amazon GameLift manages game</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>deployment across virtual resources.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Revised topics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Create a Fleet (Console) (p. 49) – Revised to</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>include settings for game session protection and safe</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>scaling.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Other changes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lumberyard-Amazon GameLift tutorial was moved to the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GameDev Tutorials repository.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Service API Reference:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For automatic scaling:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PutScalingPolicy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DescribeScalingPolicies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DeleteScalingPolicy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For game session protection:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DescribeGameSessionDetails</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CreateFleet (revised)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• UpdateFleetAttributes (revised)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DescribeFleetAttributes (revised)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• UpdateGameSession (revised)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For fleet capacity limits:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• UpdateFleetCapacity (revised)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DescribeFleetCapacity (revised)</td>
<td></td>
</tr>
<tr>
<td>February 9, 2016</td>
<td>Service launch</td>
<td>Developer Guide and API Reference for the Amazon GameLift service released on AWS.</td>
<td>AWS SDK 2016-02-09</td>
</tr>
</tbody>
</table>