
AWSDocumentationAWS Elastic BeanstalkDeveloper Guide
PrerequisitesGenerate a .NET core projectLaunch an Elastic Beanstalk environmentUpdate the source codeDeploy your applicationCleanupNext steps
Tutorial: Deploying an ASP.NET Core application with Elastic Beanstalk

In this tutorial, you will walk through the process of building a new ASP.NET Core application and deploying it to AWS Elastic Beanstalk.
 First, you will use the .NET Core SDK's dotnet command line tool to generate a basic .NET Core command line application, install
 dependencies, compile code, and run applications locally. Next, you will create the default Program.cs class, and add an
 ASP.NET Startup.cs class and configuration files to make an application that serves HTTP requests with ASP.NET and IIS.
Finally, Elastic Beanstalk uses a deployment manifest to configure deployments for .NET Core applications, custom
 applications, and multiple .NET Core or MSBuild applications on a single server. To deploy a .NET Core application to a Windows Server environment, you add
 a site archive to an application source bundle with a deployment manifest. The dotnet publish command generates compiled classes and
 dependencies that you can bundle with a web.config file to create a site archive. The deployment manifest tells Elastic Beanstalk the path at which
 the site should run and can be used to configure application pools and run multiple applications at different paths.
The source code is available here: dotnet-core-windows-tutorial.zip
Sections
	Prerequisites
	Generate a .NET core project
	Launch an Elastic Beanstalk environment
	Update the source code
	Deploy your application
	Cleanup
	Next steps

 Prerequisites

 This tutorial uses the .NET Core SDK to generate a basic .NET Core application, run it locally, and build a deployable package.

 Requirements

 	
 .NET Core (x64) 1.0.1, 2.0.0, or later

 To install the .NET core SDK
	
 Download the installer from microsoft.com/net/core. Choose
 Windows. Choose Download .NET SDK.

	
 Run the installer and follow the instructions.

 This tutorial uses a command line ZIP utility to create a source bundle that you can deploy to Elastic Beanstalk. To use the zip command in Windows,
 you can install UnxUtils, a lightweight collection of useful command line utilities like zip and ls. Alternatively,
 you can use Windows Explorer or any other ZIP utility to create source bundle archives.

 To install UnxUtils
	
 Download UnxUtils.

	
 Extract the archive to a local directory. For example, C:\Program Files
 (x86).

	
 Add the path to the binaries to your Windows PATH user variable. For example,
 C:\Program Files (x86)\UnxUtils\usr\local\wbin.

 	
 Press the Windows key, and then enter environment variables.

	
 Choose Edit environment variables for your account.

	
 Choose PATH, and then choose Edit.

	
 Add paths to the Variable value field, separated by semicolons. For example:
 C:\item1\path;C:\item2\path

	
 Choose OK twice to apply the new settings.

	
 Close any running Command Prompt windows, and then reopen a Command Prompt window.

	
 Open a new command prompt window and run the zip command to verify that it works.

> zip -h
Copyright (C) 1990-1999 Info-ZIP
Type 'zip "-L"' for software license.
...

 Generate a .NET core project

 Use the dotnet command line tool to generate a new C# .NET Core project and run it locally. The default .NET Core application is a
 command line utility that prints Hello World! and then exits.

 To generate a new .NET core project
	
 Open a new command prompt window and navigate to your user folder.

> cd %USERPROFILE%

	
 Use the dotnet new command to generate a new .NET Core project.

C:\Users\username> dotnet new console -o dotnet-core-tutorial
Content generation time: 65.0152 ms
The template "Console Application" created successfully.
C:\Users\username> cd dotnet-core-tutorial

	
 Use the dotnet restore command to install dependencies.

C:\Users\username\dotnet-core-tutorial> dotnet restore
Restoring packages for C:\Users\username\dotnet-core-tutorial\dotnet-core-tutorial.csproj...
Generating MSBuild file C:\Users\username\dotnet-core-tutorial\obj\dotnet-core-tutorial.csproj.nuget.g.props.
Generating MSBuild file C:\Users\username\dotnet-core-tutorial\obj\dotnet-core-tutorial.csproj.nuget.g.targets.
Writing lock file to disk. Path: C:\Users\username\dotnet-core-tutorial\obj\project.assets.json
Restore completed in 1.25 sec for C:\Users\username\dotnet-core-tutorial\dotnet-core-tutorial.csproj.

NuGet Config files used:
 C:\Users\username\AppData\Roaming\NuGet\NuGet.Config
 C:\Program Files (x86)\NuGet\Config\Microsoft.VisualStudio.Offline.config
Feeds used:
 https://api.nuget.org/v3/index.json
 C:\Program Files (x86)\Microsoft SDKs\NuGetPackages\

	
 Use the dotnet run command to build and run the application locally.

C:\Users\username\dotnet-core-tutorial> dotnet run
Hello World!

 Launch an Elastic Beanstalk environment

 Use the Elastic Beanstalk console to launch an Elastic Beanstalk environment. For this example, you will launch with a .NET platform. After you launch and configure your
 environment, you can deploy new source code at any time.

 To launch an environment (console)
	
 Open the Elastic Beanstalk console using this preconfigured link: console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

	
 For Platform, select the platform and platform branch that match the language used by your application.

	
 For Application code, choose Sample application.

	
 Choose Review and launch.

	
 Review the available options. Choose the available option you want to use, and when you're ready, choose Create app.

 Environment creation takes about 10 minutes. During this time you can update your source code.

 Update the source code

 Modify the default application into a web application that uses ASP.NET and IIS.

 	
 ASP.NET is the website framework for .NET.

	
 IIS is the web server that runs the application on the Amazon EC2 instances in your Elastic Beanstalk environment.

 The source code examples to follow are available here: dotnet-core-tutorial-source.zip

 Note

The following procedure shows how to convert the project code into a web application. To simplify the process, you can generate the project
 as a web application right from the start. In the previous section Generate a .NET core project, modify the dotnet new step's command with the following command.

C:\Users\username> dotnet new web -o dotnet-core-tutorial -n WindowsSampleApp

 To add ASP.NET and IIS support to your code
	
 Copy Program.cs to your application directory to run as a web host builder.

 Example c:\users\username\dotnet-core-tutorial\Program.cs

namespace Microsoft.AspNetCore.Hosting;
using WindowsSampleApp;

public static class Program
{
 public static void Main(string[] args)
 {
 CreateWebHostBuilder(args).Build().Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args).UseStartup<Startup>();
}

	
 Add Startup.cs to run an ASP.NET website.

 Example c:\users\username\dotnet-core-tutorial\Startup.cs

namespace WindowsSampleApp
{
 public class Startup
 {
 public void Configure(IApplicationBuilder app)
 {
 app.UseRouting();
 app.UseEndpoints(endpoints =>
 {
 endpoints.MapGet("/", () => "Hello World from Elastic Beanstalk");
 });
 }
 }
}

	
 Add WindowsSampleApp.csproj, which includes IIS middleware and includes the web.config file from the
 output of dotnet publish.

 Note

The following example was developed using .NET Core Runtime 2.2.1. You might need to modify the TargetFramework or the
 Version attribute values in the PackageReference elements to match the version of .NET Core Runtime that you are using
 in your custom projects.

 Example c:\users\username\dotnet-core-tutorial\WindowsSampleApp.csproj

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>net6.0</TargetFramework>
 <RollForward>LatestMajor</RollForward>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 <RootNamespace>WindowsSampleApp</RootNamespace>
 </PropertyGroup>

</Project>

 Next, install the new dependencies and run the ASP.NET website locally.

 To run the website locally
	
 Use the dotnet restore command to install dependencies.

	
 Use the dotnet run command to build and run the app locally.

	
 Open localhost:5000 to view the site.

 To run the application on a web server, you need to bundle the compiled source code with a web.config configuration file and
 runtime dependencies. The dotnet tool provides a publish command that gathers these files in a directory based on the
 configuration in dotnet-core-tutorial.csproj.

 To build your website
	
 Use the dotnet publish command to output compiled code and dependencies to a folder named site.

C:\users\username\dotnet-core-tutorial> dotnet publish -o site

 To deploy the application to Elastic Beanstalk, bundle the site archive with a deployment manifest. This tells Elastic Beanstalk how to
 run it.

 To create a source bundle
	
 Add the files in the site folder to a ZIP archive.

 Note

If you use a different ZIP utility, be sure to add all files to the root folder of the resulting ZIP archive. This is required for a successful
 deployment of the application to your Elastic Beanstalk environment.

C:\users\username\dotnet-core-tutorial> cd site
C:\users\username\dotnet-core-tutorial\site> zip ../site.zip *
 adding: dotnet-core-tutorial.deps.json (164 bytes security) (deflated 84%)
 adding: dotnet-core-tutorial.dll (164 bytes security) (deflated 59%)
 adding: dotnet-core-tutorial.pdb (164 bytes security) (deflated 28%)
 adding: dotnet-core-tutorial.runtimeconfig.json (164 bytes security) (deflated 26%)
 adding: Microsoft.AspNetCore.Authentication.Abstractions.dll (164 bytes security) (deflated 49%)
 adding: Microsoft.AspNetCore.Authentication.Core.dll (164 bytes security) (deflated 57%)
 adding: Microsoft.AspNetCore.Connections.Abstractions.dll (164 bytes security) (deflated 51%)
 adding: Microsoft.AspNetCore.Hosting.Abstractions.dll (164 bytes security) (deflated 49%)
 adding: Microsoft.AspNetCore.Hosting.dll (164 bytes security) (deflated 60%)
 adding: Microsoft.AspNetCore.Hosting.Server.Abstractions.dll (164 bytes security) (deflated 44%)
 adding: Microsoft.AspNetCore.Http.Abstractions.dll (164 bytes security) (deflated 54%)
 adding: Microsoft.AspNetCore.Http.dll (164 bytes security) (deflated 55%)
 adding: Microsoft.AspNetCore.Http.Extensions.dll (164 bytes security) (deflated 50%)
 adding: Microsoft.AspNetCore.Http.Features.dll (164 bytes security) (deflated 50%)
 adding: Microsoft.AspNetCore.HttpOverrides.dll (164 bytes security) (deflated 49%)
 adding: Microsoft.AspNetCore.Server.IISIntegration.dll (164 bytes security) (deflated 46%)
 adding: Microsoft.AspNetCore.Server.Kestrel.Core.dll (164 bytes security) (deflated 63%)
 adding: Microsoft.AspNetCore.Server.Kestrel.dll (164 bytes security) (deflated 46%)
 adding: Microsoft.AspNetCore.Server.Kestrel.Https.dll (164 bytes security) (deflated 44%)
 adding: Microsoft.AspNetCore.Server.Kestrel.Transport.Abstractions.dll (164 bytes security) (deflated 56%)
 adding: Microsoft.AspNetCore.Server.Kestrel.Transport.Sockets.dll (164 bytes security) (deflated 51%)
 adding: Microsoft.AspNetCore.WebUtilities.dll (164 bytes security) (deflated 55%)
 adding: Microsoft.Extensions.Configuration.Abstractions.dll (164 bytes security) (deflated 48%)
 adding: Microsoft.Extensions.Configuration.Binder.dll (164 bytes security) (deflated 47%)
 adding: Microsoft.Extensions.Configuration.dll (164 bytes security) (deflated 46%)
 adding: Microsoft.Extensions.Configuration.EnvironmentVariables.dll (164 bytes security) (deflated 46%)
 adding: Microsoft.Extensions.Configuration.FileExtensions.dll (164 bytes security) (deflated 47%)
 adding: Microsoft.Extensions.DependencyInjection.Abstractions.dll (164 bytes security) (deflated 54%)
 adding: Microsoft.Extensions.DependencyInjection.dll (164 bytes security) (deflated 53%)
 adding: Microsoft.Extensions.FileProviders.Abstractions.dll (164 bytes security) (deflated 46%)
 adding: Microsoft.Extensions.FileProviders.Physical.dll (164 bytes security) (deflated 47%)
 adding: Microsoft.Extensions.FileSystemGlobbing.dll (164 bytes security) (deflated 49%)
 adding: Microsoft.Extensions.Hosting.Abstractions.dll (164 bytes security) (deflated 47%)
 adding: Microsoft.Extensions.Logging.Abstractions.dll (164 bytes security) (deflated 54%)
 adding: Microsoft.Extensions.Logging.dll (164 bytes security) (deflated 48%)
 adding: Microsoft.Extensions.ObjectPool.dll (164 bytes security) (deflated 45%)
 adding: Microsoft.Extensions.Options.dll (164 bytes security) (deflated 53%)
 adding: Microsoft.Extensions.Primitives.dll (164 bytes security) (deflated 50%)
 adding: Microsoft.Net.Http.Headers.dll (164 bytes security) (deflated 53%)
 adding: System.IO.Pipelines.dll (164 bytes security) (deflated 50%)
 adding: System.Runtime.CompilerServices.Unsafe.dll (164 bytes security) (deflated 43%)
 adding: System.Text.Encodings.Web.dll (164 bytes security) (deflated 57%)
 adding: web.config (164 bytes security) (deflated 39%)
C:\users\username\dotnet-core-tutorial\site> cd ../

	
 Add a deployment manifest that points to the site archive.

 Example c:\users\username\dotnet-core-tutorial\aws-windows-deployment-manifest.json

{
 "manifestVersion": 1,
 "deployments": {
 "aspNetCoreWeb": [
 {
 "name": "test-dotnet-core",
 "parameters": {
 "appBundle": "site.zip",
 "iisPath": "/",
 "iisWebSite": "Default Web Site"
 }
 }
]
 }
}

	
 Use the zip command to create a source bundle named dotnet-core-tutorial.zip.

C:\users\username\dotnet-core-tutorial> zip dotnet-core-tutorial.zip site.zip aws-windows-deployment-manifest.json
 adding: site.zip (164 bytes security) (stored 0%)
 adding: aws-windows-deployment-manifest.json (164 bytes security) (deflated 50%)

 Deploy your application

 Deploy the source bundle to the Elastic Beanstalk environment that you created.

 You can download the source bundle here: dotnet-core-tutorial-bundle.zip

 To deploy a source bundle
	Open the Elastic Beanstalk console,
 and in the Regions list, select your AWS Region.

	
 In the navigation pane, choose Environments, and then choose the name of your environment from the list.

 Note

If you have many environments, use the search bar to filter the environment list.

	
 On the environment overview page, choose Upload and deploy.

	
 Use the on-screen dialog box to upload the source bundle.

	
 Choose Deploy.

	
 When the deployment completes, you can choose the site URL to open your website in a new tab.

 The application simply writes Hello from ASP.NET Core! to the response and returns.

 [image:]

 Launching an environment creates the following resources:

	
 EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual
 machine configured to run web apps on the platform that you choose.

 Each platform runs a specific set of software, configuration files, and scripts to support a specific language version, framework, web container, or
 combination of these. Most platforms use either Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it, serves
 static assets, and generates access and error logs.

	
 Instance security group – An Amazon EC2 security group configured to allow inbound traffic on port 80. This
 resource lets HTTP traffic from the load balancer reach the EC2 instance running your web app. By default, traffic isn't allowed on other ports.

	
 Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to the instances running your
 application. A load balancer also eliminates the need to expose your instances directly to the internet.

	
 Load balancer security group – An Amazon EC2 security group configured to allow inbound traffic on port 80. This
 resource lets HTTP traffic from the internet reach the load balancer. By default, traffic isn't allowed on other ports.

	
 Auto Scaling group – An Auto Scaling group configured to replace
 an instance if it is terminated or becomes unavailable.

	
 Amazon S3 bucket – A storage location for your source
 code, logs, and other artifacts that are created when you use Elastic Beanstalk.

	
 Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances in your environment and that are
 triggered if the load is too high or too low. When an alarm is triggered, your Auto Scaling group scales up or down in response.

	
 AWS CloudFormation stack – Elastic Beanstalk uses AWS CloudFormation to launch the
 resources in your environment and propagate configuration changes. The resources are defined
 in a template that you can view in the AWS CloudFormation
 console.

	
 Domain name – A domain name that routes to your
 web app in the form
 subdomain.region.elasticbeanstalk.com.

 Note

To augment the security of your Elastic Beanstalk applications, the elasticbeanstalk.com domain is registered in the
 Public Suffix List (PSL). For further security, we recommend that you use cookies with a
 __Host- prefix if you ever need to set sensitive cookies in the default domain name for your Elastic Beanstalk applications. This practice will help to
 defend your domain against cross-site request forgery attempts (CSRF). For more information see the Set-Cookie page in the Mozilla Developer Network.

 All of these resources are managed by Elastic Beanstalk. When you terminate your environment, Elastic Beanstalk terminates all the resources that it contains.

 Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and isn't deleted during environment termination. For more information, see Using Elastic Beanstalk with Amazon S3.

 Cleanup

 When you finish working with Elastic Beanstalk, you can terminate your environment.
 Elastic Beanstalk terminates all AWS resources associated with your environment, such as
 Amazon EC2 instances,
 database instances,
 load balancers,
 security groups,
 and alarms.

 To terminate your Elastic Beanstalk environment
	Open the Elastic Beanstalk console,
 and in the Regions list, select your AWS Region.

	
 In the navigation pane, choose Environments, and then choose the name of your environment from the list.

 Note

If you have many environments, use the search bar to filter the environment list.

	
 Choose Actions, and then choose Terminate
 environment.

	
 Use the on-screen dialog box to confirm environment termination.

 With Elastic Beanstalk, you can easily create a new environment for your application at any time.

 Next steps

 As you continue to develop your application, you'll probably want to manage environments and deploy your application without manually creating a .zip
 file and uploading it to the Elastic Beanstalk console. The Elastic Beanstalk Command Line Interface (EB CLI) provides easy-to-use commands for
 creating, configuring, and deploying applications to Elastic Beanstalk environments from the command line.

 If you use Visual Studio to develop your application, you can also use the AWS Toolkit for Visual Studio to deploy changed, manage your Elastic Beanstalk environments, and manage other AWS
 resources. See The AWS Toolkit for Visual Studio for more information.

 For developing and testing, you might want to use the Elastic Beanstalk functionality for adding a managed DB instance directly to your environment. For
 instructions on setting up a database inside your environment, see Adding a database to your Elastic Beanstalk environment.

 Finally, if you plan to use your application in a production environment, configure a custom domain name for your
 environment and enable HTTPS for secure connections.

[image: Warning] Javascript is disabled or is unavailable in your browser.
To use the Amazon Web Services Documentation, Javascript must be enabled. Please refer to your browser's Help pages for instructions.

Document Conventions
Deployment manifest
Adding a database

Did this page help you? - Yes
Thanks for letting us know we're doing a good job!
If you've got a moment, please tell us what we did right so we can do more of it.

Did this page help you? - No
Thanks for letting us know this page needs work. We're sorry we let you down.
If you've got a moment, please tell us how we can make the documentation better.

