
User Guide

Amazon CloudWatch Logs

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon CloudWatch Logs User Guide

Amazon CloudWatch Logs: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon CloudWatch Logs User Guide

Table of Contents

What is Amazon CloudWatch Logs? ... 1
Features .. 1
Related AWS services ... 2
Pricing ... 3
Concepts ... 4
Billing and costs ... 5

Log classes ... 6
Supported features .. 6

Getting started .. 9
Prerequisites .. 9

Sign up for an AWS account .. 9
Create an administrative user .. 10
Set up the Command Line Interface .. 11

Using the unified CloudWatch agent ... 11
Using the previous CloudWatch agent .. 12

CloudWatch Logs agent prerequisites .. 13
Quick Start: Install the agent on a running EC2 Linux instance .. 13
Quick Start: Install the agent on an EC2 Linux instance at launch ... 20
Quick Start: Use CloudWatch Logs with Windows Server 2016 instances 23
Quick Start: Use CloudWatch Logs with Windows Server 2012 and Windows Server 2008
instances ... 35
Quick Start: Install the agent using AWS OpsWorks ... 45
Report the CloudWatch Logs agent status ... 50
Start the CloudWatch Logs agent ... 51
Stop the CloudWatch Logs agent ... 51

Quick Start with AWS CloudFormation ... 52
Working with AWS SDKs ... 54
Analyzing log data with CloudWatch Logs Insights .. 56

Commands supported in log classes ... 57
Get started: Query tutorials .. 58

Tutorial: Run and modify a sample query ... 58
Tutorial: Run a query with an aggregation function ... 61
Tutorial: Run a query that produces a visualization grouped by log fields 62
Tutorial: Run a query that produces a time series visualization .. 63

iii

Amazon CloudWatch Logs User Guide

Supported logs and discovered fields ... 64
Fields in JSON logs .. 66

Query syntax ... 68
display ... 70
fields .. 71
filter ... 71
pattern ... 74
diff .. 75
parse .. 76
sort ... 78
stats .. 78
limit .. 84
dedup ... 84
unmask .. 85
Boolean, comparison, numeric, datetime, and other functions .. 85
Fields that contain special characters .. 95
Use aliases and comments in queries .. 95

Pattern analysis .. 96
Getting started with pattern analysis .. 97
Details about the pattern command .. 99

Compare (diff) with previous time ranges .. 100
Sample queries ... 102

General queries ... 103
Queries for Lambda logs .. 103
Queries for Amazon VPC flow logs .. 104
Queries for Route 53 logs .. 105
Queries for CloudTrail logs ... 105
Queries for Amazon API Gateway ... 106
Queries for NAT gateway .. 107
Queries for Apache server logs ... 108
Queries for Amazon EventBridge .. 109
Examples of the parse command ... 109

Visualize log data in graphs .. 110
Save and re-run queries ... 110
Add query to dashboard or export query results ... 112
View running queries or query history .. 113

iv

Amazon CloudWatch Logs User Guide

Encrypt query results with AWS Key Management Service .. 114
Limits ... 114
Step 1: Create an AWS KMS key ... 114
Step 2: Set permissions on the KMS key ... 115
Step 3: Associate a KMS key with your query results ... 117
Step 4: Disassociate a key from query results in the account ... 117

Use natural language to generate and update CloudWatch Logs Insights queries 117
Example queries .. 118
Opting out of using your data for service improvement .. 120

Log anomaly detection ... 121
Severity and priority of anomalies and patterns .. 122
Anomaly visibility time ... 122
Suppressing an anomaly .. 122
Frequently asked questions ... 123
Enable anomaly detection on a log group ... 124
View anomalies that have been found ... 125
Create alarms on log anomaly detectors ... 128
Metrics published by log anomaly detectors ... 130
Encrypt an anomaly detector and its results with AWS KMS ... 130

Limits ... 131
Working with log groups and log streams .. 135

Create a log group .. 135
Send logs to a log group ... 135
View log data .. 136
Use Live Tail to view logs in near real time ... 137

Start a Live Tail session .. 137
Search log data using filter patterns ... 139

Search log entries using the console ... 140
Search log entries using the AWS CLI .. 140
Pivot from metrics to logs ... 141
Troubleshooting .. 142

Change log data retention ... 142
Tag log groups ... 143

Tag basics ... 144
Tracking costs using tagging .. 144
Tag restrictions .. 144

v

Amazon CloudWatch Logs User Guide

Tagging log groups using the AWS CLI ... 145
Tagging log groups using the CloudWatch Logs API .. 146

Encrypt log data using AWS KMS .. 146
Limits ... 147
Step 1: Create an AWS KMS key ... 114
Step 2: Set permissions on the KMS key ... 115
Step 3: Associate a KMS key with a log group ... 134
Step 4: Disassociate key from a log group ... 134
KMS keys and encryption context .. 151

Help protect sensitive log data with masking ... 154
Understanding data protection policies .. 158
IAM permissions required to create or work with a data protection policy 160
Create an account-wide data protection policy ... 165
Create a data protection policy for a single log group .. 168
View unmasked data ... 171
Audit findings reports ... 172
Types of data that you can protect .. 173

Metric filters .. 217
Concepts ... 218
Filter pattern syntax for metric filters .. 219

Configuring metric values for a metric filter .. 220
Publishing dimensions with metric from log events ... 221
Using values in log events to increment a metric's value .. 224

Creating metric filters ... 225
Create a metric filter for a log group .. 225
Example: Count log events ... 226
Example: Count occurrences of a term .. 228
Example: Count HTTP 404 codes .. 229
Example: Count HTTP 4xx codes .. 232
Example: Extract fields from an Apache log and assign dimensions 233

Listing metric filters .. 235
Deleting a metric filter ... 236

Subscription filters .. 238
Concepts ... 239
Log group-level subscription filters ... 240

Example 1: Subscription filters with Kinesis Data Streams .. 240

vi

Amazon CloudWatch Logs User Guide

Example 2: Subscription filters with AWS Lambda ... 246
Example 3: Subscription filters with Amazon Data Firehose ... 250

Account-level subscription filters ... 257
Example 1: Subscription filters with Kinesis Data Streams .. 258
Example 2: Subscription filters with AWS Lambda ... 264
Example 3: Subscription filters with Amazon Data Firehose ... 268

Cross-account subscriptions ... 276
Cross-account log data sharing using Kinesis Data Streams ... 276
Cross-account log data sharing using Firehose .. 296
Cross-account account-level subscriptions using Kinesis Data Streams 310
Cross-account account-level subscriptions using Firehose ... 328

Confused deputy prevention ... 340
Log recursion prevention ... 341

Filter pattern syntax .. 343
Supported regular expressions ... 343
Match terms using regular expressions ... 346
Match terms in unstructured log events .. 347
Match terms in JSON log events .. 350
Match terms in space-delimited log events ... 359

Enabling logging from AWS services ... 364
Logging that requires additional permissions [V1] .. 369

Logs sent to CloudWatch Logs .. 370
Logs sent to Amazon S3 ... 372
Logs sent to Firehose .. 376

Logging that requires additional permissions [V2] .. 377
Logs sent to CloudWatch Logs .. 379
Logs sent to Amazon S3 ... 381
Logs sent to Firehose .. 386
Service-specific permissions ... 388
Console-specific permissions .. 389

Cross-service confused deputy prevention ... 390
Policy updates .. 390

Exporting log data to Amazon S3 .. 392
Concepts ... 393
Export log data to Amazon S3 using the console .. 394

Same-account export ... 394

vii

Amazon CloudWatch Logs User Guide

Cross-account export ... 401
Export log data to Amazon S3 using the AWS CLI ... 409

Same-account export ... 410
Cross-account export ... 417

Describe export tasks .. 425
Cancel an export task ... 427

Streaming data to OpenSearch Service ... 428
Prerequisites .. 428
Subscribe a log group to OpenSearch Service .. 428

Code examples ... 431
Actions .. 432

AssociateKmsKey .. 432
CancelExportTask ... 434
CreateExportTask ... 435
CreateLogGroup .. 437
CreateLogStream .. 440
DeleteLogGroup .. 441
DeleteSubscriptionFilter .. 444
DescribeExportTasks .. 449
DescribeLogGroups ... 450
DescribeSubscriptionFilters ... 454
GetQueryResults .. 460
PutSubscriptionFilter ... 462
StartLiveTail ... 468
StartQuery .. 479

Scenarios .. 483
Run a large query ... 483

Cross-service examples ... 499
Use scheduled events to invoke a Lambda function ... 499

Security .. 501
Data protection .. 502

Encryption at rest ... 503
Encryption in transit .. 503

Identity and access management ... 503
Authentication ... 503
Access control .. 504

viii

Amazon CloudWatch Logs User Guide

Overview of managing access ... 504
Using identity-based policies (IAM policies) ... 510
CloudWatch Logs permissions reference ... 522
Using service-linked roles ... 527

Compliance validation .. 530
Resilience ... 530
Infrastructure security ... 531
Interface VPC endpoints ... 531

Availability .. 532
Creating a VPC endpoint for CloudWatch Logs ... 532
Testing the connection between your VPC and CloudWatch Logs ... 532
Controlling access to your CloudWatch Logs VPC endpoint ... 533
Support for VPC context keys ... 534

Logging Amazon CloudWatch Logs API calls in AWS CloudTrail .. 535
CloudWatch Logs information in CloudTrail .. 535
Understanding log file entries .. 537

Agent reference ... 539
Agent configuration file ... 539
Using the CloudWatch Logs agent with HTTP proxies .. 545
Compartmentalizing CloudWatch Logs agent configuration files ... 546
CloudWatch Logs agent FAQ ... 547

Monitoring usage with CloudWatch metrics .. 551
CloudWatch Logs metrics ... 551
Dimensions for CloudWatch Logs metrics .. 555
CloudWatch Logs service usage metrics ... 556

Service quotas ... 559
Managing your CloudWatch Logs service quotas ... 565

Document history .. 567
AWS Glossary ... 574

ix

Amazon CloudWatch Logs User Guide

What is Amazon CloudWatch Logs?

You can use Amazon CloudWatch Logs to monitor, store, and access your log files from Amazon
Elastic Compute Cloud (Amazon EC2) instances, AWS CloudTrail, Route 53, and other sources.

CloudWatch Logs enables you to centralize the logs from all of your systems, applications, and
AWS services that you use, in a single, highly scalable service. You can then easily view them,
search them for specific error codes or patterns, filter them based on specific fields, or archive
them securely for future analysis. CloudWatch Logs enables you to see all of your logs, regardless
of their source, as a single and consistent flow of events ordered by time.

CloudWatch Logs also supports querying your logs with a powerful query language, auditing and
masking sensitive data in logs, and generating metrics from logs using filters or an embedded log
format.

CloudWatch Logs supports two log classes. Log groups in the CloudWatch Logs Standard log class
support all CloudWatch Logs features. Log groups in the CloudWatch Logs Infrequent Access log
class incur lower ingestion charges and support a subset of the Standard class capabilities. For
more information, see Log classes.

Features

• Two log classes for flexibility – CloudWatch Logs offers two log classes so that you can have a
cost-effective option for logs that you access infrequently. You also have a full-featured option
for logs that require real-time monitoring or other features. For more information, see Log
classes.

• Query your log data – You can use CloudWatch Logs Insights to interactively search and analyze
your log data. You can perform queries to help you more efficiently and effectively respond to
operational issues. CloudWatch Logs Insights includes a purpose-built query language with a
few simple but powerful commands. We provide sample queries, command descriptions, query
autocompletion, and log field discovery to help you get started. Sample queries are included for
several types of AWS service logs. To get started, see Analyzing log data with CloudWatch Logs
Insights.

• Detect and debug using Live Tail – You can use Live Tail to quickly troubleshoot incidents by
viewing a streaming list of new log events as they are ingested. You can view, filter, and highlight
ingested logs in near real time, helping you to detect and resolve issues quickly. You can filter the

Features 1

Amazon CloudWatch Logs User Guide

logs based on terms you specify, and also highlight logs that contain specified terms to help you
quickly find what you are looking for. For more information, see Use Live Tail to view logs in near
real time.

• Monitor logs from Amazon EC2 instances – You can use CloudWatch Logs to monitor
applications and systems using log data. For example, CloudWatch Logs can track the number
of errors that occur in your application logs and send you a notification whenever the rate of
errors exceeds a threshold you specify. CloudWatch Logs uses your log data for monitoring; so,
no code changes are required. For example, you can monitor application logs for specific literal
terms (such as "NullReferenceException") or count the number of occurrences of a literal term at
a particular position in log data (such as "404" status codes in an Apache access log). When the
term you are searching for is found, CloudWatch Logs reports the data to a CloudWatch metric
that you specify. Log data is encrypted while in transit and while it is at rest. To get started, see
Getting started with CloudWatch Logs.

• Monitor AWS CloudTrail logged events – You can create alarms in CloudWatch and receive
notifications of particular API activity as captured by CloudTrail and use the notification to
perform troubleshooting. To get started, see Sending CloudTrail Events to CloudWatch Logs in
the AWS CloudTrail User Guide.

• Audit and mask sensitive data – If you have sensitive data in your logs, you can help safeguard
it with data protection policies. These policies let you audit and mask the sensitive data. If you
enable data protection, then by default, sensitive data that matches the data identifiers you
select is masked. For more information, see Help protect sensitive log data with masking.

• Log retention – By default, logs are kept indefinitely and never expire. You can adjust the
retention policy for each log group, keeping the indefinite retention, or choosing a retention
period between 10 years and one day.

• Archive log data – You can use CloudWatch Logs to store your log data in highly durable
storage. The CloudWatch Logs agent makes it easy to quickly send both rotated and non-rotated
log data off of a host and into the log service. You can then access the raw log data when you
need it.

• Log Route 53 DNS queries – You can use CloudWatch Logs to log information about the DNS
queries that Route 53 receives. For more information, see Logging DNS Queries in the Amazon
Route 53 Developer Guide.

Related AWS services

The following services are used in conjunction with CloudWatch Logs:

Related AWS services 2

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cw_send_ct_events.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/query-logs.html

Amazon CloudWatch Logs User Guide

• AWS CloudTrail is a web service that enables you to monitor the calls made to the CloudWatch
Logs API for your account, including calls made by the AWS Management Console, AWS
Command Line Interface (AWS CLI), and other services. When CloudTrail logging is turned on,
CloudTrail captures API calls in your account and delivers the log files to the Amazon S3 bucket
that you specify. Each log file can contain one or more records, depending on how many actions
must be performed to satisfy a request. For more information about AWS CloudTrail, see What
Is AWS CloudTrail? in the AWS CloudTrail User Guide. For an example of the type of data that
CloudWatch writes into CloudTrail log files, see Logging Amazon CloudWatch Logs API calls in
AWS CloudTrail.

• AWS Identity and Access Management (IAM) is a web service that helps you securely control
access to AWS resources for your users. Use IAM to control who can use your AWS resources
(authentication) and what resources they can use in which ways (authorization). For more
information, see What Is IAM? in the IAM User Guide.

• Amazon Kinesis Data Streams is a web service you can use for rapid and continuous data
intake and aggregation. The type of data used includes IT infrastructure log data, application
logs, social media, market data feeds, and web clickstream data. Because the response time
for the data intake and processing is in real time, processing is typically lightweight. For more
information, see What is Amazon Kinesis Data Streams? in the Amazon Kinesis Data Streams
Developer Guide.

• AWS Lambda is a web service you can use to build applications that respond quickly to new
information. Upload your application code as Lambda functions and Lambda runs your code on
high-availability compute infrastructure and performs all the administration of the compute
resources, including server and operating system maintenance, capacity provisioning and
automatic scaling, code and security patch deployment, and code monitoring and logging. All
you need to do is supply your code in one of the languages that Lambda supports. For more
information, see What is AWS Lambda? in the AWS Lambda Developer Guide.

Pricing

When you sign up for AWS, you can get started with CloudWatch Logs for free using the AWS Free
Tier.

Standard rates apply for logs stored by other services using CloudWatch Logs (for example,
Amazon VPC flow logs and Lambda logs).

For more information about pricing, see Amazon CloudWatch Pricing.

Pricing 3

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/whatisawscloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/whatisawscloudtrail.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/kinesis/latest/dev/introduction.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
http://aws.amazon.com/free/
http://aws.amazon.com/free/
https://aws.amazon.com/cloudwatch/pricing/

Amazon CloudWatch Logs User Guide

For more information about how to analyze your costs and usage for CloudWatch Logs and
CloudWatch, and for best practices about how to reduce your costs, see CloudWatch billing and
cost.

Amazon CloudWatch Logs concepts

The terminology and concepts that are central to your understanding and use of CloudWatch Logs
are described below.

Log class

CloudWatch Logs offers two classes of log groups. The Standard log class is a full-featured
option for logs that require real-time monitoring or logs that you access frequently. The
Infrequent Access log class is a lower-cost option for logs that you access less frequently. It
supports a subset of the Standard log class capabilities.

Log events

A log event is a record of some activity recorded by the application or resource being
monitored. The log event record that CloudWatch Logs understands contains two properties:
the timestamp of when the event occurred, and the raw event message. Event messages must
be UTF-8 encoded.

Log streams

A log stream is a sequence of log events that share the same source. More specifically, a log
stream is generally intended to represent the sequence of events coming from the application
instance or resource being monitored. For example, a log stream may be associated with an
Apache access log on a specific host. When you no longer need a log stream, you can delete it
using the aws logs delete-log-stream command.

Log groups

Log groups define groups of log streams that share the same retention, monitoring, and access
control settings. Each log stream has to belong to one log group. For example, if you have
a separate log stream for the Apache access logs from each host, you could group those log
streams into a single log group called MyWebsite.com/Apache/access_log.

There is no limit on the number of log streams that can belong to one log group.

Concepts 4

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_billing.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_billing.html
https://docs.aws.amazon.com/cli/latest/reference/logs/delete-log-stream.html

Amazon CloudWatch Logs User Guide

Metric filters

You can use metric filters to extract metric observations from ingested events and transform
them to data points in a CloudWatch metric. Metric filters are assigned to log groups, and all of
the filters assigned to a log group are applied to their log streams.

Retention settings

Retention settings can be used to specify how long log events are kept in CloudWatch Logs.
Expired log events get deleted automatically. Just like metric filters, retention settings are
also assigned to log groups, and the retention assigned to a log group is applied to their log
streams.

Amazon CloudWatch Logs billing and cost

For detailed information about how to analyze your costs and usage for CloudWatch Logs and
CloudWatch, and for best practices about how to reduce your costs, see CloudWatch billing and
cost.

For more information about pricing, see Amazon CloudWatch Pricing.

When you sign up for AWS, you can get started with CloudWatch Logs for free using the AWS Free
Tier.

Standard rates apply for logs stored by other services using CloudWatch Logs (for example,
Amazon VPC flow logs and Lambda logs).

Billing and costs 5

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_billing.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_billing.html
https://aws.amazon.com/cloudwatch/pricing/
http://aws.amazon.com/free/
http://aws.amazon.com/free/

Amazon CloudWatch Logs User Guide

Log classes

CloudWatch Logs offers two classes of log groups:

• The CloudWatch Logs Standard log class is a full-featured option for logs that require real-time
monitoring or logs that you access frequently.

• The CloudWatch Logs Infrequent Access log class is a new log class that you can use to cost-
effectively consolidate your logs. This log class offers a subset of CloudWatch Logs capabilities
including managed ingestion, storage, cross-account log analytics, and encryption with a lower
ingestion price per GB. The Infrequent Access log class is ideal for ad-hoc querying and after-the-
fact forensic analysis on infrequently accessed logs.

Note

For charges, the Standard and Infrequent Access log classes differ in ingestion costs only.
Storage charges and CloudWatch Logs Insights charges are the same in each log class.

For more information about CloudWatch Logs pricing, see Amazon CloudWatch Pricing.

Important

After a log group is created, its log class can't be changed.

Supported features

The following table lists the features for each log class.

 Standard Infrequen
t Access

Fully managed log ingestion and storage ✓ ✓

Cross-account features ✓ ✓

Encryption with AWS KMS ✓ ✓

Supported features 6

https://aws.amazon.com/cloudwatch/pricing/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html

Amazon CloudWatch Logs User Guide

 Standard Infrequen
t Access

CloudWatch Logs Insights query commands ✓ ✓ (Most
commands–

see
Commands

supported in
log classes.)

CloudWatch Logs Insights discovered fields ✓

Natural language query assist ✓

CloudWatch Logs Anomaly Detection ✓

Compare to previous time range ✓

Subscription filters ✓

Export to Amazon S3 ✓

GetLogEvents and FilterLogEvents API
operations

✓ Not
supported
. Use
CloudWatch
Logs Insights
to view
log events
stored in log
groups in the
Infrequent
Access log
class.

Metric filters ✓

Container Insights log ingestion ✓

Supported features 7

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_GetLogEvents.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_FilterLogEvents.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html

Amazon CloudWatch Logs User Guide

 Standard Infrequen
t Access

Lambda Insights log ingestion ✓

Sensitive data protection with masking ✓

Embedded metrics format ✓

Supported features 8

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Lambda-Insights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format.html

Amazon CloudWatch Logs User Guide

Getting started with CloudWatch Logs

To collect logs from your Amazon EC2 instances and on-premises servers into CloudWatch Logs,
use the unified CloudWatch agent. It enables you to collect both logs and advanced metrics with
one agent. It offers support across operating systems, including servers running Windows Server.
This agent also provides better performance.

If you're using the unified CloudWatch agent to collect CloudWatch metrics, it enables the
collection of additional system metrics, for in-guest visibility. It also supports collecting custom
metrics using StatsD or collectd.

For more information, see Installing the CloudWatch Agent in the Amazon CloudWatch User Guide.

The older CloudWatch Logs agent, which supports only the collection of logs from servers running
Linux, is deprecated and is no longer supported. For information about migrating from the older
CloudWatch Logs agent to the unified agent, see Create the CloudWatch agent configuration file
with the wizard.

Contents

• Prerequisites

• Use the unified CloudWatch agent to get started with CloudWatch Logs

• Use the previous CloudWatch agent to get started with CloudWatch Logs

• Quick Start: Use AWS CloudFormation to get started with CloudWatch Logs

Prerequisites

To use Amazon CloudWatch Logs you need an AWS account. Your AWS account allows you to use
services (for example, Amazon EC2) to generate logs that you can view in the CloudWatch console,
a web-based interface. In addition, you can install and configure the AWS Command Line Interface
(AWS CLI).

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

Prerequisites 9

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-on-EC2-Instance.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create-cloudwatch-agent-configuration-file-wizard.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create-cloudwatch-agent-configuration-file-wizard.html
https://portal.aws.amazon.com/billing/signup

Amazon CloudWatch Logs User Guide

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

Create an administrative user 10

https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html

Amazon CloudWatch Logs User Guide

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Set up the Command Line Interface

You can use the AWS CLI to perform CloudWatch Logs operations.

For information about how to install and configure the AWS CLI, see Getting Set Up with the AWS
Command Line Interface in the AWS Command Line Interface User Guide.

Use the unified CloudWatch agent to get started with
CloudWatch Logs

For more information about using the unified CloudWatch agent to get started with CloudWatch
Logs, see Collect Metrics and Logs from Amazon EC2 Instances and On-Premises Servers with
the CloudWatch Agent in the Amazon CloudWatch User Guide. You complete the steps listed in
this section to install, configure, and start the agent. If you are not using the agent to also collect
CloudWatch metrics, you can ignore any sections that refer to metrics.

If you are currently using the older CloudWatch Logs agent and want to migrate to using the new
unified agent, we recommend that you use the wizard included in the new agent package. This
wizard can read your current CloudWatch Logs agent configuration file and set up the CloudWatch
agent to collect the same logs. For more information about the wizard, see Create the CloudWatch
Agent Configuration File with the Wizard in the Amazon CloudWatch User Guide.

Set up the Command Line Interface 11

https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create-cloudwatch-agent-configuration-file-wizard.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create-cloudwatch-agent-configuration-file-wizard.html

Amazon CloudWatch Logs User Guide

Use the previous CloudWatch agent to get started with
CloudWatch Logs

Important

CloudWatch includes a unified CloudWatch agent that can collect both logs and metrics
from EC2 instances and on-premises servers. The older logs-only agent is deprecated and is
no longer supported.
For information about migrating from the older logs-only agent to the unified agent, see
Create the CloudWatch agent configuration file with the wizard.
The rest of this section explains the use of the older CloudWatch Logs agent for customers
who are still using it.

Using the CloudWatch Logs agent, you can publish log data from Amazon EC2 instances running
Linux or Windows Server, and logged events from AWS CloudTrail. We recommend instead using
the CloudWatch unified agent to publish your log data. For more information about the new
agent, see Collect Metrics and Logs from Amazon EC2 Instances and On-Premises Servers with the
CloudWatch Agent in the Amazon CloudWatch User Guide.

Contents

• CloudWatch Logs agent prerequisites

• Quick Start: Install and configure the CloudWatch Logs agent on a running EC2 Linux instance

• Quick Start: Install and configure the CloudWatch Logs agent on an EC2 Linux instance at launch

• Quick Start: Enable your Amazon EC2 instances running Windows Server 2016 to send logs to
CloudWatch Logs using the CloudWatch Logs agent

• Quick Start: Enable your Amazon EC2 instances running Windows Server 2012 and Windows
Server 2008 to send logs to CloudWatch Logs

• Quick Start: Install the CloudWatch Logs agent using AWS OpsWorks and Chef

• Report the CloudWatch Logs agent status

• Start the CloudWatch Logs agent

• Stop the CloudWatch Logs agent

Using the previous CloudWatch agent 12

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create-cloudwatch-agent-configuration-file-wizard.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create-cloudwatch-agent-configuration-file-wizard.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html

Amazon CloudWatch Logs User Guide

CloudWatch Logs agent prerequisites

The CloudWatch Logs agent requires Python version 2.7, 3.0, or 3.3, and any of the following
versions of Linux:

• Amazon Linux version 2014.03.02 or later. Amazon Linux 2 is not supported

• Ubuntu Server version 12.04, 14.04, or 16.04

• CentOS version 6, 6.3, 6.4, 6.5, or 7.0

• Red Hat Enterprise Linux (RHEL) version 6.5 or 7.0

• Debian 8.0

Quick Start: Install and configure the CloudWatch Logs agent on a
running EC2 Linux instance

Important

The older logs agent is deprecated. CloudWatch includes a unified agent that can collect
both logs and metrics from EC2 instances and on-premises servers. For more information,
see Getting started with CloudWatch Logs.
For information about migrating from the older CloudWatch Logs agent to the unified
agent, see Create the CloudWatch agent configuration file with the wizard.
The older logs agent supports only versions 2.6 to 3.5 of Python. Additionally, the older
CloudWatch Logs agent doesn't support Instance Metadata Service Version 2 (IMDSv2).
If your server uses IMDSv2, you must use the newer unified agent instead of the older
CloudWatch Logs agent.
The rest of this section explains the use of the older CloudWatch Logs agent for customers
who are still using it.

Tip

CloudWatch includes a new unified agent that can collect both logs and metrics from
EC2 instances and on-premises servers. If you are not already using the older CloudWatch
Logs agent, we recommend that you use the newer unified CloudWatch agent. For more
information, see Getting started with CloudWatch Logs.

CloudWatch Logs agent prerequisites 13

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create-cloudwatch-agent-configuration-file-wizard.html

Amazon CloudWatch Logs User Guide

Additionally, the older agent doesn't support Instance Metadata Service Version 2 (IMDSv2).
If your server uses IMDSv2, you must use the newer unified agent instead of the older
CloudWatch Logs agent.
The rest of this section explains the use of the older CloudWatch Logs agent.

Configure the older CloudWatch Logs agent on a running EC2 Linux instance

You can use the CloudWatch Logs agent installer on an existing EC2 instance to install and
configure the CloudWatch Logs agent. After installation is complete, logs automatically flow from
the instance to the log stream you create while installing the agent. The agent confirms that it has
started and it stays running until you disable it.

In addition to using the agent, you can also publish log data using the AWS CLI, CloudWatch Logs
SDK, or the CloudWatch Logs API. The AWS CLI is best suited for publishing data at the command
line or through scripts. The CloudWatch Logs SDK is best suited for publishing log data directly
from applications or building your own log publishing application.

Step 1: Configure your IAM role or user for CloudWatch Logs

The CloudWatch Logs agent supports IAM roles and users. If your instance already has an IAM
role associated with it, make sure that you include the IAM policy below. If you don't already have
an IAM role assigned to your instance, you can use your IAM credentials for the next steps or you
can assign an IAM role to that instance. For more information, see Attaching an IAM Role to an
Instance.

To configure your IAM role or user for CloudWatch Logs

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Choose the role by selecting the role name (do not select the check box next to the name).

4. Choose Attach Policies, Create Policy.

A new browser tab or window opens.

5. Choose the JSON tab and type the following JSON policy document.

{
 "Version": "2012-10-17",

Quick Start: Install the agent on a running EC2 Linux instance 14

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#attach-iam-role
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#attach-iam-role
https://console.aws.amazon.com/iam/

Amazon CloudWatch Logs User Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams"
],
 "Resource": [
 "*"
]
 }
]
}

6. When you are finished, choose Review policy. The Policy Validator reports any syntax errors.

7. On the Review Policy page, type a Name and a Description (optional) for the policy that you
are creating. Review the policy Summary to see the permissions that are granted by your
policy. Then choose Create policy to save your work.

8. Close the browser tab or window, and return to the Add permissions page for your role.
Choose Refresh, and then choose the new policy to attach it to your role.

9. Choose Attach Policy.

Step 2: Install and configure CloudWatch Logs on an existing Amazon EC2 instance

The process for installing the CloudWatch Logs agent differs depending on whether your Amazon
EC2 instance is running Amazon Linux, Ubuntu, CentOS, or Red Hat. Use the steps appropriate for
the version of Linux on your instance.

To install and configure CloudWatch Logs on an existing Amazon Linux instance

Starting with Amazon Linux AMI 2014.09, the CloudWatch Logs agent is available as an RPM
installation with the awslogs package. Earlier versions of Amazon Linux can access the awslogs
package by updating their instance with the sudo yum update -y command. By installing the
awslogs package as an RPM instead of the using the CloudWatch Logs installer, your instance
receives regular package updates and patches from AWS without having to manually reinstall the
CloudWatch Logs agent.

Quick Start: Install the agent on a running EC2 Linux instance 15

Amazon CloudWatch Logs User Guide

Warning

Do not update the CloudWatch Logs agent using the RPM installation method if you
previously used the Python script to install the agent. Doing so may cause configuration
issues that prevent the CloudWatch Logs agent from sending your logs to CloudWatch.

1. Connect to your Amazon Linux instance. For more information, see Connect to Your Instance in
the Amazon EC2 User Guide for Linux Instances.

For more information about connection issues, see Troubleshooting Connecting to Your
Instance in the Amazon EC2 User Guide for Linux Instances.

2. Update your Amazon Linux instance to pick up the latest changes in the package repositories.

sudo yum update -y

3. Install the awslogs package. This is the recommended method for installing awslogs on
Amazon Linux instances.

sudo yum install -y awslogs

4. Edit the /etc/awslogs/awslogs.conf file to configure the logs to track. For more
information about editing this file, see CloudWatch Logs agent reference.

5. By default, the /etc/awslogs/awscli.conf points to the us-east-1 Region. To push your
logs to a different Region, edit the awscli.conf file and specify that Region.

6. Start the awslogs service.

sudo service awslogs start

If you are running Amazon Linux 2, start the awslogs service with the following command.

sudo systemctl start awslogsd

7. (Optional) Check the /var/log/awslogs.log file for errors logged when starting the
service.

8. (Optional) Run the following command to start the awslogs service at each system boot.

Quick Start: Install the agent on a running EC2 Linux instance 16

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-connect-to-instance-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html

Amazon CloudWatch Logs User Guide

sudo chkconfig awslogs on

If you are running Amazon Linux 2, use the following command to start the service at each
system boot.

sudo systemctl enable awslogsd.service

9. You should see the newly created log group and log stream in the CloudWatch console after
the agent has been running for a few moments.

For more information, see View log data sent to CloudWatch Logs.

To install and configure CloudWatch Logs on an existing Ubuntu Server, CentOS, or Red Hat
instance

If you're using an AMI running Ubuntu Server, CentOS, or Red Hat, use the following procedure to
manually install the CloudWatch Logs agent on your instance.

1. Connect to your EC2 instance. For more information, see Connect to Your Instance in the
Amazon EC2 User Guide for Linux Instances.

For more information about connection issues, see Troubleshooting Connecting to Your
Instance in the Amazon EC2 User Guide for Linux Instances.

2. Run the CloudWatch Logs agent installer using one of two options. You can run it directly from
the internet, or download the files and run it standalone.

Note

If you are running CentOS 6.x, Red Hat 6.x, or Ubuntu 12.04, use the steps for
downloading and running the installer standalone. Installing the CloudWatch Logs
agent directly from the internet is not supported on these systems.

Note

On Ubuntu, run apt-get update before running the commands below.

Quick Start: Install the agent on a running EC2 Linux instance 17

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-connect-to-instance-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html

Amazon CloudWatch Logs User Guide

To run it directly from the internet, use the following commands and follow the prompts:

curl https://s3.amazonaws.com/aws-cloudwatch/downloads/latest/awslogs-agent-
setup.py -O

sudo python ./awslogs-agent-setup.py --region us-east-1

If the preceding command does not work, try the following:

sudo python3 ./awslogs-agent-setup.py --region us-east-1

To download and run it standalone, use the following commands and follow the prompts:

curl https://s3.amazonaws.com/aws-cloudwatch/downloads/latest/awslogs-agent-
setup.py -O

curl https://s3.amazonaws.com/aws-cloudwatch/downloads/latest/
AgentDependencies.tar.gz -O

tar xvf AgentDependencies.tar.gz -C /tmp/

sudo python ./awslogs-agent-setup.py --region us-east-1 --dependency-path /tmp/
AgentDependencies

You can install the CloudWatch Logs agent by specifying the us-east-1, us-west-1, us-west-2,
ap-south-1, ap-northeast-2, ap-southeast-1, ap-southeast-2, ap-northeast-1, eu-central-1, eu-
west-1, or sa-east-1 Regions.

Note

For more information about the current version and the version history of awslogs-
agent-setup, see CHANGELOG.txt.

Quick Start: Install the agent on a running EC2 Linux instance 18

https://s3.amazonaws.com/aws-cloudwatch/downloads/latest/CHANGELOG.txt

Amazon CloudWatch Logs User Guide

The CloudWatch Logs agent installer requires certain information during setup. Before you
start, you need to know which log file to monitor and its time stamp format. You should also
have the following information ready.

Item Description

AWS access key ID Press Enter if using an IAM role. Otherwise, enter your AWS access
key ID.

AWS secret access key Press Enter if using an IAM role. Otherwise, enter your AWS secret
access key.

Default Region name Press Enter. The default is us-east-2. You can set this to us-east-1
, us-west-1, us-west-2, ap-south-1, ap-northeast-2, ap-southeas
t-1, ap-southeast-2, ap-northeast-1, eu-central-1, eu-west-1, or
sa-east-1.

Default output format Leave blank and press Enter.

Path of log file to
upload

The location of the file that contains the log data to send. The
installer suggests a path for you.

Destination Log Group
name

The name for your log group. The installer suggests a log group
name for you.

Destination Log
Stream name

By default, this is the name of the host. The installer suggests a
host name for you.

Timestamp format Specify the format of the time stamp within the specified log file.
Choose custom to specify your own format.

Initial position How data is uploaded. Set this to start_of_file to upload everythin
g in the data file. Set to end_of_file to upload only newly
appended data.

After you have completed these steps, the installer asks about configuring another log file. You
can run the process as many times as you like for each log file. If you have no more log files to

Quick Start: Install the agent on a running EC2 Linux instance 19

Amazon CloudWatch Logs User Guide

monitor, choose N when prompted by the installer to set up another log. For more information
about the settings in the agent configuration file, see CloudWatch Logs agent reference.

Note

Configuring multiple log sources to send data to a single log stream is not supported.

3. You should see the newly created log group and log stream in the CloudWatch console after
the agent has been running for a few moments.

For more information, see View log data sent to CloudWatch Logs.

Quick Start: Install and configure the CloudWatch Logs agent on an EC2
Linux instance at launch

Tip

The older CloudWatch Logs agent discussed in this section is on the path to deprecation.
We strongly recommend that you instead use the new unified CloudWatch agent that
can collect both logs and metrics. Additionally, the older CloudWatch Logs agent requires
Python 3.3 or earlier, and these versions are not installed on new EC2 instances by default.
For more information about the unified CloudWatch agent, see Installing the CloudWatch
Agent.
The rest of this section explains the use of the older CloudWatch Logs agent.

Installing the older CloudWatch Logs agent on an EC2 Linux instance at launch

You can use Amazon EC2 user data, a feature of Amazon EC2 that allows parametric information
to be passed to the instance on launch, to install and configure the CloudWatch Logs agent on that
instance. To pass the CloudWatch Logs agent installation and configuration information to Amazon
EC2, you can provide the configuration file in a network location such as an Amazon S3 bucket.

Configuring multiple log sources to send data to a single log stream is not supported.

Prerequisite

Create an agent configuration file that describes all your log groups and log streams. This is a text
file that describes the log files to monitor as well as the log groups and log streams to upload them

Quick Start: Install the agent on an EC2 Linux instance at launch 20

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-on-EC2-Instance.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-on-EC2-Instance.html

Amazon CloudWatch Logs User Guide

to. The agent consumes this configuration file and starts monitoring and uploading all the log
files described in it. For more information about the settings in the agent configuration file, see
CloudWatch Logs agent reference.

The following is a sample agent configuration file for Amazon Linux 2

[general]
state_file = /var/lib/awslogs/state/agent-state

[/var/log/messages]
file = /var/log/messages
log_group_name = /var/log/messages
log_stream_name = {instance_id}
datetime_format = %b %d %H:%M:%S

The following is a sample agent configuration file for Ubuntu

[general]
state_file = /var/awslogs/state/agent-state

[/var/log/syslog]
file = /var/log/syslog
log_group_name = /var/log/syslog
log_stream_name = {instance_id}
datetime_format = %b %d %H:%M:%S

To configure your IAM role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies, Create Policy.

3. On the Create Policy page, for Create Your Own Policy, choose Select. For more information
about creating custom policies, see IAM Policies for Amazon EC2 in the Amazon EC2 User Guide
for Linux Instances.

4. On the Review Policy page, for Policy Name, type a name for the policy.

5. For Policy Document, paste in the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {

Quick Start: Install the agent on an EC2 Linux instance at launch 21

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-policies-for-amazon-ec2.html

Amazon CloudWatch Logs User Guide

 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:*:*:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::myawsbucket/*"
]
 }
]
}

6. Choose Create Policy.

7. In the navigation pane, choose Roles, Create New Role.

8. On the Set Role Name page, type a name for the role and then choose Next Step.

9. On the Select Role Type page, choose Select next to Amazon EC2.

10. On the Attach Policy page, in the table header, choose Policy Type, Customer Managed.

11. Select the IAM policy that you created and then choose Next Step.

12. Choose Create Role.

For more information about users and policies, see IAM Users and Groups and Managing IAM
Policies in the IAM User Guide.

To launch a new instance and enable CloudWatch Logs

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose Launch Instance.

For more information, see Launching an Instance in Amazon EC2 User Guide for Linux Instances.

Quick Start: Install the agent on an EC2 Linux instance at launch 22

https://docs.aws.amazon.com/IAM/latest/UserGuide/Using_WorkingWithGroupsAndUsers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/launching-instance.html

Amazon CloudWatch Logs User Guide

3. On the Step 1: Choose an Amazon Machine Image (AMI) page, select the Linux instance type
to launch, and then on the Step 2: Choose an Instance Type page, choose Next: Configure
Instance Details.

Make sure that cloud-init is included in your Amazon Machine Image (AMI). Amazon Linux
AMIs, and AMIs for Ubuntu and RHEL already include cloud-init, but CentOS and other AMIs in
the AWS Marketplace might not.

4. On the Step 3: Configure Instance Details page, for IAM role, select the IAM role that you
created.

5. Under Advanced Details, for User data, paste the following script into the box. Then update
that script by changing the value of the -c option to the location of your agent configuration
file:

#!/bin/bash
curl https://s3.amazonaws.com/aws-cloudwatch/downloads/latest/awslogs-agent-
setup.py -O
chmod +x ./awslogs-agent-setup.py
./awslogs-agent-setup.py -n -r us-east-1 -c s3://DOC-EXAMPLE-BUCKET1/my-config-file

6. Make any other changes to the instance, review your launch settings, and then choose Launch.

7. You should see the newly created log group and log stream in the CloudWatch console after
the agent has been running for a few moments.

For more information, see View log data sent to CloudWatch Logs.

Quick Start: Enable your Amazon EC2 instances running Windows
Server 2016 to send logs to CloudWatch Logs using the CloudWatch
Logs agent

Tip

CloudWatch includes a new unified agent that can collect both logs and metrics from
EC2 instances and on-premises servers. We recommend that you use the newer unified
CloudWatch agent. For more information, see Getting started with CloudWatch Logs.
The rest of this section explains the use of the older CloudWatch Logs agent.

Quick Start: Use CloudWatch Logs with Windows Server 2016 instances 23

http://cloudinit.readthedocs.org/en/latest/index.html

Amazon CloudWatch Logs User Guide

Enable your Amazon EC2 instances running Windows Server 2016 to send logs to
CloudWatch Logs using the older CloudWatch Logs agent

There are multiple methods you can use to enable instances running Windows Server 2016 to
send logs to CloudWatch Logs. The steps in this section use Systems Manager Run Command.
For information about the other possible methods, see Sending Logs, Events, and Performance
Counters to Amazon CloudWatch.

Steps

• Download the sample configuration file

• Configure the JSON file for CloudWatch

• Create an IAM role for Systems Manager

• Verify Systems Manager prerequisites

• Verify internet access

• Enable CloudWatch Logs using Systems Manager Run Command

Download the sample configuration file

Download the following sample file to your computer: AWS.EC2.Windows.CloudWatch.json.

Configure the JSON file for CloudWatch

You determine which logs to send to CloudWatch by specifying your choices in a configuration
file. The process of creating this file and specifying your choices can take 30 minutes or more to
complete. After you have completed this task once, you can reuse the configuration file on all of
your instances.

Steps

• Step 1: Enable CloudWatch Logs

• Step 2: Configure settings for CloudWatch

• Step 3: Configure the data to send

• Step 4: Configure flow control

• Step 5: Save JSON content

Quick Start: Use CloudWatch Logs with Windows Server 2016 instances 24

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/send_logs_to_cwl.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/send_logs_to_cwl.html
https://s3.amazonaws.com/ec2-downloads-windows/CloudWatchConfig/AWS.EC2.Windows.CloudWatch.json

Amazon CloudWatch Logs User Guide

Step 1: Enable CloudWatch Logs

At the top of the JSON file, change "false" to "true" for IsEnabled:

"IsEnabled": true,

Step 2: Configure settings for CloudWatch

Specify credentials, Region, a log group name, and a log stream namespace. This enables
the instance to send log data to CloudWatch Logs. To send the same log data to different
locations, you can add additional sections with unique IDs (for example, "CloudWatchLogs2" and
CloudWatchLogs3") and a different Region for each ID.

To configure settings to send log data to CloudWatch Logs

1. In the JSON file, locate the CloudWatchLogs section.

{
 "Id": "CloudWatchLogs",
 "FullName":
 "AWS.EC2.Windows.CloudWatch.CloudWatchLogsOutput,AWS.EC2.Windows.CloudWatch",
 "Parameters": {
 "AccessKey": "",
 "SecretKey": "",
 "Region": "us-east-1",
 "LogGroup": "Default-Log-Group",
 "LogStream": "{instance_id}"
 }
},

2. Leave the AccessKey and SecretKey field blank. You configure credentials using an IAM
role.

3. For Region, type the Region to which to send log data (for example, us-east-2).

4. For LogGroup, type the name for your log group. This name appears on the Log Groups
screen in the CloudWatch console.

5. For LogStream, type the destination log stream. This name appears on the Log Groups >
Streams screen in the CloudWatch console.

If you use {instance_id}, the default, the log stream name is the instance ID of this
instance.

Quick Start: Use CloudWatch Logs with Windows Server 2016 instances 25

Amazon CloudWatch Logs User Guide

If you specify a log stream name that doesn't already exist, CloudWatch Logs automatically
creates it for you. You can define a log stream name using a literal string, the predefined
variables {instance_id}, {hostname}, and {ip_address}, or a combination of these.

Step 3: Configure the data to send

You can send event log data, Event Tracing for Windows (ETW) data, and other log data to
CloudWatch Logs.

To send Windows application event log data to CloudWatch Logs

1. In the JSON file, locate the ApplicationEventLog section.

{
 "Id": "ApplicationEventLog",
 "FullName":
 "AWS.EC2.Windows.CloudWatch.EventLog.EventLogInputComponent,AWS.EC2.Windows.CloudWatch",
 "Parameters": {
 "LogName": "Application",
 "Levels": "1"
 }
},

2. For Levels, specify the type of messages to upload. You can specify one of the following
values:

• 1 - Upload only error messages.

• 2 - Upload only warning messages.

• 4 - Upload only information messages.

You can combine values to include more than one type of message. For example, a value of 3
uploads error messages (1) and warning messages (2). A value of 7 uploads error messages (1),
warning messages (2), and information messages (4).

To send security log data to CloudWatch Logs

1. In the JSON file, locate the SecurityEventLog section.

Quick Start: Use CloudWatch Logs with Windows Server 2016 instances 26

Amazon CloudWatch Logs User Guide

{
 "Id": "SecurityEventLog",
 "FullName":
 "AWS.EC2.Windows.CloudWatch.EventLog.EventLogInputComponent,AWS.EC2.Windows.CloudWatch",
 "Parameters": {
 "LogName": "Security",
 "Levels": "7"
 }
},

2. For Levels, type 7 to upload all messages.

To send system event log data to CloudWatch Logs

1. In the JSON file, locate the SystemEventLog section.

{
 "Id": "SystemEventLog",
 "FullName":
 "AWS.EC2.Windows.CloudWatch.EventLog.EventLogInputComponent,AWS.EC2.Windows.CloudWatch",
 "Parameters": {
 "LogName": "System",
 "Levels": "7"
 }
},

2. For Levels, specify the type of messages to upload. You can specify one of the following
values:

• 1 - Upload only error messages.

• 2 - Upload only warning messages.

• 4 - Upload only information messages.

You can combine values to include more than one type of message. For example, a value of 3
uploads error messages (1) and warning messages (2). A value of 7 uploads error messages (1),
warning messages (2), and information messages (4).

Quick Start: Use CloudWatch Logs with Windows Server 2016 instances 27

Amazon CloudWatch Logs User Guide

To send other types of event log data to CloudWatch Logs

1. In the JSON file, add a new section. Each section must have a unique Id.

{
 "Id": "Id-name",
 "FullName":
 "AWS.EC2.Windows.CloudWatch.EventLog.EventLogInputComponent,AWS.EC2.Windows.CloudWatch",
 "Parameters": {
 "LogName": "Log-name",
 "Levels": "7"
 }
},

2. For Id, type a name for the log to upload (for example, WindowsBackup).

3. For LogName, type the name of the log to upload. You can find the name of the log as follows.

a. Open Event Viewer.

b. In the navigation pane, choose Applications and Services Logs.

c. Navigate to the log, and then choose Actions, Properties.

4. For Levels, specify the type of messages to upload. You can specify one of the following
values:

• 1 - Upload only error messages.

• 2 - Upload only warning messages.

• 4 - Upload only information messages.

You can combine values to include more than one type of message. For example, a value of 3
uploads error messages (1) and warning messages (2). A value of 7 uploads error messages (1),
warning messages (2), and information messages (4).

To send Event Tracing for Windows data to CloudWatch Logs

ETW (Event Tracing for Windows) provides an efficient and detailed logging mechanism that
applications can write logs to. Each ETW is controlled by a session manager that can start and stop
the logging session. Each session has a provider and one or more consumers.

1. In the JSON file, locate the ETW section.

Quick Start: Use CloudWatch Logs with Windows Server 2016 instances 28

Amazon CloudWatch Logs User Guide

{
 "Id": "ETW",
 "FullName":
 "AWS.EC2.Windows.CloudWatch.EventLog.EventLogInputComponent,AWS.EC2.Windows.CloudWatch",
 "Parameters": {
 "LogName": "Microsoft-Windows-WinINet/Analytic",
 "Levels": "7"
 }
},

2. For LogName, type the name of the log to upload.

3. For Levels, specify the type of messages to upload. You can specify one of the following
values:

• 1 - Upload only error messages.

• 2 - Upload only warning messages.

• 4 - Upload only information messages.

You can combine values to include more than one type of message. For example, a value of 3
uploads error messages (1) and warning messages (2). A value of 7 uploads error messages (1),
warning messages (2), and information messages (4).

To send custom logs (any text-based log file) to CloudWatch Logs

1. In the JSON file, locate the CustomLogs section.

{
 "Id": "CustomLogs",
 "FullName":
 "AWS.EC2.Windows.CloudWatch.CustomLog.CustomLogInputComponent,AWS.EC2.Windows.CloudWatch",
 "Parameters": {
 "LogDirectoryPath": "C:\\CustomLogs\\",
 "TimestampFormat": "MM/dd/yyyy HH:mm:ss",
 "Encoding": "UTF-8",
 "Filter": "",
 "CultureName": "en-US",
 "TimeZoneKind": "Local",
 "LineCount": "5"
 }

Quick Start: Use CloudWatch Logs with Windows Server 2016 instances 29

Amazon CloudWatch Logs User Guide

},

2. For LogDirectoryPath, type the path where logs are stored on your instance.

3. For TimestampFormat, type the time stamp format to use. For more information about
supported values, see the Custom Date and Time Format Strings topic on MSDN.

Important

Your source log file must have the time stamp at the beginning of each log line and
there must be a space following the time stamp.

4. For Encoding, type the file encoding to use (for example, UTF-8). For a list of supported
values, see the Encoding Class topic on MSDN.

Note

Use the encoding name, not the display name.

5. (Optional) For Filter, type the prefix of log names. Leave this parameter blank to monitor all
files. For more information about supported values, see the FileSystemWatcherFilter Property
topic on MSDN.

6. (Optional) For CultureName, type the locale where the time stamp is logged. If
CultureName is blank, it defaults to the same locale currently used by your Windows
instance. For more information about, see the Language tag column in the table in the
Product Behavior topic on MSDN.

Note

The div, div-MV, hu, and hu-HU values are not supported.

7. (Optional) For TimeZoneKind, type Local or UTC. You can set this to provide time zone
information when no time zone information is included in your log's time stamp. If this
parameter is left blank and if your time stamp doesn't include time zone information,
CloudWatch Logs defaults to the local time zone. This parameter is ignored if your time stamp
already contains time zone information.

8. (Optional) For LineCount, type the number of lines in the header to identify the log file. For
example, IIS log files have virtually identical headers. You could enter 5, which would read
the first three lines of the log file header to identify it. In IIS log files, the third line is the date

Quick Start: Use CloudWatch Logs with Windows Server 2016 instances 30

https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.text.encoding.aspx
https://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher.filter.aspx
https://msdn.microsoft.com/en-us/library/cc233982.aspx

Amazon CloudWatch Logs User Guide

and time stamp, but the time stamp is not always guaranteed to be different between log
files. For this reason, we recommend including at least one line of actual log data to uniquely
fingerprint the log file.

To send IIS log data to CloudWatch Logs

1. In the JSON file, locate the IISLog section.

{
 "Id": "IISLogs",
 "FullName":
 "AWS.EC2.Windows.CloudWatch.CustomLog.CustomLogInputComponent,AWS.EC2.Windows.CloudWatch",
 "Parameters": {
 "LogDirectoryPath": "C:\\inetpub\\logs\\LogFiles\\W3SVC1",
 "TimestampFormat": "yyyy-MM-dd HH:mm:ss",
 "Encoding": "UTF-8",
 "Filter": "",
 "CultureName": "en-US",
 "TimeZoneKind": "UTC",
 "LineCount": "5"
 }
},

2. For LogDirectoryPath, type the folder where IIS logs are stored for an individual site (for
example, C:\inetpub\logs\LogFiles\W3SVCn).

Note

Only W3C log format is supported. IIS, NCSA, and Custom formats are not supported.

3. For TimestampFormat, type the time stamp format to use. For more information about
supported values, see the Custom Date and Time Format Strings topic on MSDN.

4. For Encoding, type the file encoding to use (for example, UTF-8). For more information about
supported values, see the Encoding Class topic on MSDN.

Note

Use the encoding name, not the display name.

Quick Start: Use CloudWatch Logs with Windows Server 2016 instances 31

https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.text.encoding.aspx

Amazon CloudWatch Logs User Guide

5. (Optional) For Filter, type the prefix of log names. Leave this parameter blank to monitor all
files. For more information about supported values, see the FileSystemWatcherFilter Property
topic on MSDN.

6. (Optional) For CultureName, type the locale where the time stamp is logged. If
CultureName is blank, it defaults to the same locale currently used by your Windows
instance. For more information about supported values, see the Language tag column in the
table in the Product Behavior topic on MSDN.

Note

The div, div-MV, hu, and hu-HU values are not supported.

7. (Optional) For TimeZoneKind, enter Local or UTC. You can set this to provide time zone
information when no time zone information is included in your log's time stamp. If this
parameter is left blank and if your time stamp doesn't include time zone information,
CloudWatch Logs defaults to the local time zone. This parameter is ignored if your time stamp
already contains time zone information.

8. (Optional) For LineCount, type the number of lines in the header to identify the log file. For
example, IIS log files have virtually identical headers. You could enter 5, which would read
the first five lines of the log file's header to identify it. In IIS log files, the third line is the date
and time stamp, but the time stamp is not always guaranteed to be different between log
files. For this reason, we recommend including at least one line of actual log data for uniquely
fingerprinting the log file.

Step 4: Configure flow control

Each data type must have a corresponding destination in the Flows section. For
example, to send the custom log, ETW log, and system log to CloudWatch Logs, add
(CustomLogs,ETW,SystemEventLog),CloudWatchLogs to the Flows section.

Warning

Adding a step that is not valid blocks the flow. For example, if you add a disk metric step,
but your instance doesn't have a disk, all steps in the flow are blocked.

Quick Start: Use CloudWatch Logs with Windows Server 2016 instances 32

https://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher.filter.aspx
https://msdn.microsoft.com/en-us/library/cc233982.aspx

Amazon CloudWatch Logs User Guide

You can send the same log file to more than one destination. For example, to send the application
log to two different destinations that you defined in the CloudWatchLogs section, add
ApplicationEventLog,(CloudWatchLogs,CloudWatchLogs2) to the Flows section.

To configure flow control

1. In the AWS.EC2.Windows.CloudWatch.json file, locate the Flows section.

"Flows": {
 "Flows": [
 "PerformanceCounter,CloudWatch",
 "(PerformanceCounter,PerformanceCounter2), CloudWatch2",
 "(CustomLogs, ETW, SystemEventLog),CloudWatchLogs",
 "CustomLogs, CloudWatchLogs2",
 "ApplicationEventLog,(CloudWatchLogs, CloudWatchLogs2)"
]
}

2. For Flows, add each data type that is to be uploaded (for example, ApplicationEventLog)
and its destination (for example, CloudWatchLogs).

Step 5: Save JSON content

You are now finished editing the JSON file. Save it, and paste the file contents into a text editor in
another window. You will need the file contents in a later step of this procedure.

Create an IAM role for Systems Manager

An IAM role for instance credentials is required when you use Systems Manager Run Command.
This role enables Systems Manager to perform actions on the instance. For more information,
see Configuring Security Roles for Systems Manager in the AWS Systems Manager User Guide. For
information about how to attach an IAM role to an existing instance, see Attaching an IAM Role to
an Instance in the Amazon EC2 User Guide for Windows Instances.

Verify Systems Manager prerequisites

Before you use Systems Manager Run Command to configure integration with CloudWatch Logs,
verify that your instances meet the minimum requirements. For more information, see Systems
Manager Prerequisites in the AWS Systems Manager User Guide.

Quick Start: Use CloudWatch Logs with Windows Server 2016 instances 33

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-access.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/iam-roles-for-amazon-ec2.html#attach-iam-role
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/iam-roles-for-amazon-ec2.html#attach-iam-role
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-setting-up.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-setting-up.html

Amazon CloudWatch Logs User Guide

Verify internet access

Your Amazon EC2 Windows Server instances and managed instances must have outbound internet
access in order to send log and event data to CloudWatch. For more information about how to
configure internet access, see Internet Gateways in the Amazon VPC User Guide.

Enable CloudWatch Logs using Systems Manager Run Command

Run Command enables you to manage the configuration of your instances on demand. You specify
a Systems Manager document, specify parameters, and execute the command on one or more
instances. The SSM agent on the instance processes the command and configures the instance as
specified.

To configure integration with CloudWatch Logs using Run Command

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Open the SSM console at https://console.aws.amazon.com/systems-manager/.

3. In the navigation pane, choose Run Command.

4. Choose Run a command.

5. For Command document, choose AWS-ConfigureCloudWatch.

6. For Target instances, choose the instances to integrate with CloudWatch Logs. If you do
not see an instance in this list, it might not be configured for Run Command. For more
information, see Systems Manager Prerequisites in the Amazon EC2 User Guide for Windows
Instances.

7. For Status, choose Enabled.

8. For Properties, copy and paste the JSON content you created in the previous tasks.

9. Complete the remaining optional fields and choose Run.

Use the following procedure to view the results of command execution in the Amazon EC2 console.

To view command output in the console

1. Select a command.

2. Choose the Output tab.

3. Choose View Output. The command output page shows the results of your command
execution.

Quick Start: Use CloudWatch Logs with Windows Server 2016 instances 34

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/systems-manager/
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/systems-manager-setting-up.html

Amazon CloudWatch Logs User Guide

Quick Start: Enable your Amazon EC2 instances running Windows
Server 2012 and Windows Server 2008 to send logs to CloudWatch Logs

Tip

CloudWatch includes a new unified agent that can collect both logs and metrics from
EC2 instances and on-premises servers. We recommend that you use the newer unified
CloudWatch agent. For more information, see Getting started with CloudWatch Logs.
The rest of this section explains the use of the older CloudWatch Logs agent.

Enable your Amazon EC2 instances running Windows Server 2012 and Windows
Server 2008 to send logs to CloudWatch Logs

Use the following steps to enable your instances running Windows Server 2012 and Windows
Server 2008 to send logs to CloudWatch Logs.

Download the sample configuration file

Download the following sample JSON file to your computer:
AWS.EC2.Windows.CloudWatch.json. You edit it in the following steps.

Configure the JSON file for CloudWatch

You determine which logs to send to CloudWatch by specifying your choices in the JSON
configuration file. The process of creating this file and specifying your choices can take 30 minutes
or more to complete. After you have completed this task once, you can reuse the configuration file
on all of your instances.

Steps

• Step 1: Enable CloudWatch Logs

• Step 2: Configure settings for CloudWatch

• Step 3: Configure the data to send

• Step 4: Configure flow control

Step 1: Enable CloudWatch Logs

At the top of the JSON file, change "false" to "true" for IsEnabled:

Quick Start: Use CloudWatch Logs with Windows Server 2012 and Windows Server 2008 instances 35

https://s3.amazonaws.com/ec2-downloads-windows/CloudWatchConfig/AWS.EC2.Windows.CloudWatch.json

Amazon CloudWatch Logs User Guide

"IsEnabled": true,

Step 2: Configure settings for CloudWatch

Specify credentials, Region, a log group name, and a log stream namespace. This enables
the instance to send log data to CloudWatch Logs. To send the same log data to different
locations, you can add additional sections with unique IDs (for example, "CloudWatchLogs2" and
CloudWatchLogs3") and a different Region for each ID.

To configure settings to send log data to CloudWatch Logs

1. In the JSON file, locate the CloudWatchLogs section.

{
 "Id": "CloudWatchLogs",
 "FullName":
 "AWS.EC2.Windows.CloudWatch.CloudWatchLogsOutput,AWS.EC2.Windows.CloudWatch",
 "Parameters": {
 "AccessKey": "",
 "SecretKey": "",
 "Region": "us-east-1",
 "LogGroup": "Default-Log-Group",
 "LogStream": "{instance_id}"
 }
},

2. Leave the AccessKey and SecretKey field blank. You configure credentials using an IAM
role.

3. For Region, type the Region to which to send log data (for example, us-east-2).

4. For LogGroup, type the name for your log group. This name appears on the Log Groups
screen in the CloudWatch console.

5. For LogStream, type the destination log stream. This name appears on the Log Groups >
Streams screen in the CloudWatch console.

If you use {instance_id}, the default, the log stream name is the instance ID of this
instance.

If you specify a log stream name that doesn't already exist, CloudWatch Logs automatically
creates it for you. You can define a log stream name using a literal string, the predefined
variables {instance_id}, {hostname}, and {ip_address}, or a combination of these.

Quick Start: Use CloudWatch Logs with Windows Server 2012 and Windows Server 2008 instances 36

Amazon CloudWatch Logs User Guide

Step 3: Configure the data to send

You can send event log data, Event Tracing for Windows (ETW) data, and other log data to
CloudWatch Logs.

To send Windows application event log data to CloudWatch Logs

1. In the JSON file, locate the ApplicationEventLog section.

{
 "Id": "ApplicationEventLog",
 "FullName":
 "AWS.EC2.Windows.CloudWatch.EventLog.EventLogInputComponent,AWS.EC2.Windows.CloudWatch",
 "Parameters": {
 "LogName": "Application",
 "Levels": "1"
 }
},

2. For Levels, specify the type of messages to upload. You can specify one of the following
values:

• 1 - Upload only error messages.

• 2 - Upload only warning messages.

• 4 - Upload only information messages.

You can combine values to include more than one type of message. For example, a value of 3
uploads error messages (1) and warning messages (2). A value of 7 uploads error messages (1),
warning messages (2), and information messages (4).

To send security log data to CloudWatch Logs

1. In the JSON file, locate the SecurityEventLog section.

{
 "Id": "SecurityEventLog",
 "FullName":
 "AWS.EC2.Windows.CloudWatch.EventLog.EventLogInputComponent,AWS.EC2.Windows.CloudWatch",
 "Parameters": {
 "LogName": "Security",

Quick Start: Use CloudWatch Logs with Windows Server 2012 and Windows Server 2008 instances 37

Amazon CloudWatch Logs User Guide

 "Levels": "7"
 }
},

2. For Levels, type 7 to upload all messages.

To send system event log data to CloudWatch Logs

1. In the JSON file, locate the SystemEventLog section.

{
 "Id": "SystemEventLog",
 "FullName":
 "AWS.EC2.Windows.CloudWatch.EventLog.EventLogInputComponent,AWS.EC2.Windows.CloudWatch",
 "Parameters": {
 "LogName": "System",
 "Levels": "7"
 }
},

2. For Levels, specify the type of messages to upload. You can specify one of the following
values:

• 1 - Upload only error messages.

• 2 - Upload only warning messages.

• 4 - Upload only information messages.

You can combine values to include more than one type of message. For example, a value of 3
uploads error messages (1) and warning messages (2). A value of 7 uploads error messages (1),
warning messages (2), and information messages (4).

To send other types of event log data to CloudWatch Logs

1. In the JSON file, add a new section. Each section must have a unique Id.

{
 "Id": "Id-name",
 "FullName":
 "AWS.EC2.Windows.CloudWatch.EventLog.EventLogInputComponent,AWS.EC2.Windows.CloudWatch",

Quick Start: Use CloudWatch Logs with Windows Server 2012 and Windows Server 2008 instances 38

Amazon CloudWatch Logs User Guide

 "Parameters": {
 "LogName": "Log-name",
 "Levels": "7"
 }
},

2. For Id, type a name for the log to upload (for example, WindowsBackup).

3. For LogName, type the name of the log to upload. You can find the name of the log as follows.

a. Open Event Viewer.

b. In the navigation pane, choose Applications and Services Logs.

c. Navigate to the log, and then choose Actions, Properties.

4. For Levels, specify the type of messages to upload. You can specify one of the following
values:

• 1 - Upload only error messages.

• 2 - Upload only warning messages.

• 4 - Upload only information messages.

You can combine values to include more than one type of message. For example, a value of 3
uploads error messages (1) and warning messages (2). A value of 7 uploads error messages (1),
warning messages (2), and information messages (4).

To send Event Tracing for Windows data to CloudWatch Logs

ETW (Event Tracing for Windows) provides an efficient and detailed logging mechanism that
applications can write logs to. Each ETW is controlled by a session manager that can start and stop
the logging session. Each session has a provider and one or more consumers.

1. In the JSON file, locate the ETW section.

{
 "Id": "ETW",
 "FullName":
 "AWS.EC2.Windows.CloudWatch.EventLog.EventLogInputComponent,AWS.EC2.Windows.CloudWatch",
 "Parameters": {
 "LogName": "Microsoft-Windows-WinINet/Analytic",
 "Levels": "7"

Quick Start: Use CloudWatch Logs with Windows Server 2012 and Windows Server 2008 instances 39

Amazon CloudWatch Logs User Guide

 }
},

2. For LogName, type the name of the log to upload.

3. For Levels, specify the type of messages to upload. You can specify one of the following
values:

• 1 - Upload only error messages.

• 2 - Upload only warning messages.

• 4 - Upload only information messages.

You can combine values to include more than one type of message. For example, a value of 3
uploads error messages (1) and warning messages (2). A value of 7 uploads error messages (1),
warning messages (2), and information messages (4).

To send custom logs (any text-based log file) to CloudWatch Logs

1. In the JSON file, locate the CustomLogs section.

{
 "Id": "CustomLogs",
 "FullName":
 "AWS.EC2.Windows.CloudWatch.CustomLog.CustomLogInputComponent,AWS.EC2.Windows.CloudWatch",
 "Parameters": {
 "LogDirectoryPath": "C:\\CustomLogs\\",
 "TimestampFormat": "MM/dd/yyyy HH:mm:ss",
 "Encoding": "UTF-8",
 "Filter": "",
 "CultureName": "en-US",
 "TimeZoneKind": "Local",
 "LineCount": "5"
 }
},

2. For LogDirectoryPath, type the path where logs are stored on your instance.

3. For TimestampFormat, type the time stamp format to use. For more information about
supported values, see the Custom Date and Time Format Strings topic on MSDN.

Quick Start: Use CloudWatch Logs with Windows Server 2012 and Windows Server 2008 instances 40

https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx

Amazon CloudWatch Logs User Guide

Important

Your source log file must have the time stamp at the beginning of each log line and
there must be a space following the time stamp.

4. For Encoding, type the file encoding to use (for example, UTF-8). For more information about
supported values, see the Encoding Class topic on MSDN.

Note

Use the encoding name, not the display name.

5. (Optional) For Filter, type the prefix of log names. Leave this parameter blank to monitor all
files. For more information about supported values, see the FileSystemWatcherFilter Property
topic on MSDN.

6. (Optional) For CultureName, type the locale where the time stamp is logged. If
CultureName is blank, it defaults to the same locale currently used by your Windows
instance. For more information about supported values, see the Language tag column in the
table in the Product Behavior topic on MSDN.

Note

The div, div-MV, hu, and hu-HU values are not supported.

7. (Optional) For TimeZoneKind, type Local or UTC. You can set this to provide time zone
information when no time zone information is included in your log's time stamp. If this
parameter is left blank and if your time stamp doesn't include time zone information,
CloudWatch Logs defaults to the local time zone. This parameter is ignored if your time stamp
already contains time zone information.

8. (Optional) For LineCount, type the number of lines in the header to identify the log file. For
example, IIS log files have virtually identical headers. You could enter 5, which would read
the first three lines of the log file header to identify it. In IIS log files, the third line is the date
and time stamp, but the time stamp is not always guaranteed to be different between log
files. For this reason, we recommend including at least one line of actual log data to uniquely
fingerprint the log file.

Quick Start: Use CloudWatch Logs with Windows Server 2012 and Windows Server 2008 instances 41

http://msdn.microsoft.com/en-us/library/system.text.encoding.aspx
https://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher.filter.aspx
https://msdn.microsoft.com/en-us/library/cc233982.aspx

Amazon CloudWatch Logs User Guide

To send IIS log data to CloudWatch Logs

1. In the JSON file, locate the IISLog section.

{
 "Id": "IISLogs",
 "FullName":
 "AWS.EC2.Windows.CloudWatch.CustomLog.CustomLogInputComponent,AWS.EC2.Windows.CloudWatch",
 "Parameters": {
 "LogDirectoryPath": "C:\\inetpub\\logs\\LogFiles\\W3SVC1",
 "TimestampFormat": "yyyy-MM-dd HH:mm:ss",
 "Encoding": "UTF-8",
 "Filter": "",
 "CultureName": "en-US",
 "TimeZoneKind": "UTC",
 "LineCount": "5"
 }
},

2. For LogDirectoryPath, type the folder where IIS logs are stored for an individual site (for
example, C:\inetpub\logs\LogFiles\W3SVCn).

Note

Only W3C log format is supported. IIS, NCSA, and Custom formats are not supported.

3. For TimestampFormat, type the time stamp format to use. For more information about
supported values, see the Custom Date and Time Format Strings topic on MSDN.

4. For Encoding, type the file encoding to use (for example, UTF-8). For more information about
supported values, see the Encoding Class topic on MSDN.

Note

Use the encoding name, not the display name.

5. (Optional) For Filter, type the prefix of log names. Leave this parameter blank to monitor all
files. For more information about supported values, see the FileSystemWatcherFilter Property
topic on MSDN.

6. (Optional) For CultureName, type the locale where the time stamp is logged. If
CultureName is blank, it defaults to the same locale currently used by your Windows

Quick Start: Use CloudWatch Logs with Windows Server 2012 and Windows Server 2008 instances 42

https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.text.encoding.aspx
https://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher.filter.aspx

Amazon CloudWatch Logs User Guide

instance. For more information about supported values, see the Language tag column in the
table in the Product Behavior topic on MSDN.

Note

The div, div-MV, hu, and hu-HU values are not supported.

7. (Optional) For TimeZoneKind, enter Local or UTC. You can set this to provide time zone
information when no time zone information is included in your log's time stamp. If this
parameter is left blank and if your time stamp doesn't include time zone information,
CloudWatch Logs defaults to the local time zone. This parameter is ignored if your time stamp
already contains time zone information.

8. (Optional) For LineCount, type the number of lines in the header to identify the log file. For
example, IIS log files have virtually identical headers. You could enter 5, which would read
the first five lines of the log file's header to identify it. In IIS log files, the third line is the date
and time stamp, but the time stamp is not always guaranteed to be different between log
files. For this reason, we recommend including at least one line of actual log data for uniquely
fingerprinting the log file.

Step 4: Configure flow control

Each data type must have a corresponding destination in the Flows section. For
example, to send the custom log, ETW log, and system log to CloudWatch Logs, add
(CustomLogs,ETW,SystemEventLog),CloudWatchLogs to the Flows section.

Warning

Adding a step that is not valid blocks the flow. For example, if you add a disk metric step,
but your instance doesn't have a disk, all steps in the flow are blocked.

You can send the same log file to more than one destination. For example, to send the application
log to two different destinations that you defined in the CloudWatchLogs section, add
ApplicationEventLog,(CloudWatchLogs,CloudWatchLogs2) to the Flows section.

To configure flow control

1. In the AWS.EC2.Windows.CloudWatch.json file, locate the Flows section.

Quick Start: Use CloudWatch Logs with Windows Server 2012 and Windows Server 2008 instances 43

https://msdn.microsoft.com/en-us/library/cc233982.aspx

Amazon CloudWatch Logs User Guide

"Flows": {
 "Flows": [
 "PerformanceCounter,CloudWatch",
 "(PerformanceCounter,PerformanceCounter2), CloudWatch2",
 "(CustomLogs, ETW, SystemEventLog),CloudWatchLogs",
 "CustomLogs, CloudWatchLogs2",
 "ApplicationEventLog,(CloudWatchLogs, CloudWatchLogs2)"
]
}

2. For Flows, add each data type that is to be uploaded (for example, ApplicationEventLog)
and its destination (for example, CloudWatchLogs).

You are now finished editing the JSON file. You use it in a later step.

Start the agent

To enable an Amazon EC2 instance running Windows Server 2012 or Windows Server 2008 to send
logs to CloudWatch Logs, use the EC2Config service (EC2Config.exe). Your instance should have
EC2Config 4.0 or later, and you can use this procedure. For more information about using an earlier
version of EC2Config, see Use EC2Config 3.x or Earlier to Configure CloudWatch in the Amazon EC2
User Guide for Windows Instances

To configure CloudWatch using EC2Config 4.x

1. Check the encoding of the AWS.EC2.Windows.CloudWatch.json file that you edited earlier
in this procedure. Only UTF-8 without BOM encoding is supported. Then save the file in the
following folder on your Windows Server 2008 - 2012 R2 instance: C:\Program Files
\Amazon\SSM\Plugins\awsCloudWatch\.

2. Start or restart the SSM agent (AmazonSSMAgent.exe) using the Windows Services control
panel or using the following PowerShell command:

PS C:\> Restart-Service AmazonSSMAgent

After the SSM agent restarts, it detects the configuration file and configures the instance for
CloudWatch integration. If you change parameters and settings in the local configuration file, you
need to restart the SSM agent to pick up the changes. To disable CloudWatch integration on the
instance, change IsEnabled to false and save your changes in the configuration file.

Quick Start: Use CloudWatch Logs with Windows Server 2012 and Windows Server 2008 instances 44

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/send_logs_to_cwl_instances.html#ec2config-3x

Amazon CloudWatch Logs User Guide

Quick Start: Install the CloudWatch Logs agent using AWS OpsWorks
and Chef

You can install the CloudWatch Logs agent and create log streams using AWS OpsWorks and
Chef, which is a third-party systems and cloud infrastructure automation tool. Chef uses "recipes,"
which you write to install and configure software on your computer, and "cookbooks," which
are collections of recipes, to perform its configuration and policy distribution tasks. For more
information, see Chef.

The Chef recipes examples below show how to monitor one log file on each EC2 instance. The
recipes use the stack name as the log group and the instance's hostname as the log stream name.
To monitor multiple log files, you need to extend the recipes to create multiple log groups and log
streams.

Step 1: Create custom recipes

Create a repository to store your recipes. AWS OpsWorks supports Git and Subversion, or you can
store an archive in Amazon S3. The structure of your cookbook repository is described in Cookbook
Repositories in the AWS OpsWorks User Guide. The examples below assume that the cookbook is
named logs. The install.rb recipe installs the CloudWatch Logs agent. You can also download the
cookbook example (CloudWatchLogs-Cookbooks.zip).

Create a file named metadata.rb that contains the following code:

#metadata.rb

name 'logs'
version '0.0.1'

Create the CloudWatch Logs configuration file:

#config.rb

template "/tmp/cwlogs.cfg" do
 cookbook "logs"
 source "cwlogs.cfg.erb"
 owner "root"
 group "root"
 mode 0644
end

Quick Start: Install the agent using AWS OpsWorks 45

http://www.getchef.com/chef/
https://docs.aws.amazon.com/opsworks/latest/userguide/workingcookbook-installingcustom-repo.html
https://docs.aws.amazon.com/opsworks/latest/userguide/workingcookbook-installingcustom-repo.html
https://s3.amazonaws.com/aws-cloudwatch/downloads/CloudWatchLogs-Cookbooks.zip

Amazon CloudWatch Logs User Guide

Download and install the CloudWatch Logs agent:

install.rb

directory "/opt/aws/cloudwatch" do
 recursive true
end

remote_file "/opt/aws/cloudwatch/awslogs-agent-setup.py" do
 source "https://s3.amazonaws.com/aws-cloudwatch/downloads/latest/awslogs-agent-
setup.py"
 mode "0755"
end

 execute "Install CloudWatch Logs agent" do
 command "/opt/aws/cloudwatch/awslogs-agent-setup.py -n -r region -c /tmp/cwlogs.cfg"
 not_if { system "pgrep -f aws-logs-agent-setup" }
end

Note

In the above example, replace region with one of the following: us-east-1, us-west-1, us-
west-2, ap-south-1, ap-northeast-2, ap-southeast-1, ap-southeast-2, ap-northeast-1, eu-
central-1, eu-west-1, or sa-east-1.

If the installation of the agent fails, check to make sure that the python-dev package is installed.
If it isn't, use the following command, and then retry the agent installation:

sudo apt-get -y install python-dev

This recipe uses a cwlogs.cfg.erb template file that you can modify to specify various attributes
such as what files to log. For more information about these attributes, see CloudWatch Logs agent
reference.

[general]
Path to the AWSLogs agent's state file. Agent uses this file to maintain
client side state across its executions.
state_file = /var/awslogs/state/agent-state

Quick Start: Install the agent using AWS OpsWorks 46

Amazon CloudWatch Logs User Guide

Each log file is defined in its own section. The section name doesn't
matter as long as its unique within this file.
#
#[kern.log]
#
Path of log file for the agent to monitor and upload.
#
#file = /var/log/kern.log
#
Name of the destination log group.
#
#log_group_name = kern.log
#
Name of the destination log stream.
#
#log_stream_name = {instance_id}
#
Format specifier for timestamp parsing.
#
#datetime_format = %b %d %H:%M:%S
#
#

[<%= node[:opsworks][:stack][:name] %>]
datetime_format = [%Y-%m-%d %H:%M:%S]
log_group_name = <%= node[:opsworks][:stack][:name].gsub(' ','_') %>
file = <%= node[:cwlogs][:logfile] %>
log_stream_name = <%= node[:opsworks][:instance][:hostname] %>

The template gets the stack name and host name by referencing the corresponding attributes in
the stack configuration and deployment JSON. The attribute that specifies the file to log is defined
in the cwlogs cookbook's default.rb attributes file (logs/attributes/default.rb).

default[:cwlogs][:logfile] = '/var/log/aws/opsworks/opsworks-agent.statistics.log'

Step 2: Create an AWS OpsWorks stack

1. Open the AWS OpsWorks console at https://console.aws.amazon.com/opsworks/.

2. On the OpsWorks Dashboard, choose Add stack to create an AWS OpsWorks stack.

3. On the Add stack screen, choose Chef 11 stack.

Quick Start: Install the agent using AWS OpsWorks 47

https://console.aws.amazon.com/opsworks/

Amazon CloudWatch Logs User Guide

4. For Stack name, enter a name.

5. For Use custom Chef Cookbooks, choose Yes.

6. For Repository type, select the repository type that you use. If you're using the above
example, choose Http Archive.

7. For Repository URL, enter the repository where you stored the cookbook that you created in
the previous step. If you're using the above example, enter https://s3.amazonaws.com/
aws-cloudwatch/downloads/CloudWatchLogs-Cookbooks.zip.

8. Choose Add Stack to create the stack.

Step 3: Extend your IAM role

To use CloudWatch Logs with your AWS OpsWorks instances, you need to extend the IAM role used
by your instances.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies, Create Policy.

3. On the Create Policy page, under Create Your Own Policy, choose Select. For more
information about creating custom policies, see IAM Policies for Amazon EC2 in the Amazon
EC2 User Guide for Linux Instances.

4. On the Review Policy page, for Policy Name, type a name for the policy.

5. For Policy Document, paste in the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:*:*:*"
]
 }
]

Quick Start: Install the agent using AWS OpsWorks 48

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-policies-for-amazon-ec2.html

Amazon CloudWatch Logs User Guide

}

6. Choose Create Policy.

7. In the navigation pane, choose Roles, and then in the contents pane, for Role Name, select
the name of the instance role used by your AWS OpsWorks stack. You can find the one used by
your stack in the stack settings (the default is aws-opsworks-ec2-role).

Note

Choose the role name, not the check box.

8. On the Permissions tab, under Managed Policies, choose Attach Policy.

9. On the Attach Policy page, in the table header (next to Filter and Search), choose Policy
Type, Customer Managed Policies.

10. For Customer Managed Policies, select the IAM policy that you created above and choose
Attach Policy.

For more information about users and policies, see IAM Users and Groups and Managing IAM
Policies in the IAM User Guide.

Step 4: Add a layer

1. Open the AWS OpsWorks console at https://console.aws.amazon.com/opsworks/.

2. In the navigation pane, choose Layers.

3. In the contents pane, select a layer and choose Add layer.

4. On the OpsWorks tab, for Layer type, choose Custom.

5. For the Name and Short name fields, enter the long and short name for the layer, and then
choose Add layer.

6. On the Recipes tab, under Custom Chef Recipes, there are several headings—Setup, Configure,
Deploy, Undeploy, and Shutdown—that correspond to AWS OpsWorks lifecycle events. AWS
OpsWorks triggers these events at these key points in instance's lifecycle, which runs the
associated recipes.

Note

If the above headings aren't visible, under Custom Chef Recipes, choose edit.

Quick Start: Install the agent using AWS OpsWorks 49

https://docs.aws.amazon.com/IAM/latest/UserGuide/Using_WorkingWithGroupsAndUsers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
https://console.aws.amazon.com/opsworks/

Amazon CloudWatch Logs User Guide

7. Enter logs::config, logs::install next to Setup, choose + to add it to the list, and then choose
Save.

AWS OpsWorks runs this recipe on each of the new instances in this layer, right after the
instance boots.

Step 5: Add an instance

The layer only controls how to configure instances. You now need to add some instances to the
layer and start them.

1. Open the AWS OpsWorks console at https://console.aws.amazon.com/opsworks/.

2. In the navigation pane, choose Instances and then under your layer, choose + Instance.

3. Accept the default settings and choose Add Instance to add the instance to the layer.

4. In the row's Actions column, click start to start the instance.

AWS OpsWorks launches a new EC2 instance and configures CloudWatch Logs. The instance's
status changes to online when it's ready.

Step 6: View your logs

You should see the newly created log group and log stream in the CloudWatch console after the
agent has been running for a few moments.

For more information, see View log data sent to CloudWatch Logs.

Report the CloudWatch Logs agent status

Use the following procedure to report the status of the CloudWatch Logs agent on your EC2
instance.

To report the agent status

1. Connect to your EC2 instance. For more information, see Connect to Your Instance in the
Amazon EC2 User Guide for Linux Instances.

For more information about connection issues, see Troubleshooting Connecting to Your
Instance in the Amazon EC2 User Guide for Linux Instances

2. At a command prompt, type the following command:

Report the CloudWatch Logs agent status 50

https://console.aws.amazon.com/opsworks/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-connect-to-instance-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html

Amazon CloudWatch Logs User Guide

sudo service awslogs status

If you are running Amazon Linux 2, type the following command:

sudo service awslogsd status

3. Check the /var/log/awslogs.log file for any errors, warnings, or issues with the CloudWatch
Logs agent.

Start the CloudWatch Logs agent

If the CloudWatch Logs agent on your EC2 instance did not start automatically after installation, or
if you stopped the agent, you can use the following procedure to start the agent.

To start the agent

1. Connect to your EC2 instance. For more information, see Connect to Your Instance in the
Amazon EC2 User Guide for Linux Instances.

For more information about connection issues, see Troubleshooting Connecting to Your
Instance in the Amazon EC2 User Guide for Linux Instances.

2. At a command prompt, type the following command:

sudo service awslogs start

If you are running Amazon Linux 2, type the following command:

sudo service awslogsd start

Stop the CloudWatch Logs agent

Use the following procedure to stop the CloudWatch Logs agent on your EC2 instance.

To stop the agent

1. Connect to your EC2 instance. For more information, see Connect to Your Instance in the
Amazon EC2 User Guide for Linux Instances.

Start the CloudWatch Logs agent 51

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-connect-to-instance-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-connect-to-instance-linux.html

Amazon CloudWatch Logs User Guide

For more information about connection issues, see Troubleshooting Connecting to Your
Instance in the Amazon EC2 User Guide for Linux Instances.

2. At a command prompt, type the following command:

sudo service awslogs stop

If you are running Amazon Linux 2, type the following command:

sudo service awslogsd stop

Quick Start: Use AWS CloudFormation to get started with
CloudWatch Logs

AWS CloudFormation enables you to describe and provision your AWS resources in JSON format.
The advantages of this method include being able to manage a collection of AWS resources as a
single unit, and easily replicating your AWS resources across Regions.

When you provision AWS using AWS CloudFormation, you create templates that describe the AWS
resources to use. The following example is a template snippet that creates a log group and a metric
filter that counts 404 occurrences and sends this count to the log group.

"WebServerLogGroup": {
 "Type": "AWS::Logs::LogGroup",
 "Properties": {
 "RetentionInDays": 7
 }
},

"404MetricFilter": {
 "Type": "AWS::Logs::MetricFilter",
 "Properties": {
 "LogGroupName": {
 "Ref": "WebServerLogGroup"
 },
 "FilterPattern": "[ip, identity, user_id, timestamp, request, status_code =
 404, size, ...]",
 "MetricTransformations": [
 {

Quick Start with AWS CloudFormation 52

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html

Amazon CloudWatch Logs User Guide

 "MetricValue": "1",
 "MetricNamespace": "test/404s",
 "MetricName": "test404Count"
 }
]
 }
}

This is a basic example. You can set up much richer CloudWatch Logs deployments using AWS
CloudFormation. For more information about template examples, see Amazon CloudWatch Logs
Template Snippets in the AWS CloudFormation User Guide. For more information about getting
started, see Getting Started with AWS CloudFormation in the AWS CloudFormation User Guide.

Quick Start with AWS CloudFormation 53

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-cloudwatchlogs.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-cloudwatchlogs.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/GettingStarted.html

Amazon CloudWatch Logs User Guide

Using CloudWatch Logs with an AWS SDK

AWS software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

SDK documentation Code examples

AWS SDK for C++ AWS SDK for C++ code examples

AWS SDK for Go AWS SDK for Go code examples

AWS SDK for Java AWS SDK for Java code examples

AWS SDK for JavaScript AWS SDK for JavaScript code examples

AWS SDK for Kotlin AWS SDK for Kotlin code examples

AWS SDK for .NET AWS SDK for .NET code examples

AWS SDK for PHP AWS SDK for PHP code examples

AWS SDK for Python (Boto3) AWS SDK for Python (Boto3) code examples

AWS SDK for Ruby AWS SDK for Ruby code examples

AWS SDK for Rust AWS SDK for Rust code examples

AWS SDK for SAP ABAP AWS SDK for SAP ABAP code examples

AWS SDK for Swift AWS SDK for Swift code examples

For examples specific to CloudWatch Logs, see Code examples for CloudWatch Logs using AWS
SDKs.

54

https://docs.aws.amazon.com/sdk-for-cpp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp
https://docs.aws.amazon.com/sdk-for-go
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2
https://docs.aws.amazon.com/sdk-for-java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2
https://docs.aws.amazon.com/sdk-for-javascript
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3
https://docs.aws.amazon.com/sdk-for-kotlin
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin
https://docs.aws.amazon.com/sdk-for-net
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3
https://docs.aws.amazon.com/sdk-for-php
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php
https://docs.aws.amazon.com/pythonsdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python
https://docs.aws.amazon.com/sdk-for-ruby
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby
https://docs.aws.amazon.com/sdk-for-rust
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rust_dev_preview
https://docs.aws.amazon.com/sdk-for-sapabap
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap
https://docs.aws.amazon.com/sdk-for-swift
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift

Amazon CloudWatch Logs User Guide

Example availability

Can't find what you need? Request a code example by using the Provide feedback link at
the bottom of this page.

55

Amazon CloudWatch Logs User Guide

Analyzing log data with CloudWatch Logs Insights

With CloudWatch Logs Insights, you can interactively search and analyze your log data in Amazon
CloudWatch Logs. You can perform queries to help you more efficiently and effectively respond to
operational issues. If an issue occurs, you can use CloudWatch Logs Insights to identify potential
causes and validate deployed fixes.

CloudWatch Logs Insights includes a purpose-built query language with a few simple but powerful
commands. CloudWatch Logs Insights provides sample queries, command descriptions, query
autocompletion, and log field discovery to help you get started. Sample queries are included for
several types of AWS service logs.

CloudWatch Logs Insights automatically discovers fields in logs from AWS services such as Amazon
Route 53, AWS Lambda, AWS CloudTrail, and Amazon VPC, and any application or custom log that
emits log events as JSON.

You can use CloudWatch Logs Insights to search log data that was sent to CloudWatch Logs on
November 5, 2018 or later.

Important

CloudWatch Logs Insights can't access log events with timestamps that pre-date the
creation time of the log group.

You can also use natural language to create CloudWatch Logs Insights queries. To do so, ask
questions about or describe the data you're looking for. This AI-assisted capability generates a
query based on your prompt and provides a line-by-line explanation of how the query works. For
more information, see Use natural language to generate and update CloudWatch Logs Insights
queries.

If you are signed in to an account set up as a monitoring account in CloudWatch cross-account
observability, you can run CloudWatch Logs Insights queries on log groups in source accounts
linked to this monitoring account. You can run a query that queries multiple log groups located in
different accounts. For more information, see CloudWatch cross-account observability.

A single request can query up to 50 log groups. Queries time out after 60 minutes, if they have not
completed. Query results are available for 7 days.

56

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CloudWatchLogs-Insights-Query-Assist.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CloudWatchLogs-Insights-Query-Assist.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html

Amazon CloudWatch Logs User Guide

You can save queries that you have created. This can help you run complex queries when you need,
without having to re-create them each time that you want to run them.

CloudWatch Logs Insights queries incur charges based on the amount of data that is queried. For
more information, see Amazon CloudWatch Pricing.

Important

If your network security team doesn't allow the use of web sockets, you can't currently
access the CloudWatch Logs Insights portion of the CloudWatch console. You can use
the CloudWatch Logs Insights query capabilities using APIs. For more information, see
StartQuery in the Amazon CloudWatch Logs API Reference.

Contents

• Commands supported in log classes

• Get started: Query tutorials

• Supported logs and discovered fields

• CloudWatch Logs Insights query syntax

• Pattern analysis

• Compare (diff) with previous time ranges

• Sample queries

• Visualize log data in graphs

• Save and re-run CloudWatch Logs Insights queries

• Add query to dashboard or export query results

• View running queries or query history

• Encrypt query results with AWS Key Management Service

• Use natural language to generate and update CloudWatch Logs Insights queries

Commands supported in log classes

All CloudWatch Logs Insights query commands are supported on log groups in the Standard log
class. Log groups in the Infrequent Access log class support all query commands except pattern,
diff, and unmask.

Commands supported in log classes 57

https://aws.amazon.com/cloudwatch/pricing/
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_StartQuery.html

Amazon CloudWatch Logs User Guide

Get started: Query tutorials

The following sections include sample query tutorials to help you get started with CloudWatch
Logs Insights.

Topics

• Tutorial: Run and modify a sample query

• Tutorial: Run a query with an aggregation function

• Tutorial: Run a query that produces a visualization grouped by log fields

• Tutorial: Run a query that produces a time series visualization

Tutorial: Run and modify a sample query

The following tutorial helps you get started with CloudWatch Logs Insights. You run a sample
query, and then see how to modify and rerun it.

To run a query, you must already have logs stored in CloudWatch Logs. If you are already using
CloudWatch Logs and have log groups and log streams set up, you are ready to start. You may also
already have logs if you use services such as AWS CloudTrail, Amazon Route 53, or Amazon VPC
and you have set up logs from those services to go to CloudWatch Logs. For more information
about sending logs to CloudWatch Logs, see Getting started with CloudWatch Logs.

Queries in CloudWatch Logs Insights return either a set of fields from log events or the result of a
mathematical aggregation or other operation performed on log events. This tutorial demonstrates
a query that returns a list of log events.

Run a sample query

To run a CloudWatch Logs Insights sample query

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Logs, and then choose Logs Insights.

On the Logs Insights page, the query editor contains a default query that returns the 20 most
recent log events.

3. In the Select log group(s) drop down, choose one or more log groups to query.

Get started: Query tutorials 58

https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

If this is a monitoring account in CloudWatch cross-account observability, you can select log
groups in the source accounts as well as the monitoring account. A single query can query logs
from different accounts at once.

You can filter the log groups by log group name, account ID, or account label.

When you select a log group in the Standard log class, CloudWatch Logs Insights automatically
detects data fields in the group. To see discovered fields, select the Fields menu near the top
right of the page.

Note

Discovered fields is supported only for log groups in the Standard log class. For more
information about log classes, see Log classes.

4. (Optional) Use the time interval selector to select a time period that you want to query.

You can choose between 5 and 30-minute intervals; 1, 3, and 12-hour intervals; or a custom
time frame.

5. Choose Run to view the results.

For this tutorial, the results include the 20 most recently added log events.

CloudWatch Logs displays a bar graph of log events in the log group over time. The bar graph
shows not only the events in the table, but also the distribution of events in the log group that
match the query and timeframe.

6. To see all fields for a returned log event, choose the triangular dropdown icon left of the
numbered event.

Modify the sample query

In this tutorial, you modify the sample query to show the 50 most recent log events.

If you haven't already run the previous tutorial, do that now. This tutorial starts where that
previous tutorial ends.

Tutorial: Run and modify a sample query 59

Amazon CloudWatch Logs User Guide

Note

Some sample queries provided with CloudWatch Logs Insights use head or tail
commands instead of limit. These commands are being deprecated and have been
replaced with limit. Use limit instead of head or tail in all queries that you write.

To modify the CloudWatch Logs Insights sample query

1. In the query editor, change 20 to 50, and then choose Run.

The results of the new query appear. Assuming there is enough data in the log group in the
default time range, there are now 50 log events listed.

2. (Optional) You can save queries that you have created. To save this query, choose Save. For
more information, see Save and re-run CloudWatch Logs Insights queries.

Add a filter command to the sample query

This tutorial shows how to make a more powerful change to the query in the query editor. In this
tutorial, you filter the results of the previous query based on a field in the retrieved log events.

If you haven't already run the previous tutorials, do that now. This tutorial starts where that
previous tutorial ends.

To add a filter command to the previous query

1. Decide on a field to filter. To see the most common fields that CloudWatch Logs has detected
in the log events contained in the selected log groups in the past 15 minutes, and the
percentage of those log events in which each field appears, select Fields on the right side of
the page.

To see the fields contained in a particular log event, choose the icon to the left of that row.

The awsRegion field might appear in your log event, depending on which events are in your
logs. For the rest of this tutorial, we use awsRegion as the filter field, but you can use a
different field if that field isn't available.

2. In the query editor box, place your cursor after 50 and press Enter.

Tutorial: Run and modify a sample query 60

Amazon CloudWatch Logs User Guide

3. On the new line, first enter | (the pipe character) and a space. Commands in a CloudWatch
Logs Insights query must be separated by the pipe character.

4. Enter filter awsRegion="us-east-1".

5. Choose Run.

The query runs again, and now displays the 50 most recent results that match the new filter.

If you filtered on a different field and got an error result, you might need to escape the
field name. If the field name includes non-alphanumeric characters, you must put backtick
characters (`) before and after the field name (for example, `error-code`="102").

You must use the backtick characters for field names that contain non-alphanumeric
characters, but not for values. Values are always contained in quotation marks (").

CloudWatch Logs Insights includes powerful query abilities, including several commands and
support for regular expressions, mathematical, and statistical operations. For more information,
see CloudWatch Logs Insights query syntax.

Tutorial: Run a query with an aggregation function

You can use aggregation functions with the stats command and as arguments for other
functions. In this tutorial, you run a query command that counts the number of log events
containing a specified field. The query command returns a total count that's grouped by the
specified field's value or values. For more information about aggregation functions, see Supported
operations and functions in the Amazon CloudWatch Logs User Guide.

To run a query with an aggregation function

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Logs, and then choose Logs Insights.

3. In the Select log group(s) drop down, choose one or more log groups to query.

If this is a monitoring account in CloudWatch cross-account observability, you can select log
groups in the source accounts as well as the monitoring account. A single query can query logs
from different accounts at once.

You can filter the log groups by log group name, account ID, or account label.

Tutorial: Run a query with an aggregation function 61

https://docs.aws.amazon.com/en_us/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html#CWL_QuerySyntax-operations-functions
https://docs.aws.amazon.com/en_us/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html#CWL_QuerySyntax-operations-functions
https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

When you select a log group, CloudWatch Logs Insights automatically detects data fields in the
log group if it is a Standard class log group. To see discovered fields, select the Fields menu
near the top right of the page.

4. Delete the default query in the query editor, and enter the following command:

stats count(*) by fieldName

5. Replace fieldName with a discovered field from the Fields menu.

The Fields menu is located at the top right of the page and displays all of the discovered fields
that CloudWatch Logs Insights detects in your log group.

6. Choose Run to view the query results.

The query results show the number of records in your log group that match the query
command and the total count that's grouped by the specified field's value or values.

Tutorial: Run a query that produces a visualization grouped by log
fields

When you run a query that uses the stats function to group the returned results by the values of
one or more fields in the log entries, you can view the results as a bar chart, pie chart, line graph or
stacked area graph. This helps you more efficiently visualize trends in your logs.

To run a query for visualization

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Logs, and then choose Logs Insights.

3. In the Select log group(s) drop down, choose one or more log groups to query.

If this is a monitoring account in CloudWatch cross-account observability, you can select log
groups in the source accounts as well as the monitoring account. A single query can query logs
from different accounts at once.

You can filter the log groups by log group name, account ID, or account label.

4. In the query editor, delete the current contents, enter the following stats function, and then
choose Run query.

Tutorial: Run a query that produces a visualization grouped by log fields 62

https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

stats count(*) by @logStream
 | limit 100

The results show the number of log events in the log group for each log stream. The results
are limited to only 100 rows.

5. Choose the Visualization tab.

6. Select the arrow next to Line, and then choose Bar.

The bar chart appears, showing a bar for each log stream in the log group.

Tutorial: Run a query that produces a time series visualization

When you run a query that uses the bin() function to group the returned results by a time period,
you can view the results as a line graph, stacked area graph, pie chart, or bar chart. This helps you
more efficiently visualize trends in log events over time.

To run a query for visualization

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Logs, and then choose Logs Insights.

3. In the Select log group(s) drop down, choose one or more log groups to query.

If this is a monitoring account in CloudWatch cross-account observability, you can select log
groups in the source accounts as well as the monitoring account. A single query can query logs
from different accounts at once.

You can filter the log groups by log group name, account ID, or account label.

4. In the query editor, delete the current contents, enter the following stats function, and then
choose Run query.

stats count(*) by bin(30s)

The results show the number of log events in the log group that were received by CloudWatch
Logs for each 30-second period.

5. Choose the Visualization tab.

Tutorial: Run a query that produces a time series visualization 63

https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

The results are shown as a line graph. To switch to a bar chart, pie chart, or stacked area chart,
choose the arrow next to Line at the upper left of the graph.

Supported logs and discovered fields

CloudWatch Logs Insights supports different log types. For every log that's sent to a Standard
class log group Amazon CloudWatch Logs, CloudWatch Logs Insights automatically generates five
system fields:

• @message contains the raw unparsed log event. This is the equivalent to the message field in
InputLogevent.

• @timestamp contains the event timestamp in the log event's timestamp field. This is the
equivalent to the timestamp field in InputLogevent.

• @ingestionTime contains the time when CloudWatch Logs received the log event.

• @logStream contains the name of the log stream that the log event was added to. Log streams
group logs through the same process that generated them.

• @log is a log group identifier in the form of account-id:log-group-name. When querying
multiple log groups, this can be useful to identify which log group a particular event belongs to.

Note

Field discovery is supported only for log groups in the Standard log class. For more
information about log classes, see Log classes.

CloudWatch Logs Insights inserts the @ symbol at the start of fields that it generates.

For many log types, CloudWatch Logs also automatically discovers the log fields contained in the
logs. These automatic discovery fields are shown in the following table.

For other types of logs with fields that CloudWatch Logs Insights doesn't automatically discover,
you can use the parse command to extract and create extracted fields for use in that query. For
more information, see CloudWatch Logs Insights query syntax.

Supported logs and discovered fields 64

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_InputLogEvent.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_InputLogEvent.html

Amazon CloudWatch Logs User Guide

If the name of a discovered log field starts with the @ character, CloudWatch Logs Insights
displays it with an additional @ appended to the beginning. For example, if a log field name is
@example.com, this field name is displayed as @@example.com.

Log type Discovered log fields

Amazon VPC
flow logs

@timestamp , @logStream , @message, accountId , endTime,
interfaceId , logStatus , startTime , version, action, bytes,
dstAddr, dstPort, packets, protocol, srcAddr, srcPort

Route 53 logs @timestamp , @logStream , @message, edgeLocation , ednsClien
tSubnet , hostZoneId , protocol, queryName , queryTimestamp ,
queryType , resolverIp , responseCode , version

Lambda logs @timestamp , @logStream , @message, @requestId , @duration,
@billedDuration , @type, @maxMemoryUsed , @memorySize

If a Lambda log line contains an X-Ray trace ID, it also includes the following
fields: @xrayTraceId and @xraySegmentId .

CloudWatch Logs Insights automatically discovers log fields in Lambda
logs, but only for the first embedded JSON fragment in each log event. If
a Lambda log event contains multiple JSON fragments, you can parse and
extract the log fields by using the parse command. For more information,
see Fields in JSON logs.

CloudTrail logs

Logs in JSON
format

For more information, see Fields in JSON logs.

Other log types @timestamp , @ingestionTime , @logStream , @message, @log.

Supported logs and discovered fields 65

Amazon CloudWatch Logs User Guide

Fields in JSON logs

With CloudWatch Logs Insights, you use dot notation to represent JSON fields. This section
contains an example JSON event and code snippet that show how you can access JSON fields using
dot notation.

Example: JSON event

{
 "eventVersion": "1.0",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn: aws: iam: : 123456789012: user/Alice",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "accountId": "123456789012",
 "userName": "Alice"
 },
 "eventTime": "2014-03-06T21: 22: 54Z",
 "eventSource": "ec2.amazonaws.com",
 "eventName": "StartInstances",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "192.0.2.255",
 "userAgent": "ec2-api-tools1.6.12.2",
 "requestParameters": {
 "instancesSet": {
 "items": [
 {
 "instanceId": "i-abcde123"
 }
]
 }
 },
 "responseElements": {
 "instancesSet": {
 "items": [
 {
 "instanceId": "i-abcde123",
 "currentState": {
 "code": 0,
 "name": "pending"
 },
 "previousState": {

Fields in JSON logs 66

Amazon CloudWatch Logs User Guide

 "code": 80,
 "name": "stopped"
 }
 }
]
 }
 }
}

The example JSON event contains an object that's named userIdentity. userIdentity
contains a field that's named type. To represent value of type using dot notation, you use
userIdentity.type.

The example JSON event contains arrays that flatten to lists of nested field names and values. To
represent the value of instanceId for the first item in requestParameters.instancesSet,
you use requestParameters.instancesSet.items.0.instanceId. The number 0 that's
placed before the field instanceID refers to the position of values for the field items. The
following example contains a code snippet that shows how you can access nested JSON fields in a
JSON log event.

Example: Query

fields @timestamp, @message
| filter requestParameters.instancesSet.items.0.instanceId="i-abcde123"
| sort @timestamp desc

The code snippet shows a query that uses dot notation with the filter command to access the
value of the nested JSON field instanceId. The query filters on messages where the value of
instanceId equals "i-abcde123" and returns all of the log events that contain the specified
value.

Note

CloudWatch Logs Insights can extract a maximum of 200 log event fields from a JSON log.
For additional fields that aren't extracted, you can use the parse command to extract the
fields from the raw unparsed log event in the message field. For more information about
the parse command, see Query syntax in the Amazon CloudWatch User Guide.

Fields in JSON logs 67

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html

Amazon CloudWatch Logs User Guide

CloudWatch Logs Insights query syntax

With CloudWatch Logs Insights, you use a query language to query your log groups. The query
syntax supports different functions and operations that include but aren't limited to general
functions, arithmetic and comparison operations, and regular expressions.

To create queries that contain multiple commands, separate the commands with the pipe character
(|).

To create queries that contain comments, set off the comments with the hash character (#).

Note

CloudWatch Logs Insights automatically discovers fields for different log types and
generates fields that start with the @ character. For more information about these fields,
see Supported logs and discovered fields in the Amazon CloudWatch User Guide.

The following table briefly describes each command. Following this table is a more comprehensive
description of each command, with examples.

Note

All CloudWatch Logs Insights query commands are supported on log groups in the
Standard log class. Log groups in the Infrequent Access log class support all query
commands except pattern, diff, and unmask.

display Displays a specific field or fields in query results.

fields Displays specific fields in query results and supports functions and
operations you can use to modify field values and create new fields to
use in your query.

filter Filters the query to return only the log events that match one or more
conditions.

pattern Automatically clusters your log data into patterns. A pattern is shared
text structure that recurs among your log fields. CloudWatch Logs

Query syntax 68

https://docs.aws.amazon.com/en_us/AmazonCloudWatch/latest/logs/CWL_AnalyzeLogData-discoverable-fields.html

Amazon CloudWatch Logs User Guide

Insights provides ways for you to analyze the patterns found in your log
events. For more information, see Pattern analysis.

diff Compares the log events found in your requested time period with the
log events from a previous time period of equal length, so that you can
look for trends and find out if certain log events are new.

parse Extracts data from a log field to create an extracted field that you can
process in your query. parse supports both glob mode using wildcards
, and regular expressions.

sort Displays the returned log events in ascending (asc) or descending
(desc) order.

stats Calculate aggregate statistics using values in the log fields.

limit Specifies a maximum number of log events that you want your query
to return. Useful with sort to return "top 20" or "most recent 20"
results.

dedup Removes duplicate results based on specific values in fields that you
specify.

unmask Displays all the content of a log event that has some content masked
because of a data protection policy. For more information about data
protection in log groups, see Help protect sensitive log data with
masking.

Other operations
and functions

CloudWatch Logs Insights also supports many comparison, arithmeti
c, datetime, numeric, string, IP address, and general functions and
operations.

The following sections provide more details about the CloudWatch Logs Insights query commands.

Topics

• display

• fields

• filter

Query syntax 69

Amazon CloudWatch Logs User Guide

• pattern

• diff

• parse

• sort

• stats

• limit

• dedup

• unmask

• Boolean, comparison, numeric, datetime, and other functions

• Fields that contain special characters

• Use aliases and comments in queries

display

Use display to show a specific field or fields in query results.

The display command shows only the fields you specify. If your query contains multiple display
commands, the query results show only the field or fields that you specified in the final display
command.

Example: Display one field

The code snippet shows an example of a query that uses the parse command to extract data from
@message to create the extracted fields loggingType and loggingMessage. The query returns
all log events where the values for loggingType are ERROR. display shows only the values for
loggingMessage in the query results.

fields @message
| parse @message "[*] *" as loggingType, loggingMessage
| filter loggingType = "ERROR"
| display loggingMessage

display 70

Amazon CloudWatch Logs User Guide

Tip

Use display only once in a query. If you use display more than once in a query, the
query results show the field specified in the last occurrence of display command being
used.

fields

Use fields to show specific fields in query results.

If your query contains multiple fields commands and doesn't include a display command, the
results display all of the fields that are specified in the fields commands.

Example: Display specific fields

The following example shows a query that returns 20 log events and displays them in descending
order. The values for @timestamp and @message are shown in the query results.

fields @timestamp, @message
| sort @timestamp desc
| limit 20

Use fields instead of display. when you want to use the different functions and operations
supported by fields for modifying field values and creating new fields that can be used in
queries.

You can use the fields command with the keyword as to create extracted fields that use fields
and functions in your log events. For example, fields ispresent as isRes creates an
extracted field named isRes, and the extracted field can be used in the rest of your query.

filter

Use filter to get log events that match one or more conditions.

Example: Filter log events using one condition

The code snippet shows an example of a query that returns all log events where the value for
range is greater than 3000. The query limits the results to 20 log events and sorts the logs events
by @timestamp and in descending order.

fields 71

Amazon CloudWatch Logs User Guide

fields @timestamp, @message
| filter (range>3000)
| sort @timestamp desc
| limit 20

Example: Filter log events using more than one condition

You can use the keywords and and or to combine more than one condition.

The code snippet shows an example of a query that returns log events where the value for range
is greater than 3000 and value for accountId is equal to 123456789012. The query limits the
results to 20 log events and sorts the logs events by @timestamp and in descending order.

fields @timestamp, @message
| filter (range>3000 and accountId=123456789012)
| sort @timestamp desc
| limit 20

Matches and regular expressions in the filter command

The filter command supports the use of regular expressions. You can use the following comparison
operators (=, !=, <, <=, >, >=) and Boolean operators (and, or, and not).

You can use the keyword in to test for set membership and check for elements in an array. To
check for elements in an array, put the array after in. You can use the Boolean operator not with
in. You can create queries that use in to return log events where fields are string matches. The
fields must be complete strings. For example, the following code snippet shows a query that uses
in to return log events where the field logGroup is the complete string example_group.

fields @timestamp, @message
| filter logGroup in ["example_group"]

You can use the keyword phrases like and not like to match substrings. You can use the
regular expression operator =~ to match substrings. To match a substring with like and not
like, enclose the substring that you want to match in single or double quotation marks. You
can use regular expression patterns with like and not like. To match a substring with the
regular expression operator, enclose the substring that you want to match in forward slashes.
The following examples contain code snippets that show how you can match substrings using the
filter command.

filter 72

Amazon CloudWatch Logs User Guide

Examples: Match substrings

The following examples return log events where f1 contains the word Exception. All three
examples are case sensitive.

The first example matches a substring with like.

fields f1, f2, f3
| filter f1 like "Exception"

The second example matches a substring with like and a regular expression pattern.

fields f1, f2, f3
| filter f1 like /Exception/

The third example matches a substring with a regular expression.

fields f1, f2, f3
| filter f1 =~ /Exception/

Example: Match substrings with wildcards

You can use the period symbol (.) as a wildcard in regular expressions to match substrings. In
the following example, the query returns matches where the value for f1 begins with the string
ServiceLog.

fields f1, f2, f3
| filter f1 like /ServiceLog./

You can place the asterisk symbol after the period symbol (.*) to create a greedy quantifier
that returns as many matches as possible. For example, the following query returns matches
where the value for f1 not only begins with the string ServiceLog, but also includes the string
ServiceLog.

fields f1, f2, f3
| filter f1 like /ServiceLog.*/

Possible matches can be formatted like the following:

filter 73

Amazon CloudWatch Logs User Guide

• ServiceLogSampleApiLogGroup

• SampleApiLogGroupServiceLog

Example: Exclude substrings from matches

The following example shows a query that returns log events where f1 doesn't contain the word
Exception. The example is case senstive.

fields f1, f2, f3
| filter f1 not like "Exception"

Example: Match substrings with case-insensitive patterns

You can match substrings that are case insensitive with like and regular expressions. Place the
following parameter (?i) before the substring you want to match. The following example shows a
query that returns log events where f1 contains the word Exception or exception.

fields f1, f2, f3
| filter f1 like /(?i)Exception/

pattern

Use pattern to automatically cluster your log data into patterns.

A pattern is shared text structure that recurs among your log fields. You can use pattern to
surface emerging trends, monitor known errors, and identify frequently occurring or high-cost log
lines. CloudWatch Logs Insights also provides a console experience you can use to find and further
analyze patterns in your log events. For more information, see Pattern analysis.

Because the pattern command automatically identifies common patterns, you can use it as a
starting point to search and analyze yours logs. You can also combine pattern with the filter,
parse, or sort commands to identify patterns in more fine-tuned queries.

Pattern Command Input

The pattern command expects one of the following inputs: the @message field, an extracted field
created using the parse command, or a string manipulated using one or more String functions.

Pattern Command Output

pattern 74

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax-operations-functions.html#CWL_QuerySyntax-string-functions

Amazon CloudWatch Logs User Guide

The pattern command produces the following output:

• @pattern: A shared text structure that recurs among your log event fields. Fields that vary
within a pattern, such as a request ID or timestamp, are represented by <*>. For example,
[INFO] Request time: <*> ms is a potential output for the log message [INFO] Request
time: 327 ms.

• @ratio: The ratio of log events from a selected time period and specified log groups that match
an identified pattern. For example, if half of the log events in the selected log groups and time
period match the pattern, @ratio returns 0.50

• @sampleCount: A count of the number of log events from a selected time period and specified
log groups that match an identified pattern.

• @severityLabel: The log severity or level, which indicates the type of information contained in
a log. For example, Error, Warning, Info, or Debug.

Examples

The following command identifies logs with similar structures in specified log group(s) over the
selected time range, grouping them by pattern and count

pattern @message

The pattern command can be used in combination with the filter command

filter @message like /ERROR/
| pattern @message

The pattern command can be use with the parse and sort commands

filter @message like /ERROR/
| parse @message 'Failed to do: *' as cause
| pattern cause
| sort @sampleCount asc

diff

Compares the log events found in your requested time period with the log events from a previous
time period of equal length. This way, you can look for trends and find whether specific log events
are new.

diff 75

Amazon CloudWatch Logs User Guide

Add a modifier to the diff command to specify the time period that you want to compare with:

• diff compares the log events in the currently selected time range to the log events of the
immediately preceding time range.

• diff previousDay compares the log events in the currently selected time range to the log
events from the same time the preceding day.

• diff previousWeek compares the log events in the currently selected time range to the log
events from the same time the preceding week.

• diff previousMonth compares the log events in the currently selected time range to the log
events from the same time the preceding month.

For more information, see Compare (diff) with previous time ranges.

parse

Use parse to extract data from a log field and create an extracted field that you can process
in your query. parse supports both glob mode using wildcards, and regular expressions. For
information about regular expression syntax, see

For more information about query syntax, see Supported regular expressions (regex) syntax.

You can parse nested JSON fields with a regular expression.

Example: Parsing a nested JSON field

The code snippet shows how to parse a JSON log event that's been flattened during ingestion.

{'fieldsA': 'logs', 'fieldsB': [{'fA': 'a1'}, {'fA': 'a2'}]}

The code snippet shows a query with a regular expression that extracts the values for fieldsA and
fieldsB to create the extracted fields fld and array.

parse @message "'fieldsA': '*', 'fieldsB': ['*']" as fld, array

Named capturing groups

When you use parse with a regular expression, you can use named capturing groups to capture a
pattern into a field. The syntax is parse @message (?<Name>pattern).

parse 76

Amazon CloudWatch Logs User Guide

The following example uses a capturing group on a VPC flow log to extract the ENI into a field
named NetworkInterface.

parse @message /(?<NetworkInterface>eni-.*?) / display @timestamp, NetworkInterface

Note

JSON log events are flattened during ingestion. Currently, parsing nested JSON fields with
a glob expression isn't supported. You can only parse JSON log events that include no more
than 200 log event fields. When you parse nested JSON fields, you must format the regular
expression in your query to match the format of your JSON log event.

Examples of the parse command

Use a glob expression to extract the fields @user, @method, and @latency from the log field
@message and return the average latency for each unique combination of @method and @user.

parse @message "user=*, method:*, latency := *" as @user,
 @method, @latency | stats avg(@latency) by @method,
 @user

Use a regular expression to extract the fields @user2, @method2, and @latency2 from the log
field @message and return the average latency for each unique combination of @method2 and
@user2.

parse @message /user=(?<user2>.*?), method:(?<method2>.*?),
 latency := (?<latency2>.*?)/ | stats avg(latency2) by @method2,
 @user2

Extracts the fields loggingTime, loggingType and loggingMessage, filters down to log
events that contain ERROR or INFO strings, and then displays only the loggingMessage and
loggingType fields for events that contain an ERROR string.

FIELDS @message
 | PARSE @message "* [*] *" as loggingTime, loggingType, loggingMessage
 | FILTER loggingType IN ["ERROR", "INFO"]
 | DISPLAY loggingMessage, loggingType = "ERROR" as isError

parse 77

Amazon CloudWatch Logs User Guide

sort

Use sort to display log events in ascending (asc) or descending (desc) order by a specified field.
You can use this with the limit command to create "top N" or "bottom N" queries.

For example, the following query for Amazon VPC flow logs finds the top 15 packet transfers
across hosts.

stats sum(packets) as packetsTransferred by srcAddr, dstAddr
 | sort packetsTransferred desc
 | limit 15

stats

Use stats to create visualizations of your log data such as bar charts, line charts, and stacked area
charts. This helps you more efficiently identify patterns in your log data. CloudWatch Logs Insights
generates visualizations for queries that use the stats function and one or more aggregation
functions.

For example, the following query in a Route 53 log group returns visualizations showing the
distribution of Route 53 records per hour, by query type.

stats count(*) by queryType, bin(1h)

All such queries can produce bar charts. If your query uses the bin() function to group the data by
one field over time, you can also see line charts and stacked area charts.

Topics

• Visualize time series data

• Visualize log data grouped by fields

• Use multiple stats commands in a single query

• Functions to use with stats

Visualize time series data

Time series visualizations work for queries with the following characteristics:

sort 78

Amazon CloudWatch Logs User Guide

• The query contains one or more aggregation functions. For more information, see Aggregation
Functions in the Stats Command.

• The query uses the bin() function to group the data by one field.

These queries can produce line charts, stacked area charts, bar charts, and pie charts.

Examples

For a complete tutorial, see the section called “Tutorial: Run a query that produces a time series
visualization”.

Here are more example queries that work for time series visualization.

The following query generates a visualization of the average values of the myfield1 field, with
a data point created every five minutes. Each data point is the aggregation of the averages of the
myfield1 values from the logs from the previous five minutes.

stats avg(myfield1) by bin(5m)

The following query generates a visualization of three values based on different fields, with a
data point created every five minutes. The visualization is generated because the query contains
aggregate functions and uses bin() as the grouping field.

stats avg(myfield1), min(myfield2), max(myfield3) by bin(5m)

Line chart and stacked area chart restrictions

Queries that aggregate log entry information but don't use the bin() function can generate
bar charts. However, the queries cannot generate line charts or stacked area charts. For more
information about these types of queries, see the section called “Visualize log data grouped by
fields”.

Visualize log data grouped by fields

You can produce bar charts for queries that use the stats function and one or more aggregation
functions. For more information, see Aggregation Functions in the Stats Command.

To see the visualization, run your query. Then choose the Visualization tab, select the arrow next
to Line, and choose Bar. Visualizations are limited to up to 100 bars in the bar chart.

stats 79

Amazon CloudWatch Logs User Guide

Examples

For a complete tutorial, see the section called “Tutorial: Run a query that produces a visualization
grouped by log fields”. The following paragraphs include more example queries for visualization by
fields.

The following VPC flow log query finds the average number of bytes transferred per session for
each destination address.

stats avg(bytes) by dstAddr

You can also produce a chart that includes more than one bar for each resulting value. For
example, the following VPC flow log query finds the average and maximum number of bytes
transferred per session for each destination address.

stats avg(bytes), max(bytes) by dstAddr

The following query finds the number of Amazon Route 53 query logs for each query type.

stats count(*) by queryType

Use multiple stats commands in a single query

You can use as many as two stats commands in a single query. This enables you to perform an
additional aggregation on the output of the first aggregation.

Example: Query with two stats commands

For example, the following query first find the total traffic volume in 5-minute bins, then calculates
the highest, lowest, and average traffic volume among those 5-minute bins.

FIELDS strlen(@message) AS message_length
| STATS sum(message_length)/1024/1024 as logs_mb BY bin(5m)
| STATS max(logs_mb) AS peak_ingest_mb,
 min(logs_mb) AS min_ingest_mb,
 avg(logs_mb) AS avg_ingest_mb

Example: Combine multiple stats commands with other functions such as filter, fields, bin

stats 80

Amazon CloudWatch Logs User Guide

You can combine two stats commands with other commands such as filter and fields in a
single query. For example, the following query finds the number of distinct IP addresses in sessions
and finds the number of sessions by client platform, filters those IP addresses, and then finally
finds the average of session requests per client platform.

STATS count_distinct(client_ip) AS session_ips,
 count(*) AS requests BY session_id, client_platform
| FILTER session_ips > 1
| STATS count(*) AS multiple_ip_sessions,
 sum(requests) / count(*) AS avg_session_requests BY client_platform

You can use bin and dateceil functions in queries with multiple stats commands. For example,
the following query first combines messages into 5-minute blocks, then aggregates those 5-minute
blocks into 10-minute blocks and calculates the highest, lowest, and average traffic volumes within
each 10-minute block.

FIELDS strlen(@message) AS message_length
| STATS sum(message_length) / 1024 / 1024 AS logs_mb BY BIN(5m) as @t
| STATS max(logs_mb) AS peak_ingest_mb,
 min(logs_mb) AS min_ingest_mb,
 avg(logs_mb) AS avg_ingest_mb BY dateceil(@t, 10m)

Notes and limitations

A query can have a maximum of two stats commands. This quota can't be changed.

If you use a sort or limit command, it must appear after the second stats command. If it is
before the second stats command, the query is not valid.

When a query has two stats commands, the partial results from the query do not begin
displaying until the first stats aggregation is complete.

In the second stats command in a single query, you can refer only to fields that are defined in the
first stats command. For example, the following query is not valid because the @message field
won't be available after the first stats aggregation.

FIELDS @message
| STATS SUM(Fault) by Operation
You can only reference `SUM(Fault)` or Operation at this point

stats 81

Amazon CloudWatch Logs User Guide

| STATS MAX(strlen(@message)) AS MaxMessageSize # Invalid reference to @message

Any fields that you reference after the first stats command must be defined in that first stats
command.

STATS sum(x) as sum_x by y, z
| STATS max(sum_x) as max_x by z
You can only reference `max(sum_x)`, max_x or z at this point

Important

The bin function always implicitly uses the @timestamp field. This means that you
can't use bin in the second stats command without using the first stats command to
propagate the timestamp field. For example, the following query is not valid.

FIELDS strlen(@message) AS message_length
 | STATS sum(message_length) AS ingested_bytes BY @logStream
 | STATS avg(ingested_bytes) BY bin(5m) # Invalid reference to @timestamp field

Instead, define the @timestamp field in the first stats command, and then you can use it
with dateceil in the second stats command as in the following example.

FIELDS strlen(@message) AS message_length
 | STATS sum(message_length) AS ingested_bytes, max(@timestamp) as @t BY
 @logStream
 | STATS avg(ingested_bytes) BY dateceil(@t, 5m)

Functions to use with stats

CloudWatch Logs Insights supports both stats aggregation functions and stats non-aggregation
functions.

Use statsaggregation functions in the stats command and as arguments for other functions.

Function Result type Description

avg(fieldName:
NumericLogField)

number The average of the values in the specified
field.

stats 82

Amazon CloudWatch Logs User Guide

Function Result type Description

count()

count(fieldName:
LogField)

number Counts the log events. count() (or
count(*)) counts all events returned by the
query, while count(fieldName) counts all
records that include the specified field name.

count_distinct(fie
ldName: LogField)

number Returns the number of unique values for
the field. If the field has very high cardinali
ty (contains many unique values), the value
returned by count_distinct is just an
approximation.

max(fieldName:
LogField)

LogFieldV
alue

The maximum of the values for this log field in
the queried logs.

min(fieldName:
LogField)

LogFieldV
alue

The minimum of the values for this log field in
the queried logs.

pct(fieldName:
LogFieldValue,
percent: number)

LogFieldV
alue

A percentile indicates the relative standing of
a value in a dataset. For example, pct(@dura
tion, 95) returns the @duration
value at which 95 percent of the values of
@duration are lower than this value, and 5
percent are higher than this value.

stddev(fieldName:
NumericLogField)

number The standard deviation of the values in the
specified field.

sum(fieldName:
NumericLogField)

number The sum of the values in the specified field.

Stats non-aggregation functions

Use non-aggregation functions in the stats command and as arguments for other functions.

stats 83

Amazon CloudWatch Logs User Guide

Function Result type Description

earliest(fieldName:
LogField)

LogField Returns the value of fieldName from the
log event that has the earliest timestamp in
the queried logs.

latest(fieldName:
LogField)

LogField Returns the value of fieldName from the
log event that has the latest timestamp in the
queried logs.

sortsFirst(fieldNa
me: LogField)

LogField Returns the value of fieldName that sorts
first in the queried logs.

sortsLast(fieldName:
LogField)

LogField Returns the value of fieldName that sorts
last in the queried logs.

limit

Use limit to specify the number of log events that you want your query to return.

For example, the following example returns only the 25 most recent log events

fields @timestamp, @message | sort @timestamp desc | limit 25

dedup

Use dedup to remove duplicate results based on specific values in fields that you specify. You
can use dedup with one or more fields. If you specify one field with dedup, only one log event is
returned for each unique value of that field. If you specify multiple fields, then one log event is
returned for each unique combination of values for those fields.

Duplicates are discarded based on the sort order, with only the first result in the sort order being
kept. We recommend that you sort your results before putting them through the dedup command.
If the results are not sorted before being run through dedup, then the default descending sort
order using @timestamp is used.

limit 84

Amazon CloudWatch Logs User Guide

Null values are not considered duplicates for evaluation. Log events with null values for any
of the specified fields are retained. To eliminate fields with null values, use filter using the
isPresent(field) function.

The only query command that you can use in a query after the dedup command is limit.

Example: See only the most recent log event for each unique value of the field named server

The following example displays the timestamp, server, severity, and message fields for only
the most recent event for each unique value of server.

fields @timestamp, server, severity, message
| sort @timestamp desc
| dedup server

For more samples of CloudWatch Logs Insights queries, see General queries.

unmask

Use unmask to display all the content of a log event that has some content masked because of a
data protection policy. To use this command, you must have the logs:Unmask permission.

For more information about data protection in log groups, see Help protect sensitive log data with
masking.

Boolean, comparison, numeric, datetime, and other functions

CloudWatch Logs Insights supports many other operations and functions in queries, as explained in
the following sections.

Topics

• Arithmetic operators

• Boolean operators

• Comparison operators

• Numeric operators

• Datetime functions

• General functions

• IP address string functions

• String functions

unmask 85

Amazon CloudWatch Logs User Guide

Arithmetic operators

Arithmetic operators accept numeric data types as arguments and return numeric results. Use
arithmetic operators in the filter and fields commands and as arguments for other functions.

Operation Description

a + b Addition

a - b Subtraction

a * b Multiplication

a / b Division

a ^ b Exponentiation (2 ^ 3 returns 8)

a % b Remainder or modulus (10 % 3 returns 1)

Boolean operators

Use the Boolean operators and, or, and not.

Note

Use Boolean operators only in functions that return a value of TRUE or FALSE.

Comparison operators

Comparison operators accept all data types as arguments and return a Boolean result. Use
comparison operations in the filter command and as arguments for other functions.

Operator Description

= Equal

!= Not equal

Boolean, comparison, numeric, datetime, and other functions 86

Amazon CloudWatch Logs User Guide

Operator Description

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

Numeric operators

Numeric operations accept numeric data types as arguments and return numeric results. Use
numeric operations in the filter and fields commands and as arguments for other functions.

Operation Result type Description

abs(a: number) number Absolute value

ceil(a: number) number Round to ceiling (the smallest
integer that is greater than
the value of a)

floor(a: number) number Round to floor (the largest
integer that is smaller than
the value of a)

greatest(a:
number, ...numbers:
number[])

number Returns the largest value

least(a:
number, ...numbers:
number[])

number Returns the smallest value

log(a: number) number Natural log

sqrt(a: number) number Square root

Boolean, comparison, numeric, datetime, and other functions 87

Amazon CloudWatch Logs User Guide

Datetime functions

Datetime functions

Use datetime functions in the fields and filtercommands and as arguments for other
functions. Use these functions to create time buckets for queries with aggregate functions. Use
time periods that consist of a number and one of the following:

• ms for milliseconds

• s for seconds

• m for minutes

• h for hours

For example, 10m is 10 minutes, and 1h is 1 hour.

Note

Use the most appropriate time unit for your datetime function. CloudWatch Logs caps
your request according to the time unit that you choose. For example, it caps 60 as the
maximum value for any request that uses s. So, if you specify bin(300s), CloudWatch
Logs actually implements this as 60 seconds, because 60 is the number of seconds in a
minute so CloudWatch Logs won't use a number higher than 60 with s. To create a 5-
minute bucket, use bin(5m) instead.
The cap for ms is 1000, the caps for s and m are 60, and the cap for h is 24.

The following table contains a list of the different datetime functions that you can use in query
commands. The table lists each function's result type and contains a description of each function.

Tip

When you create a query command, you can use the time interval selector to select a time
period that you want to query. For example, you can set a time period between 5 and 30-
minute intervals; 1, 3, and 12-hour intervals; or a custom time frame. You also can set time
periods between specific dates.

Boolean, comparison, numeric, datetime, and other functions 88

Amazon CloudWatch Logs User Guide

Function Result type Description

bin(period: Period) Timestamp Rounds the value of @timestamp to the
given time period and then truncates. For
example, bin(5m) rounds the value of
@timestamp to the nearest 5 minutes.

You can use this to group multiple log entries
together in a query. The following example
returns the count of exceptions per hour:

filter @message like /Exception/
 | stats count(*) as exceptionCount
 by bin(1h)
 | sort exceptionCount desc

The following time units and abbreviations are
supported with the bin function. For all units
and abbreviations that include more than one
character, adding s to pluralize is supported.
So both hr and hrs work to specify hours.

• millisecond ms msec

• second s sec

• minute m min

• hour h hr

• day d

• week w

• month mo mon

• quarter q qtr

• year y yr

datefloor(timestamp:
Timestamp, period:
Period)

Timestamp Truncates the timestamp to the given period.
For example, datefloor(@timestamp,
1h) truncates all values of @timestamp to
the bottom of the hour.

Boolean, comparison, numeric, datetime, and other functions 89

Amazon CloudWatch Logs User Guide

Function Result type Description

dateceil(timestamp
: Timestamp, period:
Period)

Timestamp Rounds up the timestamp to the given period
and then truncates. For example, dateceil(
@timestamp, 1h) truncates all values of
@timestamp to the top of the hour.

fromMillis(fieldNa
me: number)

Timestamp Interprets the input field as the number
of milliseconds since the Unix epoch and
converts it to a timestamp.

toMillis(fieldName:
Timestamp)

number Converts the timestamp found in the named
field into a number representing the milliseco
nds since the Unix epoch. For example,
toMillis(@timestamp) converts
the timestamp 2022-01-14T13:18:0
31.000-08:00 to 1642195111000 .

Note

Currently, CloudWatch Logs Insights doesn't support filtering logs with human readable
timestamps.

General functions

General functions

Use general functions in the fields and filter commands and as arguments for other functions.

Function Result type Description

ispresent(fieldName: LogField) Boolean Returns true if the field
exists

Boolean, comparison, numeric, datetime, and other functions 90

Amazon CloudWatch Logs User Guide

Function Result type Description

coalesce(fieldName:
LogField, ...fieldNames: LogField[
])

LogField Returns the first non-null
value from the list

IP address string functions

IP address string functions

Use IP address string functions in the filter and fields commands and as arguments for other
functions.

Function Result type Description

isValidIp(fieldName:
string)

boolean Returns true if the field is a valid IPv4 or IPv6
address.

isValidIpV4(fieldN
ame: string)

boolean Returns true if the field is a valid IPv4
address.

isValidIpV6(fieldN
ame: string)

boolean Returns true if the field is a valid IPv6
address.

isIpInSubnet(field
Name: string, subnet:
string)

boolean Returns true if the field is a valid IPv4 or
IPv6 address within the specified v4 or v6
subnet. When you specify the subnet, use
CIDR notation such as 192.0.2.0/24 or
2001:db8::/32 , where 192.0.2.0 or
2001:db8:: is the start of the CIDR block.

isIpv4InSubnet(fie
ldName: string,
subnet: string)

boolean Returns true if the field is a valid IPv4
address within the specified v4 subnet. When
you specify the subnet, use CIDR notation such
as 192.0.2.0/24 where 192.0.2.0 is the
start of the CIDR block..

Boolean, comparison, numeric, datetime, and other functions 91

Amazon CloudWatch Logs User Guide

Function Result type Description

isIpv6InSubnet(fie
ldName: string,
subnet: string)

boolean Returns true if the field is a valid IPv6
address within the specified v6 subnet. When
you specify the subnet, use CIDR notation such
as 2001:db8::/32 where 2001:db8:: is
the start of the CIDR block.

String functions

String functions

Use string functions in the fields and filter commands and as arguments for other functions.

Function Result type Description

isempty(fieldName: string) Number Returns 1 if the field is
missing or is an empty string.

isblank(fieldName: string) Number Returns 1 if the field is
missing, an empty string, or
contains only white space.

concat(str: string, ...strings:
string[])

string Concatenates the strings.

ltrim(str: string)

ltrim(str: string, trimChars:
string)

string If the function does not
have a second argument, it
removes white space from
the left of the string. If
the function has a second
string argument, it does
not remove white space.
Instead, it removes the
characters in trimChars

 from the left of str.
For example, ltrim("xy

Boolean, comparison, numeric, datetime, and other functions 92

Amazon CloudWatch Logs User Guide

Function Result type Description

ZxyfooxyZ","xyZ")
returns "fooxyZ".

rtrim(str: string)

rtrim(str: string, trimChars:
string)

string If the function does not
have a second argument, it
removes white space from
the right of the string. If
the function has a second
string argument, it does
not remove white space.
Instead, it removes the
characters of trimChars

 from the right of str.
For example, rtrim("xy
ZfooxyxyZ","xyZ")
returns "xyZfoo".

trim(str: string)

trim(str: string, trimChars:
string)

string If the function does not
have a second argument, it
removes white space from
both ends of the string. If
the function has a second
string argument, it does not
remove white space. Instead,
it removes the characters
of trimChars from both
sides of str. For example,
trim("xyZxyfooxyxy
Z","xyZ") returns "foo".

strlen(str: string) number Returns the length of the
string in Unicode code points.

toupper(str: string) string Converts the string to
uppercase.

Boolean, comparison, numeric, datetime, and other functions 93

Amazon CloudWatch Logs User Guide

Function Result type Description

tolower(str: string) string Converts the string to
lowercase.

substr(str: string, startIndex:
number)

substr(str: string, startIndex:
number, length: number)

string Returns a substring from the
index specified by the number
argument to the end of the
string. If the function has a
second number argument,
it contains the length of the
substring to be retrieved.
For example, substr("x
yZfooxyZ",3, 3) returns
"foo".

replace(fieldName: string,
searchValue: string, replaceVa
lue: string)

string Replaces all instances
of searchValue in
fieldName: string with
replaceValue .

For example, the function
replace(logGroup,"
smoke_test","Smoke
") searches for log events
where the field logGroup
contains the string value
smoke_test and replaces
the value with the string
Smoke.

strcontains(str: string, searchVal
ue: string)

number Returns 1 if str contains
searchValue and 0
otherwise.

Boolean, comparison, numeric, datetime, and other functions 94

Amazon CloudWatch Logs User Guide

Fields that contain special characters

You must surround log fields named in queries that include characters other than the @ symbol,
period (.), and non-alphanumeric characters in backtick keys (`). For example, the log field foo-
bar must be enclosed in backticks (`foo-bar`) because it contains a non-alphanumeric character,
the hyphen (-).

Use aliases and comments in queries

Create queries that contain aliases. Use aliases to rename log fields or when extracting values into
fields. Use the keyword as to give a log field or result an alias. You can use more than one alias in a
query. You can use aliases in the following commands:

• fields

• parse

• sort

• stats

The following examples show how to create queries that contain aliases.

Example

The query contains an alias in the fields command.

fields @timestamp, @message, accountId as ID
| sort @timestamp desc
| limit 20

The query returns the values for the fields @timestamp, @message, and accountId. The results
are sorted in descending order and limited to 20. The values for accountId are listed under the
alias ID.

Example

The query contains aliases in the sort and stats commands.

stats count(*) by duration as time

Fields that contain special characters 95

Amazon CloudWatch Logs User Guide

| sort time desc

The query counts the number of times the field duration occurs in the log group and sorts the
results in descending order. The values for duration are listed under the alias time.

Use comments

CloudWatch Logs Insights supports comments in queries. Use the hash character (#) to set off
comments. You can use comments to ignore lines in queries or document queries.

Example: Query

When the following query is run, the second line is ignored.

fields @timestamp, @message, accountId
| filter accountId not like "7983124201998"
| sort @timestamp desc
| limit 20

Pattern analysis

CloudWatch Logs Insights uses machine learning algorithms to find patterns when you query your
logs. A pattern is a shared text structure that recurs among your log fields. When you view the
results of a query, you can choose the Patterns tab to see the patterns that CloudWatch Logs
found based on a sample of your results. Alternatively, you can append the pattern command to
your query to analyze the patterns in the entire set of matching log events.

Patterns are useful for analyzing large log sets because a large number of log events can often be
compressed into a few patterns.

Consider the following sample of three log events.

2023-01-01 19:00:01 [INFO] Calling DynamoDB to store for resource id 12342342k124-12345
2023-01-01 19:00:02 [INFO] Calling DynamoDB to store for resource id 324892398123-12345
2023-01-01 19:00:03 [INFO] Calling DynamoDB to store for resource id 3ff231242342-12345

In the previous sample, all three log events follow one pattern:

<*> <*> [INFO] Calling DynamoDB to store for resource id <*>

Pattern analysis 96

Amazon CloudWatch Logs User Guide

Fields within a pattern are called tokens. Fields that vary within a pattern, such as a request ID or
timestamp, are dynamic tokens. Each dynamic token is represented by <*> when CloudWatch Logs
displays it.

Common examples of dynamic tokens include error codes, timestamps, and request IDs. A token
value represents a particular value of a dynamic token. For example, if a dynamic token represents
an HTTP error code, then a token value could be 501.

Pattern detection is also used in the CloudWatch Logs anomaly detector and compare features. For
more information, see Log anomaly detection and Compare (diff) with previous time ranges.

Getting started with pattern analysis

Pattern detection is automatically performed in any CloudWatch Logs Insights query. Queries that
don't include the pattern command get both log events and patterns in the results.

If you include the pattern command in your query, pattern analysis is performed on the entire
matched set of log events. This gives you more accurate pattern results, but the raw log events
are not returned when you use the pattern command. When a query doesn't include pattern,
the pattern results are based either on the first 1000 returned log events, or on the limit value you
used in your query. If you include pattern in the query, then the results displayed in the Patterns
tab are derived from all log events matched by the query.

To get started with pattern analysis in CloudWatch Logs Insights

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Logs, Logs Insights.

On the Logs Insights page, the query editor contains a default query that returns the 20 most
recent log events.

3. Remove the | limit 20 line in the query box, so that the query looks like the following:

fields @timestamp, @message, @logStream, @log
| sort @timestamp desc

4. In the Select log group(s) drop-down, choose one or more log groups to query.

5. (Optional) Use the time interval selector to select a time period that you want to query.

You can choose between 5-minute and 30-minute intervals; 1-hour, 3-hour, and 12-hour
intervals; or a custom time frame.

Getting started with pattern analysis 97

https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

6. Choose Run query to start the query.

When the query finishes running, the Logs tab displays a table of log events returned by the
query. Above the table is a message about how many records matched the query, similar to
Showing 1000 of 71,101 records matched.

7. Choose the Patterns tab.

8. The table now displays the patterns found in the query. Because the query did not include the
pattern command, this tab displays only the patterns discovered among the 1000 log events
that were shown in the table in the Logs tab.

For each pattern, the following information is displayed:

• The Pattern, with each dynamic token displayed as <*>.

• The Event count, which is the number of times that the pattern appeared in the queried log
events. Choose the Event count column heading to sort the patterns by frequency.

• The Event ratio, which is the percentage of the queried log events that contain this pattern.

• The Severity type, which will be one of the following:

• ERROR if the pattern contains the word Error.

• WARN if the pattern contains the word Warn but doesn't contain Error.

• INFO if the pattern doesn't contain either Warn or Error.

Choose the Severity info column heading to sort the patterns by severity.

9. Now change the query. Replace the | sort @timestamp desc line in the query with |
pattern @message, so that the complete query is as follows:

fields @timestamp, @message, @logStream, @log
| pattern @message

10. Choose Run query.

When the query finishes, there are no results in the Logs tab. However, the Patterns tab likely
has a larger number of patterns listed, depending on the total number of log events that were
queried.

11. Regardless of whether you included pattern in your query, you can further inspect the
patterns that the query returns. To do so, choose the icon in the Inspect column for one of the
patterns.

Getting started with pattern analysis 98

Amazon CloudWatch Logs User Guide

The Pattern inspect pane appears and displays the following:

• The Pattern. Select a token within the pattern to analyze that token's values.

• A histogram showing the number of occurrences of the pattern over the queried time range.
This can help you to identify interesting trends such as a sudden increase in occurrence of a
pattern.

• The Log samples tab displays a few of the log events that match the selected pattern.

• The Token Values tab displays the values of the selected dynamic token, if you have
selected one.

Note

A maximum of 10 token values is captured for each token. Token counts might not
be precise. CloudWatch Logs uses a probabilistic counter to generate the token
count, not the absolute value.

• The Related patterns tab displays other patterns that frequently occurred near the same
time as the pattern that you are inspecting. For example, if a pattern for an ERROR message
was usually accompanied by another log event marked as INFO with additional details, that
pattern is displayed here.

Details about the pattern command

This section contains more details about the pattern command and its uses.

• In the previous tutorial, we removed the sort command when we added pattern because a
query is not valid if it includes a pattern command after a sort command. It is valid to have a
pattern before a sort.

For more details about pattern syntax, see pattern.

• When you use pattern in a query, @message must be one of the fields selected in the pattern
command.

• You can include the filter command before a pattern command to cause only the filtered set
of log events to be used as input for pattern analysis.

• To see pattern results for a particular field, such as a field derived from the parse command, use
pattern @fieldname.

Details about the pattern command 99

Amazon CloudWatch Logs User Guide

• Queries with non-log output, such as queries with the stats command, do not return pattern
results.

Compare (diff) with previous time ranges

You can use CloudWatch Logs Insights to compare changes in your log events over time. You can
compare the log events ingested during a recent time range with the logs from the immediately
previous time period. Alternatively, you can compare with similar past time periods. This can help
you find whether an error in your logs was recently introduced or was already occurring, and can
help you find other trends.

Comparison queries return only patterns in the results, not raw log events. The patterns returned
will help you quickly see the trends and changes in the log events over time. After you run a
comparison query and have the pattern results, you can see sample raw log events for the patterns
that you're interested in. For more information about log patterns, see Pattern analysis.

When you run a comparison query, your query is analyzed against two different time periods: the
original query period that you select, and the comparison period. The comparison period is always
of equal length to your original query period. The default time intervals for the comparisons are
the following.

• Previous period— Compares to the time period immediately before your query time period.

• Previous day— Compares to the time period one day before your query time period.

• Previous week— Compares to the time period one week before your query time period.

• Previous month— Compares to the time period one month before your query time period.

Note

Queries using comparisons incur charges similar to running a single CloudWatch Logs
Insights query over the combined time range. For more information, see Amazon
CloudWatch Pricing.

To run a comparison query

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

Compare (diff) with previous time ranges 100

https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

2. In the navigation pane, choose Logs, Logs Insights.

A default query appears in the query box.

3. Keep the default query or enter a different query.

4. In the Select log group(s) drop-down, choose one or more log groups to query.

5. (Optional) Use the time interval selector to select a time period that you want to query. The
default query is for the previous hour of log data.

6. By the time range selector, choose Compare. Then choose the previous time period that you
want to compare the original logs with, and choose Apply.

7. Choose Run query.

To cause the query to fetch the data from the comparison period, the diff command is
appended to your query.

8. Choose the Patterns tab to see the results.

The table displays the following information:

• Each Pattern, with variable parts of the pattern replaced by the dynamic token symbol <*>.
For more information, see Pattern analysis.

• Event count is the number of log events with that pattern in the original, more current time
period.

• Difference event count is the difference between the number of matching log events in the
current time period versus the comparison time period. A positive different means there are
more such events in the current time period.

• Difference description briefly summarizes the change in that pattern between the current
time period and the comparison period.

• Severity type is the probable severity of the logs events with this pattern, based on words
found in the log events such as FATAL, ERROR, and WARN.

9. To further inspect one of the patterns in the list, choose the icon in the Inspect column for one
of the patterns.

The Pattern inspect pane appears and displays the following:

• The Pattern. Select a token within the pattern to analyze that token's values.

Compare (diff) with previous time ranges 101

Amazon CloudWatch Logs User Guide

• A histogram showing the number of occurrences of the pattern over the queried time range.
This can help you to identify interesting trends such as a sudden increase in occurrence of a
pattern.

• The Log samples tab displays a few of the log events that match the selected pattern.

• The Token Values tab displays the values of the selected dynamic token, if you have
selected one.

Note

A maximum of 10 token values is captured for each token. Token counts might not
be precise. CloudWatch Logs uses a probabilistic counter to generate the token
count, not the absolute value.

• The Related patterns tab displays other patterns that frequently occurred near the same
time as the pattern that you are inspecting. For example, if a pattern for an ERROR message
was usually accompanied by another log event marked as INFO with additional details, that
pattern is displayed here.

Sample queries

This section contains a list of general and useful query commands that you can run in the
CloudWatch console. For information about how to run a query command, see Tutorial: Run and
modify a sample query in the Amazon CloudWatch Logs User Guide.

For more information about query syntax, see CloudWatch Logs Insights query syntax.

Topics

• General queries

• Queries for Lambda logs

• Queries for Amazon VPC flow logs

• Queries for Route 53 logs

• Queries for CloudTrail logs

• Queries for Amazon API Gateway

• Queries for NAT gateway

• Queries for Apache server logs

Sample queries 102

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/en_us/AmazonCloudWatch/latest/logs/CWL_AnalyzeLogData_RunSampleQuery.html
https://docs.aws.amazon.com/en_us/AmazonCloudWatch/latest/logs/CWL_AnalyzeLogData_RunSampleQuery.html

Amazon CloudWatch Logs User Guide

• Queries for Amazon EventBridge

• Examples of the parse command

General queries

Find the 25 most recently added log events.

fields @timestamp, @message | sort @timestamp desc | limit 25

Get a list of the number of exceptions per hour.

filter @message like /Exception/
 | stats count(*) as exceptionCount by bin(1h)
 | sort exceptionCount desc

Get a list of log events that aren't exceptions.

fields @message | filter @message not like /Exception/

Get the most recent log event for each unique value of the server field.

fields @timestamp, server, severity, message
| sort @timestamp asc
| dedup server

Get the most recent log event for each unique value of the server field for each severity
type.

fields @timestamp, server, severity, message
| sort @timestamp desc
| dedup server, severity

Queries for Lambda logs

Determine the amount of overprovisioned memory.

filter @type = "REPORT"

General queries 103

Amazon CloudWatch Logs User Guide

 | stats max(@memorySize / 1000 / 1000) as provisonedMemoryMB,
 min(@maxMemoryUsed / 1000 / 1000) as smallestMemoryRequestMB,
 avg(@maxMemoryUsed / 1000 / 1000) as avgMemoryUsedMB,
 max(@maxMemoryUsed / 1000 / 1000) as maxMemoryUsedMB,
 provisonedMemoryMB - maxMemoryUsedMB as overProvisionedMB

Create a latency report.

filter @type = "REPORT" |
 stats avg(@duration), max(@duration), min(@duration) by bin(5m)

Search for slow function invocations, and eliminate duplicate requests that can arise from
retries or client-side code. In this query, @duration is in milliseconds.

fields @timestamp, @requestId, @message, @logStream
| filter @type = "REPORT" and @duration > 1000
| sort @timestamp desc
| dedup @requestId
| limit 20

Queries for Amazon VPC flow logs

Find the top 15 packet transfers across hosts:

stats sum(packets) as packetsTransferred by srcAddr, dstAddr
 | sort packetsTransferred desc
 | limit 15

Find the top 15 byte transfers for hosts on a given subnet.

filter isIpv4InSubnet(srcAddr, "192.0.2.0/24")
 | stats sum(bytes) as bytesTransferred by dstAddr
 | sort bytesTransferred desc
 | limit 15

Find the IP addresses that use UDP as a data transfer protocol.

Queries for Amazon VPC flow logs 104

Amazon CloudWatch Logs User Guide

filter protocol=17 | stats count(*) by srcAddr

Find the IP addresses where flow records were skipped during the capture window.

filter logStatus="SKIPDATA"
 | stats count(*) by bin(1h) as t
 | sort t

Find a single record for each connection, to help troubleshoot network connectivity issues.

fields @timestamp, srcAddr, dstAddr, srcPort, dstPort, protocol, bytes
| filter logStream = 'vpc-flow-logs' and interfaceId = 'eni-0123456789abcdef0'
| sort @timestamp desc
| dedup srcAddr, dstAddr, srcPort, dstPort, protocol
| limit 20

Queries for Route 53 logs

Find the distribution of records per hour by query type.

stats count(*) by queryType, bin(1h)

Find the 10 DNS resolvers with the highest number of requests.

stats count(*) as numRequests by resolverIp
 | sort numRequests desc
 | limit 10

Find the number of records by domain and subdomain where the server failed to complete the
DNS request.

filter responseCode="SERVFAIL" | stats count(*) by queryName

Queries for CloudTrail logs

Find the number of log entries for each service, event type, and AWS Region.

Queries for Route 53 logs 105

Amazon CloudWatch Logs User Guide

stats count(*) by eventSource, eventName, awsRegion

Find the Amazon EC2 hosts that were started or stopped in a given AWS Region.

filter (eventName="StartInstances" or eventName="StopInstances") and awsRegion="us-
east-2"

Find the AWS Regions, user names, and ARNs of newly created IAM users.

filter eventName="CreateUser"
 | fields awsRegion, requestParameters.userName, responseElements.user.arn

Find the number of records where an exception occurred while invoking the API UpdateTrail.

filter eventName="UpdateTrail" and ispresent(errorCode)
 | stats count(*) by errorCode, errorMessage

Find log entries where TLS 1.0 or 1.1 was used

filter tlsDetails.tlsVersion in ["TLSv1", "TLSv1.1"]
| stats count(*) as numOutdatedTlsCalls by userIdentity.accountId, recipientAccountId,
 eventSource, eventName, awsRegion, tlsDetails.tlsVersion, tlsDetails.cipherSuite,
 userAgent
| sort eventSource, eventName, awsRegion, tlsDetails.tlsVersion

Find the number of calls per service that used TLS versions 1.0 or 1.1

filter tlsDetails.tlsVersion in ["TLSv1", "TLSv1.1"]
| stats count(*) as numOutdatedTlsCalls by eventSource
| sort numOutdatedTlsCalls desc

Queries for Amazon API Gateway

Find the last 10 4XX errors

Queries for Amazon API Gateway 106

Amazon CloudWatch Logs User Guide

fields @timestamp, status, ip, path, httpMethod
| filter status>=400 and status<=499
| sort @timestamp desc
| limit 10

Identify the 10 longest-running Amazon API Gateway requests in your Amazon API Gateway access
log group

fields @timestamp, status, ip, path, httpMethod, responseLatency
| sort responseLatency desc
| limit 10

Return the list of the most popular API paths in your Amazon API Gateway access log group

stats count(*) as requestCount by path
| sort requestCount desc
| limit 10

Create an integration latency report for your Amazon API Gateway access log group

filter status=200
| stats avg(integrationLatency), max(integrationLatency),
min(integrationLatency) by bin(1m)

Queries for NAT gateway

If you notice higher than normal costs in your AWS bill, you can use CloudWatch Logs Insights to
find the top contributors. For more information about the following query commands, see How
can I find the top contributors to traffic through the NAT gateway in my VPC? at the AWS premium
support page.

Note

In the following query commands, replace "x.x.x.x" with the private IP of your NAT gateway,
and replace "y.y" with the first two octets of your VPC CIDR range.

Find the instances that are sending the most traffic through your NAT gateway.

Queries for NAT gateway 107

https://aws.amazon.com/premiumsupport/knowledge-center/vpc-find-traffic-sources-nat-gateway/
https://aws.amazon.com/premiumsupport/knowledge-center/vpc-find-traffic-sources-nat-gateway/

Amazon CloudWatch Logs User Guide

filter (dstAddr like 'x.x.x.x' and srcAddr like 'y.y.')
| stats sum(bytes) as bytesTransferred by srcAddr, dstAddr
| sort bytesTransferred desc
| limit 10

Determine the traffic that's going to and from the instances in your NAT gateways.

filter (dstAddr like 'x.x.x.x' and srcAddr like 'y.y.') or (srcAddr like 'xxx.xx.xx.xx'
 and dstAddr like 'y.y.')
| stats sum(bytes) as bytesTransferred by srcAddr, dstAddr
| sort bytesTransferred desc
| limit 10

Determine the internet destinations that the instances in your VPC communicate with most
often for uploads and downloads.

For uploads

filter (srcAddr like 'x.x.x.x' and dstAddr not like 'y.y.')
| stats sum(bytes) as bytesTransferred by srcAddr, dstAddr
| sort bytesTransferred desc
| limit 10

For downloads

filter (dstAddr like 'x.x.x.x' and srcAddr not like 'y.y.')
| stats sum(bytes) as bytesTransferred by srcAddr, dstAddr
| sort bytesTransferred desc
| limit 10

Queries for Apache server logs

You can use CloudWatch Logs Insights to query Apache server logs. For more information about
the following queries, see Simplifying Apache server logs with CloudWatch Logs Insights at the
AWS Cloud Operations & Migrations Blog.

Find the most relevant fields, so you can review your access logs and check for traffic in the /
admin path of your application.

fields @timestamp, remoteIP, request, status, filename| sort @timestamp desc

Queries for Apache server logs 108

https://aws.amazon.com/blogs/mt/simplifying-apache-server-logs-with-amazon-cloudwatch-logs-insights/

Amazon CloudWatch Logs User Guide

| filter filename="/var/www/html/admin"
| limit 20

Find the number unique GET requests that accessed your main page with status code
"200" (success).

fields @timestamp, remoteIP, method, status
| filter status="200" and referrer= http://34.250.27.141/ and method= "GET"
| stats count_distinct(remoteIP) as UniqueVisits
| limit 10

Find the number of times your Apache service restarted.

fields @timestamp, function, process, message
| filter message like "resuming normal operations"
| sort @timestamp desc
| limit 20

Queries for Amazon EventBridge

Get the number of EventBridge events grouped by event detail type

fields @timestamp, @message
| stats count(*) as numberOfEvents by `detail-type`
| sort numberOfEvents desc

Examples of the parse command

Use a glob expression to extract the fields @user, @method, and @latency from the log field
@message and return the average latency for each unique combination of @method and @user.

parse @message "user=*, method:*, latency := *" as @user,
 @method, @latency | stats avg(@latency) by @method,
 @user

Use a regular expression to extract the fields @user2, @method2, and @latency2 from the log
field @message and return the average latency for each unique combination of @method2 and
@user2.

Queries for Amazon EventBridge 109

Amazon CloudWatch Logs User Guide

parse @message /user=(?<user2>.*?), method:(?<method2>.*?),
 latency := (?<latency2>.*?)/ | stats avg(latency2) by @method2,
 @user2

Extracts the fields loggingTime, loggingType and loggingMessage, filters down to log
events that contain ERROR or INFO strings, and then displays only the loggingMessage and
loggingType fields for events that contain an ERROR string.

FIELDS @message
 | PARSE @message "* [*] *" as loggingTime, loggingType, loggingMessage
 | FILTER loggingType IN ["ERROR", "INFO"]
 | DISPLAY loggingMessage, loggingType = "ERROR" as isError

Visualize log data in graphs

You can use visualizations such as bar charts, line charts, and stacked area charts to more
efficiently identify patterns in your log data. CloudWatch Logs Insights generates visualizations for
queries that use the stats function and one or more aggregation functions. For more information,
see stats.

Save and re-run CloudWatch Logs Insights queries

After you create a query, you can save it, and run it again later. Queries are saved in a folder
structure, so you can organize them. You can save as many as 1000 queries per region and per
account.

To save a query, you must be logged into a role that has the permission
logs:PutQueryDefinition. To see a list of your saved queries, you must be logged into a role
that has the permissionlogs:DescribeQueryDefinitions.

To save a query

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Logs, and then choose Logs Insights.

3. In the query editor, create a query.

4. Choose Save.

Visualize log data in graphs 110

https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

If you don't see a Save button, you need to change to the new design for the CloudWatch Logs
console. To do so:

a. In the navigation pane, choose Log groups.

b. Choose Try the new design.

c. In the navigation pane, choose Insights and return to step 3 of this procedure.

5. Enter a name for the query.

6. (Optional) Choose a folder where you want to save the query. Select Create new to create a
folder. If you create a new folder, you can use slash (/) characters in the folder name to define
a folder structure. For example, naming a new folder folder-level-1/folder-level-2
creates a top-level folder called folder-level-1, with another folder called folder-
level-2 inside that folder. The query is saved in folder-level-2.

7. (Optional) Change the query's log groups or query text.

8. Choose Save.

Tip

You can create a folder for saved queries with PutQueryDefinition. To create a folder
for your saved queries, use a forward slash (/) to prefix your desired query name with your
desired folder name: <folder-name>/<query-name>. For more information about this
action, see PutQueryDefinition.

To run a saved query

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Logs, and then choose Logs Insights.

3. On the right, choose Queries.

4. Select your query from Saved queries list. It appears in the query editor.

5. Choose Run.

To save a new version of a saved query

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

Save and re-run queries 111

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutQueryDefinition.html
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

2. In the navigation pane, choose Logs, and then choose Logs Insights.

3. On the right, choose Queries.

4. Select your query from Saved queries list. It appears in the query editor.

5. Modify the query. If you need to run it to check your work, choose Run query.

6. When you are ready to save the new version, choose Actions, Save as.

7. Enter a name for the query.

8. (Optional) Choose a folder where you want to save the query. Select Create new to create a
folder. If you create a new folder, you can use slash (/) characters in the folder name to define
a folder structure. For example, naming a new folder folder-level-1/folder-level-2
creates a top-level folder called folder-level-1, with another folder called folder-
level-2 inside that folder. The query is saved in folder-level-2.

9. (Optional) Change the query's log groups or query text.

10. Choose Save.

To delete a query, you must be logged in to a role that has the logs:DeleteQueryDefinition
permission.

To edit or delete a saved query

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Logs, and then choose Logs Insights.

3. On the right, choose Queries.

4. Select your query from Saved queries list. It appears in the query editor.

5. Choose Actions, Edit or Actions, Delete.

Add query to dashboard or export query results

After you run a query, you can add the query to a CloudWatch dashboard or copy the results to the
clipboard.

Queries added to dashboards run every time you load the dashboard and every time that the
dashboard refreshes. These queries count toward your limit of 30 concurrent CloudWatch Logs
Insights queries.

Add query to dashboard or export query results 112

https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

To add query results to a dashboard

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Logs, and then choose Logs Insights.

3. Choose one or more log groups and run a query.

4. Choose Add to dashboard.

5. Select the dashboard, or choose Create new to create a dashboard for the query results.

6. Select the widget type to use for the query results.

7. Enter a name for the widget.

8. Choose Add to dashboard.

To copy query results to the clipboard or download the query results

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Logs, and then choose Logs Insights.

3. Choose one or more log groups and run a query.

4. Choose Export results, and then choose the option you want.

View running queries or query history

You can view the queries currently in progress as well as your recent query history.

Queries currently running includes queries you have added to a dashboard. You are limited to 30
concurrent CloudWatch Logs Insights queries per account, including queries added to dashboards.

To view your recent query history

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Logs, and then choose Logs Insights.

3. Choose History, if you are using the new design for the CloudWatch Logs console. If you are
using the old design, choose Actions, View query history for this account.

A list of your recent queries appears. You can run any of them again by selecting the query and
choosing Run.

Under Status, CloudWatch Logs displays In progress for any queries that are currently running.

View running queries or query history 113

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

Encrypt query results with AWS Key Management Service

By default, CloudWatch Logs encrypts the stored results of your CloudWatch Logs Insights queries
using the default CloudWatch Logs server-side encryption method. You can choose to use a AWS
KMS key to encrypt these results instead. If you associate a AWS KMS key with your encryption
results, then CloudWatch Logs uses that key to encrypt the stored results of all queries in the
account.

If you later disassociate a the key from your query results, CloudWatch Logs goes back to the
default encryption method for later queries. But the queries that ran while the key was associated
are still encrypted with that key. CloudWatch Logs can still return those results after the KMS key
is disassociated, because CloudWatch Logs can still continue to reference the key. However, if the
key is later disabled, then CloudWatch Logs is unable to read the query results that were encrypted
with that key.

Important

CloudWatch Logs supports only symmetric KMS keys. Do not use an asymmetric key to
encrypt your query results. For more information, see Using Symmetric and Asymmetric
Keys.

Limits

• To perform the following steps, you must have the following permissions: kms:CreateKey,
kms:GetKeyPolicy, and kms:PutKeyPolicy.

• After you associate or disassociate a key from your query results, it can take up to five minutes
for the operation to take effect.

• If you revoke CloudWatch Logs access to an associated key or delete an associated KMS key, your
encrypted data in CloudWatch Logs can no longer be retrieved.

• You can't use the CloudWatch console to associate a key, you must use the AWS CLI or
CloudWatch Logs API.

Step 1: Create an AWS KMS key

To create a KMS key use the following create-key command:

Encrypt query results with AWS Key Management Service 114

https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html
https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html
https://docs.aws.amazon.com/cli/latest/reference/kms/create-key.html

Amazon CloudWatch Logs User Guide

aws kms create-key

The output contains the key ID and Amazon Resource Name (ARN) of the key. The following is
example output:

{
 "KeyMetadata": {
 "Origin": "AWS_KMS",
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "Description": "",
 "KeyManager": "CUSTOMER",
 "Enabled": true,
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "KeyState": "Enabled",
 "CreationDate": 1478910250.94,
 "Arn": "arn:aws:kms:us-west-2:123456789012:key/6f815f63-e628-448c-8251-
e40cb0d29f59",
 "AWSAccountId": "123456789012",
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
]
 }
}

Step 2: Set permissions on the KMS key

By default, all KMS keys are private. Only the resource owner can use it to encrypt and decrypt
data. However, the resource owner can grant permissions to access the key to other users and
resources. With this step, you give the CloudWatch Logs service principal permission to use the key.
This service principal must be in the same AWS Region where the key is stored.

As a best practice, we recommend that you restrict the use of the key to only those AWS accounts
that you specify.

First, save the default policy for your KMS key as policy.json using the following get-key-policy
command:

aws kms get-key-policy --key-id key-id --policy-name default --output text > ./
policy.json

Step 2: Set permissions on the KMS key 115

https://docs.aws.amazon.com/cli/latest/reference/kms/get-key-policy.html

Amazon CloudWatch Logs User Guide

Open the policy.json file in a text editor and add the section in bold from one of the following
statements. Separate the existing statement from the new statement with a comma. These
statements use Condition sections to enhance the security of the AWS KMS key. For more
information, see AWS KMS keys and encryption context.

The Condition section in this example limits the use of the AWS KMS key to the CloudWatch Logs
Insights query results in the specified account.

{
 "Version": "2012-10-17",
 "Id": "key-default-1",
 "Statement": [
 {
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::account_ID:root"
 },
 "Action": "kms:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.region.amazonaws.com"
 },
 "Action": [
 "kms:Encrypt*",
 "kms:Decrypt*",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:Describe*"
],
 "Resource": "*",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:logs:region:account_ID:query-result:*"
 },
 "StringEquals": {
 "aws:SourceAccount": "Your_account_ID"
 }
 }
 }

Step 2: Set permissions on the KMS key 116

Amazon CloudWatch Logs User Guide

]
}

Finally, add the updated policy using the following put-key-policy command:

aws kms put-key-policy --key-id key-id --policy-name default --policy file://
policy.json

Step 3: Associate a KMS key with your query results

To associate the KMS key with the query results in the account

Use the disassociate-kms-key command as follows:

aws logs associate-kms-key --resource-identifier "arn:aws:logs:region:account-id:query-
result:*" --kms-key-id "key-arn"

Step 4: Disassociate a key from query results in the account

To disassociate the KMS key associated with query results, use the following disassociate-kms-key
command:

aws logs disassociate-kms-key --resource-identifier "arn:aws:logs:region:account-
id:query-result:*"

Use natural language to generate and update CloudWatch Logs
Insights queries

This feature is in preview release in US East (N. Virginia), US West (Oregon), and Asia Pacific
(Tokyo) for CloudWatch Logs and is subject to change.

CloudWatch Logs supports a natural language query capability to help you generate and update
queries for CloudWatch Logs Insights and CloudWatch Metrics Insights.

With this capability, you can ask questions about or describe the CloudWatch Logs data you're
looking for in plain English. The natural language capability generates a query based on a prompt

Step 3: Associate a KMS key with your query results 117

https://docs.aws.amazon.com/cli/latest/reference/kms/put-key-policy.html
https://docs.aws.amazon.com/cli/latest/reference/logs/disassociate-kms-key.html
https://docs.aws.amazon.com/cli/latest/reference/logs/disassociate-kms-key.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/query_with_cloudwatch-metrics-insights.html

Amazon CloudWatch Logs User Guide

that you enter and provides a line-by-line explanation of how the query works. You can also update
your query to further investigate your data.

Depending on your environment, you can enter prompts like "What are the top 100 source IP
addresses by bytes transferred?" and "Find the 10 slowest Lambda function requests."

To generate a CloudWatch Logs Insights query with this capability, open the CloudWatch Logs
Insights query editor, select the log group you want to query, and choose Generate query.

Important

To use the natural language query capability, you must use the CloudWatchLogsFullAccess,
CloudWatchLogsReadOnlyAccess, AdministratorAccess, or ReadOnlyAccess policy.
You can also include the cloudwatch:GenerateQuery action in a new or existing
customer managed or inline policy.

Example queries

The examples in this section describe how to generate and update queries using the natural
language capability.

Note

For more information on the CloudWatch Logs Insights query editor and syntax, see
CloudWatch Logs Insights query syntax.

Example: Generate a natural language query

To generate a query using natural language, enter a prompt and choose Generate new query. This
example shows a query that performs a basic search.

Prompt

The following is an example of a prompt that directs the capability to search for the 10 slowest
Lambda function invocations.

Find the 10 slowest requests

Example queries 118

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/CloudWatchLogsFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/CloudWatchLogsReadOnlyAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AdministratorAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/ReadOnlyAccess.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html

Amazon CloudWatch Logs User Guide

Query

The following is an example of a query that the natural language capability generates based on the
prompt. Notice how the prompt appears in a comment before the query. After the query, you can
read an explanation that describes how the query works.

Find the 10 slowest requests
fields @timestamp, @message, @duration
| sort @duration desc
| limit 10
This query retrieves the timestamp, message and duration fields from the logs and
 sorts them in descending order by duration to find the 10 slowest requests.

Note

To turn off the appearance of your prompt and the explanation of how the query works,
use the gear icon in your editor.

Example: Update a natural language query

You can update a query by editing the initial prompt and then choosing Update query.

Updated prompt

The following example shows an updated version of the previous prompt. Instead of a prompt that
searches for the 10 slowest Lambda function invocations, this prompt now directs the capability to
search for the 20 slowest Lambda function invocations and include another column for additional
log events.

Show top 20 slowest requests instead and display requestId as a column

Updated query

The following is an example of the updated query. Notice how the updated prompt appears in a
comment before the updated query. After the query, you can read an explanation that describes
how the original query has been updated.

Show top 20 slowest requests instead and display requestId as a column
fields @timestamp, @message, @requestId, @duration

Example queries 119

Amazon CloudWatch Logs User Guide

| sort @duration desc
| limit 20
This query modifies the original query by replacing the @message field with the
 @requestId field and changing the limit from 10 to 20 to return the top 20 log events
 by duration instead of the top 10.

Opting out of using your data for service improvement

The natural language prompt data you provide to train the AI model and generate relevant queries
is used solely to provide and maintain your service. This data might be used to improve the quality
of CloudWatch Logs Insights. Your trust and privacy, as well as the security of your content, is our
highest priority. For more information, see AWS Service Terms and AWS responsible AI policy.

You can opt out of having your content used to develop or improve the quality of natural language
queries by creating an AI service opt-out policy. To opt-out of data collection for all CloudWatch
Logs AI features, including the query generation capability, you must create an opt-out policy for
CloudWatch Logs. For more information, see AI services opt-out policies in the AWS Organizations
User Guide.

Opting out of using your data for service improvement 120

https://aws.amazon.com/service-terms/
https://aws.amazon.com/machine-learning/responsible-ai/policy/
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_ai-opt-out.html

Amazon CloudWatch Logs User Guide

Log anomaly detection

You can create a log anomaly detector for each log group. The anomaly detector scans the log
events ingested into the log group and find anomalies in the log data. Anomaly detection uses
machine-learning and pattern recognition to establish baselines of typical log content.

After you create an anomaly detector for a log group, it trains using the past two weeks of log
events in the log group for training. The training period can take up to 15 minutes. After the
training is complete, it begins to analyze incoming logs to identify anomalies, and the anomalies
are displayed in the CloudWatch Logs console for you to examine.

CloudWatch Logs pattern recognition extracts log patterns by identifying static and dynamic
content in your logs. Patterns are useful for analyzing large log sets because a large number of log
events can often be compressed into a few patterns.

For example, see the following sample of three log events.

2023-01-01 19:00:01 [INFO] Calling DynamoDB to store for resource id 12342342k124-12345
2023-01-01 19:00:02 [INFO] Calling DynamoDB to store for resource id 324892398123-12345
2023-01-01 19:00:03 [INFO] Calling DynamoDB to store for resource id 3ff231242342-12345

In the previous sample, all three log events follow one pattern:

<*> <*> [INFO] Calling DynamoDB to store for resource id <*>

Fields within a pattern are called tokens. Fields that vary within a pattern, such as a request ID
or timestamp, are referred to as dynamic tokens. Dynamic tokens are represented by <*> when
CloudWatch Logs displays the pattern. Each different value found for a dynamic token is called a
token value.

Common examples of dynamic tokens include error codes, timestamps, and request IDs.

Logs anomaly detection uses these patterns to find anomalies. After the anomaly detector model
training period, logs are evaluated against known trends. The anomaly detector flags significant
fluctuations as anomalies.

Creating log anomaly detectors doesn't incur charges.

121

Amazon CloudWatch Logs User Guide

Severity and priority of anomalies and patterns

Each anomaly found by a log anomaly detector is assigned a priority. Each pattern found is
assigned a severity.

• Priority is automatically computed, and is based on both the severity level of the pattern and
the amount of deviation from expected values. For example, if a certain token value suddenly
increases by 500%, that anomaly might be designated as HIGH priority even if its severity is
NONE.

• Severity is based only on keywords found in the patterns such as FATAL, ERROR, and WARN. If
none of these keywords are found, the severity of a pattern is marked as NONE.

Anomaly visibility time

When you create an anomaly detector, you specify the maximum anomaly visibility period for
it. This is the number of days that the anomaly is displayed in the console and is returned by the
ListAnomalies API operation. After this time period has elapsed for an anomaly, if it continues to
happen, it's automatically accepted as regular behavior and the anomaly detector model stops
flagging it as an anomaly.

If you don't adjust the visibility time when you create an anomaly detector, 21 days is used as the
default.

Suppressing an anomaly

After an anomaly has been found, you can choose to suppress it temporarily or permanently.
Suppressing an anomaly causes the anomaly detector to stop flagging this occurrence as an
anomaly for the amount of time that you specify. When you suppress an anomaly, you can choose
to suppress only that specific anomaly, or suppress all anomalies related to the pattern that the
anomaly was found in.

You can still view suppressed anomalies in the console. You can also choose to stop suppressing
them.

Severity and priority of anomalies and patterns 122

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_ListAnomalies.html

Amazon CloudWatch Logs User Guide

Frequently asked questions

Does AWS use my data to train machine-learning algorithms for AWS use or for other
customers?

No. The anomaly detection model created by the training is based on the log events in a log group
and is used only within that log group and that AWS account.

What types of log events work well with anomaly detection?

Log anomaly detection is well-suited for: Application logs and other types of logs where most
log entries fit typical patterns. Log groups with events that contain a log level or severity keywords
such as INFO, ERROR, and DEBUG are especially well-suited to log anomaly detection.

Log anomaly detection is not suited for: Log events with extremely long JSON structures, such as
CloudTrail Logs. Pattern analysis analyzes only up to the first 1500 characters of a log line, so any
characters beyond that limit are skipped.

Audit or access logs, such as VPC flow logs, will also have less success with anomaly detection.
Anomaly detection is meant to find application issues, so it might not be well-suited for network or
access anomalies.

To help you determine whether an anomaly detector is suited to a certain log group, use
CloudWatch Logs pattern analysis to find the number of patterns in the log events in the group. If
the number of patterns is no more than about 300, anomaly detection might work well. For more
information about pattern analysis, see Pattern analysis.

What gets flagged as an anomaly?

The following occurrences can cause a log event to be flagged as an anomaly:

• A log event with a pattern not seen before in the log group.

• A significant variation to a known pattern.

• A new value for a dynamic token that has a discrete set of usual values.

• A large change in the number of occurrences of a value for a dynamic token.

While all the preceding items might be flagged as anomalies, they don't all mean that the
application is performing poorly. For example, a higher-than-usual number of 200 success values
might be flagged as an anomaly. In cases like this, you might consider suppressing these anomalies
that don't indicate problems.

Frequently asked questions 123

Amazon CloudWatch Logs User Guide

What happens with sensitive data that is being masked?

Any parts of log events that are masked as sensitive data are not scanned for anomalies. For more
information about masking sensitive data, see Help protect sensitive log data with masking.

Enable anomaly detection on a log group

Use the following steps to use the CloudWatch console to create a log anomaly detector that scans
a log group for anomalies.

You can also create anomaly detectors programmatically. For more information, see
CreateLogAnomalyDetector.

To create a log anomaly detector

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Choose Logs, Log Anomalies.

3. Choose Create anomaly detector.

4. Select the log group to create this anomaly detector for.

5. Enter a name for the detector in Anomaly detector name.

6. (Optional) Change the Evaluation frequency from the default of 5 minutes. Set this value
according to the frequency that the log group receives new logs. For example, if the log group
receives new log events in batches every 10 minutes, then setting the evaluation frequency to
15 minutes might be appropriate.

7. (Optional) To configure the anomaly detector to look for anomalies only in log events that
contain certain words or strings, choose Filter patterns.

Then, enter a pattern in Anomaly detection filter pattern. For more information about
pattern syntax, Filter pattern syntax for metric filters, subscription filters, filter log events, and
Live Tail.

(Optional) To test your filter pattern, enter some log messages into Log event messages and
then choose Test Pattern.

8. (Optional) To change the anomaly visibility period from the default or to associate an AWS
KMS key with this anomaly detector, choose Advanced configuration.

a. To change the anomaly visibility period from the default, enter a new value in Maximum
anomaly visibility period (days).

Enable anomaly detection on a log group 124

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/mask-sensitive-log-data.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogAnomalyDetector.html
https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

b. To associate an AWS KMS key with this anomaly detector, enter the ARN in KMS key ARN.
If you assign a key, the anomaly information found by this detector is encrypted at rest
with the key. Users must have permissions for this key and for the anomaly detector to
retrieve information about the anomalies that it finds.

You must also ensure that the CloudWatch Logs service principal has permission to use
the key. For more information, see Encrypt an anomaly detector and its results with AWS
KMS.

9. Choose Enable Anomaly Detection.

The anomaly detector is created and starts training its model, based on the log events the log
group is ingesting. After about 15 minutes, anomaly detection is active and begins to find and
surface anomalies.

View anomalies that have been found

After you create one or more log anomaly detectors, you can use the CloudWatch console to view
the anomalies that they have found.

You can view anomalies programmatically. For more information, see ListAnomalies.

To view the anomalies found by all of your log anomaly detectors

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Choose Logs, Log Anomalies.

The Logs anomalies table appears. The number at the top next to Log anomalies displays
how many log anomalies are listed in the table. Each row in the table displays the following
information:

• The Anomaly column displays a short summary of the anomaly. These summaries are
generated by CloudWatch Logs.

• The Priority of the anomaly. Priority is automatically computed based on the amount of
change in the log events, key words such as Exception occurring in a log event, and more.

• The Log pattern that the anomaly is based on. For more information about patterns, see
Log anomaly detection.

• Anomaly log trend displays a histogram depicting the volume of logs matching the pattern.

View anomalies that have been found 125

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_ListAnomalies.html
https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

• Last detection time displays the most recent time that this anomaly was found.

• First detection time displays the first time that this anomaly was found.

• Anomaly detector displays the name of the log group containing the log events related to
this anomaly. You can choose this name to see the log group details page.

3. To further inspect one anomaly, choose the radio button in its row.

The Pattern inspect pane appears and displays the following:

• The Pattern that this anomaly is based on. Select a token within the pattern to analyze that
token's values.

• A histogram showing the number of occurrences of the anomaly over the queried time
range.

• The Log samples tab displays a few of the log events that are part of the anomaly.

• The Token Values tab displays the values of the selected dynamic token, if you have
selected one.

Note

A maximum of 10 token values is captured for each token. Token counts might not
be precise. CloudWatch Logs uses a probabilistic counter to generate the token
count, not the absolute value.

4. To suppress an anomaly, choose the radio button in its row and then do the following:

a. Choose Actions, Suppress Anomaly.

b. Then specify how long you want the anomaly to be suppressed.

c. To suppress all anomalies related to this pattern, select Suppress Pattern.

d. Choose Suppress anomaly.

To view the anomalies found in a single log group

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Choose Logs, Log groups.

3. Choose the name of a log group, and then choose the Anomaly detection tab.

View anomalies that have been found 126

https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

The Anomaly detection table appears. The number at the top next to Log anomalies displays
how many log anomalies are listed in the table. Each row in the table displays the following
information:

• The Anomaly column displays a short summary of the anomaly. These summaries are
generated by CloudWatch Logs.

• The Priority of the anomaly. Priority is automatically computed based on the amount of
change in the log events, key words such as Exception occurring in a log event, and more.

• The Log pattern that the anomaly is based on. For more information about patterns, see
Log anomaly detection.

• Anomaly log trend displays a histogram depicting the volume of logs matching the pattern.

• Last detection time displays the most recent time that this anomaly was found.

• First detection time displays the first time that this anomaly was found.

4. To further inspect one anomaly, choose the radio button in its row.

The Pattern inspect pane appears and displays the following:

• The Pattern that this anomaly is based on. Select a token within the pattern to analyze that
token's values.

• A histogram showing the number of occurrences of the anomaly over the queried time
range.

• The Log samples tab displays a few of the log events that are part of the anomaly.

• The Token Values tab displays the values of the selected dynamic token, if you have
selected one.

Note

A maximum of 10 token values is captured for each token. Token counts might not
be precise. CloudWatch Logs uses a probabilistic counter to generate the token
count, not the absolute value.

5. To suppress an anomaly, choose the radio button in its row and then do the following:

a. Choose Actions, Suppress Anomaly.

b. Then specify how long you want the anomaly to be suppressed.

View anomalies that have been found 127

Amazon CloudWatch Logs User Guide

c. To suppress all anomalies related to this pattern, select Suppress Pattern.

d. Choose Suppress anomaly.

Create alarms on log anomaly detectors

You can create an alarm for a log anomaly detector in a log group. You can specify for the alarm
to go into ALARM state when a specified number of anomalies are found in the log group during a
specified period of time. You can also use filters so that only anomalies of specified priorities are
counted by the alarm.

To create an alarm for a log anomaly detector

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Logs, Log Anomalies.

The table of log anomaly detectors appears.

3. Choose the radio button for the anomaly detector that you want to set the alarm for, and
choose Create alarm.

The CloudWatch alarm creation wizard appears. The LogAnomalyDetector field displays the
name of the anomaly detector that you chose. The Metric name field displays AnomalyCount.

4. (Optional) To filter this alarm for anomaly priority, do one of the following:

• To have the alarm count only high-priority anomalies, enter HIGH for
LogAnomalyPriority.

• To have the alarm count only high- and medium-priority anomalies, enter MEDIUM for
LogAnomalyPriority.

For more information about priority levels, see Severity and priority of anomalies and patterns.

5. Choose to use a static or metric anomaly detection threshold for the alarm. This selection
determines how the alarm threshold is set. A Static threshold means that the alarm threshold
is a static, constant number that you choose. An Anomaly detection threshold means that
CloudWatch determines a range of usual values, and the alarm triggers if the actual count
crosses the threshold of this band. You don't have to choose Anomaly detection for a log
anomaly detection alarm. For more information about metric anomaly detection, see Using
CloudWatch anomaly detection.

Create alarms on log anomaly detectors 128

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html

Amazon CloudWatch Logs User Guide

6. For Whenever your-metric-name is . . ., choose Greater, Greater/Equal, Lower/Equal,
or Lower. Then for than . . ., specify a number for your threshold value. The alarm goes into
ALARM state if the anomaly detector finds more than this number of alarms during a time
specified by Period.

7. Choose Additional configuration. For Datapoints to alarm, specify how many evaluation
periods (data points) must be in the ALARM state to trigger the alarm. If the two values here
match, you create an alarm that goes to ALARM state if that many consecutive periods are
breaching.

To create an M out of N alarm, specify a number for the first value that is lower than the
number for the second value. For more information, see Evaluating an alarm.

8. For Missing data treatment, choose how the alarm behaves when some data points are
missing. For more information, see Configuring how CloudWatch alarms treat missing data.

9. Choose Next.

10. For Notification, choose Add notification, and then specify an Amazon SNS topic to notify
when your alarm transitions to the ALARM, OK, or INSUFFICIENT_DATA state.

a. (Optional) To send multiple notifications for the same alarm state or for different alarm
states, choose Add notification.

Note

We recommend that you set the alarm to take actions when it goes into
Insufficient data state in addition to when it goes into Alarm state. This is because
many issues with the Lambda function that connects to the data source can cause
the alarm to transition to Insufficient data.

b. (Optional) To not send Amazon SNS notifications, choose Remove.

11. (Optional) If you want your alarm to perform actions for Amazon EC2 Auto Scaling, Amazon
EC2, tickets, or AWS Systems Manager, choose the appropriate button, and specify the alarm
state and action.

Create alarms on log anomaly detectors 129

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html#alarm-evaluation
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html#alarms-and-missing-data

Amazon CloudWatch Logs User Guide

Note

Your alarm can perform Systems Manager actions only when it's in the ALARM state.
For information about Systems Manager actions, see Configuring CloudWatch to create
OpsItems and Incident creation.

12. Choose Next.

13. Under Name and description, enter a name and description for your alarm, and choose Next.
The name must contain only UTF-8 characters, and can't contain ASCII control characters. The
description can include markdown formatting, which is displayed only in the alarm Details
tab in the CloudWatch console. The markdown can be useful to add links to runbooks or other
internal resources.

Tip

The alarm name must contain only UTF-8 characters. It can't contain ASCII control
characters.

14. Under Preview and create, confirm that your alarm's information and conditions are correct,
and choose Create alarm.

Metrics published by log anomaly detectors

CloudWatch Logs publishes the AnomalyCount metric to CloudWatch metrics. This metric is
published to the AWS/Logs namespace.

The AnomalyCount metric is published with the following dimensions:

• LogAnomalyDetector– The name of the anomaly detector

• LogAnomalyPriority– The priority level of the anomaly

Encrypt an anomaly detector and its results with AWS KMS

Anomaly detector data is always encrypted in CloudWatch Logs. By default, CloudWatch Logs uses
server-side encryption for the data at rest. As an alternative, you can use AWS Key Management
Service for this encryption. If you do, the encryption is done using an AWS KMS key. Encryption

Metrics published by log anomaly detectors 130

https://docs.aws.amazon.com/systems-manager/latest/userguide/OpsCenter-create-OpsItems-from-CloudWatch-Alarms.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/OpsCenter-create-OpsItems-from-CloudWatch-Alarms.html
https://docs.aws.amazon.com/incident-manager/latest/userguide/incident-creation.html

Amazon CloudWatch Logs User Guide

using AWS KMS is enabled at the anomaly detector level, by associating a KMS key with an
anomaly detector.

Important

CloudWatch Logs supports only symmetric KMS keys. Do not use an asymmetric key to
encrypt the data in your log groups. For more information, see Using Symmetric and
Asymmetric Keys.

Limits

• To perform the following steps, you must have the following permissions: kms:CreateKey,
kms:GetKeyPolicy, and kms:PutKeyPolicy.

• After you associate or disassociate a key from an anomaly detector, it can take up to five minutes
for the operation to take effect.

• If you revoke CloudWatch Logs access to an associated key or delete an associated KMS key, your
encrypted data in CloudWatch Logs can no longer be retrieved.

Step 1: Create an AWS KMS key

To create an KMS key, use the following create-key command:

aws kms create-key

The output contains the key ID and Amazon Resource Name (ARN) of the key. The following is
example output:

{
 "KeyMetadata": {
 "Origin": "AWS_KMS",
 "KeyId": "key-default-1",
 "Description": "",
 "KeyManager": "CUSTOMER",
 "Enabled": true,
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "KeyState": "Enabled",
 "CreationDate": 1478910250.94,

Limits 131

https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html
https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html
https://docs.aws.amazon.com/cli/latest/reference/kms/create-key.html

Amazon CloudWatch Logs User Guide

 "Arn": "arn:aws:kms:us-west-2:123456789012:key/key-default-1",
 "AWSAccountId": "123456789012",
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
]
 }
}

Step 2: Set permissions on the KMS key

By default, all AWS KMS keys are private. Only the resource owner can use it to encrypt and
decrypt data. However, the resource owner can grant permissions to access the KMS key to other
users and resources. With this step, you give the CloudWatch Logs service principal permission to
use the key. This service principal must be in the same AWS Region where the KMS key is stored.

As a best practice, we recommend that you restrict the use of the KMS key to only those AWS
accounts or anomaly detectors that you specify.

First, save the default policy for your KMS key as policy.json using the following get-key-policy
command:

aws kms get-key-policy --key-id key-id --policy-name default --output text > ./
policy.json

Open the policy.json file in a text editor and add the section in bold from one of the following
statements. Separate the existing statement from the new statement with a comma. These
statements use Condition sections to enhance the security of the AWS KMS key. For more
information, see AWS KMS keys and encryption context.

The Condition section in this example limits the use of the AWS KMS key to the specified
account, but it can be used for any anomaly detector.

{
 "Version": "2012-10-17",
 "Id": "key-default-1",
 "Statement": [
 {
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::Your_account_ID:root"

Limits 132

https://docs.aws.amazon.com/cli/latest/reference/kms/get-key-policy.html

Amazon CloudWatch Logs User Guide

 },
 "Action": "kms:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.REGION.amazonaws.com"
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*",
 "Condition": {
 "ArnLike": {
 "kms:EncryptionContext:aws:logs:arn":
 "arn:aws:logs:REGION:Your_account_ID:anomaly-detector:*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.REGION.amazonaws.com"
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*",
 "Condition": {
 "ArnLike": {
 "kms:EncryptionContext:aws-crypto-ec:aws:logs:arn":
 "arn:aws:logs:REGION:Your_account_ID:anomaly-detector:*"
 }
 }
 }
]

Limits 133

Amazon CloudWatch Logs User Guide

}

Finally, add the updated policy using the following put-key-policy command:

aws kms put-key-policy --key-id key-id --policy-name default --policy file://
policy.json

Step 3: Associate a KMS key with an anomaly detector

You can associate a KMS key with an anomaly detector when you create it in the console or using
the AWS CLI or APIs.

Step 4: Disassociate key from an anomaly detector

After a key has been associated with an anomaly detector, you can't update the key. The only way
to remove the key is to delete the anomaly detector, and then re-create it.

Limits 134

https://docs.aws.amazon.com/cli/latest/reference/kms/put-key-policy.html

Amazon CloudWatch Logs User Guide

Working with log groups and log streams

A log stream is a sequence of log events that share the same source. Each separate source of logs in
CloudWatch Logs makes up a separate log stream.

A log group is a group of log streams that share the same retention, monitoring, and access control
settings. You can define log groups and specify which streams to put into each group. There is no
limit on the number of log streams that can belong to one log group.

Use the procedures in this section to work with log groups and log streams.

Create a log group in CloudWatch Logs

When you install the CloudWatch Logs agent on an Amazon EC2 instance using the steps in
previous sections of the Amazon CloudWatch Logs User Guide, the log group is created as part of
that process. You can also create a log group directly in the CloudWatch console.

To create a log group

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Log groups.

3. Choose Actions, and then choose Create log group.

4. Enter a name for the log group, and then choose Create log group.

Tip

You can favorite log groups, as well as dashboards and alarms, from the Favorites and
recents menu in the navigation pane. Under the Recently visited column, hover over the log
group that you want to favorite, and choose the star symbol next to it.

Send logs to a log group

CloudWatch Logs automatically receives log events from several AWS services. You can also send
other log events to CloudWatch Logs using one of the following methods:

Create a log group 135

https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

• CloudWatch agent— The unified CloudWatch agent can send both metrics and logs to
CloudWatch Logs. For information about installing and using the CloudWatch agent, see
Collecting Metrics and Logs from Amazon EC2 Instances and On-Premises Servers with the
CloudWatch Agent in the Amazon CloudWatch User Guide.

• AWS CLI—The put-log-events uploads batches of log events to CloudWatch Logs.

• Programmatically— The PutLogEvents API enables you to programmatically upload batches of
log events to CloudWatch Logs.

View log data sent to CloudWatch Logs

You can view and scroll through log data on a stream-by-stream basis as sent to CloudWatch Logs
by the CloudWatch Logs agent. You can specify the time range for the log data to view.

To view log data

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Log groups.

3. For Log Groups, choose the log group to view the streams.

4. In the list of log groups, choose the name of the log group that you want to view.

5. In the list of log streams, choose the name of the log stream that you want to view.

6. To change how the log data is displayed, do one of the following:

• To expand a single log event, choose the arrow next to that log event.

• To expand all log events and view them as plain text, above the list of log events, choose
Text.

• To filter the log events, enter the desired search filter in the search field. For more
information, see Creating metrics from log events using filters.

• To view log data for a specified date and time range, next to the search filter, choose the
arrow next to the date and time. To specify a date and time range, choose Absolute. To
choose a predefined number of minutes, hours, days, or weeks, choose Relative. You can
also switch between UTC and local time zone.

View log data 136

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-log-events.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutLogEvents.html
https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

Use Live Tail to view logs in near real time

CloudWatch Logs Live Tail helps you quickly troubleshoot incidents by viewing a streaming list of
new log events as they are ingested. You can view, filter, and highlight ingested logs in near real
time, helping you to detect and resolve issues quickly. You can filter the logs based on terms you
specify, and also highlight logs that contain specified terms to help you quickly find what you are
looking for.

Live Tail sessions incur costs by session usage time, per minute. For more information about
pricing, see the Logs tab at Amazon CloudWatch Pricing.

Note

Live Tail is supported only for log groups in the Standard log class. For more information
about log classes, see Log classes.

The following sections explain how to use Live Tail in the console. You can also start a Live Tail
session programatically. For more information, see StartLiveTail. For SDK examples, see Start a
Live Tail session using an AWS SDK.

Start a Live Tail session

You use the CloudWatch console to start a Live Tail session. The following procedure explains how
to start a Live Tail session by using the Live tail option in the left navigation pane. You can also
start Live Tail sessions from the Log Groups page or the CloudWatch Logs Insights page.

Note

If you are using data protection policies to mask sensitive data in a log group that you are
viewing with Live Tail, the sensitive data always appears masked in the Live Tail session. For
more information about masking sensitive data in log groups, see Help protect sensitive log
data with masking.

To start a Live Tail session

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

Use Live Tail to view logs in near real time 137

https://aws.amazon.com/cloudwatch/pricing/
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_StartLiveTail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/example_cloudwatch-logs_StartLiveTail_section.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/example_cloudwatch-logs_StartLiveTail_section.html
https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

2. In the navigation pane, choose Logs, Live tail.

3. For Select log groups, select the log groups that you want to view events from, in the Live Tail
session. You can select as many as 10 log groups.

4. (Optional) If you selected only one log group, you can filter your Live Tail session further by
selecting one or more log streams to view log events from. To do so, under Select log streams,
select the names of the log streams from the drop down list. Alternatively, you can use the
second box under Select log streams to enter a log stream name prefix, and then all log
streams with names that match the prefix will be selected.

5. (Optional) To display only log events that contain certain words or other strings, enter the
word or string in Add filter patterns.

For example, to display only log events that include the word Warning, enter Warning. The
filters field is case-sensitive. You can include multiple terms and pattern operators in this field:

• error 404 displays only log events that include both error and 404

• ?Error ?error displays log events that include either Error or error

• -INFO displays all log events that don't include INFO

• { $.eventType = "UpdateTrail" } displays all JSON log events where the value of the
event type field is UpdateTrail

You can also use regular expression (regex) to filter:

• %ERROR% uses regex to display all log events consisting of the ERROR keyword

• { $.names = %Steve% } uses regex to display JSON log events where Steve is in the
property "name"

• [w1 = %abc%, w2] uses regex to display space-delimited log events where the first
word is abc

For more information about pattern syntax, see Filter pattern syntax.

6. (0ptional) To highlight some of the displayed log events, enter a term to search for and
highlight under Live Tail. Enter highlight terms one at a time. If you add multiple terms to
highlight, a different color is assigned to represent each term. A highlight indicator is displayed
to the left of any log event that contains the specified term, and also appears under the term
itself when you expand the log event in the main window to view the full log event.

Start a Live Tail session 138

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntax.html

Amazon CloudWatch Logs User Guide

You can use filtering along with highlighting to quickly troubleshoot issues. For example, you
might filter the events to display only the events that contain Error, and then also highlight
the events that contain 404.

7. To start the session, choose Apply filters

Matching log events begin appearing in the window. The following information is also
displayed:

• The timer displays how long the Live Tail session has been active.

• events/sec displays how many ingested log events per second match the filters that you
have set.

• To keep the session from scrolling too fast because many events match the filters,
CloudWatch Logs might display only some matching events. If this happens, the percentage
of matching events that are displayed on screen is shown in % displayed.

8. To pause the flow of events to investigate what is currently displayed, click anywhere in the
events window.

9. During the session, you can use the following to see more details about each log event.

• To display the entire text for a log event in the main window, choose the arrow next to that
log event.

• To display the entire text for a log event in a side window, choose the + magnifying glass
next to that log event. The event flow pauses and the side window appears.

Displaying a log event text in the side window can be useful to compare its text to other
events in the main window.

10. To stop the Live Tail session, choose Stop.

11. To restart the session, optionally use the Filter panel to modify the filtering criteria, and
choose Apply filters. Then choose Start.

Search log data using filter patterns

You can search your log data using the Filter pattern syntax for metric filters, subscription filters,
filter log events, and Live Tail. You can search all the log streams within a log group, or by using
the AWS CLI you can also search specific log streams. When each search runs, it returns up to the

Search log data using filter patterns 139

Amazon CloudWatch Logs User Guide

first page of data found and a token to retrieve the next page of data or to continue searching. If
no results are returned, you can continue searching.

You can set the time range you want to query to limit the scope of your search. You could start
with a larger range to see where the log lines you are interested in fall, and then shorten the time
range to scope the view to logs in the time range that interest you.

You can also pivot directly from your logs-extracted metrics to the corresponding logs.

If you are signed in to an account set up as a monitoring account in CloudWatch cross-account
observability, you can search and filter log events from the source accounts linked to this
monitoring account. For more information, see CloudWatch cross-account observability.

Search log entries using the console

You can search for log entries that meet a specified criteria using the console.

To search your logs using the console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Log groups.

3. For Log Groups, choose the name of the log group containing the log stream to search.

4. For Log Streams, choose the name of the log stream to search.

5. Under Log events, enter the filter syntax to use.

To search all log entries for a time range using the console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Log groups.

3. For Log Groups, choose the name of the log group containing the log stream to search.

4. Choose Search log group.

5. For Log events, select the date and time range, and enter the filter syntax.

Search log entries using the AWS CLI

You can search for log entries that meet a specified criteria using the AWS CLI.

Search log entries using the console 140

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

To search log entries using the AWS CLI

At a command prompt, run the following filter-log-events command. Use --filter-pattern to
limit the results to the specified filter pattern and --log-stream-names to limit the results to
the specified log streams.

aws logs filter-log-events --log-group-name my-group [--log-stream-
names LIST_OF_STREAMS_TO_SEARCH] [--filter-pattern VALID_METRIC_FILTER_PATTERN]

To search log entries over a given time range using the AWS CLI

At a command prompt, run the following filter-log-events command:

aws logs filter-log-events --log-group-name my-group [--log-stream-
names LIST_OF_STREAMS_TO_SEARCH] [--start-time 1482197400000] [--end-
time 1482217558365] [--filter-pattern VALID_METRIC_FILTER_PATTERN]

Pivot from metrics to logs

You can get to specific log entries from other parts of the console.

To get from dashboard widgets to logs

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Dashboards.

3. Choose a dashboard.

4. On the widget, choose the View logs icon, and then choose View logs in this time range. If
there is more than one metric filter, select one from the list. If there are more metric filters
than we can display in the list, choose More metric filters and select or search for a metric
filter.

To get from metrics to logs

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Metrics.

3. In the search field on the All metrics tab, type the name of the metric and press Enter.

4. Select one or more metrics from the results of your search.

Pivot from metrics to logs 141

https://docs.aws.amazon.com/cli/latest/reference/logs/filter-log-events.html
https://docs.aws.amazon.com/cli/latest/reference/logs/filter-log-events.html
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

5. Choose Actions, View logs. If there is more than one metric filter, select one from the list. If
there are more metric filters than we can display in the list, choose More metric filters and
select or search for a metric filter.

Troubleshooting

Search takes too long to complete

If you have a lot of log data, search might take a long time to complete. To speed up a search, you
can do the following:

• If you are using the AWS CLI, you can limit the search to just the log streams you are interested
in. For example, if your log group has 1000 log streams, but you just want to see three log
streams that you know are relevant, you can use the AWS CLI to limit your search to only those
three log streams within the log group.

• Use a shorter, more granular time range, which reduces the amount of data to be searched and
speeds up the query.

Change log data retention in CloudWatch Logs

By default, log data is stored in CloudWatch Logs indefinitely. However, you can configure how
long to store log data in a log group. Any data older than the current retention setting is deleted.
You can change the log retention for each log group at any time.

Note

CloudWatch Logs doesn’t immediately delete log events when they reach their retention
setting. It typically takes up to 72 hours after that before log events are deleted, but in rare
situations might take longer.
This means that if you change a log group to have a longer retention setting when it
contains log events that are past the expiration date, but haven’t been actually deleted,
those log events will take up to 72 hours to be deleted after the new retention date is
reached. To make sure that log data is deleted permanently, keep a log group at its lower
retention setting until 72 hours has passed after the end of the previous retention period,
or you have confirmed that the older log events are deleted.
When log events reach their retention setting they are marked for deletion. After they
are marked for deletion, they do not add to your archival storage costs anymore, even if

Troubleshooting 142

Amazon CloudWatch Logs User Guide

they are not actually deleted until later. These log events marked for deletion are also not
included when you use an API to retrieve the storedBytes value to see how many bytes a
log group is storing.

To change the logs retention setting

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Log groups.

3. Find the log group to update.

4. In the Expire Events After column for that log group, choose the current retention setting,
such as Never Expire.

5. In Edit Retention, for Retention, choose a log retention value, and then choose Ok.

Tag log groups in Amazon CloudWatch Logs

You can assign your own metadata to the log groups you create in Amazon CloudWatch Logs in
the form of tags. A tag is a key-value pair that you define for a log group. Using tags is a simple yet
powerful way to manage AWS resources and organize data, including billing data.

Note

You can use tags to control access to CloudWatch Logs resources, including log groups
and destinations. Access to log streams is controlled at the log group level, because of the
hierarchical relation between log groups and log streams. For more information about
using tags to control access, see Controlling access to Amazon Web Services resources using
tags.

Contents

• Tag basics

• Tracking costs using tagging

• Tag restrictions

• Tagging log groups using the AWS CLI

• Tagging log groups using the CloudWatch Logs API

Tag log groups 143

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html

Amazon CloudWatch Logs User Guide

Tag basics

You use AWS CloudFormation the AWS CLI, or CloudWatch Logs API to complete the following
tasks:

• Add tags to a log group when you create it.

• Add tags to an existing log group.

• List the tags for a log group.

• Remove tags from a log group.

You can use tags to categorize your log groups. For example, you can categorize them by purpose,
owner, or environment. Because you define the key and value for each tag, you can create a custom
set of categories to meet your specific needs. For example, you might define a set of tags that
helps you track log groups by owner and associated application. Here are several examples of tags:

• Project: Project name

• Owner: Name

• Purpose: Load testing

• Application: Application name

• Environment: Production

Tracking costs using tagging

You can use tags to categorize and track your AWS costs. When you apply tags to your AWS
resources, including log groups, your AWS cost allocation report includes usage and costs
aggregated by tags. You can apply tags that represent business categories (such as cost
centers, application names, or owners) to organize your costs across multiple services. For more
information, see Use Cost Allocation Tags for Custom Billing Reports in the AWS Billing User Guide.

Tag restrictions

The following restrictions apply to tags.

Basic restrictions

• The maximum number of tags per log group is 50.

Tag basics 144

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon CloudWatch Logs User Guide

• Tag keys and values are case sensitive.

• You can't change or edit tags for a deleted log group.

Tag key restrictions

• Each tag key must be unique. If you add a tag with a key that's already in use, your new tag
overwrites the existing key-value pair.

• You can't start a tag key with aws: because this prefix is reserved for use by AWS. AWS creates
tags that begin with this prefix on your behalf, but you can't edit or delete them.

• Tag keys must be between 1 and 128 Unicode characters in length.

• Tag keys must consist of the following characters: Unicode letters, digits, white space, and the
following special characters: _ . / = + - @.

Tag value restrictions

• Tag values must be between 0 and 255 Unicode characters in length.

• Tag values can be blank. Otherwise, they must consist of the following characters: Unicode
letters, digits, white space, and any of the following special characters: _ . / = + - @.

Tagging log groups using the AWS CLI

You can add, list, and remove tags using the AWS CLI. For examples, see the following
documentation:

create-log-group

Creates a log group. You can optionally add tags when you create the log group.

tag-resource

Assigns one or more tags (key-value pairs) to the specified CloudWatch Logs resource.

list-tags-for-resource

Displays the tags the are associated with a CloudWatch Logs resource.

untag-resource

Removes one or more tags from the specified CloudWatch Logs resource.

Tagging log groups using the AWS CLI 145

https://docs.aws.amazon.com/cli/latest/reference/logs/create-log-group.html
https://docs.aws.amazon.com/cli/latest/reference/logs/tag-resource.html
https://docs.aws.amazon.com/cli/latest/reference/logs/list-tags-for-resource.html
https://docs.aws.amazon.com/cli/latest/reference/logs/untag-log-group.html

Amazon CloudWatch Logs User Guide

Tagging log groups using the CloudWatch Logs API

You can add, list, and remove tags using the CloudWatch Logs API. For examples, see the following
documentation:

CreateLogGroup

Creates a log group. You can optionally add tags when you create the log group.

TagResource

Assigns one or more tags (key-value pairs) to the specified CloudWatch Logs resource.

ListTagsForResource

Displays the tags the are associated with a CloudWatch Logs resource.

UntagResource

Removes one or more tags from the specified CloudWatch Logs resource.

Encrypt log data in CloudWatch Logs using AWS Key
Management Service

Log group data is always encrypted in CloudWatch Logs. By default, CloudWatch Logs uses server-
side encryption for the log data at rest. As an alternative, you can use AWS Key Management
Service for this encryption. If you do, the encryption is done using an AWS KMS key. Encryption
using AWS KMS is enabled at the log group level, by associating a KMS key with a log group, either
when you create the log group or after it exists.

Important

CloudWatch Logs now supports encryption context, using
kms:EncryptionContext:aws:logs:arn as the key and the ARN of the log group as
the value for that key. If you have log groups that you have already encrypted with a KMS
key, and you would like to restrict the key to be used with a single account and log group,
you should assign a new KMS key that includes a condition in the IAM policy. For more
information, see AWS KMS keys and encryption context.

Tagging log groups using the CloudWatch Logs API 146

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogGroup.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_UntagLogGroup.html

Amazon CloudWatch Logs User Guide

After you associate a KMS key with a log group, all newly ingested data for the log group is
encrypted using this key. This data is stored in encrypted format throughout its retention period.
CloudWatch Logs decrypts this data whenever it is requested. CloudWatch Logs must have
permissions for the KMS key whenever encrypted data is requested.

If you later disassociate a KMS key from a log group, CloudWatch Logs encrypts newly ingested
data using the CloudWatch Logs default encryption method. All previously ingested data that
was encrypted with the KMS key remains encrypted with the KMS key. CloudWatch Logs can still
return that data after the KMS key is disassociated, because CloudWatch Logs can still continue to
reference the key. However, if the key is later disabled, then CloudWatch Logs is unable to read the
logs that were encrypted with that key.

Important

CloudWatch Logs supports only symmetric KMS keys. Do not use an asymmetric key to
encrypt the data in your log groups. For more information, see Using Symmetric and
Asymmetric Keys.

Limits

• To perform the following steps, you must have the following permissions: kms:CreateKey,
kms:GetKeyPolicy, and kms:PutKeyPolicy.

• After you associate or disassociate a key from a log group, it can take up to five minutes for the
operation to take effect.

• If you revoke CloudWatch Logs access to an associated key or delete an associated KMS key, your
encrypted data in CloudWatch Logs can no longer be retrieved.

• You cannot associate a KMS key with a log group using the CloudWatch console.

Step 1: Create an AWS KMS key

To create an KMS key, use the following create-key command:

aws kms create-key

The output contains the key ID and Amazon Resource Name (ARN) of the key. The following is
example output:

Limits 147

https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html
https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html
https://docs.aws.amazon.com/cli/latest/reference/kms/create-key.html

Amazon CloudWatch Logs User Guide

{
 "KeyMetadata": {
 "Origin": "AWS_KMS",
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "Description": "",
 "KeyManager": "CUSTOMER",
 "Enabled": true,
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "KeyState": "Enabled",
 "CreationDate": 1478910250.94,
 "Arn": "arn:aws:kms:us-west-2:123456789012:key/6f815f63-e628-448c-8251-
e40cb0d29f59",
 "AWSAccountId": "123456789012",
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
]
 }
}

Step 2: Set permissions on the KMS key

By default, all AWS KMS keys are private. Only the resource owner can use it to encrypt and
decrypt data. However, the resource owner can grant permissions to access the KMS key to other
users and resources. With this step, you give the CloudWatch Logs service principal permission to
use the key. This service principal must be in the same AWS Region where the KMS key is stored.

As a best practice, we recommend that you restrict the use of the KMS key to only those AWS
accounts or log groups you specify.

First, save the default policy for your KMS key as policy.json using the following get-key-policy
command:

aws kms get-key-policy --key-id key-id --policy-name default --output text > ./
policy.json

Open the policy.json file in a text editor and add the section in bold from one of the following
statements. Separate the existing statement from the new statement with a comma. These
statements use Condition sections to enhance the security of the AWS KMS key. For more
information, see AWS KMS keys and encryption context.

Step 2: Set permissions on the KMS key 148

https://docs.aws.amazon.com/cli/latest/reference/kms/get-key-policy.html

Amazon CloudWatch Logs User Guide

The Condition section in this example restricts the key to a single log group ARN.

{
 "Version": "2012-10-17",
 "Id": "key-default-1",
 "Statement": [
 {
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::Your_account_ID:root"
 },
 "Action": "kms:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.region.amazonaws.com"
 },
 "Action": [
 "kms:Encrypt*",
 "kms:Decrypt*",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:Describe*"
],
 "Resource": "*",
 "Condition": {
 "ArnEquals": {
 "kms:EncryptionContext:aws:logs:arn": "arn:aws:logs:region:account-
id:log-group:log-group-name"
 }
 }
 }
]
}

The Condition section in this example limits the use of the AWS KMS key to the specified
account, but it can be used for any log group.

{
 "Version": "2012-10-17",

Step 2: Set permissions on the KMS key 149

Amazon CloudWatch Logs User Guide

 "Id": "key-default-1",
 "Statement": [
 {
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::Your_account_ID:root"
 },
 "Action": "kms:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.region.amazonaws.com"
 },
 "Action": [
 "kms:Encrypt*",
 "kms:Decrypt*",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:Describe*"
],
 "Resource": "*",
 "Condition": {
 "ArnLike": {
 "kms:EncryptionContext:aws:logs:arn": "arn:aws:logs:region:account-
id:*"
 }
 }
 }
]
}

Finally, add the updated policy using the following put-key-policy command:

aws kms put-key-policy --key-id key-id --policy-name default --policy file://
policy.json

Step 3: Associate a KMS key with a log group

You can associate a KMS key with a log group when you create it or after it exists.

Step 3: Associate a KMS key with a log group 150

https://docs.aws.amazon.com/cli/latest/reference/kms/put-key-policy.html

Amazon CloudWatch Logs User Guide

To find whether a log group already has a KMS key associated, use the following describe-log-
groups command:

aws logs describe-log-groups --log-group-name-prefix "log-group-name-prefix"

If the output includes a kmsKeyId field, the log group is associated with the key displayed for the
value of that field.

To associate the KMS key with a log group when you create it

Use the create-log-group command as follows:

aws logs create-log-group --log-group-name my-log-group --kms-key-id "key-arn"

To associate the KMS key with an existing log group

Use the associate-kms-key command as follows:

aws logs associate-kms-key --log-group-name my-log-group --kms-key-id "key-arn"

Step 4: Disassociate key from a log group

To disassociate the KMS key associated with a log group, use the following disassociate-kms-key
command:

aws logs disassociate-kms-key --log-group-name my-log-group

AWS KMS keys and encryption context

To enhance the security of your AWS Key Management Service keys and your encrypted log groups,
CloudWatch Logs now puts log group ARNs as part of the encryption context used to encrypt your
log data. Encryption context is a set of key-value pairs that are used as additional authenticated
data. The encryption context enables you to use IAM policy conditions to limit access to your AWS
KMS key by AWS account and log group. For more information, see Encryption context and IAM
JSON Policy Elements: Condition.

We recommend that you use different KMS keys for each of your encrypted log groups.

Step 4: Disassociate key from a log group 151

https://docs.aws.amazon.com/cli/latest/reference/logs/describe-log-groups.html
https://docs.aws.amazon.com/cli/latest/reference/logs/describe-log-groups.html
https://docs.aws.amazon.com/cli/latest/reference/logs/create-log-group.html
https://docs.aws.amazon.com/cli/latest/reference/logs/associate-kms-key.html
https://docs.aws.amazon.com/cli/latest/reference/logs/disassociate-kms-key.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon CloudWatch Logs User Guide

If you have a log group that you encrypted previously and now want to change the log group to
use a new KMS key that works only for that log group, follow these steps.

To convert an encrypted log group to use a KMS key with a policy limiting it to that log group

1. Enter the following command to find the ARN of the log group's current key:

aws logs describe-log-groups

The output includes the following line. Make a note of the ARN. You need to use it in step 7.

...
"kmsKeyId": "arn:aws:kms:us-west-2:123456789012:key/01234567-89ab-
cdef-0123-456789abcdef"
...

2. Enter the following command to create a new KMS key:

aws kms create-key

3. Enter the following command to save the new key's policy to a policy.json file:

aws kms get-key-policy --key-id new-key-id --policy-name default --output text > ./
policy.json

4. Use a text editor to open policy.json and add a Condition expression to the policy:

{
 "Version": "2012-10-17",
 "Id": "key-default-1",
 "Statement": [
 {
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::ACCOUNT-ID:root"
 },
 "Action": "kms:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",

KMS keys and encryption context 152

Amazon CloudWatch Logs User Guide

 "Principal": {
 "Service": "logs.region.amazonaws.com"
 },
 "Action": [
 "kms:Encrypt*",
 "kms:Decrypt*",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:Describe*"
],
 "Resource": "*",
 "Condition": {
 "ArnLike": {
 "kms:EncryptionContext:aws:logs:arn":
 "arn:aws:logs:REGION:ACCOUNT-ID:log-
group:LOG-GROUP-NAME"
 }
 }
 }
]
}

5. Enter the following command to add the updated policy to the new KMS key:

aws kms put-key-policy --key-id new-key-ARN --policy-name default --policy file://
policy.json

6. Enter the following command to associate the policy with your log group:

aws logs associate-kms-key --log-group-name my-log-group --kms-key-id new-key-ARN

CloudWatch Logs now encrypts all new data using the new key.

7. Next, revoke all permissions except Decrypt from the old key. First, enter the following
command to retrieve the old policy:

aws kms get-key-policy --key-id old-key-ARN --policy-name default --output text
 > ./policy.json

8. Use a text editor to open policy.json and remove all values from the Action list, except for
kms:Decrypt*

{

KMS keys and encryption context 153

Amazon CloudWatch Logs User Guide

 "Version": "2012-10-17",
 "Id": "key-default-1",
 "Statement": [
 {
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::Your_account_ID:root"
 },
 "Action": "kms:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.region.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt*"
],
 "Resource": "*"
 }
]
}

9. Enter the following command to add the updated policy to the old key:

aws kms put-key-policy --key-id old-key-ARN --policy-name default --policy file://
policy.json

Help protect sensitive log data with masking

You can help safeguard sensitive data that's ingested by CloudWatch Logs by using log group data
protection policies. These policies let you audit and mask sensitive data that appears in log events
ingested by the log groups in your account.

When you create a data protection policy, then by default, sensitive data that matches the data
identifiers you've selected is masked at all egress points, including CloudWatch Logs Insights,
metric filters, and subscription filters. Only users who have the logs:Unmask IAM permission can
view unmasked data.

Help protect sensitive log data with masking 154

Amazon CloudWatch Logs User Guide

You can create a data protection policy for all log groups in your account, and you can also create a
data protection policies for individual log groups. When you create a policy for your entire account,
it applies to both existing log groups and log groups that are created in the future.

If you create a data protection policy for your entire account and you also create a policy for
a single log group, both policies apply to that log group. All managed data identifiers that are
specified in either policy are audited and masked in that log group.

Note

Masking sensitive data is supported only for log groups in the Standard log class. If you
create a data protection policy for all log groups in your account, it applies only to log
groups in the Standard log class. For more information about log classes, see Log classes.

Each log group can have only one log group-level data protection policy, but that policy can
specify many managed data identifiers to audit and mask. The limit for a data protection policy is
30,720 characters.

Important

Sensitive data is detected and masked when it is ingested into the log group. When you
set a data protection policy, log events ingested to the log group before that time are not
masked.

CloudWatch Logs supports many managed data identifiers, which offer preconfigured data
types you can select to protect financial data, personal health information (PHI), and personally
identifiable information (PII). CloudWatch Logs data protection allows you to leverage pattern
matching and machine learning models to detect sensitive data. For some types of managed data
identifiers, the detection depends on also finding certain keywords in proximity with the sensitive
data. You can also use custom data identifiers to create data identifiers tailored to your specific use
case.

A metric is emitted to CloudWatch when sensitive data is detected that matches the data
identifiers you select. This is the LogEventsWithFindings metric and it is emitted in the AWS/Logs
namespace. You can use this metric to create CloudWatch alarms, and you can visualize it in graphs
and dashboards. Metrics emitted by data protection are vended metrics and are free of charge. For

Help protect sensitive log data with masking 155

Amazon CloudWatch Logs User Guide

more information about metrics that CloudWatch Logs sends to CloudWatch, see Monitoring with
CloudWatch metrics.

Each managed data identifier is designed to detect a specific type of sensitive data, such as credit
card numbers, AWS secret access keys, or passport numbers for a particular country or region.
When you create a data protection policy, you can configure it to use these identifiers to analyze
logs ingested by the log group, and take actions when they are detected.

CloudWatch Logs data protection can detect the following categories of sensitive data by using
managed data identifiers:

• Credentials, such as private keys or AWS secret access keys

• Financial information, such as credit card numbers

• Personally Identifiable Information (PII) such as driver’s licenses or social security numbers

• Protected Health Information (PHI) such as health insurance or medical identification numbers

• Device identifiers, such as IP addresses or MAC addresses

For details about the types of data that you can protect, see Types of data that you can protect.

Contents

• Understanding data protection policies

• What are data protection policies?

• How is the data protection policy structured?

• JSON properties for the data protection policy

• JSON properties for a policy statement

• JSON properties for a policy statement operation

• IAM permissions required to create or work with a data protection policy

• Permissions required for account-level data protection policies

• Permissions required for data protection policies for a single log group

• Sample data protection policy

• Create an account-wide data protection policy

• Console

• AWS CLI

• Data protection policy syntax for AWS CLI or API operations

Help protect sensitive log data with masking 156

Amazon CloudWatch Logs User Guide

• Create a data protection policy for a single log group

• Console

• AWS CLI

• Data protection policy syntax for AWS CLI or API operations

• View unmasked data

• Audit findings reports

• Required key policy to send audit findings to an bucket protected by AWS KMS

• Types of data that you can protect

• CloudWatch Logs managed data identifiers for sensitive data types

• Credentials

• Data identifier ARNs for credential data types

• Device identifiers

• Data identifier ARNs for device data types

• Financial information

• Data identifier ARNs for financial data types

• Protected health information (PHI)

• Data identifier ARNs for protected health information data types (PHI)

• Personally identifiable information (PII)

• Keywords for driver’s license identification numbers

• Keywords for national identification numbers

• Keywords for passport numbers

• Keywords for taxpayer identification and reference numbers

• Data identifier ARNs for personally identifiable information (PII)

• Custom data identifiers

• What are custom data identifiers?

• Custom data identifier constraints

• Using custom data identifiers in the console

• Using custom data identifiers in your data protection policy

Help protect sensitive log data with masking 157

Amazon CloudWatch Logs User Guide

Understanding data protection policies

Topics

• What are data protection policies?

• How is the data protection policy structured?

What are data protection policies?

CloudWatch Logs uses data protection policies to select the sensitive data for which you want
to scan, and the actions that you want to take to protect that data. To select the sensitive data of
interest, you use data identifiers. CloudWatch Logs data protection then detects the sensitive data
by using machine learning and pattern matching. To act upon data identifiers that are found, you
can define audit and de-identify operations. These operations let you log the sensitive data that is
found (or not found), and to mask the sensitive data when the log events are viewed.

How is the data protection policy structured?

As illustrated in the following figure, a data protection policy document includes the following
elements:

• Optional policy-wide information at the top of the document

• One statement that defines the audit and de-identify actions

Only one data protection policy can be defined per CloudWatch Logs log group. The data
protection policy can have one or more deny or de-identify statements, but only one audit
statement.

JSON properties for the data protection policy

A data protection policy requires the following basic policy information for identification:

• Name – The policy name.

• Description (Optional) – The policy description.

• Version – The policy language version. The current version is 2021-06-01.

• Statement – A list of statements that specifies data protection policy actions.

{

Understanding data protection policies 158

Amazon CloudWatch Logs User Guide

 "Name": "CloudWatchLogs-PersonalInformation-Protection",
 "Description": "Protect basic types of sensitive data",
 "Version": "2021-06-01",
 "Statement": [
 ...
]
}

JSON properties for a policy statement

A policy statement sets the detection context for the data protection operation.

• Sid (Optional) – The statement identifier.

• DataIdentifier – The sensitive data for which CloudWatch Logs should scan. For example, name,
address, or phone number.

• Operation – The follow-on actions, either Audit or De-identify. CloudWatch Logs performs
these actions when it finds sensitive data.

{
 ...
 "Statement": [
 {
 "Sid": "audit-policy",
 "DataIdentifier": [
 "arn:aws:dataprotection::aws:data-identifier/Address"
],
 "Operation": {
 "Audit": {
 "FindingsDestination": {}
 }
 }
 },

JSON properties for a policy statement operation

A policy statement sets one of the following data protection operations.

• Audit – Emits metrics and findings reports without interrupting logging. Strings that match
increment the LogEventsWithFindings metric that CloudWatch Logs publishes to the AWS/Logs
namespace in CloudWatch. You can use these metrics to create alarms.

Understanding data protection policies 159

Amazon CloudWatch Logs User Guide

For an example of a findings report, see Audit findings reports.

For more information about metrics that CloudWatch Logs sends to CloudWatch, see Monitoring
with CloudWatch metrics.

• De-identify – Mask the sensitive data without interrupting logging.

IAM permissions required to create or work with a data protection
policy

To be able to work with data protection policies for log groups, you must have certain permissions
as shown in the following tables. The permissions are different for account-wide data protection
policies and for data protection policies that apply to a single log group.

Permissions required for account-level data protection policies

Note

If you are performing any of these operations inside a Lambda function, the Lambda
execution role and permissions boundary must also include the following permissions.

Operation IAM permission needed Resource

logs:PutAccountPol
icy

*Create a data protectio
n policy with no audit
destinations

logs:PutDataProtec
tionPolicy

*

logs:PutAccountPol
icy

*

logs:PutDataProtec
tionPolicy

*

Create a data protection
policy with CloudWatch Logs
as an audit destination

logs:CreateLogDeli
very

*

IAM permissions required to create or work with a data protection policy 160

Amazon CloudWatch Logs User Guide

Operation IAM permission needed Resource

logs:PutResourcePo
licy

*

logs:DescribeResou
rcePolicies

*

logs:DescribeLogGr
oups

*

logs:PutAccountPol
icy

*

logs:PutDataProtec
tionPolicy

*

logs:CreateLogDeli
very

*

Create a data protection
policy with Firehose as an
audit destination

firehose:TagDelive
ryStream

arn:aws:logs:::del
iverystre
am/ YOUR_DELI
VERY_STREAM

logs:PutAccountPol
icy

*

logs:PutDataProtec
tionPolicy

*

logs:CreateLogDeli
very

*

s3:GetBucketPolicy arn:aws:s
3::: YOUR_BUCKET

Create a data protection
policy with Amazon S3 as an
audit destination

s3:PutBucketPolicy arn:aws:s
3::: YOUR_BUCKET

IAM permissions required to create or work with a data protection policy 161

Amazon CloudWatch Logs User Guide

Operation IAM permission needed Resource

Unmask masked log events
in a specified log group

logs:Unmask arn:aws:logs:::log-
group:*

View an existing data
protection policy

logs:GetDataProtec
tionPolicy

*

logs:DeleteAccount
Policy

*Delete a data protection
policy

logs:DeleteDataPro
tectionPolicy

*

If any data protection audit logs are already being sent to a destination, then other policies
that send logs to the same destination only need the logs:PutDataProtectionPolicy and
logs:CreateLogDelivery permissions.

Permissions required for data protection policies for a single log group

Note

If you are performing any of these operations inside a Lambda function, the Lambda
execution role and permissions boundary must also include the following permissions.

Operation IAM permission needed Resource

Create a data protection
policy with no audit destinati
ons

logs:PutDataProtec
tionPolicy

arn:aws:logs:::log
-group: YOUR_LOG_
GROUP :*

Create a data protection
policy with CloudWatch Logs
as an audit destination

logs:PutDataProtec
tionPolicy

logs:CreateLogDeli
very

arn:aws:logs:::log
-group: YOUR_LOG_
GROUP :*

*

IAM permissions required to create or work with a data protection policy 162

Amazon CloudWatch Logs User Guide

Operation IAM permission needed Resource

logs:PutResourcePo
licy

logs:DescribeResou
rcePolicies

logs:DescribeLogGr
oups

*

*

*

Create a data protection
policy with Firehose as an
audit destination

logs:PutDataProtec
tionPolicy

logs:CreateLogDeli
very

firehose:TagDelive
ryStream

arn:aws:logs:::log
-group: YOUR_LOG_
GROUP :*

*

arn:aws:logs:::del
iverystre
am/ YOUR_DELI
VERY_STREAM

Create a data protection
policy with Amazon S3 as an
audit destination

logs:PutDataProtec
tionPolicy

logs:CreateLogDeli
very

s3:GetBucketPolicy

s3:PutBucketPolicy

arn:aws:logs:::log
-group: YOUR_LOG_
GROUP :*

*

arn:aws:s
3::: YOUR_BUCKET

arn:aws:s
3::: YOUR_BUCKET

Unmask masked log events logs:Unmask arn:aws:logs:::log
-group: YOUR_LOG_
GROUP :*

IAM permissions required to create or work with a data protection policy 163

Amazon CloudWatch Logs User Guide

Operation IAM permission needed Resource

View an existing data
protection policy

logs:GetDataProtec
tionPolicy

arn:aws:logs:::log
-group: YOUR_LOG_
GROUP :*

Delete a data protection
policy

logs:DeleteDataPro
tectionPolicy

arn:aws:logs:::log
-group: YOUR_LOG_
GROUP :*

If any data protection audit logs are already being sent to a destination, then other policies
that send logs to the same destination only need the logs:PutDataProtectionPolicy and
logs:CreateLogDelivery permissions.

Sample data protection policy

The following sample policy allows a user to create, view, and delete data protection policies that
can sending audit findings to all three types of audit destinations. It does not permit the user to
view unmasked data.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "YOUR_SID_1",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogDelivery",
 "logs:PutResourcePolicy",
 "logs:DescribeLogGroups",
 "logs:DescribeResourcePolicies"
],
 "Resource": "*"
 },
 {
 "Sid": "YOUR_SID_2",
 "Effect": "Allow",
 "Action": [
 "logs:GetDataProtectionPolicy",
 "logs:DeleteDataProtectionPolicy",

IAM permissions required to create or work with a data protection policy 164

Amazon CloudWatch Logs User Guide

 "logs:PutDataProtectionPolicy",
 "s3:PutBucketPolicy",
 "firehose:TagDeliveryStream",
 "s3:GetBucketPolicy"
],
 "Resource": [
 "arn:aws:firehose:::deliverystream/YOUR_DELIVERY_STREAM",
 "arn:aws:s3:::YOUR_BUCKET",
 "arn:aws:logs:::log-group:YOUR_LOG_GROUP:*"
]
 }
]
}

Create an account-wide data protection policy

You can use the CloudWatch Logs console or AWS CLI commands to create a data protection policy
to mask sensitive data for all log groups in your account. Doing so affects both current log groups
and log groups that you create in the future.

Important

Sensitive data is detected and masked when it is ingested into the log group. When you
set a data protection policy, log events ingested to the log group before that time are not
masked.

Topics

• Console

• AWS CLI

Console

To use the console to create an account-wide data protection policy

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Settings. It is located near the bottom of the list.

3. Choose the Logs tab.

Create an account-wide data protection policy 165

https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

4. Choose Configure.

5. For Managed data identifiers, select the types of data that you want to audit and mask for all
of your log groups. You can type in the selection box to find the identifiers that you want.

We recommend that you select only the data identifiers that are relevant for your log data and
your business. Choosing many types of data can lead to false positives.

For details about which types of data that you can protect, see Types of data that you can
protect.

6. (Optional) If you want to audit and mask other types of data by using custom data identifiers,
choose Add custom data identifier. Then enter a name for the data type and the regular
expression to use to search for that type of data in the log events. For more information, see
Custom data identifiers.

A single data protection policy can include up to 10 custom data identifiers. Each regular
expression that defines a custom data identifier must be 200 characters or fewer.

7. (Optional) Choose one or more services to send the audit findings to. Even if you choose not to
send audit findings to any of these services, the sensitive data types that you select will still be
masked.

8. Choose Activate data protection.

AWS CLI

To use the AWS CLI to create a data protection policy

1. Use a text editor to create a policy file named DataProtectionPolicy.json. For
information about the policy syntax, see the following section.

2. Enter the following command:

aws logs put-account-policy \
--policy-name TEST_POLICY --policy-type "DATA_PROTECTION_POLICY" \
--policy-document file://policy.json \
--scope "ALL" \
--region us-west-2

Create an account-wide data protection policy 166

Amazon CloudWatch Logs User Guide

Data protection policy syntax for AWS CLI or API operations

When you create a JSON data protection policy to use in an AWS CLI command or API operation,
the policy must include two JSON blocks:

• The first block must include both a DataIdentifer array and an Operation property with an
Audit action. The DataIdentifer array lists the types of sensitive data that you want to mask.
For more information about the available options, see Types of data that you can protect.

The Operation property with an Audit action is required to find the sensitive data terms.
This Audit action must contain a FindingsDestination object. You can optionally use
that FindingsDestination object to list one or more destinations to send audit findings
reports to. If you specify destinations such as log groups, Amazon Data Firehose streams, and S3
buckets, they must already exist. For an example of an audit findins report, see Audit findings
reports.

• The second block must include both a DataIdentifer array and an Operation property with
an Deidentify action. The DataIdentifer array must exactly match the DataIdentifer
array in the first block of the policy.

The Operation property with the Deidentify action is what actually masks the data, and
it must contain the "MaskConfig": {} object. The "MaskConfig": {} object must be
empty.

The following is an example of a data protection policy using only managed data identifiers. This
policy masks email addresses and United States driver's licenses.

For information about policies that specify custom data identifiers, see Using custom data
identifiers in your data protection policy.

{
 "Name": "data-protection-policy",
 "Description": "test description",
 "Version": "2021-06-01",
 "Statement": [{
 "Sid": "audit-policy",
 "DataIdentifier": [
 "arn:aws:dataprotection::aws:data-identifier/EmailAddress",
 "arn:aws:dataprotection::aws:data-identifier/DriversLicense-US"
],
 "Operation": {

Create an account-wide data protection policy 167

Amazon CloudWatch Logs User Guide

 "Audit": {
 "FindingsDestination": {
 "CloudWatchLogs": {
 "LogGroup": "EXISTING_LOG_GROUP_IN_YOUR_ACCOUNT,"
 },
 "Firehose": {
 "DeliveryStream": "EXISTING_STREAM_IN_YOUR_ACCOUNT"
 },
 "S3": {
 "Bucket": "EXISTING_BUCKET"
 }
 }
 }
 }
 },
 {
 "Sid": "redact-policy",
 "DataIdentifier": [
 "arn:aws:dataprotection::aws:data-identifier/EmailAddress",
 "arn:aws:dataprotection::aws:data-identifier/DriversLicense-US"
],
 "Operation": {
 "Deidentify": {
 "MaskConfig": {}
 }
 }
 }
]
}

Create a data protection policy for a single log group

You can use the CloudWatch Logs console or AWS CLI commands to create a data protection policy
to mask sensitive data.

You can assign one data protection policy to each log group. Each data protection policy can audit
for multiple types of information. Each data protection policy can include one audit statement.

Topics

• Console

• AWS CLI

Create a data protection policy for a single log group 168

Amazon CloudWatch Logs User Guide

Console

To use the console to create a data protection policy

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Logs, Log groups.

3. Choose the name of the log group.

4. Choose Actions, Create data protection policy.

5. For Managed data identifiers, select the types of data that you want to audit and mask in this
log group. You can type in the selection box to find the identifiers that you want.

We recommend that you select only the data identifiers that are relevant for your log data and
your business. Choosing many types of data can lead to false positives.

For details about which types of data that you can protect by using managed data identifiers,
see Types of data that you can protect.

6. (Optional) If you want to audit and mask other types of data by using custom data identifiers,
choose Add custom data identifier. Then enter a name for the data type and the regular
expression to use to search for that type of data in the log events. For more information, see
Custom data identifiers.

A single data protection policy can include up to 10 custom data identifiers. Each regular
expression that defines a custom data identifier must be 200 characters or fewer.

7. (Optional) Choose one or more services to send the audit findings to. Even if you choose not to
send audit findings to any of these services, the sensitive data types that you select will still be
masked.

8. Choose Activate data protection.

AWS CLI

To use the AWS CLI to create a data protection policy

1. Use a text editor to create a policy file named DataProtectionPolicy.json. For
information about the policy syntax, see the following section.

2. Enter the following command:

Create a data protection policy for a single log group 169

https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

aws logs put-data-protection-policy --log-group-identifier "my-log-group" --policy-
document file:///Path/DataProtectionPolicy.json --region us-west-2

Data protection policy syntax for AWS CLI or API operations

When you create a JSON data protection policy to use in an AWS CLI command or API operation,
the policy must include two JSON blocks:

• The first block must include both a DataIdentifer array and an Operation property with an
Audit action. The DataIdentifer array lists the types of sensitive data that you want to mask.
For more information about the available options, see Types of data that you can protect.

The Operation property with an Audit action is required to find the sensitive data terms.
This Audit action must contain a FindingsDestination object. You can optionally use
that FindingsDestination object to list one or more destinations to send audit findings
reports to. If you specify destinations such as log groups, Amazon Data Firehose streams, and S3
buckets, they must already exist. For an example of an audit findins report, see Audit findings
reports.

• The second block must include both a DataIdentifer array and an Operation property with
an Deidentify action. The DataIdentifer array must exactly match the DataIdentifer
array in the first block of the policy.

The Operation property with the Deidentify action is what actually masks the data, and
it must contain the "MaskConfig": {} object. The "MaskConfig": {} object must be
empty.

The following is an example of a data protection policy that masks email addresses and United
States driver's licenses.

{
 "Name": "data-protection-policy",
 "Description": "test description",
 "Version": "2021-06-01",
 "Statement": [{
 "Sid": "audit-policy",
 "DataIdentifier": [
 "arn:aws:dataprotection::aws:data-identifier/EmailAddress",

Create a data protection policy for a single log group 170

Amazon CloudWatch Logs User Guide

 "arn:aws:dataprotection::aws:data-identifier/DriversLicense-US"
],
 "Operation": {
 "Audit": {
 "FindingsDestination": {
 "CloudWatchLogs": {
 "LogGroup": "EXISTING_LOG_GROUP_IN_YOUR_ACCOUNT,"
 },
 "Firehose": {
 "DeliveryStream": "EXISTING_STREAM_IN_YOUR_ACCOUNT"
 },
 "S3": {
 "Bucket": "EXISTING_BUCKET"
 }
 }
 }
 }
 },
 {
 "Sid": "redact-policy",
 "DataIdentifier": [
 "arn:aws:dataprotection::aws:data-identifier/EmailAddress",
 "arn:aws:dataprotection::aws:data-identifier/DriversLicense-US"
],
 "Operation": {
 "Deidentify": {
 "MaskConfig": {}
 }
 }
 }
]
}

View unmasked data

To view unmasked data, a user must have the logs:Unmask permission. Users with this permission
can see the unmasked data in the following ways:

• When viewing the events in a log stream, choose Display, Unmask.

• Use a CloudWatch Logs Insights query that includes the unmask(@message) command. The
following example query displays the 20 most recent log events in the stream, unmasked:

View unmasked data 171

Amazon CloudWatch Logs User Guide

fields @timestamp, @message, unmask(@message)
| sort @timestamp desc
| limit 20

For more information about CloudWatch Logs Insights commands, see CloudWatch Logs Insights
query syntax.

• Use a GetLogEvents or FilterLogEvents operation with the unmask parameter.

The CloudWatchLogsFullAccess policy includes the logs:Unmask permission. To grant
logs:Unmask to a user who does not have CloudWatchLogsFullAccess, you can attach a custom
IAM policy to that user. For more information, see Adding permissions to a user (console).

Audit findings reports

If you set up CloudWatch Logs data protection audit policies to write audit reports to CloudWatch
Logs, Amazon S3, or Firehose, these findings reports are similar to the following example.
CloudWatch Logs writes one findings report for each log event that contains sensitive data.

{
 "auditTimestamp": "2023-01-23T21:11:20Z",
 "resourceArn": "arn:aws:logs:us-west-2:111122223333:log-group:/aws/lambda/
MyLogGroup:*",
 "dataIdentifiers": [
 {
 "name": "EmailAddress",
 "count": 2,
 "detections": [
 {
 "start": 13,
 "end": 26
 },
{
 "start": 30,
 "end": 43
 }
]
 }
]
}

Audit findings reports 172

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_GetLogEvents.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_FilterLogEvents.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon CloudWatch Logs User Guide

The fields in the report are as follows:

• The resourceArn field displays the log group where the sensitive data was found.

• The dataIdentifiers object displays information about the findings for one type of senssitive
data that you are auditing.

• The name field identifies which type of sensitive data this section is reporting about.

• The count field displays the number of times this type of sensitive data appears in the log event.

• The start and end fields show where in the log event, by character count, each occurrence of
the sensitive data appears.

The previous example shows a report of finding two email addresses in one log event. The first
email address starts at the 13th character of the log event and ends at the 26th character. The
second email address runs from the 30th character to the 43rd character. Even though this log
event has two email addresses, the value of the LogEventsWithFindings metric is incremented
only by one, because that metric counts the number of log events that contain sensitive data, not
the number of occurrences of sensitive data.

Required key policy to send audit findings to an bucket protected by AWS KMS

You can protect the data in an Amazon S3 bucket by enabling either Server-Side Encryption with
Amazon S3-Managed Keys (SSE-S3) or Server-Side Encryption with KMS Keys (SSE-KMS). For more
information, see Protecting data using server-side encryption in the Amazon S3 User Guide.

If you send audit findings to a bucket that is protected with SSE-S3, no additional configuration is
required. Amazon S3 handles the encryption key.

If you send audit findings to a bucket that is protected with SSE-KMS, you must update the key
policy for your KMS key so that the log delivery account can write to your S3 bucket. For more
information about the required key policy for use with SSE-KMS, see Amazon S3 in the Amazon
CloudWatch Logs User Guide.

Types of data that you can protect

This section contains information about the types of data that you can protect in a CloudWatch
Logs data protection policy. CloudWatch Logs managed data identifiers offer preconfigured data
types for protecting financial data, personal health information (PHI), and personally identifiable
information (PII). You can also use custom data identifiers to create data identifiers tailored to your
specific use case.

Types of data that you can protect 173

https://docs.aws.amazon.com/AmazonS3/latest/userguide/serv-side-encryption.html

Amazon CloudWatch Logs User Guide

Contents

• CloudWatch Logs managed data identifiers for sensitive data types

• Credentials

• Data identifier ARNs for credential data types

• Device identifiers

• Data identifier ARNs for device data types

• Financial information

• Data identifier ARNs for financial data types

• Protected health information (PHI)

• Data identifier ARNs for protected health information data types (PHI)

• Personally identifiable information (PII)

• Keywords for driver’s license identification numbers

• Keywords for national identification numbers

• Keywords for passport numbers

• Keywords for taxpayer identification and reference numbers

• Data identifier ARNs for personally identifiable information (PII)

• Custom data identifiers

• What are custom data identifiers?

• Custom data identifier constraints

• Using custom data identifiers in the console

• Using custom data identifiers in your data protection policy

CloudWatch Logs managed data identifiers for sensitive data types

This section contains information about the types of data that you can protect using managed data
identifiers, and which countries and regions are relevant for each of those types of data.

For some types of sensitive data, CloudWatch Logs data protection scans for keywords in the
proximity of the data, and finds a match only if it finds that keyword. If a keyword has to be
in proximity of a particular type of data, the keyword typically has to be within 30 characters
(inclusively) of the data.
Types of data that you can protect 174

Amazon CloudWatch Logs User Guide

If a keyword contains a space, CloudWatch Logs data protection automatically matches keyword
variations that are missing the space or that contain an underscore (_) or hyphen (-) instead of the
space. In some cases, CloudWatch Logs also expands or abbreviates a keyword to address common
variations of the keyword.

The following tables lists the types of credential, device, financial, medical, and protected health
information (PHI) that CloudWatch Logs can detect using managed data identifiers. These are in
addition to certain types of data that might also qualify as personally identifiable information (PII).

Supported identifiers that are language and region independent

Identifier Category

Address Personal

AwsSecretKey Credentials

CreditCardExpiration Financial

CreditCardNumber Financial

CreditCardSecurityCode Financial

EmailAddress Personal

IpAddress Personal

LatLong Personal

Name Personal

OpenSshPrivateKey Credentials

PgpPrivateKey Credentials

PkcsPrivateKey Credentials

PuttyPrivateKey Credentials

VehicleIdentificationNumber Personal

Types of data that you can protect 175

Amazon CloudWatch Logs User Guide

Region-dependent data identifiers must include the identifier name, then a hyphen, and then the
two-letter (ISO 3166-1 alpha-2) codes. For example, DriversLicense-US.

Supported identifiers that must include a two-letter country or region code

Identifier Category Countries and languages

BankAccountNumber Financial DE, ES, FR, GB, IT

CepCode Personal BR

Cnpj Personal BR

CpfCode Personal BR

DriversLicense Personal AT, AU, BE, BG, CA, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR,
HU, IE, IT, LT, LU, LV, MT, NL,
PL, PT, RO, SE, SI, SK, US

DrugEnforcementAge
ncyNumber

Health US

ElectoralRollNumber Personal GB

HealthInsuranceCardNumber Health EU

HealthInsuranceClaimNumber Health US

HealthInsuranceNumber Health FR

HealthcareProcedureCode Health US

IndividualTaxIdentification
Number

Personal US

InseeCode Personal FR

MedicareBeneficiaryNumber Health US

NationalDrugCode Health US

Types of data that you can protect 176

Amazon CloudWatch Logs User Guide

Identifier Category Countries and languages

NationalIdentificationNumber Personal DE, ES, IT

NationalInsuranceNumber Personal GB

NationalProviderId Health US

NhsNumber Health GB

NieNumber Personal ES

NifNumber Personal ES

PassportNumber Personal CA, DE, ES, FR, GB, IT, US

PermanentResidenceNumber Personal CA

PersonalHealthNumber Health CA

PhoneNumber Personal BR, DE, ES, FR, GB, IT, US

PostalCode Personal CA

RgNumber Personal BR

SocialInsuranceNumber Personal CA

Ssn Personal ES, US

TaxId Personal DE, ES, FR, GB

ZipCode Personal US

Credentials

CloudWatch Logs data protection can find the following types of credentials.

Types of data that you can protect 177

Amazon CloudWatch Logs User Guide

Type of data Data identifier ID Keyword required Countries
and
regions

AWS secret access key AwsSecretKey aws_secret_access_
key , credentials ,
secret access key,
secret key, set-awscr
edential

All

OpenSSH private key OpenSSHPr
ivateKey

None All

PGP private key PgpPrivateKey None All

Pkcs Private Key PkcsPriva
teKey

None All

PuTTY private key PuttyPriv
ateKey

None All

Data identifier ARNs for credential data types

The following lists the Amazon Resource Names (ARNs) for the data identifiers that you can add to
your data protection policies.

Credential data identifier ARNs

arn:aws:dataprotection::aws:data-identifier/AwsSecretKey

arn:aws:dataprotection::aws:data-identifier/OpenSshPrivateKey

arn:aws:dataprotection::aws:data-identifier/PgpPrivateKey

arn:aws:dataprotection::aws:data-identifier/PkcsPrivateKey

arn:aws:dataprotection::aws:data-identifier/PuttyPrivateKey

Types of data that you can protect 178

Amazon CloudWatch Logs User Guide

Device identifiers

CloudWatch Logs data protection can find the following types of device identifiers.

Type of data Data identifier ID Keyword required Countries
and
regions

IP address IpAddress None All

Data identifier ARNs for device data types

The following lists the Amazon Resource Names (ARNs) for the data identifiers that you can add to
your data protection policies.

Device data identifier ARN

arn:aws:dataprotection::aws:data-identifier/IpAddress

Financial information

CloudWatch Logs data protection can find the following types of financial information.

If you set a data protection policy, CloudWatch Logs scans for the data identifiers that you specify
no matter what geolocation the log group is located in. The information in the Countries and
regions column in this table designates whether two-letter country codes must be appended to
the data identifier to detect the appropriate keywords for those countries and regions.

Type of data Data identifier
ID

Keyword required Countries
and
regions

Notes

Bank account number BankAccou
ntNumber

Yes. Different keywords
apply to different
countries. For details, see
the Keywords for bank

France,
Germany,
Italy,
Spain,

Includes
Internati
onal
Bank
Account

Types of data that you can protect 179

Amazon CloudWatch Logs User Guide

Type of data Data identifier
ID

Keyword required Countries
and
regions

Notes

account numbers table
later in this section.

United
Kingdom

Nmbers
(IBANs)
that
consist
of up
to 34
alphanume
ric
character
s,
including
elements
such
as
country
codes.

Credit card expiration date CreditCar
dExpirati
on

exp d, exp m, exp y,
expiration , expiry

All

Types of data that you can protect 180

Amazon CloudWatch Logs User Guide

Type of data Data identifier
ID

Keyword required Countries
and
regions

Notes

Credit card number CreditCar
dNumber

account number,
american express,
amex, bank card,
card, card number,
card num, cc #, ccn,
check card, credit,
credit card#, dankort,
debit, debit card,
diners club, discover,
electron, japanese
card bureau, jcb,
mastercard , mc, pan,
payment account
number, payment card
number, pcn, union pay,
visa

All Detection
requires
the
data
to be a
13–19
digit
sequence
that
adheres
to the
Luhn
check
formula,
and
uses a
standard
card
number
prefix
for any
of the
following
types
of
credit
cards:
American
Express,
Dankort,
Diner’s
Club,

Types of data that you can protect 181

Amazon CloudWatch Logs User Guide

Type of data Data identifier
ID

Keyword required Countries
and
regions

Notes

Discover,
Electron,
Japanese
Card
Bureau
(JCB),
Mastercar
d,
UnionPay,
and
Visa.

Credit card verification
code

CreditCar
dSecurity
Code

card id, card
identification
code, card identific
ation number , card
security code, card
validation code ,
card validatio
n number , card
verification data ,
card verification
value, cvc, cvc2, cvv,
cvv2, elo verificat
ion code

All

Keywords for bank account numbers

Use the following keywords to detect International Bank Account Numbers (IBANs) that consist of
up to 34 alphanumeric characters, including elements such as country codes.

Types of data that you can protect 182

Amazon CloudWatch Logs User Guide

Country Keywords

France account code, account number, accountno# , accountnumber# ,
bban, code bancaire, compte bancaire, customer account id,
customer account number, customer bank account id, iban,
numéro de compte

Germany account code, account number, accountno# , accountnumber# ,
bankleitzahl , bban, customer account id, customer account
number, customer bank account id, geheimzahl , iban, kartennum
mer , kontonummer , kreditkartennummer , sepa

Italy account code, account number, accountno# , accountnumber# ,
bban, codice bancario, conto bancario, customer account id,
customer account number, customer bank account id, iban,
numero di conto

Spain account code, account number, accountno# , accountnumber# ,
bban, código cuenta, código cuenta bancaria, cuenta cliente
id, customer account ID, customer account number, customer
bank account id, iban, número cuenta bancaria cliente, número
cuenta cliente

United Kingdom account code, account number, accountno# , accountnumber# ,
bban, customer account ID, customer account number, customer
bank account id, iban, sepa

United States bank account, bank acct, checking account, checking acct,
deposit account, deposit acct, savings account, savings acct,
chequing account, chequing acct

CloudWatch Logs doesn't report occurrences of the following sequences, which credit card issuers
have reserved for public testing.

122000000000003, 2222405343248877, 2222990905257051, 2223007648726984,
 2223577120017656,

Types of data that you can protect 183

Amazon CloudWatch Logs User Guide

30569309025904, 34343434343434, 3528000700000000, 3530111333300000, 3566002020360505,
 36148900647913,
36700102000000, 371449635398431, 378282246310005, 378734493671000, 38520000023237,
 4012888888881881,
4111111111111111, 4222222222222, 4444333322221111, 4462030000000000, 4484070000000000,
 4911830000000,
4917300800000000, 4917610000000000, 4917610000000000003, 5019717010103742,
 5105105105105100,
5111010030175156, 5185540810000019, 5200828282828210, 5204230080000017,
 5204740009900014, 5420923878724339,
5454545454545454, 5455330760000018, 5506900490000436, 5506900490000444,
 5506900510000234, 5506920809243667,
5506922400634930, 5506927427317625, 5553042241984105, 5555553753048194,
 5555555555554444, 5610591081018250,
6011000990139424, 6011000400000000, 6011111111111117, 630490017740292441,
 630495060000000000,
6331101999990016, 6759649826438453, 6799990100000000019, and 76009244561.

Data identifier ARNs for financial data types

The following lists the Amazon Resource Names (ARNs) for the data identifiers that you can add to
your data protection policies.

Financial data identifier ARNs

arn:aws:dataprotection::aws:data-identifier/BankAccountNumber-DE

arn:aws:dataprotection::aws:data-identifier/BankAccountNumber-ES

arn:aws:dataprotection::aws:data-identifier/BankAccountNumber-FR

arn:aws:dataprotection::aws:data-identifier/BankAccountNumber-GB

arn:aws:dataprotection::aws:data-identifier/BankAccountNumber-IT

arn:aws:dataprotection::aws:data-identifier/BankAccountNumber-US

arn:aws:dataprotection::aws:data-identifier/CreditCardExpiration

arn:aws:dataprotection::aws:data-identifier/CreditCardNumber

Types of data that you can protect 184

Amazon CloudWatch Logs User Guide

Financial data identifier ARNs

arn:aws:dataprotection::aws:data-identifier/CreditCardSecurityC
ode

Protected health information (PHI)

CloudWatch Logs data protection can find the following types of protected health information
(PHI).

If you set a data protection policy, CloudWatch Logs scans for the data identifiers that you specify
no matter what geolocation the log group is located in. The information in the Countries and
regions column in this table designates whether two-letter country codes must be appended to
the data identifier to detect the appropriate keywords for those countries and regions.

Type of data Data identifier ID Keyword required Countries
and
regions

Drug Enforcement Agency
(DEA) registration number

DrugEnfor
cementAge
ncyNumber

dea number, dea
registration

United
States

Health Insurance Card
Number (EHIC)

HealthIns
uranceCar
dNumber

assicurazione
sanitaria numero,
carta assicurazione
numero, carte d’assuran
ce maladie , carte
européenne d'assuran
ce maladie , ceam,
ehic, ehic#, finlandeh
icnumber# , gesundhei
tskarte , hälsokort

, health card, health
card number, health
insurance card, health
insurance number,

European
Union

Types of data that you can protect 185

Amazon CloudWatch Logs User Guide

Type of data Data identifier ID Keyword required Countries
and
regions

insurance card number,
krankenversicherun
gskarte , krankenve
rsicherungsnummer ,
medical account number,
numero conto medico,
numéro d’assuran
ce maladie , numéro
de carte d’assuran
ce , numéro de compte
medical, número de
cuenta médica, número
de seguro de salud,
número de tarjeta
de seguro, sairaanho
itokortin , sairausva
kuutuskortti ,
sairausvakuutusnum
ero , sjukförsäkring
nummer, sjukförsä
kringskort , suomi
ehic-numero , tarjeta
de salud, terveysko
rtti , tessera
sanitaria assicuraz
ione numero , versicher
ungsnummer

Health Insurance Claim
Number (HICN)

HealthIns
uranceCla
imNumber

health insurance claim
number, hic no, hic no.,
hic number, hic#, hicn,
hicn#, hicno#

United
States

Types of data that you can protect 186

Amazon CloudWatch Logs User Guide

Type of data Data identifier ID Keyword required Countries
and
regions

Health insurance or medical
identification number

HealthIns
uranceNumber

carte d'assuré social,
carte vitale, insurance
card

France

Healthcare Common
Procedure Coding System
(HCPCS) code

Healthcar
eProcedur
eCode

current procedural
terminology , hcpcs,
healthcare common
procedure coding
system

United
States

Medicare Beneficiary Number
(MBN)

MedicareB
eneficiar
yNumber

mbi, medicare beneficia
ry

United
States

National Drug Code (NDC) NationalD
rugCode

national drug code, ndc United
States

National Provider Identifier
(NPI)

NationalP
roviderId

hipaa, n.p.i., national
provider, npi

United
States

National Health Service (NHS)
number

NhsNumber national health
service, NHS

Great
Britain

Personal Health Number PersonalH
ealthNumber

canada healthcare
number, msp number, care
number, phn, soins de
santé

Canada

Data identifier ARNs for protected health information data types (PHI)

The following lists the data identifier Amazon Resource Names (ARNs) that can be used in
protected health information (PHI) data protection policies.

Types of data that you can protect 187

Amazon CloudWatch Logs User Guide

PHI data identifier ARNs

arn:aws:dataprotection::aws:data-identifier/DrugEnforcementAgen
cyNumber-US

arn:aws:dataprotection::aws:data-identifier/HealthcareProcedure
Code-US

arn:aws:dataprotection::aws:data-identifier/HealthInsuranceCard
Number-EU

arn:aws:dataprotection::aws:data-identifier/HealthInsuranceClai
mNumber-US

arn:aws:dataprotection::aws:data-identifier/HealthInsuranceNumb
er-FR

arn:aws:dataprotection::aws:data-identifier/MedicareBeneficiary
Number-US

arn:aws:dataprotection::aws:data-identifier/NationalDrugCode-US

arn:aws:dataprotection::aws:data-identifier/NationalInsuranceNu
mber-GB

arn:aws:dataprotection::aws:data-identifier/NationalProviderId-US

arn:aws:dataprotection::aws:data-identifier/NhsNumber-GB

arn:aws:dataprotection::aws:data-identifier/PersonalHealthNumber-
CA

Personally identifiable information (PII)

CloudWatch Logs data protection can find the following types of personally identifiable
information (PII).

If you set a data protection policy, CloudWatch Logs scans for the data identifiers that you specify
no matter what geolocation the log group is located in. The information in the Countries and

Types of data that you can protect 188

Amazon CloudWatch Logs User Guide

regions column in this table designates whether two-letter country codes must be appended to
the data identifier to detect the appropriate keywords for those countries and regions.

Type of data Data identifier
ID

Keyword required Countries
and
regions

Notes

Birth date DateOfBirth dob, date of birth,
birthdate , birth
date, birthday, b-day,
bday

Any Support
includes
most
date
formats,
such
as all
digits
and
combinati
ons of
digits
and
names
of
months.
Date
component
s can
be
separated
by
spaces,
slashes
(/), or
hyphens
(‐).

Código de Endereçamento
Postal (CEP)

CepCode cep, código de
endereçamento

Brazil

Types of data that you can protect 189

Amazon CloudWatch Logs User Guide

Type of data Data identifier
ID

Keyword required Countries
and
regions

Notes

postal, codigo de
endereçamento
postal

Cadastro Nacional da
Pessoa Jurídica (CNPJ)

Cnpj cadastro nacional
da pessoa jurídica,
cadastro nacional da
pessoa juridica, cnpj

Brazil

Cadastro de Pessoas
Físicas (CPF)

CpfCode Cadastro de pessoas
fisicas, cadastro
de pessoas físicas,
cadastro de pessoa
física, cadastro de
pessoa fisica, cpf

Brazil

Driver’s license identific
ation number

DriversLi
cense

Yes. Different keywords
apply to different
countries. For details,
see the Drivers license
identification numbers
table later in this section.

Many
countries
. For
details,
see
the
Drivers
license
identific
ation
numbers
table.

Types of data that you can protect 190

Amazon CloudWatch Logs User Guide

Type of data Data identifier
ID

Keyword required Countries
and
regions

Notes

Electoral roll number Electoral
RollNumber

electoral #,
electoral number,
electoral roll #,
electoral roll no.,
electoral roll
number, electoral
rollno

United
Kingdom

Individual taxpayer
identification

Individua
lTaxIdent
icationNu
mber

Yes. Different keywords
apply to different
countries. For details, see
the Individual taxpayer
identification numbers
table later in this section.

Brazil,
France,
Germany,
Spain,
United
Kingdom

National Institute for
Statistics and Economic
Studies (INSEE)

InseeCode Yes. Different keywords
apply to different
countries. For details, see
the Keywords for national
identification numbers
table later in this section.

France

Types of data that you can protect 191

Amazon CloudWatch Logs User Guide

Type of data Data identifier
ID

Keyword required Countries
and
regions

Notes

National Identification
Number

NationalI
dentifica
tionNumber

Yes. For details, see the
Keywords for national
identification numbers
table later in this section.

Germany,
Italy,
Spain

This
includes
Documento
Nacional
de
Identidad
(DNI)
identifie
rs
(Spain),
Codice
fiscale
codes
(Italy),
and
National
Identity
Card
numbers
(German).

National Insurance
Number (NINO)

NationalI
nsuranceN
umber

insurance no.,
insurance number,
insurance# , national
insurance number,
nationalinsurance#

, nationali
nsurancenumber , nin,
nino

United
Kingdom

–

Types of data that you can protect 192

Amazon CloudWatch Logs User Guide

Type of data Data identifier
ID

Keyword required Countries
and
regions

Notes

Número de identidad de
extranjero (NIE)

NieNumber Yes. Different keywords
apply to different
countries. For details, see
the Individual taxpayer
identification numbers
table later in this section.

Spain

Número de Identificación
Fiscal (NIF)

NifNumber Yes. Different keywords
apply to different
countries. For details, see
the Individual taxpayer
identification numbers
table later in this section.

Spain

Passport number PassportN
umber

Yes. Different keywords
apply to different
countries. For details,
see the Keywords for
passport numbers table
later in this section.

Canada,
France,
Germany,
Italy,
Spain,
United
Kingdom,
United
States

Types of data that you can protect 193

Amazon CloudWatch Logs User Guide

Type of data Data identifier
ID

Keyword required Countries
and
regions

Notes

Permanent residence
number

Permanent
Residence
Number

carte résident
permanent , numéro
carte résident
permanent , numéro
résident permanent

, permanent resident
card, permanent
resident card
number, permanent
resident no,
permanent resident
no., permanent
resident number, pr
no, pr no., pr non,
pr number, résident
permanent no.,
résident permanent
non

Canada

Types of data that you can protect 194

Amazon CloudWatch Logs User Guide

Type of data Data identifier
ID

Keyword required Countries
and
regions

Notes

Phone number PhoneNumber Brazil: keywords also
include: cel, celular,
fone, móvel, número
residencial ,
numero residencial ,
telefone

Others: cell, contact,
fax, fax number,
mobile, phone, phone
number, tel, telephone

, telephone number

Brazil,
Canada,
France,
Germany,
Italy,
Spain,
United
Kingdom,
United
States

This
includes
toll-
free
numbers
in the
United
States
and
fax
numbers.
If a
keyword
is in
proximity
of the
data,
the
number
doesn’t
have
to
include
a
country
code.
If a
keyword
isn’t in
proximity
of the
data,

Types of data that you can protect 195

Amazon CloudWatch Logs User Guide

Type of data Data identifier
ID

Keyword required Countries
and
regions

Notes

the
number
has to
include
a
country
code.

Postal Code PostalCode None Canada

Registro Geral (RG) RgNumber Yes. Different keywords
apply to different
countries. For details, see
the Individual taxpayer
identification numbers
table later in this section.

Brazil

Social Insurance Number
(SIN)

SocialIns
uranceNum
ber

canadian id, numéro
d'assurance
sociale, social
insurance number, sin

Canada

Social Security Number
(SSN)

Ssn Spain – número de la
seguridad social,
social security no.,
social security
no. número de la
seguridad social,
social security
number, socialsec
urityno# , ssn, ssn#

United States – social
security, ss#, ssn

Spain,
United
States

Types of data that you can protect 196

Amazon CloudWatch Logs User Guide

Type of data Data identifier
ID

Keyword required Countries
and
regions

Notes

Taxpayer identification or
reference number

TaxId Yes. Different keywords
apply to different
countries. For details, see
the Individual taxpayer
identification numbers
table later in this section.
.

France,
Germany,
Spain,
United
Kingdom

This
includes
TIN
(France);
Steueride
ntifikati
onsnummer
(Germany)
; CIF
(Spain);
and
TRN,
UTR
(United
Kingdom).

ZIP code ZipCode zip code, zip+4 United
States

United
States
postal
code.

Types of data that you can protect 197

Amazon CloudWatch Logs User Guide

Type of data Data identifier
ID

Keyword required Countries
and
regions

Notes

Mailing address Address None Australia
,
Canada,
France,
Germany,
Italy,
Spain,
United
Kingdom,
United
States

Although
a
keyword
isn't
required,
detection
requires
the
address
to
include
the
name
of a
city or
place
and
a ZIP
code
or
Postal
Code.

Electronic mail address EmailAddr
ess

None Any

Types of data that you can protect 198

Amazon CloudWatch Logs User Guide

Type of data Data identifier
ID

Keyword required Countries
and
regions

Notes

Global Positioning System
(GPS) coordinates

LatLong coordinate ,
coordinates , lat
long, latitude
longitude , location,
position

Any CloudWatc
h Logs
can
detect
GPS
coordinat
es if
the
latitude
and
longitude
coordinat
es are
stored
as a
pair
and
they're
in
Decimal
Degrees
(DD)
format,
for
example,
41.948614
,-87.6553
11.
Support
doesn't
include
coordinat

Types of data that you can protect 199

Amazon CloudWatch Logs User Guide

Type of data Data identifier
ID

Keyword required Countries
and
regions

Notes

es in
Degrees
Decimal
Minutes
(DDM)
format,
for
example
41°56.916
8'N
87°39.318
7'W, or
Degrees,
Minutes,
Seconds
(DMS)
format,
for
example
41°56'55.
0104"N
87°39'19.
1196"W.

Types of data that you can protect 200

Amazon CloudWatch Logs User Guide

Type of data Data identifier
ID

Keyword required Countries
and
regions

Notes

Full name Name None Any CloudWatc
h Logs
can
detect
full
names
only.
Support
is
limited
to
Latin
character
 sets.

Types of data that you can protect 201

Amazon CloudWatch Logs User Guide

Type of data Data identifier
ID

Keyword required Countries
and
regions

Notes

Vehicle Identification
Number (VIN)

VehicleId
entificat
ionNumber

Fahrgestellnummer ,
niv, numarul de
identificare ,
numarul seriei de
sasiu, serie sasiu,
numer VIN, Número de
Identificação do
Veículo, Número de
Identificación de
Automóviles , numéro
d'identification
du véhicule, vehicle
identification
number, vin, VIN
numeris

Any CloudWatc
h Logs
can
detect
VINs
that
consist
of a
17-
charac
ter
sequence
and
adhere
to the
ISO
3779
and
3780
standards
. These
standards
were
designed
for
worldwide
use.

Types of data that you can protect 202

Amazon CloudWatch Logs User Guide

Keywords for driver’s license identification numbers

To detect various types of driver’s license identification numbers, CloudWatch Logs requires a
keyword to be in proximity of the numbers. The following table lists the keywords that CloudWatch
Logs recognizes for specific countries and regions.

Country or region Keywords

Australia dl# dl:, dl :, dlno# driver licence, driver license,
driver permit, drivers lic., drivers licence,
driver's licence, drivers license, driver's license,
drivers permit, driver's permit, drivers permit
number, driving licence, driving license, driving
permit

Austria führerschein, fuhrerschein, führerschein
republik österreich, fuhrerschein republik
osterreich

Belgium fuehrerschein, fuehrerschein- nr, fuehrersc
heinnummer, fuhrerschein, führerschein,
fuhrerschein- nr, führerschein- nr, fuhrersch
einnummer, führerscheinnummer, numéro
permis conduire, permis de conduire, rijbewijs,
rijbewijsnummer

Bulgaria превозно средство, свидетелство за
управление на моторно, свидетелство
за управление на мпс, сумпс, шофьорска
книжка

Canada dl#, dl:, dlno#, driver licence, driver licences,
driver license, driver licenses, driver permit,
drivers lic., drivers licence, driver's licence,
drivers licences, driver's licences, drivers
license, driver's license, drivers licenses,
driver's licenses, drivers permit, driver's permit,

Types of data that you can protect 203

Amazon CloudWatch Logs User Guide

Country or region Keywords

drivers permit number, driving licence, driving
license, driving permit, permis de conduire

Croatia vozačka dozvola

Cyprus άδεια οδήγησης

Czech Republic číslo licence, císlo licence řidiče, číslo řidičskéh
o průkazu, ovladače lic., povolení k jízdě,
povolení řidiče, řidiči povolení, řidičský prúkaz,
řidičský průkaz

Denmark kørekort, kørekortnummer

Estonia juhi litsentsi number, juhiloa number, juhiluba,
juhiluba number

Finland ajokortin numero, ajokortti, förare lic., körkort,
körkort nummer, kuljettaja lic., permis de
conduire

France permis de conduire

Germany fuehrerschein, fuehrerschein- nr, fuehrersc
heinnummer, fuhrerschein, führerschein,
fuhrerschein- nr, führerschein- nr, fuhrersch
einnummer, führerscheinnummer

Greece δεια οδήγησης, adeia odigisis

Hungary illesztőprogramok lic, jogosítvány, jogsi,
licencszám, vezető engedély, vezetői engedély

Ireland ceadúnas tiomána

Italy patente di guida, patente di guida numero,
patente guida, patente guida numero

Types of data that you can protect 204

Amazon CloudWatch Logs User Guide

Country or region Keywords

Latvia autovadītāja apliecība, licences numurs,
vadītāja apliecība, vadītāja apliecības numurs,
vadītāja atļauja, vadītāja licences numurs,
vadītāji lic.

Lithuania vairuotojo pažymėjimas

Luxembourg fahrerlaubnis, führerschäin

Malta liċenzja tas-sewqan

Netherlands permis de conduire, rijbewijs, rijbewijsnummer

Poland numer licencyjny, prawo jazdy, zezwolenie na
prowadzenie

Portugal carta de condução, carteira de habilitação,
carteira de motorist, carteira habilitação,
carteira motorist, licença condução, licença de
condução, número de licença, número licença,
permissão condução, permissão de condução

Romania numărul permisului de conducere, permis de
conducere

Slovakia číslo licencie, číslo vodičského preukazu,
ovládače lic., povolenia vodičov, povolenie
jazdu, povolenie na jazdu, povolenie vodiča,
vodičský preukaz

Slovenia vozniško dovoljenje

Types of data that you can protect 205

Amazon CloudWatch Logs User Guide

Country or region Keywords

Spain carnet conducer, el carnet de conducer,
licencia conducer, licencia de manejo, número
carnet conducer, número de carnet de
conducer, número de permiso conducer,
número de permiso de conducer, número
licencia conducer, número permiso conducer,
permiso conducción, permiso conducer,
permiso de conducción

Sweden ajokortin numero, dlno# ajokortti, drivere lic.,
förare lic., körkort, körkort nummer, körkortsn
ummer, kuljettajat lic.

United Kingdom dl#, dl:, dlno#, driver licence, driver licences,
driver license, driver licenses, driver permit,
drivers lic., drivers licence, driver's licence,
drivers licences, driver's licences, drivers
license, driver's license, drivers licenses,
driver's licenses, drivers permit, driver's permit,
drivers permit number, driving licence, driving
license, driving permit

United States dl#, dl:, dlno#, driver licence, driver licences,
driver license, driver licenses, driver permit,
drivers lic., drivers licence, driver's licence,
drivers licences, driver's licences, drivers
license, driver's license, drivers licenses,
driver's licenses, drivers permit, driver's permit,
drivers permit number, driving licence, driving
license, driving permit

Keywords for national identification numbers

To detect various types of national identification numbers, CloudWatch Logs requires a keyword
to be in close proximity to the numbers. This includes Documento Nacional de Identidad (DNI)

Types of data that you can protect 206

Amazon CloudWatch Logs User Guide

identifiers (Spain), French National Institute for Statistics and Economic Studies (INSEE) codes,
German National Identity Card numbers, and Registro Geral (RG) numbers (Brazil).

The following table lists the keywords that CloudWatch Logs recognizes for specific countries and
regions.

Country or region Keywords

Brazil registro geral, rg

France assurance sociale, carte nationale d’identit
é, cni, code sécurité sociale, French social
security number, fssn#, insee, insurance
number, national id number, nationalid#,
numéro d'assurance, sécurité sociale, sécurité
sociale non., sécurité sociale numéro, social,
social security, social security number,
socialsecuritynumber, ss#, ssn, ssn#

Germany ausweisnummer, id number, identification
number, identity number, insurance number,
personal id, personalausweis

Italy codice fiscal, dati anagrafici, ehic, health card,
health insurance card, p. iva, partita i.v.a.,
personal data, tax code, tessera sanitaria

Spain dni, dni#, dninúmero#, documento nacional
de identidad, identidad único, identidad
único#, insurance number, national identific
ation number, national identity, nationalid#,
nationalidno#, número nacional identidad
, personal identification number, personal
identity no, unique identity number, uniqueid#

Types of data that you can protect 207

Amazon CloudWatch Logs User Guide

Keywords for passport numbers

To detect various types of passport numbers, CloudWatch Logs requires a keyword to be in
proximity of the numbers. The following table lists the keywords that CloudWatch Logs recognizes
for specific countries and regions.

Country or region Keywords

Canada passeport, passeport#, passport, passport#,
passportno, passportno#

France numéro de passeport, passeport, passeport
#, passeport #, passeportn °, passeport n °,
passeportNon, passeport non

Germany ausstellungsdatum, ausstellungsort,
geburtsdatum, passport, passports, reisepass,
reisepass–nr, reisepassnummer

Italy italian passport number, numéro passeport
, numéro passeport italien, passaporto,
passaporto italiana, passaporto numero,
passport number, repubblica italiana
passaporto

Spain españa pasaporte, libreta pasaporte, número
pasaporte, pasaporte, passport, passport
book, passport no, passport number, spain
passport

United Kingdom passeport #, passeport n °, passeportNon,
passeport non, passeportn °, passport #,
passport no, passport number, passport#,
passportid

United States passport, travel document

Types of data that you can protect 208

Amazon CloudWatch Logs User Guide

Keywords for taxpayer identification and reference numbers

To detect various types of taxpayer identification and reference numbers, CloudWatch Logs
requires a keyword to be in proximity of the numbers. The following table lists the keywords that
CloudWatch Logs recognizes for specific countries and regions.

Country or region Keywords

Brazil cadastro de pessoa física, cadastro de pessoa
fisica, cadastro de pessoas físicas, cadastro de
pessoas fisicas, cadastro nacional da pessoa
jurídica, cadastro nacional da pessoa juridica,
cnpj, cpf

France numéro d'identification fiscale, tax id, tax
identification number, tax number, tin, tin#

Germany identifikationsnummer, steuer id, steueride
ntifikationsnummer, steuernummer, tax id, tax
identification number, tax number

Spain cif, cif número, cifnúmero#, nie, nif, número
de contribuyente, número de identidad de
extranjero, número de identificación fiscal,
número de impuesto corporativo, personal tax
number, tax id, tax identification number, tax
number, tin, tin#

United Kingdom paye, tax id, tax id no., tax id number, tax
identification, tax identification#, tax no.,
tax number, tax reference, tax#, taxid#,
temporary reference number, tin, trn, unique
tax reference, unique taxpayer reference, utr

United States individual taxpayer identification number, itin,
i.t.i.n.

Types of data that you can protect 209

Amazon CloudWatch Logs User Guide

Data identifier ARNs for personally identifiable information (PII)

The following table lists the Amazon Resource Names (ARNs) for the personally identifiable
information (PII) data identifiers that you can add to your data protection policies.

PII data identifier ARNs

arn:aws:dataprotection::aws:data-identifier/Address

arn:aws:dataprotection::aws:data-identifier/CepCode-BR

arn:aws:dataprotection::aws:data-identifier/Cnpj-BR

arn:aws:dataprotection::aws:data-identifier/CpfCode-BR

arn:aws:dataprotection::aws:data-identifier/DriversLicense-AT

arn:aws:dataprotection::aws:data-identifier/DriversLicense-AU

arn:aws:dataprotection::aws:data-identifier/DriversLicense-BE

arn:aws:dataprotection::aws:data-identifier/DriversLicense-BG

arn:aws:dataprotection::aws:data-identifier/DriversLicense-CA

arn:aws:dataprotection::aws:data-identifier/DriversLicense-CY

arn:aws:dataprotection::aws:data-identifier/DriversLicense-CZ

arn:aws:dataprotection::aws:data-identifier/DriversLicense-DE

arn:aws:dataprotection::aws:data-identifier/DriversLicense-DK

arn:aws:dataprotection::aws:data-identifier/DriversLicense-EE

arn:aws:dataprotection::aws:data-identifier/DriversLicense-ES

arn:aws:dataprotection::aws:data-identifier/DriversLicense-FI

arn:aws:dataprotection::aws:data-identifier/DriversLicense-FR

arn:aws:dataprotection::aws:data-identifier/DriversLicense-GB

Types of data that you can protect 210

Amazon CloudWatch Logs User Guide

PII data identifier ARNs

arn:aws:dataprotection::aws:data-identifier/DriversLicense-GR

arn:aws:dataprotection::aws:data-identifier/DriversLicense-HR

arn:aws:dataprotection::aws:data-identifier/DriversLicense-HU

arn:aws:dataprotection::aws:data-identifier/DriversLicense-IE

arn:aws:dataprotection::aws:data-identifier/DriversLicense-IT

arn:aws:dataprotection::aws:data-identifier/DriversLicense-LT

arn:aws:dataprotection::aws:data-identifier/DriversLicense-LU

arn:aws:dataprotection::aws:data-identifier/DriversLicense-LV

arn:aws:dataprotection::aws:data-identifier/DriversLicense-MT

arn:aws:dataprotection::aws:data-identifier/DriversLicense-NL

arn:aws:dataprotection::aws:data-identifier/DriversLicense-PL

arn:aws:dataprotection::aws:data-identifier/DriversLicense-PT

arn:aws:dataprotection::aws:data-identifier/DriversLicense-RO

arn:aws:dataprotection::aws:data-identifier/DriversLicense-SE

arn:aws:dataprotection::aws:data-identifier/DriversLicense-SI

arn:aws:dataprotection::aws:data-identifier/DriversLicense-SK

arn:aws:dataprotection::aws:data-identifier/DriversLicense-US

arn:aws:dataprotection::aws:data-identifier/ElectoralRollNumber-
GB

arn:aws:dataprotection::aws:data-identifier/EmailAddress

Types of data that you can protect 211

Amazon CloudWatch Logs User Guide

PII data identifier ARNs

arn:aws:dataprotection::aws:data-identifier/IndividualTaxIdenti
ficationNumber-US

arn:aws:dataprotection::aws:data-identifier/InseeCode-FR

arn:aws:dataprotection::aws:data-identifier/LatLong

arn:aws:dataprotection::aws:data-identifier/Name

arn:aws:dataprotection::aws:data-identifier/NationalIdentificat
ionNumber-DE

arn:aws:dataprotection::aws:data-identifier/NationalIdentificat
ionNumber-ES

arn:aws:dataprotection::aws:data-identifier/NationalIdentificat
ionNumber-IT

arn:aws:dataprotection::aws:data-identifier/NieNumber-ES

arn:aws:dataprotection::aws:data-identifier/NifNumber-ES

arn:aws:dataprotection::aws:data-identifier/PassportNumber-CA

arn:aws:dataprotection::aws:data-identifier/PassportNumber-DE

arn:aws:dataprotection::aws:data-identifier/PassportNumber-ES

arn:aws:dataprotection::aws:data-identifier/PassportNumber-FR

arn:aws:dataprotection::aws:data-identifier/PassportNumber-GB

arn:aws:dataprotection::aws:data-identifier/PassportNumber-IT

arn:aws:dataprotection::aws:data-identifier/PassportNumber-US

arn:aws:dataprotection::aws:data-identifier/PermanentResidenceN
umber-CA

Types of data that you can protect 212

Amazon CloudWatch Logs User Guide

PII data identifier ARNs

arn:aws:dataprotection::aws:data-identifier/PhoneNumber-BR

arn:aws:dataprotection::aws:data-identifier/PhoneNumber-DE

arn:aws:dataprotection::aws:data-identifier/PhoneNumber-ES

arn:aws:dataprotection::aws:data-identifier/PhoneNumber-FR

arn:aws:dataprotection::aws:data-identifier/PhoneNumber-GB

arn:aws:dataprotection::aws:data-identifier/PhoneNumber-IT

arn:aws:dataprotection::aws:data-identifier/PhoneNumber-US

arn:aws:dataprotection::aws:data-identifier/PostalCode-CA

arn:aws:dataprotection::aws:data-identifier/RgNumber-BR

arn:aws:dataprotection::aws:data-identifier/SocialInsuranceNumb
er-CA

arn:aws:dataprotection::aws:data-identifier/Ssn-ES

arn:aws:dataprotection::aws:data-identifier/Ssn-US

arn:aws:dataprotection::aws:data-identifier/TaxId-DE

arn:aws:dataprotection::aws:data-identifier/TaxId-ES

arn:aws:dataprotection::aws:data-identifier/TaxId-FR

arn:aws:dataprotection::aws:data-identifier/TaxId-GB

arn:aws:dataprotection::aws:data-identifier/VehicleIdentificati
onNumber

arn:aws:dataprotection::aws:data-identifier/ZipCode-US

Types of data that you can protect 213

Amazon CloudWatch Logs User Guide

Custom data identifiers

Topics

• What are custom data identifiers?

• Custom data identifier constraints

• Using custom data identifiers in the console

• Using custom data identifiers in your data protection policy

What are custom data identifiers?

Custom data identifiers (CDIs) let you define your own custom regular expressions that can be
used in your data protection policy. Using custom data identifiers, you can target business-specific
personally identifiable information (PII) use cases that managed data identifiers can't provide. For
example, you can use a custom data identifier to look for company-specific employee IDs. Custom
data identifiers can be used in conjunction with managed data identifiers.

Custom data identifier constraints

CloudWatch Logs custom data identifiers have the following limitations:

• A maximum of 10 custom data identifiers are supported for each data protection policy.

• Custom data identifier names have a maximum length of 128 characters. The following
characters are supported:

• Alphanumeric: (a-zA-Z0-9)

• Symbols: ('_' | '-')

• RegEx has a maximum length of 200 characters. The following characters are supported:

• Alphanumeric: (a-zA-Z0-9)

• Symbols: ('_' | '#' | '=' | '@' |'/' | ';' | ',' | '-' | ' ')

• RegEx reserved characters: ('^' | '$' | '?' | '[' | ']' | '{' | '}' | '|' | '\\' | '*' | '+' | '.')

• Custom data identifiers cannot share the same name as a managed data identifier.

• Custom data identifiers can be specified within an account-level data protection policy or in log
group-level data protection policies. Similar to managed data identifiers, custom data identifiers
defined within an account-level policy work in combination with custom data identifiers defined
in a log group-level policy.

Types of data that you can protect 214

Amazon CloudWatch Logs User Guide

Using custom data identifiers in the console

When you use the CloudWatch console to create or edit a data protection policy, to specify a
custom data identifier you just enter a name and regular expression for the data identifier. For
example, you might enter Employee_ID for the name and EmployeeID-\d{9} as the regular
expression. This regular expression will detect and mask log events with nine numbers after
EmployeeID-. For example, EmployeeID-123456789

Using custom data identifiers in your data protection policy

If you are using the AWS CLI or AWS API to specify a custom data identifier, you need to include the
data identifier name and regular expression in the JSON policy used to define the data protection
policy. The following data protection policy detects and masks log events that carry company-
specific employee IDs.

1. Create a Configuration block within your data protection policy.

2. Enter a Name for your custom data identifier. For example, EmployeeId.

3. Enter a Regex for your custom data identifier. For example, EmployeeID-\d{9}. This
regular expression will match log events containing EmployeeID- that have nine digits after
EmployeeID-. For example, EmployeeID-123456789

4. Refer to the following custom data identifier in a policy statement.

{
 "Name": "example_data_protection_policy",
 "Description": "Example data protection policy with custom data identifiers",
 "Version": "2021-06-01",
 "Configuration": {
 "CustomDataIdentifier": [
 {"Name": "EmployeeId", "Regex": "EmployeeId-\\d{9}"}
]
 },
 "Statement": [
 {
 "Sid": "audit-policy",
 "DataIdentifier": [
 "EmployeeId"
],
 "Operation": {
 "Audit": {
 "FindingsDestination": {
 "S3": {

Types of data that you can protect 215

Amazon CloudWatch Logs User Guide

 "Bucket": "EXISTING_BUCKET"
 }
 }
 }
 }
 },
 {
 "Sid": "redact-policy",
 "DataIdentifier": [
 "EmployeeId"
],
 "Operation": {
 "Deidentify": {
 "MaskConfig": {
 }
 }
 }
 }
]
}

5. (Optional) Continue to add additional custom data identifiers to the Configuration
block as needed. Data protection policies currently support a maximum of 10 custom data
identifiers.

Types of data that you can protect 216

Amazon CloudWatch Logs User Guide

Creating metrics from log events using filters

You can search and filter the log data coming into CloudWatch Logs by creating one or more metric
filters. Metric filters define the terms and patterns to look for in log data as it is sent to CloudWatch
Logs. CloudWatch Logs uses these metric filters to turn log data into numerical CloudWatch
metrics that you can graph or set an alarm on.

When you create a metric from a log filter, you can also choose to assign dimensions and a unit
to the metric. If you specify a unit, be sure to specify the correct one when you create the filter.
Changing the unit for the filter later will have no effect.

Note

Metric filters are supported only for log groups in the Standard log class. For more
information about log classes, see Log classes.

You can use any type of CloudWatch statistic, including percentile statistics, when viewing these
metrics or setting alarms.

Note

Percentile statistics are supported for a metric only if none of the metric's values are
negative. If you set up your metric filter so that it can report negative numbers, percentile
statistics will not be available for that metric when it has negative numbers as values. For
more information, see Percentiles.

Filters do not retroactively filter data. Filters only publish the metric data points for events that
happen after the filter was created. Filtered results return the first 50 lines, which will not be
displayed if the timestamp on the filtered results is earlier than the metric creation time.

Contents

• Concepts

• Filter pattern syntax for metric filters

• Creating metric filters

217

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Percentiles

Amazon CloudWatch Logs User Guide

• Listing metric filters

• Deleting a metric filter

Concepts

Each metric filter is made up of the following key elements:

default value

The value reported to the metric filter during a period when logs are ingested but no matching
logs are found. By setting this to 0, you ensure that data is reported during every such period,
preventing "spotty" metrics with periods of no matching data. If no logs are ingested during a
one-minute period, then no value is reported.

If you assign dimensions to a metric created by a metric filter, you can't assign a default value
for that metric.

dimensions

Dimensions are the key-value pairs that further define a metric. You can assign dimensions to
the metric created from a metric filter. Because dimensions are part of the unique identifier for
a metric, whenever a unique name/value pair is extracted from your logs, you are creating a
new variation of that metric.

filter pattern

A symbolic description of how CloudWatch Logs should interpret the data in each log event.
For example, a log entry may contain timestamps, IP addresses, strings, and so on. You use the
pattern to specify what to look for in the log file.

metric name

The name of the CloudWatch metric to which the monitored log information should be
published. For example, you may publish to a metric called ErrorCount.

metric namespace

The destination namespace of the new CloudWatch metric.

metric value

The numerical value to publish to the metric each time a matching log is found. For example,
if you're counting the occurrences of a particular term like "Error", the value will be "1" for each

Concepts 218

Amazon CloudWatch Logs User Guide

occurrence. If you're counting the bytes transferred, you can increment by the actual number of
bytes found in the log event.

Filter pattern syntax for metric filters

Note

How metric filters differ CloudWatch Logs Insights queries
Metric filters differ from CloudWatch Logs Insights queries in that a specified numerical
value is added to a metric filter each time a matching log is found. For more information,
see Configuring metric values for a metric filter.
For information about how to query your log groups with the Amazon CloudWatch Logs
Insights query language, see CloudWatch Logs Insights query syntax.
Generic filter pattern examples
For more information on generic filter pattern syntax applicable to metric filters as well
as subscription filters and filter log events, see Filter pattern syntax for metric filters,
subscription filters, and filter log events, which includes the following examples:

• Supported regular expressions (regex) syntax

• Matching terms in unstructured log events

• Matching terms in JSON log events

• Matching terms in space-delimited log events

Metric filters allow you to search and filter log data coming into CloudWatch Logs, extract metric
observations from the filtered log data, and transform the data points into a CloudWatch Logs
metric. You define the terms and patterns to look for in log data as it is sent to CloudWatch Logs.
Metric filters are assigned to log groups, and all of the filters assigned to a log group are applied to
their log streams.

When a metric filter matches a term, it increments the metric's count by a specified numerical
value. For example, you can create a metric filter that counts the number of times the word ERROR
occurs in your log events.

You can assign units of measure and dimensions to metrics. For example, if you create a metric
filter that counts the number of times the word ERROR occurs in your log events, you can specify a

Filter pattern syntax for metric filters 219

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SubscriptionFilters.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SearchDataFilterPattern.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntax.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntax.html

Amazon CloudWatch Logs User Guide

dimension that's called ErrorCode to show the total number of log events that contain the word
ERROR and filter data by reported error codes.

Tip

When you assign a unit of measure to a metric, make sure to specify the correct one. If you
change the unit later, your change might not take effect. For the complete list of the units
that CloudWatch supports, see MetricDatum in the Amazon CloudWatch API Reference.

Topics

• Configuring metric values for a metric filter

• Publishing dimensions with metrics from values in JSON or space-delimited log events

• Using values in log events to increment a metric's value

Configuring metric values for a metric filter

When you create a metric filter, you define your filter pattern and specify your metric's value and
default value. You can set metric values to numbers, named identifiers, or numeric identifiers. If
you don't specify a default value, CloudWatch won't report data when your metric filter doesn't
find a match. We recommend that you specify a default value, even if the value is 0. Setting a
default value helps CloudWatch report data more accurately and prevents CloudWatch from
aggregating spotty metrics. CloudWatch aggregates and reports metric values every minute.

When your metric filter finds a match in your log events, it increments your metric's count by your
metric's value. If your metric filter doesn't find a match, CloudWatch reports the metric's default
value. For example, your log group publishes two records every minute, the metric value is 1,
and the default value is 0. If your metric filter finds matches in both log records within the first
minute, the metric value for that minute is 2. If your metric filter doesn't find matches in either
records during the second minute, the default value for that minute is 0. If you assign dimensions
to metrics that metric filters generate, you can't specify default values for those metrics.

You also can set up a metric filter to increment a metric with a value extracted from a log event,
instead of a static value. For more information, see Using values in log events to increment a
metric's value.

Configuring metric values for a metric filter 220

https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_MetricDatum.html

Amazon CloudWatch Logs User Guide

Publishing dimensions with metrics from values in JSON or space-
delimited log events

You can use the CloudWatch console or AWS CLI to create metric filters that publish dimensions
with metrics that JSON and space-delimited log events generate. Dimensions are name/value value
pairs and only available for JSON and space-delimited filter patterns. You can create JSON and
space-delimited metric filters with up to three dimensions. For more information about dimensions
and information about how to assign dimensions to metrics, see the following sections:

• Dimensions in the Amazon CloudWatch User guide

• Example: Extract fields from an Apache log and assign dimensions in the Amazon CloudWatch
Logs User Guide

Important

Dimensions contain values that gather charges the same as custom metrics. To prevent
unexpected charges, don't specify high-cardinality fields, such as IPAddress or
requestID, as dimensions.
If you extract metrics from log events, you're charged for custom metrics. To prevent
you from collecting accidental high charges, Amazon might disable your metric filter if it
generates 1000 different name/value pairs for specified dimensions over a certain amount
of time.
You can create billing alarms that notify you of your estimated charges. For more
information, see Creating a billing alarm to monitor your estimated AWS charges.

Publishing dimensions with metrics from JSON log events

The following examples contain code snippets that describe how to specify dimensions in a JSON
metric filter.

Example: JSON log event

{
 "eventType": "UpdateTrail",
 "sourceIPAddress": "111.111.111.111",
 "arrayKey": [
 "value",

Publishing dimensions with metric from log events 221

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Dimension
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/ExtractBytesExample.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html

Amazon CloudWatch Logs User Guide

 "another value"
],
 "objectList": [
 {"name": "a",
 "id": 1
 },
 {"name": "b",
 "id": 2
 }
]

}

Note

If you test the example metric filter with the example JSON log event, you must enter
the example JSON log on a single line.

Example: Metric filter

The metric filter increments the metric whenever a JSON log event contain the properties
eventType and "sourceIPAddress".

{ $.eventType = "*" && $.sourceIPAddress != 123.123.* }

When you create a JSON metric filter, you can specify any of the properties in the metric filter
as a dimension. For example, to set eventType as a dimension, use the following:

"eventType" : $.eventType

The example metric contains a dimension that's named "eventType", and the dimension's
value in the example log event is "UpdateTrail".

Publishing dimensions with metric from log events 222

Amazon CloudWatch Logs User Guide

Publishing dimensions with metrics from space-delimited log events

The following examples contain code snippets that describe how to specify dimensions in a space-
delimited metric filter.

Example: Space-delimited log event

127.0.0.1 Prod frank [10/Oct/2000:13:25:15 -0700] "GET /index.html HTTP/1.0" 404
 1534

Example: Metric filter

[ip, server, username, timestamp, request, status_code, bytes > 1000]

The metric filter increments the metric when a space-delimited log event includes any of the
fields that are specified in the filter. For example, the metric filter finds following fields and
values in the example space-delimited log event.

{
 "$bytes": "1534",
 "$status_code": "404",

 "$request": "GET /index.html HTTP/1.0",
 "$timestamp": "10/Oct/2000:13:25:15 -0700",
 "$username": "frank",
 "$server": "Prod",
 "$ip": "127.0.0.1"
}

When you create a space-delimited metric filter, you can specify any of the fields in the metric
filter as a dimension. For example, to set server as a dimension, use the following:

Publishing dimensions with metric from log events 223

Amazon CloudWatch Logs User Guide

"server" : $server

The example metric filter has a dimension that's named server, and the dimension's value in
the example log event is "Prod".

Example: Match terms with AND (&&) and OR (||)

You can use the logical operators AND ("&&") and OR ("||") to create space-delimited metric
filters that contain conditions. The following metric filter returns log events where the first
word in the events is ERROR or any superstring of WARN.

[w1=ERROR || w1=%WARN%, w2]

Using values in log events to increment a metric's value

You can create metric filters that publish numeric values found in your log events. The procedure in
this section uses the following example metric filter to show how you can publish a numeric value
in a JSON log event to a metric.

{ $.latency = * } metricValue: $.latency

To create a metric filter that publishes a value in a log event

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Logs, and then choose Log groups.

3. Select or create a log group.

For information about how to create a log group, see Create a log group in CloudWatch Logs in
the Amazon CloudWatch Logs User Guide.

4. Choose Actions, and then choose Create metric filter.

5. For Filter Pattern, enter { $.latency = * }, and then choose Next.

6. For Metric Name, enter myMetric.

7. For Metric Value, enter $.latency.

8. (Optional) For Default Value, enter 0, and then choose Next.

Using values in log events to increment a metric's value 224

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html

Amazon CloudWatch Logs User Guide

We recommend that you specify a default value, even if the value is 0. Setting a default value
helps CloudWatch report data more accurately and prevents CloudWatch from aggregating
spotty metrics. CloudWatch aggregates and reports metric values every minute.

9. Choose Create metric filter.

The example metric filter matches the term "latency" in the example JSON log event and
publishes a numeric value of 50 to the metric myMetric.

{
"latency": 50,
"requestType": "GET"
}

Creating metric filters

The following procedure and examples show how to create metric filters.

Examples

• Create a metric filter for a log group

• Example: Count log events

• Example: Count occurrences of a term

• Example: Count HTTP 404 codes

• Example: Count HTTP 4xx codes

• Example: Extract fields from an Apache log and assign dimensions

Create a metric filter for a log group

To create a metric filter for a log group, follow these steps. The metric won't be visible until there
are some data points for it.

To create a metric filter using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Logs, and then choose Log groups.

3. Choose the name of the log group.

Creating metric filters 225

https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

4. Choose Actions, and then choose Create metric filter.

5. For Filter pattern, enter a filter pattern. For more information, see Filter pattern syntax for
metric filters, subscription filters, filter log events, and Live Tail.

6. (Optional) To test your filter pattern, under Test Pattern, enter one or more log events to test
the pattern. Each log event must be formatted on one line. Line breaks are used to separate
log events in the Log event messages box.

7. Choose Next, and then enter a name for your metric filter.

8. Under Metric details, for Metric namespace, enter a name for the CloudWatch namespace
where the metric will be published. If the namespace doesn't already exist, make sure that
Create new is selected.

9. For Metric name, enter a name for the new metric.

10. For Metric value, if your metric filter is counting occurrences of the keywords in the filter,
enter 1. This increments the metric by 1 for each log event that includes one of the keywords.

Alternatively, enter a token, such as $size. This increments the metric by the value of the
number in the size field for every log event that contains a size field.

11. (Optional) For Unit, select a unit to assign to the metric. If you do not specify a unit, the unit is
set as None.

12. (Optional) Enter the names and tokens for as many as three dimensions for the metric. If you
assign dimensions to metrics that metric filters create, you cannot assign default values for
those metrics.

Note

Dimensions are supported only in JSON or space-delimited metric filters.

13. Choose Create metric filter. You can find the metric filter that you created from the navigation
pane. Choose Logs, and then choose Log groups. Choose the name of the log group that you
created your metric filter for, and then select the Metric filters tab.

Example: Count log events

The simplest type of log event monitoring is to count the number of log events that occur. You
might want to do this to keep a count of all events, to create a "heartbeat" style monitor or just to
practice creating metric filters.

Example: Count log events 226

Amazon CloudWatch Logs User Guide

In the following CLI example, a metric filter called MyAppAccessCount is applied to the log group
MyApp/access.log to create the metric EventCount in the CloudWatch namespace MyNamespace.
The filter is configured to match any log event content and to increment the metric by "1".

To create a metric filter using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Log groups.

3. Choose the name of a log group.

4. Choose Actions, Create metric filter.

5. Leave Filter Pattern and Select Log Data to Test blank.

6. Choose Next, and then for Filter Name, type EventCount.

7. Under Metric Details, for Metric Namespace, type MyNameSpace.

8. For Metric Name, type MyAppEventCount.

9. Confirm that Metric Value is 1. This specifies that the count is incremented by 1 for every log
event.

10. For Default Value enter 0, and then choose Next. Specifying a default value ensures that data
is reported even during periods when no log events occur, preventing spotty metrics where
data sometimes does not exist.

11. Choose Create metric filter.

To create a metric filter using the AWS CLI

At a command prompt, run the following command:

aws logs put-metric-filter \
 --log-group-name MyApp/access.log \
 --filter-name EventCount \
 --filter-pattern " " \
 --metric-transformations \
 metricName=MyAppEventCount,metricNamespace=MyNamespace,metricValue=1,defaultValue=0

You can test this new policy by posting any event data. You should see data points published to the
metric MyAppAccessEventCount.

To post event data using the AWS CLI

Example: Count log events 227

https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

At a command prompt, run the following command:

aws logs put-log-events \
 --log-group-name MyApp/access.log --log-stream-name TestStream1 \
 --log-events \
 timestamp=1394793518000,message="Test event 1" \
 timestamp=1394793518000,message="Test event 2" \
 timestamp=1394793528000,message="This message also contains an Error"

Example: Count occurrences of a term

Log events frequently include important messages that you want to count, maybe about the
success or failure of operations. For example, an error may occur and be recorded to a log file if
a given operation fails. You may want to monitor these entries to understand the trend of your
errors.

In the example below, a metric filter is created to monitor for the term Error. The policy has been
created and added to the log group MyApp/message.log. CloudWatch Logs publishes a data point
to the CloudWatch custom metric ErrorCount in the MyApp/message.log namespace with a value
of "1" for every event containing Error. If no event contains the word Error, then a value of 0 is
published. When graphing this data in the CloudWatch console, be sure to use the sum statistic.

After you create a metric filter, you can view the metric in the CloudWatch console. When you are
selecting the metric to view, select the metric namespace that matches the log group name. For
more information, see Viewing Available Metrics.

To create a metric filter using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Log groups.

3. Choose the name of the log group.

4. Choose Actions, Create metric filter.

5. For Filter Pattern, enter Error.

Note

All entries in Filter Pattern are case-sensitive.

Example: Count occurrences of a term 228

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/viewing_metrics_with_cloudwatch.html
https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

6. (Optional) To test your filter pattern, under Test Pattern, enter one or more log events to use
to test the pattern. Each log event must be within one line, because line breaks are used to
separate log events in the Log event messages box.

7. Choose Next, and then on the Assign metric page, for Filter Name, type MyAppErrorCount.

8. Under Metric Details, for Metric Namespace, type MyNameSpace.

9. For Metric Name, type ErrorCount.

10. Confirm that Metric Value is 1. This specifies that the count is incremented by 1 for every log
event containing "Error".

11. For Default Value type 0, and then choose Next.

12. Choose Create metric filter.

To create a metric filter using the AWS CLI

At a command prompt, run the following command:

aws logs put-metric-filter \
 --log-group-name MyApp/message.log \
 --filter-name MyAppErrorCount \
 --filter-pattern 'Error' \
 --metric-transformations \
 metricName=ErrorCount,metricNamespace=MyNamespace,metricValue=1,defaultValue=0

You can test this new policy by posting events containing the word "Error" in the message.

To post events using the AWS CLI

At a command prompt, run the following command. Note that patterns are case-sensitive.

aws logs put-log-events \
 --log-group-name MyApp/access.log --log-stream-name TestStream1 \
 --log-events \
 timestamp=1394793518000,message="This message contains an Error" \
 timestamp=1394793528000,message="This message also contains an Error"

Example: Count HTTP 404 codes

Using CloudWatch Logs, you can monitor how many times your Apache servers return a HTTP
404 response, which is the response code for page not found. You might want to monitor this to

Example: Count HTTP 404 codes 229

Amazon CloudWatch Logs User Guide

understand how often your site visitors do not find the resource they are looking for. Assume that
your log records are structured to include the following information for each log event (site visit):

• Requestor IP Address

• RFC 1413 Identity

• Username

• Timestamp

• Request method with requested resource and protocol

• HTTP response code to request

• Bytes transferred in request

An example of this might look like the following:

127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache_pb.gif HTTP/1.0" 404 2326

You could specify a rule which attempts to match events of that structure for HTTP 404 errors, as
shown in the following example:

To create a metric filter using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Log groups.

3. Choose Actions, Create metric filter.

4. For Filter Pattern, type [IP, UserInfo, User, Timestamp, RequestInfo,
StatusCode=404, Bytes].

5. (Optional) To test your filter pattern, under Test Pattern, enter one or more log events to use
to test the pattern. Each log event must be within one line, because line breaks are used to
separate log events in the Log event messages box.

6. Choose Next, and then for Filter Name, type HTTP404Errors.

7. Under Metric Details, for Metric Namespace, enter MyNameSpace.

8. For Metric Name, enter ApacheNotFoundErrorCount.

9. Confirm that Metric Value is 1. This specifies that the count is incremented by 1 for every 404
Error event.

10. For Default Value enter 0, and then choose Next.

Example: Count HTTP 404 codes 230

https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

11. Choose Create metric filter.

To create a metric filter using the AWS CLI

At a command prompt, run the following command:

aws logs put-metric-filter \
 --log-group-name MyApp/access.log \
 --filter-name HTTP404Errors \
 --filter-pattern '[ip, id, user, timestamp, request, status_code=404, size]' \
 --metric-transformations \
 metricName=ApacheNotFoundErrorCount,metricNamespace=MyNamespace,metricValue=1

In this example, literal characters such as the left and right square brackets, double quotes and
character string 404 were used. The pattern needs to match with the entire log event message for
the log event to be considered for monitoring.

You can verify the creation of the metric filter by using the describe-metric-filters command. You
should see output that looks like this:

aws logs describe-metric-filters --log-group-name MyApp/access.log

{
 "metricFilters": [
 {
 "filterName": "HTTP404Errors",
 "metricTransformations": [
 {
 "metricValue": "1",
 "metricNamespace": "MyNamespace",
 "metricName": "ApacheNotFoundErrorCount"
 }
],
 "creationTime": 1399277571078,
 "filterPattern": "[ip, id, user, timestamp, request, status_code=404,
 size]"
 }
]
}

Now you can post a few events manually:

Example: Count HTTP 404 codes 231

Amazon CloudWatch Logs User Guide

aws logs put-log-events \
--log-group-name MyApp/access.log --log-stream-name hostname \
--log-events \
timestamp=1394793518000,message="127.0.0.1 - bob [10/Oct/2000:13:55:36 -0700] \"GET /
apache_pb.gif HTTP/1.0\" 404 2326" \
timestamp=1394793528000,message="127.0.0.1 - bob [10/Oct/2000:13:55:36 -0700] \"GET /
apache_pb2.gif HTTP/1.0\" 200 2326"

Soon after putting these sample log events, you can retrieve the metric named in the CloudWatch
console as ApacheNotFoundErrorCount.

Example: Count HTTP 4xx codes

As in the previous example, you might want to monitor your web service access logs and monitor
the HTTP response code levels. For example, you might want to monitor all of the HTTP 400-level
errors. However, you might not want to specify a new metric filter for every return code.

The following example demonstrates how to create a metric that includes all 400-level HTTP code
responses from an access log using the Apache access log format from the Example: Count HTTP
404 codes example.

To create a metric filter using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Log groups.

3. Choose the name of the log group for the Apache server.

4. Choose Actions, Create metric filter.

5. For Filter pattern, enter [ip, id, user, timestamp, request, status_code=4*,
size].

6. (Optional) To test your filter pattern, under Test Pattern, enter one or more log events to use
to test the pattern. Each log event must be within one line, because line breaks are used to
separate log events in the Log event messages box.

7. Choose Next, and then for Filter name, type HTTP4xxErrors.

8. Under Metric details, for Metric namespace, enter MyNameSpace.

9. For Metric name, enter HTTP4xxErrors.

10. For Metric value, enter 1. This specifies that the count is incremented by 1 for every log
containing a 4xx error.

Example: Count HTTP 4xx codes 232

https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

11. For Default value enter 0, and then choose Next.

12. Choose Create metric filter.

To create a metric filter using the AWS CLI

At a command prompt, run the following command:

aws logs put-metric-filter \
 --log-group-name MyApp/access.log \
 --filter-name HTTP4xxErrors \
 --filter-pattern '[ip, id, user, timestamp, request, status_code=4*, size]' \
 --metric-transformations \
 metricName=HTTP4xxErrors,metricNamespace=MyNamespace,metricValue=1,defaultValue=0

You can use the following data in put-event calls to test this rule. If you did not remove the
monitoring rule in the previous example, you will generate two different metrics.

127.0.0.1 - - [24/Sep/2013:11:49:52 -0700] "GET /index.html HTTP/1.1" 404 287
127.0.0.1 - - [24/Sep/2013:11:49:52 -0700] "GET /index.html HTTP/1.1" 404 287
127.0.0.1 - - [24/Sep/2013:11:50:51 -0700] "GET /~test/ HTTP/1.1" 200 3
127.0.0.1 - - [24/Sep/2013:11:50:51 -0700] "GET /favicon.ico HTTP/1.1" 404 308
127.0.0.1 - - [24/Sep/2013:11:50:51 -0700] "GET /favicon.ico HTTP/1.1" 404 308
127.0.0.1 - - [24/Sep/2013:11:51:34 -0700] "GET /~test/index.html HTTP/1.1" 200 3

Example: Extract fields from an Apache log and assign dimensions

Sometimes, instead of counting, it is helpful to use values within individual log events for metric
values. This example shows how you can create an extraction rule to create a metric that measures
the bytes transferred by an Apache webserver.

This example also shows how to assign dimensions to the metric that you are creating.

To create a metric filter using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Log groups.

3. Choose the name of the log group for the Apache server.

4. Choose Actions, Create metric filter.

Example: Extract fields from an Apache log and assign dimensions 233

https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

5. For Filter pattern, enter [ip, id, user, timestamp, request, status_code,
size].

6. (Optional) To test your filter pattern, under Test Pattern, enter one or more log events to use
to test the pattern. Each log event must be within one line, because line breaks are used to
separate log events in the Log event messages box.

7. Choose Next, and then for Filter name, type size.

8. Under Metric details, for Metric namespace, enter MyNameSpace. Because this is a new
namespace, be sure that Create new is selected.

9. For Metric name, enter BytesTransferred

10. For Metric value, enter $size.

11. For Unit, select Bytes.

12. For Dimension Name, type IP.

13. For Dimension Value, type $ip and then choose Next.

14. Choose Create metric filter.

To create this metric filter using the AWS CLI

At a command prompt, run the following command

aws logs put-metric-filter \
--log-group-name MyApp/access.log \
 --filter-name BytesTransferred \
 --filter-pattern '[ip, id, user, timestamp, request, status_code, size]' \
 --metric-transformations \
 metricName=BytesTransferred,metricNamespace=MyNamespace,metricValue='$size'

aws logs put-metric-filter \
--log-group-name MyApp/access.log \
--filter-name BytesTransferred \
--filter-pattern '[ip, id, user, timestamp, request, status_code, size]' \
--metric-transformations \
metricName=BytesTransferred,metricNamespace=MyNamespace,metricValue='$size',unit=Bytes,dimensions='{{IP=
$ip}}'

Note

In this command, use this format to specify multiple dimensions.

Example: Extract fields from an Apache log and assign dimensions 234

Amazon CloudWatch Logs User Guide

aws logs put-metric-filter \
--log-group-name my-log-group-name \
--filter-name my-filter-name \
--filter-pattern 'my-filter-pattern' \
--metric-transformations \
metricName=my-metric-name,metricNamespace=my-metric-namespace,metricValue=my-
token,unit=unit,dimensions='{dimension1=$dim,dimension2=$dim2,dim3=$dim3}'

You can use the following data in put-log-event calls to test this rule. This generates two different
metrics if you did not remove monitoring rule in the previous example.

127.0.0.1 - - [24/Sep/2013:11:49:52 -0700] "GET /index.html HTTP/1.1" 404 287
127.0.0.1 - - [24/Sep/2013:11:49:52 -0700] "GET /index.html HTTP/1.1" 404 287
127.0.0.1 - - [24/Sep/2013:11:50:51 -0700] "GET /~test/ HTTP/1.1" 200 3
127.0.0.1 - - [24/Sep/2013:11:50:51 -0700] "GET /favicon.ico HTTP/1.1" 404 308
127.0.0.1 - - [24/Sep/2013:11:50:51 -0700] "GET /favicon.ico HTTP/1.1" 404 308
127.0.0.1 - - [24/Sep/2013:11:51:34 -0700] "GET /~test/index.html HTTP/1.1" 200 3

Listing metric filters

You can list all metric filters in a log group.

To list metric filters using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Log groups.

3. In the contents pane, in the list of log groups, in the Metric Filters column, choose the number
of filters.

The Log Groups > Filters for screen lists all metric filters associated with the log group.

To list metric filters using the AWS CLI

At a command prompt, run the following command:

aws logs describe-metric-filters --log-group-name MyApp/access.log

Listing metric filters 235

https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

The following is example output:

{
 "metricFilters": [
 {
 "filterName": "HTTP404Errors",
 "metricTransformations": [
 {
 "metricValue": "1",
 "metricNamespace": "MyNamespace",
 "metricName": "ApacheNotFoundErrorCount"
 }
],
 "creationTime": 1399277571078,
 "filterPattern": "[ip, id, user, timestamp, request, status_code=404,
 size]"
 }
]
}

Deleting a metric filter

A policy is identified by its name and the log group it belongs to.

To delete a metric filter using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Log groups.

3. In the contents pane, in the Metric Filter column, choose the number of metric filters for the
log group.

4. Under Metric Filters screen, select the check box to the right of the name of the filter that you
want to delete. Then choose Delete.

5. When prompted for confirmation, choose Delete.

To delete a metric filter using the AWS CLI

At a command prompt, run the following command:

aws logs delete-metric-filter --log-group-name MyApp/access.log \

Deleting a metric filter 236

https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

 --filter-name MyFilterName

Deleting a metric filter 237

Amazon CloudWatch Logs User Guide

Real-time processing of log data with subscriptions

You can use subscriptions to get access to a real-time feed of log events from CloudWatch Logs
and have it delivered to other services such as an Amazon Kinesis stream, an Amazon Data Firehose
stream, or AWS Lambda for custom processing, analysis, or loading to other systems. When log
events are sent to the receiving service, they are base64 encoded and compressed with the gzip
format.

To begin subscribing to log events, create the receiving resource, such as a Kinesis Data Streams
stream, where the events will be delivered. A subscription filter defines the filter pattern to use for
filtering which log events get delivered to your AWS resource, as well as information about where
to send matching log events to.

You can create subscriptions at the account level and at the log group level. Each account can
have one account-level subscription filter. Each log group can have up to two subscription filters
associated with it.

Note

If the destination service returns a retryable error such as a throttling exception or a
retryable service exception (HTTP 5xx for example), CloudWatch Logs continues to retry
delivery for up to 24 hours. CloudWatch Logs doesn't try to re-deliver if the error is a non-
retryable error, such as AccessDeniedException or ResourceNotFoundException. In these
cases the subscription filter is disabled for up to 10 minutes, and then CloudWatch Logs
retries sending logs to the destination. During this disabled period, logs are skipped.

CloudWatch Logs also produces CloudWatch metrics about the forwarding of log events to
subscriptions. For more information, see Monitoring with CloudWatch metrics.

You can also use a CloudWatch Logs subscription to stream log data in near real time to an Amazon
OpenSearch Service cluster. For more information, see Streaming CloudWatch Logs data to
Amazon OpenSearch Service.

Note

Subscriptions are supported only for log groups in the Standard log class. For more
information about log classes, see Log classes.

238

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_OpenSearch_Stream.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_OpenSearch_Stream.html

Amazon CloudWatch Logs User Guide

Contents

• Concepts

• Log group-level subscription filters

• Account-level subscription filters

• Cross-account subscriptions

• Confused deputy prevention

• Log recursion prevention

Concepts

Each subscription filter is made up of the following key elements:

filter pattern

A symbolic description of how CloudWatch Logs should interpret the data in each log event,
along with filtering expressions that restrict what gets delivered to the destination AWS
resource. For more information about the filter pattern syntax, see Filter pattern syntax for
metric filters, subscription filters, filter log events, and Live Tail.

destination arn

The Amazon Resource Name (ARN) of the Kinesis Data Streams stream, Firehose stream, or
Lambda function you want to use as the destination of the subscription feed.

role arn

An IAM role that grants CloudWatch Logs the necessary permissions to put data into the chosen
destination. This role is not needed for Lambda destinations because CloudWatch Logs can get
the necessary permissions from access control settings on the Lambda function itself.

distribution

The method used to distribute log data to the destination, when the destination is a stream in
Amazon Kinesis Data Streams. By default, log data is grouped by log stream. For a more even
distribution, you can group log data randomly.

For log group-level subscriptions, the following key element is also included:

Concepts 239

Amazon CloudWatch Logs User Guide

log group name

The log group to associate the subscription filter with. All log events uploaded to this log group
would be subject to the subscription filter, and those that match the filter are delivered to the
destination service that is receiving the matching log events.

For account-level subscriptions, the following key element is also included:

selection criteria

The criteria used for selecting which log groups have the account-level subscription filter
applied. If you don't specify this, the account-level subscription filter is applied to all log groups
in the account. This field is used to prevent infinite log loops.. For more information about the
infinite log loop issue, see Log recursion prevention.

Selection criteria has a size limit of 25 KB.

Log group-level subscription filters

You can use a subscription filter with Kinesis Data Streams, Lambda, or Firehose. Logs that are sent
to a receiving service through a subscription filter are base64 encoded and compressed with the
gzip format.

You can search your log data using the Filter and pattern syntax.

Examples

• Example 1: Subscription filters with Kinesis Data Streams

• Example 2: Subscription filters with AWS Lambda

• Example 3: Subscription filters with Amazon Data Firehose

Example 1: Subscription filters with Kinesis Data Streams

The following example associates a subscription filter with a log group containing AWS CloudTrail
events. The subscription filter delivers every logged activity made by "Root" AWS credentials to a
stream in Kinesis Data Streams called "RootAccess." For more information about how to send AWS
CloudTrail events to CloudWatch Logs, see Sending CloudTrail Events to CloudWatch Logs in the
AWS CloudTrail User Guide.

Log group-level subscription filters 240

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntax.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cw_send_ct_events.html

Amazon CloudWatch Logs User Guide

Note

Before you create the stream, calculate the volume of log data that will be generated. Be
sure to create a stream with enough shards to handle this volume. If the stream does not
have enough shards, the log stream will be throttled. For more information about stream
volume limits, see Quotas and Limits.
Throttled deliverables are retried for up to 24 hours. After 24 hours, the failed deliverables
are dropped.
To mitigate the risk of throttling, you can take the following steps:

• Monitor your stream using CloudWatch metrics. This helps you identify any throttling
and adjust your configuration accordingly. For example, the DeliveryThrottling
metric can be used to track the number of log events for which CloudWatch Logs was
throttled when forwarding data to the subscription destination. For more information
about monitoring, see Monitoring with CloudWatch metrics.

• Use the on-demand capacity mode for your stream in Kinesis Data Streams. On-
demand mode instantly accommodates your workloads as they ramp up or down. More
information about on-demand capacity mode, see On-demand mode.

• Restrict your CloudWatch subscription filter pattern to match the capacity of your stream
in Kinesis Data Streams. If you are sending too much data to the stream, you might need
to reduce the filter size or adjust the filter criteria.

To create a subscription filter for Kinesis Data Streams

1. Create a destination stream using the following command:

$ C:\> aws kinesis create-stream --stream-name "RootAccess" --shard-count 1

2. Wait until the stream becomes Active (this might take a minute or two). You
can use the following Kinesis Data Streams describe-stream command to
check the StreamDescription.StreamStatus property. In addition, note the
StreamDescription.StreamARN value, as you will need it in a later step:

aws kinesis describe-stream --stream-name "RootAccess"

The following is example output:

Example 1: Subscription filters with Kinesis Data Streams 241

https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/how-do-i-size-a-stream.html#ondemandmode
https://docs.aws.amazon.com/cli/latest/reference/kinesis/describe-stream.html

Amazon CloudWatch Logs User Guide

{
 "StreamDescription": {
 "StreamStatus": "ACTIVE",
 "StreamName": "RootAccess",
 "StreamARN": "arn:aws:kinesis:us-east-1:123456789012:stream/RootAccess",
 "Shards": [
 {
 "ShardId": "shardId-000000000000",
 "HashKeyRange": {
 "EndingHashKey": "340282366920938463463374607431768211455",
 "StartingHashKey": "0"
 },
 "SequenceNumberRange": {
 "StartingSequenceNumber":
 "49551135218688818456679503831981458784591352702181572610"
 }
 }
]
 }
}

3. Create the IAM role that will grant CloudWatch Logs permission to put data into your stream.
First, you'll need to create a trust policy in a file (for example, ~/TrustPolicyForCWL-
Kinesis.json). Use a text editor to create this policy. Do not use the IAM console to create it.

This policy includes a aws:SourceArn global condition context key to help prevent the
confused deputy security problem. For more information, see Confused deputy prevention.

{
 "Statement": {
 "Effect": "Allow",
 "Principal": { "Service": "logs.amazonaws.com" },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringLike": { "aws:SourceArn": "arn:aws:logs:region:123456789012:*" }
 }
 }
}

4. Use the create-role command to create the IAM role, specifying the trust policy file. Note the
returned Role.Arn value, as you will also need it for a later step:

Example 1: Subscription filters with Kinesis Data Streams 242

Amazon CloudWatch Logs User Guide

aws iam create-role --role-name CWLtoKinesisRole --assume-role-policy-document
 file://~/TrustPolicyForCWL-Kinesis.json

The following is an example of the output.

{
 "Role": {
 "AssumeRolePolicyDocument": {
 "Statement": {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.amazonaws.com"
 },
 "Condition": {
 "StringLike": {
 "aws:SourceArn": { "arn:aws:logs:region:123456789012:*" }
 }
 }
 }
 },
 "RoleId": "AAOIIAH450GAB4HC5F431",
 "CreateDate": "2015-05-29T13:46:29.431Z",
 "RoleName": "CWLtoKinesisRole",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:role/CWLtoKinesisRole"
 }
}

5. Create a permissions policy to define what actions CloudWatch Logs can do on your account.
First, you'll create a permissions policy in a file (for example, ~/PermissionsForCWL-
Kinesis.json). Use a text editor to create this policy. Do not use the IAM console to create it.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "kinesis:PutRecord",
 "Resource": "arn:aws:kinesis:region:123456789012:stream/RootAccess"
 }
]

Example 1: Subscription filters with Kinesis Data Streams 243

Amazon CloudWatch Logs User Guide

}

6. Associate the permissions policy with the role using the following put-role-policy command:

aws iam put-role-policy --role-name CWLtoKinesisRole --policy-name Permissions-
Policy-For-CWL --policy-document file://~/PermissionsForCWL-Kinesis.json

7. After the stream is in Active state and you have created the IAM role, you can create the
CloudWatch Logs subscription filter. The subscription filter immediately starts the flow of real-
time log data from the chosen log group to your stream:

aws logs put-subscription-filter \
 --log-group-name "CloudTrail/logs" \
 --filter-name "RootAccess" \
 --filter-pattern "{$.userIdentity.type = Root}" \
 --destination-arn "arn:aws:kinesis:region:123456789012:stream/RootAccess" \
 --role-arn "arn:aws:iam::123456789012:role/CWLtoKinesisRole"

8. After you set up the subscription filter, CloudWatch Logs forwards all the incoming log
events that match the filter pattern to your stream. You can verify that this is happening by
grabbing a Kinesis Data Streams shard iterator and using the Kinesis Data Streams get-records
command to fetch some Kinesis Data Streams records:

aws kinesis get-shard-iterator --stream-name RootAccess --shard-id
 shardId-000000000000 --shard-iterator-type TRIM_HORIZON

{
 "ShardIterator":
 "AAAAAAAAAAFGU/
kLvNggvndHq2UIFOw5PZc6F01s3e3afsSscRM70JSbjIefg2ub07nk1y6CDxYR1UoGHJNP4m4NFUetzfL
+wev+e2P4djJg4L9wmXKvQYoE+rMUiFq
+p4Cn3IgvqOb5dRA0yybNdRcdzvnC35KQANoHzzahKdRGb9v4scv+3vaq+f+OIK8zM5My8ID
+g6rMo7UKWeI4+IWiK2OSh0uP"
}

aws kinesis get-records --limit 10 --shard-iterator "AAAAAAAAAAFGU/
kLvNggvndHq2UIFOw5PZc6F01s3e3afsSscRM70JSbjIefg2ub07nk1y6CDxYR1UoGHJNP4m4NFUetzfL
+wev+e2P4djJg4L9wmXKvQYoE+rMUiFq
+p4Cn3IgvqOb5dRA0yybNdRcdzvnC35KQANoHzzahKdRGb9v4scv+3vaq+f+OIK8zM5My8ID
+g6rMo7UKWeI4+IWiK2OSh0uP"

Example 1: Subscription filters with Kinesis Data Streams 244

https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-policy.html

Amazon CloudWatch Logs User Guide

Note that you might need to make this call a few times before Kinesis Data Streams starts to
return data.

You should expect to see a response with an array of records. The Data attribute in a Kinesis
Data Streams record is base64 encoded and compressed with the gzip format. You can
examine the raw data from the command line using the following Unix commands:

echo -n "<Content of Data>" | base64 -d | zcat

The base64 decoded and decompressed data is formatted as JSON with the following
structure:

{
 "owner": "111111111111",
 "logGroup": "CloudTrail/logs",
 "logStream": "111111111111_CloudTrail/logs_us-east-1",
 "subscriptionFilters": [
 "Destination"
],
 "messageType": "DATA_MESSAGE",
 "logEvents": [
 {
 "id": "31953106606966983378809025079804211143289615424298221568",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":
\"Root\"}"
 },
 {
 "id": "31953106606966983378809025079804211143289615424298221569",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":
\"Root\"}"
 },
 {
 "id": "31953106606966983378809025079804211143289615424298221570",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":
\"Root\"}"
 }
]
}

Example 1: Subscription filters with Kinesis Data Streams 245

Amazon CloudWatch Logs User Guide

The key elements in the above data structure are the following:

owner

The AWS Account ID of the originating log data.

logGroup

The log group name of the originating log data.

logStream

The log stream name of the originating log data.

subscriptionFilters

The list of subscription filter names that matched with the originating log data.

messageType

Data messages will use the "DATA_MESSAGE" type. Sometimes CloudWatch Logs may emit
Kinesis Data Streams records with a "CONTROL_MESSAGE" type, mainly for checking if the
destination is reachable.

logEvents

The actual log data, represented as an array of log event records. The "id" property is a
unique identifier for every log event.

Example 2: Subscription filters with AWS Lambda

In this example, you'll create a CloudWatch Logs subscription filter that sends log data to your AWS
Lambda function.

Note

Before you create the Lambda function, calculate the volume of log data that will be
generated. Be sure to create a function that can handle this volume. If the function does
not have enough volume, the log stream will be throttled. For more information about
Lambda limits, see AWS Lambda Limits.

Example 2: Subscription filters with AWS Lambda 246

https://docs.aws.amazon.com/lambda/latest/dg/limits.html

Amazon CloudWatch Logs User Guide

To create a subscription filter for Lambda

1. Create the AWS Lambda function.

Ensure that you have set up the Lambda execution role. For more information, see Step 2.2:
Create an IAM Role (execution role) in the AWS Lambda Developer Guide.

2. Open a text editor and create a file named helloWorld.js with the following contents:

var zlib = require('zlib');
exports.handler = function(input, context) {
 var payload = Buffer.from(input.awslogs.data, 'base64');
 zlib.gunzip(payload, function(e, result) {
 if (e) {
 context.fail(e);
 } else {
 result = JSON.parse(result.toString());
 console.log("Event Data:", JSON.stringify(result, null, 2));
 context.succeed();
 }
 });
};

3. Zip the file helloWorld.js and save it with the name helloWorld.zip.

4. Use the following command, where the role is the Lambda execution role you set up in the first
step:

aws lambda create-function \
 --function-name helloworld \
 --zip-file fileb://file-path/helloWorld.zip \
 --role lambda-execution-role-arn \
 --handler helloWorld.handler \
 --runtime nodejs12.x

5. Grant CloudWatch Logs the permission to execute your function. Use the following command,
replacing the placeholder account with your own account and the placeholder log group with
the log group to process:

aws lambda add-permission \
 --function-name "helloworld" \
 --statement-id "helloworld" \
 --principal "logs.amazonaws.com" \

Example 2: Subscription filters with AWS Lambda 247

https://docs.aws.amazon.com/lambda/latest/dg/walkthrough-custom-events-create-test-function.html
https://docs.aws.amazon.com/lambda/latest/dg/walkthrough-custom-events-create-test-function.html

Amazon CloudWatch Logs User Guide

 --action "lambda:InvokeFunction" \
 --source-arn "arn:aws:logs:region:123456789123:log-group:TestLambda:*" \
 --source-account "123456789012"

6. Create a subscription filter using the following command, replacing the placeholder account
with your own account and the placeholder log group with the log group to process:

aws logs put-subscription-filter \
 --log-group-name myLogGroup \
 --filter-name demo \
 --filter-pattern "" \
 --destination-arn arn:aws:lambda:region:123456789123:function:helloworld

7. (Optional) Test using a sample log event. At a command prompt, run the following command,
which will put a simple log message into the subscribed stream.

To see the output of your Lambda function, navigate to the Lambda function where you will
see the output in /aws/lambda/helloworld:

aws logs put-log-events --log-group-name myLogGroup --log-stream-name stream1 --
log-events "[{\"timestamp\":<CURRENT TIMESTAMP MILLIS> , \"message\": \"Simple
 Lambda Test\"}]"

You should expect to see a response with an array of Lambda. The Data attribute in the
Lambda record is base64 encoded and compressed with the gzip format. The actual
payload that Lambda receives is in the following format { "awslogs": {"data":
"BASE64ENCODED_GZIP_COMPRESSED_DATA"} } You can examine the raw data from the
command line using the following Unix commands:

echo -n "<BASE64ENCODED_GZIP_COMPRESSED_DATA>" | base64 -d | zcat

The base64 decoded and decompressed data is formatted as JSON with the following
structure:

{
 "owner": "123456789012",
 "logGroup": "CloudTrail",
 "logStream": "123456789012_CloudTrail_us-east-1",
 "subscriptionFilters": [
 "Destination"

Example 2: Subscription filters with AWS Lambda 248

Amazon CloudWatch Logs User Guide

],
 "messageType": "DATA_MESSAGE",
 "logEvents": [
 {
 "id": "31953106606966983378809025079804211143289615424298221568",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":
\"Root\"}"
 },
 {
 "id": "31953106606966983378809025079804211143289615424298221569",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":
\"Root\"}"
 },
 {
 "id": "31953106606966983378809025079804211143289615424298221570",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":
\"Root\"}"
 }
]
}

The key elements in the above data structure are the following:

owner

The AWS Account ID of the originating log data.

logGroup

The log group name of the originating log data.

logStream

The log stream name of the originating log data.

subscriptionFilters

The list of subscription filter names that matched with the originating log data.

Example 2: Subscription filters with AWS Lambda 249

Amazon CloudWatch Logs User Guide

messageType

Data messages will use the "DATA_MESSAGE" type. Sometimes CloudWatch Logs may emit
Lambda records with a "CONTROL_MESSAGE" type, mainly for checking if the destination is
reachable.

logEvents

The actual log data, represented as an array of log event records. The "id" property is a
unique identifier for every log event.

Example 3: Subscription filters with Amazon Data Firehose

In this example, you'll create a CloudWatch Logs subscription that sends any incoming log events
that match your defined filters to your Amazon Data Firehose delivery stream. Data sent from
CloudWatch Logs to Amazon Data Firehose is already compressed with gzip level 6 compression,
so you do not need to use compression within your Firehose delivery stream. You can then use the
decompression feature in Firehose to automatically decompress the logs. For more information,
see Writing to Kinesis Data Firehose Using CloudWatch Logs.

Note

Before you create the Firehose stream, calculate the volume of log data that will be
generated. Be sure to create a Firehose stream that can handle this volume. If the stream
cannot handle the volume, the log stream will be throttled. For more information about
Firehose stream volume limits, see Amazon Data Firehose Data Limits.

To create a subscription filter for Firehose

1. Create an Amazon Simple Storage Service (Amazon S3) bucket. We recommend that you use
a bucket that was created specifically for CloudWatch Logs. However, if you want to use an
existing bucket, skip to step 2.

Run the following command, replacing the placeholder Region with the Region you want to
use:

aws s3api create-bucket --bucket my-bucket --create-bucket-configuration
 LocationConstraint=region

Example 3: Subscription filters with Amazon Data Firehose 250

https://docs.aws.amazon.com/firehose/latest/dev/writing-with-cloudwatch-logs.html
https://docs.aws.amazon.com/firehose/latest/dev/limits.html

Amazon CloudWatch Logs User Guide

The following is example output:

{
 "Location": "/my-bucket"
}

2. Create the IAM role that grants Amazon Data Firehose permission to put data into your
Amazon S3 bucket.

For more information, see Controlling Access with Amazon Data Firehose in the Amazon Data
Firehose Developer Guide.

First, use a text editor to create a trust policy in a file ~/TrustPolicyForFirehose.json as
follows:

{
 "Statement": {
 "Effect": "Allow",
 "Principal": { "Service": "firehose.amazonaws.com" },
 "Action": "sts:AssumeRole"
 }
}

3. Use the create-role command to create the IAM role, specifying the trust policy file. Note of
the returned Role.Arn value, as you will need it in a later step:

aws iam create-role \
 --role-name FirehosetoS3Role \
 --assume-role-policy-document file://~/TrustPolicyForFirehose.json

{
 "Role": {
 "AssumeRolePolicyDocument": {
 "Statement": {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "firehose.amazonaws.com"
 }
 }
 },

Example 3: Subscription filters with Amazon Data Firehose 251

https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html

Amazon CloudWatch Logs User Guide

 "RoleId": "AAOIIAH450GAB4HC5F431",
 "CreateDate": "2015-05-29T13:46:29.431Z",
 "RoleName": "FirehosetoS3Role",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:role/FirehosetoS3Role"
 }
}

4. Create a permissions policy to define what actions Firehose can do on your account. First, use a
text editor to create a permissions policy in a file ~/PermissionsForFirehose.json:

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutObject"],
 "Resource": [
 "arn:aws:s3:::my-bucket",
 "arn:aws:s3:::my-bucket/*"]
 }
]
}

5. Associate the permissions policy with the role using the following put-role-policy command:

aws iam put-role-policy --role-name FirehosetoS3Role --policy-name Permissions-
Policy-For-Firehose --policy-document file://~/PermissionsForFirehose.json

6. Create a destination Firehose delivery stream as follows, replacing the placeholder values for
RoleARN and BucketARN with the role and bucket ARNs that you created:

aws firehose create-delivery-stream \
 --delivery-stream-name 'my-delivery-stream' \
 --s3-destination-configuration \
 '{"RoleARN": "arn:aws:iam::123456789012:role/FirehosetoS3Role", "BucketARN":
 "arn:aws:s3:::my-bucket"}'

Example 3: Subscription filters with Amazon Data Firehose 252

Amazon CloudWatch Logs User Guide

Note that Firehose automatically uses a prefix in YYYY/MM/DD/HH UTC time format for
delivered Amazon S3 objects. You can specify an extra prefix to be added in front of the time
format prefix. If the prefix ends with a forward slash (/), it appears as a folder in the Amazon
S3 bucket.

7. Wait until the stream becomes active (this might take a few minutes). You
can use the Firehose describe-delivery-stream command to check the
DeliveryStreamDescription.DeliveryStreamStatus property. In addition, note the
DeliveryStreamDescription.DeliveryStreamARN value, as you will need it in a later step:

aws firehose describe-delivery-stream --delivery-stream-name "my-delivery-stream"
{
 "DeliveryStreamDescription": {
 "HasMoreDestinations": false,
 "VersionId": "1",
 "CreateTimestamp": 1446075815.822,
 "DeliveryStreamARN": "arn:aws:firehose:us-
east-1:123456789012:deliverystream/my-delivery-stream",
 "DeliveryStreamStatus": "ACTIVE",
 "DeliveryStreamName": "my-delivery-stream",
 "Destinations": [
 {
 "DestinationId": "destinationId-000000000001",
 "S3DestinationDescription": {
 "CompressionFormat": "UNCOMPRESSED",
 "EncryptionConfiguration": {
 "NoEncryptionConfig": "NoEncryption"
 },
 "RoleARN": "delivery-stream-role",
 "BucketARN": "arn:aws:s3:::my-bucket",
 "BufferingHints": {
 "IntervalInSeconds": 300,
 "SizeInMBs": 5
 }
 }
 }
]
 }
}

Example 3: Subscription filters with Amazon Data Firehose 253

Amazon CloudWatch Logs User Guide

8. Create the IAM role that grants CloudWatch Logs permission to put data into your
Firehose delivery stream. First, use a text editor to create a trust policy in a file ~/
TrustPolicyForCWL.json:

This policy includes a aws:SourceArn global condition context key to help prevent the
confused deputy security problem. For more information, see Confused deputy prevention.

{
 "Statement": {
 "Effect": "Allow",
 "Principal": { "Service": "logs.amazonaws.com" },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringLike": {
 "aws:SourceArn": "arn:aws:logs:region:123456789012:*"
 }
 }
 }
}

9. Use the create-role command to create the IAM role, specifying the trust policy file. Note of
the returned Role.Arn value, as you will need it in a later step:

aws iam create-role \
--role-name CWLtoKinesisFirehoseRole \
--assume-role-policy-document file://~/TrustPolicyForCWL.json

{
 "Role": {
 "AssumeRolePolicyDocument": {
 "Statement": {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.amazonaws.com"
 },
 "Condition": {
 "StringLike": {
 "aws:SourceArn": "arn:aws:logs:region:123456789012:*"
 }
 }
 }

Example 3: Subscription filters with Amazon Data Firehose 254

Amazon CloudWatch Logs User Guide

 },
 "RoleId": "AAOIIAH450GAB4HC5F431",
 "CreateDate": "2015-05-29T13:46:29.431Z",
 "RoleName": "CWLtoKinesisFirehoseRole",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:role/CWLtoKinesisFirehoseRole"
 }
}

10. Create a permissions policy to define what actions CloudWatch Logs can do on your
account. First, use a text editor to create a permissions policy file (for example, ~/
PermissionsForCWL.json):

{
 "Statement":[
 {
 "Effect":"Allow",
 "Action":["firehose:PutRecord"],
 "Resource":[
 "arn:aws:firehose:region:account-id:deliverystream/delivery-stream-
name"]
 }
]
}

11. Associate the permissions policy with the role using the put-role-policy command:

aws iam put-role-policy --role-name CWLtoKinesisFirehoseRole --policy-
name Permissions-Policy-For-CWL --policy-document file://~/PermissionsForCWL.json

12. After the Amazon Data Firehose delivery stream is in active state and you have created the
IAM role, you can create the CloudWatch Logs subscription filter. The subscription filter
immediately starts the flow of real-time log data from the chosen log group to your Amazon
Data Firehose delivery stream:

aws logs put-subscription-filter \
 --log-group-name "CloudTrail" \
 --filter-name "Destination" \
 --filter-pattern "{$.userIdentity.type = Root}" \
 --destination-arn "arn:aws:firehose:region:123456789012:deliverystream/my-
delivery-stream" \
 --role-arn "arn:aws:iam::123456789012:role/CWLtoKinesisFirehoseRole"

Example 3: Subscription filters with Amazon Data Firehose 255

Amazon CloudWatch Logs User Guide

13. After you set up the subscription filter, CloudWatch Logs will forward all the incoming log
events that match the filter pattern to your Amazon Data Firehose delivery stream. Your data
will start appearing in your Amazon S3 based on the time buffer interval set on your Amazon
Data Firehose delivery stream. Once enough time has passed, you can verify your data by
checking your Amazon S3 Bucket.

aws s3api list-objects --bucket 'my-bucket' --prefix 'firehose/'
{
 "Contents": [
 {
 "LastModified": "2015-10-29T00:01:25.000Z",
 "ETag": "\"a14589f8897f4089d3264d9e2d1f1610\"",
 "StorageClass": "STANDARD",
 "Key": "firehose/2015/10/29/00/my-delivery-stream-2015-10-29-00-01-21-
a188030a-62d2-49e6-b7c2-b11f1a7ba250",
 "Owner": {
 "DisplayName": "cloudwatch-logs",
 "ID": "1ec9cf700ef6be062b19584e0b7d84ecc19237f87b5"
 },
 "Size": 593
 },
 {
 "LastModified": "2015-10-29T00:35:41.000Z",
 "ETag": "\"a7035b65872bb2161388ffb63dd1aec5\"",
 "StorageClass": "STANDARD",
 "Key": "firehose/2015/10/29/00/my-delivery-
stream-2015-10-29-00-35-40-7cc92023-7e66-49bc-9fd4-fc9819cc8ed3",
 "Owner": {
 "DisplayName": "cloudwatch-logs",
 "ID": "1ec9cf700ef6be062b19584e0b7d84ecc19237f87b6"
 },
 "Size": 5752
 }
]
}

aws s3api get-object --bucket 'my-bucket' --key 'firehose/2015/10/29/00/my-
delivery-stream-2015-10-29-00-01-21-a188030a-62d2-49e6-b7c2-b11f1a7ba250'
 testfile.gz

{
 "AcceptRanges": "bytes",

Example 3: Subscription filters with Amazon Data Firehose 256

Amazon CloudWatch Logs User Guide

 "ContentType": "application/octet-stream",
 "LastModified": "Thu, 29 Oct 2015 00:07:06 GMT",
 "ContentLength": 593,
 "Metadata": {}
}

The data in the Amazon S3 object is compressed with the gzip format. You can examine the
raw data from the command line using the following Unix command:

zcat testfile.gz

Account-level subscription filters

Important

There is a risk of causing an infinite recursive loop with subscription filters that can lead to
a large increase in ingestion billing if not addressed. To mitigate this risk, we recommend
that you use selection criteria in your account-level subscription filters to exclude log
groups that ingest log data from resources that are part of the subscription delivery
workflow. For more information on this problem and determining which log groups to
exclude, see Log recursion prevention.

You can set an account-level subscription policy which includes a subset of log groups in the
account. The account subscription policy can work with Kinesis Data Streams, Lambda, or Firehose.
Logs that are sent to a receiving service through a account-level subscription policy are base64
encoded and compressed with the gzip format.

Note

To view a list of all subscription filter policies in your account, use the describe-
account-policies command with a value of SUBSCRIPTION_FILTER_POLICY for the
--policy-type parameter. For more information, see describe-account-policies¶.

Examples

• Example 1: Subscription filters with Kinesis Data Streams

Account-level subscription filters 257

https://docs.aws.amazon.com/cli/latest/reference/logs/describe-account-policies.html

Amazon CloudWatch Logs User Guide

• Example 2: Subscription filters with AWS Lambda

• Example 3: Subscription filters with Amazon Data Firehose

Example 1: Subscription filters with Kinesis Data Streams

Before you create a Kinesis Data Streams data stream to use with an account-level subscription
policy, calculate the volume of log data that will be generated. Be sure to create a stream with
enough shards to handle this volume. If a stream doesn't have enough shards, it is throttled. For
more information about stream volume limits, see Quotas and Limits in the Kinesis Data Streams
documentation.

Warning

Because the log events of multiple log groups are forwarded to the destination, there is a
risk of throttling. Throttled deliverables are retried for up to 24 hours. After 24 hours, the
failed deliverables are dropped.
To mitigate the risk of throttling, you can take the following steps:

• Monitor your Kinesis Data Streams stream with CloudWatch metrics. This helps
you identify throttling and adjust your configuration accordingly. For example, the
DeliveryThrottling metric tracks the number of log events for which CloudWatch
Logs was throttled when forwarding data to the subscription destination. For more
information, see Monitoring with CloudWatch metrics.

• Use the on-demand capacity mode for your stream in Kinesis Data Streams. On-demand
mode instantly accommodates your workloads as they ramp up or down. For more
information, see On-demand mode.

• Restrict your CloudWatch Logs subscription filter pattern to match the capacity of your
stream in Kinesis Data Streams. If you are sending too much data to the stream, you
might need to reduce the filter size or adjust the filter criteria.

The following example uses an account-level subscription policy to forward all log events to a
stream in Kinesis Data Streams. The filter pattern matches any log events with the text Test and
forwards them to the stream in Kinesis Data Streams.

Example 1: Subscription filters with Kinesis Data Streams 258

https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/how-do-i-size-a-stream.html#ondemandmode

Amazon CloudWatch Logs User Guide

To create an account-level subscription policy for Kinesis Data Streams

1. Create a destination stream using the following command:

$ C:\> aws kinesis create-stream —stream-name "TestStream" —shard-count 1

2. Wait a few minutes for the stream to become active. You can verify whether the stream is
active by using the describe-stream command to check the StreamDescription.StreamStatus
property.

aws kinesis describe-stream --stream-name "TestStream"

The following is example output:

{
 "StreamDescription": {
 "StreamStatus": "ACTIVE",
 "StreamName": "TestStream",
 "StreamARN": "arn:aws:kinesis:region:123456789012:stream/TestStream",
 "Shards": [
 {
 "ShardId": "shardId-000000000000",
 "HashKeyRange": {
 "EndingHashKey": "EXAMPLE8463463374607431768211455",
 "StartingHashKey": "0"
 },
 "SequenceNumberRange": {
 "StartingSequenceNumber":
 "EXAMPLE688818456679503831981458784591352702181572610"
 }
 }
]
 }
}

3. Create the IAM role that will grant CloudWatch Logs permission to put data into your stream.
First, you'll need to create a trust policy in a file (for example, ~/TrustPolicyForCWL-
Kinesis.json). Use a text editor to create this policy.

This policy includes a aws:SourceArn global condition context key to help prevent the
confused deputy security problem. For more information, see Confused deputy prevention.

Example 1: Subscription filters with Kinesis Data Streams 259

https://docs.aws.amazon.com/cli/latest/reference/kinesis/describe-stream.html

Amazon CloudWatch Logs User Guide

{
 "Statement": {
 "Effect": "Allow",
 "Principal": { "Service": "logs.amazonaws.com" },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringLike": { "aws:SourceArn": "arn:aws:logs:region:123456789012:*" }
 }
 }
}

4. Use the create-role command to create the IAM role, specifying the trust policy file. Note the
returned Role.Arn value, as you will also need it for a later step:

aws iam create-role --role-name CWLtoKinesisRole --assume-role-policy-document
 file://~/TrustPolicyForCWL-Kinesis.json

The following is an example of the output.

{
 "Role": {
 "AssumeRolePolicyDocument": {
 "Statement": {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.amazonaws.com"
 },
 "Condition": {
 "StringLike": {
 "aws:SourceArn": { "arn:aws:logs:region:123456789012:*" }
 }
 }
 }
 },
 "RoleId": "EXAMPLE450GAB4HC5F431",
 "CreateDate": "2023-05-29T13:46:29.431Z",
 "RoleName": "CWLtoKinesisRole",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:role/CWLtoKinesisRole"
 }

Example 1: Subscription filters with Kinesis Data Streams 260

Amazon CloudWatch Logs User Guide

}

5. Create a permissions policy to define what actions CloudWatch Logs can do on your account.
First, you'll create a permissions policy in a file (for example, ~/PermissionsForCWL-
Kinesis.json). Use a text editor to create this policy. Don't use the IAM console to create it.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "kinesis:PutRecord",
 "Resource": "arn:aws:kinesis:region:123456789012:stream/TestStream"
 }
]
}

6. Associate the permissions policy with the role using the following put-role-policy command:

aws iam put-role-policy --role-name CWLtoKinesisRole --policy-name Permissions-
Policy-For-CWL --policy-document file://~/PermissionsForCWL-Kinesis.json

7. After the stream is in the Active state and you have created the IAM role, you can create
the CloudWatch Logs subscription filter policy. The policy immediately starts the flow of
real-time log data to your stream. In this example, all log events that contain the string
ERROR are streamed, except those in the log groups named LogGroupToExclude1 and
LogGroupToExclude2.

aws logs put-account-policy \
 --policy-name "ExamplePolicy" \
 --policy-type "SUBSCRIPTION_FILTER_POLICY" \
 --policy-document '{"RoleArn":"arn:aws:iam::123456789012:role/
CWLtoKinesisRole", "DestinationArn":"arn:aws:kinesis:region:123456789012:stream/
TestStream", "FilterPattern": "Test", "Distribution": "Random"}' \
 --selection-criteria 'LogGroupName NOT IN ["LogGroupToExclude1",
 "LogGroupToExclude2"]' \
 --scope "ALL"

8. After you set up the subscription filter, CloudWatch Logs forwards all the incoming log events
that match the filter pattern and selection criteria to your stream.

The selection-criteria field is optional, but is important for excluding log groups that
can cause an infinite log recursion from a subscription filter. For more information about this

Example 1: Subscription filters with Kinesis Data Streams 261

https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-policy.html

Amazon CloudWatch Logs User Guide

issue and determining which log groups to exclude, see Log recursion prevention. Currently,
NOT IN is the only supported operator for selection-criteria.

You can verify that the flow of log events by by using a Kinesis Data Streams shard iterator and
using the Kinesis Data Streams get-records command to fetch some Kinesis Data Streams
records::

aws kinesis get-shard-iterator --stream-name TestStream --shard-id
 shardId-000000000000 --shard-iterator-type TRIM_HORIZON

{
 "ShardIterator":
 "AAAAAAAAAAFGU/
kLvNggvndHq2UIFOw5PZc6F01s3e3afsSscRM70JSbjIefg2ub07nk1y6CDxYR1UoGHJNP4m4NFUetzfL
+wev+e2P4djJg4L9wmXKvQYoE+rMUiFq
+p4Cn3IgvqOb5dRA0yybNdRcdzvnC35KQANoHzzahKdRGb9v4scv+3vaq+f+OIK8zM5My8ID
+g6rMo7UKWeI4+IWiK2OSh0uP"
}

aws kinesis get-records --limit 10 --shard-iterator "AAAAAAAAAAFGU/
kLvNggvndHq2UIFOw5PZc6F01s3e3afsSscRM70JSbjIefg2ub07nk1y6CDxYR1UoGHJNP4m4NFUetzfL
+wev+e2P4djJg4L9wmXKvQYoE+rMUiFq
+p4Cn3IgvqOb5dRA0yybNdRcdzvnC35KQANoHzzahKdRGb9v4scv+3vaq+f+OIK8zM5My8ID
+g6rMo7UKWeI4+IWiK2OSh0uP"

You might need to use this command a few times before Kinesis Data Streams starts to return
data.

You should expect to see a response with an array of records. The Data attribute in a Kinesis
Data Streams record is base64 encoded and compressed with the gzip format. You can
examine the raw data from the command line using the following Unix commands:

echo -n "<Content of Data>" | base64 -d | zcat

The base64 decoded and decompressed data is formatted as JSON with the following
structure:

{
 "messageType": "DATA_MESSAGE",

Example 1: Subscription filters with Kinesis Data Streams 262

Amazon CloudWatch Logs User Guide

 "owner": "123456789012",
 "logGroup": "Example1",
 "logStream": "logStream1",
 "subscriptionFilters": [
 "ExamplePolicy"
],
 "logEvents": [
 {
 "id": "31953106606966983378809025079804211143289615424298221568",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":
\"Root\"}"
 },
 {
 "id": "31953106606966983378809025079804211143289615424298221569",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":
\"Root\"}"
 },
 {
 "id": "31953106606966983378809025079804211143289615424298221570",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":
\"Root\"}"
 }
],
 "policyLevel": "ACCOUNT_LEVEL_POLICY"
}

The key elements in the data structure are the following:

messageType

Data messages will use the "DATA_MESSAGE" type. Sometimes CloudWatch Logs might
emit Kinesis Data Streams records with a "CONTROL_MESSAGE" type, mainly for checking if
the destination is reachable.

owner

The AWS Account ID of the originating log data.

logGroup

The log group name of the originating log data.

Example 1: Subscription filters with Kinesis Data Streams 263

Amazon CloudWatch Logs User Guide

logStream

The log stream name of the originating log data.

subscriptionFilters

The list of subscription filter names that matched with the originating log data.

logEvents

The actual log data, represented as an array of log event records. The "id" property is a
unique identifier for every log event.

policyLevel

The level at which the policy was enforced. "ACCOUNT_LEVEL_POLICY" is the
policyLevel for an account-level subscription filter policy.

Example 2: Subscription filters with AWS Lambda

In this example, you'll create a CloudWatch Logs account-level subscription filter policy that sends
log data to your AWS Lambda function.

Warning

Before you create the Lambda function, calculate the volume of log data that will be
generated. Be sure to create a function that can handle this volume. If the function can't
handle the volume, the log stream will be throttled. Because the log events of either all log
groups or a subset of the account's log groups are forwarded to the destination, there is a
risk of throttling. For more information about Lambda limits, see AWS Lambda Limits.

To create an account-level subscription filter policy for Lambda

1. Create the AWS Lambda function.

Ensure that you have set up the Lambda execution role. For more information, see Step 2.2:
Create an IAM Role (execution role) in the AWS Lambda Developer Guide.

2. Open a text editor and create a file named helloWorld.js with the following contents:

var zlib = require('zlib');

Example 2: Subscription filters with AWS Lambda 264

https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://docs.aws.amazon.com/lambda/latest/dg/walkthrough-custom-events-create-test-function.html
https://docs.aws.amazon.com/lambda/latest/dg/walkthrough-custom-events-create-test-function.html

Amazon CloudWatch Logs User Guide

exports.handler = function(input, context) {
 var payload = Buffer.from(input.awslogs.data, 'base64');
 zlib.gunzip(payload, function(e, result) {
 if (e) {
 context.fail(e);
 } else {
 result = JSON.parse(result.toString());
 console.log("Event Data:", JSON.stringify(result, null, 2));
 context.succeed();
 }
 });
};

3. Zip the file helloWorld.js and save it with the name helloWorld.zip.

4. Use the following command, where the role is the Lambda execution role you set up in the first
step:

aws lambda create-function \
 --function-name helloworld \
 --zip-file fileb://file-path/helloWorld.zip \
 --role lambda-execution-role-arn \
 --handler helloWorld.handler \
 --runtime nodejs18.x

5. Grant CloudWatch Logs the permission to execute your function. Use the following command,
replacing the placeholder account with your own account.

aws lambda add-permission \
 --function-name "helloworld" \
 --statement-id "helloworld" \
 --principal "logs.amazonaws.com" \
 --action "lambda:InvokeFunction" \
 --source-arn "arn:aws:logs:region:123456789012:log-group:*" \
 --source-account "123456789012"

6. Create an account-level subscription filter policy using the following command, replacing the
placeholder account with your own account. In this example, all log events that contain the
string ERROR are streamed, except those in the log groups named LogGroupToExclude1 and
LogGroupToExclude2.

aws logs put-account-policy \
 --policy-name "ExamplePolicyLambda" \

Example 2: Subscription filters with AWS Lambda 265

Amazon CloudWatch Logs User Guide

 --policy-type "SUBSCRIPTION_FILTER_POLICY" \
 --policy-document
 '{"DestinationArn":"arn:aws:lambda:region:123456789012:function:helloWorld",
 "FilterPattern": "Test", "Distribution": "Random"}' \
 --selection-criteria 'LogGroupName NOT IN ["LogGroupToExclude1",
 "LogGroupToExclude2"]' \
 --scope "ALL"

After you set up the subscription filter, CloudWatch Logs forwards all the incoming log events
that match the filter pattern and selection criteria to your stream.

The selection-criteria field is optional, but is important for excluding log groups that
can cause an infinite log recursion from a subscription filter. For more information about this
issue and determining which log groups to exclude, see Log recursion prevention. Currently,
NOT IN is the only supported operator for selection-criteria.

7. (Optional) Test using a sample log event. At a command prompt, run the following command,
which will put a simple log message into the subscribed stream.

To see the output of your Lambda function, navigate to the Lambda function where you will
see the output in /aws/lambda/helloworld:

aws logs put-log-events --log-group-name Example1 --log-stream-name logStream1 --
log-events "[{\"timestamp\":CURRENT TIMESTAMP MILLIS , \"message\": \"Simple Lambda
 Test\"}]"

You should expect to see a response with an array of Lambda. The Data attribute in the
Lambda record is base64 encoded and compressed with the gzip format. The actual
payload that Lambda receives is in the following format { "awslogs": {"data":
"BASE64ENCODED_GZIP_COMPRESSED_DATA"} } You can examine the raw data from the
command line using the following Unix commands:

echo -n "<BASE64ENCODED_GZIP_COMPRESSED_DATA>" | base64 -d | zcat

The base64 decoded and decompressed data is formatted as JSON with the following
structure:

{
 "messageType": "DATA_MESSAGE",
 "owner": "123456789012",

Example 2: Subscription filters with AWS Lambda 266

Amazon CloudWatch Logs User Guide

 "logGroup": "Example1",
 "logStream": "logStream1",
 "subscriptionFilters": [
 "ExamplePolicyLambda"
],
 "logEvents": [
 {
 "id": "31953106606966983378809025079804211143289615424298221568",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":
\"Root\"}"
 },
 {
 "id": "31953106606966983378809025079804211143289615424298221569",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":
\"Root\"}"
 },
 {
 "id": "31953106606966983378809025079804211143289615424298221570",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":
\"Root\"}"
 }
],
 "policyLevel": "ACCOUNT_LEVEL_POLICY"
}

Note

The account-level subscription filter will not be applied to the destination Lambda
function’s log group. This is to prevent an infinite log recursion that can lead to
an increase in ingestion billing. For more information about this problem, see Log
recursion prevention .

The key elements in the data structure are the following:

Example 2: Subscription filters with AWS Lambda 267

Amazon CloudWatch Logs User Guide

messageType

Data messages will use the "DATA_MESSAGE" type. Sometimes CloudWatch Logs might
emit Kinesis Data Streams records with a "CONTROL_MESSAGE" type, mainly for checking if
the destination is reachable.

owner

The AWS Account ID of the originating log data.

logGroup

The log group name of the originating log data.

logStream

The log stream name of the originating log data.

subscriptionFilters

The list of subscription filter names that matched with the originating log data.

logEvents

The actual log data, represented as an array of log event records. The "id" property is a
unique identifier for every log event.

policyLevel

The level at which the policy was enforced. "ACCOUNT_LEVEL_POLICY" is the
policyLevel for an account-level subscription filter policy.

Example 3: Subscription filters with Amazon Data Firehose

In this example, you'll create a CloudWatch Logs account-level subscription filter policy that sends
incoming log events that match your defined filters to your Amazon Data Firehose delivery stream.
Data sent from CloudWatch Logs to Amazon Data Firehose is already compressed with gzip level 6
compression, so you do not need to use compression within your Firehose delivery stream. You can
then use the decompression feature in Firehose to automatically decompress the logs. For more
information, see Writing to Kinesis Data Firehose Using CloudWatch Logs.

Example 3: Subscription filters with Amazon Data Firehose 268

https://docs.aws.amazon.com/firehose/latest/dev/writing-with-cloudwatch-logs.html

Amazon CloudWatch Logs User Guide

Warning

Before you create the Firehose stream, calculate the volume of log data that will be
generated. Be sure to create a Firehose stream that can handle this volume. If the stream
cannot handle the volume, the log stream will be throttled. For more information about
Firehose stream volume limits, see Amazon Data Firehose Data Limits.

To create a subscription filter for Firehose

1. Create an Amazon Simple Storage Service (Amazon S3) bucket. We recommend that you use
a bucket that was created specifically for CloudWatch Logs. However, if you want to use an
existing bucket, skip to step 2.

Run the following command, replacing the placeholder Region with the Region you want to
use:

aws s3api create-bucket --bucket my-bucket --create-bucket-configuration
 LocationConstraint=region

The following is example output:

{
 "Location": "/my-bucket"
}

2. Create the IAM role that grants Amazon Data Firehose permission to put data into your
Amazon S3 bucket.

For more information, see Controlling Access with Amazon Data Firehose in the Amazon Data
Firehose Developer Guide.

First, use a text editor to create a trust policy in a file ~/TrustPolicyForFirehose.json as
follows:

{
 "Statement": {
 "Effect": "Allow",
 "Principal": { "Service": "firehose.amazonaws.com" },
 "Action": "sts:AssumeRole"

Example 3: Subscription filters with Amazon Data Firehose 269

https://docs.aws.amazon.com/firehose/latest/dev/limits.html
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html

Amazon CloudWatch Logs User Guide

 }
}

3. Use the create-role command to create the IAM role, specifying the trust policy file. Keep a
note of the returned Role.Arn value, as you will need it in a later step:

aws iam create-role \
 --role-name FirehosetoS3Role \
 --assume-role-policy-document file://~/TrustPolicyForFirehose.json

{
 "Role": {
 "AssumeRolePolicyDocument": {
 "Statement": {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "firehose.amazonaws.com"
 }
 }
 },
 "RoleId": "EXAMPLE50GAB4HC5F431",
 "CreateDate": "2023-05-29T13:46:29.431Z",
 "RoleName": "FirehosetoS3Role",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:role/FirehosetoS3Role"
 }
}

4. Create a permissions policy to define what actions Firehose can do on your account. First, use a
text editor to create a permissions policy in a file ~/PermissionsForFirehose.json:

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutObject"],

Example 3: Subscription filters with Amazon Data Firehose 270

Amazon CloudWatch Logs User Guide

 "Resource": [
 "arn:aws:s3:::my-bucket",
 "arn:aws:s3:::my-bucket/*"]
 }
]
}

5. Associate the permissions policy with the role using the following put-role-policy command:

aws iam put-role-policy --role-name FirehosetoS3Role --policy-name Permissions-
Policy-For-Firehose --policy-document file://~/PermissionsForFirehose.json

6. Create a destination Firehose delivery stream as follows, replacing the placeholder values for
RoleARN and BucketARN with the role and bucket ARNs that you created:

aws firehose create-delivery-stream \
 --delivery-stream-name 'my-delivery-stream' \
 --s3-destination-configuration \
 '{"RoleARN": "arn:aws:iam::123456789012:role/FirehosetoS3Role", "BucketARN":
 "arn:aws:s3:::my-bucket"}'

NFirehose automatically uses a prefix in YYYY/MM/DD/HH UTC time format for delivered
Amazon S3 objects. You can specify an extra prefix to be added in front of the time format
prefix. If the prefix ends with a forward slash (/), it appears as a folder in the Amazon S3
bucket.

7. Wait a few minutes for the stream becomes active. You can use the Firehose describe-
delivery-stream command to check the DeliveryStreamDescription.DeliveryStreamStatus
property. In addition, note the DeliveryStreamDescription.DeliveryStreamARN value, as you
will need it in a later step:

aws firehose describe-delivery-stream --delivery-stream-name "my-delivery-stream"
{
 "DeliveryStreamDescription": {
 "HasMoreDestinations": false,
 "VersionId": "1",
 "CreateTimestamp": 1446075815.822,
 "DeliveryStreamARN": "arn:aws:firehose:us-
east-1:123456789012:deliverystream/my-delivery-stream",
 "DeliveryStreamStatus": "ACTIVE",
 "DeliveryStreamName": "my-delivery-stream",

Example 3: Subscription filters with Amazon Data Firehose 271

Amazon CloudWatch Logs User Guide

 "Destinations": [
 {
 "DestinationId": "destinationId-000000000001",
 "S3DestinationDescription": {
 "CompressionFormat": "UNCOMPRESSED",
 "EncryptionConfiguration": {
 "NoEncryptionConfig": "NoEncryption"
 },
 "RoleARN": "delivery-stream-role",
 "BucketARN": "arn:aws:s3:::my-bucket",
 "BufferingHints": {
 "IntervalInSeconds": 300,
 "SizeInMBs": 5
 }
 }
 }
]
 }
}

8. Create the IAM role that grants CloudWatch Logs permission to put data into your
Firehose delivery stream. First, use a text editor to create a trust policy in a file ~/
TrustPolicyForCWL.json:

This policy includes a aws:SourceArn global condition context key to help prevent the
confused deputy security problem. For more information, see Confused deputy prevention.

{
 "Statement": {
 "Effect": "Allow",
 "Principal": { "Service": "logs.amazonaws.com" },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringLike": {
 "aws:SourceArn": "arn:aws:logs:region:123456789012:*"
 }
 }
 }
}

9. Use the create-role command to create the IAM role, specifying the trust policy file. Make a
note of the returned Role.Arn value, as you will need it in a later step:

Example 3: Subscription filters with Amazon Data Firehose 272

Amazon CloudWatch Logs User Guide

aws iam create-role \
--role-name CWLtoKinesisFirehoseRole \
--assume-role-policy-document file://~/TrustPolicyForCWL.json

{
 "Role": {
 "AssumeRolePolicyDocument": {
 "Statement": {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.amazonaws.com"
 },
 "Condition": {
 "StringLike": {
 "aws:SourceArn": "arn:aws:logs:region:123456789012:*"
 }
 }
 }
 },
 "RoleId": "AAOIIAH450GAB4HC5F431",
 "CreateDate": "2015-05-29T13:46:29.431Z",
 "RoleName": "CWLtoKinesisFirehoseRole",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:role/CWLtoKinesisFirehoseRole"
 }
}

10. Create a permissions policy to define what actions CloudWatch Logs can do on your
account. First, use a text editor to create a permissions policy file (for example, ~/
PermissionsForCWL.json):

{
 "Statement":[
 {
 "Effect":"Allow",
 "Action":["firehose:PutRecord"],
 "Resource":[
 "arn:aws:firehose:region:account-id:deliverystream/delivery-stream-
name"]
 }
]

Example 3: Subscription filters with Amazon Data Firehose 273

Amazon CloudWatch Logs User Guide

}

11. Associate the permissions policy with the role using the put-role-policy command:

aws iam put-role-policy --role-name CWLtoKinesisFirehoseRole --policy-
name Permissions-Policy-For-CWL --policy-document file://~/PermissionsForCWL.json

12. After the Amazon Data Firehose delivery stream is in the active state and you have created
the IAM role, you can create the CloudWatch Logs account-level subscription filter policy. The
policy immediately starts the flow of real-time log data from the chosen log group to your
Amazon Data Firehose delivery stream:

aws logs put-account-policy \
 --policy-name "ExamplePolicyFirehose" \
 --policy-type "SUBSCRIPTION_FILTER_POLICY" \
 --policy-document '{"RoleArn":"arn:aws:iam::123456789012:role/
CWLtoKinesisFirehoseRole", "DestinationArn":"arn:aws:firehose:us-
east-1:123456789012:deliverystream/delivery-stream-name", "FilterPattern": "Test",
 "Distribution": "Random"}' \
 --selection-criteria 'LogGroupName NOT IN ["LogGroupToExclude1",
 "LogGroupToExclude2"]' \
 --scope "ALL"

13. After you set up the subscription filter, CloudWatch Logs forwards the incoming log events
that match the filter pattern to your Amazon Data Firehose delivery stream.

The selection-criteria field is optional, but is important for excluding log groups that
can cause an infinite log recursion from a subscription filter. For more information about this
issue and determining which log groups to exclude, see Log recursion prevention. Currently,
NOT IN is the only supported operator for selection-criteria.

Your data will start appearing in your Amazon S3 based on the time buffer interval set on your
Amazon Data Firehose delivery stream. Once enough time has passed, you can verify your data
by checking your Amazon S3 Bucket.

aws s3api list-objects --bucket 'my-bucket' --prefix 'firehose/'
{
 "Contents": [
 {
 "LastModified": "2023-10-29T00:01:25.000Z",
 "ETag": "\"a14589f8897f4089d3264d9e2d1f1610\"",

Example 3: Subscription filters with Amazon Data Firehose 274

Amazon CloudWatch Logs User Guide

 "StorageClass": "STANDARD",
 "Key": "firehose/2015/10/29/00/my-delivery-stream-2015-10-29-00-01-21-
a188030a-62d2-49e6-b7c2-b11f1a7ba250",
 "Owner": {
 "DisplayName": "cloudwatch-logs",
 "ID": "1ec9cf700ef6be062b19584e0b7d84ecc19237f87b5"
 },
 "Size": 593
 },
 {
 "LastModified": "2015-10-29T00:35:41.000Z",
 "ETag": "\"a7035b65872bb2161388ffb63dd1aec5\"",
 "StorageClass": "STANDARD",
 "Key": "firehose/2023/10/29/00/my-delivery-stream-2023-10-29-00-35-40-
EXAMPLE-7e66-49bc-9fd4-fc9819cc8ed3",
 "Owner": {
 "DisplayName": "cloudwatch-logs",
 "ID": "EXAMPLE6be062b19584e0b7d84ecc19237f87b6"
 },
 "Size": 5752
 }
]
}

aws s3api get-object --bucket 'my-bucket' --key 'firehose/2023/10/29/00/my-
delivery-stream-2023-10-29-00-01-21-a188030a-62d2-49e6-b7c2-b11f1a7ba250'
 testfile.gz

{
 "AcceptRanges": "bytes",
 "ContentType": "application/octet-stream",
 "LastModified": "Thu, 29 Oct 2023 00:07:06 GMT",
 "ContentLength": 593,
 "Metadata": {}
}

The data in the Amazon S3 object is compressed with the gzip format. You can examine the
raw data from the command line using the following Unix command:

zcat testfile.gz

Example 3: Subscription filters with Amazon Data Firehose 275

Amazon CloudWatch Logs User Guide

Cross-account subscriptions

You can collaborate with an owner of a different AWS account and receive their log events on
your AWS resources, such as an Amazon Kinesis or Amazon Data Firehose stream (this is known as
cross-account data sharing). For example, this log event data can be read from a centralized Kinesis
Data Streams or Firehose stream to perform custom processing and analysis. Custom processing is
especially useful when you collaborate and analyze data across many accounts.

For example, a company's information security group might want to analyze data for real-time
intrusion detection or anomalous behaviors so it could conduct an audit of accounts in all divisions
in the company by collecting their federated production logs for central processing. A real-time
stream of event data across those accounts can be assembled and delivered to the information
security groups, who can use Kinesis Data Streams to attach the data to their existing security
analytic systems.

Topics

• Cross-account log data sharing using Kinesis Data Streams

• Cross-account log data sharing using Firehose

• Cross-account account-level subscriptions using Kinesis Data Streams

• Cross-account account-level subscriptions using Firehose

Cross-account log data sharing using Kinesis Data Streams

When you create a cross-account subscription, you can specify a single account or an organization
to be the sender. If you specify an organization, then this procedure enables all accounts in the
organization to send logs to the receiver account.

To share log data across accounts, you need to establish a log data sender and receiver:

• Log data sender—gets the destination information from the recipient and lets CloudWatch
Logs know that it's ready to send its log events to the specified destination. In the procedures
in the rest of this section, the log data sender is shown with a fictional AWS account number of
111111111111.

If you're going to have multiple accounts in one organization send logs to one recipient account,
you can create a policy that grants all accounts in the organization the permission to send logs

Cross-account subscriptions 276

Amazon CloudWatch Logs User Guide

to the recipient account. You still have to set up separate subscription filters for each sender
account.

• Log data recipient—sets up a destination that encapsulates a Kinesis Data Streams stream
and lets CloudWatch Logs know that the recipient wants to receive log data. The recipient
then shares the information about this destination with the sender. In the procedures in the
rest of this section, the log data recipient is shown with a fictional AWS account number of
999999999999.

To start receiving log events from cross-account users, the log data recipient first creates a
CloudWatch Logs destination. Each destination consists of the following key elements:

Destination name

The name of the destination you want to create.

Target ARN

The Amazon Resource Name (ARN) of the AWS resource that you want to use as the destination
of the subscription feed.

Role ARN

An AWS Identity and Access Management (IAM) role that grants CloudWatch Logs the necessary
permissions to put data into the chosen stream.

Access policy

An IAM policy document (in JSON format, written using IAM policy grammar) that governs the
set of users that are allowed to write to your destination.

The log group and the destination must be in the same AWS Region. However, the AWS resource
that the destination points to can be located in a different Region. In the examples in the following
sections, all Region-specific resources are created in US East (N. Virginia).

Topics

• Setting up a new cross-account subscription

• Updating an existing cross-account subscription

Cross-account log data sharing using Kinesis Data Streams 277

Amazon CloudWatch Logs User Guide

Setting up a new cross-account subscription

Follow the steps in these sections to set up a new cross-account log subscription.

Topics

• Step 1: Create a destination

• Step 2: (Only if using an organization) Create an IAM role

• Step 3: Add/validate IAM permissions for the cross-account destination

• Step 4: Create a subscription filter

• Validate the flow of log events

• Modify destination membership at runtime

Step 1: Create a destination

Important

All steps in this procedure are to be done in the log data recipient account.

For this example, the log data recipient account has an AWS account ID of 999999999999, while
the log data sender AWS account ID is 111111111111.

This example creates a destination using a Kinesis Data Streams stream called RecipientStream,
and a role that enables CloudWatch Logs to write data to it.

When the destination is created, CloudWatch Logs sends a test message to the destination on the
recipient account’s behalf. When the subscription filter is active later, CloudWatch Logs sends log
events to the destination on the source account’s behalf.

To create a destination

1. In the recipient account, create a destination stream in Kinesis Data Streams. At a command
prompt, type:

aws kinesis create-stream --stream-name "RecipientStream" --shard-count 1

Cross-account log data sharing using Kinesis Data Streams 278

Amazon CloudWatch Logs User Guide

2. Wait until the stream becomes active. You can use the aws kinesis describe-stream command
to check the StreamDescription.StreamStatus property. In addition, take note of the
StreamDescription.StreamARN value because you will pass it to CloudWatch Logs later:

aws kinesis describe-stream --stream-name "RecipientStream"
{
 "StreamDescription": {
 "StreamStatus": "ACTIVE",
 "StreamName": "RecipientStream",
 "StreamARN": "arn:aws:kinesis:us-east-1:999999999999:stream/RecipientStream",
 "Shards": [
 {
 "ShardId": "shardId-000000000000",
 "HashKeyRange": {
 "EndingHashKey": "34028236692093846346337460743176EXAMPLE",
 "StartingHashKey": "0"
 },
 "SequenceNumberRange": {
 "StartingSequenceNumber":
 "4955113521868881845667950383198145878459135270218EXAMPLE"
 }
 }
]
 }
}

It might take a minute or two for your stream to show up in the active state.

3. Create the IAM role that grants CloudWatch Logs the permission to put data into your stream.
First, you'll need to create a trust policy in a file ~/TrustPolicyForCWL.json. Use a text editor
to create this policy file, do not use the IAM console.

This policy includes a aws:SourceArn global condition context key that specifies the
sourceAccountId to help prevent the confused deputy security problem. If you don't yet
know the source account ID in the first call, we recommend that you put the destination ARN
in the source ARN field. In the subsequent calls, you should set the source ARN to be the actual
source ARN that you gathered from the first call. For more information, see Confused deputy
prevention.

{
 "Statement": {

Cross-account log data sharing using Kinesis Data Streams 279

Amazon CloudWatch Logs User Guide

 "Effect": "Allow",
 "Principal": {
 "Service": "logs.amazonaws.com"
 },
 "Condition": {
 "StringLike": {
 "aws:SourceArn": [
 "arn:aws:logs:region:sourceAccountId:*",
 "arn:aws:logs:region:recipientAccountId:*"
]
 }
 },
 "Action": "sts:AssumeRole"
 }
}

4. Use the aws iam create-role command to create the IAM role, specifying the trust policy file.
Take note of the returned Role.Arn value because it will also be passed to CloudWatch Logs
later:

aws iam create-role \
--role-name CWLtoKinesisRole \
--assume-role-policy-document file://~/TrustPolicyForCWL.json

{
 "Role": {
 "AssumeRolePolicyDocument": {
 "Statement": {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Condition": {
 "StringLike": {
 "aws:SourceArn": [
 "arn:aws:logs:region:sourceAccountId:*",
 "arn:aws:logs:region:recipientAccountId:*"
]
 }
 },
 "Principal": {
 "Service": "logs.amazonaws.com"
 }
 }
 },

Cross-account log data sharing using Kinesis Data Streams 280

Amazon CloudWatch Logs User Guide

 "RoleId": "AAOIIAH450GAB4HC5F431",
 "CreateDate": "2015-05-29T13:46:29.431Z",
 "RoleName": "CWLtoKinesisRole",
 "Path": "/",
 "Arn": "arn:aws:iam::999999999999:role/CWLtoKinesisRole"
 }
}

5. Create a permissions policy to define which actions CloudWatch Logs can perform
on your account. First, use a text editor to create a permissions policy in a file ~/
PermissionsForCWL.json:

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "kinesis:PutRecord",
 "Resource": "arn:aws:kinesis:region:999999999999:stream/RecipientStream"
 }
]
}

6. Associate the permissions policy with the role by using the aws iam put-role-policy command:

aws iam put-role-policy \
 --role-name CWLtoKinesisRole \
 --policy-name Permissions-Policy-For-CWL \
 --policy-document file://~/PermissionsForCWL.json

7. After the stream is in the active state and you have created the IAM role, you can create the
CloudWatch Logs destination.

a. This step doesn't associate an access policy with your destination and is only the first step
out of two that completes a destination creation. Make a note of the DestinationArn that
is returned in the payload:

aws logs put-destination \
 --destination-name "testDestination" \
 --target-arn "arn:aws:kinesis:region:999999999999:stream/RecipientStream" \
 --role-arn "arn:aws:iam::999999999999:role/CWLtoKinesisRole"

{

Cross-account log data sharing using Kinesis Data Streams 281

Amazon CloudWatch Logs User Guide

 "DestinationName" : "testDestination",
 "RoleArn" : "arn:aws:iam::999999999999:role/CWLtoKinesisRole",
 "DestinationArn" : "arn:aws:logs:us-
east-1:999999999999:destination:testDestination",
 "TargetArn" : "arn:aws:kinesis:us-east-1:999999999999:stream/RecipientStream"
}

b. After step 7a is complete, in the log data recipient account, associate an access policy with
the destination. This policy must specify the logs:PutSubscriptionFilter action and grants
permission to the sender account to access the destination.

The policy grants permission to the AWS account that sends logs. You can specify just this
one account in the policy, or if the sender account is a member of an organization, the
policy can specify the organization ID of the organization. This way, you can create just
one policy to allow multiple accounts in one organization to send logs to this destination
account.

Use a text editor to create a file named ~/AccessPolicy.json with one of the
following policy statements.

This first example policy allows all accounts in the organization that have an ID of
o-1234567890 to send logs to the recipient account.

{
 "Version" : "2012-10-17",
 "Statement" : [
 {
 "Sid" : "",
 "Effect" : "Allow",
 "Principal" : "*",
 "Action" : "logs:PutSubscriptionFilter",
 "Resource" :
 "arn:aws:logs:region:999999999999:destination:testDestination",
 "Condition": {
 "StringEquals" : {
 "aws:PrincipalOrgID" : ["o-1234567890"]
 }
 }
 }
]
}

Cross-account log data sharing using Kinesis Data Streams 282

Amazon CloudWatch Logs User Guide

This next example allows just the log data sender account (111111111111) to send logs
to the log data recipient account.

{
 "Version" : "2012-10-17",
 "Statement" : [
 {
 "Sid" : "",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "111111111111"
 },
 "Action" : "logs:PutSubscriptionFilter",
 "Resource" :
 "arn:aws:logs:region:999999999999:destination:testDestination"
 }
]
}

c. Attach the policy you created in the previous step to the destination.

aws logs put-destination-policy \
 --destination-name "testDestination" \
 --access-policy file://~/AccessPolicy.json

This access policy enables users in the AWS Account with ID 111111111111
to call PutSubscriptionFilter against the destination with ARN
arn:aws:logs:region:999999999999:destination:testDestination. Any other user's attempt
to call PutSubscriptionFilter against this destination will be rejected.

To validate a user's privileges against an access policy, see Using Policy Validator in the
IAM User Guide.

When you have finished, if you're using AWS Organizations for your cross-account permissions,
follow the steps in Step 2: (Only if using an organization) Create an IAM role. If you're granting
permissions directly to the other account instead of using Organizations, you can skip that step and
proceed to Step 4: Create a subscription filter.

Cross-account log data sharing using Kinesis Data Streams 283

https://docs.aws.amazon.com/IAM/latest/UserGuide/policies_policy-validator.html

Amazon CloudWatch Logs User Guide

Step 2: (Only if using an organization) Create an IAM role

In the previous section, if you created the destination by using an access policy that grants
permissions to the organization that account 111111111111 is in, instead of granting permissions
directly to account 111111111111, then follow the steps in this section. Otherwise, you can skip to
Step 4: Create a subscription filter.

The steps in this section create an IAM role, which CloudWatch can assume and validate whether
the sender account has permission to create a subscription filter against the recipient destination.

Perform the steps in this section in the sender account. The role must exist in the sender account,
and you specify the ARN of this role in the subscription filter. In this example, the sender account is
111111111111.

To create the IAM role necessary for cross-account log subscriptions using AWS Organizations

1. Create the following trust policy in a file /
TrustPolicyForCWLSubscriptionFilter.json. Use a text editor to create this policy
file; do not use the IAM console.

{
 "Statement": {
 "Effect": "Allow",
 "Principal": { "Service": "logs.amazonaws.com" },
 "Action": "sts:AssumeRole"
 }
}

2. Create the IAM role that uses this policy. Take note of the Arn value that is returned
by the command, you will need it later in this procedure. In this example, we use
CWLtoSubscriptionFilterRole for the name of the role we're creating.

aws iam create-role \
 --role-name CWLtoSubscriptionFilterRole \
 --assume-role-policy-document file://~/
TrustPolicyForCWLSubscriptionFilter.json

3. Create a permissions policy to define the actions that CloudWatch Logs can perform on your
account.

Cross-account log data sharing using Kinesis Data Streams 284

Amazon CloudWatch Logs User Guide

a. First, use a text editor to create the following permissions policy in a file named ~/
PermissionsForCWLSubscriptionFilter.json.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "logs:PutLogEvents",
 "Resource": "arn:aws:logs:region:111111111111:log-
group:LogGroupOnWhichSubscriptionFilterIsCreated:*"
 }
]
}

b. Enter the following command to associate the permissions policy you just created with the
role that you created in step 2.

aws iam put-role-policy
 --role-name CWLtoSubscriptionFilterRole
 --policy-name Permissions-Policy-For-CWL-Subscription-filter
 --policy-document file://~/PermissionsForCWLSubscriptionFilter.json

When you have finished, you can proceed to Step 4: Create a subscription filter.

Step 3: Add/validate IAM permissions for the cross-account destination

According to AWS cross-account policy evaluation logic, in order to access any cross-account
resource (such as an Kinesis or Firehose stream used as a destination for a subscription filter) you
must have an identity-based policy in the sending account which provides explicit access to the
cross-account destination resource. For more information about policy evaluation logic, see Cross-
account policy evaluation logic.

You can attach the identity-based policy to the IAM role or IAM user that you are using to create
the subscription filter. This policy must be present in the sending account. If you are using the
Administrator role to create the subscription filter, you can skip this step and move on to Step 4:
Create a subscription filter.

Cross-account log data sharing using Kinesis Data Streams 285

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html

Amazon CloudWatch Logs User Guide

To add or validate the IAM permissions needed for cross-account

1. Enter the following command to check which IAM role or IAM user is being used to run AWS
logs commands.

aws sts get-caller-identity

The command returns output similar to the following:

{
"UserId": "User ID",
"Account": "sending account id",
"Arn": "arn:aws:sending account id:role/user:RoleName/UserName"
}

Make note of the value represented by RoleName or UserName.

2. Sign into the AWS Management Console in the sending account and search for the attached
policies with the IAM role or IAM user returned in the output of the command you entered in
step 1.

3. Verify that the policies attached to this role or user provide explicit permissions to call
logs:PutSubscriptionFilter on the cross-account destination resource. The following
example policies show the recommended permissions.

The following policy provides permissions to create a subscription filter on any destination
resource only in a single AWS account, account 123456789012:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow subscription filters on any resource in one specific
 account",
 "Effect": "Allow",
 "Action": "logs:PutSubscriptionFilter",
 "Resource": [
 "arn:aws:logs:*:*:log-group:*",
 "arn:aws:logs:*:123456789012:destination:*"
]
 }
]

Cross-account log data sharing using Kinesis Data Streams 286

Amazon CloudWatch Logs User Guide

}

The following policy provides permissions to create a subscription filter only on a specific
destination resource named sampleDestination in single AWS account, account
123456789012:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow subscription filters on one specific resource in one
 specific account",
 "Effect": "Allow",
 "Action": "logs:PutSubscriptionFilter",
 "Resource": [
 "arn:aws:logs:*:*:log-group:*",
 "arn:aws:logs:*:123456789012:destination:sampleDestination"
]
 }
]
}

Step 4: Create a subscription filter

After you create a destination, the log data recipient account can share the destination ARN
(arn:aws:logs:us-east-1:999999999999:destination:testDestination) with other AWS accounts so
that they can send log events to the same destination. These other sending accounts users then
create a subscription filter on their respective log groups against this destination. The subscription
filter immediately starts the flow of real-time log data from the chosen log group to the specified
destination.

Note

If you are granting permissions for the subscription filter to an entire organization, you
will need to use the ARN of the IAM role that you created in Step 2: (Only if using an
organization) Create an IAM role.

Cross-account log data sharing using Kinesis Data Streams 287

Amazon CloudWatch Logs User Guide

In the following example, a subscription filter is created in a sending account. the filter is
associated with a log group containing AWS CloudTrail events so that every logged activity made
by "Root" AWS credentials is delivered to the destination you previously created. That destination
encapsulates a stream called "RecipientStream".

The rest of the steps in the following sections assume that you have followed the directions in
Sending CloudTrail Events to CloudWatch Logs in the AWS CloudTrail User Guide and created a log
group that contains your CloudTrail events. These steps assume that the name of this log group is
CloudTrail/logs.

When you enter the following command, be sure you are signed in as the IAM user or using the IAM
role that you added the policy for, in Step 3: Add/validate IAM permissions for the cross-account
destination.

aws logs put-subscription-filter \
 --log-group-name "CloudTrail/logs" \
 --filter-name "RecipientStream" \
 --filter-pattern "{$.userIdentity.type = Root}" \
 --destination-arn "arn:aws:logs:region:999999999999:destination:testDestination"

The log group and the destination must be in the same AWS Region. However, the destination
can point to an AWS resource such as a Kinesis Data Streams stream that is located in a different
Region.

Validate the flow of log events

After you create the subscription filter, CloudWatch Logs forwards all the incoming log events
that match the filter pattern to the stream that is encapsulated within the destination stream
called "RecipientStream". The destination owner can verify that this is happening by using the
aws kinesis get-shard-iterator command to grab a Kinesis Data Streams shard, and using the aws
kinesis get-records command to fetch some Kinesis Data Streams records:

aws kinesis get-shard-iterator \
 --stream-name RecipientStream \
 --shard-id shardId-000000000000 \
 --shard-iterator-type TRIM_HORIZON

{
 "ShardIterator":
 "AAAAAAAAAAFGU/
kLvNggvndHq2UIFOw5PZc6F01s3e3afsSscRM70JSbjIefg2ub07nk1y6CDxYR1UoGHJNP4m4NFUetzfL+wev

Cross-account log data sharing using Kinesis Data Streams 288

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/send-cloudtrail-events-to-cloudwatch-logs.html

Amazon CloudWatch Logs User Guide

+e2P4djJg4L9wmXKvQYoE+rMUiFq+p4Cn3IgvqOb5dRA0yybNdRcdzvnC35KQANoHzzahKdRGb9v4scv+3vaq+f
+OIK8zM5My8ID+g6rMo7UKWeI4+IWiKEXAMPLE"
}

aws kinesis get-records \
 --limit 10 \
 --shard-iterator
 "AAAAAAAAAAFGU/
kLvNggvndHq2UIFOw5PZc6F01s3e3afsSscRM70JSbjIefg2ub07nk1y6CDxYR1UoGHJNP4m4NFUetzfL+wev
+e2P4djJg4L9wmXKvQYoE+rMUiFq+p4Cn3IgvqOb5dRA0yybNdRcdzvnC35KQANoHzzahKdRGb9v4scv+3vaq+f
+OIK8zM5My8ID+g6rMo7UKWeI4+IWiKEXAMPLE"

Note

You might need to rerun the get-records command a few times before Kinesis Data Streams
starts to return data.

You should see a response with an array of Kinesis Data Streams records. The data attribute in
the Kinesis Data Streams record is compressed in gzip format and then base64 encoded. You can
examine the raw data from the command line using the following Unix command:

echo -n "<Content of Data>" | base64 -d | zcat

The base64 decoded and decompressed data is formatted as JSON with the following structure:

{
 "owner": "111111111111",
 "logGroup": "CloudTrail/logs",
 "logStream": "111111111111_CloudTrail/logs_us-east-1",
 "subscriptionFilters": [
 "RecipientStream"
],
 "messageType": "DATA_MESSAGE",
 "logEvents": [
 {
 "id": "3195310660696698337880902507980421114328961542429EXAMPLE",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":\"Root
\"}"
 },

Cross-account log data sharing using Kinesis Data Streams 289

Amazon CloudWatch Logs User Guide

 {
 "id": "3195310660696698337880902507980421114328961542429EXAMPLE",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":\"Root
\"}"
 },
 {
 "id": "3195310660696698337880902507980421114328961542429EXAMPLE",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":\"Root
\"}"
 }
]
}

The key elements in this data structure are as follows:

owner

The AWS Account ID of the originating log data.

logGroup

The log group name of the originating log data.

logStream

The log stream name of the originating log data.

subscriptionFilters

The list of subscription filter names that matched with the originating log data.

messageType

Data messages use the "DATA_MESSAGE" type. Sometimes CloudWatch Logs may emit Kinesis
Data Streams records with a "CONTROL_MESSAGE" type, mainly for checking if the destination
is reachable.

logEvents

The actual log data, represented as an array of log event records. The ID property is a unique
identifier for every log event.

Cross-account log data sharing using Kinesis Data Streams 290

Amazon CloudWatch Logs User Guide

Modify destination membership at runtime

You might encounter situations where you have to add or remove membership of some users
from a destination that you own. You can use the put-destination-policy command on
your destination with a new access policy. In the following example, a previously added account
111111111111 is stopped from sending any more log data, and account 222222222222 is
enabled.

1. Fetch the policy that is currently associated with the destination testDestination and make a
note of the AccessPolicy:

aws logs describe-destinations \
 --destination-name-prefix "testDestination"

{
 "Destinations": [
 {
 "DestinationName": "testDestination",
 "RoleArn": "arn:aws:iam::999999999999:role/CWLtoKinesisRole",
 "DestinationArn":
 "arn:aws:logs:region:999999999999:destination:testDestination",
 "TargetArn": "arn:aws:kinesis:region:999999999999:stream/RecipientStream",
 "AccessPolicy": "{\"Version\": \"2012-10-17\", \"Statement\":
 [{\"Sid\": \"\", \"Effect\": \"Allow\", \"Principal\": {\"AWS\":
 \"111111111111\"}, \"Action\": \"logs:PutSubscriptionFilter\", \"Resource\":
 \"arn:aws:logs:region:999999999999:destination:testDestination\"}] }"
 }
]
}

2. Update the policy to reflect that account 111111111111 is stopped, and that account
222222222222 is enabled. Put this policy in the ~/NewAccessPolicy.json file:

{
 "Version" : "2012-10-17",
 "Statement" : [
 {
 "Sid" : "",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "222222222222"
 },

Cross-account log data sharing using Kinesis Data Streams 291

Amazon CloudWatch Logs User Guide

 "Action" : "logs:PutSubscriptionFilter",
 "Resource" : "arn:aws:logs:region:999999999999:destination:testDestination"
 }
]
}

3. Call PutDestinationPolicy to associate the policy defined in the NewAccessPolicy.json file
with the destination:

aws logs put-destination-policy \
--destination-name "testDestination" \
--access-policy file://~/NewAccessPolicy.json

This will eventually disable the log events from account ID 111111111111. Log events from
account ID 222222222222 start flowing to the destination as soon as the owner of account
222222222222 creates a subscription filter.

Updating an existing cross-account subscription

If you currently have a cross-account logs subscription where the destination account grants
permissions only to specific sender accounts, and you want to update this subscription so that the
destination account grants access to all accounts in an organization, follow the steps in this section.

Topics

• Step 1: Update the subscription filters

• Step 2: Update the existing destination access policy

Step 1: Update the subscription filters

Note

This step is needed only for cross-account subscriptions for logs that are created by the
services listed in Enabling logging from AWS services. If you are not working with logs
created by one of these log groups, you can skip to Step 2: Update the existing destination
access policy.

Cross-account log data sharing using Kinesis Data Streams 292

Amazon CloudWatch Logs User Guide

In certain cases, you must update the subscription filters in all the sender accounts that are sending
logs to the destination account. The update adds an IAM role, which CloudWatch can assume and
validate that the sender account has permission to send logs to the recipient account.

Follow the steps in this section for every sender account that you want to update to use
organization ID for the cross-account subscription permissions.

In the examples in this section, two accounts, 111111111111 and 222222222222 already have
subscription filters created to send logs to account 999999999999. The existing subscription filter
values are as follows:

Existing Subscription Filter parameter values
 \ --log-group-name "my-log-group-name"
 \ --filter-name "RecipientStream"
 \ --filter-pattern "{$.userIdentity.type = Root}"
 \ --destination-arn "arn:aws:logs:region:999999999999:destination:testDestination"

If you need to find the current subscription filter parameter values, enter the following command.

aws logs describe-subscription-filters
 \ --log-group-name "my-log-group-name"

To update a subscription filter to start using organization IDs for cross-account log permissions

1. Create the following trust policy in a file ~/TrustPolicyForCWL.json. Use a text editor to
create this policy file; do not use the IAM console.

{
 "Statement": {
 "Effect": "Allow",
 "Principal": { "Service": "logs.amazonaws.com" },
 "Action": "sts:AssumeRole"
 }
}

2. Create the IAM role that uses this policy. Take note of the Arn value of the Arn value that
is returned by the command, you will need it later in this procedure. In this example, we use
CWLtoSubscriptionFilterRole for the name of the role we're creating.

aws iam create-role
 \ --role-name CWLtoSubscriptionFilterRole

Cross-account log data sharing using Kinesis Data Streams 293

Amazon CloudWatch Logs User Guide

 \ --assume-role-policy-document file://~/TrustPolicyForCWL.json

3. Create a permissions policy to define the actions that CloudWatch Logs can perform on your
account.

a. First, use a text editor to create the following permissions policy in a file named /
PermissionsForCWLSubscriptionFilter.json.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "logs:PutLogEvents",
 "Resource": "arn:aws:logs:region:111111111111:log-
group:LogGroupOnWhichSubscriptionFilterIsCreated:*"
 }
]
}

b. Enter the following command to associate the permissions policy you just created with the
role that you created in step 2.

aws iam put-role-policy
 --role-name CWLtoSubscriptionFilterRole
 --policy-name Permissions-Policy-For-CWL-Subscription-filter
 --policy-document file://~/PermissionsForCWLSubscriptionFilter.json

4. Enter the following command to update the subscription filter.

aws logs put-subscription-filter
 \ --log-group-name "my-log-group-name"
 \ --filter-name "RecipientStream"
 \ --filter-pattern "{$.userIdentity.type = Root}"
 \ --destination-arn
 "arn:aws:logs:region:999999999999:destination:testDestination"
 \ --role-arn "arn:aws:iam::111111111111:role/CWLtoSubscriptionFilterRole"

Step 2: Update the existing destination access policy

After you have updated the subscription filters in all of the sender accounts, you can update the
destination access policy in the recipient account.

Cross-account log data sharing using Kinesis Data Streams 294

Amazon CloudWatch Logs User Guide

In the following examples, the recipient account is 999999999999 and the destination is named
testDestination.

The update enables all accounts that are part of the organization with ID o-1234567890 to send
logs to the recipient account. Only the accounts that have subscription filters created will actually
send logs to the recipient account.

To update the destination access policy in the recipient account to start using an organization
ID for permissions

1. In the recipient account, use a text editor to create a ~/AccessPolicy.json file with the
following contents.

{
 "Version" : "2012-10-17",
 "Statement" : [
 {
 "Sid" : "",
 "Effect" : "Allow",
 "Principal" : "*",
 "Action" : "logs:PutSubscriptionFilter",
 "Resource" :
 "arn:aws:logs:region:999999999999:destination:testDestination",
 "Condition": {
 "StringEquals" : {
 "aws:PrincipalOrgID" : ["o-1234567890"]
 }
 }
 }
]
}

2. Enter the following command to attach the policy that you just created to the existing
destination. To update a destination to use an access policy with an organization ID instead of
an access policy that lists specific AWS account IDs, include the force parameter.

Warning

If you are working with logs sent by an AWS service listed in Enabling logging from
AWS services, then before doing this step, you must have first updated the subscription
filters in all the sender accounts as explained in Step 1: Update the subscription filters.

Cross-account log data sharing using Kinesis Data Streams 295

Amazon CloudWatch Logs User Guide

aws logs put-destination-policy
 \ --destination-name "testDestination"
 \ --access-policy file://~/AccessPolicy.json
 \ --force

Cross-account log data sharing using Firehose

To share log data across accounts, you need to establish a log data sender and receiver:

• Log data sender—gets the destination information from the recipient and lets CloudWatch
Logs know that it is ready to send its log events to the specified destination. In the procedures
in the rest of this section, the log data sender is shown with a fictional AWS account number of
111111111111.

• Log data recipient—sets up a destination that encapsulates a Kinesis Data Streams stream
and lets CloudWatch Logs know that the recipient wants to receive log data. The recipient
then shares the information about this destination with the sender. In the procedures in the
rest of this section, the log data recipient is shown with a fictional AWS account number of
222222222222.

The example in this section uses a Firehose delivery stream with Amazon S3 storage. You can also
set up Firehose delivery streams with different settings. For more information, see Creating a
Firehose Delivery Stream.

The log group and the destination must be in the same AWS Region. However, the AWS resource
that the destination points to can be located in a different Region.

Note

Firehose subscription filter for a same account and cross-Region delivery stream is
supported.

Topics

• Step 1: Create a Firehose delivery stream

• Step 2: Create a destination

Cross-account log data sharing using Firehose 296

https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html

Amazon CloudWatch Logs User Guide

• Step 3: Add/validate IAM permissions for the cross-account destination

• Step 4: Create a subscription filter

• Validating the flow of log events

• Modifying destination membership at runtime

Step 1: Create a Firehose delivery stream

Important

Before you complete the following steps, you must use an access policy, so Firehose can
access your Amazon S3 bucket. For more information, see Controlling Access in the Amazon
Data Firehose Developer Guide.
All of the steps in this section (Step 1) must be done in the log data recipient account.
US East (N. Virginia) is used in the following sample commands. Replace this Region with
the correct Region for your deployment.

To create a Firehose delivery stream to be used as the destination

1. Create an Amazon S3 bucket:

aws s3api create-bucket --bucket firehose-test-bucket1 --create-bucket-
configuration LocationConstraint=us-east-1

2. Create the IAM role that grants Firehose permission to put data into the bucket.

a. First, use a text editor to create a trust policy in a file ~/
TrustPolicyForFirehose.json.

{ "Statement": { "Effect": "Allow", "Principal": { "Service":
 "firehose.amazonaws.com" }, "Action": "sts:AssumeRole", "Condition":
 { "StringEquals": { "sts:ExternalId":"222222222222" } } } }

b. Create the IAM role, specifying the trust policy file that you just made.

aws iam create-role \
 --role-name FirehosetoS3Role \
 --assume-role-policy-document file://~/TrustPolicyForFirehose.json

Cross-account log data sharing using Firehose 297

https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-s3

Amazon CloudWatch Logs User Guide

c. The output of this command will look similar to the following. Make a note of the role
name and the role ARN.

{
 "Role": {
 "Path": "/",
 "RoleName": "FirehosetoS3Role",
 "RoleId": "AROAR3BXASEKW7K635M53",
 "Arn": "arn:aws:iam::222222222222:role/FirehosetoS3Role",
 "CreateDate": "2021-02-02T07:53:10+00:00",
 "AssumeRolePolicyDocument": {
 "Statement": {
 "Effect": "Allow",
 "Principal": {
 "Service": "firehose.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "sts:ExternalId": "222222222222"
 }
 }
 }
 }
 }
}

3. Create a permissions policy to define the actions that Firehose can perform in your account.

a. First, use a text editor to create the following permissions policy in a file named ~/
PermissionsForFirehose.json. Depending on your use case, you might need to add
more permissions to this file.

{
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:PutObjectAcl",
 "s3:ListBucket"
],
 "Resource": [

Cross-account log data sharing using Firehose 298

Amazon CloudWatch Logs User Guide

 "arn:aws:s3:::firehose-test-bucket1",
 "arn:aws:s3:::firehose-test-bucket1/*"
]
 }]
}

b. Enter the following command to associate the permissions policy that you just created
with the IAM role.

aws iam put-role-policy --role-name FirehosetoS3Role --policy-name
 Permissions-Policy-For-Firehose-To-S3 --policy-document file://~/
PermissionsForFirehose.json

4. Enter the following command to create the Firehose delivery stream. Replace my-role-arn
and my-bucket-arn with the correct values for your deployment.

aws firehose create-delivery-stream \
 --delivery-stream-name 'my-delivery-stream' \
 --s3-destination-configuration \
 '{"RoleARN": "arn:aws:iam::222222222222:role/FirehosetoS3Role", "BucketARN":
 "arn:aws:s3:::firehose-test-bucket1"}'

The output should look similar to the following:

{
 "DeliveryStreamARN": "arn:aws:firehose:us-east-1:222222222222:deliverystream/
my-delivery-stream"
}

Step 2: Create a destination

Important

All steps in this procedure are to be done in the log data recipient account.

When the destination is created, CloudWatch Logs sends a test message to the destination on the
recipient account’s behalf. When the subscription filter is active later, CloudWatch Logs sends log
events to the destination on the source account’s behalf.

Cross-account log data sharing using Firehose 299

Amazon CloudWatch Logs User Guide

To create a destination

1. Wait until the Firehose stream that you created in Step 1: Create a Firehose
delivery stream becomes active. You can use the following command to check the
StreamDescription.StreamStatus property.

aws firehose describe-delivery-stream --delivery-stream-name "my-delivery-stream"

In addition, take note of the DeliveryStreamDescription.DeliveryStreamARN value, because
you will need to use it in a later step. Sample output of this command:

{
 "DeliveryStreamDescription": {
 "DeliveryStreamName": "my-delivery-stream",
 "DeliveryStreamARN": "arn:aws:firehose:us-
east-1:222222222222:deliverystream/my-delivery-stream",
 "DeliveryStreamStatus": "ACTIVE",
 "DeliveryStreamEncryptionConfiguration": {
 "Status": "DISABLED"
 },
 "DeliveryStreamType": "DirectPut",
 "VersionId": "1",
 "CreateTimestamp": "2021-02-01T23:59:15.567000-08:00",
 "Destinations": [
 {
 "DestinationId": "destinationId-000000000001",
 "S3DestinationDescription": {
 "RoleARN": "arn:aws:iam::222222222222:role/FirehosetoS3Role",
 "BucketARN": "arn:aws:s3:::firehose-test-bucket1",
 "BufferingHints": {
 "SizeInMBs": 5,
 "IntervalInSeconds": 300
 },
 "CompressionFormat": "UNCOMPRESSED",
 "EncryptionConfiguration": {
 "NoEncryptionConfig": "NoEncryption"
 },
 "CloudWatchLoggingOptions": {
 "Enabled": false
 }
 },
 "ExtendedS3DestinationDescription": {

Cross-account log data sharing using Firehose 300

Amazon CloudWatch Logs User Guide

 "RoleARN": "arn:aws:iam::222222222222:role/FirehosetoS3Role",
 "BucketARN": "arn:aws:s3:::firehose-test-bucket1",
 "BufferingHints": {
 "SizeInMBs": 5,
 "IntervalInSeconds": 300
 },
 "CompressionFormat": "UNCOMPRESSED",
 "EncryptionConfiguration": {
 "NoEncryptionConfig": "NoEncryption"
 },
 "CloudWatchLoggingOptions": {
 "Enabled": false
 },
 "S3BackupMode": "Disabled"
 }
 }
],
 "HasMoreDestinations": false
 }
}

It might take a minute or two for your delivery stream to show up in the active state.

2. When the delivery stream is active, create the IAM role that will grant CloudWatch Logs the
permission to put data into your Firehose stream. First, you'll need to create a trust policy in
a file ~/TrustPolicyForCWL.json. Use a text editor to create this policy. For more information
about CloudWatch Logs endpoints, see Amazon CloudWatch Logs endpoints and quotas.

This policy includes a aws:SourceArn global condition context key that specifies the
sourceAccountId to help prevent the confused deputy security problem. If you don't yet
know the source account ID in the first call, we recommend that you put the destination ARN
in the source ARN field. In the subsequent calls, you should set the source ARN to be the actual
source ARN that you gathered from the first call. For more information, see Confused deputy
prevention.

{
 "Statement": {
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.region.amazonaws.com"
 },
 "Action": "sts:AssumeRole",

Cross-account log data sharing using Firehose 301

https://docs.aws.amazon.com/general/latest/gr/cwl_region.html

Amazon CloudWatch Logs User Guide

 "Condition": {
 "StringLike": {
 "aws:SourceArn": [
 "arn:aws:logs:region:sourceAccountId:*",
 "arn:aws:logs:region:recipientAccountId:*"
]
 }
 }
 }
}

3. Use the aws iam create-role command to create the IAM role, specifying the trust policy file
that you just created.

aws iam create-role \
 --role-name CWLtoKinesisFirehoseRole \
 --assume-role-policy-document file://~/TrustPolicyForCWL.json

The following is a sample output. Take note of the returned Role.Arn value, because you will
need to use it in a later step.

{
 "Role": {
 "Path": "/",
 "RoleName": "CWLtoKinesisFirehoseRole",
 "RoleId": "AROAR3BXASEKYJYWF243H",
 "Arn": "arn:aws:iam::222222222222:role/CWLtoKinesisFirehoseRole",
 "CreateDate": "2021-02-02T08:10:43+00:00",
 "AssumeRolePolicyDocument": {
 "Statement": {
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.region.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringLike": {
 "aws:SourceArn": [
 "arn:aws:logs:region:sourceAccountId:*",
 "arn:aws:logs:region:recipientAccountId:*"
]
 }

Cross-account log data sharing using Firehose 302

Amazon CloudWatch Logs User Guide

 }
 }
 }
 }
}

4. Create a permissions policy to define which actions CloudWatch Logs can perform
on your account. First, use a text editor to create a permissions policy in a file ~/
PermissionsForCWL.json:

{
 "Statement":[
 {
 "Effect":"Allow",
 "Action":["firehose:*"],
 "Resource":["arn:aws:firehose:region:222222222222:*"]
 }
]
}

5. Associate the permissions policy with the role by entering the following command:

aws iam put-role-policy --role-name CWLtoKinesisFirehoseRole --policy-name
 Permissions-Policy-For-CWL --policy-document file://~/PermissionsForCWL.json

6. After the Firehose delivery stream is in the active state and you have created the IAM role, you
can create the CloudWatch Logs destination.

a. This step will not associate an access policy with your destination and is only the first
step out of two that completes a destination creation. Make a note of the ARN of
the new destination that is returned in the payload, because you will use this as the
destination.arn in a later step.

aws logs put-destination \

 --destination-name "testFirehoseDestination" \
 --target-arn "arn:aws:firehose:us-east-1:222222222222:deliverystream/my-
delivery-stream" \
 --role-arn "arn:aws:iam::222222222222:role/CWLtoKinesisFirehoseRole"

{
 "destination": {

Cross-account log data sharing using Firehose 303

Amazon CloudWatch Logs User Guide

 "destinationName": "testFirehoseDestination",
 "targetArn": "arn:aws:firehose:us-east-1:222222222222:deliverystream/
my-delivery-stream",
 "roleArn": "arn:aws:iam::222222222222:role/CWLtoKinesisFirehoseRole",
 "arn": "arn:aws:logs:us-
east-1:222222222222:destination:testFirehoseDestination"}
}

b. After the previous step is complete, in the log data recipient account (222222222222),
associate an access policy with the destination.

This policy enables the log data sender account (111111111111) to access the destination
in just the log data recipient account (222222222222). You can use a text editor to put
this policy in the ~/AccessPolicy.json file:

{
 "Version" : "2012-10-17",
 "Statement" : [
 {
 "Sid" : "",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "111111111111"
 },
 "Action" : "logs:PutSubscriptionFilter",
 "Resource" : "arn:aws:logs:us-
east-1:222222222222:destination:testFirehoseDestination"
 }
]
}

c. This creates a policy that defines who has write access to the destination. This policy must
specify the logs:PutSubscriptionFilter action to access the destination. Cross-account
users will use the PutSubscriptionFilter action to send log events to the destination:

aws logs put-destination-policy \
 --destination-name "testFirehoseDestination" \
 --access-policy file://~/AccessPolicy.json

Cross-account log data sharing using Firehose 304

Amazon CloudWatch Logs User Guide

Step 3: Add/validate IAM permissions for the cross-account destination

According to AWS cross-account policy evaluation logic, in order to access any cross-account
resource (such as an Kinesis or Firehose stream used as a destination for a subscription filter) you
must have an identity-based policy in the sending account which provides explicit access to the
cross-account destination resource. For more information about policy evaluation logic, see Cross-
account policy evaluation logic.

You can attach the identity-based policy to the IAM role or IAM user that you are using to create
the subscription filter. This policy must be present in the sending account. If you are using the
Administrator role to create the subscription filter, you can skip this step and move on to Step 4:
Create a subscription filter.

To add or validate the IAM permissions needed for cross-account

1. Enter the following command to check which IAM role or IAM user is being used to run AWS
logs commands.

aws sts get-caller-identity

The command returns output similar to the following:

{
"UserId": "User ID",
"Account": "sending account id",
"Arn": "arn:aws:sending account id:role/user:RoleName/UserName"
}

Make note of the value represented by RoleName or UserName.

2. Sign into the AWS Management Console in the sending account and search for the attached
policies with the IAM role or IAM user returned in the output of the command you entered in
step 1.

3. Verify that the policies attached to this role or user provide explicit permissions to call
logs:PutSubscriptionFilter on the cross-account destination resource. The following
example policies show the recommended permissions.

The following policy provides permissions to create a subscription filter on any destination
resource only in a single AWS account, account 123456789012:

Cross-account log data sharing using Firehose 305

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html

Amazon CloudWatch Logs User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow subscription filters on any resource in one specific
 account",
 "Effect": "Allow",
 "Action": "logs:PutSubscriptionFilter",
 "Resource": [
 "arn:aws:logs:*:*:log-group:*",
 "arn:aws:logs:*:123456789012:destination:*"
]
 }
]
}

The following policy provides permissions to create a subscription filter only on a specific
destination resource named sampleDestination in single AWS account, account
123456789012:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow subscription filters on one specific resource in one
 specific account",
 "Effect": "Allow",
 "Action": "logs:PutSubscriptionFilter",
 "Resource": [
 "arn:aws:logs:*:*:log-group:*",
 "arn:aws:logs:*:123456789012:destination:sampleDestination"
]
 }
]
}

Step 4: Create a subscription filter

Switch to the sending account, which is 111111111111 in this example. You will now create the
subscription filter in the sending account. In this example, the filter is associated with a log group

Cross-account log data sharing using Firehose 306

Amazon CloudWatch Logs User Guide

containing AWS CloudTrail events so that every logged activity made by "Root" AWS credentials is
delivered to the destination you previously created. For more information about how to send AWS
CloudTrail events to CloudWatch Logs, see Sending CloudTrail Events to CloudWatch Logs in the
AWS CloudTrail User Guide.

When you enter the following command, be sure you are signed in as the IAM user or using the IAM
role that you added the policy for, in Step 3: Add/validate IAM permissions for the cross-account
destination.

aws logs put-subscription-filter \
 --log-group-name "aws-cloudtrail-logs-111111111111-300a971e" \
 --filter-name "firehose_test" \
 --filter-pattern "{$.userIdentity.type = AssumedRole}" \
 --destination-arn "arn:aws:logs:us-
east-1:222222222222:destination:testFirehoseDestination"

The log group and the destination must be in the same AWS Region. However, the destination can
point to an AWS resource such as a Firehose stream that is located in a different Region.

Validating the flow of log events

After you create the subscription filter, CloudWatch Logs forwards all the incoming log events
that match the filter pattern to the Firehose delivery stream. The data starts appearing in your
Amazon S3 bucket based on the time buffer interval that is set on the Firehose delivery stream.
Once enough time has passed, you can verify your data by checking the Amazon S3 bucket. To
check the bucket, enter the following command:

aws s3api list-objects --bucket 'firehose-test-bucket1'

The output of that command will be similar to the following:

{
 "Contents": [
 {
 "Key": "2021/02/02/08/my-delivery-
stream-1-2021-02-02-08-55-24-5e6dc317-071b-45ba-a9d3-4805ba39c2ba",
 "LastModified": "2021-02-02T09:00:26+00:00",
 "ETag": "\"EXAMPLEa817fb88fc770b81c8f990d\"",
 "Size": 198,
 "StorageClass": "STANDARD",

Cross-account log data sharing using Firehose 307

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/send-cloudtrail-events-to-cloudwatch-logs.html

Amazon CloudWatch Logs User Guide

 "Owner": {
 "DisplayName": "firehose+2test",
 "ID": "EXAMPLE27fd05889c665d2636218451970ef79400e3d2aecca3adb1930042e0"
 }
 }
]
}

You can then retrieve a specific object from the bucket by entering the following command.
Replace the value of key with the value you found in the previous command.

aws s3api get-object --bucket 'firehose-test-bucket1' --key '2021/02/02/08/my-delivery-
stream-1-2021-02-02-08-55-24-5e6dc317-071b-45ba-a9d3-4805ba39c2ba' testfile.gz

The data in the Amazon S3 object is compressed with the gzip format. You can examine the raw
data from the command line using one of the following commands:

Linux:

zcat testfile.gz

macOS:

zcat <testfile.gz

Modifying destination membership at runtime

You might encounter situations where you have to add or remove log senders from a destination
that you own. You can use the PutDestinationPolicy action on your destination with new access
policy. In the following example, a previously added account 111111111111 is stopped from
sending any more log data, and account 333333333333 is enabled.

1. Fetch the policy that is currently associated with the destination testDestination and make a
note of the AccessPolicy:

aws logs describe-destinations \
 --destination-name-prefix "testFirehoseDestination"

{

Cross-account log data sharing using Firehose 308

Amazon CloudWatch Logs User Guide

 "destinations": [
 {
 "destinationName": "testFirehoseDestination",
 "targetArn": "arn:aws:firehose:us-east-1:222222222222:deliverystream/
my-delivery-stream",
 "roleArn": "arn:aws:iam:: 222222222222:role/CWLtoKinesisFirehoseRole",
 "accessPolicy": "{\n \"Version\" : \"2012-10-17\",\n \"Statement
\" : [\n {\n \"Sid\" : \"\",\n \"Effect\" : \"Allow\",\n
 \"Principal\" : {\n \"AWS\" : \"111111111111 \"\n },\n \"Action
\" : \"logs:PutSubscriptionFilter\",\n \"Resource\" : \"arn:aws:logs:us-
east-1:222222222222:destination:testFirehoseDestination\"\n }\n]\n}\n\n",
 "arn": "arn:aws:logs:us-east-1:
 222222222222:destination:testFirehoseDestination",
 "creationTime": 1612256124430
 }
]
}

2. Update the policy to reflect that account 111111111111 is stopped, and that account
333333333333 is enabled. Put this policy in the ~/NewAccessPolicy.json file:

{
 "Version" : "2012-10-17",
 "Statement" : [
 {
 "Sid" : "",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "333333333333 "
 },
 "Action" : "logs:PutSubscriptionFilter",
 "Resource" : "arn:aws:logs:us-
east-1:222222222222:destination:testFirehoseDestination"
 }
]
}

3. Use the following command to associate the policy defined in the NewAccessPolicy.json file
with the destination:

aws logs put-destination-policy \
 --destination-name "testFirehoseDestination" \

Cross-account log data sharing using Firehose 309

Amazon CloudWatch Logs User Guide

 --access-policy file://~/NewAccessPolicy.json

This eventually disables the log events from account ID 111111111111. Log events from
account ID 333333333333 start flowing to the destination as soon as the owner of account
333333333333 creates a subscription filter.

Cross-account account-level subscriptions using Kinesis Data Streams

When you create a cross-account subscription, you can specify a single account or an organization
to be the sender. If you specify an organization, then this procedure enables all accounts in the
organization to send logs to the receiver account.

To share log data across accounts, you need to establish a log data sender and receiver:

• Log data sender—gets the destination information from the recipient and lets CloudWatch
Logs know that it's ready to send its log events to the specified destination. In the procedures
in the rest of this section, the log data sender is shown with a fictional AWS account number of
111111111111.

If you're going to have multiple accounts in one organization send logs to one recipient account,
you can create a policy that grants all accounts in the organization the permission to send logs
to the recipient account. You still have to set up separate subscription filters for each sender
account.

• Log data recipient—sets up a destination that encapsulates a Kinesis Data Streams stream
and lets CloudWatch Logs know that the recipient wants to receive log data. The recipient
then shares the information about this destination with the sender. In the procedures in the
rest of this section, the log data recipient is shown with a fictional AWS account number of
999999999999.

To start receiving log events from cross-account users, the log data recipient first creates a
CloudWatch Logs destination. Each destination consists of the following key elements:

Destination name

The name of the destination you want to create.

Cross-account account-level subscriptions using Kinesis Data Streams 310

Amazon CloudWatch Logs User Guide

Target ARN

The Amazon Resource Name (ARN) of the AWS resource that you want to use as the destination
of the subscription feed.

Role ARN

An AWS Identity and Access Management (IAM) role that grants CloudWatch Logs the necessary
permissions to put data into the chosen stream.

Access policy

An IAM policy document (in JSON format, written using IAM policy grammar) that governs the
set of users that are allowed to write to your destination.

The log group and the destination must be in the same AWS Region. However, the AWS resource
that the destination points to can be located in a different Region. In the examples in the following
sections, all Region-specific resources are created in US East (N. Virginia).

Topics

• Setting up a new cross-account subscription

• Updating an existing cross-account subscription

Setting up a new cross-account subscription

Follow the steps in these sections to set up a new cross-account log subscription.

Topics

• Step 1: Create a destination

• Step 2: (Only if using an organization) Create an IAM role

• Step 3: Create an account-level subscription filter policy

• Validate the flow of log events

• Modify destination membership at runtime

Cross-account account-level subscriptions using Kinesis Data Streams 311

Amazon CloudWatch Logs User Guide

Step 1: Create a destination

Important

All steps in this procedure are to be done in the log data recipient account.

For this example, the log data recipient account has an AWS account ID of 999999999999, while
the log data sender AWS account ID is 111111111111.

This example creates a destination using a Kinesis Data Streams stream called RecipientStream,
and a role that enables CloudWatch Logs to write data to it.

When the destination is created, CloudWatch Logs sends a test message to the destination on the
recipient account’s behalf. When the subscription filter is active later, CloudWatch Logs sends log
events to the destination on the source account’s behalf.

To create a destination

1. In the recipient account, create a destination stream in Kinesis Data Streams. At a command
prompt, type:

aws kinesis create-stream --stream-name "RecipientStream" --shard-count 1

2. Wait until the stream becomes active. You can use the aws kinesis describe-stream command
to check the StreamDescription.StreamStatus property. In addition, take note of the
StreamDescription.StreamARN value because you will pass it to CloudWatch Logs later:

aws kinesis describe-stream --stream-name "RecipientStream"
{
 "StreamDescription": {
 "StreamStatus": "ACTIVE",
 "StreamName": "RecipientStream",
 "StreamARN": "arn:aws:kinesis:us-east-1:999999999999:stream/RecipientStream",
 "Shards": [
 {
 "ShardId": "shardId-000000000000",
 "HashKeyRange": {
 "EndingHashKey": "34028236692093846346337460743176EXAMPLE",
 "StartingHashKey": "0"
 },

Cross-account account-level subscriptions using Kinesis Data Streams 312

Amazon CloudWatch Logs User Guide

 "SequenceNumberRange": {
 "StartingSequenceNumber":
 "4955113521868881845667950383198145878459135270218EXAMPLE"
 }
 }
]
 }
}

It might take a minute or two for your stream to show up in the active state.

3. Create the IAM role that grants CloudWatch Logs the permission to put data into your stream.
First, you'll need to create a trust policy in a file ~/TrustPolicyForCWL.json. Use a text editor
to create this policy file, do not use the IAM console.

This policy includes a aws:SourceArn global condition context key that specifies the
sourceAccountId to help prevent the confused deputy security problem. If you don't yet
know the source account ID in the first call, we recommend that you put the destination ARN
in the source ARN field. In the subsequent calls, you should set the source ARN to be the actual
source ARN that you gathered from the first call. For more information, see Confused deputy
prevention.

{
 "Statement": {
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.amazonaws.com"
 },
 "Condition": {
 "StringLike": {
 "aws:SourceArn": [
 "arn:aws:logs:region:sourceAccountId:*",
 "arn:aws:logs:region:recipientAccountId:*"
]
 }
 },
 "Action": "sts:AssumeRole"
 }
}

Cross-account account-level subscriptions using Kinesis Data Streams 313

Amazon CloudWatch Logs User Guide

4. Use the aws iam create-role command to create the IAM role, specifying the trust policy file.
Take note of the returned Role.Arn value because it will also be passed to CloudWatch Logs
later:

aws iam create-role \
--role-name CWLtoKinesisRole \
--assume-role-policy-document file://~/TrustPolicyForCWL.json

{
 "Role": {
 "AssumeRolePolicyDocument": {
 "Statement": {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Condition": {
 "StringLike": {
 "aws:SourceArn": [
 "arn:aws:logs:region:sourceAccountId:*",
 "arn:aws:logs:region:recipientAccountId:*"
]
 }
 },
 "Principal": {
 "Service": "logs.amazonaws.com"
 }
 }
 },
 "RoleId": "AAOIIAH450GAB4HC5F431",
 "CreateDate": "2023-05-29T13:46:29.431Z",
 "RoleName": "CWLtoKinesisRole",
 "Path": "/",
 "Arn": "arn:aws:iam::999999999999:role/CWLtoKinesisRole"
 }
}

5. Create a permissions policy to define which actions CloudWatch Logs can perform
on your account. First, use a text editor to create a permissions policy in a file ~/
PermissionsForCWL.json:

{
 "Statement": [
 {

Cross-account account-level subscriptions using Kinesis Data Streams 314

Amazon CloudWatch Logs User Guide

 "Effect": "Allow",
 "Action": "kinesis:PutRecord",
 "Resource": "arn:aws:kinesis:region:999999999999:stream/RecipientStream"
 }
]
}

6. Associate the permissions policy with the role by using the aws iam put-role-policy command:

aws iam put-role-policy \
 --role-name CWLtoKinesisRole \
 --policy-name Permissions-Policy-For-CWL \
 --policy-document file://~/PermissionsForCWL.json

7. After the stream is in the active state and you have created the IAM role, you can create the
CloudWatch Logs destination.

a. This step doesn't associate an access policy with your destination and is only the first step
out of two that completes a destination creation. Make a note of the DestinationArn that
is returned in the payload:

aws logs put-destination \
 --destination-name "testDestination" \
 --target-arn "arn:aws:kinesis:region:999999999999:stream/RecipientStream" \
 --role-arn "arn:aws:iam::999999999999:role/CWLtoKinesisRole"

{
 "DestinationName" : "testDestination",
 "RoleArn" : "arn:aws:iam::999999999999:role/CWLtoKinesisRole",
 "DestinationArn" : "arn:aws:logs:us-
east-1:999999999999:destination:testDestination",
 "TargetArn" : "arn:aws:kinesis:us-east-1:999999999999:stream/RecipientStream"
}

b. After step 7a is complete, in the log data recipient account, associate an access policy with
the destination. This policy must specify the logs:PutSubscriptionFilter action and grants
permission to the sender account to access the destination.

The policy grants permission to the AWS account that sends logs. You can specify just this
one account in the policy, or if the sender account is a member of an organization, the
policy can specify the organization ID of the organization. This way, you can create just

Cross-account account-level subscriptions using Kinesis Data Streams 315

Amazon CloudWatch Logs User Guide

one policy to allow multiple accounts in one organization to send logs to this destination
account.

Use a text editor to create a file named ~/AccessPolicy.json with one of the
following policy statements.

This first example policy allows all accounts in the organization that have an ID of
o-1234567890 to send logs to the recipient account.

{
 "Version" : "2012-10-17",
 "Statement" : [
 {
 "Sid" : "",
 "Effect" : "Allow",
 "Principal" : "*",
 "Action" : ["logs:PutSubscriptionFilter","logs:PutAccountPolicy"],
 "Resource" :
 "arn:aws:logs:region:999999999999:destination:testDestination",
 "Condition": {
 "StringEquals" : {
 "aws:PrincipalOrgID" : ["o-1234567890"]
 }
 }
 }
]
}

This next example allows just the log data sender account (111111111111) to send logs
to the log data recipient account.

{
 "Version" : "2012-10-17",
 "Statement" : [
 {
 "Sid" : "",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "111111111111"
 },
 "Action" : ["logs:PutSubscriptionFilter","logs:PutAccountPolicy"],

Cross-account account-level subscriptions using Kinesis Data Streams 316

Amazon CloudWatch Logs User Guide

 "Resource" :
 "arn:aws:logs:region:999999999999:destination:testDestination"
 }
]
}

c. Attach the policy you created in the previous step to the destination.

aws logs put-destination-policy \
 --destination-name "testDestination" \
 --access-policy file://~/AccessPolicy.json

This access policy enables users in the AWS Account with ID 111111111111
to call PutSubscriptionFilter against the destination with ARN
arn:aws:logs:region:999999999999:destination:testDestination. Any other user's attempt
to call PutSubscriptionFilter against this destination will be rejected.

To validate a user's privileges against an access policy, see Using Policy Validator in the
IAM User Guide.

When you have finished, if you're using AWS Organizations for your cross-account permissions,
follow the steps in Step 2: (Only if using an organization) Create an IAM role. If you're granting
permissions directly to the other account instead of using Organizations, you can skip that step and
proceed to Step 3: Create an account-level subscription filter policy.

Step 2: (Only if using an organization) Create an IAM role

In the previous section, if you created the destination by using an access policy that grants
permissions to the organization that account 111111111111 is in, instead of granting permissions
directly to account 111111111111, then follow the steps in this section. Otherwise, you can skip to
Step 3: Create an account-level subscription filter policy.

The steps in this section create an IAM role, which CloudWatch can assume and validate whether
the sender account has permission to create a subscription filter against the recipient destination.

Perform the steps in this section in the sender account. The role must exist in the sender account,
and you specify the ARN of this role in the subscription filter. In this example, the sender account is
111111111111.

Cross-account account-level subscriptions using Kinesis Data Streams 317

https://docs.aws.amazon.com/IAM/latest/UserGuide/policies_policy-validator.html

Amazon CloudWatch Logs User Guide

To create the IAM role necessary for cross-account log subscriptions using AWS Organizations

1. Create the following trust policy in a file /
TrustPolicyForCWLSubscriptionFilter.json. Use a text editor to create this policy
file; do not use the IAM console.

{
 "Statement": {
 "Effect": "Allow",
 "Principal": { "Service": "logs.amazonaws.com" },
 "Action": "sts:AssumeRole"
 }
}

2. Create the IAM role that uses this policy. Take note of the Arn value that is returned
by the command, you will need it later in this procedure. In this example, we use
CWLtoSubscriptionFilterRole for the name of the role we're creating.

aws iam create-role \
 --role-name CWLtoSubscriptionFilterRole \
 --assume-role-policy-document file://~/
TrustPolicyForCWLSubscriptionFilter.json

3. Create a permissions policy to define the actions that CloudWatch Logs can perform on your
account.

a. First, use a text editor to create the following permissions policy in a file named ~/
PermissionsForCWLSubscriptionFilter.json.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "logs:PutLogEvents",
 "Resource": "arn:aws:logs:region:111111111111:log-
group:LogGroupOnWhichSubscriptionFilterIsCreated:*"
 }
]
}

b. Enter the following command to associate the permissions policy you just created with the
role that you created in step 2.

Cross-account account-level subscriptions using Kinesis Data Streams 318

Amazon CloudWatch Logs User Guide

aws iam put-role-policy
 --role-name CWLtoSubscriptionFilterRole
 --policy-name Permissions-Policy-For-CWL-Subscription-filter
 --policy-document file://~/PermissionsForCWLSubscriptionFilter.json

When you have finished, you can proceed to Step 3: Create an account-level subscription filter
policy.

Step 3: Create an account-level subscription filter policy

After you create a destination, the log data recipient account can share the destination ARN
(arn:aws:logs:us-east-1:999999999999:destination:testDestination) with other AWS accounts so
that they can send log events to the same destination. These other sending accounts users then
create a subscription filter on their respective log groups against this destination. The subscription
filter immediately starts the flow of real-time log data from the chosen log group to the specified
destination.

Note

If you are granting permissions for the subscription filter to an entire organization, you
will need to use the ARN of the IAM role that you created in Step 2: (Only if using an
organization) Create an IAM role.

In the following example, an account-level subscription filter policy is created in a sending
account. the filter is associated with the sender account 111111111111 so that every log event
matching the filter and selection criteria is delivered to the destination you previously created. That
destination encapsulates a stream called "RecipientStream".

The selection-criteria field is optional, but is important for excluding log groups that can
cause an infinite log recursion from a subscription filter. For more information about this issue and
determining which log groups to exclude, see Log recursion prevention. Currently, NOT IN is the
only supported operator for selection-criteria.

aws logs put-account-policy \
 --policy-name "CrossAccountStreamsExamplePolicy" \
 --policy-type "SUBSCRIPTION_FILTER_POLICY" \

Cross-account account-level subscriptions using Kinesis Data Streams 319

Amazon CloudWatch Logs User Guide

 --policy-document
 '{"DestinationArn":"arn:aws:logs:region:999999999999:destination:testDestination",
 "FilterPattern": "", "Distribution": "Random"}' \
 --selection-criteria 'LogGroupName NOT IN ["LogGroupToExclude1",
 "LogGroupToExclude2"]' \
 --scope "ALL"

The sender account's log groups and the destination must be in the same AWS Region. However,
the destination can point to an AWS resource such as a Kinesis Data Streams stream that is located
in a different Region.

Validate the flow of log events

After you create the account-level subscription filter policy, CloudWatch Logs forwards all the
incoming log events that match the filter pattern and selection criteria to the stream that is
encapsulated within the destination stream called "RecipientStream". The destination owner
can verify that this is happening by using the aws kinesis get-shard-iterator command to grab a
Kinesis Data Streams shard, and using the aws kinesis get-records command to fetch some Kinesis
Data Streams records:

aws kinesis get-shard-iterator \
 --stream-name RecipientStream \
 --shard-id shardId-000000000000 \
 --shard-iterator-type TRIM_HORIZON

{
 "ShardIterator":
 "AAAAAAAAAAFGU/
kLvNggvndHq2UIFOw5PZc6F01s3e3afsSscRM70JSbjIefg2ub07nk1y6CDxYR1UoGHJNP4m4NFUetzfL+wev
+e2P4djJg4L9wmXKvQYoE+rMUiFq+p4Cn3IgvqOb5dRA0yybNdRcdzvnC35KQANoHzzahKdRGb9v4scv+3vaq+f
+OIK8zM5My8ID+g6rMo7UKWeI4+IWiKEXAMPLE"
}

aws kinesis get-records \
 --limit 10 \
 --shard-iterator
 "AAAAAAAAAAFGU/
kLvNggvndHq2UIFOw5PZc6F01s3e3afsSscRM70JSbjIefg2ub07nk1y6CDxYR1UoGHJNP4m4NFUetzfL+wev
+e2P4djJg4L9wmXKvQYoE+rMUiFq+p4Cn3IgvqOb5dRA0yybNdRcdzvnC35KQANoHzzahKdRGb9v4scv+3vaq+f
+OIK8zM5My8ID+g6rMo7UKWeI4+IWiKEXAMPLE"

Cross-account account-level subscriptions using Kinesis Data Streams 320

Amazon CloudWatch Logs User Guide

Note

You might need to rerun the get-records command a few times before Kinesis Data
Streams starts to return data.

You should see a response with an array of Kinesis Data Streams records. The data attribute in
the Kinesis Data Streams record is compressed in gzip format and then base64 encoded. You can
examine the raw data from the command line using the following Unix command:

echo -n "<Content of Data>" | base64 -d | zcat

The base64 decoded and decompressed data is formatted as JSON with the following structure:

{
 "owner": "111111111111",
 "logGroup": "CloudTrail/logs",
 "logStream": "111111111111_CloudTrail/logs_us-east-1",
 "subscriptionFilters": [
 "RecipientStream"
],
 "messageType": "DATA_MESSAGE",
 "logEvents": [
 {
 "id": "3195310660696698337880902507980421114328961542429EXAMPLE",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":\"Root
\"}"
 },
 {
 "id": "3195310660696698337880902507980421114328961542429EXAMPLE",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":\"Root
\"}"
 },
 {
 "id": "3195310660696698337880902507980421114328961542429EXAMPLE",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":\"Root
\"}"
 }
]

Cross-account account-level subscriptions using Kinesis Data Streams 321

Amazon CloudWatch Logs User Guide

}

The key elements in the data structure are the following:

messageType

Data messages will use the "DATA_MESSAGE" type. Sometimes CloudWatch Logs might emit
Kinesis Data Streams records with a "CONTROL_MESSAGE" type, mainly for checking if the
destination is reachable.

owner

The AWS Account ID of the originating log data.

logGroup

The log group name of the originating log data.

logStream

The log stream name of the originating log data.

subscriptionFilters

The list of subscription filter names that matched with the originating log data.

logEvents

The actual log data, represented as an array of log event records. The "id" property is a unique
identifier for every log event.

policyLevel

The level at which the policy was enforced. "ACCOUNT_LEVEL_POLICY" is the policyLevel for
an account-level subscription filter policy.

Modify destination membership at runtime

You might encounter situations where you have to add or remove membership of some users
from a destination that you own. You can use the put-destination-policy command on
your destination with a new access policy. In the following example, a previously added account
111111111111 is stopped from sending any more log data, and account 222222222222 is
enabled.

Cross-account account-level subscriptions using Kinesis Data Streams 322

Amazon CloudWatch Logs User Guide

1. Fetch the policy that is currently associated with the destination testDestination and make a
note of the AccessPolicy:

aws logs describe-destinations \
 --destination-name-prefix "testDestination"

{
 "Destinations": [
 {
 "DestinationName": "testDestination",
 "RoleArn": "arn:aws:iam::999999999999:role/CWLtoKinesisRole",
 "DestinationArn":
 "arn:aws:logs:region:999999999999:destination:testDestination",
 "TargetArn": "arn:aws:kinesis:region:999999999999:stream/RecipientStream",
 "AccessPolicy": "{\"Version\": \"2012-10-17\", \"Statement\":
 [{\"Sid\": \"\", \"Effect\": \"Allow\", \"Principal\": {\"AWS\":
 \"111111111111\"}, \"Action\": \"logs:PutSubscriptionFilter\", \"Resource\":
 \"arn:aws:logs:region:999999999999:destination:testDestination\"}] }"
 }
]
}

2. Update the policy to reflect that account 111111111111 is stopped, and that account
222222222222 is enabled. Put this policy in the ~/NewAccessPolicy.json file:

{
 "Version" : "2012-10-17",
 "Statement" : [
 {
 "Sid" : "",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "222222222222"
 },
 "Action" : ["logs:PutSubscriptionFilter","logs:PutAccountPolicy"],
 "Resource" : "arn:aws:logs:region:999999999999:destination:testDestination"
 }
]
}

3. Call PutDestinationPolicy to associate the policy defined in the NewAccessPolicy.json file
with the destination:

Cross-account account-level subscriptions using Kinesis Data Streams 323

Amazon CloudWatch Logs User Guide

aws logs put-destination-policy \
--destination-name "testDestination" \
--access-policy file://~/NewAccessPolicy.json

This will eventually disable the log events from account ID 111111111111. Log events from
account ID 222222222222 start flowing to the destination as soon as the owner of account
222222222222 creates a subscription filter.

Updating an existing cross-account subscription

If you currently have a cross-account logs subscription where the destination account grants
permissions only to specific sender accounts, and you want to update this subscription so that the
destination account grants access to all accounts in an organization, follow the steps in this section.

Topics

• Step 1: Update the subscription filters

• Step 2: Update the existing destination access policy

Step 1: Update the subscription filters

Note

This step is needed only for cross-account subscriptions for logs that are created by the
services listed in Enabling logging from AWS services. If you are not working with logs
created by one of these log groups, you can skip to Step 2: Update the existing destination
access policy.

In certain cases, you must update the subscription filters in all the sender accounts that are sending
logs to the destination account. The update adds an IAM role, which CloudWatch can assume and
validate that the sender account has permission to send logs to the recipient account.

Follow the steps in this section for every sender account that you want to update to use
organization ID for the cross-account subscription permissions.

Cross-account account-level subscriptions using Kinesis Data Streams 324

Amazon CloudWatch Logs User Guide

In the examples in this section, two accounts, 111111111111 and 222222222222 already have
subscription filters created to send logs to account 999999999999. The existing subscription filter
values are as follows:

Existing Subscription Filter parameter values
{
 "DestinationArn": "arn:aws:logs:region:999999999999:destination:testDestination",
 "FilterPattern": "{$.userIdentity.type = Root}",
 "Distribution": "Random"
}

If you need to find the current subscription filter parameter values, enter the following command.

aws logs describe-account-policies \
--policy-type "SUBSCRIPTION_FILTER_POLICY" \
--policy-name "CrossAccountStreamsExamplePolicy"

To update a subscription filter to start using organization IDs for cross-account log permissions

1. Create the following trust policy in a file ~/TrustPolicyForCWL.json. Use a text editor to
create this policy file; do not use the IAM console.

{
 "Statement": {
 "Effect": "Allow",
 "Principal": { "Service": "logs.amazonaws.com" },
 "Action": "sts:AssumeRole"
 }
}

2. Create the IAM role that uses this policy. Take note of the Arn value of the Arn value that
is returned by the command, you will need it later in this procedure. In this example, we use
CWLtoSubscriptionFilterRole for the name of the role we're creating.

aws iam create-role
 \ --role-name CWLtoSubscriptionFilterRole
 \ --assume-role-policy-document file://~/TrustPolicyForCWL.json

3. Create a permissions policy to define the actions that CloudWatch Logs can perform on your
account.

Cross-account account-level subscriptions using Kinesis Data Streams 325

Amazon CloudWatch Logs User Guide

a. First, use a text editor to create the following permissions policy in a file named /
PermissionsForCWLSubscriptionFilter.json.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "logs:PutLogEvents",
 "Resource": "arn:aws:logs:region:111111111111:log-
group:LogGroupOnWhichSubscriptionFilterIsCreated:*"
 }
]
}

b. Enter the following command to associate the permissions policy you just created with the
role that you created in step 2.

aws iam put-role-policy
 --role-name CWLtoSubscriptionFilterRole
 --policy-name Permissions-Policy-For-CWL-Subscription-filter
 --policy-document file://~/PermissionsForCWLSubscriptionFilter.json

4. Enter the following command to update the subscription filter policy.

aws logs put-account-policy \
 --policy-name "CrossAccountStreamsExamplePolicy" \
 --policy-type "SUBSCRIPTION_FILTER_POLICY" \
 --policy-document
 '{"DestinationArn":"arn:aws:logs:region:999999999999:destination:testDestination",
 "FilterPattern": "{$.userIdentity.type = Root}", "Distribution": "Random"}' \
 --selection-criteria 'LogGroupName NOT IN ["LogGroupToExclude1",
 "LogGroupToExclude2"]' \
 --scope "ALL"

Step 2: Update the existing destination access policy

After you have updated the subscription filters in all of the sender accounts, you can update the
destination access policy in the recipient account.

Cross-account account-level subscriptions using Kinesis Data Streams 326

Amazon CloudWatch Logs User Guide

In the following examples, the recipient account is 999999999999 and the destination is named
testDestination.

The update enables all accounts that are part of the organization with ID o-1234567890 to send
logs to the recipient account. Only the accounts that have subscription filters created will actually
send logs to the recipient account.

To update the destination access policy in the recipient account to start using an organization
ID for permissions

1. In the recipient account, use a text editor to create a ~/AccessPolicy.json file with the
following contents.

{
"Version" : "2012-10-17",
 "Statement" : [
 {
"Sid" : "",
 "Effect" : "Allow",
 "Principal" : "*",
 "Action" : ["logs:PutSubscriptionFilter","logs:PutAccountPolicy"],
 "Resource" :
 "arn:aws:logs:region:999999999999:destination:testDestination",
 "Condition": {
"StringEquals" : {
"aws:PrincipalOrgID" : ["o-1234567890"]
 }
 }
 }
]
}

2. Enter the following command to attach the policy that you just created to the existing
destination. To update a destination to use an access policy with an organization ID instead of
an access policy that lists specific AWS account IDs, include the force parameter.

Warning

If you are working with logs sent by an AWS service listed in Enabling logging from
AWS services, then before doing this step, you must have first updated the subscription
filters in all the sender accounts as explained in Step 1: Update the subscription filters.

Cross-account account-level subscriptions using Kinesis Data Streams 327

Amazon CloudWatch Logs User Guide

aws logs put-destination-policy
 \ --destination-name "testDestination"
 \ --access-policy file://~/AccessPolicy.json
 \ --force

Cross-account account-level subscriptions using Firehose

To share log data across accounts, you need to establish a log data sender and receiver:

• Log data sender—gets the destination information from the recipient and lets CloudWatch
Logs know that it is ready to send its log events to the specified destination. In the procedures
in the rest of this section, the log data sender is shown with a fictional AWS account number of
111111111111.

• Log data recipient—sets up a destination that encapsulates a Kinesis Data Streams stream
and lets CloudWatch Logs know that the recipient wants to receive log data. The recipient
then shares the information about this destination with the sender. In the procedures in the
rest of this section, the log data recipient is shown with a fictional AWS account number of
222222222222.

The example in this section uses a Firehose delivery stream with Amazon S3 storage. You can also
set up Firehose delivery streams with different settings. For more information, see Creating a
Firehose Delivery Stream.

The log group and the destination must be in the same AWS Region. However, the AWS resource
that the destination points to can be located in a different Region.

Note

Firehose subscription filter for a same account and cross-Region delivery stream is
supported.

Topics

• Step 1: Create a Firehose delivery stream

• Step 2: Create a destination

Cross-account account-level subscriptions using Firehose 328

https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html

Amazon CloudWatch Logs User Guide

• Step 3: Create an account-level subscription filter policy

• Validating the flow of log events

• Modifying destination membership at runtime

Step 1: Create a Firehose delivery stream

Important

Before you complete the following steps, you must use an access policy, so Firehose can
access your Amazon S3 bucket. For more information, see Controlling Access in the Amazon
Data Firehose Developer Guide.
All of the steps in this section (Step 1) must be done in the log data recipient account.
US East (N. Virginia) is used in the following sample commands. Replace this Region with
the correct Region for your deployment.

To create a Firehose delivery stream to be used as the destination

1. Create an Amazon S3 bucket:

aws s3api create-bucket --bucket firehose-test-bucket1 --create-bucket-
configuration LocationConstraint=us-east-1

2. Create the IAM role that grants Firehose permission to put data into the bucket.

a. First, use a text editor to create a trust policy in a file ~/
TrustPolicyForFirehose.json.

{ "Statement": { "Effect": "Allow", "Principal": { "Service":
 "firehose.amazonaws.com" }, "Action": "sts:AssumeRole", "Condition":
 { "StringEquals": { "sts:ExternalId":"222222222222" } } } }

b. Create the IAM role, specifying the trust policy file that you just made.

aws iam create-role \
 --role-name FirehosetoS3Role \
 --assume-role-policy-document file://~/TrustPolicyForFirehose.json

Cross-account account-level subscriptions using Firehose 329

https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-s3

Amazon CloudWatch Logs User Guide

c. The output of this command will look similar to the following. Make a note of the role
name and the role ARN.

{
 "Role": {
 "Path": "/",
 "RoleName": "FirehosetoS3Role",
 "RoleId": "AROAR3BXASEKW7K635M53",
 "Arn": "arn:aws:iam::222222222222:role/FirehosetoS3Role",
 "CreateDate": "2021-02-02T07:53:10+00:00",
 "AssumeRolePolicyDocument": {
 "Statement": {
 "Effect": "Allow",
 "Principal": {
 "Service": "firehose.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "sts:ExternalId": "222222222222"
 }
 }
 }
 }
 }
}

3. Create a permissions policy to define the actions that Firehose can perform in your account.

a. First, use a text editor to create the following permissions policy in a file named ~/
PermissionsForFirehose.json. Depending on your use case, you might need to add
more permissions to this file.

{
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:PutObjectAcl",
 "s3:ListBucket"
],
 "Resource": [

Cross-account account-level subscriptions using Firehose 330

Amazon CloudWatch Logs User Guide

 "arn:aws:s3:::firehose-test-bucket1",
 "arn:aws:s3:::firehose-test-bucket1/*"
]
 }]
}

b. Enter the following command to associate the permissions policy that you just created
with the IAM role.

aws iam put-role-policy --role-name FirehosetoS3Role --policy-name
 Permissions-Policy-For-Firehose-To-S3 --policy-document file://~/
PermissionsForFirehose.json

4. Enter the following command to create the Firehose delivery stream. Replace my-role-arn
and my-bucket-arn with the correct values for your deployment.

aws firehose create-delivery-stream \
 --delivery-stream-name 'my-delivery-stream' \
 --s3-destination-configuration \
 '{"RoleARN": "arn:aws:iam::222222222222:role/FirehosetoS3Role", "BucketARN":
 "arn:aws:s3:::firehose-test-bucket1"}'

The output should look similar to the following:

{
 "DeliveryStreamARN": "arn:aws:firehose:us-east-1:222222222222:deliverystream/
my-delivery-stream"
}

Step 2: Create a destination

Important

All steps in this procedure are to be done in the log data recipient account.

When the destination is created, CloudWatch Logs sends a test message to the destination on the
recipient account’s behalf. When the subscription filter is active later, CloudWatch Logs sends log
events to the destination on the source account’s behalf.

Cross-account account-level subscriptions using Firehose 331

Amazon CloudWatch Logs User Guide

To create a destination

1. Wait until the Firehose stream that you created in Step 1: Create a Firehose
delivery stream becomes active. You can use the following command to check the
StreamDescription.StreamStatus property.

aws firehose describe-delivery-stream --delivery-stream-name "my-delivery-stream"

In addition, take note of the DeliveryStreamDescription.DeliveryStreamARN value, because
you will need to use it in a later step. Sample output of this command:

{
 "DeliveryStreamDescription": {
 "DeliveryStreamName": "my-delivery-stream",
 "DeliveryStreamARN": "arn:aws:firehose:us-
east-1:222222222222:deliverystream/my-delivery-stream",
 "DeliveryStreamStatus": "ACTIVE",
 "DeliveryStreamEncryptionConfiguration": {
 "Status": "DISABLED"
 },
 "DeliveryStreamType": "DirectPut",
 "VersionId": "1",
 "CreateTimestamp": "2021-02-01T23:59:15.567000-08:00",
 "Destinations": [
 {
 "DestinationId": "destinationId-000000000001",
 "S3DestinationDescription": {
 "RoleARN": "arn:aws:iam::222222222222:role/FirehosetoS3Role",
 "BucketARN": "arn:aws:s3:::firehose-test-bucket1",
 "BufferingHints": {
 "SizeInMBs": 5,
 "IntervalInSeconds": 300
 },
 "CompressionFormat": "UNCOMPRESSED",
 "EncryptionConfiguration": {
 "NoEncryptionConfig": "NoEncryption"
 },
 "CloudWatchLoggingOptions": {
 "Enabled": false
 }
 },
 "ExtendedS3DestinationDescription": {

Cross-account account-level subscriptions using Firehose 332

Amazon CloudWatch Logs User Guide

 "RoleARN": "arn:aws:iam::222222222222:role/FirehosetoS3Role",
 "BucketARN": "arn:aws:s3:::firehose-test-bucket1",
 "BufferingHints": {
 "SizeInMBs": 5,
 "IntervalInSeconds": 300
 },
 "CompressionFormat": "UNCOMPRESSED",
 "EncryptionConfiguration": {
 "NoEncryptionConfig": "NoEncryption"
 },
 "CloudWatchLoggingOptions": {
 "Enabled": false
 },
 "S3BackupMode": "Disabled"
 }
 }
],
 "HasMoreDestinations": false
 }
}

It might take a minute or two for your delivery stream to show up in the active state.

2. When the delivery stream is active, create the IAM role that will grant CloudWatch Logs the
permission to put data into your Firehose stream. First, you'll need to create a trust policy in
a file ~/TrustPolicyForCWL.json. Use a text editor to create this policy. For more information
about CloudWatch Logs endpoints, see Amazon CloudWatch Logs endpoints and quotas.

This policy includes a aws:SourceArn global condition context key that specifies the
sourceAccountId to help prevent the confused deputy security problem. If you don't yet
know the source account ID in the first call, we recommend that you put the destination ARN
in the source ARN field. In the subsequent calls, you should set the source ARN to be the actual
source ARN that you gathered from the first call. For more information, see Confused deputy
prevention.

{
 "Statement": {
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.amazonaws.com"
 },
 "Action": "sts:AssumeRole",

Cross-account account-level subscriptions using Firehose 333

https://docs.aws.amazon.com/general/latest/gr/cwl_region.html

Amazon CloudWatch Logs User Guide

 "Condition": {
 "StringLike": {
 "aws:SourceArn": [
 "arn:aws:logs:region:sourceAccountId:*",
 "arn:aws:logs:region:recipientAccountId:*"
]
 }
 }
 }
}

3. Use the aws iam create-role command to create the IAM role, specifying the trust policy file
that you just created.

aws iam create-role \
 --role-name CWLtoKinesisFirehoseRole \
 --assume-role-policy-document file://~/TrustPolicyForCWL.json

The following is a sample output. Take note of the returned Role.Arn value, because you will
need to use it in a later step.

{
 "Role": {
 "Path": "/",
 "RoleName": "CWLtoKinesisFirehoseRole",
 "RoleId": "AROAR3BXASEKYJYWF243H",
 "Arn": "arn:aws:iam::222222222222:role/CWLtoKinesisFirehoseRole",
 "CreateDate": "2023-02-02T08:10:43+00:00",
 "AssumeRolePolicyDocument": {
 "Statement": {
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringLike": {
 "aws:SourceArn": [
 "arn:aws:logs:region:sourceAccountId:*",
 "arn:aws:logs:region:recipientAccountId:*"
]
 }

Cross-account account-level subscriptions using Firehose 334

Amazon CloudWatch Logs User Guide

 }
 }
 }
 }
}

4. Create a permissions policy to define which actions CloudWatch Logs can perform
on your account. First, use a text editor to create a permissions policy in a file ~/
PermissionsForCWL.json:

{
 "Statement":[
 {
 "Effect":"Allow",
 "Action":["firehose:*"],
 "Resource":["arn:aws:firehose:region:222222222222:*"]
 }
]
}

5. Associate the permissions policy with the role by entering the following command:

aws iam put-role-policy --role-name CWLtoKinesisFirehoseRole --policy-name
 Permissions-Policy-For-CWL --policy-document file://~/PermissionsForCWL.json

6. After the Firehose delivery stream is in the active state and you have created the IAM role, you
can create the CloudWatch Logs destination.

a. This step will not associate an access policy with your destination and is only the first
step out of two that completes a destination creation. Make a note of the ARN of
the new destination that is returned in the payload, because you will use this as the
destination.arn in a later step.

aws logs put-destination \

 --destination-name "testFirehoseDestination" \
 --target-arn "arn:aws:firehose:us-east-1:222222222222:deliverystream/my-
delivery-stream" \
 --role-arn "arn:aws:iam::222222222222:role/CWLtoKinesisFirehoseRole"

{
 "destination": {

Cross-account account-level subscriptions using Firehose 335

Amazon CloudWatch Logs User Guide

 "destinationName": "testFirehoseDestination",
 "targetArn": "arn:aws:firehose:us-east-1:222222222222:deliverystream/
my-delivery-stream",
 "roleArn": "arn:aws:iam::222222222222:role/CWLtoKinesisFirehoseRole",
 "arn": "arn:aws:logs:us-
east-1:222222222222:destination:testFirehoseDestination"}
}

b. After the previous step is complete, in the log data recipient account (222222222222),
associate an access policy with the destination. This policy enables the log data sender
account (111111111111) to access the destination in just the log data recipient
account (222222222222). You can use a text editor to put this policy in the ~/
AccessPolicy.json file:

{
 "Version" : "2012-10-17",
 "Statement" : [
 {
 "Sid" : "",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "111111111111"
 },
 "Action" : ["logs:PutSubscriptionFilter","logs:PutAccountPolicy"],
 "Resource" : "arn:aws:logs:us-
east-1:222222222222:destination:testFirehoseDestination"
 }
]
}

c. This creates a policy that defines who has write access to the destination. This policy must
specify the logs:PutSubscriptionFilter and logs:PutAccountPolicy actions to
access the destination. Cross-account users will use the PutSubscriptionFilter and
PutAccountPolicy actions to send log events to the destination.

aws logs put-destination-policy \
 --destination-name "testFirehoseDestination" \
 --access-policy file://~/AccessPolicy.json

Cross-account account-level subscriptions using Firehose 336

Amazon CloudWatch Logs User Guide

Step 3: Create an account-level subscription filter policy

Switch to the sending account, which is 111111111111 in this example. You will now create the
account-level subscription filter policy in the sending account. In this example, the filter causes
every log event containing the string ERROR in all but two log groups to be delivered to the
destination you previously created.

aws logs put-account-policy \
 --policy-name "CrossAccountFirehoseExamplePolicy" \
 --policy-type "SUBSCRIPTION_FILTER_POLICY" \
 --policy-document '{"DestinationArn":"arn:aws:logs:us-
east-1:222222222222:destination:testFirehoseDestination", "FilterPattern":
 "{$.userIdentity.type = AssumedRole}", "Distribution": "Random"}' \
 --selection-criteria 'LogGroupName NOT IN ["LogGroupToExclude1",
 "LogGroupToExclude2"]' \
 --scope "ALL"

The sending account's log groups and the destination must be in the same AWS Region. However,
the destination can point to an AWS resource such as a Firehose stream that is located in a different
Region.

Validating the flow of log events

After you create the subscription filter, CloudWatch Logs forwards all the incoming log events
that match the filter pattern and selection criteria to the Firehose delivery stream. The data starts
appearing in your Amazon S3 bucket based on the time buffer interval that is set on the Firehose
delivery stream. Once enough time has passed, you can verify your data by checking the Amazon
S3 bucket. To check the bucket, enter the following command:

aws s3api list-objects --bucket 'firehose-test-bucket1'

The output of that command will be similar to the following:

{
 "Contents": [
 {
 "Key": "2021/02/02/08/my-delivery-
stream-1-2021-02-02-08-55-24-5e6dc317-071b-45ba-a9d3-4805ba39c2ba",
 "LastModified": "2023-02-02T09:00:26+00:00",
 "ETag": "\"EXAMPLEa817fb88fc770b81c8f990d\"",

Cross-account account-level subscriptions using Firehose 337

Amazon CloudWatch Logs User Guide

 "Size": 198,
 "StorageClass": "STANDARD",
 "Owner": {
 "DisplayName": "firehose+2test",
 "ID": "EXAMPLE27fd05889c665d2636218451970ef79400e3d2aecca3adb1930042e0"
 }
 }
]
}

You can then retrieve a specific object from the bucket by entering the following command.
Replace the value of key with the value you found in the previous command.

aws s3api get-object --bucket 'firehose-test-bucket1' --key '2021/02/02/08/my-delivery-
stream-1-2021-02-02-08-55-24-5e6dc317-071b-45ba-a9d3-4805ba39c2ba' testfile.gz

The data in the Amazon S3 object is compressed with the gzip format. You can examine the raw
data from the command line using one of the following commands:

Linux:

zcat testfile.gz

macOS:

zcat <testfile.gz

Modifying destination membership at runtime

You might encounter situations where you have to add or remove log senders from a destination
that you own. You can use the PutDestinationPolicy and PutAccountPolicy actions on your
destination with the new access policy. In the following example, a previously added account
111111111111 is stopped from sending any more log data, and account 333333333333 is
enabled.

1. Fetch the policy that is currently associated with the destination testDestination and make a
note of the AccessPolicy:

aws logs describe-destinations \
 --destination-name-prefix "testFirehoseDestination"

Cross-account account-level subscriptions using Firehose 338

Amazon CloudWatch Logs User Guide

The returned data might look like this.

{
 "destinations": [
 {
 "destinationName": "testFirehoseDestination",
 "targetArn": "arn:aws:firehose:us-east-1:222222222222:deliverystream/
my-delivery-stream",
 "roleArn": "arn:aws:iam:: 222222222222:role/CWLtoKinesisFirehoseRole",
 "accessPolicy": "{\n \"Version\" : \"2012-10-17\",\n \"Statement
\" : [\n {\n \"Sid\" : \"\",\n \"Effect\" : \"Allow\",\n
 \"Principal\" : {\n \"AWS\" : \"111111111111 \"\n },\n \"Action
\" : \"logs:PutSubscriptionFilter\",\n \"Resource\" : \"arn:aws:logs:us-
east-1:222222222222:destination:testFirehoseDestination\"\n }\n]\n}\n\n",
 "arn": "arn:aws:logs:us-east-1:
 222222222222:destination:testFirehoseDestination",
 "creationTime": 1612256124430
 }
]
}

2. Update the policy to reflect that account 111111111111 is stopped, and that account
333333333333 is enabled. Put this policy in the ~/NewAccessPolicy.json file:

{
 "Version" : "2012-10-17",
 "Statement" : [
 {
 "Sid" : "",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "333333333333 "
 },
 "Action" : ["logs:PutSubscriptionFilter","logs:PutAccountPolicy"],
 "Resource" : "arn:aws:logs:us-
east-1:222222222222:destination:testFirehoseDestination"
 }
]
}

3. Use the following command to associate the policy defined in the NewAccessPolicy.json file
with the destination:

Cross-account account-level subscriptions using Firehose 339

Amazon CloudWatch Logs User Guide

aws logs put-destination-policy \
 --destination-name "testFirehoseDestination" \

 --access-policy file://~/NewAccessPolicy.json

This eventually disables the log events from account ID 111111111111. Log events from
account ID 333333333333 start flowing to the destination as soon as the owner of account
333333333333 creates a subscription filter.

Confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

We recommend using the aws:SourceArn or aws:SourceAccount global condition context keys
in resource policies to limit the scope of the permissions that you grant to CloudWatch Logs to
write data to Kinesis Data Streams and Firehose.

The value of aws:SourceArn must limit the permissions to only the accounts that are writing and
receiving data.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you are specifying multiple resources, use the aws:SourceArn
global context condition key with wildcards (*) for the unknown portions of the ARN. For example,
arn:aws:servicename::123456789012:*.

The policies documented for granting access to CloudWatch Logs to write data to Kinesis Data
Streams and Firehose in Step 1: Create a destination and Step 2: Create a destination show how
you can use the aws:SourceArn global condition context key to help prevent the confused deputy
problem.

Confused deputy prevention 340

Amazon CloudWatch Logs User Guide

Log recursion prevention

There is a risk of causing an infinite log recursion with subscription filters that can lead to a large
increase in ingestion billing in both CloudWatch Logs and your destination, if not prevented. This
can occur when a subscription filter is associated with a log group that receives log events as a
result of your subscription delivery workflow. The logs ingested into the log group will be delivered
to the destination, causing the log group to ingest more logs which will then be forwarded again to
the destination, creating a recursion loop.

For example, consider a subscription filter with the destination as Firehose, which delivers log
events to Amazon S3. Additionally, there is also a Lambda function that processes new events
delivered to Amazon S3 and produces some logs itself. If the subscription filter is applied to the
Lambda function’s log group, then the log events produced by the function will get forwarded
to Firehose and Amazon S3 at the destination, which will then invoke the function again, causing
more logs to be produced and forwarded to Firehose and Amazon S3, causing another invocation
of the function and so on. This will occur in an infinite loop, leading to an unexpected billing
increase on log ingestion, Firehose, and Amazon S3.

If the Lambda function is attached to a VPC with flow logs enabled for CloudWatch Logs, then the
VPC’s log group can cause a log recursion as well.

We recommend that you don't apply subscription filters to log groups that are a part
of your subscription delivery workflow. For account-level subscription filters, use the
selectionCriteria parameter in the PutAccountPolicy API to exclude these log groups from
the policy.

When excluding log groups, consider the following AWS services that produce logs and may be a
part of your subscription delivery workflows:

• Amazon EC2 with Fargate

• Lambda

• AWS Step Functions

• Amazon VPC flow logs that are enabled for CloudWatch Logs

Note

Log events produced by a Lambda destination’s log group will not be forwarded back to
the Lambda function for an account-level subscription filter policy. In this case, excluding

Log recursion prevention 341

Amazon CloudWatch Logs User Guide

the destination Lambda function’s log group using selectionCriteria is not required
for account subscription policies.

Log recursion prevention 342

Amazon CloudWatch Logs User Guide

Filter pattern syntax for metric filters, subscription
filters, filter log events, and Live Tail

Note

For information about how to query your log groups with the Amazon CloudWatch Logs
Insights query language, see CloudWatch Logs Insights query syntax.

With CloudWatch Logs, you can use metric filters to transform log data into actionable metrics,
subscription filters to route log events to other AWS services, filter log events to search for log
events, and Live Tail to interactively view your logs in real-time as they are ingested.

Filter patterns make up the syntax that metric filters, subscription filters, filter log events, and
Live Tail use to match terms in log events. Terms can be words, exact phrases, or numeric values.
Regular expressions (regex) can be used to create standalone filter patterns, or can be incorporated
with JSON and space-delimited filter patterns.

Create filter patterns with the terms that you want to match. Filter patterns only return the log
events that contain the terms you define. You can test filter patterns in the CloudWatch console.

Topics

• Supported regular expressions (regex) syntax

• Using filter patterns to match terms with a regular expression (regex)

• Using filter patterns to match terms in unstructured log events

• Using filter patterns to match terms in JSON log events

• Using filter patterns to match terms in space-delimited log events

Supported regular expressions (regex) syntax

Supported regex syntax

When using regex to search and filter log data, you must surround your expressions with %.

Filter patterns with regex can only include the following:

Supported regular expressions 343

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/MonitoringLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SubscriptionFilters.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SearchDataFilterPattern.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CloudWatchLogs_LiveTail.html

Amazon CloudWatch Logs User Guide

• Alphanumeric characters – An alphanumeric character is a character that is either a letter (from A
to Z or a to z) or a digit (from 0 to 9).

• Supported symbol characters – These include: '_', '#', '=', '@','/', ';', ',', and '-'. For example,
%something!% would be rejected since '!' is not supported.

• Supported operators – These include: '^', '$', '?', '[', ']', '{', '}', '|', '\', '*', '+', and '.'.

The (and) operators are not supported. You cannot use parentheses to define a subpattern.

Multi-byte characters are not supported.

Note

Quotas
There is a maximum of 5 filter patterns containing regex for each log group when creating
metric filters or subscription filters.
There is a limit of 2 regex for each filter pattern when creating a delimited or JSON filter
pattern for metric filters and subscription filters or when filtering log events or Live Tail.

Usage of supported operators

• ^: Anchors the match to the beginning of a string. For example, %^[hc]at% matches "hat" and
"cat", but only at the beginning of a string.

• $: Anchors the match to the end of a string. For example, %[hc]at$% matches "hat" and "cat",
but only at the end of a string.

• ?: Matches zero or more instances of the preceding term. For example, %colou?r% can match
both "color" and "colour".

• []: Defines a character class. Matches the character list or character range contained within the
brackets. For example, %[abc]% matches "a", "b", or "c"; %[a-z]% matches any lowercase letter
from "a" to "z"; and %[abcx-z]%matches "a", "b", "c", "x", "y", or "z".

• {m, n}: Matches the preceding term at least m and not more than n times. For example,
%a{3,5}% matches only "aaa", "aaaa", and "aaaaa".

Note

Either m or n can be omitted if you chose not to define a minimum or maximum.

Supported regular expressions 344

Amazon CloudWatch Logs User Guide

• |: Boolean "Or", which matches the term on either side of the vertical bar. For example, %gra|ey
% can match "gray" or "grey".

Note

A term is as a single character or a repeating character class which uses one of the
following operators: ?, *, +, or {n,m}.

• \: Escape character, which allows you to use the literal meaning of an operator instead of its
special meaning. For example, %\[.\]% matches any single character surrounded by "[" and "]"
since the brackets are escaped, such as "[a]", "[b]", "[7]", "[@]", "[]]", and "[]".

Note

%10\.10\.0\.1% is the correct way to create a regex to match the IP address 10.10.0.1.

• *: Matches zero or more instances of the preceding term. For example, %ab*c% can match
"ac", "abc", and "abbbc"; %ab[0-9]*% can match "ab", "ab0", and "ab129".

• +: Matches one or more instances of the preceding term. For example, %ab+c% can match "abc",
"abbc", and "abbbc", but not "ac".

• .: Matches any single character. For example, %.at% matches any three character string ending
with "at", including "hat", "cat", "bat", "4at", "#at" and " at" (starting with a space).

Note

When creating a regex to match IP addresses, it is important to escape the . operator.
For example, %10.10.0.1% can match "10010,051" which might not be the actual
intended purpose of the expression.

• \d, \D: Matches a digit/non-digit character. For example, %\d% is equivalent to %[0-9]% and %
\D% is equivalent to %[^0-9]%.

Note

The uppercase operator denotes the inverse of its lowercase counterpart.

• \s, \S: Matches a whitespace character/non-whitespace character.

Supported regular expressions 345

Amazon CloudWatch Logs User Guide

Note

The uppercase operator denotes the inverse of its lowercase counterpart. Whitespace
characters include the tab (\t), space(), and newline (\n) characters.

• \w, \W: Matches an alphanumeric character/non-alphanumeric character. For example, %\w% is
equivalent to %[a-zA-Z_0-9]% and %\W% is equivalent to %[^a-zA-Z_0-9]%.

Note

The uppercase operator denotes the inverse of its lowercase counterpart.

• \xhh: Matches the ASCII mapping for a two-digit hexadecimal character. \x is the escape
sequence which indicates that the following characters represent the hexadecimal value for
ASCII. hh specifies the two hexadecimal digits (0-9 and A-F) which point to a character in the
ASCII table.

Note

You can use \xhh to match symbol characters that are not supported by the filter
pattern. For example, %\x3A% matches :; and %\x28% matches (.

Using filter patterns to match terms with a regular expression
(regex)

Match terms using regex

You can match terms in your log events using a regex pattern surrounded with % (percentage
signs before and after the regex pattern). The following code snippet shows an example of a filter
pattern that returns all log events consisting of the AUTHORIZED keyword.

For a list of supported regular expressions, see Supported regular expressions.

 %AUTHORIZED%

Match terms using regular expressions 346

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntax.html#regex-expressions

Amazon CloudWatch Logs User Guide

This filter pattern returns log event messages, such as the following:

• [ERROR 401] UNAUTHORIZED REQUEST

• [SUCCESS 200] AUTHORIZED REQUEST

Using filter patterns to match terms in unstructured log events

Match terms in unstructured log events

The following examples contain code snippets that show how you can use filter patterns to match
terms in unstructured log events.

Note

Filter patterns are case sensitive. Enclose exact phrases and terms that include non-
alphanumeric characters in double quotation marks ("").

Example: Match a single term

The following code snippet shows an example of a single-term filter pattern that returns all log
events where messages contain the word ERROR.

ERROR

This filter pattern matches log event messages, such as the following:

• [ERROR 400] BAD REQUEST

• [ERROR 401] UNAUTHORIZED REQUEST

• [ERROR 419] MISSING ARGUMENTS

• [ERROR 420] INVALID ARGUMENTS

Example: Match multiple terms

The following code snippet shows an example of a multiple-term filter pattern that returns all
log events where messages contain the words ERROR and ARGUMENTS.

Match terms in unstructured log events 347

Amazon CloudWatch Logs User Guide

ERROR ARGUMENTS

The filter returns log event messages, such as the following:

• [ERROR 419] MISSING ARGUMENTS

• [ERROR 420] INVALID ARGUMENTS

This filter pattern doesn't return the following log event messages because they don't contain
both of the terms specified in the filter pattern.

• [ERROR 400] BAD REQUEST

• [ERROR 401] UNAUTHORIZED REQUEST

Example: Match optional terms

You can use pattern matching to create filter patterns that return log events containing
optional terms. Place a question mark ("?") before the terms that you want to match. The
following code snippet shows an example of a filter pattern that returns all log events where
messages contain the word ERROR or the word ARGUMENTS.

?ERROR ?ARGUMENTS

This filter pattern matches log event messages, such as the following:

• [ERROR 400] BAD REQUEST

• [ERROR 401] UNAUTHORIZED REQUEST

• [ERROR 419] MISSING ARGUMENTS

• [ERROR 420] INVALID ARGUMENTS

Match terms in unstructured log events 348

Amazon CloudWatch Logs User Guide

Note

You cannot combine the question mark ("?") with other filter patterns, such as include
and exclude terms. If you combine "?" with other filter patterns, the question mark ("?")
will be ignored.
For example, the following filter pattern matches all events containing the word
REQUEST, but the question mark ("?") filter is ignored and has no effect.

?ERROR ?ARGUMENTS REQUEST

Log event matches

• [INFO] REQUEST FAILED

• [WARN] UNAUTHORIZED REQUEST

• [ERROR] 400 BAD REQUEST

Example: Match exact phrases

The following code snippet shows an example of a filter pattern that returns log events where
messages contain the exact phrase INTERNAL SERVER ERROR.

"INTERNAL SERVER ERROR"

This filter pattern returns the following log event message:

• [ERROR 500] INTERNAL SERVER ERROR

Example: Include and exclude terms

You can create filter patterns that return log events where messages include some terms and
exclude other terms. Place a minus symbol ("-") before the terms that you want to exclude.
The following code snippet shows an example of a filter pattern that returns log events where
messages include the term ERROR and exclude the term ARGUMENTS.

Match terms in unstructured log events 349

Amazon CloudWatch Logs User Guide

ERROR -ARGUMENTS

This filter pattern returns log event messages, such as the following:

• [ERROR 400] BAD REQUEST

• [ERROR 401] UNAUTHORIZED REQUEST

This filter pattern doesn't return the following log event messages because they contain the
word ARGUMENTS.

• [ERROR 419] MISSING ARGUMENTS

• [ERROR 420] INVALID ARGUMENTS

Example: Match everything

You can match everything in your log events with double quotation marks. The following code
snippet shows an example of a filter pattern that returns all log events.

" "

Using filter patterns to match terms in JSON log events

Writing filter patterns for JSON log events

The following describes how to write the syntax for filter patterns that match JSON terms
containing strings and numeric values.

Writing filter patterns that match strings

You can create filter patterns to match strings in JSON log events. The following code snippet
shows an example of the syntax for string-based filter pattern.

Match terms in JSON log events 350

Amazon CloudWatch Logs User Guide

{ PropertySelector EqualityOperator String }

Enclose filter patterns in curly braces ("{}"). String-based filter patterns must contain the
following parts:

• Property selector

Set off property selectors with a dollar sign followed by a period ("$."). Property selectors
are alphanumeric strings that support hyphen ("-") and underscore ("_") characters. Strings
don't support scientific notation. Property selectors point to value nodes in JSON log events.
Value nodes can be strings or numbers. Place arrays after property selectors. The elements in
arrays follow a zero-based numbering system, meaning that the first element in the array is
element 0, the second element is element 1, and so on. Enclose elements in brackets ("[]"). If
a property selector points to an array or object, the filter pattern won't match the log format.
If the JSON property contains a period ("."), then the bracket notation may be used to select
that property.

Note

Wildcard selector
You can use the JSON wildcard to select any array element or any JSON object field.
Quotas
You can only use up to one wildcard selector in a property selector.

• Equality operator

Set off equality operators with one of the following symbols: equal ("=") or not equal ("!=").
Equality operators return a Boolean value (true or false).

• String

You can enclose strings in double quotation marks (""). Strings that contain types other than
alphanumeric characters and the underscore symbol must be placed in double quotation
marks. Use the asterisk ("*") as a wild card to match text.

Match terms in JSON log events 351

Amazon CloudWatch Logs User Guide

Note

You can use any conditional regular expression when creating filter patterns to match
terms in JSON log events. For a list of supported regular expressions, see Supported
regular expressions.

The following code snippet contains an example of a filter pattern showing how you can format
a filter pattern to match a JSON term with a string.

{ $.eventType = "UpdateTrail" }

Writing filter patterns that match numeric values

You can create filter patterns to match numeric values in JSON log events. The following code
snippet shows an example of the syntax for filter patterns that match numeric values.

{ PropertySelector NumericOperator Number }

Enclose filter patterns in curly braces ("{}"). Filter patterns that match numeric values must have
the following parts:

• Property selector

Set off property selectors with a dollar sign followed by a period ("$."). Property selectors
are alphanumeric strings that support hyphen ("-") and underscore ("_") characters. Strings
don't support scientific notation. Property selectors point to value nodes in JSON log events.
Value nodes can be strings or numbers. Place arrays after property selectors. The elements in
arrays follow a zero-based numbering system, meaning that the first element in the array is
element 0, the second element is element 1, and so on. Enclose elements in brackets ("[]"). If
a property selector points to an array or object, the filter pattern won't match the log format.
If the JSON property contains a period ("."), then the bracket notation may be used to select
that property.

Match terms in JSON log events 352

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntax.html#regex-expressions
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntax.html#regex-expressions

Amazon CloudWatch Logs User Guide

Note

Wildcard selector
You can use the JSON wildcard to select any array element or any JSON object field.
Quotas
You can only use up to one wildcard selector in a property selector.

• Numeric operator

Set off numeric operators with one of the following symbols: greater than (">"), less than
("<"), equal ("="), not equal ("!="), greater than or equal to (">="), or less than or equal to
("<=").

• Number

You can use integers that contain plus ("+") or minus ("-") symbols and follow scientific
notation. Use the asterisk ("*") as a wild card to match numbers.

The following code snippet contains examples showing how you can format filter patterns to
match JSON terms with numeric values.

// Filter pattern with greater than symbol
{ $.bandwidth > 75 }
// Filter pattern with less than symbol
{ $.latency < 50 }
// Filter pattern with greater than or equal to symbol
{ $.refreshRate >= 60 }
// Filter pattern with less than or equal to symbol
{ $.responseTime <= 5 }
// Filter pattern with equal sign
{ $.errorCode = 400}
// Filter pattern with not equal sign
{ $.errorCode != 500 }
// Filter pattern with scientific notation and plus symbol
{ $.number[0] = 1e-3 }
// Filter pattern with scientific notation and minus symbol
{ $.number[0] != 1e+3 }

Match terms in JSON log events 353

Amazon CloudWatch Logs User Guide

Match terms in JSON log events using simple expressions

The following examples contain code snippets that show how filter patterns can match terms in a
JSON log event.

Note

If you test an example filter pattern with the example JSON log event, you must enter the
example JSON log on a single line.

JSON log event

{
 "eventType": "UpdateTrail",
 "sourceIPAddress": "111.111.111.111",
 "arrayKey": [
 "value",
 "another value"
],
 "objectList": [
 {
 "name": "a",
 "id": 1
 },
 {
 "name": "b",
 "id": 2
 }
],
 "SomeObject": null,
 "cluster.name": "c"
}

Example: Filter pattern that matches string values

This filter pattern matches the string "UpdateTrail" in the property "eventType".

{ $.eventType = "UpdateTrail" }

Match terms in JSON log events 354

Amazon CloudWatch Logs User Guide

Example: Filter pattern that matches string values (IP address)

This filter pattern contains a wild card and matches the property "sourceIPAddress"
because it doesn't contain a number with the prefix "123.123.".

{ $.sourceIPAddress != 123.123.* }

Example: Filter pattern that matches a specific array element with a string value

This filter pattern matches the element "value" in the array "arrayKey".

{ $.arrayKey[0] = "value" }

Example: Filter pattern that matches a string using regex

This filter pattern matches the string "Trail" in the property "eventType".

{ $.eventType = %Trail% }

Example: Filter pattern that uses a wildcard to match values of any element in the array using
regex

The filter pattern contain regex which matches the element "value" in the array "arrayKey".

{ $.arrayKey[*] = %val.{2}% }

Example: Filter pattern that uses a wildcard to match values of any element with a specific prefix
and subnet using regex (IP address)

This filter pattern contains regex which matches the element "111.111.111.111" in the
property "sourceIPAddress".

Match terms in JSON log events 355

Amazon CloudWatch Logs User Guide

{ $.* = %111\.111\.111\.1[0-9]{1,2}% }

Note

Quotas
You can only use up to one wildcard selector in a property selector.

Example: Filter pattern that matches a JSON property with a period (.) in the key

{ $.['cluster.name'] = "c" }

Example: Filter pattern that matches JSON logs using IS

You can create filter patterns that match fields in JSON logs with the IS variable. The IS
variable can match fields that contain the values NULL, TRUE, or FALSE. The following filter
pattern returns JSON logs where the value of SomeObject is NULL.

{ $.SomeObject IS NULL }

Example: Filter pattern that matches JSON logs using NOT EXISTS

You can create filter patterns with the NOT EXISTS variable to return JSON logs that don't
contain specific fields in the log data. The following filter pattern uses NOT EXISTS to return
JSON logs that don't contain the field SomeOtherObject.

{ $.SomeOtherObject NOT EXISTS }

Note

The variables IS NOT and EXISTS currently aren't supported.

Match terms in JSON log events 356

Amazon CloudWatch Logs User Guide

Match terms in JSON objects using compound expressions

You can use the logical operators AND ("&&") and OR ("||") in filter patterns to create compound
expressions that match log events where two or more conditions are true. Compound expressions
support the use of parentheses ("()") and the following standard order of operations: () > && >
||. The following examples contain code snippets that show how you can use filter patterns with
compound expressions to match terms in a JSON object.

JSON object

{
 "user": {
 "id": 1,
 "email": "John.Stiles@example.com"
 },
 "users": [
 {
 "id": 2,
 "email": "John.Doe@example.com"
 },
 {
 "id": 3,
 "email": "Jane.Doe@example.com"
 }
],
 "actions": [
 "GET",
 "PUT",
 "DELETE"
],
 "coordinates": [
 [0, 1, 2],
 [4, 5, 6],
 [7, 8, 9]
]
}

Example: Expression that matches using AND (&&)

This filter pattern contains a compound expression that matches "id" in "user" with a
numeric value of 1 and "email" in the first element of the "users" array with the string
"John.Doe@example.com".

Match terms in JSON log events 357

Amazon CloudWatch Logs User Guide

{ ($.user.id = 1) && ($.users[0].email = "John.Doe@example.com") }

Example: Expression that matches using OR (||)

This filter pattern contains a compound expression that matches "email" in "user" with the
string "John.Stiles@example.com".

{ $.user.email = "John.Stiles@example.com" || $.coordinates[0][1] = "nonmatch" &&
 $.actions[2] = "nonmatch" }

Example: Expression that doesn't match using AND (&&)

This filter pattern contains a compound expression that doesn't find a match because the
expression doesn't match the third action in "actions".

{ ($.user.email = "John.Stiles@example.com" || $.coordinates[0][1] = "nonmatch") &&
 $.actions[2] = "nonmatch" }

Note

Quotas
You can only use up to one wildcard selector in a property selector, and up to three
wildcard selectors in a filter pattern with compound expressions.

Example: Expression that doesn't match using OR (||)

This filter pattern contains a compound expression that doesn't find a match because the
expression doesn't match the first property in "users" or the third action in "actions".

Match terms in JSON log events 358

Amazon CloudWatch Logs User Guide

{ ($.user.id = 2 && $.users[0].email = "nonmatch") || $.actions[2] = "GET" }

Using filter patterns to match terms in space-delimited log
events

Writing filter patterns for space-delimited log events

You can create filter patterns to match terms in space-delimited log events. The following provides
an example space-delimited log event and describes how to write the syntax for filter patterns that
match terms in the space-delimited log event.

Note

You can use any conditional regular expression when creating filter patterns to match
terms in space-delimited log events. For a list of supported regular expressions, see
Supported regular expressions.

Example: Space-delimited log event

The following code snippet shows a space-delimited log event that contains seven fields: ip,
user, username, timestamp, request, status_code, and bytes.

127.0.0.1 Prod frank [10/Oct/2000:13:25:15 -0700] "GET /index.html HTTP/1.0" 404
 1534

Note

Characters between brackets ("[]") and double quotation marks ("") are considered single
fields.

Match terms in space-delimited log events 359

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntax.html#regex-expressions

Amazon CloudWatch Logs User Guide

Writing filter patterns that match terms in a space-delimited log event

To create a filter pattern that matches terms in a space-delimited log event, enclose the filter
pattern in brackets ("[]"), and specify fields with names that are separated by commas (","). The
following filter pattern parses seven fields.

[ip=%127\.0\.0\.[1-9]%, user, username, timestamp, request =*.html*, status_code =
 4*, bytes]

You can use numeric operators (>, <, =, !=, >=, or <=) and the asterisk (*) as a wild card or regex
to give your filter pattern conditions. In the example filter pattern, ip uses regex that matches
IP address range 127.0.0.1 - 127.0.0.9, request contains a wildcard that states it must extract
a value with .html, and status_code contains a wildcard that states it must extract a value
beginning with 4.

If you don't know the number of fields that you're parsing in a space-delimited log event, you
can use ellipsis (...) to reference any unnamed field. Elipsis can reference as many fields as
needed. The following example shows a filter pattern with ellipsis that represent the first four
unnamed fields shown in the previous example filter pattern.

[..., request =*.html*, status_code = 4*, bytes]

You also can use the logical operators AND (&&) and OR (||) to create compound expressions.
The following filter pattern contains a compound expression that states the value of
status_code must be 404 or 410.

[ip, user, username, timestamp, request =*.html*, status_code = 404 || status_code =
 410, bytes]

Match terms in space-delimited log events 360

Amazon CloudWatch Logs User Guide

Match terms in space-delimited log events using pattern matching

You can use pattern matching to create space-delimited filter patterns that match terms in a
specific order. Specify the order of your terms with indicators. Use w1 to represent your first term
and w2 and so on to represent the order of your subsequent terms. Place commas (",") between
your terms. The following examples contain code snippets that show how you can use pattern
matching with space-delimited filter patterns.

Note

You can use any conditional regular expression when creating filter patterns to match
terms in space-delimited log events. For a list of supported regular expressions, see
Supported regular expressions.

Space-delimited log event

INFO 09/25/2014 12:00:00 GET /service/resource/67 1200
INFO 09/25/2014 12:00:01 POST /service/resource/67/part/111 1310
WARNING 09/25/2014 12:00:02 Invalid user request
ERROR 09/25/2014 12:00:02 Failed to process request

Example: Match terms in order

The following space-delimited filter pattern returns log events where the first word in the log
events is ERROR.

[w1=ERROR, w2]

Note

When you create space-delimited filter patterns that use pattern matching, you must
include a blank indicator after you specify the order of your terms. For example, if you
create a filter pattern that returns log events where the first word is ERROR, include a
blank w2 indicator after the w1 term.

Match terms in space-delimited log events 361

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntax.html#regex-expressions

Amazon CloudWatch Logs User Guide

Example: Match terms with AND (&&) and OR (||)

You can use the logical operators AND ("&&") and OR ("||") to create space-delimited filter
patterns that contain conditions. The following filter pattern returns log events where the first
word in the events is ERROR or WARNING.

[w1=ERROR || w1=WARNING, w2]

Example: Exclude terms from matches

You can create space-delimited filter patterns that return log events excluding one or more
terms. Place a not equal symbol ("!=") before the term or terms that you want to exclude. The
following code snippet shows an example of a filter pattern that returns log events where the
first words aren't ERROR and WARNING.

[w1!=ERROR && w1!=WARNING, w2]

Example: Match the top level item in a resource URI

The following code snippet shows an example of a filter pattern that matches the top level item
in a resource URI using regex.

[logLevel, date, time, method, url=%/service/resource/[0-9]+$%, response_time]

Example: Match the child level item in a resource URI

The following code snippet shows an example of a filter pattern that matches the child level
item in a resource URI using regex.

[logLevel, date, time, method, url=%/service/resource/[0-9]+/part/[0-9]+$%,
 response_time]

Match terms in space-delimited log events 362

Amazon CloudWatch Logs User Guide

Match terms in space-delimited log events 363

Amazon CloudWatch Logs User Guide

Enabling logging from AWS services

While many services publish logs only to CloudWatch Logs, some AWS services can publish logs
directly to Amazon Simple Storage Service or Amazon Data Firehose. If your main requirement for
logs is storage or processing in one of these services, you can easily have the service that produces
the logs send them directly to Amazon S3 or Firehose without additional setup.

Even when logs are published directly to Amazon S3 or Firehose, charges apply. For more
information, see Vended Logs on the Logs tab at Amazon CloudWatch Pricing.

Some AWS services use a common infrastructure to send their logs. To enable logging from these
services, you must be logged in as a user that has certain permissions. Additionally, you must grant
permissions to AWS to enable the logs to be sent.

For services that require these permissions, there are two versions of the permissions needed.
The services that require these extra permissions are noted as Supported [V1 Permissions] and
Supported [V2 Permissions] in the table. For information about these required permissions, see
the sections after the table.

Log type CloudWatch
Logs

Amazon S3 Firehose

Amazon API Gateway access logs Supported
[V1
Permissions]

AWS AppSync logs Supported

Amazon Aurora MySQL logs Supported

Amazon Chime media quality metric logs and
SIP message logs

Supported
[V1
Permissions]

CloudFront: access logs Supported
[V1
Permissions]

AWS CloudHSM audit logs Supported

364

https://aws.amazon.com/cloudwatch/pricing/
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-logging.html
https://docs.aws.amazon.com/appsync/latest/devguide/monitoring.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.CloudWatch.html
https://docs.aws.amazon.com/chime/latest/ag/monitoring-cloudwatch.html#cw-logs
https://docs.aws.amazon.com/chime/latest/ag/monitoring-cloudwatch.html#cw-logs
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/AccessLogs.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/get-hsm-audit-logs-using-cloudwatch.html

Amazon CloudWatch Logs User Guide

Log type CloudWatch
Logs

Amazon S3 Firehose

CloudWatch Evidently evaluation event logs Supported
[V1
Permissions]

Supported
[V1
Permissions]

CloudWatch Internet Monitor logs Supported
[V1
Permissions]

CloudTrail logs Supported

AWS CodeBuild logs Supported

Amazon CodeWhisperer event logs Supported
[V2
Permissions]

Supported
[V2
Permissions]

Supported
[V2
Permissions]

Amazon Cognito logs Supported
[V1
Permissions]

Amazon Connect logs Supported

AWS DataSync logs Supported

Amazon ElastiCache for Redis logs Supported
[V1
Permissions]

 Supported
[V1
Permissions]

AWS Elastic Beanstalk logs Supported

Amazon Elastic Container Service logs Supported

Amazon Elastic Kubernetes Service control
plane logs

Supported

AWS Fargate logs Supported

365

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Evidently-datastorage.html#CloudWatch-Evidently-datastorage-logformat
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-IM-view-cw-tools.S3_athena.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/monitor-cloudtrail-log-files-with-cloudwatch-logs.html
https://docs.aws.amazon.com/codebuild/latest/userguide/getting-started-build-log-console.html
https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html
https://docs.aws.amazon.com/connect/latest/adminguide/logging-and-monitoring.html
https://docs.aws.amazon.com/datasync/latest/userguide/monitor-datasync.html#cloudwatchlogs
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Log_Delivery.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/AWSHowTo.cloudwatchlogs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_cloudwatch_logs.html
https://docs.aws.amazon.com/eks/latest/userguide/control-plane-logs.html
https://docs.aws.amazon.com/eks/latest/userguide/control-plane-logs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_awslogs.html

Amazon CloudWatch Logs User Guide

Log type CloudWatch
Logs

Amazon S3 Firehose

AWS Fault Injection Service experiment logs Supported
[V1
Permissions]

Amazon FinSpace Supported
[V1
Permissions]

Supported
[V1
Permissions]

Supported
[V1
Permissions]

AWS Global Accelerator flow logs Supported
[V1
Permissions]

AWS Glue job logs Supported

IAM Identity Center error logs Supported
[V2
Permissions]

Supported
[V2
Permissions]

Supported
[V2
Permissions]

Amazon Interactive Video Service chat logs Supported
[V1
Permissions]

Supported
[V1
Permissions]

Supported
[V1
Permissions]

AWS IoT logs Supported

AWS IoT FleetWise logs Supported
[V1
Permissions]

Supported
[V1
Permissions]

Supported
[V1
Permissions]

AWS Lambda logs Supported

Amazon Macie logs Supported

AWS Mainframe Modernization Supported
[V1
Permissions]

Supported
[V1
Permissions]

Supported
[V1
Permissions]

366

https://docs.aws.amazon.com/fis/latest/userguide/monitoring-logging.html
https://docs.aws.amazon.com/finspace/latest/userguide/finspace-what-is.html
https://docs.aws.amazon.com/global-accelerator/latest/dg/monitoring-global-accelerator.flow-logs.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-continuous-logging.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/logging-ad-sync-errors.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/chat-logging.html
https://docs.aws.amazon.com/iot/latest/developerguide/cloud-watch-logs.html
https://docs.aws.amazon.com/iot-fleetwise/latest/developerguide/logging-cw.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs.html
https://docs.aws.amazon.com/macie/latest/user/discovery-jobs-monitor-cw-logs.html
https://docs.aws.amazon.com/m2/latest/userguide/what-is-m2.html

Amazon CloudWatch Logs User Guide

Log type CloudWatch
Logs

Amazon S3 Firehose

Amazon Managed Service for Prometheus logs Supported
[V1
Permissions]

Amazon MSK broker logs Supported
[V1
Permissions]

Supported
[V1
Permissions]

Supported
[V1
Permissions]

Amazon MSK Connect logs Supported
[V1
Permissions]

Supported
[V1
Permissions]

Supported
[V1
Permissions]

Amazon MQ general and audit logs Supported

AWS Network Firewall logs Supported
[V1
Permissions]

Supported
[V1
Permissions]

Supported
[V1
Permissions]

Network Load Balancer access logs Supported
[V1
Permissions]

OpenSearch logs Supported

Amazon OpenSearch Service ingestion logs Supported
[V1
Permissions]

Supported
[V1
Permissions]

Supported
[V1
Permissions]

AWS OpsWorks logs Supported

Amazon Relational Database ServicePo
stgreSQL logs

Supported

AWS RoboMaker logs Supported

Amazon Route 53 public DNS query logs Supported

367

https://docs.aws.amazon.com/prometheus/latest/userguide/CW-logs.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-logging.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-connect-logging.html
https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/security-logging-monitoring-configure-cloudwatch
https://docs.aws.amazon.com/network-firewall/latest/developerguide/firewall-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-access-logs.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/createdomain-configure-slow-logs.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/monitoring-pipeline-logs.html
https://docs.aws.amazon.com/opsworks/latest/userguide/monitoring-cloudwatch-logs.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.PostgreSQL.html#USER_LogAccess.PostgreSQL.PublishtoCloudWatchLogs
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.PostgreSQL.html#USER_LogAccess.PostgreSQL.PublishtoCloudWatchLogs
https://aws.amazon.com/blogs/opensource/robomaker-cloudwatch-ros-nodes-offline-support/
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/logging-monitoring.html

Amazon CloudWatch Logs User Guide

Log type CloudWatch
Logs

Amazon S3 Firehose

Amazon Route 53 resolver query logs Supported
[V1
Permissions]

Supported
[V1
Permissions]

Amazon SageMaker events Supported
[V1
Permissions]

Amazon SageMaker worker events Supported
[V1
Permissions]

AWS Site-to_Site VPN logs Supported
[V1
Permissions]

Supported
[V1
Permissions]

Supported
[V1
Permissions]

Amazon Simple Notification Service logs Supported

Amazon Simple Notification Service data
protection policy logs

Supported

EC2 Spot Instance data feed files Supported
[V1
Permissions]

AWS Step Functions Express Workflow and
Standard Workflow logs

Supported
[V1
Permissions]

Storage Gateway audit logs and health logs Supported
[V1
Permissions]

AWS Transfer Family logs Supported
[V1
Permissions]

Supported
[V1
Permissions]

Supported
[V1
Permissions]

368

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resolver-query-logs-choosing-target-resource.html
https://docs.aws.amazon.com/sagemaker/latest/dg/logging-cloudwatch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/workteam-private-tracking.html
https://docs.aws.amazon.com/vpn/latest/s2svpn/monitoring-logs.html
https://docs.aws.amazon.com/sns/latest/dg/sms_stats_cloudwatch.html#sns-viewing-cloudwatch-logs
https://docs.aws.amazon.com/sns/latest/dg/sns-message-data-protection-operations.html
https://docs.aws.amazon.com/sns/latest/dg/sns-message-data-protection-operations.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-data-feeds.html
https://docs.aws.amazon.com/step-functions/latest/dg/cw-logs.html
https://docs.aws.amazon.com/step-functions/latest/dg/cw-logs.html
https://docs.aws.amazon.com/storagegateway/latest/userguide/monitoring-file-gateway.html
https://docs.aws.amazon.com/transfer/latest/userguide/structured-logging.html

Amazon CloudWatch Logs User Guide

Log type CloudWatch
Logs

Amazon S3 Firehose

AWS Verified Access logs Supported
[V1
Permissions]

Supported
[V1
Permissions]

Supported
[V1
Permissions]

Amazon Virtual Private Cloud flow logs Supported Supported
[V1
Permissions]

Supported
[V1
Permissions]

Amazon VPC Lattice access logs Supported
[V1
Permissions]

Supported
[V1
Permissions]

Supported
[V1
Permissions]

AWS WAF logs Supported
[V1
Permissions]

Supported
[V1
Permissions]

Supported

Amazon WorkMail logs Supported
[V2
Permissions]

Supported
[V2
Permissions]

Supported
[V2
Permissions]

Logging that requires additional permissions [V1]

Some AWS services use a common infrastructure to send their logs to CloudWatch Logs, Amazon
S3, or Firehose. To enable the AWS services listed in the following table to send their logs to these
destinations, you must be logged in as a user that has certain permissions.

Additionally, permissions must be granted to AWS to enable the logs to be sent. AWS can
automatically create those permissions when the logs are set up, or you can create them yourself
first before you set up the logging.

If you choose to have AWS automatically set up the necessary permissions and resource policies
when you or someone in your organization first sets up the sending of logs, then the user who is
setting up the sending of logs must have certain permissions, as explained later in this section.
Alternatively, you can create the resource policies yourself, and then the users who set up the
sending of logs do not need as many permissions.

Logging that requires additional permissions [V1] 369

https://docs.aws.amazon.com/verified-access/latest/ug/access-logs.html
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs-s3.html
https://docs.aws.amazon.com/vpc-lattice/latest/ug/monitoring-access-logs.html
https://docs.aws.amazon.com/waf/latest/developerguide/logging-destinations.html

Amazon CloudWatch Logs User Guide

The following table summarizes which types of logs and which log destinations that the
information in this section applies to.

The following sections provide more details for each of these destinations.

Logs sent to CloudWatch Logs

Important

When you set up the log types in the following list to be sent to CloudWatch Logs, AWS
creates or changes the resource policies associated with the log group receiving the logs, if
needed. Continue reading this section to see the details.

This section applies when the types of logs listed in the table in the preceding section are sent to
CloudWatch Logs:

User permissions

To be able to set up sending any of these types of logs to CloudWatch Logs for the first time, you
must be logged into an account with the following permissions.

• logs:CreateLogDelivery

• logs:PutResourcePolicy

• logs:DescribeResourcePolicies

• logs:DescribeLogGroups

If any of these types of logs is already being sent to a log group in CloudWatch Logs, then to set
up the sending of another one of these types of logs to that same log group, you only need the
logs:CreateLogDelivery permission.

Log group resource policy

The log group where the logs are being sent must have a resource policy that includes certain
permissions. If the log group currently does not have a resource policy, and the user setting up
the logging has the logs:PutResourcePolicy, logs:DescribeResourcePolicies, and
logs:DescribeLogGroups permissions for the log group, then AWS automatically creates the
following policy for it when you begin sending the logs to CloudWatch Logs.

Logs sent to CloudWatch Logs 370

Amazon CloudWatch Logs User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AWSLogDeliveryWrite20150319",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "delivery.logs.amazonaws.com"
]
 },
 "Action": [
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-east-1:0123456789:log-group:my-log-group:log-stream:*"
],
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": ["0123456789"]
 },
 "ArnLike": {
 "aws:SourceArn": ["arn:aws:logs:us-east-1:0123456789:*"]
 }
 }
 }
]
}

If the log group does have a resource policy but that policy doesn't contain the statement shown
in the previous policy, and the user setting up the logging has the logs:PutResourcePolicy,
logs:DescribeResourcePolicies, and logs:DescribeLogGroups permissions for the log
group, that statement is appended to the log group's resource policy.

Log group resource policy size limit considerations

These services must list each log group that they're sending logs to in the resource policy, and
CloudWatch Logs resource policies are limited to 5120 characters. A service that sends logs to a
large number of log groups might run into this limit.

Logs sent to CloudWatch Logs 371

Amazon CloudWatch Logs User Guide

To mitigate this, CloudWatch Logs monitors the size of resource policies used by the service that
is sending logs, and when it detects that a policy approaches the size limit of 5120 characters,
CloudWatch Logs automatically enables /aws/vendedlogs/* in the resource policy for that
service. You can then start using log groups with names that start with /aws/vendedlogs/ as the
destinations for logs from these services.

Logs sent to Amazon S3

When you set logs to be sent to Amazon S3, AWS creates or changes the resource policies
associated with the S3 bucket that is receiving the logs, if needed.

Logs published directly to Amazon S3 are published to an existing bucket that you specify. One or
more log files are created every five minutes in the specified bucket.

When you deliver logs for the first time to an Amazon S3 bucket, the service that delivers logs
records the owner of the bucket to ensure that the logs are delivered only to a bucket belonging to
this account. As a result, to change the Amazon S3 bucket owner, you must re-create or update the
log subscription in the originating service.

Note

CloudFront uses a different permissions model than the other services that send vended
logs to S3. For more information, see Permissions required to configure standard logging
and to access your log files.
Additionallly, if you use the same S3 bucket for CloudFront access logs and another log
source, enabling ACL on the bucket for CloudFront also grants permission to all other log
sources that use this bucket.

User permissions

To be able to set up sending any of these types of logs to Amazon S3 for the first time, you must
be logged into an account with the following permissions.

• logs:CreateLogDelivery

• S3:GetBucketPolicy

• S3:PutBucketPolicy

Logs sent to Amazon S3 372

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/AccessLogs.html#AccessLogsBucketAndFileOwnership
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/AccessLogs.html#AccessLogsBucketAndFileOwnership

Amazon CloudWatch Logs User Guide

If any of these types of logs is already being sent to an Amazon S3 bucket, then to set up the
sending of another one of these types of logs to the same bucket you only need to have the
logs:CreateLogDelivery permission.

S3 bucket resource policy

The S3 bucket where the logs are being sent must have a resource policy that includes certain
permissions. If the bucket currently does not have a resource policy and the user setting up the
logging has the S3:GetBucketPolicy and S3:PutBucketPolicy permissions for the bucket,
then AWS automatically creates the following policy for it when you begin sending the logs to
Amazon S3.

{
 "Version": "2012-10-17",
 "Id": "AWSLogDeliveryWrite20150319",
 "Statement": [
 {
 "Sid": "AWSLogDeliveryAclCheck",
 "Effect": "Allow",
 "Principal": {
 "Service": "delivery.logs.amazonaws.com"
 },
 "Action": "s3:GetBucketAcl",
 "Resource": "arn:aws:s3:::my-bucket",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": ["0123456789"]
 },
 "ArnLike": {
 "aws:SourceArn": ["arn:aws:logs:us-east-1:0123456789:*"]
 }
 }
 },
 {
 "Sid": "AWSLogDeliveryWrite",
 "Effect": "Allow",
 "Principal": {
 "Service": "delivery.logs.amazonaws.com"
 },
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::my-bucket/AWSLogs/account-ID/*",
 "Condition": {
 "StringEquals": {

Logs sent to Amazon S3 373

Amazon CloudWatch Logs User Guide

 "s3:x-amz-acl": "bucket-owner-full-control",
 "aws:SourceAccount": ["0123456789"]
 },
 "ArnLike": {
 "aws:SourceArn": ["arn:aws:logs:us-east-1:0123456789:*"]
 }
 }
 }
]
}

In the previous policy, for aws:SourceAccount, specify the list of account IDS for which logs are
being delivered to this bucket. For aws:SourceArn, specify the list of ARNs of the resource that
generates the logs, in the form arn:aws:logs:source-region:source-account-id:*.

If the bucket has a resource policy but that policy doesn't contain the statement shown in
the previous policy, and the user setting up the logging has the S3:GetBucketPolicy and
S3:PutBucketPolicy permissions for the bucket, that statement is appended to the bucket's
resource policy.

Note

In some cases, you may see AccessDenied errors in AWS CloudTrail if the
s3:ListBucket permission has not been granted to delivery.logs.amazonaws.com.
To avoid these errors in your CloudTrail logs, you must grant the s3:ListBucket
permission to delivery.logs.amazonaws.com and you must include the Condition
parameters shown with the s3:GetBucketAcl permission set in the preceding bucket
policy. To make this simpler, instead of creating a new Statement, you can directly
update the AWSLogDeliveryAclCheck to be “Action”: [“s3:GetBucketAcl”,
“s3:ListBucket”]

Amazon S3 bucket server-side encryption

You can protect the data in your Amazon S3 bucket by enabling either server-side Encryption with
Amazon S3-managed keys (SSE-S3) or server-side encryption with a AWS KMS key stored in AWS
Key Management Service (SSE-KMS). For more information, see Protecting data using server-side
encryption.

Logs sent to Amazon S3 374

https://docs.aws.amazon.com/AmazonS3/latest/userguide/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/serv-side-encryption.html

Amazon CloudWatch Logs User Guide

If you choose SSE-S3, no additional configuration is required. Amazon S3 handles the encryption
key.

Warning

If you choose SSE-KMS, you must use a customer managed key, because using an AWS
managed key is not supported for this scenario. If you set up encryption using an AWS
managed key, the logs will be delivered in an unreadable format.

When you use a customer managed AWS KMS key, you can specify the Amazon Resource Name
(ARN) of the customer managed key when you enable bucket encryption. You must add the
following to the key policy for your customer managed key (not to the bucket policy for your S3
bucket), so that the log delivery account can write to your S3 bucket.

If you choose SSE-KMS, you must use a customer managed key, because using an AWS managed
key is not supported for this scenario. When you use a customer managed AWS KMS key, you can
specify the Amazon Resource Name (ARN) of the customer managed key when you enable bucket
encryption. You must add the following to the key policy for your customer managed key (not to
the bucket policy for your S3 bucket), so that the log delivery account can write to your S3 bucket.

{
 "Sid": "Allow Logs Delivery to use the key",
 "Effect": "Allow",
 "Principal": {
 "Service": ["delivery.logs.amazonaws.com"]
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": ["0123456789"]
 },
 "ArnLike": {
 "aws:SourceArn": ["arn:aws:logs:us-east-1:0123456789:*"]

Logs sent to Amazon S3 375

Amazon CloudWatch Logs User Guide

 }
 }
}

For aws:SourceAccount, specify the list of account IDS for which logs are being delivered to this
bucket. For aws:SourceArn, specify the list of ARNs of the resource that generates the logs, in the
form arn:aws:logs:source-region:source-account-id:*.

Logs sent to Firehose

This section applies when the types of logs listed in the table in the preceding section are sent to
Firehose:

User permissions

To be able to set up sending any of these types of logs to Firehose for the first time, you must be
logged into an account with the following permissions.

• logs:CreateLogDelivery

• firehose:TagDeliveryStream

• iam:CreateServiceLinkedRole

If any of these types of logs is already being sent to Firehose, then to set up the sending of another
one of these types of logs to Firehose you need to have only the logs:CreateLogDelivery and
firehose:TagDeliveryStream permissions.

IAM roles used for permissions

Because Firehose does not use resource policies, AWS uses IAM roles when setting up these logs to
be sent to Firehose. AWS creates a service-linked role named AWSServiceRoleForLogDelivery. This
service-linked role includes the following permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "firehose:PutRecord",
 "firehose:PutRecordBatch",
 "firehose:ListTagsForDeliveryStream"
],

Logs sent to Firehose 376

Amazon CloudWatch Logs User Guide

 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/LogDeliveryEnabled": "true"
 }
 },
 "Effect": "Allow"
 }
]
}

This service-linked role grants permission for all Firehose delivery streams that have the
LogDeliveryEnabled tag set to true. AWS gives this tag to the destination delivery stream
when you set up the logging.

This service-linked role also has a trust policy that allows the delivery.logs.amazonaws.com
service principal to assume the needed service-linked role. That trust policy is as follows:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "delivery.logs.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Logging that requires additional permissions [V2]

Some AWS services use a new method to send their logs. This is a flexible method that enables you
to set up log delivery from these services to one or more of the following destinations: CloudWatch
Logs, Amazon S3, or Firehose.

A working log delivery consists of three elements:

• A DeliverySource, which is a logical object that represents the resource(s) that actually send
the logs.

Logging that requires additional permissions [V2] 377

Amazon CloudWatch Logs User Guide

• A DeliveryDestination, which is a logical object that represents the actual delivery
destination.

• A Delivery, which connects a delivery source to delivery destination

To configure logs delivery between a supported AWS service and a destination, you must do the
following:

• Create a delivery source with PutDeliverySource.

• Create a delivery destination with PutDeliveryDestination.

• If you are delivering logs cross-account, you must use PutDeliveryDestinationPolicy in the
destination account to assign an IAM policy to the destination. This policy authorizes creating a
delivery from the delivery source in account A to the delivery destination in account B.

• Create a delivery by pairing exactly one delivery source and one delivery destination, by using
CreateDelivery.

The following sections provide the details of the permissions you need to have when you are
signed in to set up log delivery to each type of destination, using the V2 process. These permissions
can be granted to an IAM role that you are signed in with.

Important

It is your responsibility to remove log delivery resources after deleting the log-generating
resource. To do so, follow these steps.

1. Delete the Delivery by using the DeleteDelivery operation.

2. Delete the DeliverySource by using the DeleteDeliverySource operation.

3. If the DeliveryDestination associated with the DeliverySource that you just
deleted is used only for this specific DeliverySource, then you can remove it by using
the DeleteDeliveryDestinations operation.

Contents

• Logs sent to CloudWatch Logs

• Logs sent to Amazon S3

• Amazon S3 bucket server-side encryption

Logging that requires additional permissions [V2] 378

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutDeliverySource.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutDeliveryDestination.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutDeliveryDestinationPolicy.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateDelivery.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateDelivery.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DeleteDelivery.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DeleteDeliverySource.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeDeliveryDestinations.html

Amazon CloudWatch Logs User Guide

• Logs sent to Firehose

• Service-specific permissions

• Console-specific permissions

Logs sent to CloudWatch Logs

User permissions

To enable sending logs to CloudWatch Logs, you must be signed in with the following permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadWriteAccessForLogDeliveryActions",
 "Effect": "Allow",
 "Action": [
 "logs:GetDelivery",
 "logs:GetDeliverySource",
 "logs:PutDeliveryDestination",
 "logs:GetDeliveryDestinationPolicy",
 "logs:DeleteDeliverySource",
 "logs:PutDeliveryDestinationPolicy",
 "logs:CreateDelivery",
 "logs:GetDeliveryDestination",
 "logs:PutDeliverySource",
 "logs:DeleteDeliveryDestination",
 "logs:DeleteDeliveryDestinationPolicy",
 "logs:DeleteDelivery"
],
 "Resource": [
 "arn:aws:logs:region:account-id:delivery:*",
 "arn:aws:logs:region:account-id:delivery-source:*",
 "arn:aws:logs:region:account-id:delivery-destination:*"
]
 },
 {
 "Sid": "ListAccessForLogDeliveryActions",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeDeliveryDestinations",
 "logs:DescribeDeliverySources",

Logs sent to CloudWatch Logs 379

Amazon CloudWatch Logs User Guide

 "logs:DescribeDeliveries"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowUpdatesToResourcePolicyCWL",
 "Effect": "Allow",
 "Action": [
 "logs:PutResourcePolicy",
 "logs:DescribeResourcePolicies",
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:region:account-id:*"
]
 }
]
}

Log group resource policy

The log group where the logs are being sent must have a resource policy that includes certain
permissions. If the log group currently does not have a resource policy, and the user setting up
the logging has the logs:PutResourcePolicy, logs:DescribeResourcePolicies, and
logs:DescribeLogGroups permissions for the log group, then AWS automatically creates the
following policy for it when you begin sending the logs to CloudWatch Logs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AWSLogDeliveryWrite20150319",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "delivery.logs.amazonaws.com"
]
 },
 "Action": [
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": [

Logs sent to CloudWatch Logs 380

Amazon CloudWatch Logs User Guide

 "arn:aws:logs:us-east-1:0123456789:log-group:my-log-group:log-stream:*"
],
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": ["0123456789"]
 },
 "ArnLike": {
 "aws:SourceArn": ["arn:aws:logs:us-east-1:0123456789:*"]
 }
 }
 }
]
}

Log group resource policy size limit considerations

These services must list each log group that they're sending logs to in the resource policy, and
CloudWatch Logs resource policies are limited to 5120 characters. A service that sends logs to a
large number of log groups may run into this limit.

To mitigate this, CloudWatch Logs monitors the size of resource policies used by the service that
is sending logs, and when it detects that a policy approaches the size limit of 5120 characters,
CloudWatch Logs automatically enables /aws/vendedlogs/* in the resource policy for that
service. You can then start using log groups with names that start with /aws/vendedlogs/ as the
destinations for logs from these services.

Logs sent to Amazon S3

User permissions

To enable sending logs to Amazon S3, you must be signed in with the following permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadWriteAccessForLogDeliveryActions",
 "Effect": "Allow",
 "Action": [
 "logs:GetDelivery",
 "logs:GetDeliverySource",
 "logs:PutDeliveryDestination",
 "logs:GetDeliveryDestinationPolicy",

Logs sent to Amazon S3 381

Amazon CloudWatch Logs User Guide

 "logs:DeleteDeliverySource",
 "logs:PutDeliveryDestinationPolicy",
 "logs:CreateDelivery",
 "logs:GetDeliveryDestination",
 "logs:PutDeliverySource",
 "logs:DeleteDeliveryDestination",
 "logs:DeleteDeliveryDestinationPolicy",
 "logs:DeleteDelivery"
],
 "Resource": [
 "arn:aws:logs:region:account-id:delivery:*",
 "arn:aws:logs:region:account-id:delivery-source:*",
 "arn:aws:logs:region:account-id:delivery-destination:*"
]
 },
 {
 "Sid": "ListAccessForLogDeliveryActions",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeDeliveryDestinations",
 "logs:DescribeDeliverySources",
 "logs:DescribeDeliveries"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowUpdatesToResourcePolicyS3",
 "Effect": "Allow",
 "Action": [
 "s3:PutBucketPolicy",
 "s3:GetBucketPolicy"
],
 "Resource": "arn:aws:s3:::bucket-name"
 }
]
}

The S3 bucket where the logs are being sent must have a resource policy that includes certain
permissions. If the bucket currently does not have a resource policy and the user setting up the
logging has the S3:GetBucketPolicy and S3:PutBucketPolicy permissions for the bucket,
then AWS automatically creates the following policy for it when you begin sending the logs to
Amazon S3.

Logs sent to Amazon S3 382

Amazon CloudWatch Logs User Guide

{
 "Version": "2012-10-17",
 "Id": "AWSLogDeliveryWrite20150319",
 "Statement": [
 {
 "Sid": "AWSLogDeliveryAclCheck",
 "Effect": "Allow",
 "Principal": {
 "Service": "delivery.logs.amazonaws.com"
 },
 "Action": "s3:GetBucketAcl",
 "Resource": "arn:aws:s3:::my-bucket",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": ["0123456789"]
 },
 "ArnLike": {
 "aws:SourceArn": ["arn:aws:logs:us-east-1:0123456789:delivery-source*"]
 }
 }
 },
 {
 "Sid": "AWSLogDeliveryWrite",
 "Effect": "Allow",
 "Principal": {
 "Service": "delivery.logs.amazonaws.com"
 },
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::my-bucket/AWSLogs/account-ID/*",
 "Condition": {
 "StringEquals": {
 "s3:x-amz-acl": "bucket-owner-full-control",
 "aws:SourceAccount": ["0123456789"]
 },
 "ArnLike": {
 "aws:SourceArn": ["arn:aws:logs:us-east-1:0123456789:delivery-
source:*"]
 }
 }
 }
]
}

Logs sent to Amazon S3 383

Amazon CloudWatch Logs User Guide

In the previous policy, for aws:SourceAccount, specify the list of account IDS for which logs are
being delivered to this bucket. For aws:SourceArn, specify the list of ARNs of the resource that
generates the logs, in the form arn:aws:logs:source-region:source-account-id:*.

If the bucket has a resource policy but that policy doesn't contain the statement shown in
the previous policy, and the user setting up the logging has the S3:GetBucketPolicy and
S3:PutBucketPolicy permissions for the bucket, that statement is appended to the bucket's
resource policy.

Note

In some cases, you may see AccessDenied errors in AWS CloudTrail if the
s3:ListBucket permission has not been granted to delivery.logs.amazonaws.com.
To avoid these errors in your CloudTrail logs, you must grant the s3:ListBucket
permission to delivery.logs.amazonaws.com and you must include the Condition
parameters shown with the s3:GetBucketAcl permission set in the preceding bucket
policy. To make this simpler, instead of creating a new Statement, you can directly
update the AWSLogDeliveryAclCheck to be “Action”: [“s3:GetBucketAcl”,
“s3:ListBucket”]

Amazon S3 bucket server-side encryption

You can protect the data in your Amazon S3 bucket by enabling either server-side Encryption with
Amazon S3-managed keys (SSE-S3) or server-side encryption with a AWS KMS key stored in AWS
Key Management Service (SSE-KMS). For more information, see Protecting data using server-side
encryption.

If you choose SSE-S3, no additional configuration is required. Amazon S3 handles the encryption
key.

Warning

If you choose SSE-KMS, you must use a customer managed key, because using an AWS
managed key is not supported for this scenario. If you set up encryption using an AWS
managed key, the logs will be delivered in an unreadable format.

Logs sent to Amazon S3 384

https://docs.aws.amazon.com/AmazonS3/latest/userguide/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/serv-side-encryption.html

Amazon CloudWatch Logs User Guide

When you use a customer managed AWS KMS key, you can specify the Amazon Resource Name
(ARN) of the customer managed key when you enable bucket encryption. You must add the
following to the key policy for your customer managed key (not to the bucket policy for your S3
bucket), so that the log delivery account can write to your S3 bucket.

If you choose SSE-KMS, you must use a customer managed key, because using an AWS managed
key is not supported for this scenario. When you use a customer managed AWS KMS key, you can
specify the Amazon Resource Name (ARN) of the customer managed key when you enable bucket
encryption. You must add the following to the key policy for your customer managed key (not to
the bucket policy for your S3 bucket), so that the log delivery account can write to your S3 bucket.

{
 "Sid": "Allow Logs Delivery to use the key",
 "Effect": "Allow",
 "Principal": {
 "Service": ["delivery.logs.amazonaws.com"]
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": ["0123456789"]
 },
 "ArnLike": {
 "aws:SourceArn": ["arn:aws:logs:us-east-1:0123456789:delivery-source:*"]
 }
 }
}

For aws:SourceAccount, specify the list of account IDS for which logs are being delivered to this
bucket. For aws:SourceArn, specify the list of ARNs of the resource that generates the logs, in the
form arn:aws:logs:source-region:source-account-id:*.

Logs sent to Amazon S3 385

Amazon CloudWatch Logs User Guide

Logs sent to Firehose

User permissions

To enable sending logs to Firehose, you must be signed in with the following permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadWriteAccessForLogDeliveryActions",
 "Effect": "Allow",
 "Action": [
 "logs:GetDelivery",
 "logs:GetDeliverySource",
 "logs:PutDeliveryDestination",
 "logs:GetDeliveryDestinationPolicy",
 "logs:DeleteDeliverySource",
 "logs:PutDeliveryDestinationPolicy",
 "logs:CreateDelivery",
 "logs:GetDeliveryDestination",
 "logs:PutDeliverySource",
 "logs:DeleteDeliveryDestination",
 "logs:DeleteDeliveryDestinationPolicy",
 "logs:DeleteDelivery"
],
 "Resource": [
 "arn:aws:logs:region:account-id:delivery:*",
 "arn:aws:logs:region:account-id:delivery-source:*",
 "arn:aws:logs:region:account-id:delivery-destination:*"
]
 },
 {
 "Sid": "ListAccessForLogDeliveryActions",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeDeliveryDestinations",
 "logs:DescribeDeliverySources",
 "logs:DescribeDeliveries"
],
 "Resource": "*"
 },
 {

Logs sent to Firehose 386

Amazon CloudWatch Logs User Guide

 "Sid": "AllowUpdatesToResourcePolicyFH",
 "Effect": "Allow",
 "Action": [
 "firehose:TagDeliveryStream"
],
 "Resource": [
 "arn:aws:firehose:region:account-id:deliverystream/*"
]
 },
 {
 "Sid": "CreateServiceLinkedRole",
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole"
],
 "Resource": "arn:aws:iam::account-id:role/aws-service-role/
delivery.logs.amazonaws.com/AWSServiceRoleForLogDelivery"
 }
]
}

IAM roles used for resource permissions

Because Firehose does not use resource policies, AWS uses IAM roles when setting up these logs to
be sent to Firehose. AWS creates a service-linked role named AWSServiceRoleForLogDelivery. This
service-linked role includes the following permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "firehose:PutRecord",
 "firehose:PutRecordBatch",
 "firehose:ListTagsForDeliveryStream"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/LogDeliveryEnabled": "true"
 }
 },
 "Effect": "Allow"

Logs sent to Firehose 387

Amazon CloudWatch Logs User Guide

 }
]
}

This service-linked role grants permission for all Firehose delivery streams that have the
LogDeliveryEnabled tag set to true. AWS gives this tag to the destination delivery stream
when you set up the logging.

This service-linked role also has a trust policy that allows the delivery.logs.amazonaws.com
service principal to assume the needed service-linked role. That trust policy is as follows:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "delivery.logs.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Service-specific permissions

In addition to the destination-specific permissions listed in the previous sections, some services
require explicit authorization that customers are allowed to send logs from their resources, as an
additional layer of security. It authorizes the AllowVendedLogDeliveryForResource action
for resources that vend logs within that service. For these services, use the following policy and
replace service and resource-type with the appropriate values. For the service-specific values
for these fields, see those services' documentation page for vended logs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ServiceLevelAccessForLogDelivery",
 "Effect": "Allow",
 "Action": [
 "service:AllowVendedLogDeliveryForResource"

Service-specific permissions 388

Amazon CloudWatch Logs User Guide

],
 "Resource": "arn:aws:service:region:account-id:resource-type/*"
 }
]
}

Console-specific permissions

In addition to the permissions listed in the previous sections, if you are setting up log delivery using
the console instead of the APIs, you also need the following additional permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowLogDeliveryActionsConsoleCWL",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-east-1:372963383570:log-group:*"
]
 },
 {
 "Sid": "AllowLogDeliveryActionsConsoleS3",
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets",
 "s3:ListBucket",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::*"
]
 },
 {
 "Sid": "AllowLogDeliveryActionsConsoleFH",
 "Effect": "Allow",
 "Action": [
 "firehose:ListDeliveryStreams",
 "firehose:DescribeDeliveryStream"
],

Console-specific permissions 389

Amazon CloudWatch Logs User Guide

 "Resource": [
 "*"
]
 }
]
}

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource policies to limit the permissions that CloudWatch Logs and Amazon S3 give
to the services that are generating logs. If you use both global condition context keys, the
aws:SourceAccount value and the account in the aws:SourceArn value must use the same
account ID when used in the same policy statement.

The values of aws:SourceArn must be the ARNs of the delivery sources that are generating logs.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you are specifying multiple resources, use the aws:SourceArn
global context condition key with wildcards (*) for the unknown portions of the ARN.

The policies in the previous sections of this page show how you can use the aws:SourceArn and
aws:SourceAccount global condition context keys to prevent the confused deputy problem.

CloudWatch Logs updates to AWS managed policies

View details about updates to AWS managed policies for CloudWatch Logs since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the CloudWatch Logs Document history page.

Cross-service confused deputy prevention 390

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

Amazon CloudWatch Logs User Guide

Change Description Date

AWSServiceRoleForL
ogDelivery service-linked role
policy – Update to an existing
policy

CloudWatch Logs changed
the permissions in the
IAM policy associated with
the AWSServiceRoleForL
ogDelivery service-linked
role. The following change
was made:

• The firehose:
ResourceTag/LogDel
iveryEnabled":
"true" condition key was
changed to aws:Resou
rceTag/LogDelivery
Enabled": "true" .

July 15, 2021

CloudWatch Logs started
tracking changes

CloudWatch Logs started
tracking changes for its AWS
managed policies.

June 10, 2021

Policy updates 391

Amazon CloudWatch Logs User Guide

Exporting log data to Amazon S3

Export log data from your log groups to an Amazon S3 bucket and use this data in custom
processing and analysis, or to load onto other systems. You can export to a bucket in the same
account or a different account.

You can do the following:

• Export log data to S3 buckets that are encrypted by SSE-KMS in AWS Key Management Service
(AWS KMS)

• Export log data to S3 buckets that have S3 Object Lock enabled with a retention period

Note

Export to Amazon S3 is supported only for log groups in the Standard log class. For more
information about log classes, see Log classes.

To begin the export process, you must create an S3 bucket to store the exported log data. You can
store the exported files in your S3 bucket and define Amazon S3 lifecycle rules to archive or delete
exported files automatically.

You can export to S3 buckets that are encrypted with AES-256 or with SSE-KMS. Exporting to
buckets encrypted with DSSE-KMS is not supported.

You can export logs from multiple log groups or multiple time ranges to the same S3 bucket. To
separate log data for each export task, you can specify a prefix that will be used as the Amazon S3
key prefix for all exported objects.

Note

Time-based sorting on chunks of log data inside an exported file is not guaranteed. You can
sort the exported log field data by using Linux utilities. For example, the following utility
command sorts the events in all .gz files in a single folder.

find . -exec zcat {} + | sed -r 's/^[0-9]+/\x0&/' | sort -z

The following utility command sorts .gz files from multiple subfolders.

392

Amazon CloudWatch Logs User Guide

find ./*/ -type f -exec zcat {} + | sed -r 's/^[0-9]+/\x0&/' | sort -z

Additionally, you can use another stdout command to pipe the sorted output to another
file to save it.

Log data can take up to 12 hours to become available for export. Export tasks time out after 24
hours. If your export tasks are timing out, reduce the time range when you create the export task.

For near real-time analysis of log data, see Analyzing log data with CloudWatch Logs Insights or
Real-time processing of log data with subscriptions instead.

Contents

• Concepts

• Export log data to Amazon S3 using the console

• Export log data to Amazon S3 using the AWS CLI

• Describe export tasks

• Cancel an export task

Concepts

Before you begin, become familiar with the following export concepts:

log group name

The name of the log group associated with an export task. The log data in this log group will be
exported to the specified S3 bucket.

from (timestamp)

A required timestamp expressed as the number of milliseconds since Jan 1, 1970 00:00:00 UTC.
All log events in the log group that were ingested on or after this time will be exported.

to (timestamp)

A required timestamp expressed as the number of milliseconds since Jan 1, 1970 00:00:00 UTC.
All log events in the log group that were ingested before this time will be exported.

Concepts 393

Amazon CloudWatch Logs User Guide

destination bucket

The name of the S3 bucket associated with an export task. This bucket is used to export the log
data from the specified log group.

destination prefix

An optional attribute that is used as the Amazon S3 key prefix for all exported objects. This
helps create a folder-like organization in your bucket.

Export log data to Amazon S3 using the console

In the following examples, you use the Amazon CloudWatch console to export all data from an
Amazon CloudWatch Logs log group named my-log-group to an Amazon S3 bucket named my-
exported-logs.

Exporting log data to S3 buckets that are encrypted by SSE-KMS is supported. Exporting to buckets
encrypted with DSSE-KMS is not supported.

The details of how you set up the export depends on whether the Amazon S3 bucket that you want
to export to is in the same account as your logs that are being exported, or in a different account.

Topics

• Same-account export

• Cross-account export

Same-account export

If the Amazon S3 bucket is in the same account as the logs that are being exported, use the
instructions in this section.

Topics

• Step 1: Create an Amazon S3 bucket

• Step 2: Set up access permissions

• Step 3: Set permissions on an S3 bucket

• (Optional) Step 4: Exporting to a bucket encrypted with SSE-KMS

• Step 5: Create an export task

Export log data to Amazon S3 using the console 394

Amazon CloudWatch Logs User Guide

Step 1: Create an Amazon S3 bucket

We recommend that you use a bucket that was created specifically for CloudWatch Logs. However,
if you want to use an existing bucket, you can skip to step 2.

Note

The S3 bucket must reside in the same Region as the log data to export. CloudWatch Logs
doesn't support exporting data to S3 buckets in a different Region.

To create an S3 bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. If necessary, change the Region. From the navigation bar, choose the Region where your
CloudWatch Logs reside.

3. Choose Create Bucket.

4. For Bucket Name, enter a name for the bucket.

5. For Region, select the Region where your CloudWatch Logs data resides.

6. Choose Create.

Step 2: Set up access permissions

To create the export task in step 5, you'll need to be signed on with the
AmazonS3ReadOnlyAccess IAM role and with the following permissions:

• logs:CreateExportTask

• logs:CancelExportTask

• logs:DescribeExportTasks

• logs:DescribeLogStreams

• logs:DescribeLogGroups

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Same-account export 395

https://console.aws.amazon.com/s3/

Amazon CloudWatch Logs User Guide

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Step 3: Set permissions on an S3 bucket

By default, all S3 buckets and objects are private. Only the resource owner, the AWS account that
created the bucket, can access the bucket and any objects that it contains. However, the resource
owner can choose to grant access permissions to other resources and users by writing an access
policy.

When you set the policy, we recommend that you include a randomly generated string as the prefix
for the bucket, so that only intended log streams are exported to the bucket.

Important

To make exports to S3 buckets more secure, we now require you to specify the list of source
accounts that are allowed to export log data to your S3 bucket.
In the following example, the list of account IDs in the aws:SourceAccount key
would be the accounts from which a user can export log data to your S3 bucket. The
aws:SourceArn key would be the resource for which the action is being taken. You may
restrict this to a specific log group, or use a wildcard as shown in this example.
We recommend that you also include the account ID of the account where the S3 bucket is
created, to allow export within the same account.

To set permissions on an Amazon S3 bucket

1. In the Amazon S3 console, choose the bucket that you created in step 1.

Same-account export 396

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon CloudWatch Logs User Guide

2. Choose Permissions, Bucket policy.

3. In the Bucket Policy Editor, add the following policy. Change my-exported-logs to the
name of your S3 bucket. Be sure to specify the correct Region endpoint, such as us-west-1,
for Principal.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "s3:GetBucketAcl",
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::my-exported-logs",
 "Principal": { "Service": "logs.Region.amazonaws.com" },
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": [
 "AccountId1",
 "AccountId2",
 ...
]
 },
 "ArnLike": {
 "aws:SourceArn": [
 "arn:aws:logs:Region:AccountId1:log-group:*",
 "arn:aws:logs:Region:AccountId2:log-group:*",
 ...
]
 }
 }
 },
 {
 "Action": "s3:PutObject" ,
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::my-exported-logs/*",
 "Principal": { "Service": "logs.Region.amazonaws.com" },
 "Condition": {
 "StringEquals": {
 "s3:x-amz-acl": "bucket-owner-full-control",
 "aws:SourceAccount": [
 "AccountId1",
 "AccountId2",
 ...
]

Same-account export 397

Amazon CloudWatch Logs User Guide

 },
 "ArnLike": {
 "aws:SourceArn": [
 "arn:aws:logs:Region:AccountId1:log-group:*",
 "arn:aws:logs:Region:AccountId2:log-group:*",
 ...
]
 }
 }
 }
]
}

4. Choose Save to set the policy that you just added as the access policy on your bucket. This
policy enables CloudWatch Logs to export log data to your S3 bucket. The bucket owner has
full permissions on all of the exported objects.

Warning

If the existing bucket already has one or more policies attached to it, add the
statements for CloudWatch Logs access to that policy or policies. We recommend that
you evaluate the resulting set of permissions to be sure that they're appropriate for the
users who will access the bucket.

(Optional) Step 4: Exporting to a bucket encrypted with SSE-KMS

This step is necessary only if you are exporting to an S3 bucket that uses server-side encryption
with AWS KMS keys. This encryption is known as SSE-KMS.

To export to a bucket encrypted with SSE-KMS

1. Open the AWS KMS console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. In the left navigation bar, choose Customer managed keys.

Choose Create Key.

4. For Key type, choose Symmetric.

5. For Key usage, choose Encrypt and decrypt and then choose Next.

Same-account export 398

https://console.aws.amazon.com/kms

Amazon CloudWatch Logs User Guide

6. Under Add labels, enter an alias for the key and optionally add a description or tags. Then
choose Next.

7. Under Key administrators, select who can administer this key, and then choose Next.

8. Under Define key usage permissions, make no changes and choose Next.

9. Review the settings and choose Finish.

10. Back at the Customer managed keys page, choose the name of the key that you just created.

11. Choose the Key policy tab and choose Switch to policy view.

12. In the Key policy section, choose Edit.

13. Add the following statement to the key policy statement list. When you do, replace Region
with the Region of your logs and replace account-ARN with the ARN of the account that owns
the KMS key.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow CWL Service Principal usage",
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.Region.amazonaws.com"
 },
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "*"
 },
 {
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "account-ARN"
 },
 "Action": [
 "kms:GetKeyPolicy*",
 "kms:PutKeyPolicy*",
 "kms:DescribeKey*",
 "kms:CreateAlias*",
 "kms:ScheduleKeyDeletion*",
 "kms:Decrypt"

Same-account export 399

Amazon CloudWatch Logs User Guide

],
 "Resource": "*"
 }
]
}

14. Choose Save changes.

15. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

16. Find the bucket that you created in Step 1: Create an S3 bucket and choose the bucket name.

17. Choose the Properties tab. Then, under Default Encryption, choose Edit.

18. Under Server-side Encryption, choose Enable.

19. Under Encryption type, choose AWS Key Management Service key (SSE-KMS).

20. Choose Choose from your AWS KMS keys and find the key that you created.

21. For Bucket key, choose Enable.

22. Choose Save changes.

Step 5: Create an export task

In this step, you create the export task for exporting logs from a log group.

To export data to Amazon S3 using the CloudWatch console

1. Sign in with sufficient permissions as documented in Step 2: Set up access permissions.

2. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

3. In the navigation pane, choose Log groups.

4. On the Log Groups screen, choose the name of the log group.

5. Choose Actions, Export data to Amazon S3.

6. On the Export data to Amazon S3 screen, under Define data export, set the time range for
the data to export using From and To.

7. If your log group has multiple log streams, you can provide a log stream prefix to limit the log
group data to a specific stream. Choose Advanced, and then for Stream prefix, enter the log
stream prefix.

8. Under Choose S3 bucket, choose the account associated with the S3 bucket.

9. For S3 bucket name, choose an S3 bucket.

Same-account export 400

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

10. For S3 Bucket prefix, enter the randomly generated string that you specified in the bucket
policy.

11. Choose Export to export your log data to Amazon S3.

12. To view the status of the log data that you exported to Amazon S3, choose Actions and then
View all exports to Amazon S3.

Cross-account export

If the Amazon S3 bucket is in a different account than the logs that are being exported, use the
instructions in this section.

Topics

• Step 1: Create an Amazon S3 bucket

• Step 2: Set up access permissions

• Step 3: Set permissions on an S3 bucket

• (Optional) Step 4: Exporting to a bucket encrypted with SSE-KMS

• Step 5: Create an export task

Step 1: Create an Amazon S3 bucket

We recommend that you use a bucket that was created specifically for CloudWatch Logs. However,
if you want to use an existing bucket, you can skip to step 2.

Note

The S3 bucket must reside in the same Region as the log data to export. CloudWatch Logs
doesn't support exporting data to S3 buckets in a different Region.

To create an S3 bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. If necessary, change the Region. From the navigation bar, choose the Region where your
CloudWatch Logs reside.

3. Choose Create Bucket.

4. For Bucket Name, enter a name for the bucket.

Cross-account export 401

https://console.aws.amazon.com/s3/

Amazon CloudWatch Logs User Guide

5. For Region, select the Region where your CloudWatch Logs data resides.

6. Choose Create.

Step 2: Set up access permissions

First, you must create a new IAM policy to enable CloudWatch Logs to have the s3:PutObject
permission for the destination Amazon S3 bucket in the destination account.

The policy that you create depends on whether the destination bucket uses AWS KMS encryption.

To create an IAM policy to export logs to an Amazon S3 bucket

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

3. Choose Create policy.

4. In the Policy editor section, choose JSON.

5. If the destination bucket does not use AWS KMS encryption, paste the following policy into the
editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::my-exported-logs/*"
 }
]
}

If the destination bucket does use AWS KMS encryption, paste the following policy into the
editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:PutObject",

Cross-account export 402

https://console.aws.amazon.com/iam/

Amazon CloudWatch Logs User Guide

 "Resource": "arn:aws:s3:::my-exported-logs/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "ARN_OF_KMS_KEY"
 }
]
}

6. Choose Next.

7. Enter a policy name. You will use this name to attach the policy to your IAM role.

8. Choose Create policy to save the new policy.

To create the export task in step 5, you'll need to be signed on with the
AmazonS3ReadOnlyAccess IAM role. You must also be signed on with the IAM policy that you
just created, and also with the following permissions:

• logs:CreateExportTask

• logs:CancelExportTask

• logs:DescribeExportTasks

• logs:DescribeLogStreams

• logs:DescribeLogGroups

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

Cross-account export 403

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html

Amazon CloudWatch Logs User Guide

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Step 3: Set permissions on an S3 bucket

By default, all S3 buckets and objects are private. Only the resource owner, the AWS account that
created the bucket, can access the bucket and any objects that it contains. However, the resource
owner can choose to grant access permissions to other resources and users by writing an access
policy.

When you set the policy, we recommend that you include a randomly generated string as the prefix
for the bucket, so that only intended log streams are exported to the bucket.

Important

To make exports to S3 buckets more secure, we now require you to specify the list of source
accounts that are allowed to export log data to your S3 bucket.
In the following example, the list of account IDs in the aws:SourceAccount key
would be the accounts from which a user can export log data to your S3 bucket. The
aws:SourceArn key would be the resource for which the action is being taken. You may
restrict this to a specific log group, or use a wildcard as shown in this example.
We recommend that you also include the account ID of the account where the S3 bucket is
created, to allow export within the same account.

To set permissions on an Amazon S3 bucket

1. In the Amazon S3 console, choose the bucket that you created in step 1.

2. Choose Permissions, Bucket policy.

3. In the Bucket Policy Editor, add the following policy. Change my-exported-logs to the
name of your S3 bucket. Be sure to specify the correct Region endpoint, such as us-west-1,
for Principal.

{
 "Version": "2012-10-17",

Cross-account export 404

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon CloudWatch Logs User Guide

 "Statement": [
 {
 "Action": "s3:GetBucketAcl",
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::my-exported-logs",
 "Principal": { "Service": "logs.Region.amazonaws.com" },
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": [
 "AccountId1",
 "AccountId2",
 ...
]
 },
 "ArnLike": {
 "aws:SourceArn": [
 "arn:aws:logs:Region:AccountId1:log-group:*",
 "arn:aws:logs:Region:AccountId2:log-group:*",
 ...
]
 }
 }
 },
 {
 "Action": "s3:PutObject" ,
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::my-exported-logs/*",
 "Principal": { "Service": "logs.Region.amazonaws.com" },
 "Condition": {
 "StringEquals": {
 "s3:x-amz-acl": "bucket-owner-full-control",
 "aws:SourceAccount": [
 "AccountId1",
 "AccountId2",
 ...
]
 },
 "ArnLike": {
 "aws:SourceArn": [
 "arn:aws:logs:Region:AccountId1:log-group:*",
 "arn:aws:logs:Region:AccountId2:log-group:*",
 ...
]
 }

Cross-account export 405

Amazon CloudWatch Logs User Guide

 }
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::create_export_task_caller_account:role/role_name"
 },
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::my-exported-logs/*",
 "Condition": {
 "StringEquals": {
 "s3:x-amz-acl": "bucket-owner-full-control"
 }
 }
 }
]
}

4. Choose Save to set the policy that you just added as the access policy on your bucket. This
policy enables CloudWatch Logs to export log data to your S3 bucket. The bucket owner has
full permissions on all of the exported objects.

Warning

If the existing bucket already has one or more policies attached to it, add the
statements for CloudWatch Logs access to that policy or policies. We recommend that
you evaluate the resulting set of permissions to be sure that they're appropriate for the
users who will access the bucket.

(Optional) Step 4: Exporting to a bucket encrypted with SSE-KMS

This step is necessary only if you are exporting to an S3 bucket that uses server-side encryption
with AWS KMS keys. This encryption is known as SSE-KMS.

To export to a bucket encrypted with SSE-KMS

1. Open the AWS KMS console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. In the left navigation bar, choose Customer managed keys.

Cross-account export 406

https://console.aws.amazon.com/kms

Amazon CloudWatch Logs User Guide

Choose Create Key.

4. For Key type, choose Symmetric.

5. For Key usage, choose Encrypt and decrypt and then choose Next.

6. Under Add labels, enter an alias for the key and optionally add a description or tags. Then
choose Next.

7. Under Key administrators, select who can administer this key, and then choose Next.

8. Under Define key usage permissions, make no changes and choose Next.

9. Review the settings and choose Finish.

10. Back at the Customer managed keys page, choose the name of the key that you just created.

11. Choose the Key policy tab and choose Switch to policy view.

12. In the Key policy section, choose Edit.

13. Add the following statement to the key policy statement list. When you do, replace Region
with the Region of your logs and replace account-ARN with the ARN of the account that owns
the KMS key.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow CWL Service Principal usage",
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.Region.amazonaws.com"
 },
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "*"
 },
 {
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "account-ARN"
 },
 "Action": [
 "kms:GetKeyPolicy*",

Cross-account export 407

Amazon CloudWatch Logs User Guide

 "kms:PutKeyPolicy*",
 "kms:DescribeKey*",
 "kms:CreateAlias*",
 "kms:ScheduleKeyDeletion*",
 "kms:Decrypt"
],
 "Resource": "*"
 },
 {
 "Sid": "Enable IAM Role Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS":
 "arn:aws:iam::create_export_task_caller_account:role/role_name"
 },
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "ARN_OF_KMS_KEY"
 }
]
}

14. Choose Save changes.

15. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

16. Find the bucket that you created in Step 1: Create an S3 bucket and choose the bucket name.

17. Choose the Properties tab. Then, under Default Encryption, choose Edit.

18. Under Server-side Encryption, choose Enable.

19. Under Encryption type, choose AWS Key Management Service key (SSE-KMS).

20. Choose Choose from your AWS KMS keys and find the key that you created.

21. For Bucket key, choose Enable.

22. Choose Save changes.

Step 5: Create an export task

In this step, you create the export task for exporting logs from a log group.

Cross-account export 408

https://console.aws.amazon.com/s3/

Amazon CloudWatch Logs User Guide

To export data to Amazon S3 using the CloudWatch console

1. Sign in with sufficient permissions as documented in Step 2: Set up access permissions.

2. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

3. In the navigation pane, choose Log groups.

4. On the Log Groups screen, choose the name of the log group.

5. Choose Actions, Export data to Amazon S3.

6. On the Export data to Amazon S3 screen, under Define data export, set the time range for
the data to export using From and To.

7. If your log group has multiple log streams, you can provide a log stream prefix to limit the log
group data to a specific stream. Choose Advanced, and then for Stream prefix, enter the log
stream prefix.

8. Under Choose S3 bucket, choose the account associated with the S3 bucket.

9. For S3 bucket name, choose an S3 bucket.

10. For S3 Bucket prefix, enter the randomly generated string that you specified in the bucket
policy.

11. Choose Export to export your log data to Amazon S3.

12. To view the status of the log data that you exported to Amazon S3, choose Actions and then
View all exports to Amazon S3.

Export log data to Amazon S3 using the AWS CLI

In the following example, you use an export task to export all data from a CloudWatch Logs log
group named my-log-group to an Amazon S3 bucket named my-exported-logs. This example
assumes that you have already created a log group called my-log-group.

Exporting log data to S3 buckets that are encrypted by AWS KMS is supported. Exporting to
buckets encrypted with DSSE-KMS is not supported.

The details of how you set up the export depends on whether the Amazon S3 bucket that you want
to export to is in the same account as your logs that are being exported, or in a different account.

Topics

• Same-account export

Export log data to Amazon S3 using the AWS CLI 409

https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

• Cross-account export

Same-account export

If the Amazon S3 bucket is in the same account as the logs that are being exported, use the
instructions in this section.

Topics

• Step 1: Create an S3 bucket

• Step 2: Set up access permissions

• Step 3: Set permissions on an S3 bucket

• (Optional) Step 4: Exporting to a bucket encrypted with SSE-KMS

• Step 5: Create an export task

Step 1: Create an S3 bucket

We recommend that you use a bucket that was created specifically for CloudWatch Logs. However,
if you want to use an existing bucket, you can skip to step 2.

Note

The S3 bucket must reside in the same Region as the log data to export. CloudWatch Logs
doesn't support exporting data to S3 buckets in a different Region.

To create an S3 bucket using the AWS CLI

At a command prompt, run the following create-bucket command, where LocationConstraint
is the Region where you are exporting log data.

aws s3api create-bucket --bucket my-exported-logs --create-bucket-configuration
 LocationConstraint=us-east-2

The following is example output.

{

Same-account export 410

https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html

Amazon CloudWatch Logs User Guide

 "Location": "/my-exported-logs"
}

Step 2: Set up access permissions

To create the export task in step 5, you'll need to be signed on with the
AmazonS3ReadOnlyAccess IAM role and with the following permissions:

• logs:CreateExportTask

• logs:CancelExportTask

• logs:DescribeExportTasks

• logs:DescribeLogStreams

• logs:DescribeLogGroups

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Step 3: Set permissions on an S3 bucket

By default, all S3 buckets and objects are private. Only the resource owner, the account that
created the bucket, can access the bucket and any objects that it contains. However, the resource
owner can choose to grant access permissions to other resources and users by writing an access
policy.

Same-account export 411

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon CloudWatch Logs User Guide

Important

To make exports to S3 buckets more secure, we now require you to specify the list of source
accounts that are allowed to export log data to your S3 bucket.
In the following example, the list of account IDs in the aws:SourceAccount key
would be the accounts from which a user can export log data to your S3 bucket. The
aws:SourceArn key would be the resource for which the action is being taken. You may
restrict this to a specific log group, or use a wildcard as shown in this example.
We recommend that you also include the account ID of the account where the S3 bucket is
created, to allow export within the same account.

To set permissions on an S3 bucket

1. Create a file named policy.json and add the following access policy, changing my-
exported-logs to the name of your S3 bucket and Principal to the endpoint of the
Region where you are exporting log data, such as us-west-1. Use a text editor to create this
policy file. Don't use the IAM console.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "s3:GetBucketAcl",
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::my-exported-logs",
 "Principal": { "Service": "logs.Region.amazonaws.com" },
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": [
 "AccountId1",
 "AccountId2",
 ...
]
 },
 "ArnLike": {
 "aws:SourceArn": [
 "arn:aws:logs:Region:AccountId1:log-group:*",
 "arn:aws:logs:Region:AccountId2:log-group:*",
 ...

Same-account export 412

Amazon CloudWatch Logs User Guide

]
 }
 }
 },
 {
 "Action": "s3:PutObject" ,
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::my-exported-logs/*",
 "Principal": { "Service": "logs.Region.amazonaws.com" },
 "Condition": {
 "StringEquals": {
 "s3:x-amz-acl": "bucket-owner-full-control",
 "aws:SourceAccount": [
 "AccountId1",
 "AccountId2",
 ...
]
 },
 "ArnLike": {
 "aws:SourceArn": [
 "arn:aws:logs:Region:AccountId1:log-group:*",
 "arn:aws:logs:Region:AccountId2:log-group:*",
 ...
]
 }
 }
 }
]
}

2. Set the policy that you just added as the access policy on your bucket by using the put-bucket-
policy command. This policy enables CloudWatch Logs to export log data to your S3 bucket.
The bucket owner will have full permissions on all of the exported objects.

aws s3api put-bucket-policy --bucket my-exported-logs --policy file://policy.json

Warning

If the existing bucket already has one or more policies attached to it, add the
statements for CloudWatch Logs access to that policy or policies. We recommend that

Same-account export 413

https://docs.aws.amazon.com/cli/latest/reference/s3api/put-bucket-policy.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/put-bucket-policy.html

Amazon CloudWatch Logs User Guide

you evaluate the resulting set of permissions to be sure that they're appropriate for the
users who will access the bucket.

(Optional) Step 4: Exporting to a bucket encrypted with SSE-KMS

This step is necessary only if you are exporting to an S3 bucket that uses server-side encryption
with AWS KMS keys. This encryption is known as SSE-KMS.

To export to a bucket encrypted with SSE-KMS

1. Use a text editor to create a file named key_policy.json and add the following access
policy. When you add the policy, make the following changes:

• Replace Region with the Region of your logs.

• Replace account-ARN with the ARN of the account that owns the KMS key.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow CWL Service Principal usage",
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.Region.amazonaws.com"
 },
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "*"
 },
 {
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "account-ARN"
 },
 "Action": [
 "kms:GetKeyPolicy*",
 "kms:PutKeyPolicy*",

Same-account export 414

Amazon CloudWatch Logs User Guide

 "kms:DescribeKey*",
 "kms:CreateAlias*",
 "kms:ScheduleKeyDeletion*",
 "kms:Decrypt"
],
 "Resource": "*"
 }
]
}

2. Enter the following command:

aws kms create-key --policy file://key_policy.json

The following is example output from this command:

{
 "KeyMetadata": {
 "AWSAccountId": "account_id",
 "KeyId": "key_id",
 "Arn": "arn:aws:kms:us-east-2:account_id:key/key_id",
 "CreationDate": "time",
 "Enabled": true,
 "Description": "",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "KeyState": "Enabled",
 "Origin": "AWS_KMS",
 "KeyManager": "CUSTOMER",
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "KeySpec": "SYMMETRIC_DEFAULT",
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
],
 "MultiRegion": false
 }

3. Use a text editor to create a file called bucketencryption.json with the following
contents.

{
 "Rules": [
 {

Same-account export 415

Amazon CloudWatch Logs User Guide

 "ApplyServerSideEncryptionByDefault": {
 "SSEAlgorithm": "aws:kms",
 "KMSMasterKeyID": "{KMS Key ARN}"
 },
 "BucketKeyEnabled": true
 }
]
}

4. Enter the following command, replacing bucket-name with the name of the bucket that you
are exporting logs to.

aws s3api put-bucket-encryption --bucket bucket-name --server-side-encryption-
configuration file://bucketencryption.json

If the command doesn't return an error, the process is successful.

Step 5: Create an export task

Use the following command to create the export task. After you create it, the export task might
take anywhere from a few seconds to a few hours, depending on the size of the data to export.

To export data to Amazon S3 using the AWS CLI

1. Sign in with sufficient permissions as documented in Step 2: Set up access permissions.

2. At a command prompt, use the following create-export-task command to create the export
task.

aws logs create-export-task --profile CWLExportUser --task-name "my-log-
group-09-10-2015" --log-group-name "my-log-group" --from 1441490400000 --
to 1441494000000 --destination "my-exported-logs" --destination-prefix "export-
task-output"

The following is example output.

{
 "taskId": "cda45419-90ea-4db5-9833-aade86253e66"
}

Same-account export 416

https://docs.aws.amazon.com/cli/latest/reference/logs/create-export-task.html

Amazon CloudWatch Logs User Guide

Cross-account export

If the Amazon S3 bucket is in a different account than the logs that are being exported, use the
instructions in this section.

Topics

• Step 1: Create an S3 bucket

• Step 2: Set up access permissions

• Step 3: Set permissions on an S3 bucket

• (Optional) Step 4: Exporting to a bucket encrypted with SSE-KMS

• Step 5: Create an export task

Step 1: Create an S3 bucket

We recommend that you use a bucket that was created specifically for CloudWatch Logs. However,
if you want to use an existing bucket, you can skip to step 2.

Note

The S3 bucket must reside in the same Region as the log data to export. CloudWatch Logs
doesn't support exporting data to S3 buckets in a different Region.

To create an S3 bucket using the AWS CLI

At a command prompt, run the following create-bucket command, where LocationConstraint
is the Region where you are exporting log data.

aws s3api create-bucket --bucket my-exported-logs --create-bucket-configuration
 LocationConstraint=us-east-2

The following is example output.

{
 "Location": "/my-exported-logs"
}

Cross-account export 417

https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html

Amazon CloudWatch Logs User Guide

Step 2: Set up access permissions

First, you must create a new IAM policy to enable CloudWatch Logs to have the s3:PutObject
permission for the destination Amazon S3 bucket.

To create the export task in step 5, you'll need to be signed on with the
AmazonS3ReadOnlyAccess IAM role and with certain other permissions. You can create a policy
that contains some of these other necessary permissions.

The policy that you create depends on whether the destination bucket uses AWS KMS encryption. If
it does not use AWS KMS encryption, create a policy with the following contents.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::my-exported-logs/*"
 }
]
}

If the destination bucket uses AWS KMS encryption, create a policy with the following contents.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::my-exported-logs/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "ARN_OF_KMS_KEY"
 }
]
}

Cross-account export 418

Amazon CloudWatch Logs User Guide

To create the export task in step 5, you must be signed on with the AmazonS3ReadOnlyAccess
IAM role, the IAM policy that you just created, and also with the following permissions:

• logs:CreateExportTask

• logs:CancelExportTask

• logs:DescribeExportTasks

• logs:DescribeLogStreams

• logs:DescribeLogGroups

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Step 3: Set permissions on an S3 bucket

By default, all S3 buckets and objects are private. Only the resource owner, the account that
created the bucket, can access the bucket and any objects that it contains. However, the resource
owner can choose to grant access permissions to other resources and users by writing an access
policy.

Important

To make exports to S3 buckets more secure, we now require you to specify the list of source
accounts that are allowed to export log data to your S3 bucket.

Cross-account export 419

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon CloudWatch Logs User Guide

In the following example, the list of account IDs in the aws:SourceAccount key
would be the accounts from which a user can export log data to your S3 bucket. The
aws:SourceArn key would be the resource for which the action is being taken. You may
restrict this to a specific log group, or use a wildcard as shown in this example.
We recommend that you also include the account ID of the account where the S3 bucket is
created, to allow export within the same account.

To set permissions on an S3 bucket

1. Create a file named policy.json and add the following access policy, changing my-
exported-logs to the name of your S3 bucket and Principal to the endpoint of the
Region where you are exporting log data, such as us-west-1. Use a text editor to create this
policy file. Don't use the IAM console.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "s3:GetBucketAcl",
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::my-exported-logs",
 "Principal": { "Service": "logs.Region.amazonaws.com" },
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": [
 "AccountId1",
 "AccountId2",
 ...
]
 },
 "ArnLike": {
 "aws:SourceArn": [
 "arn:aws:logs:Region:AccountId1:log-group:*",
 "arn:aws:logs:Region:AccountId2:log-group:*",
 ...
]
 }
 }
 },

Cross-account export 420

Amazon CloudWatch Logs User Guide

 {
 "Action": "s3:PutObject" ,
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::my-exported-logs/*",
 "Principal": { "Service": "logs.Region.amazonaws.com" },
 "Condition": {
 "StringEquals": {
 "s3:x-amz-acl": "bucket-owner-full-control",
 "aws:SourceAccount": [
 "AccountId1",
 "AccountId2",
 ...
]
 },
 "ArnLike": {
 "aws:SourceArn": [
 "arn:aws:logs:Region:AccountId1:log-group:*",
 "arn:aws:logs:Region:AccountId2:log-group:*",
 ...
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::create_export_task_caller_account:role/role_name"
 },
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::my-exported-logs/*",
 "Condition": {
 "StringEquals": {
 "s3:x-amz-acl": "bucket-owner-full-control"
 }
 }
 }
]
}

2. Set the policy that you just added as the access policy on your bucket by using the put-bucket-
policy command. This policy enables CloudWatch Logs to export log data to your S3 bucket.
The bucket owner will have full permissions on all of the exported objects.

Cross-account export 421

https://docs.aws.amazon.com/cli/latest/reference/s3api/put-bucket-policy.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/put-bucket-policy.html

Amazon CloudWatch Logs User Guide

aws s3api put-bucket-policy --bucket my-exported-logs --policy file://policy.json

Warning

If the existing bucket already has one or more policies attached to it, add the
statements for CloudWatch Logs access to that policy or policies. We recommend that
you evaluate the resulting set of permissions to be sure that they're appropriate for the
users who will access the bucket.

(Optional) Step 4: Exporting to a bucket encrypted with SSE-KMS

This step is necessary only if you are exporting to an S3 bucket that uses server-side encryption
with AWS KMS keys. This encryption is known as SSE-KMS.

To export to a bucket encrypted with SSE-KMS

1. Use a text editor to create a file named key_policy.json and add the following access
policy. When you add the policy, make the following changes:

• Replace Region with the Region of your logs.

• Replace account-ARN with the ARN of the account that owns the KMS key.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow CWL Service Principal usage",
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.Region.amazonaws.com"
 },
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "*"
 },

Cross-account export 422

Amazon CloudWatch Logs User Guide

 {
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "account-ARN"
 },
 "Action": [
 "kms:GetKeyPolicy*",
 "kms:PutKeyPolicy*",
 "kms:DescribeKey*",
 "kms:CreateAlias*",
 "kms:ScheduleKeyDeletion*",
 "kms:Decrypt"
],
 "Resource": "*"
 },
 {
 "Sid": "Enable IAM Role Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS":
 "arn:aws:iam::create_export_task_caller_account:role/role_name"
 },
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "ARN_OF_KMS_KEY"
 }
]
}

2. Enter the following command:

aws kms create-key --policy file://key_policy.json

The following is example output from this command:

{
 "KeyMetadata": {
 "AWSAccountId": "account_id",
 "KeyId": "key_id",
 "Arn": "arn:aws:kms:us-east-2:account_id:key/key_id",

Cross-account export 423

Amazon CloudWatch Logs User Guide

 "CreationDate": "time",
 "Enabled": true,
 "Description": "",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "KeyState": "Enabled",
 "Origin": "AWS_KMS",
 "KeyManager": "CUSTOMER",
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "KeySpec": "SYMMETRIC_DEFAULT",
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
],
 "MultiRegion": false
 }

3. Use a text editor to create a file called bucketencryption.json with the following
contents.

{
 "Rules": [
 {
 "ApplyServerSideEncryptionByDefault": {
 "SSEAlgorithm": "aws:kms",
 "KMSMasterKeyID": "{KMS Key ARN}"
 },
 "BucketKeyEnabled": true
 }
]
}

4. Enter the following command, replacing bucket-name with the name of the bucket that you
are exporting logs to.

aws s3api put-bucket-encryption --bucket bucket-name --server-side-encryption-
configuration file://bucketencryption.json

If the command doesn't return an error, the process is successful.

Cross-account export 424

Amazon CloudWatch Logs User Guide

Step 5: Create an export task

Use the following command to create the export task. After you create it, the export task might
take anywhere from a few seconds to a few hours, depending on the size of the data to export.

To export data to Amazon S3 using the AWS CLI

1. Sign in with sufficient permissions as documented in Step 2: Set up access permissions.

2. At a command prompt, use the following create-export-task command to create the export
task.

aws logs create-export-task --profile CWLExportUser --task-name "my-log-
group-09-10-2015" --log-group-name "my-log-group" --from 1441490400000 --
to 1441494000000 --destination "my-exported-logs" --destination-prefix "export-
task-output"

The following is example output.

{
 "taskId": "cda45419-90ea-4db5-9833-aade86253e66"
}

Describe export tasks

After you create an export task, you can get the current status of the task.

To describe export tasks using the AWS CLI

At a command prompt, use the following describe-export-tasks command.

aws logs --profile CWLExportUser describe-export-tasks --task-id
 "cda45419-90ea-4db5-9833-aade86253e66"

The following is example output.

{
 "exportTasks": [
 {
 "destination": "my-exported-logs",

Describe export tasks 425

https://docs.aws.amazon.com/cli/latest/reference/logs/create-export-task.html
https://docs.aws.amazon.com/cli/latest/reference/logs/describe-export-tasks.html

Amazon CloudWatch Logs User Guide

 "destinationPrefix": "export-task-output",
 "executionInfo": {
 "creationTime": 1441495400000
 },
 "from": 1441490400000,
 "logGroupName": "my-log-group",
 "status": {
 "code": "RUNNING",
 "message": "Started Successfully"
 },
 "taskId": "cda45419-90ea-4db5-9833-aade86253e66",
 "taskName": "my-log-group-09-10-2015",
 "tTo": 1441494000000
 }]
}

You can use the describe-export-tasks command in three different ways:

• Without any filters – Lists all of your export tasks, in reverse order of creation.

• Filter on task ID – Lists the export task, if one exists, with the specified ID.

• Filter on task status – Lists the export tasks with the specified status.

For example, use the following command to filter on the FAILED status.

aws logs --profile CWLExportUser describe-export-tasks --status-code "FAILED"

The following is example output.

{
 "exportTasks": [
 {
 "destination": "my-exported-logs",
 "destinationPrefix": "export-task-output",
 "executionInfo": {
 "completionTime": 1441498600000
 "creationTime": 1441495400000
 },
 "from": 1441490400000,
 "logGroupName": "my-log-group",
 "status": {
 "code": "FAILED",

Describe export tasks 426

Amazon CloudWatch Logs User Guide

 "message": "FAILED"
 },
 "taskId": "cda45419-90ea-4db5-9833-aade86253e66",
 "taskName": "my-log-group-09-10-2015",
 "to": 1441494000000
 }]
}

Cancel an export task

You can cancel an export task if it's in a PENDING or RUNNING state.

To cancel an export task using the AWS CLI

At a command prompt, use the following cancel-export-task command:

aws logs --profile CWLExportUser cancel-export-task --task-id "cda45419-90ea-4db5-9833-
aade86253e66"

You can use the describe-export-tasks command to verify that the task was canceled successfully.

Cancel an export task 427

https://docs.aws.amazon.com/cli/latest/reference/logs/cancel-export-task.html
https://docs.aws.amazon.com/cli/latest/reference/logs/describe-export-tasks.html

Amazon CloudWatch Logs User Guide

Streaming CloudWatch Logs data to Amazon OpenSearch
Service

You can configure a CloudWatch Logs log group to stream data it receives to your Amazon
OpenSearch Service cluster in near real-time through a CloudWatch Logs subscription. For more
information, see Real-time processing of log data with subscriptions.

Note

Streaming to OpenSearch Service is supported only for log groups in the Standard log
class. For more information about log classes, see Log classes.

Depending on the amount of log data being streamed, you might want to set a function-level
concurrent execution limit on the function. For more information, see Lambda function scaling.

Note

Streaming large amounts of CloudWatch Logs data to OpenSearch Service might result in
high usage charges. We recommend that you create a Budget in the AWS Billing and Cost
Management console. For more information, see Managing your costs with AWS Budgets.

Prerequisites

Before you begin, create an OpenSearch Service domain. The domain can have either public
access or VPC access, but you can't then modify the type of access after the domain is created.
You might want to review your OpenSearch Service domain settings later, and modify your cluster
configuration based on the amount of data your cluster will be processing. For instructions to
create a domain, see Creating OpenSearch Service domains.

For more information about OpenSearch Service, see the Amazon OpenSearch Service Developer
Guide.

Subscribe a log group to OpenSearch Service

You can use the CloudWatch console to subscribe a log group to OpenSearch Service.

Prerequisites 428

https://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.html#per-function-concurrency
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/createupdatedomains.html#createdomains
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/

Amazon CloudWatch Logs User Guide

To subscribe a log group to OpenSearch Service

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Log groups.

3. Select the name of the log group.

4. Choose Actions, Subscription filters, Create Amazon OpenSearch Service subscription filter.

5. Choose whether you want to stream to a cluster in this account or another account.

• If you chose this account, select the domain you created in the previous step.

• If you chose another account, provide the domain ARN and endpoint.

6. For Lambda IAM Execution Role, choose the IAM role that Lambda should use when executing
calls to OpenSearch.

The IAM role you choose must fulfill these requirements:

• It must have lambda.amazonaws.com in the trust relationship.

• It must include the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "es:*"
],
 "Effect": "Allow",
 "Resource": "arn:aws:es:region:account-id:domain/target-domain-name/
*"
 }
]
}

• If the target OpenSearch Service domain uses VPC access, the role must have the
AWSLambdaVPCAccessExecutionRole policy attached. This Amazon-managed policy
grants Lambda access to the customer's VPC, enabling Lambda to write to the OpenSearch
endpoint in the VPC.

7. For Log format, choose a log format.

Subscribe a log group to OpenSearch Service 429

https://console.aws.amazon.com/cloudwatch/

Amazon CloudWatch Logs User Guide

8. For Subscription filter pattern, type the terms or pattern to find in your log events. This
ensures that you send only the data you're interested in to your OpenSearch cluster. For more
information, see Creating metrics from log events using filters.

9. (Optional) For Select log data to test, select a log stream and then choose Test pattern to
verify that your search filter is returning the results you expect.

10. Choose Start streaming.

Subscribe a log group to OpenSearch Service 430

Amazon CloudWatch Logs User Guide

Code examples for CloudWatch Logs using AWS SDKs

The following code examples show how to use CloudWatch Logs with an AWS software
development kit (SDK).

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios and
cross-service examples.

Scenarios are code examples that show you how to accomplish a specific task by calling multiple
functions within the same service.

Cross-service examples are sample applications that work across multiple AWS services.

For a complete list of AWS SDK developer guides and code examples, see Using CloudWatch Logs
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Code examples

• Actions for CloudWatch Logs using AWS SDKs

• Use AssociateKmsKey with an AWS SDK or command line tool

• Use CancelExportTask with an AWS SDK or command line tool

• Use CreateExportTask with an AWS SDK or command line tool

• Use CreateLogGroup with an AWS SDK or command line tool

• Use CreateLogStream with an AWS SDK or command line tool

• Use DeleteLogGroup with an AWS SDK or command line tool

• Use DeleteSubscriptionFilter with an AWS SDK or command line tool

• Use DescribeExportTasks with an AWS SDK or command line tool

• Use DescribeLogGroups with an AWS SDK or command line tool

• Use DescribeSubscriptionFilters with an AWS SDK or command line tool

• Use GetQueryResults with an AWS SDK or command line tool

• Use PutSubscriptionFilter with an AWS SDK or command line tool

• Use StartLiveTail with an AWS SDK or command line tool

• Use StartQuery with an AWS SDK or command line tool

• Scenarios for CloudWatch Logs using AWS SDKs

431

Amazon CloudWatch Logs User Guide

• Use CloudWatch Logs to run a large query

• Cross-service examples for CloudWatch Logs using AWS SDKs

• Use scheduled events to invoke a Lambda function

Actions for CloudWatch Logs using AWS SDKs

The following code examples demonstrate how to perform individual CloudWatch Logs actions
with AWS SDKs. These excerpts call the CloudWatch Logs API and are code excerpts from larger
programs that must be run in context. Each example includes a link to GitHub, where you can find
instructions for setting up and running the code.

The following examples include only the most commonly used actions. For a complete list, see the
Amazon CloudWatch Logs API Reference.

Examples

• Use AssociateKmsKey with an AWS SDK or command line tool

• Use CancelExportTask with an AWS SDK or command line tool

• Use CreateExportTask with an AWS SDK or command line tool

• Use CreateLogGroup with an AWS SDK or command line tool

• Use CreateLogStream with an AWS SDK or command line tool

• Use DeleteLogGroup with an AWS SDK or command line tool

• Use DeleteSubscriptionFilter with an AWS SDK or command line tool

• Use DescribeExportTasks with an AWS SDK or command line tool

• Use DescribeLogGroups with an AWS SDK or command line tool

• Use DescribeSubscriptionFilters with an AWS SDK or command line tool

• Use GetQueryResults with an AWS SDK or command line tool

• Use PutSubscriptionFilter with an AWS SDK or command line tool

• Use StartLiveTail with an AWS SDK or command line tool

• Use StartQuery with an AWS SDK or command line tool

Use AssociateKmsKey with an AWS SDK or command line tool

The following code example shows how to use AssociateKmsKey.

Actions 432

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/Welcome.html

Amazon CloudWatch Logs User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.CloudWatchLogs;
 using Amazon.CloudWatchLogs.Model;

 /// <summary>
 /// Shows how to associate an AWS Key Management Service (AWS KMS) key with
 /// an Amazon CloudWatch Logs log group.
 /// </summary>
 public class AssociateKmsKey
 {
 public static async Task Main()
 {
 // This client object will be associated with the same AWS Region
 // as the default user on this system. If you need to use a
 // different AWS Region, pass it as a parameter to the client
 // constructor.
 var client = new AmazonCloudWatchLogsClient();

 string kmsKeyId = "arn:aws:kms:us-west-2:<account-
number>:key/7c9eccc2-38cb-4c4f-9db3-766ee8dd3ad4";
 string groupName = "cloudwatchlogs-example-loggroup";

 var request = new AssociateKmsKeyRequest
 {
 KmsKeyId = kmsKeyId,
 LogGroupName = groupName,
 };

 var response = await client.AssociateKmsKeyAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)

AssociateKmsKey 433

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatchLogs#code-examples

Amazon CloudWatch Logs User Guide

 {
 Console.WriteLine($"Successfully associated KMS key ID:
 {kmsKeyId} with log group: {groupName}.");
 }
 else
 {
 Console.WriteLine("Could not make the association between:
 {kmsKeyId} and {groupName}.");
 }
 }
 }

• For API details, see AssociateKmsKey in AWS SDK for .NET API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudWatch Logs
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use CancelExportTask with an AWS SDK or command line tool

The following code example shows how to use CancelExportTask.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.CloudWatchLogs;
 using Amazon.CloudWatchLogs.Model;

 /// <summary>

CancelExportTask 434

https://docs.aws.amazon.com/goto/DotNetSDKV3/logs-2014-03-28/AssociateKmsKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatchLogs#code-examples

Amazon CloudWatch Logs User Guide

 /// Shows how to cancel an Amazon CloudWatch Logs export task.
 /// </summary>
 public class CancelExportTask
 {
 public static async Task Main()
 {
 // This client object will be associated with the same AWS Region
 // as the default user on this system. If you need to use a
 // different AWS Region, pass it as a parameter to the client
 // constructor.
 var client = new AmazonCloudWatchLogsClient();
 string taskId = "exampleTaskId";

 var request = new CancelExportTaskRequest
 {
 TaskId = taskId,
 };

 var response = await client.CancelExportTaskAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"{taskId} successfully canceled.");
 }
 else
 {
 Console.WriteLine($"{taskId} could not be canceled.");
 }
 }
 }

• For API details, see CancelExportTask in AWS SDK for .NET API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudWatch Logs
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use CreateExportTask with an AWS SDK or command line tool

The following code example shows how to use CreateExportTask.

CreateExportTask 435

https://docs.aws.amazon.com/goto/DotNetSDKV3/logs-2014-03-28/CancelExportTask

Amazon CloudWatch Logs User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.CloudWatchLogs;
 using Amazon.CloudWatchLogs.Model;

 /// <summary>
 /// Shows how to create an Export Task to export the contents of the Amazon
 /// CloudWatch Logs to the specified Amazon Simple Storage Service (Amazon
 S3)
 /// bucket.
 /// </summary>
 public class CreateExportTask
 {
 public static async Task Main()
 {
 // This client object will be associated with the same AWS Region
 // as the default user on this system. If you need to use a
 // different AWS Region, pass it as a parameter to the client
 // constructor.
 var client = new AmazonCloudWatchLogsClient();
 string taskName = "export-task-example";
 string logGroupName = "cloudwatchlogs-example-loggroup";
 string destination = "doc-example-bucket";
 var fromTime = 1437584472382;
 var toTime = 1437584472833;

 var request = new CreateExportTaskRequest
 {
 From = fromTime,
 To = toTime,
 TaskName = taskName,
 LogGroupName = logGroupName,

CreateExportTask 436

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatchLogs#code-examples

Amazon CloudWatch Logs User Guide

 Destination = destination,
 };

 var response = await client.CreateExportTaskAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"The task, {taskName} with ID: " +
 $"{response.TaskId} has been created
 successfully.");
 }
 }
 }

• For API details, see CreateExportTask in AWS SDK for .NET API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudWatch Logs
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use CreateLogGroup with an AWS SDK or command line tool

The following code examples show how to use CreateLogGroup.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.CloudWatchLogs;
 using Amazon.CloudWatchLogs.Model;

CreateLogGroup 437

https://docs.aws.amazon.com/goto/DotNetSDKV3/logs-2014-03-28/CreateExportTask
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatchLogs#code-examples

Amazon CloudWatch Logs User Guide

 /// <summary>
 /// Shows how to create an Amazon CloudWatch Logs log group.
 /// </summary>
 public class CreateLogGroup
 {
 public static async Task Main()
 {
 // This client object will be associated with the same AWS Region
 // as the default user on this system. If you need to use a
 // different AWS Region, pass it as a parameter to the client
 // constructor.
 var client = new AmazonCloudWatchLogsClient();

 string logGroupName = "cloudwatchlogs-example-loggroup";

 var request = new CreateLogGroupRequest
 {
 LogGroupName = logGroupName,
 };

 var response = await client.CreateLogGroupAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"Successfully create log group with ID:
 {logGroupName}.");
 }
 else
 {
 Console.WriteLine("Could not create log group.");
 }
 }
 }

• For API details, see CreateLogGroup in AWS SDK for .NET API Reference.

CLI

AWS CLI

The following command creates a log group named my-logs:

CreateLogGroup 438

https://docs.aws.amazon.com/goto/DotNetSDKV3/logs-2014-03-28/CreateLogGroup

Amazon CloudWatch Logs User Guide

aws logs create-log-group --log-group-name my-logs

• For API details, see CreateLogGroup in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { CreateLogGroupCommand } from "@aws-sdk/client-cloudwatch-logs";
import { client } from "../libs/client.js";

const run = async () => {
 const command = new CreateLogGroupCommand({
 // The name of the log group.
 logGroupName: process.env.CLOUDWATCH_LOGS_LOG_GROUP,
 });

 try {
 return await client.send(command);
 } catch (err) {
 console.error(err);
 }
};

export default run();

• For API details, see CreateLogGroup in AWS SDK for JavaScript API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudWatch Logs
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

CreateLogGroup 439

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/logs/create-log-group.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch-logs#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/CreateLogGroupCommand

Amazon CloudWatch Logs User Guide

Use CreateLogStream with an AWS SDK or command line tool

The following code examples show how to use CreateLogStream.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.CloudWatchLogs;
 using Amazon.CloudWatchLogs.Model;

 /// <summary>
 /// Shows how to create an Amazon CloudWatch Logs stream for a CloudWatch
 /// log group.
 /// </summary>
 public class CreateLogStream
 {
 public static async Task Main()
 {
 // This client object will be associated with the same AWS Region
 // as the default user on this system. If you need to use a
 // different AWS Region, pass it as a parameter to the client
 // constructor.
 var client = new AmazonCloudWatchLogsClient();
 string logGroupName = "cloudwatchlogs-example-loggroup";
 string logStreamName = "cloudwatchlogs-example-logstream";

 var request = new CreateLogStreamRequest
 {
 LogGroupName = logGroupName,
 LogStreamName = logStreamName,
 };

 var response = await client.CreateLogStreamAsync(request);

CreateLogStream 440

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatchLogs#code-examples

Amazon CloudWatch Logs User Guide

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"{logStreamName} successfully created for
 {logGroupName}.");
 }
 else
 {
 Console.WriteLine("Could not create stream.");
 }
 }
 }

• For API details, see CreateLogStream in AWS SDK for .NET API Reference.

CLI

AWS CLI

The following command creates a log stream named 20150601 in the log group my-logs:

aws logs create-log-stream --log-group-name my-logs --log-stream-name 20150601

• For API details, see CreateLogStream in AWS CLI Command Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudWatch Logs
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use DeleteLogGroup with an AWS SDK or command line tool

The following code examples show how to use DeleteLogGroup.

DeleteLogGroup 441

https://docs.aws.amazon.com/goto/DotNetSDKV3/logs-2014-03-28/CreateLogStream
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/logs/create-log-stream.html

Amazon CloudWatch Logs User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.CloudWatchLogs;
 using Amazon.CloudWatchLogs.Model;

 /// <summary>
 /// Uses the Amazon CloudWatch Logs Service to delete an existing
 /// CloudWatch Logs log group.
 /// </summary>
 public class DeleteLogGroup
 {
 public static async Task Main()
 {
 var client = new AmazonCloudWatchLogsClient();
 string logGroupName = "cloudwatchlogs-example-loggroup";

 var request = new DeleteLogGroupRequest
 {
 LogGroupName = logGroupName,
 };

 var response = await client.DeleteLogGroupAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"Successfully deleted CloudWatch log group,
 {logGroupName}.");
 }
 }
 }

DeleteLogGroup 442

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatchLogs#code-examples

Amazon CloudWatch Logs User Guide

• For API details, see DeleteLogGroup in AWS SDK for .NET API Reference.

CLI

AWS CLI

The following command deletes a log group named my-logs:

aws logs delete-log-group --log-group-name my-logs

• For API details, see DeleteLogGroup in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { DeleteLogGroupCommand } from "@aws-sdk/client-cloudwatch-logs";
import { client } from "../libs/client.js";

const run = async () => {
 const command = new DeleteLogGroupCommand({
 // The name of the log group.
 logGroupName: process.env.CLOUDWATCH_LOGS_LOG_GROUP,
 });

 try {
 return await client.send(command);
 } catch (err) {
 console.error(err);
 }
};

export default run();

DeleteLogGroup 443

https://docs.aws.amazon.com/goto/DotNetSDKV3/logs-2014-03-28/DeleteLogGroup
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/logs/delete-log-group.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch-logs#code-examples

Amazon CloudWatch Logs User Guide

• For API details, see DeleteLogGroup in AWS SDK for JavaScript API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudWatch Logs
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use DeleteSubscriptionFilter with an AWS SDK or command line
tool

The following code examples show how to use DeleteSubscriptionFilter.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Include the required files.

#include <aws/core/Aws.h>
#include <aws/core/utils/Outcome.h>
#include <aws/logs/CloudWatchLogsClient.h>
#include <aws/logs/model/DeleteSubscriptionFilterRequest.h>
#include <iostream>

Delete the subscription filter.

 Aws::CloudWatchLogs::CloudWatchLogsClient cwl;
 Aws::CloudWatchLogs::Model::DeleteSubscriptionFilterRequest request;
 request.SetFilterName(filter_name);
 request.SetLogGroupName(log_group);

DeleteSubscriptionFilter 444

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/DeleteLogGroupCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cloudwatch-logs#code-examples

Amazon CloudWatch Logs User Guide

 auto outcome = cwl.DeleteSubscriptionFilter(request);
 if (!outcome.IsSuccess()) {
 std::cout << "Failed to delete CloudWatch log subscription filter "
 << filter_name << ": " << outcome.GetError().GetMessage() <<
 std::endl;
 } else {
 std::cout << "Successfully deleted CloudWatch logs subscription " <<
 "filter " << filter_name << std::endl;
 }

• For API details, see DeleteSubscriptionFilter in AWS SDK for C++ API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.services.cloudwatch.model.CloudWatchException;
import software.amazon.awssdk.services.cloudwatchlogs.CloudWatchLogsClient;
import
 software.amazon.awssdk.services.cloudwatchlogs.model.DeleteSubscriptionFilterRequest;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DeleteSubscriptionFilter {
 public static void main(String[] args) {
 final String usage = """

 Usage:

DeleteSubscriptionFilter 445

https://docs.aws.amazon.com/goto/SdkForCpp/logs-2014-03-28/DeleteSubscriptionFilter
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cloudwatch#readme

Amazon CloudWatch Logs User Guide

 <filter> <logGroup>

 Where:
 filter - The name of the subscription filter (for example,
 MyFilter).
 logGroup - The name of the log group. (for example, testgroup).
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String filter = args[0];
 String logGroup = args[1];
 CloudWatchLogsClient logs = CloudWatchLogsClient.builder()
 .build();

 deleteSubFilter(logs, filter, logGroup);
 logs.close();
 }

 public static void deleteSubFilter(CloudWatchLogsClient logs, String filter,
 String logGroup) {
 try {
 DeleteSubscriptionFilterRequest request =
 DeleteSubscriptionFilterRequest.builder()
 .filterName(filter)
 .logGroupName(logGroup)
 .build();

 logs.deleteSubscriptionFilter(request);
 System.out.printf("Successfully deleted CloudWatch logs subscription
 filter %s", filter);

 } catch (CloudWatchException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see DeleteSubscriptionFilter in AWS SDK for Java 2.x API Reference.

DeleteSubscriptionFilter 446

https://docs.aws.amazon.com/goto/SdkForJavaV2/logs-2014-03-28/DeleteSubscriptionFilter

Amazon CloudWatch Logs User Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { DeleteSubscriptionFilterCommand } from "@aws-sdk/client-cloudwatch-
logs";
import { client } from "../libs/client.js";

const run = async () => {
 const command = new DeleteSubscriptionFilterCommand({
 // The name of the filter.
 filterName: process.env.CLOUDWATCH_LOGS_FILTER_NAME,
 // The name of the log group.
 logGroupName: process.env.CLOUDWATCH_LOGS_LOG_GROUP,
 });

 try {
 return await client.send(command);
 } catch (err) {
 console.error(err);
 }
};

export default run();

• For API details, see DeleteSubscriptionFilter in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

DeleteSubscriptionFilter 447

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch-logs#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/DeleteSubscriptionFilterCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/cloudwatch-logs#code-examples

Amazon CloudWatch Logs User Guide

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the CloudWatchLogs service object
var cwl = new AWS.CloudWatchLogs({ apiVersion: "2014-03-28" });

var params = {
 filterName: "FILTER",
 logGroupName: "LOG_GROUP",
};

cwl.deleteSubscriptionFilter(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see DeleteSubscriptionFilter in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun deleteSubFilter(filter: String?, logGroup: String?) {

 val request = DeleteSubscriptionFilterRequest {
 filterName = filter
 logGroupName = logGroup

DeleteSubscriptionFilter 448

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/cloudwatch-examples-subscriptions.html#cloudwatch-examples-subscriptions-deleting
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/logs-2014-03-28/DeleteSubscriptionFilter
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/cloudwatch#code-examples

Amazon CloudWatch Logs User Guide

 }

 CloudWatchLogsClient { region = "us-west-2" }.use { logs ->
 logs.deleteSubscriptionFilter(request)
 println("Successfully deleted CloudWatch logs subscription filter named
 $filter")
 }
}

• For API details, see DeleteSubscriptionFilter in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudWatch Logs
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use DescribeExportTasks with an AWS SDK or command line tool

The following code example shows how to use DescribeExportTasks.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.CloudWatchLogs;
 using Amazon.CloudWatchLogs.Model;

 /// <summary>
 /// Shows how to retrieve a list of information about Amazon CloudWatch
 /// Logs export tasks.
 /// </summary>
 public class DescribeExportTasks

DescribeExportTasks 449

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatchLogs#code-examples

Amazon CloudWatch Logs User Guide

 {
 public static async Task Main()
 {
 // This client object will be associated with the same AWS Region
 // as the default user on this system. If you need to use a
 // different AWS Region, pass it as a parameter to the client
 // constructor.
 var client = new AmazonCloudWatchLogsClient();

 var request = new DescribeExportTasksRequest
 {
 Limit = 5,
 };

 var response = new DescribeExportTasksResponse();

 do
 {
 response = await client.DescribeExportTasksAsync(request);
 response.ExportTasks.ForEach(t =>
 {
 Console.WriteLine($"{t.TaskName} with ID: {t.TaskId} has
 status: {t.Status}");
 });
 }
 while (response.NextToken is not null);
 }
 }

• For API details, see DescribeExportTasks in AWS SDK for .NET API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudWatch Logs
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use DescribeLogGroups with an AWS SDK or command line tool

The following code examples show how to use DescribeLogGroups.

DescribeLogGroups 450

https://docs.aws.amazon.com/goto/DotNetSDKV3/logs-2014-03-28/DescribeExportTasks

Amazon CloudWatch Logs User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.CloudWatchLogs;
 using Amazon.CloudWatchLogs.Model;

 /// <summary>
 /// Retrieves information about existing Amazon CloudWatch Logs log groups
 /// and displays the information on the console.
 /// </summary>
 public class DescribeLogGroups
 {
 public static async Task Main()
 {
 // Creates a CloudWatch Logs client using the default
 // user. If you need to work with resources in another
 // AWS Region than the one defined for the default user,
 // pass the AWS Region as a parameter to the client constructor.
 var client = new AmazonCloudWatchLogsClient();

 bool done = false;
 string newToken = null;

 var request = new DescribeLogGroupsRequest
 {
 Limit = 5,
 };

 DescribeLogGroupsResponse response;

 do
 {
 if (newToken is not null)

DescribeLogGroups 451

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatchLogs#code-examples

Amazon CloudWatch Logs User Guide

 {
 request.NextToken = newToken;
 }

 response = await client.DescribeLogGroupsAsync(request);

 response.LogGroups.ForEach(lg =>
 {
 Console.WriteLine($"{lg.LogGroupName} is associated with the
 key: {lg.KmsKeyId}.");
 Console.WriteLine($"Created on:
 {lg.CreationTime.Date.Date}");
 Console.WriteLine($"Date for this group will be stored for:
 {lg.RetentionInDays} days.\n");
 });

 if (response.NextToken is null)
 {
 done = true;
 }
 else
 {
 newToken = response.NextToken;
 }
 }
 while (!done);
 }
 }

• For API details, see DescribeLogGroups in AWS SDK for .NET API Reference.

CLI

AWS CLI

The following command describes a log group named my-logs:

aws logs describe-log-groups --log-group-name-prefix my-logs

Output:

DescribeLogGroups 452

https://docs.aws.amazon.com/goto/DotNetSDKV3/logs-2014-03-28/DescribeLogGroups

Amazon CloudWatch Logs User Guide

{
 "logGroups": [
 {
 "storedBytes": 0,
 "metricFilterCount": 0,
 "creationTime": 1433189500783,
 "logGroupName": "my-logs",
 "retentionInDays": 5,
 "arn": "arn:aws:logs:us-west-2:0123456789012:log-group:my-logs:*"
 }
]
}

• For API details, see DescribeLogGroups in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import {
 paginateDescribeLogGroups,
 CloudWatchLogsClient,
} from "@aws-sdk/client-cloudwatch-logs";

const client = new CloudWatchLogsClient({});

export const main = async () => {
 const paginatedLogGroups = paginateDescribeLogGroups({ client }, {});
 const logGroups = [];

 for await (const page of paginatedLogGroups) {
 if (page.logGroups && page.logGroups.every((lg) => !!lg)) {
 logGroups.push(...page.logGroups);
 }
 }

DescribeLogGroups 453

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/logs/describe-log-groups.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch-logs#code-examples

Amazon CloudWatch Logs User Guide

 console.log(logGroups);
 return logGroups;
};

• For API details, see DescribeLogGroups in AWS SDK for JavaScript API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudWatch Logs
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use DescribeSubscriptionFilters with an AWS SDK or command
line tool

The following code examples show how to use DescribeSubscriptionFilters.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Include the required files.

#include <aws/core/Aws.h>
#include <aws/core/utils/Outcome.h>
#include <aws/logs/CloudWatchLogsClient.h>
#include <aws/logs/model/DescribeSubscriptionFiltersRequest.h>
#include <aws/logs/model/DescribeSubscriptionFiltersResult.h>
#include <iostream>
#include <iomanip>

List the subscription filters.

DescribeSubscriptionFilters 454

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/DescribeLogGroupsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cloudwatch-logs#code-examples

Amazon CloudWatch Logs User Guide

 Aws::CloudWatchLogs::CloudWatchLogsClient cwl;
 Aws::CloudWatchLogs::Model::DescribeSubscriptionFiltersRequest request;
 request.SetLogGroupName(log_group);
 request.SetLimit(1);

 bool done = false;
 bool header = false;
 while (!done) {
 auto outcome = cwl.DescribeSubscriptionFilters(
 request);
 if (!outcome.IsSuccess()) {
 std::cout << "Failed to describe CloudWatch subscription filters
 "
 << "for log group " << log_group << ": " <<
 outcome.GetError().GetMessage() << std::endl;
 break;
 }

 if (!header) {
 std::cout << std::left << std::setw(32) << "Name" <<
 std::setw(64) << "FilterPattern" << std::setw(64) <<
 "DestinationArn" << std::endl;
 header = true;
 }

 const auto &filters = outcome.GetResult().GetSubscriptionFilters();
 for (const auto &filter : filters) {
 std::cout << std::left << std::setw(32) <<
 filter.GetFilterName() << std::setw(64) <<
 filter.GetFilterPattern() << std::setw(64) <<
 filter.GetDestinationArn() << std::endl;
 }

 const auto &next_token = outcome.GetResult().GetNextToken();
 request.SetNextToken(next_token);
 done = next_token.empty();
 }

• For API details, see DescribeSubscriptionFilters in AWS SDK for C++ API Reference.

DescribeSubscriptionFilters 455

https://docs.aws.amazon.com/goto/SdkForCpp/logs-2014-03-28/DescribeSubscriptionFilters

Amazon CloudWatch Logs User Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
import software.amazon.awssdk.services.cloudwatch.model.CloudWatchException;
import software.amazon.awssdk.services.cloudwatchlogs.CloudWatchLogsClient;
import
 software.amazon.awssdk.services.cloudwatchlogs.model.DescribeSubscriptionFiltersRequest;
import
 software.amazon.awssdk.services.cloudwatchlogs.model.DescribeSubscriptionFiltersResponse;
import software.amazon.awssdk.services.cloudwatchlogs.model.SubscriptionFilter;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DescribeSubscriptionFilters {
 public static void main(String[] args) {

 final String usage = """

 Usage:
 <logGroup>

 Where:
 logGroup - A log group name (for example, myloggroup).
 """;

 if (args.length != 1) {
 System.out.println(usage);

DescribeSubscriptionFilters 456

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cloudwatch#readme

Amazon CloudWatch Logs User Guide

 System.exit(1);
 }

 String logGroup = args[0];
 CloudWatchLogsClient logs = CloudWatchLogsClient.builder()
 .credentialsProvider(ProfileCredentialsProvider.create())
 .build();

 describeFilters(logs, logGroup);
 logs.close();
 }

 public static void describeFilters(CloudWatchLogsClient logs, String
 logGroup) {
 try {
 boolean done = false;
 String newToken = null;

 while (!done) {
 DescribeSubscriptionFiltersResponse response;
 if (newToken == null) {
 DescribeSubscriptionFiltersRequest request =
 DescribeSubscriptionFiltersRequest.builder()
 .logGroupName(logGroup)
 .limit(1).build();

 response = logs.describeSubscriptionFilters(request);
 } else {
 DescribeSubscriptionFiltersRequest request =
 DescribeSubscriptionFiltersRequest.builder()
 .nextToken(newToken)
 .logGroupName(logGroup)
 .limit(1).build();
 response = logs.describeSubscriptionFilters(request);
 }

 for (SubscriptionFilter filter : response.subscriptionFilters())
 {
 System.out.printf("Retrieved filter with name %s, " +
 "pattern %s " + "and destination arn %s",
 filter.filterName(),
 filter.filterPattern(),
 filter.destinationArn());
 }

DescribeSubscriptionFilters 457

Amazon CloudWatch Logs User Guide

 if (response.nextToken() == null) {
 done = true;
 } else {
 newToken = response.nextToken();
 }
 }

 } catch (CloudWatchException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 System.out.printf("Done");
 }
}

• For API details, see DescribeSubscriptionFilters in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { DescribeSubscriptionFiltersCommand } from "@aws-sdk/client-cloudwatch-
logs";
import { client } from "../libs/client.js";

const run = async () => {
 // This will return a list of all subscription filters in your account
 // matching the log group name.
 const command = new DescribeSubscriptionFiltersCommand({
 logGroupName: process.env.CLOUDWATCH_LOGS_LOG_GROUP,
 limit: 1,
 });

 try {

DescribeSubscriptionFilters 458

https://docs.aws.amazon.com/goto/SdkForJavaV2/logs-2014-03-28/DescribeSubscriptionFilters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch-logs#code-examples

Amazon CloudWatch Logs User Guide

 return await client.send(command);
 } catch (err) {
 console.error(err);
 }
};

export default run();

• For API details, see DescribeSubscriptionFilters in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the CloudWatchLogs service object
var cwl = new AWS.CloudWatchLogs({ apiVersion: "2014-03-28" });

var params = {
 logGroupName: "GROUP_NAME",
 limit: 5,
};

cwl.describeSubscriptionFilters(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.subscriptionFilters);
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

DescribeSubscriptionFilters 459

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/DescribeSubscriptionFiltersCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/cloudwatch-logs#code-examples
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/cloudwatch-examples-subscriptions.html#cloudwatch-examples-subscriptions-describing

Amazon CloudWatch Logs User Guide

• For API details, see DescribeSubscriptionFilters in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun describeFilters(logGroup: String) {

 val request = DescribeSubscriptionFiltersRequest {
 logGroupName = logGroup
 limit = 1
 }

 CloudWatchLogsClient { region = "us-west-2" }.use { cwlClient ->
 val response = cwlClient.describeSubscriptionFilters(request)
 response.subscriptionFilters?.forEach { filter ->
 println("Retrieved filter with name ${filter.filterName} pattern
 ${filter.filterPattern} and destination ${filter.destinationArn}")
 }
 }
}

• For API details, see DescribeSubscriptionFilters in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudWatch Logs
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use GetQueryResults with an AWS SDK or command line tool

The following code examples show how to use GetQueryResults.

GetQueryResults 460

https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/logs-2014-03-28/DescribeSubscriptionFilters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/cloudwatch#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon CloudWatch Logs User Guide

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Run a large query

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Simple wrapper for the GetQueryResultsCommand.
 * @param {string} queryId
 */
 _getQueryResults(queryId) {
 return this.client.send(new GetQueryResultsCommand({ queryId }));
 }

• For API details, see GetQueryResults in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 def _wait_for_query_results(self, client, query_id):
 """
 Waits for the query to complete and retrieves the results.

GetQueryResults 461

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch-logs#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/GetQueryResultsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/cloudwatch-logs#code-examples

Amazon CloudWatch Logs User Guide

 :param query_id: The ID of the initiated query.
 :type query_id: str
 :return: A list containing the results of the query.
 :rtype: list
 """
 while True:
 time.sleep(1)
 results = client.get_query_results(queryId=query_id)
 if results["status"] in [
 "Complete",
 "Failed",
 "Cancelled",
 "Timeout",
 "Unknown",
]:
 return results.get("results", [])

• For API details, see GetQueryResults in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudWatch Logs
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use PutSubscriptionFilter with an AWS SDK or command line tool

The following code examples show how to use PutSubscriptionFilter.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Include the required files.

PutSubscriptionFilter 462

https://docs.aws.amazon.com/goto/boto3/logs-2014-03-28/GetQueryResults
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cloudwatch-logs#code-examples

Amazon CloudWatch Logs User Guide

#include <aws/core/Aws.h>
#include <aws/logs/CloudWatchLogsClient.h>
#include <aws/logs/model/PutSubscriptionFilterRequest.h>
#include <aws/core/utils/Outcome.h>
#include <iostream>

Create the subscription filter.

 Aws::CloudWatchLogs::CloudWatchLogsClient cwl;
 Aws::CloudWatchLogs::Model::PutSubscriptionFilterRequest request;
 request.SetFilterName(filter_name);
 request.SetFilterPattern(filter_pattern);
 request.SetLogGroupName(log_group);
 request.SetDestinationArn(dest_arn);
 auto outcome = cwl.PutSubscriptionFilter(request);
 if (!outcome.IsSuccess())
 {
 std::cout << "Failed to create CloudWatch logs subscription filter "
 << filter_name << ": " << outcome.GetError().GetMessage() <<
 std::endl;
 }
 else
 {
 std::cout << "Successfully created CloudWatch logs subscription " <<
 "filter " << filter_name << std::endl;
 }

• For API details, see PutSubscriptionFilter in AWS SDK for C++ API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

PutSubscriptionFilter 463

https://docs.aws.amazon.com/goto/SdkForCpp/logs-2014-03-28/PutSubscriptionFilter
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cloudwatch#readme

Amazon CloudWatch Logs User Guide

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.cloudwatchlogs.CloudWatchLogsClient;
import
 software.amazon.awssdk.services.cloudwatchlogs.model.CloudWatchLogsException;
import
 software.amazon.awssdk.services.cloudwatchlogs.model.PutSubscriptionFilterRequest;

/**
 * Before running this code example, you need to grant permission to CloudWatch
 * Logs the right to execute your Lambda function.
 * To perform this task, you can use this CLI command:
 *
 * aws lambda add-permission --function-name "lamda1" --statement-id "lamda1"
 * --principal "logs.us-west-2.amazonaws.com" --action "lambda:InvokeFunction"
 * --source-arn "arn:aws:logs:us-west-2:111111111111:log-group:testgroup:*"
 * --source-account "111111111111"
 *
 * Make sure you replace the function name with your function name and replace
 * '111111111111' with your account details.
 * For more information, see "Subscription Filters with AWS Lambda" in the
 * Amazon CloudWatch Logs Guide.
 *
 *
 * Also, before running this Java V2 code example,set up your development
 * environment,including your credentials.
 *
 * For more information,see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 */

public class PutSubscriptionFilter {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <filter> <pattern> <logGroup> <functionArn>\s

 Where:
 filter - A filter name (for example, myfilter).
 pattern - A filter pattern (for example, ERROR).

PutSubscriptionFilter 464

Amazon CloudWatch Logs User Guide

 logGroup - A log group name (testgroup).
 functionArn - An AWS Lambda function ARN (for example,
 arn:aws:lambda:us-west-2:111111111111:function:lambda1) .
 """;

 if (args.length != 4) {
 System.out.println(usage);
 System.exit(1);
 }

 String filter = args[0];
 String pattern = args[1];
 String logGroup = args[2];
 String functionArn = args[3];
 Region region = Region.US_WEST_2;
 CloudWatchLogsClient cwl = CloudWatchLogsClient.builder()
 .region(region)
 .build();

 putSubFilters(cwl, filter, pattern, logGroup, functionArn);
 cwl.close();
 }

 public static void putSubFilters(CloudWatchLogsClient cwl,
 String filter,
 String pattern,
 String logGroup,
 String functionArn) {

 try {
 PutSubscriptionFilterRequest request =
 PutSubscriptionFilterRequest.builder()
 .filterName(filter)
 .filterPattern(pattern)
 .logGroupName(logGroup)
 .destinationArn(functionArn)
 .build();

 cwl.putSubscriptionFilter(request);
 System.out.printf(
 "Successfully created CloudWatch logs subscription filter
 %s",
 filter);

PutSubscriptionFilter 465

Amazon CloudWatch Logs User Guide

 } catch (CloudWatchLogsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see PutSubscriptionFilter in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { PutSubscriptionFilterCommand } from "@aws-sdk/client-cloudwatch-logs";
import { client } from "../libs/client.js";

const run = async () => {
 const command = new PutSubscriptionFilterCommand({
 // An ARN of a same-account Kinesis stream, Kinesis Firehose
 // delivery stream, or Lambda function.
 // https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
SubscriptionFilters.html
 destinationArn: process.env.CLOUDWATCH_LOGS_DESTINATION_ARN,

 // A name for the filter.
 filterName: process.env.CLOUDWATCH_LOGS_FILTER_NAME,

 // A filter pattern for subscribing to a filtered stream of log events.
 // https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
FilterAndPatternSyntax.html
 filterPattern: process.env.CLOUDWATCH_LOGS_FILTER_PATTERN,

 // The name of the log group. Messages in this group matching the filter
 pattern
 // will be sent to the destination ARN.

PutSubscriptionFilter 466

https://docs.aws.amazon.com/goto/SdkForJavaV2/logs-2014-03-28/PutSubscriptionFilter
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch-logs#code-examples

Amazon CloudWatch Logs User Guide

 logGroupName: process.env.CLOUDWATCH_LOGS_LOG_GROUP,
 });

 try {
 return await client.send(command);
 } catch (err) {
 console.error(err);
 }
};

export default run();

• For API details, see PutSubscriptionFilter in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the CloudWatchLogs service object
var cwl = new AWS.CloudWatchLogs({ apiVersion: "2014-03-28" });

var params = {
 destinationArn: "LAMBDA_FUNCTION_ARN",
 filterName: "FILTER_NAME",
 filterPattern: "ERROR",
 logGroupName: "LOG_GROUP",
};

cwl.putSubscriptionFilter(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);

PutSubscriptionFilter 467

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/PutSubscriptionFilterCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/cloudwatch-logs#code-examples

Amazon CloudWatch Logs User Guide

 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see PutSubscriptionFilter in AWS SDK for JavaScript API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudWatch Logs
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use StartLiveTail with an AWS SDK or command line tool

The following code examples show how to use StartLiveTail.

.NET

AWS SDK for .NET

Include the required files.

using Amazon;
using Amazon.CloudWatchLogs;
using Amazon.CloudWatchLogs.Model;

Start the Live Tail session.

 var client = new AmazonCloudWatchLogsClient();
 var request = new StartLiveTailRequest
 {
 LogGroupIdentifiers = logGroupIdentifiers,
 LogStreamNames = logStreamNames,
 LogEventFilterPattern = filterPattern,
 };

 var response = await client.StartLiveTailAsync(request);

 // Catch if request fails
 if (response.HttpStatusCode != System.Net.HttpStatusCode.OK)
 {

StartLiveTail 468

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/cloudwatch-examples-subscriptions.html#cloudwatch-examples-subscriptions-creating
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/logs-2014-03-28/PutSubscriptionFilter

Amazon CloudWatch Logs User Guide

 Console.WriteLine("Failed to start live tail session");
 return;
 }

You can handle the events from the Live Tail session in two ways:

 /* Method 1
 * 1). Asynchronously loop through the event stream
 * 2). Set a timer to dispose the stream and stop the Live Tail
 session at the end.
 */
 var eventStream = response.ResponseStream;
 var task = Task.Run(() =>
 {
 foreach (var item in eventStream)
 {
 if (item is LiveTailSessionUpdate liveTailSessionUpdate)
 {
 foreach (var sessionResult in
 liveTailSessionUpdate.SessionResults)
 {
 Console.WriteLine("Message : {0}",
 sessionResult.Message);
 }
 }
 if (item is LiveTailSessionStart)
 {
 Console.WriteLine("Live Tail session started");
 }
 // On-stream exceptions are processed here
 if (item is CloudWatchLogsEventStreamException)
 {
 Console.WriteLine($"ERROR: {item}");
 }
 }
 });
 // Close the stream to stop the session after a timeout
 if (!task.Wait(TimeSpan.FromSeconds(10))){
 eventStream.Dispose();
 Console.WriteLine("End of line");
 }

StartLiveTail 469

Amazon CloudWatch Logs User Guide

 /* Method 2
 * 1). Add event handlers to each event variable
 * 2). Start processing the stream and wait for a timeout using
 AutoResetEvent
 */
 AutoResetEvent endEvent = new AutoResetEvent(false);
 var eventStream = response.ResponseStream;
 using (eventStream) // automatically disposes the stream to stop the
 session after execution finishes
 {
 eventStream.SessionStartReceived += (sender, e) =>
 {
 Console.WriteLine("LiveTail session started");
 };
 eventStream.SessionUpdateReceived += (sender, e) =>
 {
 foreach (LiveTailSessionLogEvent logEvent in
 e.EventStreamEvent.SessionResults){
 Console.WriteLine("Message: {0}", logEvent.Message);
 }
 };
 // On-stream exceptions are captured here
 eventStream.ExceptionReceived += (sender, e) =>
 {
 Console.WriteLine($"ERROR:
 {e.EventStreamException.Message}");
 };

 eventStream.StartProcessing();
 // Stream events for this amount of time.
 endEvent.WaitOne(TimeSpan.FromSeconds(10));
 Console.WriteLine("End of line");
 }

• For API details, see StartLiveTail in AWS SDK for .NET API Reference.

Go

SDK for Go V2

Include the required files.

StartLiveTail 470

https://docs.aws.amazon.com/goto/DotNetSDKV3/logs-2014-03-28/StartLiveTail

Amazon CloudWatch Logs User Guide

import (
 "context"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/cloudwatchlogs"
 "github.com/aws/aws-sdk-go-v2/service/cloudwatchlogs/types"
)

Handle the events from the Live Tail session.

func handleEventStreamAsync(stream *cloudwatchlogs.StartLiveTailEventStream) {
 eventsChan := stream.Events()
 for {
 event := <-eventsChan
 switch e := event.(type) {
 case *types.StartLiveTailResponseStreamMemberSessionStart:
 log.Println("Received SessionStart event")
 case *types.StartLiveTailResponseStreamMemberSessionUpdate:
 for _, logEvent := range e.Value.SessionResults {
 log.Println(*logEvent.Message)
 }
 default:
 // Handle on-stream exceptions
 if err := stream.Err(); err != nil {
 log.Fatalf("Error occured during streaming: %v", err)
 } else if event == nil {
 log.Println("Stream is Closed")
 return
 } else {
 log.Fatalf("Unknown event type: %T", e)
 }
 }
 }
}

Start the Live Tail session.

 cfg, err := config.LoadDefaultConfig(context.TODO())

StartLiveTail 471

Amazon CloudWatch Logs User Guide

 if err != nil {
 panic("configuration error, " + err.Error())
 }
 client := cloudwatchlogs.NewFromConfig(cfg)

 request := &cloudwatchlogs.StartLiveTailInput{
 LogGroupIdentifiers: logGroupIdentifiers,
 LogStreamNames: logStreamNames,
 LogEventFilterPattern: logEventFilterPattern,
 }

 response, err := client.StartLiveTail(context.TODO(), request)
 // Handle pre-stream Exceptions
 if err != nil {
 log.Fatalf("Failed to start streaming: %v", err)
 }

 // Start a Goroutine to handle events over stream
 stream := response.GetStream()
 go handleEventStreamAsync(stream)

Stop the Live Tail session after a period of time has elapsed.

 // Close the stream (which ends the session) after a timeout
 time.Sleep(10 * time.Second)
 stream.Close()
 log.Println("Event stream closed")

• For API details, see StartLiveTail in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Include the required files.

import io.reactivex.FlowableSubscriber;
import io.reactivex.annotations.NonNull;
import org.reactivestreams.Subscription;
import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;

StartLiveTail 472

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cloudwatchlogs#Client.StartLiveTail

Amazon CloudWatch Logs User Guide

import software.amazon.awssdk.services.cloudwatchlogs.CloudWatchLogsAsyncClient;
import
 software.amazon.awssdk.services.cloudwatchlogs.model.LiveTailSessionLogEvent;
import software.amazon.awssdk.services.cloudwatchlogs.model.LiveTailSessionStart;
import
 software.amazon.awssdk.services.cloudwatchlogs.model.LiveTailSessionUpdate;
import software.amazon.awssdk.services.cloudwatchlogs.model.StartLiveTailRequest;
import
 software.amazon.awssdk.services.cloudwatchlogs.model.StartLiveTailResponseHandler;
import
 software.amazon.awssdk.services.cloudwatchlogs.model.CloudWatchLogsException;
import
 software.amazon.awssdk.services.cloudwatchlogs.model.StartLiveTailResponseStream;

import java.util.Date;
import java.util.List;
import java.util.concurrent.atomic.AtomicReference;

Handle the events from the Live Tail session.

 private static StartLiveTailResponseHandler
 getStartLiveTailResponseStreamHandler(
 AtomicReference<Subscription> subscriptionAtomicReference) {
 return StartLiveTailResponseHandler.builder()
 .onResponse(r -> System.out.println("Received initial response"))
 .onError(throwable -> {
 CloudWatchLogsException e = (CloudWatchLogsException)
 throwable.getCause();
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 })
 .subscriber(() -> new FlowableSubscriber<>() {
 @Override
 public void onSubscribe(@NonNull Subscription s) {
 subscriptionAtomicReference.set(s);
 s.request(Long.MAX_VALUE);
 }

 @Override
 public void onNext(StartLiveTailResponseStream event) {
 if (event instanceof LiveTailSessionStart) {

StartLiveTail 473

Amazon CloudWatch Logs User Guide

 LiveTailSessionStart sessionStart =
 (LiveTailSessionStart) event;
 System.out.println(sessionStart);
 } else if (event instanceof LiveTailSessionUpdate) {
 LiveTailSessionUpdate sessionUpdate =
 (LiveTailSessionUpdate) event;
 List<LiveTailSessionLogEvent> logEvents =
 sessionUpdate.sessionResults();
 logEvents.forEach(e -> {
 long timestamp = e.timestamp();
 Date date = new Date(timestamp);
 System.out.println("[" + date + "] " + e.message());
 });
 } else {
 throw CloudWatchLogsException.builder().message("Unknown
 event type").build();
 }
 }

 @Override
 public void onError(Throwable throwable) {
 System.out.println(throwable.getMessage());
 System.exit(1);
 }

 @Override
 public void onComplete() {
 System.out.println("Completed Streaming Session");
 }
 })
 .build();
 }

Start the Live Tail session.

 CloudWatchLogsAsyncClient cloudWatchLogsAsyncClient =
 CloudWatchLogsAsyncClient.builder()
 .credentialsProvider(ProfileCredentialsProvider.create())
 .build();

 StartLiveTailRequest request =
 StartLiveTailRequest.builder()

StartLiveTail 474

Amazon CloudWatch Logs User Guide

 .logGroupIdentifiers(logGroupIdentifiers)
 .logStreamNames(logStreamNames)
 .logEventFilterPattern(logEventFilterPattern)
 .build();

 /* Create a reference to store the subscription */
 final AtomicReference<Subscription> subscriptionAtomicReference = new
 AtomicReference<>(null);

 cloudWatchLogsAsyncClient.startLiveTail(request,
 getStartLiveTailResponseStreamHandler(subscriptionAtomicReference));

Stop the Live Tail session after a period of time has elapsed.

 /* Set a timeout for the session and cancel the subscription. This will:
 * 1). Close the stream
 * 2). Stop the Live Tail session
 */
 try {
 Thread.sleep(10000);
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
 if (subscriptionAtomicReference.get() != null) {
 subscriptionAtomicReference.get().cancel();
 System.out.println("Subscription to stream closed");
 }

• For API details, see StartLiveTail in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Include the required files.

import { CloudWatchLogsClient, StartLiveTailCommand } from "@aws-sdk/client-
cloudwatch-logs";

StartLiveTail 475

https://docs.aws.amazon.com/goto/SdkForJavaV2/logs-2014-03-28/StartLiveTail

Amazon CloudWatch Logs User Guide

Handle the events from the Live Tail session.

async function handleResponseAsync(response) {
 try {
 for await (const event of response.responseStream) {
 if (event.sessionStart !== undefined) {
 console.log(event.sessionStart);
 } else if (event.sessionUpdate !== undefined) {
 for (const logEvent of event.sessionUpdate.sessionResults) {
 const timestamp = logEvent.timestamp;
 const date = new Date(timestamp);
 console.log("[" + date + "] " + logEvent.message);
 }
 } else {
 console.error("Unknown event type");
 }
 }
 } catch (err) {
 // On-stream exceptions are captured here
 console.error(err)
 }
}

Start the Live Tail session.

 const client = new CloudWatchLogsClient();

 const command = new StartLiveTailCommand({
 logGroupIdentifiers: logGroupIdentifiers,
 logStreamNames: logStreamNames,
 logEventFilterPattern: filterPattern
 });
 try{
 const response = await client.send(command);
 handleResponseAsync(response);
 } catch (err){
 // Pre-stream exceptions are captured here
 console.log(err);
 }

Stop the Live Tail session after a period of time has elapsed.

StartLiveTail 476

Amazon CloudWatch Logs User Guide

 /* Set a timeout to close the client. This will stop the Live Tail session.
 */
 setTimeout(function() {
 console.log("Client timeout");
 client.destroy();
 }, 10000);

• For API details, see StartLiveTail in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Include the required files.

import aws.sdk.kotlin.services.cloudwatchlogs.CloudWatchLogsClient
import aws.sdk.kotlin.services.cloudwatchlogs.model.StartLiveTailRequest
import aws.sdk.kotlin.services.cloudwatchlogs.model.StartLiveTailResponseStream
import kotlinx.coroutines.flow.takeWhile

Start the Live Tail session.

 val client = CloudWatchLogsClient.fromEnvironment()

 val request = StartLiveTailRequest {
 logGroupIdentifiers = logGroupIdentifiersVal
 logStreamNames = logStreamNamesVal
 logEventFilterPattern = logEventFilterPatternVal
 }

 val startTime = System.currentTimeMillis()

 try {
 client.startLiveTail(request) { response ->
 val stream = response.responseStream
 if (stream != null) {
 /* Set a timeout to unsubcribe from the flow. This will:
 * 1). Close the stream
 * 2). Stop the Live Tail session

StartLiveTail 477

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/StartLiveTailCommand

Amazon CloudWatch Logs User Guide

 */
 stream.takeWhile { System.currentTimeMillis() - startTime <
 10000 }.collect { value ->
 if (value is StartLiveTailResponseStream.SessionStart) {
 println(value.asSessionStart())
 } else if (value is
 StartLiveTailResponseStream.SessionUpdate) {
 for (e in value.asSessionUpdate().sessionResults!!) {
 println(e)
 }
 } else {
 throw IllegalArgumentException("Unknown event type")
 }
 }
 } else {
 throw IllegalArgumentException("No response stream")
 }
 }
 } catch (e: Exception) {
 println("Exception occurred during StartLiveTail: $e")
 System.exit(1)
 }

• For API details, see StartLiveTail in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Include the required files.

import boto3
import time
from datetime import datetime

Start the Live Tail session.

 # Initialize the client
 client = boto3.client('logs')

StartLiveTail 478

https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon CloudWatch Logs User Guide

 start_time = time.time()

 try:
 response = client.start_live_tail(
 logGroupIdentifiers=log_group_identifiers,
 logStreamNames=log_streams,
 logEventFilterPattern=filter_pattern
)
 event_stream = response['responseStream']
 # Handle the events streamed back in the response
 for event in event_stream:
 # Set a timeout to close the stream.
 # This will end the Live Tail session.
 if (time.time() - start_time >= 10):
 event_stream.close()
 break
 # Handle when session is started
 if 'sessionStart' in event:
 session_start_event = event['sessionStart']
 print(session_start_event)
 # Handle when log event is given in a session update
 elif 'sessionUpdate' in event:
 log_events = event['sessionUpdate']['sessionResults']
 for log_event in log_events:
 print('[{date}]
 {log}'.format(date=datetime.fromtimestamp(log_event['timestamp']/1000),log=log_event['message']))
 else:
 # On-stream exceptions are captured here
 raise RuntimeError(str(event))
 except Exception as e:
 print(e)

• For API details, see StartLiveTail in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudWatch Logs
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use StartQuery with an AWS SDK or command line tool

The following code examples show how to use StartQuery.

StartQuery 479

https://docs.aws.amazon.com/goto/boto3/logs-2014-03-28/StartLiveTail

Amazon CloudWatch Logs User Guide

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Run a large query

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Wrapper for the StartQueryCommand. Uses a static query string
 * for consistency.
 * @param {[Date, Date]} dateRange
 * @param {number} maxLogs
 * @returns {Promise<{ queryId: string }>}
 */
 async _startQuery([startDate, endDate], maxLogs = 10000) {
 try {
 return await this.client.send(
 new StartQueryCommand({
 logGroupNames: this.logGroupNames,
 queryString: "fields @timestamp, @message | sort @timestamp asc",
 startTime: startDate.valueOf(),
 endTime: endDate.valueOf(),
 limit: maxLogs,
 }),
);
 } catch (err) {
 /** @type {string} */
 const message = err.message;
 if (message.startsWith("Query's end date and time")) {
 // This error indicates that the query's start or end date occur
 // before the log group was created.
 throw new DateOutOfBoundsError(message);
 }

StartQuery 480

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch-logs#code-examples

Amazon CloudWatch Logs User Guide

 throw err;
 }
 }

• For API details, see StartQuery in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 def perform_query(self, date_range):
 """
 Performs the actual CloudWatch log query.

 :param date_range: A tuple representing the start and end datetime for
 the query.
 :type date_range: tuple
 :return: A list containing the query results.
 :rtype: list
 """
 client = boto3.client("logs")
 try:
 try:
 start_time = round(

 self.date_utilities.convert_iso8601_to_unix_timestamp(date_range[0])
)
 end_time = round(

 self.date_utilities.convert_iso8601_to_unix_timestamp(date_range[1])
)
 response = client.start_query(
 logGroupName=self.log_groups,
 startTime=start_time,

StartQuery 481

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/StartQueryCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/cloudwatch-logs#code-examples

Amazon CloudWatch Logs User Guide

 endTime=end_time,
 queryString="fields @timestamp, @message | sort @timestamp
 asc",
 limit=self.limit,
)
 query_id = response["queryId"]
 except client.exceptions.ResourceNotFoundException as e:
 raise DateOutOfBoundsError(f"Resource not found: {e}")
 while True:
 time.sleep(1)
 results = client.get_query_results(queryId=query_id)
 if results["status"] in [
 "Complete",
 "Failed",
 "Cancelled",
 "Timeout",
 "Unknown",
]:
 return results.get("results", [])
 except DateOutOfBoundsError:
 return []

 def _initiate_query(self, client, date_range, max_logs):
 """
 Initiates the CloudWatch logs query.

 :param date_range: A tuple representing the start and end datetime for
 the query.
 :type date_range: tuple
 :param max_logs: The maximum number of logs to retrieve.
 :type max_logs: int
 :return: The query ID as a string.
 :rtype: str
 """
 try:
 start_time = round(

 self.date_utilities.convert_iso8601_to_unix_timestamp(date_range[0])
)
 end_time = round(

 self.date_utilities.convert_iso8601_to_unix_timestamp(date_range[1])
)
 response = client.start_query(

StartQuery 482

Amazon CloudWatch Logs User Guide

 logGroupName=self.log_groups,
 startTime=start_time,
 endTime=end_time,
 queryString="fields @timestamp, @message | sort @timestamp asc",
 limit=max_logs,
)
 return response["queryId"]
 except client.exceptions.ResourceNotFoundException as e:
 raise DateOutOfBoundsError(f"Resource not found: {e}")

• For API details, see StartQuery in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using CloudWatch Logs
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Scenarios for CloudWatch Logs using AWS SDKs

The following code examples show you how to implement common scenarios in CloudWatch Logs
with AWS SDKs. These scenarios show you how to accomplish specific tasks by calling multiple
functions within CloudWatch Logs. Each scenario includes a link to GitHub, where you can find
instructions on how to set up and run the code.

Examples

• Use CloudWatch Logs to run a large query

Use CloudWatch Logs to run a large query

The following code examples show how to use CloudWatch Logs to query more than 10,000
records.

Scenarios 483

https://docs.aws.amazon.com/goto/boto3/logs-2014-03-28/StartQuery

Amazon CloudWatch Logs User Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

This is the entry point.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { CloudWatchLogsClient } from "@aws-sdk/client-cloudwatch-logs";
import { CloudWatchQuery } from "./cloud-watch-query.js";

console.log("Starting a recursive query...");

if (!process.env.QUERY_START_DATE || !process.env.QUERY_END_DATE) {
 throw new Error(
 "QUERY_START_DATE and QUERY_END_DATE environment variables are required.",
);
}

const cloudWatchQuery = new CloudWatchQuery(new CloudWatchLogsClient({}), {
 logGroupNames: ["/workflows/cloudwatch-logs/large-query"],
 dateRange: [
 new Date(parseInt(process.env.QUERY_START_DATE)),
 new Date(parseInt(process.env.QUERY_END_DATE)),
],
});

await cloudWatchQuery.run();

console.log(
 `Queries finished in ${cloudWatchQuery.secondsElapsed} seconds.\nTotal logs
 found: ${cloudWatchQuery.results.length}`,
);

This is a class that splits queries into multiple steps if necessary.

Run a large query 484

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cloudwatch-logs/scenarios/large-query#code-examples

Amazon CloudWatch Logs User Guide

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import {
 StartQueryCommand,
 GetQueryResultsCommand,
} from "@aws-sdk/client-cloudwatch-logs";
import { splitDateRange } from "@aws-doc-sdk-examples/lib/utils/util-date.js";
import { retry } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";

class DateOutOfBoundsError extends Error {}

export class CloudWatchQuery {
 /**
 * Run a query for all CloudWatch Logs within a certain date range.
 * CloudWatch logs return a max of 10,000 results. This class
 * performs a binary search across all of the logs in the provided
 * date range if a query returns the maximum number of results.
 *
 * @param {import('@aws-sdk/client-cloudwatch-logs').CloudWatchLogsClient}
 client
 * @param {{ logGroupNames: string[], dateRange: [Date, Date], queryConfig:
 { limit: number } }} config
 */
 constructor(client, { logGroupNames, dateRange, queryConfig }) {
 this.client = client;
 /**
 * All log groups are queried.
 */
 this.logGroupNames = logGroupNames;

 /**
 * The inclusive date range that is queried.
 */
 this.dateRange = dateRange;

 /**
 * CloudWatch Logs never returns more than 10,000 logs.
 */
 this.limit = queryConfig?.limit ?? 10000;

 /**
 * @type {import("@aws-sdk/client-cloudwatch-logs").ResultField[][]}
 */

Run a large query 485

Amazon CloudWatch Logs User Guide

 this.results = [];
 }

 /**
 * Run the query.
 */
 async run() {
 this.secondsElapsed = 0;
 const start = new Date();
 this.results = await this._largeQuery(this.dateRange);
 const end = new Date();
 this.secondsElapsed = (end - start) / 1000;
 return this.results;
 }

 /**
 * Recursively query for logs.
 * @param {[Date, Date]} dateRange
 * @returns {Promise<import("@aws-sdk/client-cloudwatch-logs").ResultField[]
[]>}
 */
 async _largeQuery(dateRange) {
 const logs = await this._query(dateRange, this.limit);

 console.log(
 `Query date range: ${dateRange
 .map((d) => d.toISOString())
 .join(" to ")}. Found ${logs.length} logs.`,
);

 if (logs.length < this.limit) {
 return logs;
 }

 const lastLogDate = this._getLastLogDate(logs);
 const offsetLastLogDate = new Date(lastLogDate);
 offsetLastLogDate.setMilliseconds(lastLogDate.getMilliseconds() + 1);
 const subDateRange = [offsetLastLogDate, dateRange[1]];
 const [r1, r2] = splitDateRange(subDateRange);
 const results = await Promise.all([
 this._largeQuery(r1),
 this._largeQuery(r2),
]);
 return [logs, ...results].flat();

Run a large query 486

Amazon CloudWatch Logs User Guide

 }

 /**
 * Find the most recent log in a list of logs.
 * @param {import("@aws-sdk/client-cloudwatch-logs").ResultField[][]} logs
 */
 _getLastLogDate(logs) {
 const timestamps = logs
 .map(
 (log) =>
 log.find((fieldMeta) => fieldMeta.field === "@timestamp")?.value,
)
 .filter((t) => !!t)
 .map((t) => `${t}Z`)
 .sort();

 if (!timestamps.length) {
 throw new Error("No timestamp found in logs.");
 }

 return new Date(timestamps[timestamps.length - 1]);
 }

 // snippet-start:[javascript.v3.cloudwatch-logs.actions.GetQueryResults]
 /**
 * Simple wrapper for the GetQueryResultsCommand.
 * @param {string} queryId
 */
 _getQueryResults(queryId) {
 return this.client.send(new GetQueryResultsCommand({ queryId }));
 }
 // snippet-end:[javascript.v3.cloudwatch-logs.actions.GetQueryResults]

 /**
 * Starts a query and waits for it to complete.
 * @param {[Date, Date]} dateRange
 * @param {number} maxLogs
 */
 async _query(dateRange, maxLogs) {
 try {
 const { queryId } = await this._startQuery(dateRange, maxLogs);
 const { results } = await this._waitUntilQueryDone(queryId);
 return results ?? [];
 } catch (err) {

Run a large query 487

Amazon CloudWatch Logs User Guide

 /**
 * This error is thrown when StartQuery returns an error indicating
 * that the query's start or end date occur before the log group was
 * created.
 */
 if (err instanceof DateOutOfBoundsError) {
 return [];
 } else {
 throw err;
 }
 }
 }

 // snippet-start:[javascript.v3.cloudwatch-logs.actions.StartQuery]
 /**
 * Wrapper for the StartQueryCommand. Uses a static query string
 * for consistency.
 * @param {[Date, Date]} dateRange
 * @param {number} maxLogs
 * @returns {Promise<{ queryId: string }>}
 */
 async _startQuery([startDate, endDate], maxLogs = 10000) {
 try {
 return await this.client.send(
 new StartQueryCommand({
 logGroupNames: this.logGroupNames,
 queryString: "fields @timestamp, @message | sort @timestamp asc",
 startTime: startDate.valueOf(),
 endTime: endDate.valueOf(),
 limit: maxLogs,
 }),
);
 } catch (err) {
 /** @type {string} */
 const message = err.message;
 if (message.startsWith("Query's end date and time")) {
 // This error indicates that the query's start or end date occur
 // before the log group was created.
 throw new DateOutOfBoundsError(message);
 }

 throw err;
 }
 }

Run a large query 488

Amazon CloudWatch Logs User Guide

 // snippet-end:[javascript.v3.cloudwatch-logs.actions.StartQuery]

 /**
 * Call GetQueryResultsCommand until the query is done.
 * @param {string} queryId
 */
 _waitUntilQueryDone(queryId) {
 const getResults = async () => {
 const results = await this._getQueryResults(queryId);
 const queryDone = [
 "Complete",
 "Failed",
 "Cancelled",
 "Timeout",
 "Unknown",
].includes(results.status);

 return { queryDone, results };
 };

 return retry(
 { intervalInMs: 1000, maxRetries: 60, quiet: true },
 async () => {
 const { queryDone, results } = await getResults();
 if (!queryDone) {
 throw new Error("Query not done.");
 }

 return results;
 },
);
 }
}

• For API details, see the following topics in AWS SDK for JavaScript API Reference.

• GetQueryResults

• StartQuery

Run a large query 489

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/GetQueryResultsCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/cloudwatch-logs/command/StartQueryCommand

Amazon CloudWatch Logs User Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

This file invokes an example module for managing CloudWatch queries exceeding 10,000
results.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
import logging
import os
import sys

import boto3
from botocore.config import Config

from cloudwatch_query import CloudWatchQuery
from date_utilities import DateUtilities

Configure logging at the module level.
logging.basicConfig(
 level=logging.INFO,
 format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s",
)

class CloudWatchLogsQueryRunner:
 def __init__(self):
 """
 Initializes the CloudWatchLogsQueryRunner class by setting up date
 utilities
 and creating a CloudWatch Logs client with retry configuration.
 """
 self.date_utilities = DateUtilities()
 self.cloudwatch_logs_client = self.create_cloudwatch_logs_client()

Run a large query 490

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/cloudwatch-logs/scenarios/large-query#code-examples

Amazon CloudWatch Logs User Guide

 def create_cloudwatch_logs_client(self):
 """
 Creates and returns a CloudWatch Logs client with a specified retry
 configuration.

 :return: A CloudWatch Logs client instance.
 :rtype: boto3.client
 """
 try:
 return boto3.client("logs", config=Config(retries={"max_attempts":
 10}))
 except Exception as e:
 logging.error(f"Failed to create CloudWatch Logs client: {e}")
 sys.exit(1)

 def fetch_environment_variables(self):
 """
 Fetches and validates required environment variables for query start and
 end dates.

 :return: Tuple of query start date and end date as integers.
 :rtype: tuple
 :raises SystemExit: If required environment variables are missing or
 invalid.
 """
 try:
 query_start_date = int(os.environ["QUERY_START_DATE"])
 query_end_date = int(os.environ["QUERY_END_DATE"])
 except KeyError:
 logging.error(
 "Both QUERY_START_DATE and QUERY_END_DATE environment variables
 are required."
)
 sys.exit(1)
 except ValueError as e:
 logging.error(f"Error parsing date environment variables: {e}")
 sys.exit(1)

 return query_start_date, query_end_date

 def convert_dates_to_iso8601(self, start_date, end_date):
 """
 Converts UNIX timestamp dates to ISO 8601 format using DateUtilities.

Run a large query 491

Amazon CloudWatch Logs User Guide

 :param start_date: The start date in UNIX timestamp.
 :type start_date: int
 :param end_date: The end date in UNIX timestamp.
 :type end_date: int
 :return: Start and end dates in ISO 8601 format.
 :rtype: tuple
 """
 start_date_iso8601 =
 self.date_utilities.convert_unix_timestamp_to_iso8601(
 start_date
)
 end_date_iso8601 = self.date_utilities.convert_unix_timestamp_to_iso8601(
 end_date
)
 return start_date_iso8601, end_date_iso8601

 def execute_query(
 self,
 start_date_iso8601,
 end_date_iso8601,
 log_group="/workflows/cloudwatch-logs/large-query",
):
 """
 Creates a CloudWatchQuery instance and executes the query with provided
 date range.

 :param start_date_iso8601: The start date in ISO 8601 format.
 :type start_date_iso8601: str
 :param end_date_iso8601: The end date in ISO 8601 format.
 :type end_date_iso8601: str
 :param log_group: Log group to search: "/workflows/cloudwatch-logs/large-
query"
 :type log_group: str
 """
 cloudwatch_query = CloudWatchQuery(
 [start_date_iso8601, end_date_iso8601],
)
 cloudwatch_query.query_logs((start_date_iso8601, end_date_iso8601))
 logging.info("Query executed successfully.")
 logging.info(
 f"Queries completed in {cloudwatch_query.query_duration} seconds.
 Total logs found: {len(cloudwatch_query.query_results)}"
)

Run a large query 492

Amazon CloudWatch Logs User Guide

def main():
 """
 Main function to start a recursive CloudWatch logs query.
 Fetches required environment variables, converts dates, and executes the
 query.
 """
 logging.info("Starting a recursive CloudWatch logs query...")
 runner = CloudWatchLogsQueryRunner()
 query_start_date, query_end_date = runner.fetch_environment_variables()
 start_date_iso8601 = DateUtilities.convert_unix_timestamp_to_iso8601(
 query_start_date
)
 end_date_iso8601 =
 DateUtilities.convert_unix_timestamp_to_iso8601(query_end_date)
 runner.execute_query(start_date_iso8601, end_date_iso8601)

if __name__ == "__main__":
 main()

This module processes CloudWatch queries exceeding 10,000 results.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
import logging
import time
from datetime import datetime
import threading
import boto3

from date_utilities import DateUtilities

class DateOutOfBoundsError(Exception):
 """Exception raised when the date range for a query is out of bounds."""

 pass

class CloudWatchQuery:
 """

Run a large query 493

Amazon CloudWatch Logs User Guide

 A class to query AWS CloudWatch logs within a specified date range.

 :ivar date_range: Start and end datetime for the query.
 :vartype date_range: tuple
 :ivar limit: Maximum number of log entries to return.
 :vartype limit: int
 """

 def __init__(self, date_range):
 self.lock = threading.Lock()
 self.log_groups = "/workflows/cloudwatch-logs/large-query"
 self.query_results = []
 self.date_range = date_range
 self.query_duration = None
 self.datetime_format = "%Y-%m-%d %H:%M:%S.%f"
 self.date_utilities = DateUtilities()
 self.limit = 10000

 def query_logs(self, date_range):
 """
 Executes a CloudWatch logs query for a specified date range and
 calculates the execution time of the query.

 :return: A batch of logs retrieved from the CloudWatch logs query.
 :rtype: list
 """
 start_time = datetime.now()

 start_date, end_date = self.date_utilities.normalize_date_range_format(
 date_range, from_format="unix_timestamp", to_format="datetime"
)

 logging.info(
 f"Original query:"
 f"\n START: {start_date}"
 f"\n END: {end_date}"
)
 self.recursive_query((start_date, end_date))
 end_time = datetime.now()
 self.query_duration = (end_time - start_time).total_seconds()

 def recursive_query(self, date_range):
 """

Run a large query 494

Amazon CloudWatch Logs User Guide

 Processes logs within a given date range, fetching batches of logs
 recursively if necessary.

 :param date_range: The date range to fetch logs for, specified as a tuple
 (start_timestamp, end_timestamp).
 :type date_range: tuple
 :return: None if the recursive fetching is continued or stops when the
 final batch of logs is processed.
 Although it doesn't explicitly return the query results, this
 method accumulates all fetched logs
 in the `self.query_results` attribute.
 :rtype: None
 """
 batch_of_logs = self.perform_query(date_range)
 # Add the batch to the accumulated logs
 with self.lock:
 self.query_results.extend(batch_of_logs)
 if len(batch_of_logs) == self.limit:
 logging.info(f"Fetched {self.limit}, checking for more...")
 most_recent_log = self.find_most_recent_log(batch_of_logs)
 most_recent_log_timestamp = next(
 item["value"]
 for item in most_recent_log
 if item["field"] == "@timestamp"
)
 new_range = (most_recent_log_timestamp, date_range[1])
 midpoint = self.date_utilities.find_middle_time(new_range)

 first_half_thread = threading.Thread(
 target=self.recursive_query,
 args=((most_recent_log_timestamp, midpoint),),
)
 second_half_thread = threading.Thread(
 target=self.recursive_query, args=((midpoint, date_range[1]),)
)

 first_half_thread.start()
 second_half_thread.start()

 first_half_thread.join()
 second_half_thread.join()

 def find_most_recent_log(self, logs):
 """

Run a large query 495

Amazon CloudWatch Logs User Guide

 Search a list of log items and return most recent log entry.
 :param logs: A list of logs to analyze.
 :return: log
 :type :return List containing log item details
 """
 most_recent_log = None
 most_recent_date = "1970-01-01 00:00:00.000"

 for log in logs:
 for item in log:
 if item["field"] == "@timestamp":
 logging.debug(f"Compared: {item['value']} to
 {most_recent_date}")
 if (
 self.date_utilities.compare_dates(
 item["value"], most_recent_date
)
 == item["value"]
):
 logging.debug(f"New most recent: {item['value']}")
 most_recent_date = item["value"]
 most_recent_log = log
 logging.info(f"Most recent log date of batch: {most_recent_date}")
 return most_recent_log

 # snippet-start:[python.example_code.cloudwatch_logs.start_query]
 def perform_query(self, date_range):
 """
 Performs the actual CloudWatch log query.

 :param date_range: A tuple representing the start and end datetime for
 the query.
 :type date_range: tuple
 :return: A list containing the query results.
 :rtype: list
 """
 client = boto3.client("logs")
 try:
 try:
 start_time = round(

 self.date_utilities.convert_iso8601_to_unix_timestamp(date_range[0])
)
 end_time = round(

Run a large query 496

Amazon CloudWatch Logs User Guide

 self.date_utilities.convert_iso8601_to_unix_timestamp(date_range[1])
)
 response = client.start_query(
 logGroupName=self.log_groups,
 startTime=start_time,
 endTime=end_time,
 queryString="fields @timestamp, @message | sort @timestamp
 asc",
 limit=self.limit,
)
 query_id = response["queryId"]
 except client.exceptions.ResourceNotFoundException as e:
 raise DateOutOfBoundsError(f"Resource not found: {e}")
 while True:
 time.sleep(1)
 results = client.get_query_results(queryId=query_id)
 if results["status"] in [
 "Complete",
 "Failed",
 "Cancelled",
 "Timeout",
 "Unknown",
]:
 return results.get("results", [])
 except DateOutOfBoundsError:
 return []

 def _initiate_query(self, client, date_range, max_logs):
 """
 Initiates the CloudWatch logs query.

 :param date_range: A tuple representing the start and end datetime for
 the query.
 :type date_range: tuple
 :param max_logs: The maximum number of logs to retrieve.
 :type max_logs: int
 :return: The query ID as a string.
 :rtype: str
 """
 try:
 start_time = round(

 self.date_utilities.convert_iso8601_to_unix_timestamp(date_range[0])

Run a large query 497

Amazon CloudWatch Logs User Guide

)
 end_time = round(

 self.date_utilities.convert_iso8601_to_unix_timestamp(date_range[1])
)
 response = client.start_query(
 logGroupName=self.log_groups,
 startTime=start_time,
 endTime=end_time,
 queryString="fields @timestamp, @message | sort @timestamp asc",
 limit=max_logs,
)
 return response["queryId"]
 except client.exceptions.ResourceNotFoundException as e:
 raise DateOutOfBoundsError(f"Resource not found: {e}")

 # snippet-end:[python.example_code.cloudwatch_logs.start_query]

 # snippet-start:[python.example_code.cloudwatch_logs.get_query_results]
 def _wait_for_query_results(self, client, query_id):
 """
 Waits for the query to complete and retrieves the results.

 :param query_id: The ID of the initiated query.
 :type query_id: str
 :return: A list containing the results of the query.
 :rtype: list
 """
 while True:
 time.sleep(1)
 results = client.get_query_results(queryId=query_id)
 if results["status"] in [
 "Complete",
 "Failed",
 "Cancelled",
 "Timeout",
 "Unknown",
]:
 return results.get("results", [])

 # snippet-end:[python.example_code.cloudwatch_logs.get_query_results]

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

Run a large query 498

Amazon CloudWatch Logs User Guide

• GetQueryResults

• StartQuery

For a complete list of AWS SDK developer guides and code examples, see Using CloudWatch Logs
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Cross-service examples for CloudWatch Logs using AWS SDKs

The following sample applications use AWS SDKs to combine CloudWatch Logs with other AWS
services. Each example includes a link to GitHub, where you can find instructions on how to set up
and run the application.

Examples

• Use scheduled events to invoke a Lambda function

Use scheduled events to invoke a Lambda function

The following code examples show how to create an AWS Lambda function invoked by an Amazon
EventBridge scheduled event.

Python

SDK for Python (Boto3)

This example shows how to register an AWS Lambda function as the target of a scheduled
Amazon EventBridge event. The Lambda handler writes a friendly message and the full
event data to Amazon CloudWatch Logs for later retrieval.

• Deploys a Lambda function.

• Creates an EventBridge scheduled event and makes the Lambda function the target.

• Grants permission to let EventBridge invoke the Lambda function.

• Prints the latest data from CloudWatch Logs to show the result of the scheduled
invocations.

• Cleans up all resources created during the demo.

Cross-service examples 499

https://docs.aws.amazon.com/goto/boto3/logs-2014-03-28/GetQueryResults
https://docs.aws.amazon.com/goto/boto3/logs-2014-03-28/StartQuery

Amazon CloudWatch Logs User Guide

This example is best viewed on GitHub. For complete source code and instructions on how to
set up and run, see the full example on GitHub.

Services used in this example

• CloudWatch Logs

• EventBridge

• Lambda

For a complete list of AWS SDK developer guides and code examples, see Using CloudWatch Logs
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use scheduled events to invoke a Lambda function 500

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#readme

Amazon CloudWatch Logs User Guide

Security in Amazon CloudWatch Logs

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to WorkSpaces, see
AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations

This documentation helps you understand how to apply the shared responsibility model when
using Amazon CloudWatch Logs. It shows you how to configure Amazon CloudWatch Logs to meet
your security and compliance objectives. You also learn how to use other AWS services that help
you to monitor and secure your CloudWatch Logs resources.

Contents

• Data protection in Amazon CloudWatch Logs

• Identity and access management for Amazon CloudWatch Logs

• Compliance validation for Amazon CloudWatch Logs

• Resilience in Amazon CloudWatch Logs

• Infrastructure security in Amazon CloudWatch Logs

• Using CloudWatch Logs with interface VPC endpoints

501

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon CloudWatch Logs User Guide

Data protection in Amazon CloudWatch Logs

Note

In addition to the following information about general data protection in AWS, CloudWatch
Logs also enables you to protect sensitive data in log events by masking it. For more
information, see Help protect sensitive log data with masking.

The AWS shared responsibility model applies to data protection in Amazon CloudWatch Logs. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with CloudWatch Logs or other AWS services using the console, API, AWS CLI, or
AWS SDKs. Any data that you enter into tags or free-form text fields used for names may be used

Data protection 502

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

Amazon CloudWatch Logs User Guide

for billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend
that you do not include credentials information in the URL to validate your request to that server.

Encryption at rest

CloudWatch Logs protects data at rest using encryption. All log groups are encrypted. By default,
the CloudWatch Logs service manages the server-side encryption keys.

If you want to manage the keys used for encrypting and decrypting your logs, use customer master
keys (CMK) from AWS Key Management Service. For more information, see Encrypt log data in
CloudWatch Logs using AWS Key Management Service.

Encryption in transit

CloudWatch Logs uses end-to-end encryption of data in transit. The CloudWatch Logs service
manages the server-side encryption keys.

Identity and access management for Amazon CloudWatch Logs

Access to Amazon CloudWatch Logs requires credentials that AWS can use to authenticate your
requests. Those credentials must have permissions to access AWS resources, such as to retrieve
CloudWatch Logs data about your cloud resources. The following sections provide details on how
you can use AWS Identity and Access Management (IAM) and CloudWatch Logs to help secure your
resources by controlling who can access them:

• Authentication

• Access control

Authentication

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Encryption at rest 503

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html

Amazon CloudWatch Logs User Guide

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Access control

You can have valid credentials to authenticate your requests, but unless you have permissions you
cannot create or access CloudWatch Logs resources. For example, you must have permissions to
create log streams, create log groups, and so on.

The following sections describe how to manage permissions for CloudWatch Logs. We recommend
that you read the overview first.

• Overview of managing access permissions to your CloudWatch Logs resources

• Using identity-based policies (IAM policies) for CloudWatch Logs

• CloudWatch Logs permissions reference

Overview of managing access permissions to your CloudWatch Logs
resources

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

Access control 504

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html

Amazon CloudWatch Logs User Guide

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Topics

• CloudWatch Logs resources and operations

• Understanding resource ownership

• Managing access to resources

• Specifying policy elements: Actions, effects, and principals

• Specifying conditions in a policy

CloudWatch Logs resources and operations

In CloudWatch Logs the primary resources are log groups, log streams and destinations.
CloudWatch Logs does not support subresources (other resources for use with the primary
resource).

These resources and subresources have unique Amazon Resource Names (ARNs) associated with
them as shown in the following table.

Resource type ARN format

Log group Both of the following are used. The second
one, with the :* at the end, is what is returned
by the describe-log-groups CLI
command and the DescribeLogGroups API.

arn:aws:logs:region:account-id :log-grou
p:log_group_name

arn:aws:logs:region:account-id :log-grou
p:log_group_name :*

Use the first version, without the trailing :*, in
the following situations:

Overview of managing access 505

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon CloudWatch Logs User Guide

Resource type ARN format

• In the logGroupIdentifier input field
in many CloudWatch Logs APIs.

• In the resourceArn field in tagging APIs

• In IAM policies, when specifying permissio
ns for TagResource, UntagResource, and
ListTagsForResource.

Use the second version, with the trailing :*, to
refer to the ARN when specifying permissions
in IAM policies for all other API actions.

Log stream arn:aws:logs:region:account-id :log-grou
p:log_group_name :log-stream:log-strea
m-name

Destination arn:aws:logs:region:account-id :destinat
ion:destination_name

For more information about ARNs, see ARNs in IAM User Guide. For information about CloudWatch
Logs ARNs, see Amazon Resource Names (ARNs) in Amazon Web Services General Reference. For an
example of a policy that covers CloudWatch Logs, see Using identity-based policies (IAM policies)
for CloudWatch Logs.

CloudWatch Logs provides a set of operations to work with the CloudWatch Logs resources. For a
list of available operations, see CloudWatch Logs permissions reference.

Understanding resource ownership

The AWS account owns the resources that are created in the account, regardless of who created the
resources. Specifically, the resource owner is the AWS account of the principal entity (that is, the
root account, a user, or an IAM role) that authenticates the resource creation request. The following
examples illustrate how this works:

• If you use the root account credentials of your AWS account to create a log group, your AWS
account is the owner of the CloudWatch Logs resource.

Overview of managing access 506

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_UntagResource.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/Using_Identifiers.html#Identifiers_ARNs
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-cloudwatch-logs
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html

Amazon CloudWatch Logs User Guide

• If you create a user in your AWS account and grant permissions to create CloudWatch Logs
resources to that user, the user can create CloudWatch Logs resources. However, your AWS
account, to which the user belongs, owns the CloudWatch Logs resources.

• If you create an IAM role in your AWS account with permissions to create CloudWatch Logs
resources, anyone who can assume the role can create CloudWatch Logs resources. Your AWS
account, to which the role belongs, owns the CloudWatch Logs resources.

Managing access to resources

A permissions policy describes who has access to what. The following section explains the available
options for creating permissions policies.

Note

This section discusses using IAM in the context of CloudWatch Logs. It doesn't provide
detailed information about the IAM service. For complete IAM documentation, see What is
IAM? in the IAM User Guide. For information about IAM policy syntax and descriptions, see
IAM policy reference in the IAM User Guide.

Policies attached to an IAM identity are referred to as identity-based policies (IAM polices) and
policies attached to a resource are referred to as resource-based policies. CloudWatch Logs
supports identity-based policies, and resource-based policies for destinations, which are used to
enable cross account subscriptions. For more information, see Cross-account subscriptions.

Topics

• Log group permissions and Contributor Insights

• Resource-based policies

Log group permissions and Contributor Insights

Contributor Insights is a feature of CloudWatch that enables you to analyze data from log
groups and create time series that display contributor data. You can see metrics about the top-N
contributors, the total number of unique contributors, and their usage. For more information, see
Using Contributor Insights to Analyze High-Cardinality Data.

Overview of managing access 507

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContributorInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContributorInsights.html

Amazon CloudWatch Logs User Guide

When you grant a user the cloudwatch:PutInsightRule and
cloudwatch:GetInsightRuleReport permissions, that user can create a rule that evaluates
any log group in CloudWatch Logs and then see the results. The results can contain contributor
data for those log groups. Be sure to grant these permissions only to users who should be able to
view this data.

Resource-based policies

CloudWatch Logs supports resource-based policies for destinations, which you can use to enable
cross account subscriptions. For more information, see Step 1: Create a destination. Destinations
can be created using the PutDestination API, and you can add a resource policy to the destination
using the PutDestination API. The following example allows another AWS account with the
account ID 111122223333 to subscribe their log groups to the destination arn:aws:logs:us-
east-1:123456789012:destination:testDestination.

{
 "Version" : "2012-10-17",
 "Statement" : [
 {
 "Sid" : "",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "111122223333"
 },
 "Action" : "logs:PutSubscriptionFilter",
 "Resource" : "arn:aws:logs:us-east-1:123456789012:destination:testDestination"
 }
]
}

Specifying policy elements: Actions, effects, and principals

For each CloudWatch Logs resource, the service defines a set of API operations. To grant
permissions for these API operations, CloudWatch Logs defines a set of actions that you can
specify in a policy. Some API operations can require permissions for more than one action in order
to perform the API operation. For more information about resources and API operations, see
CloudWatch Logs resources and operations and CloudWatch Logs permissions reference.

The following are the basic policy elements:

Overview of managing access 508

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutDestination.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/PutDestinationPolicy.html

Amazon CloudWatch Logs User Guide

• Resource – You use an Amazon Resource Name (ARN) to identify the resource that the policy
applies to. For more information, see CloudWatch Logs resources and operations.

• Action – You use action keywords to identify resource operations that you want to allow or
deny. For example, the logs.DescribeLogGroups permission allows the user permissions to
perform the DescribeLogGroups operation.

• Effect – You specify the effect, either allow or deny, when the user requests the specific action.
If you don't explicitly grant access to (allow) a resource, access is implicitly denied. You can also
explicitly deny access to a resource, which you might do to make sure that a user cannot access it,
even if a different policy grants access.

• Principal – In identity-based policies (IAM policies), the user that the policy is attached to is the
implicit principal. For resource-based policies, you specify the user, account, service, or other
entity that you want to receive permissions (applies to resource-based policies only). CloudWatch
Logs supports resource-based policies for destinations.

To learn more about IAM policy syntax and descriptions, see AWS IAM Policy Reference in the IAM
User Guide.

For a table showing all of the CloudWatch Logs API actions and the resources that they apply to,
see CloudWatch Logs permissions reference.

Specifying conditions in a policy

When you grant permissions, you can use the access policy language to specify the conditions
when a policy should take effect. For example, you might want a policy to be applied only after a
specific date. For more information about specifying conditions in a policy language, see Condition
in the IAM User Guide.

To express conditions, you use predefined condition keys. For a list of context keys supported by
each AWS service and a list of AWS-wide policy keys, see Actions, resources, and condition keys for
AWS services and AWS global condition context keys .

Note

You can use tags to control access to CloudWatch Logs resources, including log groups
and destinations. Access to log streams is controlled at the log group level, because of the
hierarchical relation between log groups and log streams. For more information about

Overview of managing access 509

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon CloudWatch Logs User Guide

using tags to control access, see Controlling access to Amazon Web Services resources using
tags.

Using identity-based policies (IAM policies) for CloudWatch Logs

This topic provides examples of identity-based policies in which an account administrator can
attach permissions policies to IAM identities (that is, users, groups, and roles).

Important

We recommend that you first review the introductory topics that explain the basic concepts
and options available for you to manage access to your CloudWatch Logs resources. For
more information, see Overview of managing access permissions to your CloudWatch Logs
resources.

This topic covers the following:

• Permissions required to use the CloudWatch console

• AWS managed (predefined) policies for CloudWatch Logs

• Customer managed policy examples

The following is an example of a permissions policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:*:*:*"
]

Using identity-based policies (IAM policies) 510

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html

Amazon CloudWatch Logs User Guide

 }
]
}

This policy has one statement that grants permissions to create log groups and log streams, to
upload log events to log streams, and to list details about log streams.

The wildcard character (*) at the end of the Resource value means that the statement allows
permission for the logs:CreateLogGroup, logs:CreateLogStream, logs:PutLogEvents,
and logs:DescribeLogStreams actions on any log group. To limit this permission to a specific
log group, replace the wildcard character (*) in the resource ARN with the specific log group ARN.
For more information about the sections within an IAM policy statement, see IAM Policy Elements
Reference in IAM User Guide. For a list showing all of the CloudWatch Logs actions, see CloudWatch
Logs permissions reference.

Permissions required to use the CloudWatch console

For a user to work with CloudWatch Logs in the CloudWatch console, that user must have a
minimum set of permissions that allows the user to describe other AWS resources in their AWS
account. In order to use CloudWatch Logs in the CloudWatch console, you must have permissions
from the following services:

• CloudWatch

• CloudWatch Logs

• OpenSearch Service

• IAM

• Kinesis

• Lambda

• Amazon S3

If you create an IAM policy that is more restrictive than the minimum required permissions, the
console won't function as intended for users with that IAM policy. To ensure that those users can
still use the CloudWatch console, also attach the CloudWatchReadOnlyAccess managed policy
to the user, as described in AWS managed (predefined) policies for CloudWatch Logs.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the CloudWatch Logs API.

Using identity-based policies (IAM policies) 511

https://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html

Amazon CloudWatch Logs User Guide

The full set of permissions required to work with the CloudWatch console for a user who is not
using the console to manage log subscriptions are:

• cloudwatch:GetMetricData

• cloudwatch:ListMetrics

• logs:CancelExportTask

• logs:CreateExportTask

• logs:CreateLogGroup

• logs:CreateLogStream

• logs:DeleteLogGroup

• logs:DeleteLogStream

• logs:DeleteMetricFilter

• logs:DeleteQueryDefinition

• logs:DeleteRetentionPolicy

• logs:DeleteSubscriptionFilter

• logs:DescribeExportTasks

• logs:DescribeLogGroups

• logs:DescribeLogStreams

• logs:DescribeMetricFilters

• logs:DescribeQueryDefinitions

• logs:DescribeQueries

• logs:DescribeSubscriptionFilters

• logs:FilterLogEvents

• logs:GetLogEvents

• logs:GetLogGroupFields

• logs:GetLogRecord

• logs:GetQueryResults

• logs:PutMetricFilter

• logs:PutQueryDefinition

• logs:PutRetentionPolicy

Using identity-based policies (IAM policies) 512

Amazon CloudWatch Logs User Guide

• logs:StartQuery

• logs:StopQuery

• logs:PutSubscriptionFilter

• logs:TestMetricFilter

For a user who will also be using the console to manage log subscriptions, the following
permissions are also required:

• es:DescribeElasticsearchDomain

• es:ListDomainNames

• iam:AttachRolePolicy

• iam:CreateRole

• iam:GetPolicy

• iam:GetPolicyVersion

• iam:GetRole

• iam:ListAttachedRolePolicies

• iam:ListRoles

• kinesis:DescribeStreams

• kinesis:ListStreams

• lambda:AddPermission

• lambda:CreateFunction

• lambda:GetFunctionConfiguration

• lambda:ListAliases

• lambda:ListFunctions

• lambda:ListVersionsByFunction

• lambda:RemovePermission

• s3:ListBuckets

AWS managed (predefined) policies for CloudWatch Logs

AWS addresses many common use cases by providing standalone IAM policies that are created
and administered by AWS. Managed policies grant necessary permissions for common use cases so

Using identity-based policies (IAM policies) 513

Amazon CloudWatch Logs User Guide

you can avoid having to investigate what permissions are needed. For more information, see AWS
Managed Policies in the IAM User Guide.

The following AWS managed policies, which you can attach to users and roles in your account, are
specific to CloudWatch Logs:

• CloudWatchLogsFullAccess – Grants full access to CloudWatch Logs.

• CloudWatchLogsReadOnlyAccess – Grants read-only access to CloudWatch Logs.

CloudWatchLogsFullAccess

The CloudWatchLogsFullAccess policy grants full access to CloudWatch Logs. The policy includes
the cloudwatch:GenerateQuery permission, so that users with this policy can generate a
CloudWatch Logs Insights query string from a natural language prompt. The contents are as
follows:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:*",
 "cloudwatch:GenerateQuery"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

CloudWatchLogsReadOnlyAccess

The CloudWatchLogsReadOnlyAccess policy grants read-only access to CloudWatch Logs. It
includes the cloudwatch:GenerateQuery permission, so that users with this policy can generate
a CloudWatch Logs Insights query string from a natural language prompt. The contents are as
follows:

{
 "Version": "2012-10-17",
 "Statement": [
 {

Using identity-based policies (IAM policies) 514

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html

Amazon CloudWatch Logs User Guide

 "Effect": "Allow",
 "Action": [
 "logs:Describe*",
 "logs:Get*",
 "logs:List*",
 "logs:StartQuery",
 "logs:StopQuery",
 "logs:TestMetricFilter",
 "logs:FilterLogEvents",
 "logs:StartLiveTail",
 "logs:StopLiveTail",
 "cloudwatch:GenerateQuery"
],
 "Resource": "*"
 }
]
}

CloudWatchLogsCrossAccountSharingConfiguration

The CloudWatchLogsCrossAccountSharingConfiguration policy grants access to create, manage,
and view Observability Access Manager links for sharing CloudWatch Logs resources between
accounts. For more information, see CloudWatch cross-account observability.

The contents are as follows:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:Link",
 "oam:ListLinks"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "oam:DeleteLink",
 "oam:GetLink",
 "oam:TagResource"

Using identity-based policies (IAM policies) 515

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html

Amazon CloudWatch Logs User Guide

],
 "Resource": "arn:aws:oam:*:*:link/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "oam:CreateLink",
 "oam:UpdateLink"
],
 "Resource": [
 "arn:aws:oam:*:*:link/*",
 "arn:aws:oam:*:*:sink/*"
]
 }
]
}

CloudWatch Logs updates to AWS managed policies

View details about updates to AWS managed policies for CloudWatch Logs since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the CloudWatch Logs Document history page.

Change Description Date

 CloudWatchLogsFullAccess –
Update to an existing policy.

 CloudWatch Logs added a
permission to CloudWatc
hLogsFullAccess.

 The cloudwatch:Generat
eQuery permission was
added, so that users with
this policy can generate a
CloudWatch Logs Insights
query string from a natural
language prompt.

 November 27, 2023

 November 27, 2023

Using identity-based policies (IAM policies) 516

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html

Amazon CloudWatch Logs User Guide

Change Description Date

 CloudWatchLogsRead
OnlyAccess – Update to an
existing policy.

 CloudWatch added a
permission to CloudWatc
hLogsReadOnlyAccess.

 The cloudwatch:Generat
eQuery permission was
added, so that users with
this policy can generate a
CloudWatch Logs Insights
query string from a natural
language prompt.

CloudWatchLogsRead
OnlyAccess – Update to an
existing policy

CloudWatch Logs added
permissions to CloudWatc
hLogsReadOnlyAccess.

The logs:StartLiveTail
 and logs:StopLiveTail

permissions were added so
that users with this policy
can use the console to start
and stop CloudWatch Logs
live tail sessions. For more
information, see Use live tail
to view logs in near real time.

June 6, 2023

Using identity-based policies (IAM policies) 517

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CloudWatchLogs_LiveTail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CloudWatchLogs_LiveTail.html

Amazon CloudWatch Logs User Guide

Change Description Date

CloudWatchLogsCros
sAccountSharingConfiguratio
n – New policy

CloudWatch Logs added a
new policy to enable you to
manage CloudWatch cross-
account observability links
that share CloudWatch Logs
log groups.

For more information, see
 CloudWatch cross-account
observability

November 27, 2022

CloudWatchLogsRead
OnlyAccess – Update to an
existing policy

CloudWatch Logs added
permissions to CloudWatc
hLogsReadOnlyAccess.

The oam:ListSinks and
oam:ListAttachedLi
nks permissions were
added so that users with this
policy can use the console
to view data shared from
source accounts in CloudWatc
h cross-account observability.

November 27, 2022

Customer managed policy examples

You can create your own custom IAM policies to allow permissions for CloudWatch Logs actions
and resources. You can attach these custom policies to the users or groups that require those
permissions.

In this section, you can find example user policies that grant permissions for various CloudWatch
Logs actions. These policies work when you are using the CloudWatch Logs API, AWS SDKs, or the
AWS CLI.

Using identity-based policies (IAM policies) 518

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html

Amazon CloudWatch Logs User Guide

Examples

• Example 1: Allow full access to CloudWatch Logs

• Example 2: Allow read-only access to CloudWatch Logs

• Example 3: Allow access to one log group

Example 1: Allow full access to CloudWatch Logs

The following policy allows a user to access all CloudWatch Logs actions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:*"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Example 2: Allow read-only access to CloudWatch Logs

AWS provides a CloudWatchLogsReadOnlyAccess policy that enables read-only access to
CloudWatch Logs data. This policy includes the following permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:Describe*",
 "logs:Get*",
 "logs:List*",
 "logs:StartQuery",
 "logs:StopQuery",
 "logs:TestMetricFilter",
 "logs:FilterLogEvents",
 "logs:StartLiveTail",

Using identity-based policies (IAM policies) 519

Amazon CloudWatch Logs User Guide

 "logs:StopLiveTail",
 "cloudwatch:GenerateQuery"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Example 3: Allow access to one log group

The following policy allows a user to read and write log events in one specified log group.

Important

The :* at the end of the log group name in the Resource line is required to indicate that
the policy applies to all log streams in this log group. If you omit :*, the policy will not be
enforced.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Action": [
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents",
 "logs:GetLogEvents"
],
 "Effect": "Allow",
 "Resource": "arn:aws:logs:us-west-2:123456789012:log-group:SampleLogGroupName:*"
 }
]
}

Use tagging and IAM policies for control at the log group level

You can grant users access to certain log groups while preventing them from accessing other log
groups. To do so, tag your log groups and use IAM policies that refer to those tags. To apply tags to
a log group, you need to have either the logs:TagResource or logs:TagLogGroup permission.

Using identity-based policies (IAM policies) 520

Amazon CloudWatch Logs User Guide

This applies both if you are assigning tags to the log group when you create it. or assigning them
later.

For more information about tagging log groups, see Tag log groups in Amazon CloudWatch Logs.

When you tag log groups, you can then grant an IAM policy to a user to allow access to only the log
groups with a particular tag. For example, the following policy statement grants access to only log
groups with the value of Green for the tag key Team.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:*"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "aws:ResourceTag/Team": "Green"
 }
 }
 }
]
}

The StopQuery and StopLiveTail API operations don't interact with AWS resources in the
traditional sense. They don't return any data, put any data, or modify a resource in any way.
Instead, they operate only on a given live tail session or a given CloudWatch Logs Insights query,
which are not categorized as resources. As a result, when you specify the Resource field in IAM
policies for these operations, you must set the value of the Resource field as *, as in the following
example.

{
 "Version": "2012-10-17",
 "Statement":
 [{
 "Effect": "Allow",
 "Action": [
 "logs:StopQuery",

Using identity-based policies (IAM policies) 521

Amazon CloudWatch Logs User Guide

 "logs:StopLiveTail"
],
 "Resource": "*"
 }
]
}

For more information about using IAM policy statements, see Controlling Access Using Policies in
the IAM User Guide.

CloudWatch Logs permissions reference

When you are setting up Access control and writing permissions policies that you can attach to
an IAM identity (identity-based policies), you can use the following table as a reference. The table
lists each CloudWatch Logs API operation and the corresponding actions for which you can grant
permissions to perform the action. You specify the actions in the policy's Action field. For the
Resource field, you can specify the ARN of a log group or log stream, or specify * to represent all
CloudWatch Logs resources.

You can use AWS-wide condition keys in your CloudWatch Logs policies to express conditions. For
a complete list of AWS-wide keys, see AWS Global and IAM Condition Context Keys in the IAM User
Guide.

Note

To specify an action, use the logs: prefix followed by the API operation name. For
example: logs:CreateLogGroup, logs:CreateLogStream, or logs:* (for all
CloudWatch Logs actions).

CloudWatch Logs API operations and required permissions for actions

CloudWatch Logs API operations Required permissions (API actions)

CancelExportTask logs:CancelExportTask

Required to cancel a pending or running
export task.

CreateExportTask logs:CreateExportTask

CloudWatch Logs permissions reference 522

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_controlling.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CancelExportTask.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateExportTask.html

Amazon CloudWatch Logs User Guide

CloudWatch Logs API operations Required permissions (API actions)

Required to export data from a log group to
an Amazon S3 bucket.

CreateLogGroup logs:CreateLogGroup

Required to create a new log group.

CreateLogStream logs:CreateLogStream

Required to create a new log stream in a log
group.

DeleteDestination logs:DeleteDestination

Required to delete a log destination and
disables any subscription filters to it.

DeleteLogGroup logs:DeleteLogGroup

Required to delete a log group and any
associated archived log events.

DeleteLogStream logs:DeleteLogStream

Required to delete a log stream and any
associated archived log events.

DeleteMetricFilter logs:DeleteMetricFilter

Required to delete a metric filter associated
with a log group.

DeleteQueryDefinition logs:DeleteQueryDefinition

Required to delete a saved query definition in
CloudWatch Logs Insights.

CloudWatch Logs permissions reference 523

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogGroup.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogStream.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DeleteDestination.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DeleteLogGroup.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DeleteLogStream.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DeleteMetricFilter.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DeleteQueryDefinition.html

Amazon CloudWatch Logs User Guide

CloudWatch Logs API operations Required permissions (API actions)

DeleteResourcePolicy logs:DeleteResourcePolicy

Required to delete a CloudWatch Logs
resource policy.

DeleteRetentionPolicy logs:DeleteRetentionPolicy

Required to delete a log group's retention
policy.

DeleteSubscriptionFilter logs:DeleteSubscriptionFilter

Required to delete the subscription filter
associated with a log group.

DescribeDestinations logs:DescribeDestinations

Required to view all destinations associated
with the account.

DescribeExportTasks logs:DescribeExportTasks

Required to view all export tasks associated
with the account.

DescribeLogGroups logs:DescribeLogGroups

Required to view all log groups associated
with the account.

DescribeLogStreams logs:DescribeLogStreams

Required to view all log streams associated
with a log group.

DescribeMetricFilters logs:DescribeMetricFilters

Required to view all metrics associated with a
log group.

CloudWatch Logs permissions reference 524

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DeleteResourcePolicy.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DeleteRetentionPolicy.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DeleteSubscriptionFilter.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeDestinations.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeExportTasks.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeLogGroups.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeLogStreams.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeMetricFilters.html

Amazon CloudWatch Logs User Guide

CloudWatch Logs API operations Required permissions (API actions)

DescribeQueryDefinitions logs:DescribeQueryDefinitions

Required to see the list of saved query
definitions in CloudWatch Logs Insights.

DescribeQueries logs:DescribeQueries

Required to see the list of CloudWatch Logs
Insights queries that are scheduled, executing,
or have recently excecuted.

DescribeResourcePolicies logs:DescribeResourcePolicies

Required to view a list of CloudWatch Logs
resource policies.

DescribeSubscriptionFilters logs:DescribeSubscriptionFilters

Required to view all subscription filters
associated with a log group.

FilterLogEvents logs:FilterLogEvents

Required to sort log events by log group filter
pattern.

GetLogEvents logs:GetLogEvents

Required to retrieve log events from a log
stream.

GetLogGroupFields logs:GetLogGroupFields

Required to retrieve the list of fields that are
included in the log events in a log group.

CloudWatch Logs permissions reference 525

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeQueryDefinitions.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeQueries.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeResourcePolicies.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeSubscriptionFilters.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_FilterLogEvents.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_GetLogEvents.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_GetLogGroupFields.html

Amazon CloudWatch Logs User Guide

CloudWatch Logs API operations Required permissions (API actions)

GetLogRecord logs:GetLogRecord

Required to retrieve the details from a single
log event.

GetQueryResults logs:GetQueryResults

Required to retrieve the results of CloudWatch
Logs Insights queries.

ListTagsLogGroup logs:ListTagsLogGroup

Required to list the tags associated with a log
group.

PutDestination logs:PutDestination

Required to create or update a destination log
stream (such as an Kinesis stream).

PutDestinationPolicy logs:PutDestinationPolicy

Required to create or update an access policy
associated with an existing log destination.

PutLogEvents logs:PutLogEvents

Required to upload a batch of log events to a
log stream.

PutMetricFilter logs:PutMetricFilter

Required to create or update a metric filter
and associate it with a log group.

PutQueryDefinition logs:PutQueryDefinition

Required to save a query in CloudWatch Logs
Insights.

CloudWatch Logs permissions reference 526

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_GetLogRecord.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_GetQueryResults.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_ListTagsLogGroup.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutDestination.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutDestinationPolicy.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutLogEvents.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutMetricFilter.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutQueryDefinition.html

Amazon CloudWatch Logs User Guide

CloudWatch Logs API operations Required permissions (API actions)

PutResourcePolicy logs:PutResourcePolicy

Required to create a CloudWatch Logs
resource policy.

PutRetentionPolicy logs:PutRetentionPolicy

Required to set the number of days to keep
log events (retention) in a log group.

PutSubscriptionFilter logs:PutSubscriptionFilter

Required to create or update a subscription
filter and associate it with a log group.

StartQuery logs:StartQuery

Required to start CloudWatch Logs Insights
queries.

StopQuery logs:StopQuery

Required to stop a CloudWatch Logs Insights
query that is in progress.

TagLogGroup logs:TagLogGroup

Required to add or update log group tags.

TestMetricFilter logs:TestMetricFilter

Required to test a filter pattern against a
sampling of log event messages.

Using service-linked roles for CloudWatch Logs

Amazon CloudWatch Logs uses AWS Identity and Access Management (IAM) service-linked roles. A
service-linked role is a unique type of IAM role that is linked directly to CloudWatch Logs. Service-

Using service-linked roles 527

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutResourcePolicy.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutRetentionPolicy.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutSubscriptionFilter.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_StartQuery.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_StopQuery.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_TagLogGroup.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_TestMetricFilter.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html

Amazon CloudWatch Logs User Guide

linked roles are predefined by CloudWatch Logs and include all the permissions that the service
requires to call other AWS services on your behalf.

A service-linked role makes setting up CloudWatch Logs more efficient because you aren't required
to manually add the necessary permissions. CloudWatch Logs defines the permissions of its
service-linked roles, and unless defined otherwise, only CloudWatch Logs can assume those roles.
The defined permissions include the trust policy and the permissions policy. That permissions
policy cannot be attached to any other IAM entity.

For information about other services that support service-linked roles, see AWS Services That Work
with IAM. Look for the services that have Yes in the Service-Linked Role column. Choose a Yes with
a link to view the service-linked role documentation for that service.

Service-linked role permissions for CloudWatch Logs

CloudWatch Logs uses the service-linked role named AWSServiceRoleForLogDelivery. CloudWatch
Logs uses this service-linked role to write logs directly to Firehose. For more information, see
Enabling logging from AWS services.

The AWSServiceRoleForLogDelivery service-linked role trusts the following services to assume the
role:

• logs.amazonaws.com

The role permissions policy allows CloudWatch Logs to complete the following actions on the
specified resources:

• Action: firehose:PutRecord and firehose:PutRecordBatch on all Firehose streams that
have a tag with a LogDeliveryEnabled key with a value of True. This tag is automatically
attached to an Firehose stream when you create a subscription to deliver the logs to Firehose.

You must configure permissions to allow an IAM entity to create, edit, or delete a service-linked
role. This entity could be a user, group, or role. For more information, see Service-Linked Role
Permissions in the IAM User Guide.

Using service-linked roles 528

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon CloudWatch Logs User Guide

Creating a service-linked role for CloudWatch Logs

You aren't required to manually create a service-linked role. When you set up logs to be sent
directly to a Firehose stream in the AWS Management Console, the AWS CLI, or the AWS API,
CloudWatch Logs creates the service-linked role for you.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you again set up logs to be sent directly to a Firehose
stream, CloudWatch Logs creates the service-linked role for you again.

Editing a service-linked role for CloudWatch Logs

CloudWatch Logs does not allow you to edit AWSServiceRoleForLogDelivery, or any other service-
linked role, after you create it. You cannot change the name of the role because various entities
might reference the role. However, you can edit the description of the role using IAM. For more
information, see Editing a Service-Linked Role in the IAM User Guide.

Deleting a service-linked role for CloudWatch Logs

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up the resources for your service-linked role before you
can manually delete it.

Note

If the CloudWatch Logs service is using the role when you try to delete the resources, then
the deletion might fail. If that happens, wait for a few minutes and try the operation again.

To delete CloudWatch Logs resources used by the AWSServiceRoleForLogDelivery service-
linked role

• Stop sending logs directly to Firehose streams.

To manually delete the service-linked role using IAM

Use the IAM console, the AWS CLI, or the AWS API to delete the AWSServiceRoleForLogDelivery
service-linked role. For more information, see Deleting a Service-Linked Role

Using service-linked roles 529

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role

Amazon CloudWatch Logs User Guide

Supported Regions for CloudWatch Logs service-linked roles

CloudWatch Logs supports using service-linked roles in all of the AWS Regions where the service is
available. For more information, see CloudWatch Logs Regions and Endpoints.

Compliance validation for Amazon CloudWatch Logs

Third-party auditors assess the security and compliance of Amazon CloudWatch Logs as part of
multiple AWS compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and others.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using Amazon CloudWatch Logs is determined by the
sensitivity of your data, your company's compliance objectives, and applicable laws and
regulations. AWS provides the following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-compliant applications.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• Evaluating Resources with Rules in the AWS Config Developer Guide – AWS Config; assesses
how well your resource configurations comply with internal practices, industry guidelines, and
regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

Resilience in Amazon CloudWatch Logs

The AWS global infrastructure is built around AWS Regions and Availability Zones. Regions provide
multiple physically separated and isolated Availability Zones, which are connected through

Compliance validation 530

https://docs.aws.amazon.com/general/latest/gr/rande.html#cwl_region
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

Amazon CloudWatch Logs User Guide

low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Infrastructure security in Amazon CloudWatch Logs

As a managed service, Amazon CloudWatch Logs is protected by AWS global network security.
For information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access CloudWatch Logs through the network. Clients must
support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Using CloudWatch Logs with interface VPC endpoints

If you use Amazon Virtual Private Cloud (Amazon VPC) to host your AWS resources, you can
establish a private connection between your VPC and CloudWatch Logs. You can use this
connection to send logs to CloudWatch Logs without sending them through the internet.

Amazon VPC is an AWS service that you can use to launch AWS resources in a virtual network that
you define. With a VPC, you have control over your network settings, such the IP address range,
subnets, route tables, and network gateways. To connect your VPC to CloudWatch Logs, you define
an interface VPC endpoint for CloudWatch Logs. This type of endpoint enables you to connect
your VPC to AWS services. The endpoint provides reliable, scalable connectivity to CloudWatch

Infrastructure security 531

https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon CloudWatch Logs User Guide

Logs without requiring an internet gateway, network address translation (NAT) instance, or VPN
connection. For more information, see What is Amazon VPC in the Amazon VPC User Guide.

Interface VPC endpoints are powered by AWS PrivateLink, an AWS technology that enables private
communication between AWS services using an elastic network interface with private IP addresses.
For more information, see New – AWS PrivateLink for AWS Services.

The following steps are for users of Amazon VPC. For more information, see Getting Started in the
Amazon VPC User Guide.

Availability

CloudWatch Logs currently supports VPC endpoints in all AWS Regions, including the AWS
GovCloud (US) Regions.

Creating a VPC endpoint for CloudWatch Logs

To start using CloudWatch Logs with your VPC, create an interface VPC endpoint for CloudWatch
Logs. The service to choose is com.amazonaws.Region.logs. You do not need to change any
settings for CloudWatch Logs. For more information, see Creating an Interface Endpoint in the
Amazon VPC User Guide.

Testing the connection between your VPC and CloudWatch Logs

After you create the endpoint, you can test the connection.

To test the connection between your VPC and your CloudWatch Logs endpoint

1. Connect to an Amazon EC2 instance that resides in your VPC. For information about
connecting, see Connect to Your Linux Instance or Connecting to Your Windows Instance in the
Amazon EC2 documentation.

2. From the instance, use the AWS CLI to create a log entry in one of your existing log groups.

First, create a JSON file with a log event. The timestamp must be specified as the number of
milliseconds after Jan 1, 1970 00:00:00 UTC.

[
 {
 "timestamp": 1533854071310,

Availability 532

https://docs.aws.amazon.com/vpc/latest/userguide/
https://aws.amazon.com/blogs/aws/new-aws-privatelink-endpoints-kinesis-ec2-systems-manager-and-elb-apis-in-your-vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/GetStarted.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpce-interface.html#create-interface-endpoint.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html

Amazon CloudWatch Logs User Guide

 "message": "VPC Connection Test"
 }
]

Then, use the put-log-events command to create the log entry:

aws logs put-log-events --log-group-name LogGroupName --log-stream-
name LogStreamName --log-events file://JSONFileName

If the response to the command includes nextSequenceToken, the command has succeeded
and your VPC endpoint is working.

Controlling access to your CloudWatch Logs VPC endpoint

A VPC endpoint policy is an IAM resource policy that you attach to an endpoint when you create
or modify the endpoint. If you don't attach a policy when you create an endpoint, we attach a
default policy for you that allows full access to the service. An endpoint policy doesn't override or
replace IAM policies or service-specific policies. It's a separate policy for controlling access from the
endpoint to the specified service.

Endpoint policies must be written in JSON format.

For more information, see Controlling Access to Services with VPC Endpoints in the Amazon VPC
User Guide.

The following is an example of an endpoint policy for CloudWatch Logs. This policy enables
users connecting to CloudWatch Logs through the VPC to create log streams and send logs to
CloudWatch Logs, and prevents them from performing other CloudWatch Logs actions.

{
 "Statement": [
 {
 "Sid": "PutOnly",
 "Principal": "*",
 "Action": [
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Effect": "Allow",
 "Resource": "*"

Controlling access to your CloudWatch Logs VPC endpoint 533

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon CloudWatch Logs User Guide

 }
]
}

To modify the VPC endpoint policy for CloudWatch Logs

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Endpoints.

3. If you have not already created the endpoint for CloudWatch Logs, choose Create Endpoint.
Then select com.amazonaws.Region.logs and choose Create endpoint.

4. Select the com.amazonaws.Region.logs endpoint, and choose the Policy tab in the lower half
of the screen.

5. Choose Edit Policy and make the changes to the policy.

Support for VPC context keys

CloudWatch Logs supports the aws:SourceVpc and aws:SourceVpce context keys that can limit
access to specific VPCs or specific VPC endpoints. These keys work only when the user is using VPC
endpoints. For more information, see Keys Available for Some Services in the IAM User Guide.

Support for VPC context keys 534

https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-service-available

Amazon CloudWatch Logs User Guide

Logging Amazon CloudWatch Logs API calls in AWS
CloudTrail

Amazon CloudWatch Logs is integrated with AWS CloudTrail, a service that provides a record of
actions taken by a user, role, or an AWS service in CloudWatch Logs. CloudTrail captures API calls
made by or on behalf of your AWS account. The calls captured include calls from the CloudWatch
console and code calls to the CloudWatch Logs API operations. If you create a trail, you can enable
continuous delivery of CloudTrail events to an Amazon S3 bucket, including events for CloudWatch
Logs. If you don't configure a trail, you can still view the most recent events in the CloudTrail
console in Event history. Using the information collected by CloudTrail, you can determine the
request that was made to CloudWatch Logs, the IP address from which the request was made, who
made the request, when it was made, and additional details.

To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail
User Guide.

Topics

• CloudWatch Logs information in CloudTrail

• Understanding log file entries

CloudWatch Logs information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When supported event
activity occurs in CloudWatch Logs, that activity is recorded in a CloudTrail event along with other
AWS service events in Event history. You can view, search, and download recent events in your
AWS account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for CloudWatch Logs, create
a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when
you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

CloudWatch Logs information in CloudTrail 535

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations

Amazon CloudWatch Logs User Guide

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

CloudWatch Logs supports logging the following actions as events in CloudTrail log files:

• CancelExportTask

• CreateExportTask

• CreateLogGroup

• CreateLogStream

• DeleteDestination

• DeleteLogGroup

• DeleteLogStream

• DeleteMetricFilter

• DeleteRetentionPolicy

• DeleteSubscriptionFilter

• PutDestination

• PutDestinationPolicy

• PutMetricFilter

• PutResourcePolicy

• PutRetentionPolicy

• PutSubscriptionFilter

• StartQuery

• StopQuery

• TestMetricFilter

Only request elements are logged in CloudTrail for these CloudWatch Logs API actions:

• DescribeDestinations

• DescribeExportTasks

• DescribeLogGroups

• DescribeLogStreams

CloudWatch Logs information in CloudTrail 536

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CancelExportTask.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateExportTask.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogGroup.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogStream.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DeleteDestination.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DeleteLogGroup.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DeleteLogStream.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DeleteMetricFilter.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DeleteRetentionPolicy.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DeleteSubscriptionFilter.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutDestination.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutDestinationPolicy.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutMetricFilter.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutResourcePolicy.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutRetentionPolicy.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutSubscriptionFilter.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_StartQuery.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_StopQuery.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_TestMetricFilter.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeDestinations.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeExportTasks.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeLogGroups.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeLogStreams.html

Amazon CloudWatch Logs User Guide

• DescribeMetricFilters

• DescribeQueries

• DescribeResourcePolicies

• DescribeSubscriptionFilters

• FilterLogEvents

• GetLogEvents

• GetLogGroupFields

• GetLogRecord

• GetQueryResults

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Understanding log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following log file entry shows that a user called the CloudWatch Logs CreateExportTask
action.

{
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",

Understanding log file entries 537

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeMetricFilters.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeQueries.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeResourcePolicies.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeSubscriptionFilters.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_FilterLogEvents.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_GetLogEvents.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_GetLogGroupFields.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_GetLogRecord.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_GetQueryResults.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon CloudWatch Logs User Guide

 "arn": "arn:aws:iam::123456789012:user/someuser",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "someuser"
 },
 "eventTime": "2016-02-08T06:35:14Z",
 "eventSource": "logs.amazonaws.com",
 "eventName": "CreateExportTask",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-ruby2/2.0.0.rc4 ruby/1.9.3 x86_64-linux Seahorse/0.1.0",
 "requestParameters": {
 "destination": "yourdestination",
 "logGroupName": "yourloggroup",
 "to": 123456789012,
 "from": 0,
 "taskName": "yourtask"
 },
 "responseElements": {
 "taskId": "15e5e534-9548-44ab-a221-64d9d2b27b9b"
 },
 "requestID": "1cd74c1c-ce2e-12e6-99a9-8dbb26bd06c9",
 "eventID": "fd072859-bd7c-4865-9e76-8e364e89307c",
 "eventType": "AwsApiCall",
 "apiVersion": "20140328",
 "recipientAccountId": "123456789012"
}

Understanding log file entries 538

Amazon CloudWatch Logs User Guide

CloudWatch Logs agent reference

Important

This reference is for the older deprecated CloudWatch Logs agent. If you use Instance
Metadata Service Version 2 (IMDSv2), you must use the new unified CloudWatch agent.
Even if you are not using IMDSv2, we strongly recommend that you use the newer unified
CloudWatch agent instead of the older logs agent. For more information about the newer
unified agent, see Collecting metrics and logs from Amazon EC2 instance and on-premises
servers with the CloudWatch agent.
For information about migrating from the older CloudWatch Logs agent to the unified
agent, see Create the CloudWatch agent configuration file with the wizard.

The CloudWatch Logs agent provides an automated way to send log data to CloudWatch Logs from
Amazon EC2 instances. The agent includes the following components:

• A plug-in to the AWS CLI that pushes log data to CloudWatch Logs.

• A script (daemon) that initiates the process to push data to CloudWatch Logs.

• A cron job that ensures that the daemon is always running.

Agent configuration file

The CloudWatch Logs agent configuration file describes information needed by the CloudWatch
Logs agent. The agent configuration file's [general] section defines common configurations that
apply to all log streams. The [logstream] section defines the information necessary to send a
local file to a remote log stream. You can have more than one [logstream] section, but each must
have a unique name within the configuration file, e.g., [logstream1], [logstream2], and so on. The
[logstream] value along with the first line of data in the log file, define the log file's identity.

[general]
state_file = value
logging_config_file = value
use_gzip_http_content_encoding = [true | false]

[logstream1]
log_group_name = value

Agent configuration file 539

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create-cloudwatch-agent-configuration-file-wizard.html

Amazon CloudWatch Logs User Guide

log_stream_name = value
datetime_format = value
time_zone = [LOCAL|UTC]
file = value
file_fingerprint_lines = integer | integer-integer
multi_line_start_pattern = regex | {datetime_format}
initial_position = [start_of_file | end_of_file]
encoding = [ascii|utf_8|..]
buffer_duration = integer
batch_count = integer
batch_size = integer

[logstream2]
...

state_file

Specifies where the state file is stored.

logging_config_file

(Optional) Specifies the location of the agent logging config file. If you do not specify an agent
logging config file here, the default file awslogs.conf is used. The default file location is /var/
awslogs/etc/awslogs.conf if you installed the agent with a script, and is /etc/awslogs/
awslogs.conf if you installed the agent with rpm. The file is in Python configuration file
format (https://docs.python.org/2/library/logging.config.html#logging-config-fileformat).
Loggers with the following names can be customized.

cwlogs.push
cwlogs.push.reader
cwlogs.push.publisher
cwlogs.push.event
cwlogs.push.batch
cwlogs.push.stream
cwlogs.push.watcher

The sample below changes the level of reader and publisher to WARNING while the default
value is INFO.

[loggers]
keys=root,cwlogs,reader,publisher

Agent configuration file 540

Amazon CloudWatch Logs User Guide

[handlers]
keys=consoleHandler

[formatters]
keys=simpleFormatter

[logger_root]
level=INFO
handlers=consoleHandler

[logger_cwlogs]
level=INFO
handlers=consoleHandler
qualname=cwlogs.push
propagate=0

[logger_reader]
level=WARNING
handlers=consoleHandler
qualname=cwlogs.push.reader
propagate=0

[logger_publisher]
level=WARNING
handlers=consoleHandler
qualname=cwlogs.push.publisher
propagate=0

[handler_consoleHandler]
class=logging.StreamHandler
level=INFO
formatter=simpleFormatter
args=(sys.stderr,)

[formatter_simpleFormatter]
format=%(asctime)s - %(name)s - %(levelname)s - %(process)d - %(threadName)s -
 %(message)s

use_gzip_http_content_encoding

When set to true (default), enables gzip http content encoding to send compressed payloads to
CloudWatch Logs. This decreases CPU usage, lowers NetworkOut, and decreases put latency. To

Agent configuration file 541

Amazon CloudWatch Logs User Guide

disable this feature, add use_gzip_http_content_encoding = false to the [general] section of
the CloudWatch Logs agent configuration file, and then restart the agent.

Note

This setting is only available in awscli-cwlogs version 1.3.3 and later.

log_group_name

Specifies the destination log group. A log group is created automatically if it doesn't already
exist. Log group names can be between 1 and 512 characters long. Allowed characters include
a-z, A-Z, 0-9, '_' (underscore), '-' (hyphen), '/' (forward slash), and '.' (period).

log_stream_name

Specifies the destination log stream. You can use a literal string or predefined variables
({instance_id}, {hostname}, {ip_address}), or combination of both to define a log stream name.
A log stream is created automatically if it doesn't already exist.

datetime_format

Specifies how the timestamp is extracted from logs. The timestamp is used for retrieving
log events and generating metrics. The current time is used for each log event if the
datetime_format isn't provided. If the provided datetime_format value is invalid for a given log
message, the timestamp from the last log event with a successfully parsed timestamp is used. If
no previous log events exist, the current time is used.

The common datetime_format codes are listed below. You can also use any datetime_format
codes supported by Python, datetime.strptime(). The timezone offset (%z) is also supported
even though it's not supported until python 3.2, [+-]HHMM without colon(:). For more
information, see strftime() and strptime() Behavior.

%y: Year without century as a zero-padded decimal number. 00, 01, ..., 99

%Y: Year with century as a decimal number.1970, 1988, 2001, 2013

%b: Month as locale's abbreviated name. Jan, Feb, ..., Dec (en_US);

%B: Month as locale's full name. January, February, ..., December (en_US);

%m: Month as a zero-padded decimal number. 01, 02, ..., 12

Agent configuration file 542

https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior

Amazon CloudWatch Logs User Guide

%d: Day of the month as a zero-padded decimal number. 01, 02, ..., 31

%H: Hour (24-hour clock) as a zero-padded decimal number. 00, 01, ..., 23

%I: Hour (12-hour clock) as a zero-padded decimal number. 01, 02, ..., 12

%p: Locale's equivalent of either AM or PM.

%M: Minute as a zero-padded decimal number. 00, 01, ..., 59

%S: Second as a zero-padded decimal number. 00, 01, ..., 59

%f: Microsecond as a decimal number, zero-padded on the left. 000000, ..., 999999

%z: UTC offset in the form +HHMM or -HHMM. +0000, -0400, +1030

Example formats:

Syslog: '%b %d %H:%M:%S', e.g. Jan 23 20:59:29

Log4j: '%d %b %Y %H:%M:%S', e.g. 24 Jan 2014 05:00:00

ISO8601: '%Y-%m-%dT%H:%M:%S%z', e.g. 2014-02-20T05:20:20+0000

time_zone

Specifies the time zone of log event timestamp. The two supported values are UTC and LOCAL.
The default is LOCAL, which is used if time zone can't be inferred based on datetime_format.

file

Specifies log files that you want to push to CloudWatch Logs. File can point to a specific
file or multiple files (using wildcards such as /var/log/system.log*). Only the latest file is
pushed to CloudWatch Logs based on file modification time. We recommend that you use
wildcards to specify a series of files of the same type, such as access_log.2014-06-01-01,
access_log.2014-06-01-02, and so on, but not multiple kinds of files, such as access_log_80
and access_log_443. To specify multiple kinds of files, add another log stream entry to the
configuration file so each kind of log file goes to a different log stream. Zipped files are not
supported.

file_fingerprint_lines

Specifies the range of lines for identifying a file. The valid values are one number or two dash
delimited numbers, such as '1', '2-5'. The default value is '1' so the first line is used to calculate

Agent configuration file 543

Amazon CloudWatch Logs User Guide

fingerprint. Fingerprint lines are not sent to CloudWatch Logs unless all the specified lines are
available.

multi_line_start_pattern

Specifies the pattern for identifying the start of a log message. A log message is made of
a line that matches the pattern and any following lines that don't match the pattern. The
valid values are regular expression or {datetime_format}. When using {datetime_format}, the
datetime_format option should be specified. The default value is ‘^[^\s]' so any line that begins
with non-whitespace character closes the previous log message and starts a new log message.

initial_position

Specifies where to start to read data (start_of_file or end_of_file). The default is start_of_file.
It's only used if there is no state persisted for that log stream.

encoding

Specifies the encoding of the log file so that the file can be read correctly. The default is utf_8.
Encodings supported by Python codecs.decode() can be used here.

Warning

Specifying an incorrect encoding might cause data loss because characters that cannot
be decoded are replaced with some other character.

Below are some common encodings:

ascii, big5, big5hkscs, cp037, cp424, cp437, cp500, cp720, cp737,
cp775, cp850, cp852, cp855, cp856, cp857, cp858, cp860, cp861, cp862,
cp863, cp864, cp865, cp866, cp869, cp874, cp875, cp932, cp949, cp950,
cp1006, cp1026, cp1140, cp1250, cp1251, cp1252, cp1253, cp1254, cp1255,
cp1256, cp1257, cp1258, euc_jp, euc_jis_2004, euc_jisx0213, euc_kr,
gb2312, gbk, gb18030, hz, iso2022_jp, iso2022_jp_1, iso2022_jp_2,
iso2022_jp_2004, iso2022_jp_3, iso2022_jp_ext, iso2022_kr, latin_1,
iso8859_2, iso8859_3, iso8859_4, iso8859_5, iso8859_6, iso8859_7,
iso8859_8, iso8859_9, iso8859_10, iso8859_13, iso8859_14, iso8859_15,
iso8859_16, johab, koi8_r, koi8_u, mac_cyrillic, mac_greek, mac_iceland,
mac_latin2, mac_roman, mac_turkish, ptcp154, shift_jis, shift_jis_2004,

Agent configuration file 544

Amazon CloudWatch Logs User Guide

shift_jisx0213, utf_32, utf_32_be, utf_32_le, utf_16, utf_16_be,
utf_16_le, utf_7, utf_8, utf_8_sig

buffer_duration

Specifies the time duration for the batching of log events. The minimum value is 5000ms and
default value is 5000ms.

batch_count

Specifies the max number of log events in a batch, up to 10000. The default value is 10000.

batch_size

Specifies the max size of log events in a batch, in bytes, up to 1048576 bytes. The default value
is 1048576 bytes. This size is calculated as the sum of all event messages in UTF-8, plus 26
bytes for each log event.

Using the CloudWatch Logs agent with HTTP proxies

You can use the CloudWatch Logs agent with HTTP proxies.

Note

HTTP proxies are supported in awslogs-agent-setup.py version 1.3.8 or later.

To use the CloudWatch Logs agent with HTTP proxies

1. Do one of the following:

a. For a new installation of the CloudWatch Logs agent, run the following commands:

curl https://s3.amazonaws.com/aws-cloudwatch/downloads/latest/awslogs-agent-
setup.py -O

sudo python awslogs-agent-setup.py --region us-east-1 --http-proxy http://your/
proxy --https-proxy http://your/proxy --no-proxy 169.254.169.254

Using the CloudWatch Logs agent with HTTP proxies 545

Amazon CloudWatch Logs User Guide

In order to maintain access to the Amazon EC2 metadata service on EC2 instances, use --
no-proxy 169.254.169.254 (recommended). For more information, see Instance Metadata
and User Data in the Amazon EC2 User Guide for Linux Instances.

In the values for http-proxy and https-proxy, you specify the entire URL.

b. For an existing installation of the CloudWatch Logs agent, edit /var/awslogs/etc/
proxy.conf, and add your proxies:

HTTP_PROXY=
HTTPS_PROXY=
NO_PROXY=

2. Restart the agent for the changes to take effect:

sudo service awslogs restart

If you are using Amazon Linux 2, use the following command to restart the agent:

sudo service awslogsd restart

Compartmentalizing CloudWatch Logs agent configuration files

If you're using awslogs-agent-setup.py version 1.3.8 or later with awscli-cwlogs 1.3.3 or later,
you can import different stream configurations for various components independently of one
another by creating additional configuration files in the /var/awslogs/etc/config/ directory.
When the CloudWatch Logs agent starts, it includes any stream configurations in these additional
configuration files. Configuration properties in the [general] section must be defined in the main
configuration file (/var/awslogs/etc/awslogs.conf) and are ignored in any additional configuration
files found in /var/awslogs/etc/config/.

If you don't have a /var/awslogs/etc/config/ directory because you installed the agent with rpm,
you can use the /etc/awslogs/config/ directory instead.

Restart the agent for the changes to take effect:

sudo service awslogs restart

Compartmentalizing CloudWatch Logs agent configuration files 546

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

Amazon CloudWatch Logs User Guide

If you are using Amazon Linux 2, use the following command to restart the agent:

sudo service awslogsd restart

CloudWatch Logs agent FAQ

What kinds of file rotations are supported?

The following file rotation mechanisms are supported:

• Renaming existing log files with a numerical suffix, then re-creating the original empty
log file. For example, /var/log/syslog.log is renamed /var/log/syslog.log.1. If /var/log/
syslog.log.1 already exists from a previous rotation, it is renamed /var/log/syslog.log.2.

• Truncating the original log file in place after creating a copy. For example, /var/log/syslog.log
is copied to /var/log/syslog.log.1 and /var/log/syslog.log is truncated. There might be data
loss for this case, so be careful about using this file rotation mechanism.

• Creating a new file with a common pattern as the old one. For example, /var/log/
syslog.log.2014-01-01 remains and /var/log/syslog.log.2014-01-02 is created.

The fingerprint (source ID) of the file is calculated by hashing the log stream key and the first
line of file content. To override this behavior, the file_fingerprint_lines option can be used.
When file rotation happens, the new file is supposed to have new content and the old file is not
supposed to have content appended; the agent pushes the new file after it finishes reading the
old file.

How can I determine which version of agent am I using?

If you used a setup script to install the CloudWatch Logs agent, you can use /var/awslogs/bin/
awslogs-version.sh to check what version of the agent you are using. It prints out the version
of the agent and its major dependencies. If you used yum to install the CloudWatch Logs agent,
you can use "yum info awslogs" and "yum info aws-cli-plugin-cloudwatch-logs" to check the
version of the CloudWatch Logs agent and plugin.

How are log entries converted to log events?

Log events contain two properties: the timestamp of when the event occurred, and the raw log
message. By default, any line that begins with non-whitespace character closes the previous
log message if there is one, and starts a new log message. To override this behavior, the
multi_line_start_pattern can be used and any line that matches the pattern starts a new
log message. The pattern could be any regex or '{datetime_format}'. For example, if the

CloudWatch Logs agent FAQ 547

Amazon CloudWatch Logs User Guide

first line of every log message contains a timestamp like '2014-01-02T13:13:01Z', then the
multi_line_start_pattern can be set to '\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}Z'. To simplify the
configuration, the ‘{datetime_format}' variable can be used if the datetime_format option is
specified. For the same example, if datetime_format is set to '%Y-%m-%dT%H:%M:%S%z',
then multi_line_start_pattern could be simply '{datetime_format}'.

The current time is used for each log event if the datetime_format isn't provided. If the
provided datetime_format is invalid for a given log message, the timestamp from the last log
event with a successfully parsed timestamp is used. If no previous log events exist, the current
time is used. A warning message is logged when a log event falls back to the current time or
time of previous log event.

Timestamps are used for retrieving log events and generating metrics, so if you specify the
wrong format, log events could become non-retrievable and generate wrong metrics.

How are log events batched?

A batch becomes full and is published when any of the following conditions are met:

1. The buffer_duration amount of time has passed since the first log event was added.

2. Less than batch_size of log events have been accumulated but adding the new log event
exceeds the batch_size.

3. The number of log events has reached batch_count.

4. Log events from the batch don't span more than 24 hours, but adding the new log event
exceeds the 24 hours constraint.

What would cause log entries, log events, or batches to be skipped or truncated?

To follow the constraint of the PutLogEvents operation, the following issues could cause a log
event or batch to be skipped.

Note

The CloudWatch Logs agent writes a warning to its log when data is skipped.

1. If the size of a log event exceeds 256 KB, the log event is skipped completely.

2. If the timestamp of log event is more than 2 hours in future, the log event is skipped.

3. If the timestamp of log event is more than 14 days in past, the log event is skipped.

4. If any log event is older than the retention period of log group, the whole batch is skipped.

CloudWatch Logs agent FAQ 548

Amazon CloudWatch Logs User Guide

5. If the batch of log events in a single PutLogEvents request spans more than 24 hours, the
PutLogEvents operation fails.

Does stopping the agent cause data loss/duplicates?

Not as long as the state file is available and no file rotation has happened since the last run. The
CloudWatch Logs agent can start from where it stopped and continue pushing the log data.

Can I point different log files from the same or different hosts to the same log stream?

Configuring multiple log sources to send data to a single log stream is not supported.

What API calls does the agent make (or what actions should I add to my IAM policy)?

The CloudWatch Logs agent requires the CreateLogGroup, CreateLogStream,
DescribeLogStreams, and PutLogEvents operations. If you're using the latest agent,
DescribeLogStreams is not needed. See the sample IAM policy below.

{
"Version": "2012-10-17",
"Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:*:*:*"
]
 }
]
}

I don't want the CloudWatch Logs agent to create either log groups or log streams
automatically. How can I prevent the agent from recreating both log groups and log streams?

In your IAM policy, you can restrict the agent to only the following operations:
DescribeLogStreams, PutLogEvents.

Before you revoke the CreateLogGroup and CreateLogStream permissions from the agent,
be sure to create both the log groups and log streams that you want the agent to use. The logs

CloudWatch Logs agent FAQ 549

Amazon CloudWatch Logs User Guide

agent cannot create log streams in a log group that you have created unless it has both the
CreateLogGroup and CreateLogStream permissions.

What logs should I look at when troubleshooting?

The agent installation log is at /var/log/awslogs-agent-setup.log and the agent log is
at /var/log/awslogs.log.

CloudWatch Logs agent FAQ 550

Amazon CloudWatch Logs User Guide

Monitoring with CloudWatch metrics

CloudWatch Logs sends metrics to Amazon CloudWatch every minute.

CloudWatch Logs metrics

The AWS/Logs namespace includes the following metrics.

Metric Description

CallCount The number of specified API operations performed in your account.

CallCount is a CloudWatch Logs service usage metric. For more
information, see CloudWatch Logs service usage metrics.

Valid Dimensions: Class, Resource, Service, Type

Valid Statistic: Sum

Units: None

DeliveryErrors The number of log events for which CloudWatch Logs received an error
when forwarding data to the subscription destination. If the destinati
on service returns a retryable error such as a throttling exception or
a retryable service exception (HTTP 5xx for example), CloudWatch
Logs continues to retry delivery for up to 24 hours. CloudWatch Logs
does not try to re-deliver if the error is a non-retryable error, such as
AccessDeniedException or ResourceNotFoundException .

Valid Dimensions: LogGroupName, DestinationType, FilterName,
PolicyLevel

Valid Statistic: Sum

Units: None

DeliveryT
hrottling

The number of log events for which CloudWatch Logs was throttled
when forwarding data to the subscription destination.

CloudWatch Logs metrics 551

Amazon CloudWatch Logs User Guide

Metric Description

If the destination service returns a retryable error such as a throttlin
g exception or a retryable service exception (HTTP 5xx for example),
CloudWatch Logs continues to retry delivery for up to 24 hours.
CloudWatch Logs does not try to re-deliver if the error is a non-retry
able error, such as AccessDeniedException or ResourceN
otFoundException .

Valid Dimensions: LogGroupName, DestinationType, FilterName,
PolicyLevel

Valid Statistic: Sum

Units: None

EMFParsin
gErrors

The number of parsing errors encountered while processing embedded
metric format logs. Such errors happen when logs are identified as
embedded metric format but do not follow the correct format. For
more information about the embedded metric format, see Specifica
tion: Embedded metric format.

Valid Dimensions: LogGroupName

Valid Statistic: Sum

Units: None

CloudWatch Logs metrics 552

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format_Specification.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format_Specification.html

Amazon CloudWatch Logs User Guide

Metric Description

EMFValida
tionErrors

The number of validation errors encountered while processing
embedded metric format logs. These errors occur when metric
definitions within embedded metric format logs do not adhere to
the embedded metric format and MetricDatum specifications. For
information about the CloudWatch embedded metric format, see
Specification: Embedded metric format. For information about the data
type MetricDatum , see MetricDatum in the Amazon CloudWatch API
Reference.

Note

Certain validation errors can lead to multiple metrics within an
EMF log not being published. For example, all metrics set with
an invalid namespace will be dropped.

Valid Dimensions: LogGroupName

Valid Statistic: Sum

Units: None

ErrorCount The number of API operations performed in your account that resulted
in errors.

ErrorCount is a CloudWatch Logs service usage metric. For more
information, see CloudWatch Logs service usage metrics.

Valid Dimensions: Class, Resource, Service, Type

Valid Statistic: Sum

Units: None

CloudWatch Logs metrics 553

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format_Specification.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_MetricDatum.html

Amazon CloudWatch Logs User Guide

Metric Description

ForwardedBytes The volume of log events in compressed bytes forwarded to the
subscription destination.

Valid Dimensions: LogGroupName, DestinationType, FilterName

Valid Statistic: Sum

Units: Bytes

Forwarded
LogEvents

The number of log events forwarded to the subscription destination.

Valid Dimensions: LogGroupName, DestinationType, FilterName,
PolicyLevel

Valid Statistic: Sum

Units: None

IncomingBytes The volume of log events in uncompressed bytes uploaded to
CloudWatch Logs. When used with the LogGroupName dimension,
this is the volume of log events in uncompressed bytes uploaded to the
log group.

Valid Dimensions: LogGroupName

Valid Statistic: Sum

Units: Bytes

IncomingL
ogEvents

The number of log events uploaded to CloudWatch Logs. When used
with the LogGroupName dimension, this is the number of log events
uploaded to the log group.

Valid Dimensions: LogGroupName

Valid Statistic: Sum

Units: None

CloudWatch Logs metrics 554

Amazon CloudWatch Logs User Guide

Metric Description

LogEvents
WithFindings

The number of log events that matched a data string that you are
auditing using the CloudWatch Logs data protection feature. For more
information, see Help protect sensitive log data with masking.

Valid Dimensions: None

Valid Statistic: Sum

Units: None

ThrottleCount The number of API operations performed in your account that were
throttled because of usage quotas.

ThrottleCount is a CloudWatch Logs service usage metric. For more
information, see CloudWatch Logs service usage metrics.

Valid Dimensions: Class, Resource, Service, Type

Valid Statistic: Sum

Units: None

Dimensions for CloudWatch Logs metrics

The dimensions that you can use with CloudWatch Logs metrics are listed in the following table.

Dimension Description

LogGroupName The name of the CloudWatch Logs log group for which to
display metrics.

DestinationType The subscription destination for the CloudWatch Logs data,
which can be AWS Lambda, Amazon Kinesis Data Streams, or
Amazon Data Firehose.

FilterName The name of the subscription filter that is forwarding data
from the log group to the destination. The subscription filter

Dimensions for CloudWatch Logs metrics 555

Amazon CloudWatch Logs User Guide

Dimension Description

name is automatically converted by CloudWatch to ASCII and
any unsupported characters get replaced with a question mark
(?).

The dimensions for metrics related to account-level subscription filters are listed in the following
table.

Dimension Description

PolicyLevel The level where the policy applies. Currently, the only valid
value for this dimension is AccountPolicy

DestinationType The subscription destination for the CloudWatch Logs data,
which can be AWS Lambda, Amazon Kinesis Data Streams, or
Amazon Data Firehose.

FilterName The name of the subscription filter that is forwarding data
from the log group to the destination. The subscription filter
name is automatically converted by CloudWatch to ASCII and
any unsupported characters get replaced with a question mark
(?).

CloudWatch Logs service usage metrics

CloudWatch Logs sends metrics to CloudWatch that track the usage CloudWatch Logs API
operations. These metrics correspond to AWS service quotas. Tracking these metrics can help you
proactively manage your quotas. For more information, see Service Quotas Integration and Usage
Metrics.

For example, you could track the ThrottleCount metric or set an alarm on that metric. If the
value of this metric rises, you should consider requesting a quota increase for the API operation
that is getting throttled. For more information about CloudWatch Logs service quotas, see
CloudWatch Logs quotas.

CloudWatch Logs service usage metrics 556

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Service-Quota-Integration.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Service-Quota-Integration.html

Amazon CloudWatch Logs User Guide

CloudWatch Logs publishes service quota usage metrics every minute in both the AWS/Usage and
AWS/Logs namespaces.

The following table lists the service usage metrics published by CloudWatch Logs. These metrics do
not have a specified unit. The most useful statistic for these metrics is SUM, which represents the
total operation count for the 1-minute period.

Each of these metrics is published with values for all of the Service, Class, Type, and Resource
dimensions. They are also published with a single dimension called Account Metrics. Use the
Account Metrics dimension to see the sum of metrics for all API operations in your account. Use
the other dimensions and specify the name of an API operation for the Resource dimension to
find the metrics for that particular API.

Metrics

Metric Description

CallCount The number of specified operations performed in your account.

CallCount is published in both the AWS/Usage and AWS/Logs
namespaces.

ErrorCount The number of API operations performed in your account that resulted
in errors.

ErrorCount is published in only the AWS/Logs.

ThrottleCount The number of API operations performed in your account that were
throttled because of usage quotas.

ThrottleCount is published in only the AWS/Logs.

Dimensions

Dimension Description

Account metrics Use this dimension to get a sum of the metric across all of the
CloudWatch Logs APIs.

CloudWatch Logs service usage metrics 557

Amazon CloudWatch Logs User Guide

Dimension Description

If you want to see the metrics for one particular API, use the other
dimensions listed in this table and specify the API name as the value of
Resource.

Service The name of the AWS service containing the resource. For CloudWatch
Logs usage metrics, the value for this dimension is Logs.

Class The class of resource being tracked. CloudWatch Logs API usage
metrics use this dimension with a value of None.

Type The type of resource being tracked. Currently, when the Service
dimension is Logs, the only valid value for Type is API.

Resource The name of the API operation. Valid values include all of the API
operation names that are listed in Actions. For example, PutLogEve
nts

CloudWatch Logs service usage metrics 558

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_Operations.html

Amazon CloudWatch Logs User Guide

CloudWatch Logs quotas

The following tables provide the default service quotas, also referred to as limits, for CloudWatch
Logs for an AWS account. Most of these service quotas, but not all, are listed under the Amazon
CloudWatch Logs namespace in the Service Quotas console. To request a quota increase for those
quotas, see the procedure later in this section.

Resource Default quota

Account-level policies One account-level subscription filter policy per account.

One account-level data protection policy per account.

These quotas can't be changed.

Anomaly detectors 10 anomaly detectors per account. This quota can't be
changed.

Batch size The maximum batch size is 1,048,576 bytes. This size is
calculated as the sum of all event messages in UTF-8,
plus 26 bytes for each log event. This quota can't be
changed.

Data archiving Up to 5 GB of data archiving for free. This quota can't be
changed.

CreateLogGroup 10 transactions per second (TPS/account/Region), after
which transactions are throttled. You can request a
quota increase.

CreateLogStream 50 transactions per second (TPS/account/Region), after
which transactions are throttled. You can request a
quota increase.

Custom data identifiers Each data protection policy can include up to 10 custom
data identifiers. You can request a quota increase.

559

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogGroup.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogStream.html

Amazon CloudWatch Logs User Guide

Resource Default quota

Each regular expression that defines a custom data
identifier can include up to 200 characters. This quota
can't be changed.

DeleteLogGroup 10 transactions per second (TPS/account/Region), after
which transactions are throttled. You can request a
quota increase.

DeleteLogStream 15 transactions per second (TPS/account/Region), after
which transactions are throttled. You can request a
quota increase.

DescribeLogGroups
10 transactions per second (TPS/account/Region). You
can request a quota increase.

DescribeLogStreams 25 transactions per second (TPS/account/Region). You
can request a quota increase.

Discovered log fields CloudWatch Logs Insights can discover a maximum of
1000 log event fields in a log group. This quota can't be
changed.

For more information, see Supported logs and discovere
d fields.

Extracted log fields in JSON logs CloudWatch Logs Insights can extract a maximum of
200 log event fields from a JSON log. This quota can't
be changed.

For more information, see Supported logs and discovere
d fields.

Export task One active (running or pending) export task at a time,
per account. This quota can't be changed.

560

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DeleteLogGroup.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DeleteLogStream.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeLogGroups.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeLogStreams.html

Amazon CloudWatch Logs User Guide

Resource Default quota

FilterLogEvents 25 requests per second in US East (N. Virginia).

10 requests per second in the following Regions:

• US East (Ohio)

• US West (N. California)

• US West (Oregon)

• Africa (Cape Town)

• Asia Pacific (Hong Kong)

• Asia Pacific (Mumbai)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Tokyo)

• Asia Pacific (Sydney)

• Canada (Central)

• Europe (Ireland)

• Europe (London)

• Europe (Milan)

• Europe (Paris)

• Europe (Stockholm)

• Middle East (Bahrain)

• South America (São Paulo)

• AWS GovCloud (US-East)

• AWS GovCloud (US-West)

5 requests per second in all other Regions.

This quota can't be changed.

561

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_FilterLogEvents.html

Amazon CloudWatch Logs User Guide

Resource Default quota

GetLogEvents 30 requests per second in Europe (Paris).

25 requests per second in the following Regions:

• US East (N. Virginia)

• US East (Ohio)

• US West (N. California)

• Africa (Cape Town)

• Asia Pacific (Hong Kong)

• Asia Pacific (Mumbai)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Tokyo)

• Asia Pacific (Sydney)

• Canada (Central)

• Europe (London)

• Europe (Milan)

• Europe (Stockholm)

• Middle East (Bahrain)

• South America (São Paulo)

• AWS GovCloud (US-East)

• AWS GovCloud (US-West)

10 requests per second in all other Regions.

This quota can't be changed.

We recommend subscriptions if you are continuously
 processing new data. If you need historical data, we
recommend exporting your data to Amazon S3.

562

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_GetLogEvents.html

Amazon CloudWatch Logs User Guide

Resource Default quota

Incoming data Up to 5 GB of incoming data for free. This quota can't be
changed.

Live Tail concurrent sessions. 15 concurrent sessions. You can request a quota
increase.

Live Tail: log groups searched in one
session.

Maximum of 10 log groups scanned in one Live Tail
session. This quota can't be changed.

Log event size 256 KB (maximum). This quota can't be changed.

Log groups 1,000,000 log groups per account per Region. You can
request a quota increase.

There is no quota on the number of log streams that can
belong to one log group.

Metrics filters 100 per log group. This quota can't be changed.

Embedded metric format metrics 100 metrics per log event and 30 dimensions per metric.
For more information about the embedded metric for
mat, see Specification: Embedded Metric Format in the
Amazon CloudWatch User Guide.

PutLogEvents
The maximum batch size of a PutLogEvents request
is 1MB. This size is calculated as the sum of all event
messages in UTF-8, plus 26 bytes for each log event.

2500 transactions per second per account per Region,
except for the following Regions where the quota is
 5000 transactions per second per account per Region:
US East (N. Virginia), US West (Oregon), Europe (Ireland),
Europe (Milan), Europe (Paris), and Europe (Stockholm).
You can request an increase to the per-second throttlin
g quota by using the Service Quotas service.

563

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format_Specification.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutLogEvents.html

Amazon CloudWatch Logs User Guide

Resource Default quota

Query execution timeout Queries in CloudWatch Logs Insights time out after 60
minutes. This time limit can't be changed.

Queried log groups A maximum of 50 log groups can be queried in a single
CloudWatch Logs Insights query. This quota can't be
changed.

Query concurrency For Standard class log groups, a maximum of 30
concurrent CloudWatch Logs Insights queries, including
queries that have been added to dashboards.

For Infrequnt Access class log groups, a maximum of 5
concurrent CloudWatch Logs Insights queries, including
queries that have been added to dashboards.

These quotas can't be changed.

Query availability Queries constructed in the console are available for 30
days, via the History command. This availability period
can't be changed.

Query definitions created by using PutQueryDefinition
do not expire.

Query results availability Results from a query are retrievable for 7 days. This
availability time can't be changed.

Query results displayed in console By default, up to 1000 rows of query results are
displayed on the console. You can use the limit
command in a query to increase this to as many as
10,000 rows. For more information, see CloudWatch
Logs Insights query syntax.

564

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutQueryDefinition.html

Amazon CloudWatch Logs User Guide

Resource Default quota

Regular expressions Up to 5 filter patterns containing regular expressions for
each log group when creating metric filters or subscript
ion filters. This quota can't be changed.

Up to 2 regular expressions for each filter pattern, when
creating a delimited or JSON filter pattern for metric
filters and subscription filters or when filtering log
events.

Resource policies Up to 10 CloudWatch Logs resource policies per Region
per account. This quota can't be changed.

Saved queries You can save as many as 1000 CloudWatch Logs Insights
queries, per Region per account. This quota can't be
changed.

Subscription filters 2 per log group. This quota can't be changed.

Managing your CloudWatch Logs service quotas

CloudWatch Logs has integrated with Service Quotas, an AWS service that enables you to view and
manage your quotas from a central location. For more information, see What Is Service Quotas? in
the Service Quotas User Guide.

Service Quotas makes it easy to look up the value of your CloudWatch Logs service quotas.

AWS Management Console

To view CloudWatch Logs service quotas using the console

1. Open the Service Quotas console at https://console.aws.amazon.com/servicequotas/.

2. In the navigation pane, choose AWS services.

3. From the AWS services list, search for and select Amazon CloudWatch Logs.

In the Service quotas list, you can see the service quota name, applied value (if it is
available), AWS default quota, and whether the quota value is adjustable.

Managing your CloudWatch Logs service quotas 565

https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html
https://console.aws.amazon.com/servicequotas/

Amazon CloudWatch Logs User Guide

4. To view additional information about a service quota, such as the description, choose the
quota name.

5. (Optional) To request a quota increase, select the quota that you want to increase, select
Request quota increase, enter or select the required information, and select Request.

To work more with service quotas using the console see the Service Quotas User Guide. To
request a quota increase, see Requesting a quota increase in the Service Quotas User Guide.

AWS CLI

To view CloudWatch Logs service quotas using the AWS CLI

Run the following command to view the default CloudWatch Logs quotas.

aws service-quotas list-aws-default-service-quotas \
 --query 'Quotas[*].
{Adjustable:Adjustable,Name:QuotaName,Value:Value,Code:QuotaCode}' \
 --service-code logs \
 --output table

To work more with service quotas using the AWS CLI, see the Service Quotas AWS CLI Command
Reference. To request a quota increase, see the request-service-quota-increase
command in the AWS CLI Command Reference.

Managing your CloudWatch Logs service quotas 566

https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/index.html#cli-aws-service-quotas
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/index.html#cli-aws-service-quotas
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/request-service-quota-increase.html
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/index.html#cli-aws-service-quotas

Amazon CloudWatch Logs User Guide

Document history

The following table describes important changes in each release of the CloudWatch Logs User
Guide, beginning in June 2018. For notification about updates to this documentation, you can
subscribe to an RSS feed.

Change Description Date

CloudWatchLogsRead
OnlyAccess policy updated

CloudWatch Logs added the
cloudwatch:Generat
eQuery permission to
CloudWatchLogsRead
OnlyAccess, so that users
with this policy can generate
a CloudWatch Logs Insights
query string from a natural
language prompt.

November 26, 2023

CloudWatchLogsFullAccess
policy updated

CloudWatch Logs added the
cloudwatch:Generat
eQuery permission to
CloudWatchLogsFullAccess,
so that users with this policy
can generate a CloudWatc
h Logs Insights query string
from a natural language
prompt.

November 26, 2023

CloudWatch Logs adds log
pattern analysis

CloudWatch Logs now scans
for patterns in log events
every time you perform a
CloudWatch Logs Insights
query. For more information,
see Pattern analysis.

November 26, 2023

CloudWatch Logs adds log
anomaly detection

You can create a log anomaly
detector for a log group. The

November 26, 2023

567

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_AnalyzeLogData_Patterns.html

Amazon CloudWatch Logs User Guide

anomaly detector scans the
log events ingested into the
log group and finds anomalies
in the log data. For more
information, see Log anomaly
detection.

CloudWatch Logs adds
compare feature

You can now use CloudWatc
h Logs Insights to compare
changes in your log events
over time. . For more
information, see Compare
(diff) with previous time
ranges.

November 26, 2023

CloudWatch Logs adds a new
log class

CloudWatch Logs supports
two classes of log groups
so that you can have a cost-
effective option for logs that
you access infrequently, and
you also have a full-featured
option for logs that require
real-time monitoring or other
features. For more informati
on, see Log classes.

November 26, 2023

CloudWatch Logs Insights
supports natural language
query generation

CloudWatch Logs Insights
supports natural language to
generate and update queries.
For more information, see Use
natural language to generate
and update CloudWatch Logs
Insights queries.

November 26, 2023

568

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/LogsAnomalyDetection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/LogsAnomalyDetection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_AnalyzeLogData_Compare.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_AnalyzeLogData_Compare.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_AnalyzeLogData_Compare.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CloudWatch_Logs_Log_Classes.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CloudWatchLogs-Insights-Query-Assist.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CloudWatchLogs-Insights-Query-Assist.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CloudWatchLogs-Insights-Query-Assist.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CloudWatchLogs-Insights-Query-Assist.html

Amazon CloudWatch Logs User Guide

CloudWatch Logs adds
regular expression filter
pattern syntax support for
Live Tail

You can now further
customize your search and
match operations to meet
your needs with flexible
regular expressions within
Live Tail filter patterns. For
more information, see Filter
pattern syntax in the Amazon
CloudWatch Logs User Guide.

November 13, 2023

CloudWatch Logs adds
regular expression filter
pattern syntax support for
metric filters, subscription
filters, and filter log events

You can now further
customize your search and
match operations to meet
your needs with flexible
regular expressions within
filter patterns. For more
information, see Filter
pattern syntax in the Amazon
CloudWatch Logs User Guide.

September 5, 2023

CloudWatch Logs Insights
adds a pattern command

You can now use pattern
in your CloudWatch Logs
Insights queries to automatic
ally cluster your log data into
patterns. A pattern is shared
text structure that recurs
among your log fields. For
more information, see pattern
in the Amazon CloudWatch
Logs User Guide.

July 17, 2023

569

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntax.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntax.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntax.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntax.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax-Pattern.html

Amazon CloudWatch Logs User Guide

CloudWatch Logs Insights
adds a dedup command

You can now use dedup
in your CloudWatch Logs
Insights queries to remove
duplicate results based
on specific values in fields
that you specify. For more
information, see dedup in
the Amazon CloudWatch Logs
User Guide.

June 20, 2023

Account-level data protection
policies

You can now set data
protection policies at the
account level. These account-
level policies can audit and
mask sensitive informati
on in log events in all log
groups in the account. For
more information, see Help
protect sensitive log data
with masking in the Amazon
CloudWatch Logs User Guide.

June 8, 2023

Live Tail feature added CloudWatch Logs added Live
Tail ability, so you can scan
logs as they are ingested to
help with troubleshooting.
You can optionally filter
the displayed stream of log
events based on specified
terms, and also highlight log
events that have specified
terms. For more information,
see Use live tail to view logs
in near real time.

June 6, 2023

570

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax-Dedup.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/mask-sensitive-log-data.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/mask-sensitive-log-data.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/mask-sensitive-log-data.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CloudWatchLogs_LiveTail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CloudWatchLogs_LiveTail.html

Amazon CloudWatch Logs User Guide

CloudWatchLogsRead
OnlyAccess policy updated

CloudWatch Logs added
permissions to CloudWatc
hLogsReadOnlyAccess. The
logs:StartLiveTail
and logs:StopLiveTail
permissions were added so
that users with this policy can
use the console to start and
stop CloudWatch Logs live tail
sessions. For more informati
on, see Use live tail to view
logs in near real time.

June 6, 2023

CloudWatch Logs Insights
released

You can use CloudWatch
Logs Insights to interactively
search and analyze your log
data. For more information
see Analyze Log Data with
CloudWatch Logs Insights in
the Amazon CloudWatch Logs
User Guide

November 27, 2018

Support for Amazon VPC
endpoints

You can now establish a
private connection between
your VPC and CloudWatch
Logs. For more information,
see Using CloudWatch Logs
with Interface VPC Endpoints
 in the Amazon CloudWatch
Logs User Guide.

June 28, 2018

The following table describes the important changes to the Amazon CloudWatch Logs User's
Guide.

571

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CloudWatchLogs_LiveTail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CloudWatchLogs_LiveTail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch-logs-and-interface-VPC.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch-logs-and-interface-VPC.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch-logs-and-interface-VPC.html

Amazon CloudWatch Logs User Guide

Change Description Release date

Interface VPC
endpoints

In some Regions, you can use an interface VPC
endpoint to keep traffic between your Amazon
VPC and CloudWatch Logs from leaving the
Amazon network. For more information see Using
CloudWatch Logs with interface VPC endpoints.

March 7, 2018

Route 53 DNS
query logs

You can use CloudWatch Logs to store logs about
the DNS queries received by Route 53. For more
information see What is Amazon CloudWatch
Logs? or Logging DNS Queries in the Amazon
Route 53 Developer Guide.

September 7, 2017

Tag log groups You can use tags to categorize your log groups.
For more information, see Tag log groups in
Amazon CloudWatch Logs.

December 13, 2016

Console
improvements

You can navigate from metrics graphs to the
associated log groups. For more information, see
Pivot from metrics to logs.

November 7, 2016

Console usability
improvements

Improved the experience to make it easier to
search, filter, and troubleshoot. For example, you
can now filter your log data to a date and time
range. For more information, see View log data
sent to CloudWatch Logs.

August 29, 2016

Added AWS
CloudTrai
l support
for Amazon
CloudWatch
Logs and new
CloudWatch
Logs metrics

Added AWS CloudTrail support for CloudWatch
Logs. For more information, see Logging Amazon
CloudWatch Logs API calls in AWS CloudTrail.

March 10, 2016

572

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/query-logs.html

Amazon CloudWatch Logs User Guide

Change Description Release date

Added support
for CloudWatch
Logs export to
Amazon S3

Added support for exporting CloudWatch Logs
data to Amazon S3. For more information, see
Exporting log data to Amazon S3.

December 7, 2015

Added support
for AWS
CloudTrail
logged events
in Amazon
CloudWatch
Logs

You can create alarms in CloudWatch and receive
notifications of particular API activity as captured
by CloudTrail and use the notification to perform
troubleshooting.

November 10, 2014

Added support
for Amazon
CloudWatch
Logs

You can use Amazon CloudWatch Logs to
monitor, store, and access your system, applicati
on, and custom log files from Amazon Elastic
Compute Cloud (Amazon EC2) instances or other
sources. You can then retrieve the associated log
data from CloudWatch Logs using the Amazon
CloudWatch console, the CloudWatch Logs
commands in the AWS CLI, or the CloudWatc
h Logs SDK. For more information, see What is
Amazon CloudWatch Logs?.

July 10, 2014

573

Amazon CloudWatch Logs User Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

574

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon CloudWatch Logs
	Table of Contents
	What is Amazon CloudWatch Logs?
	Features
	Related AWS services
	Pricing
	Amazon CloudWatch Logs concepts
	Amazon CloudWatch Logs billing and cost

	Log classes
	Supported features

	Getting started with CloudWatch Logs
	Prerequisites
	Sign up for an AWS account
	Create an administrative user
	Set up the Command Line Interface

	Use the unified CloudWatch agent to get started with CloudWatch Logs
	Use the previous CloudWatch agent to get started with CloudWatch Logs
	CloudWatch Logs agent prerequisites
	Quick Start: Install and configure the CloudWatch Logs agent on a running EC2 Linux instance
	Configure the older CloudWatch Logs agent on a running EC2 Linux instance
	Step 1: Configure your IAM role or user for CloudWatch Logs
	Step 2: Install and configure CloudWatch Logs on an existing Amazon EC2 instance

	Quick Start: Install and configure the CloudWatch Logs agent on an EC2 Linux instance at launch
	Installing the older CloudWatch Logs agent on an EC2 Linux instance at launch

	Quick Start: Enable your Amazon EC2 instances running Windows Server 2016 to send logs to CloudWatch Logs using the CloudWatch Logs agent
	Enable your Amazon EC2 instances running Windows Server 2016 to send logs to CloudWatch Logs using the older CloudWatch Logs agent
	Download the sample configuration file
	Configure the JSON file for CloudWatch
	Step 1: Enable CloudWatch Logs
	Step 2: Configure settings for CloudWatch
	Step 3: Configure the data to send
	Step 4: Configure flow control
	Step 5: Save JSON content

	Create an IAM role for Systems Manager
	Verify Systems Manager prerequisites
	Verify internet access
	Enable CloudWatch Logs using Systems Manager Run Command

	Quick Start: Enable your Amazon EC2 instances running Windows Server 2012 and Windows Server 2008 to send logs to CloudWatch Logs
	Enable your Amazon EC2 instances running Windows Server 2012 and Windows Server 2008 to send logs to CloudWatch Logs
	Download the sample configuration file
	Configure the JSON file for CloudWatch
	Step 1: Enable CloudWatch Logs
	Step 2: Configure settings for CloudWatch
	Step 3: Configure the data to send
	Step 4: Configure flow control

	Start the agent

	Quick Start: Install the CloudWatch Logs agent using AWS OpsWorks and Chef
	Step 1: Create custom recipes
	Step 2: Create an AWS OpsWorks stack
	Step 3: Extend your IAM role
	Step 4: Add a layer
	Step 5: Add an instance
	Step 6: View your logs

	Report the CloudWatch Logs agent status
	Start the CloudWatch Logs agent
	Stop the CloudWatch Logs agent

	Quick Start: Use AWS CloudFormation to get started with CloudWatch Logs

	Using CloudWatch Logs with an AWS SDK
	Analyzing log data with CloudWatch Logs Insights
	Commands supported in log classes
	Get started: Query tutorials
	Tutorial: Run and modify a sample query
	Run a sample query
	Modify the sample query
	Add a filter command to the sample query

	Tutorial: Run a query with an aggregation function
	Tutorial: Run a query that produces a visualization grouped by log fields
	Tutorial: Run a query that produces a time series visualization

	Supported logs and discovered fields
	Fields in JSON logs

	CloudWatch Logs Insights query syntax
	display
	fields
	filter
	Matches and regular expressions in the filter command

	pattern
	diff
	parse
	Examples of the parse command

	sort
	stats
	Visualize time series data
	Visualize log data grouped by fields
	Use multiple stats commands in a single query
	Functions to use with stats

	limit
	dedup
	unmask
	Boolean, comparison, numeric, datetime, and other functions
	Arithmetic operators
	Boolean operators
	Comparison operators
	Numeric operators
	Datetime functions
	General functions
	IP address string functions
	String functions

	Fields that contain special characters
	Use aliases and comments in queries
	Use comments

	Pattern analysis
	Getting started with pattern analysis
	Details about the pattern command

	Compare (diff) with previous time ranges
	Sample queries
	General queries
	Queries for Lambda logs
	Queries for Amazon VPC flow logs
	Queries for Route 53 logs
	Queries for CloudTrail logs
	Queries for Amazon API Gateway
	Queries for NAT gateway
	Queries for Apache server logs
	Queries for Amazon EventBridge
	Examples of the parse command

	Visualize log data in graphs
	Save and re-run CloudWatch Logs Insights queries
	Add query to dashboard or export query results
	View running queries or query history
	Encrypt query results with AWS Key Management Service
	Limits
	Step 1: Create an AWS KMS key
	Step 2: Set permissions on the KMS key
	Step 3: Associate a KMS key with your query results
	Step 4: Disassociate a key from query results in the account

	Use natural language to generate and update CloudWatch Logs Insights queries
	Example queries
	Example: Generate a natural language query
	Example: Update a natural language query

	Opting out of using your data for service improvement

	Log anomaly detection
	Severity and priority of anomalies and patterns
	Anomaly visibility time
	Suppressing an anomaly
	Frequently asked questions
	Enable anomaly detection on a log group
	View anomalies that have been found
	Create alarms on log anomaly detectors
	Metrics published by log anomaly detectors
	Encrypt an anomaly detector and its results with AWS KMS
	Limits
	Step 1: Create an AWS KMS key
	Step 2: Set permissions on the KMS key
	Step 3: Associate a KMS key with an anomaly detector
	Step 4: Disassociate key from an anomaly detector

	Working with log groups and log streams
	Create a log group in CloudWatch Logs
	Send logs to a log group
	View log data sent to CloudWatch Logs
	Use Live Tail to view logs in near real time
	Start a Live Tail session

	Search log data using filter patterns
	Search log entries using the console
	Search log entries using the AWS CLI
	Pivot from metrics to logs
	Troubleshooting

	Change log data retention in CloudWatch Logs
	Tag log groups in Amazon CloudWatch Logs
	Tag basics
	Tracking costs using tagging
	Tag restrictions
	Tagging log groups using the AWS CLI
	Tagging log groups using the CloudWatch Logs API

	Encrypt log data in CloudWatch Logs using AWS Key Management Service
	Limits
	Step 1: Create an AWS KMS key
	Step 2: Set permissions on the KMS key
	Step 3: Associate a KMS key with a log group
	Step 4: Disassociate key from a log group
	AWS KMS keys and encryption context

	Help protect sensitive log data with masking
	Understanding data protection policies
	What are data protection policies?
	How is the data protection policy structured?
	JSON properties for the data protection policy
	JSON properties for a policy statement
	JSON properties for a policy statement operation

	IAM permissions required to create or work with a data protection policy
	Permissions required for account-level data protection policies
	Permissions required for data protection policies for a single log group
	Sample data protection policy

	Create an account-wide data protection policy
	Console
	AWS CLI
	Data protection policy syntax for AWS CLI or API operations

	Create a data protection policy for a single log group
	Console
	AWS CLI
	Data protection policy syntax for AWS CLI or API operations

	View unmasked data
	Audit findings reports
	Required key policy to send audit findings to an bucket protected by AWS KMS

	Types of data that you can protect
	CloudWatch Logs managed data identifiers for sensitive data types
	Credentials
	Data identifier ARNs for credential data types

	Device identifiers
	Data identifier ARNs for device data types

	Financial information
	Data identifier ARNs for financial data types

	Protected health information (PHI)
	Data identifier ARNs for protected health information data types (PHI)

	Personally identifiable information (PII)
	Keywords for driver’s license identification numbers
	Keywords for national identification numbers
	Keywords for passport numbers
	Keywords for taxpayer identification and reference numbers
	Data identifier ARNs for personally identifiable information (PII)

	Custom data identifiers
	What are custom data identifiers?
	Custom data identifier constraints
	Using custom data identifiers in the console
	Using custom data identifiers in your data protection policy

	Creating metrics from log events using filters
	Concepts
	Filter pattern syntax for metric filters
	Configuring metric values for a metric filter
	Publishing dimensions with metrics from values in JSON or space-delimited log events
	Publishing dimensions with metrics from JSON log events
	Publishing dimensions with metrics from space-delimited log events

	Using values in log events to increment a metric's value

	Creating metric filters
	Create a metric filter for a log group
	Example: Count log events
	Example: Count occurrences of a term
	Example: Count HTTP 404 codes
	Example: Count HTTP 4xx codes
	Example: Extract fields from an Apache log and assign dimensions

	Listing metric filters
	Deleting a metric filter

	Real-time processing of log data with subscriptions
	Concepts
	Log group-level subscription filters
	Example 1: Subscription filters with Kinesis Data Streams
	Example 2: Subscription filters with AWS Lambda
	Example 3: Subscription filters with Amazon Data Firehose

	Account-level subscription filters
	Example 1: Subscription filters with Kinesis Data Streams
	Example 2: Subscription filters with AWS Lambda
	Example 3: Subscription filters with Amazon Data Firehose

	Cross-account subscriptions
	Cross-account log data sharing using Kinesis Data Streams
	Setting up a new cross-account subscription
	Step 1: Create a destination
	Step 2: (Only if using an organization) Create an IAM role
	Step 3: Add/validate IAM permissions for the cross-account destination
	Step 4: Create a subscription filter
	Validate the flow of log events
	Modify destination membership at runtime

	Updating an existing cross-account subscription
	Step 1: Update the subscription filters
	Step 2: Update the existing destination access policy

	Cross-account log data sharing using Firehose
	Step 1: Create a Firehose delivery stream
	Step 2: Create a destination
	Step 3: Add/validate IAM permissions for the cross-account destination
	Step 4: Create a subscription filter
	Validating the flow of log events
	Modifying destination membership at runtime

	Cross-account account-level subscriptions using Kinesis Data Streams
	Setting up a new cross-account subscription
	Step 1: Create a destination
	Step 2: (Only if using an organization) Create an IAM role
	Step 3: Create an account-level subscription filter policy
	Validate the flow of log events
	Modify destination membership at runtime

	Updating an existing cross-account subscription
	Step 1: Update the subscription filters
	Step 2: Update the existing destination access policy

	Cross-account account-level subscriptions using Firehose
	Step 1: Create a Firehose delivery stream
	Step 2: Create a destination
	Step 3: Create an account-level subscription filter policy
	Validating the flow of log events
	Modifying destination membership at runtime

	Confused deputy prevention
	Log recursion prevention

	Filter pattern syntax for metric filters, subscription filters, filter log events, and Live Tail
	Supported regular expressions (regex) syntax
	Supported regex syntax

	Using filter patterns to match terms with a regular expression (regex)
	Match terms using regex

	Using filter patterns to match terms in unstructured log events
	Match terms in unstructured log events

	Using filter patterns to match terms in JSON log events
	Writing filter patterns for JSON log events
	Match terms in JSON log events using simple expressions
	Match terms in JSON objects using compound expressions

	Using filter patterns to match terms in space-delimited log events
	Writing filter patterns for space-delimited log events
	Match terms in space-delimited log events using pattern matching

	Enabling logging from AWS services
	Logging that requires additional permissions [V1]
	Logs sent to CloudWatch Logs
	Logs sent to Amazon S3
	Amazon S3 bucket server-side encryption

	Logs sent to Firehose

	Logging that requires additional permissions [V2]
	Logs sent to CloudWatch Logs
	Logs sent to Amazon S3
	Amazon S3 bucket server-side encryption

	Logs sent to Firehose
	Service-specific permissions
	Console-specific permissions

	Cross-service confused deputy prevention
	CloudWatch Logs updates to AWS managed policies

	Exporting log data to Amazon S3
	Concepts
	Export log data to Amazon S3 using the console
	Same-account export
	Step 1: Create an Amazon S3 bucket
	Step 2: Set up access permissions
	Step 3: Set permissions on an S3 bucket
	(Optional) Step 4: Exporting to a bucket encrypted with SSE-KMS
	Step 5: Create an export task

	Cross-account export
	Step 1: Create an Amazon S3 bucket
	Step 2: Set up access permissions
	Step 3: Set permissions on an S3 bucket
	(Optional) Step 4: Exporting to a bucket encrypted with SSE-KMS
	Step 5: Create an export task

	Export log data to Amazon S3 using the AWS CLI
	Same-account export
	Step 1: Create an S3 bucket
	Step 2: Set up access permissions
	Step 3: Set permissions on an S3 bucket
	(Optional) Step 4: Exporting to a bucket encrypted with SSE-KMS
	Step 5: Create an export task

	Cross-account export
	Step 1: Create an S3 bucket
	Step 2: Set up access permissions
	Step 3: Set permissions on an S3 bucket
	(Optional) Step 4: Exporting to a bucket encrypted with SSE-KMS
	Step 5: Create an export task

	Describe export tasks
	Cancel an export task

	Streaming CloudWatch Logs data to Amazon OpenSearch Service
	Prerequisites
	Subscribe a log group to OpenSearch Service

	Code examples for CloudWatch Logs using AWS SDKs
	Actions for CloudWatch Logs using AWS SDKs
	Use AssociateKmsKey with an AWS SDK or command line tool
	Use CancelExportTask with an AWS SDK or command line tool
	Use CreateExportTask with an AWS SDK or command line tool
	Use CreateLogGroup with an AWS SDK or command line tool
	Use CreateLogStream with an AWS SDK or command line tool
	Use DeleteLogGroup with an AWS SDK or command line tool
	Use DeleteSubscriptionFilter with an AWS SDK or command line tool
	Use DescribeExportTasks with an AWS SDK or command line tool
	Use DescribeLogGroups with an AWS SDK or command line tool
	Use DescribeSubscriptionFilters with an AWS SDK or command line tool
	Use GetQueryResults with an AWS SDK or command line tool
	Use PutSubscriptionFilter with an AWS SDK or command line tool
	Use StartLiveTail with an AWS SDK or command line tool
	Use StartQuery with an AWS SDK or command line tool

	Scenarios for CloudWatch Logs using AWS SDKs
	Use CloudWatch Logs to run a large query

	Cross-service examples for CloudWatch Logs using AWS SDKs
	Use scheduled events to invoke a Lambda function

	Security in Amazon CloudWatch Logs
	Data protection in Amazon CloudWatch Logs
	Encryption at rest
	Encryption in transit

	Identity and access management for Amazon CloudWatch Logs
	Authentication
	Access control
	Overview of managing access permissions to your CloudWatch Logs resources
	CloudWatch Logs resources and operations
	Understanding resource ownership
	Managing access to resources
	Log group permissions and Contributor Insights
	Resource-based policies

	Specifying policy elements: Actions, effects, and principals
	Specifying conditions in a policy

	Using identity-based policies (IAM policies) for CloudWatch Logs
	Permissions required to use the CloudWatch console
	AWS managed (predefined) policies for CloudWatch Logs
	CloudWatchLogsFullAccess
	CloudWatchLogsReadOnlyAccess
	CloudWatchLogsCrossAccountSharingConfiguration

	CloudWatch Logs updates to AWS managed policies
	Customer managed policy examples
	Example 1: Allow full access to CloudWatch Logs
	Example 2: Allow read-only access to CloudWatch Logs
	Example 3: Allow access to one log group

	Use tagging and IAM policies for control at the log group level

	CloudWatch Logs permissions reference
	Using service-linked roles for CloudWatch Logs
	Service-linked role permissions for CloudWatch Logs
	Creating a service-linked role for CloudWatch Logs
	Editing a service-linked role for CloudWatch Logs
	Deleting a service-linked role for CloudWatch Logs
	Supported Regions for CloudWatch Logs service-linked roles

	Compliance validation for Amazon CloudWatch Logs
	Resilience in Amazon CloudWatch Logs
	Infrastructure security in Amazon CloudWatch Logs
	Using CloudWatch Logs with interface VPC endpoints
	Availability
	Creating a VPC endpoint for CloudWatch Logs
	Testing the connection between your VPC and CloudWatch Logs
	Controlling access to your CloudWatch Logs VPC endpoint
	Support for VPC context keys

	Logging Amazon CloudWatch Logs API calls in AWS CloudTrail
	CloudWatch Logs information in CloudTrail
	Understanding log file entries

	CloudWatch Logs agent reference
	Agent configuration file
	Using the CloudWatch Logs agent with HTTP proxies
	Compartmentalizing CloudWatch Logs agent configuration files
	CloudWatch Logs agent FAQ

	Monitoring with CloudWatch metrics
	CloudWatch Logs metrics
	Dimensions for CloudWatch Logs metrics
	CloudWatch Logs service usage metrics

	CloudWatch Logs quotas
	Managing your CloudWatch Logs service quotas

	Document history
	AWS Glossary

