
AWSDocumentationAWS Elastic BeanstalkDeveloper Guide
PrerequisitesLaunch a DB instance in Amazon RDSDownload WordPressLaunch an Elastic Beanstalk environmentConfigure security groups and environment propertiesConfigure and deploy your applicationInstall WordPressUpdate keys and saltsRemove access restrictionsConfigure your Auto Scaling groupUpgrade WordPressClean upNext steps
Deploying a high-availability WordPress website with an external Amazon RDS database to Elastic Beanstalk

This tutorial describes how to launch an Amazon RDS DB instance that is external to AWS Elastic Beanstalk, then how to configure a
 high-availability environment running a WordPress website to connect to it. The website uses Amazon Elastic File System (Amazon EFS) as the shared storage for uploaded
 files.
Running a DB instance external to Elastic Beanstalk decouples the database from the lifecycle of your environment. This lets you connect to the same database from
 multiple environments, swap out one database for another, or perform a blue/green deployment without
 affecting your database.
Note

For current information about the compatibility of PHP releases with WordPress versions, see PHP Compatibility and WordPress Versions on
 the WordPress website. You should refer to this information before you upgrade to a new release of PHP for your WordPress implementations.

Topics
	Prerequisites
	Launch a DB instance in Amazon RDS
	Download WordPress
	Launch an Elastic Beanstalk environment
	Configure security groups and environment properties
	Configure and deploy your application
	Install WordPress
	Update keys and salts
	Remove access restrictions
	Configure your Auto Scaling group
	Upgrade WordPress
	Clean up
	Next steps

 Prerequisites

 This tutorial assumes you have knowledge of the basic Elastic Beanstalk operations and the Elastic Beanstalk console. If you haven't already, follow the instructions in Getting started using Elastic Beanstalk to launch your first Elastic Beanstalk environment.

 To follow the procedures in this guide, you will need a command line terminal or shell to run commands. Commands are shown in
listings preceded by a
 prompt symbol ($) and the name of the current directory, when appropriate.

~/eb-project$ this is a command
this is output
 On Linux and macOS, you can use your preferred shell and package manager. On Windows 10, you can install the Windows Subsystem for Linux to get a Windows-integrated version of
 Ubuntu and Bash.

 Default VPC

 The Amazon Relational Database Service (Amazon RDS) procedures in this tutorial assume that you are launching resources in a default Amazon Virtual Private Cloud
 (Amazon VPC). All new accounts include a default VPC in each AWS Region. If you don't have a default VPC, the procedures will vary. See Using Elastic Beanstalk with Amazon RDS for instructions for EC2-Classic and custom VPC platforms.

 AWS Regions

 The sample application uses Amazon EFS, which only works in AWS Regions that support Amazon EFS. To learn about supported AWS Regions, see Amazon Elastic File System Endpoints and Quotas in the AWS General Reference.

 Launch a DB instance in Amazon RDS

 When you launch an instance with Amazon RDS, it's completely independent of Elastic Beanstalk and your Elastic Beanstalk environments, and will not be terminated or monitored by
 Elastic Beanstalk.

 In the following steps you'll use the Amazon RDS console to:

 	
 Launch a database with the MySQL engine.

	
 Enable a Multi-AZ deployment. This creates a standby in a different Availability Zone (AZ) to provide data redundancy,
 eliminate I/O freezes, and minimize latency spikes during system backups.

 To launch an RDS DB instance in a default VPC
	
 Open the RDS console.

	
 In the navigation pane, choose Databases.

	
 Choose Create database.

	
 Choose Standard Create.

 Important

Do not choose Easy Create. If you choose it, you can't configure the necessary settings to launch this RDS DB.

	
 Under Additional configuration, for Initial database name, type ebdb.

	
 Review the default settings and adjust these settings according to your specific requirements. Pay attention to the following options:

 	
 DB instance class – Choose an instance size that has an appropriate amount of memory and CPU power for your
 workload.

	
 Multi-AZ deployment – For high availability, set this to Create an Aurora Replica/Reader node in a different
 AZ.

	
 Master username and Master password – The database username and password. Make a note of these
 settings because you will use them later.

	
 Verify the default settings for the remaining options, and then choose Create database.

 After your DB instance is created, modify the security group attached to it in order to allow inbound traffic on the appropriate port..

 Note

This is the same security group that you'll attach to your Elastic Beanstalk environment later, so the rule that you add now will grant ingress permission to
 other resources in the same security group.

 To modify the inbound rules on the security group that's attached to your RDS instance
	
 Open the Amazon RDS console.

	
 Choose Databases.

	
 Choose the name of your DB instance to view its details.

	
 In the Connectivity section, make a note of the Subnets, Security groups, and
 Endpoint that are displayed on this page. This is so you can use this information later.

	
 Under Security, you can see the security group that's associated with the DB instance. Open the link to view the security group
 in the Amazon EC2 console.

 [image:
 Connectivity section of a DB instance page in the Amazon RDS console
]

	
 In the security group details, choose Inbound.

	
 Choose Edit.

	
 Choose Add Rule.

	
 For Type, choose the DB engine that your application uses.

	
 For Source, type sg- to view a list of available security groups. Choose the security group that's
 associated with the Auto Scaling group that's used with your Elastic Beanstalk environment. This is so that Amazon EC2 instances in the environment can have access to the
 database.

 [image:
 Edit the inbound rules for a security group in the Amazon EC2 console
]

	
 Choose Save.

 Creating a DB instance takes about 10 minutes. In the meantime, download WordPress and create your Elastic Beanstalk environment.

 Download WordPress

 To prepare to deploy WordPress using AWS Elastic Beanstalk, you must copy the WordPress files to your computer and provide the correct configuration
 information.

 To create a WordPress project
	
 Download WordPress from wordpress.org.

~$curl https://wordpress.org/wordpress-6.2.tar.gz -o wordpress.tar.gz

	
 Download the configuration files from the sample repository.

~$ wget https://github.com/aws-samples/eb-php-wordpress/releases/download/v1.1/eb-php-wordpress-v1.zip

	
 Extract WordPress and change the name of the folder.

 ~$ tar -xvf wordpress.tar.gz
 ~$ mv wordpress wordpress-beanstalk
 ~$ cd wordpress-beanstalk

	
 Extract the configuration files over the WordPress installation.

 ~/wordpress-beanstalk$ unzip ../eb-php-wordpress-v1.zip
 creating: .ebextensions/
 inflating: .ebextensions/dev.config
 inflating: .ebextensions/efs-create.config
 inflating: .ebextensions/efs-mount.config
 inflating: .ebextensions/loadbalancer-sg.config
 inflating: .ebextensions/wordpress.config
 inflating: LICENSE
 inflating: README.md
 inflating: wp-config.php

 Launch an Elastic Beanstalk environment

 Use the Elastic Beanstalk console to create an Elastic Beanstalk environment. After you launch the environment, you can configure it to connect to the database, then deploy
 the WordPress code to the environment.

 In the following steps, you'll use the Elastic Beanstalk console to:

 	
 Create an Elastic Beanstalk application using the managed PHP platform.

	
 Accept the default settings and sample code.

 To launch an environment (console)
	
 Open the Elastic Beanstalk console using this preconfigured link: console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

	
 For Platform, select the platform and platform branch that match the language used by your application.

	
 For Application code, choose Sample application.

	
 Choose Review and launch.

	
 Review the available options. Choose the available option you want to use, and when you're ready, choose Create app.

 Environment creation takes about five minutes and creates the following resources.

	
 EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual
 machine configured to run web apps on the platform that you choose.

 Each platform runs a specific set of software, configuration files, and scripts to support a specific language version, framework, web container, or
 combination of these. Most platforms use either Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it, serves
 static assets, and generates access and error logs.

	
 Instance security group – An Amazon EC2 security group configured to allow inbound traffic on port 80. This
 resource lets HTTP traffic from the load balancer reach the EC2 instance running your web app. By default, traffic isn't allowed on other ports.

	
 Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to the instances running your
 application. A load balancer also eliminates the need to expose your instances directly to the internet.

	
 Load balancer security group – An Amazon EC2 security group configured to allow inbound traffic on port 80. This
 resource lets HTTP traffic from the internet reach the load balancer. By default, traffic isn't allowed on other ports.

	
 Auto Scaling group – An Auto Scaling group configured to replace
 an instance if it is terminated or becomes unavailable.

	
 Amazon S3 bucket – A storage location for your source
 code, logs, and other artifacts that are created when you use Elastic Beanstalk.

	
 Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances in your environment and that are
 triggered if the load is too high or too low. When an alarm is triggered, your Auto Scaling group scales up or down in response.

	
 AWS CloudFormation stack – Elastic Beanstalk uses AWS CloudFormation to launch the
 resources in your environment and propagate configuration changes. The resources are defined
 in a template that you can view in the AWS CloudFormation
 console.

	
 Domain name – A domain name that routes to your
 web app in the form
 subdomain.region.elasticbeanstalk.com.

 Note

To augment the security of your Elastic Beanstalk applications, the elasticbeanstalk.com domain is registered in the
 Public Suffix List (PSL). For further security, we recommend that you use cookies with a
 __Host- prefix if you ever need to set sensitive cookies in the default domain name for your Elastic Beanstalk applications. This practice will help to
 defend your domain against cross-site request forgery attempts (CSRF). For more information see the Set-Cookie page in the Mozilla Developer Network.

 All of these resources are managed by Elastic Beanstalk. When you terminate your environment, Elastic Beanstalk terminates all the resources that it contains.

 Because the Amazon RDS instance that you launched is outside of your environment, you are responsible for managing its lifecycle.

 Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and is not deleted during environment termination. For more information, see Using Elastic Beanstalk with Amazon S3.

 Configure security groups and environment properties

 Add the security group of your DB instance to your running environment. This procedure causes Elastic Beanstalk to reprovision all instances in your environment
 with the additional security group attached.

 To add a security group to your environment
	
 Do one of the following:

 	
 To add a security group using the Elastic Beanstalk console

 	Open the Elastic Beanstalk console,
 and in the Regions list, select your AWS Region.

	
 In the navigation pane, choose Environments, and then choose the name of your environment from the list.

 Note

If you have many environments, use the search bar to filter the environment list.

	In the navigation pane, choose Configuration.

	
 In the Instances configuration category, choose Edit.

	
 Under EC2 security groups, choose the security group to attach to the instances, in addition to the instance security group that
 Elastic Beanstalk creates.

	
To save the changes choose Apply at the bottom of the page.

	
 Read the warning, and then choose Confirm.

	
 To add a security group using a configuration file, use the securitygroup-addexisting.config example file.

 Next, use environment properties to pass the connection information to your environment.

 The WordPress application uses a default set of properties that match the ones that Elastic Beanstalk configures when you provision a database within your
 environment.

 To configure environment properties for an Amazon RDS DB instance
	Open the Elastic Beanstalk console,
 and in the Regions list, select your AWS Region.

	
 In the navigation pane, choose Environments, and then choose the name of your environment from the list.

 Note

If you have many environments, use the search bar to filter the environment list.

	In the navigation pane, choose Configuration.

	
In the Updates, monitoring, and logging configuration category, choose Edit.

	
 In the Environment properties section, define the variables that your application reads to construct a connection string. For
 compatibility with environments that have an integrated RDS DB instance, use the following names and values. You can find all values, except for your
 password, in the RDS console.

 	Property name	Description	Property value
	
 RDS_HOSTNAME

 	
 The hostname of the DB instance.

 	
 On the Connectivity & security tab on the Amazon RDS console: Endpoint.

	
 RDS_PORT

 	
 The port where the DB instance accepts connections. The default value varies among DB engines.

 	
 On the Connectivity & security tab on the Amazon RDS console: Port.

	
 RDS_DB_NAME

 	
 The database name, ebdb.

 	
 On the Configuration tab on the Amazon RDS console: DB Name.

	
 RDS_USERNAME

 	
 The username that you configured for your database.

 	
 On the Configuration tab on the Amazon RDS console: Master username.

	
 RDS_PASSWORD

 	
 The password that you configured for your database.

 	
 Not available for reference in the Amazon RDS console.

 [image:
 Environment properties configuration section with RDS properties added
]

	
To save the changes choose Apply at the bottom of the page.

 Configure and deploy your application

 Verify that the structure of your wordpress-beanstalk folder is correct, as shown.

wordpress-beanstalk$ tree -aL 1
.
├── .ebextensions
├── index.php
├── LICENSE
├── license.txt
├── readme.html
├── README.md
├── wp-activate.php
├── wp-admin
├── wp-blog-header.php
├── wp-comments-post.php
├── wp-config.php
├── wp-config-sample.php
├── wp-content
├── wp-cron.php
├── wp-includes
├── wp-links-opml.php
├── wp-load.php
├── wp-login.php
├── wp-mail.php
├── wp-settings.php
├── wp-signup.php
├── wp-trackback.php
└── xmlrpc.php
 The customized wp-config.php file from the project repo uses the environment variables that you defined in the previous step to
 configure the database connection. The .ebextensions folder contains configuration files that create additional resources within your
 Elastic Beanstalk environment.

 The configuration files require modification to work with your account. Replace the placeholder values in the files with the appropriate IDs and
 create a source bundle.

 To update configuration files and create a source bundle
	
 Modify the configuration files as follows.

 	
 .ebextensions/dev.config – Restricts access to your environment to protect it during the WordPress installation
 process. Replace the placeholder IP address near the top of the file with the public IP address of the computer you'll use to access your
 environment's website to complete your WordPress installation.

 Note

Depending on your network, you might need to use an IP address block.

	
 .ebextensions/efs-create.config – Creates an EFS file system and mount points in each Availability Zone/subnet in
 your VPC. Identify your default VPC and subnet IDs in the Amazon VPC
 console.

	
 Create a source bundle containing the files in your project folder. The following command creates
 a source bundle named wordpress-beanstalk.zip.

~/eb-wordpress$ zip ../wordpress-beanstalk.zip -r * .[^.]*

 Upload the source bundle to Elastic Beanstalk to deploy WordPress to your environment.

 To deploy a source bundle
	Open the Elastic Beanstalk console,
 and in the Regions list, select your AWS Region.

	
 In the navigation pane, choose Environments, and then choose the name of your environment from the list.

 Note

If you have many environments, use the search bar to filter the environment list.

	
 On the environment overview page, choose Upload and deploy.

	
 Use the on-screen dialog box to upload the source bundle.

	
 Choose Deploy.

	
 When the deployment completes, you can choose the site URL to open your website in a new tab.

 Install WordPress

 To complete your WordPress installation
	Open the Elastic Beanstalk console,
 and in the Regions list, select your AWS Region.

	
 In the navigation pane, choose Environments, and then choose the name of your environment from the list.

 Note

If you have many environments, use the search bar to filter the environment list.

	
 Choose the environment URL to open your site in a browser. You are redirected to a WordPress installation wizard because you haven't configured
 the site yet.

	
 Perform a standard installation. The wp-config.php file is already present in the source code and configured to read the
 database connection information from the environment. You shouldn't be prompted to configure the connection.

 Installation takes about a minute to complete.

 Update keys and salts

 The WordPress configuration file wp-config.php also reads values for keys and salts from environment properties. Currently, these
 properties are all set to test by the wordpress.config file in the .ebextensions folder.

 The hash salt can be any value that meets the environment property requirements, but
 you should not store it in source control. Use the Elastic Beanstalk console to set these properties directly on the environment.

 To update environment properties
	Open the Elastic Beanstalk console,
 and in the Regions list, select your AWS Region.

	
 In the navigation pane, choose Environments, and then choose the name of your environment from the list.

 Note

If you have many environments, use the search bar to filter the environment list.

	
 On the navigation pane, choose Configuration.

	
 Under Software, choose Edit.

	
 For Environment properties, modify the following properties:

 	
 AUTH_KEY – The value chosen for AUTH_KEY.

	
 SECURE_AUTH_KEY – The value chosen for SECURE_AUTH_KEY.

	
 LOGGED_IN_KEY – The value chosen for LOGGED_IN_KEY.

	
 NONCE_KEY – The value chosen for NONCE_KEY.

	
 AUTH_SALT – The value chosen for AUTH_SALT.

	
 SECURE_AUTH_SALT – The value chosen for SECURE_AUTH_SALT.

	
 LOGGED_IN_SALT – The value chosen for LOGGED_IN_SALT.

	
 NONCE_SALT — The value chosen for NONCE_SALT.

	
To save the changes choose Apply at the bottom of the page.

 Note

Setting the properties on the environment directly overrides the values in wordpress.config.

 Remove access restrictions

 The sample project includes the configuration file loadbalancer-sg.config. It creates a security group and assigns it to the
 environment's load balancer, using the IP address that you configured in dev.config. It restricts HTTP access on port 80 to
 connections from your network. Otherwise, an outside party could potentially connect to your site before you have installed WordPress and configured your
 admin account.

 Now that you've installed WordPress, remove the configuration file to open the site to the world.

 To remove the restriction and update your environment
	
 Delete the .ebextensions/loadbalancer-sg.config file from your project directory.

~/wordpress-beanstalk$ rm .ebextensions/loadbalancer-sg.config

	
 Create a source bundle.

~/eb-wordpress$ zip ../wordpress-beanstalk-v2.zip -r * .[^.]*

 Upload the source bundle to Elastic Beanstalk to deploy WordPress to your environment.

 To deploy a source bundle
	Open the Elastic Beanstalk console,
 and in the Regions list, select your AWS Region.

	
 In the navigation pane, choose Environments, and then choose the name of your environment from the list.

 Note

If you have many environments, use the search bar to filter the environment list.

	
 On the environment overview page, choose Upload and deploy.

	
 Use the on-screen dialog box to upload the source bundle.

	
 Choose Deploy.

	
 When the deployment completes, you can choose the site URL to open your website in a new tab.

 Configure your Auto Scaling group

 Finally, configure your environment's Auto Scaling group with a higher minimum instance count. Run at least two instances at all times to prevent the web
 servers in your environment from being a single point of failure. This also allows you to deploy changes without taking your site out of service.

 To configure your environment's Auto Scaling group for high availability
	Open the Elastic Beanstalk console,
 and in the Regions list, select your AWS Region.

	
 In the navigation pane, choose Environments, and then choose the name of your environment from the list.

 Note

If you have many environments, use the search bar to filter the environment list.

	In the navigation pane, choose Configuration.

	
 In the Capacity configuration category, choose Edit.

	
 In the Auto Scaling group section, set Min instances to 2.

	
To save the changes choose Apply at the bottom of the page.

 To support content uploads across multiple instances, the sample project uses Amazon EFS to create a shared file system. Create a post on the site and
 upload content to store it on the shared file system. View the post and refresh the page multiple times to hit both instances and verify that the shared
 file system is working.

 Upgrade WordPress

 To upgrade to a new version of WordPress, back up your site and deploy it to a new environment.

 Important

Do not use the update functionality within WordPress or update your source files to use a new version. Both of these actions can result in your post
 URLs returning 404 errors even though they are still in the database and file system.

 To upgrade WordPress
	
 In the WordPress admin console, use the export tool to export your posts to an XML file.

	
 Deploy and install the new version of WordPress to Elastic Beanstalk with the same steps that you used to install the previous version. To avoid downtime, you
 can create an environment with the new version.

	
 On the new version, install the WordPress Importer tool in the admin console and use it to import the XML file containing your posts. If the posts
 were created by the admin user on the old version, assign them to the admin user on the new site instead of trying to import the admin user.

	
 If you deployed the new version to a separate environment, do a CNAME swap to redirect users from
 the old site to the new site.

 Clean up

 When you finish working with Elastic Beanstalk, you can terminate your environment.
 Elastic Beanstalk terminates all AWS resources associated with your environment, such as
 Amazon EC2 instances,
 database instances,
 load balancers,
 security groups,
 and alarms.

 To terminate your Elastic Beanstalk environment
	Open the Elastic Beanstalk console,
 and in the Regions list, select your AWS Region.

	
 In the navigation pane, choose Environments, and then choose the name of your environment from the list.

 Note

If you have many environments, use the search bar to filter the environment list.

	
 Choose Actions, and then choose Terminate
 environment.

	
 Use the on-screen dialog box to confirm environment termination.

 With Elastic Beanstalk, you can easily create a new environment for your application at any time.

 In addition, you can terminate database resources that you created outside of your Elastic Beanstalk
 environment. When you terminate an Amazon RDS DB instance, you can take a snapshot and restore
 the data to another instance later.

 To terminate your RDS DB instance
	
 Open the Amazon RDS console.

	
 Choose Databases.

	
 Choose your DB instance.

	
 Choose Actions, and then choose Delete.

	
 Choose whether to create a snapshot, and then choose
 Delete.

 Next steps

 As you continue to develop your application, you'll probably want a way to manage environments and deploy your application without manually creating a
 .zip file and uploading it to the Elastic Beanstalk console. The Elastic Beanstalk Command Line Interface (EB CLI) provides easy-to-use commands
 for creating, configuring, and deploying applications to Elastic Beanstalk environments from the command line.

 The sample application uses configuration files to configure PHP settings and create a table in the database, if it doesn't already exist. You can
 also use a configuration file to configure the security group settings of your instances during environment creation to avoid time-consuming configuration
 updates. See Advanced environment customization with configuration files (.ebextensions) for more information.

 For development and testing, you might want to use the Elastic Beanstalk functionality for adding a managed DB instance directly to your environment. For
 instructions on setting up a database inside your environment, see Adding a database to your Elastic Beanstalk environment.

 If you need a high-performance database, consider using Amazon Aurora.
Amazon Aurora is a
 MySQL-compatible database engine that offers commercial database features at low cost. To connect your application to a different database, repeat the
 security group configuration steps and update the
 RDS-related environment properties.

 Finally, if you plan on using your application in a production environment, you will want to configure a custom domain
 name for your environment and enable HTTPS for secure connections.

[image: Warning] Javascript is disabled or is unavailable in your browser.
To use the Amazon Web Services Documentation, Javascript must be enabled. Please refer to your browser's Help pages for instructions.

Document Conventions
Tutorial - HA production
Tutorial - HA Drupal

Did this page help you? - Yes
Thanks for letting us know we're doing a good job!
If you've got a moment, please tell us what we did right so we can do more of it.

Did this page help you? - No
Thanks for letting us know this page needs work. We're sorry we let you down.
If you've got a moment, please tell us how we can make the documentation better.

