
Developer Guide

Amazon API Gateway

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon API Gateway Developer Guide

Amazon API Gateway: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon API Gateway Developer Guide

Table of Contents

What is Amazon API Gateway? ... 1
Architecture of API Gateway .. 2
Features of API Gateway ... 3
API Gateway use cases .. 3

Use API Gateway to create REST APIs .. 4
Use API Gateway to create HTTP APIs ... 4
Use API Gateway to create WebSocket APIs ... 5
Who uses API Gateway? .. 6

Accessing API Gateway .. 6
Part of AWS serverless infrastructure .. 7
How to get started with Amazon API Gateway ... 7
API Gateway concepts ... 8
Choosing between REST APIs and HTTP APIs ... 13

.. 13
Endpoint type .. 13
Security ... 14
Authorization ... 14
API management .. 15
Development .. 15
Monitoring .. 16
Integrations .. 16

Getting started with the REST API console .. 17
Step 1: Create a Lambda function .. 18
Step 2: Create a REST API .. 19
Step 3: Create a Lambda proxy integration .. 19
Step 4: Deploy your API .. 20
Step 5: Invoke your API ... 20
(Optional) Step 6: Clean up .. 21

Prerequisites .. 23
Sign up for an AWS account ... 23
Create an administrative user ... 23

Getting started .. 25
Step 1: Create a Lambda function ... 26
Step 2: Create an HTTP API ... 26

iii

Amazon API Gateway Developer Guide

Step 3: Test your API .. 27
(Optional) Step 4: Clean up ... 28
Next steps .. 29

Tutorials and workshops ... 31
REST API tutorials .. 32

Build an API with Lambda integration ... 32
Tutorial: Create a REST API by importing an example .. 56
Build an API with HTTP integration ... 65
Tutorial: Build an API with private integration ... 79
Tutorial: Build an API with AWS integration ... 82
Tutorial: Calc API with three integrations ... 88
Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 116
Tutorial: Create a REST API as an Amazon Kinesis proxy ... 162
Build a private REST API ... 207

HTTP API tutorials ... 213
CRUD API with Lambda and DynamoDB ... 214
Private integration to Amazon ECS .. 226

WebSocket API tutorials ... 232
WebSocket chat app .. 233
WebSocket Step Functions app ... 238

Working with REST APIs ... 253
Develop .. 253

Create and configure ... 254
Access control .. 300
Integrations .. 381
Request validation .. 448
Data transformations ... 481
Gateway responses ... 564
CORS .. 576
Binary media types .. 590
Invoke .. 621
OpenAPI .. 656

Publish .. 670
Deploying a REST API .. 671
Custom domain names ... 715

Optimize ... 755

iv

Amazon API Gateway Developer Guide

Cache settings ... 755
Content encoding ... 765

Distribute ... 771
Usage plans .. 771
API documentation ... 797
SDK generation ... 861
Sell your APIs as SaaS ... 888

Protect .. 892
Mutual TLS ... 893
Client certificates .. 899
AWS WAF .. 940
Throttling ... 943
Private APIs .. 945

Monitor ... 956
CloudWatch metrics ... 957
CloudWatch logs ... 965
Firehose ... 971
X-Ray ... 973

Working with HTTP APIs .. 987
Develop .. 987

Creating an HTTP API .. 988
Routes ... 989
Access control .. 992
Integrations ... 1011
CORS ... 1032
Parameter mapping ... 1035
OpenAPI ... 1042

Publish ... 1052
Stages ... 1052
Security policy for HTTP APIs ... 1055
Custom domain names ... 1056

Protect .. 1063
Throttling ... 1063
Mutual TLS ... 1065

Monitor .. 1071
Metrics .. 1071

v

Amazon API Gateway Developer Guide

Logging ... 1073
Troubleshooting ... 1084

Lambda integrations .. 1084
JWT authorizers .. 1087

Working with WebSocket APIs ... 1089
About WebSocket APIs ... 1089

Managing connected users and client apps ... 1091
Invoking your backend integration .. 1094
Sending data from backend services to connected clients ... 1098
WebSocket selection expressions ... 1098

Develop .. 1106
Create and configure ... 1107
Routes ... 1109
Access control ... 1117
Integrations ... 1125
Request validation ... 1134
Data transformations .. 1138
Binary media types .. 1149
Invoke .. 1149

Publish ... 1152
Stages ... 1153
Deploy a WebSocket API .. 1155
Security policy for WebSocket APIs ... 1158
Custom domain names ... 1160

Protect .. 1165
Account-level throttling per Region ... 1165
Route-level throttling .. 1166

Monitor .. 1166
Metrics .. 1167
Logging ... 1169

API Gateway ARNs ... 1177
HTTP API and WebSocket API resources .. 1177
REST API resources .. 1180
execute-api (HTTP APIs, WebSocket APIs, and REST APIs) .. 1185

OpenAPI extensions .. 1186
x-amazon-apigateway-any-method ... 1187

vi

Amazon API Gateway Developer Guide

x-amazon-apigateway-any-method examples ... 1188
x-amazon-apigateway-cors .. 1189

x-amazon-apigateway-cors example .. 1189
x-amazon-apigateway-api-key-source ... 1190

x-amazon-apigateway-api-key-source example ... 1191
x-amazon-apigateway-auth ... 1192

x-amazon-apigateway-auth example ... 1192
x-amazon-apigateway-authorizer ... 1193

x-amazon-apigateway-authorizer examples for REST APIs ... 1196
x-amazon-apigateway-authorizer examples for HTTP APIs .. 1200

x-amazon-apigateway-authtype .. 1202
x-amazon-apigateway-authtype example ... 1202
See also .. 1204

x-amazon-apigateway-binary-media-type ... 1204
x-amazon-apigateway-binary-media-types example .. 1204

x-amazon-apigateway-documentation ... 1204
x-amazon-apigateway-documentation example ... 1205

x-amazon-apigateway-endpoint-configuration ... 1206
x-amazon-apigateway-endpoint-configuration examples ... 1206

x-amazon-apigateway-gateway-responses .. 1207
x-amazon-apigateway-gateway-responses example .. 1207

x-amazon-apigateway-gateway-responses.gatewayResponse ... 1208
x-amazon-apigateway-gateway-responses.gatewayResponse example 1208

x-amazon-apigateway-gateway-responses.responseParameters ... 1209
x-amazon-apigateway-gateway-responses.responseParameters example 1209

x-amazon-apigateway-gateway-responses.responseTemplates .. 1210
x-amazon-apigateway-gateway-responses.responseTemplates example 1210

x-amazon-apigateway-importexport-version .. 1211
x-amazon-apigateway-importexport-version example .. 1211

x-amazon-apigateway-integration .. 1211
x-amazon-apigateway-integration examples ... 1217

x-amazon-apigateway-integrations ... 1219
x-amazon-apigateway-integrations example ... 1219

x-amazon-apigateway-integration.requestTemplates .. 1221
x-amazon-apigateway-integration.requestTemplates example .. 1221

x-amazon-apigateway-integration.requestParameters .. 1222

vii

Amazon API Gateway Developer Guide

x-amazon-apigateway-integration.requestParameters example 1223
x-amazon-apigateway-integration.responses .. 1224

x-amazon-apigateway-integration.responses example ... 1225
x-amazon-apigateway-integration.response .. 1226

x-amazon-apigateway-integration.response example ... 1227
x-amazon-apigateway-integration.responseTemplates ... 1227

x-amazon-apigateway-integration.responseTemplate example ... 1228
x-amazon-apigateway-integration.responseParameters ... 1228

x-amazon-apigateway-integration.responseParameters example 1229
x-amazon-apigateway-integration.tlsConfig .. 1229

x-amazon-apigateway-integration.tlsConfig examples .. 1231
x-amazon-apigateway-minimum-compression-size ... 1232

x-amazon-apigateway-minimum-compression-size example ... 1232
x-amazon-apigateway-policy .. 1232

x-amazon-apigateway-policy example .. 1232
x-amazon-apigateway-request-validator .. 1233

x-amazon-apigateway-request-validator example .. 1233
x-amazon-apigateway-request-validators .. 1234

x-amazon-apigateway-request-validators example .. 1235
x-amazon-apigateway-request-validators.requestValidator ... 1236

x-amazon-apigateway-request-validators.requestValidator example 1236
x-amazon-apigateway-tag-value .. 1236

x-amazon-apigateway-tag-value example ... 1237
Security .. 1238

Data protection .. 1239
Data encryption .. 1239
Internetwork traffic privacy ... 1240

Identity and access management .. 1241
Audience ... 1241
Authenticating with identities ... 1242
Managing access using policies ... 1245
How Amazon API Gateway works with IAM ... 1247
Identity-based policy examples ... 1252
Resource-based policy examples .. 1260
Troubleshooting .. 1261
Using service-linked roles ... 1262

viii

Amazon API Gateway Developer Guide

Logging and monitoring .. 1267
Working with CloudTrail ... 1269
Working with AWS Config .. 1272

Compliance validation .. 1275
Resilience ... 1276
Infrastructure security .. 1276
Configuration and vulnerability analysis .. 1277
Best practices ... 1277

Tagging ... 1280
API Gateway resources that can be tagged ... 1280

Tag inheritance in the Amazon API Gateway V1 API .. 1282
Tag restrictions and usage conventions .. 1283

Attribute-based access control ... 1283
Limit actions based on resource tags .. 1284
Allow actions based on resource tags ... 1285
Deny tagging operations .. 1286
Allow tagging operations ... 1286

API references .. 1288
Quotas and important notes .. 1289

API Gateway account-level quotas, per Region ... 1289
HTTP API quotas ... 1290

... 1290
API Gateway quotas for configuring and running a WebSocket API ... 1293
API Gateway quotas for configuring and running a REST API ... 1294
API Gateway quotas for creating, deploying and managing an API .. 1298
Important notes ... 1301

Important notes for REST APIs, HTTP APIs, and WebSocket APIs ... 1301
Important notes for REST APIs and WebSocket APIs ... 1301
Important notes for WebSocket APIs .. 1302
Important notes for REST APIs ... 1302

Document history .. 1308
Earlier updates ... 1318

AWS Glossary ... 1328

ix

Amazon API Gateway Developer Guide

What is Amazon API Gateway?

Note

The redesigned API Gateway console experience is now available. For a tutorial on how to
use the console to create a REST API, see Getting started with the REST API console.

Amazon API Gateway is an AWS service for creating, publishing, maintaining, monitoring, and
securing REST, HTTP, and WebSocket APIs at any scale. API developers can create APIs that access
AWS or other web services, as well as data stored in the AWS Cloud. As an API Gateway API
developer, you can create APIs for use in your own client applications. Or you can make your APIs
available to third-party app developers. For more information, see the section called “Who uses API
Gateway?”.

API Gateway creates RESTful APIs that:

• Are HTTP-based.

• Enable stateless client-server communication.

• Implement standard HTTP methods such as GET, POST, PUT, PATCH, and DELETE.

For more information about API Gateway REST APIs and HTTP APIs, see the section called
“Choosing between REST APIs and HTTP APIs ”, Working with HTTP APIs, the section called “Use
API Gateway to create REST APIs”, and the section called “Create and configure”.

API Gateway creates WebSocket APIs that:

• Adhere to the WebSocket protocol, which enables stateful, full-duplex communication between
client and server.

• Route incoming messages based on message content.

For more information about API Gateway WebSocket APIs, see the section called “Use API Gateway
to create WebSocket APIs” and the section called “About WebSocket APIs”.

Topics

• Architecture of API Gateway

1

https://aws.amazon.com/what-is-cloud-computing/
https://tools.ietf.org/html/rfc6455

Amazon API Gateway Developer Guide

• Features of API Gateway

• API Gateway use cases

• Accessing API Gateway

• Part of AWS serverless infrastructure

• How to get started with Amazon API Gateway

• Amazon API Gateway concepts

• Choosing between REST APIs and HTTP APIs

• Getting started with the REST API console

Architecture of API Gateway

The following diagram shows API Gateway architecture.

This diagram illustrates how the APIs you build in Amazon API Gateway provide you or your
developer customers with an integrated and consistent developer experience for building AWS
serverless applications. API Gateway handles all the tasks involved in accepting and processing
up to hundreds of thousands of concurrent API calls. These tasks include traffic management,
authorization and access control, monitoring, and API version management.

API Gateway acts as a "front door" for applications to access data, business logic, or functionality
from your backend services, such as workloads running on Amazon Elastic Compute Cloud

Architecture of API Gateway 2

Amazon API Gateway Developer Guide

(Amazon EC2), code running on AWS Lambda, any web application, or real-time communication
applications.

Features of API Gateway

Amazon API Gateway offers features such as the following:

• Support for stateful (WebSocket) and stateless (HTTP and REST) APIs.

• Powerful, flexible authentication mechanisms, such as AWS Identity and Access Management
policies, Lambda authorizer functions, and Amazon Cognito user pools.

• Canary release deployments for safely rolling out changes.

• CloudTrail logging and monitoring of API usage and API changes.

• CloudWatch access logging and execution logging, including the ability to set alarms. For more
information, see the section called “CloudWatch metrics” and the section called “Metrics”.

• Ability to use AWS CloudFormation templates to enable API creation. For more information, see
Amazon API Gateway Resource Types Reference and Amazon API Gateway V2 Resource Types
Reference.

• Support for custom domain names.

• Integration with AWS WAF for protecting your APIs against common web exploits.

• Integration with AWS X-Ray for understanding and triaging performance latencies.

For a complete list of API Gateway feature releases, see Document history.

API Gateway use cases

Topics

• Use API Gateway to create REST APIs

• Use API Gateway to create HTTP APIs

• Use API Gateway to create WebSocket APIs

• Who uses API Gateway?

Features of API Gateway 3

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_ApiGateway.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_ApiGatewayV2.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_ApiGatewayV2.html

Amazon API Gateway Developer Guide

Use API Gateway to create REST APIs

An API Gateway REST API is made up of resources and methods. A resource is a logical entity that
an app can access through a resource path. A method corresponds to a REST API request that is
submitted by the user of your API and the response returned to the user.

For example, /incomes could be the path of a resource representing the income of the app user.
A resource can have one or more operations that are defined by appropriate HTTP verbs such as
GET, POST, PUT, PATCH, and DELETE. A combination of a resource path and an operation identifies
a method of the API. For example, a POST /incomes method could add an income earned by the
caller, and a GET /expenses method could query the reported expenses incurred by the caller.

The app doesn't need to know where the requested data is stored and fetched from on the
backend. In API Gateway REST APIs, the frontend is encapsulated by method requests and method
responses. The API interfaces with the backend by means of integration requests and integration
responses.

For example, with DynamoDB as the backend, the API developer sets up the integration request
to forward the incoming method request to the chosen backend. The setup includes specifications
of an appropriate DynamoDB action, required IAM role and policies, and required input data
transformation. The backend returns the result to API Gateway as an integration response.

To route the integration response to an appropriate method response (of a given HTTP status code)
to the client, you can configure the integration response to map required response parameters
from integration to method. You then translate the output data format of the backend to that of
the frontend, if necessary. API Gateway enables you to define a schema or model for the payload
to facilitate setting up the body mapping template.

API Gateway provides REST API management functionality such as the following:

• Support for generating SDKs and creating API documentation using API Gateway extensions to
OpenAPI

• Throttling of HTTP requests

Use API Gateway to create HTTP APIs

HTTP APIs enable you to create RESTful APIs with lower latency and lower cost than REST APIs.

Use API Gateway to create REST APIs 4

https://en.wikipedia.org/wiki/Payload_(computing)

Amazon API Gateway Developer Guide

You can use HTTP APIs to send requests to AWS Lambda functions or to any publicly routable
HTTP endpoint.

For example, you can create an HTTP API that integrates with a Lambda function on the backend.
When a client calls your API, API Gateway sends the request to the Lambda function and returns
the function's response to the client.

HTTP APIs support OpenID Connect and OAuth 2.0 authorization. They come with built-in support
for cross-origin resource sharing (CORS) and automatic deployments.

To learn more, see the section called “Choosing between REST APIs and HTTP APIs ”.

Use API Gateway to create WebSocket APIs

In a WebSocket API, the client and the server can both send messages to each other at any
time. Backend servers can easily push data to connected users and devices, avoiding the need to
implement complex polling mechanisms.

For example, you could build a serverless application using an API Gateway WebSocket API and
AWS Lambda to send and receive messages to and from individual users or groups of users in a
chat room. Or you could invoke backend services such as AWS Lambda, Amazon Kinesis, or an HTTP
endpoint based on message content.

You can use API Gateway WebSocket APIs to build secure, real-time communication applications
without having to provision or manage any servers to manage connections or large-scale data
exchanges. Targeted use cases include real-time applications such as the following:

• Chat applications

• Real-time dashboards such as stock tickers

• Real-time alerts and notifications

API Gateway provides WebSocket API management functionality such as the following:

• Monitoring and throttling of connections and messages

• Using AWS X-Ray to trace messages as they travel through the APIs to backend services

• Easy integration with HTTP/HTTPS endpoints

Use API Gateway to create WebSocket APIs 5

https://openid.net/connect/
https://oauth.net/2/

Amazon API Gateway Developer Guide

Who uses API Gateway?

There are two kinds of developers who use API Gateway: API developers and app developers.

An API developer creates and deploys an API to enable the required functionality in API Gateway.
The API developer must be a user in the AWS account that owns the API.

An app developer builds a functioning application to call AWS services by invoking a WebSocket or
REST API created by an API developer in API Gateway.

The app developer is the customer of the API developer. The app developer doesn't need to
have an AWS account, provided that the API either doesn't require IAM permissions or supports
authorization of users through third-party federated identity providers supported by Amazon
Cognito user pool identity federation. Such identity providers include Amazon, Amazon Cognito
user pools, Facebook, and Google.

Creating and managing an API Gateway API

An API developer works with the API Gateway service component for API management, named
apigateway, to create, configure, and deploy an API.

As an API developer, you can create and manage an API by using the API Gateway console,
described in Getting started with API Gateway, or by calling the API references. There are several
ways to call this API. They include using the AWS Command Line Interface (AWS CLI), or by using an
AWS SDK. In addition, you can enable API creation with AWS CloudFormation templates or (in the
case of REST APIs and HTTP APIs) Working with API Gateway extensions to OpenAPI.

For a list of Regions where API Gateway is available, as well as the associated control service
endpoints, see Amazon API Gateway Endpoints and Quotas.

Calling an API Gateway API

An app developer works with the API Gateway service component for API execution, named
execute-api, to invoke an API that was created or deployed in API Gateway. The underlying
programming entities are exposed by the created API. There are several ways to call such an API. To
learn more, see Invoking a REST API in Amazon API Gateway and Invoking a WebSocket API.

Accessing API Gateway

You can access Amazon API Gateway in the following ways:

Who uses API Gateway? 6

https://docs.aws.amazon.com/cognito/latest/developerguide/
https://docs.aws.amazon.com/cognito/latest/developerguide/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-reference.html
https://docs.aws.amazon.com/general/latest/gr/apigateway.html

Amazon API Gateway Developer Guide

• AWS Management Console – The AWS Management Console provides a web interface for
creating and managing APIs. After you complete the steps in Prerequisites, you can access the API
Gateway console at https://console.aws.amazon.com/apigateway.

• AWS SDKs – If you're using a programming language that AWS provides an SDK for, you can
use an SDK to access API Gateway. SDKs simplify authentication, integrate easily with your
development environment, and provide access to API Gateway commands. For more information,
see Tools for Amazon Web Services.

• API Gateway V1 and V2 APIs – If you're using a programming language that an SDK isn't
available for, see the Amazon API Gateway Version 1 API Reference and Amazon API Gateway
Version 2 API Reference.

• AWS Command Line Interface – For more information, see Getting Set Up with the AWS
Command Line Interface in the AWS Command Line Interface User Guide.

• AWS Tools for Windows PowerShell – For more information, see Setting Up the AWS Tools for
Windows PowerShell in the AWS Tools for Windows PowerShell User Guide.

Part of AWS serverless infrastructure

Together with AWS Lambda, API Gateway forms the app-facing part of the AWS serverless
infrastructure. To learn more about getting started with serverless, see the Serverless Developer
Guide.

For an app to call publicly available AWS services, you can use Lambda to interact with required
services and expose Lambda functions through API methods in API Gateway. AWS Lambda runs
your code on a highly available computing infrastructure. It performs the necessary execution and
administration of computing resources. To enable serverless applications, API Gateway supports
streamlined proxy integrations with AWS Lambda and HTTP endpoints.

How to get started with Amazon API Gateway

For an introduction to Amazon API Gateway, see the following:

• Getting started, which provides a walkthrough for creating an HTTP API.

• Serverless land, which provides instructional videos.

• Happy Little API Shorts, which is a series of brief instructional videos.

Part of AWS serverless infrastructure 7

https://console.aws.amazon.com/apigateway
https://aws.amazon.com/tools
https://docs.aws.amazon.com/apigateway/api-reference/
https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/api-reference.html
https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/api-reference.html
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/powershell/latest/userguide/
https://docs.aws.amazon.com/powershell/latest/userguide/
https://docs.aws.amazon.com/lambda/latest/dg/
https://docs.aws.amazon.com/serverless/latest/devguide/welcome.html
https://docs.aws.amazon.com/serverless/latest/devguide/welcome.html
https://serverlessland.com/video?tag=Amazon%20API%20Gateway
https://www.youtube.com/playlist?list=PLJo-rJlep0EDFw7t0-IBHffVYKcPMDXHY

Amazon API Gateway Developer Guide

Amazon API Gateway concepts

API Gateway

API Gateway is an AWS service that supports the following:

• Creating, deploying, and managing a RESTful application programming interface (API) to
expose backend HTTP endpoints, AWS Lambda functions, or other AWS services.

• Creating, deploying, and managing a WebSocket API to expose AWS Lambda functions or
other AWS services.

• Invoking exposed API methods through the frontend HTTP and WebSocket endpoints.

API Gateway REST API

A collection of HTTP resources and methods that are integrated with backend HTTP endpoints,
Lambda functions, or other AWS services. You can deploy this collection in one or more stages.
Typically, API resources are organized in a resource tree according to the application logic. Each
API resource can expose one or more API methods that have unique HTTP verbs supported by
API Gateway. For more information, see the section called “Choosing between REST APIs and
HTTP APIs ”.

API Gateway HTTP API

A collection of routes and methods that are integrated with backend HTTP endpoints or
Lambda functions. You can deploy this collection in one or more stages. Each route can expose
one or more API methods that have unique HTTP verbs supported by API Gateway. For more
information, see the section called “Choosing between REST APIs and HTTP APIs ”.

API Gateway WebSocket API

A collection of WebSocket routes and route keys that are integrated with backend HTTP
endpoints, Lambda functions, or other AWS services. You can deploy this collection in one or
more stages. API methods are invoked through frontend WebSocket connections that you can
associate with a registered custom domain name.

API deployment

A point-in-time snapshot of your API Gateway API. To be available for clients to use, the
deployment must be associated with one or more API stages.

API developer

Your AWS account that owns an API Gateway deployment (for example, a service provider that
also supports programmatic access).

API Gateway concepts 8

https://en.wikipedia.org/wiki/Representational_state_transfer
https://tools.ietf.org/html/rfc6455

Amazon API Gateway Developer Guide

API endpoint

A hostname for an API in API Gateway that is deployed to a specific Region. The hostname is of
the form {api-id}.execute-api.{region}.amazonaws.com. The following types of API
endpoints are supported:

• Edge-optimized API endpoint

• Private API endpoint

• Regional API endpoint

API key

An alphanumeric string that API Gateway uses to identify an app developer who uses your
REST or WebSocket API. API Gateway can generate API keys on your behalf, or you can import
them from a CSV file. You can use API keys together with Lambda authorizers or usage plans to
control access to your APIs.

See API endpoints.

API owner

See API developer.

API stage

A logical reference to a lifecycle state of your API (for example, 'dev', 'prod', 'beta', 'v2'). API
stages are identified by API ID and stage name.

App developer

An app creator who may or may not have an AWS account and interacts with the API that you,
the API developer, have deployed. App developers are your customers. An app developer is
typically identified by an API key.

Callback URL

When a new client is connected to through a WebSocket connection, you can call an integration
in API Gateway to store the client's callback URL. You can then use that callback URL to send
messages to the client from the backend system.

Developer portal

An application that allows your customers to register, discover, and subscribe to your API
products (API Gateway usage plans), manage their API keys, and view their usage metrics for
your APIs.

API Gateway concepts 9

Amazon API Gateway Developer Guide

Edge-optimized API endpoint

The default hostname of an API Gateway API that is deployed to the specified Region while
using a CloudFront distribution to facilitate client access typically from across AWS Regions. API
requests are routed to the nearest CloudFront Point of Presence (POP), which typically improves
connection time for geographically diverse clients.

See API endpoints.

Integration request

The internal interface of a WebSocket API route or REST API method in API Gateway, in which
you map the body of a route request or the parameters and body of a method request to the
formats required by the backend.

Integration response

The internal interface of a WebSocket API route or REST API method in API Gateway, in which
you map the status codes, headers, and payload that are received from the backend to the
response format that is returned to a client app.

Mapping template

A script in Velocity Template Language (VTL) that transforms a request body from the frontend
data format to the backend data format, or that transforms a response body from the backend
data format to the frontend data format. Mapping templates can be specified in the integration
request or in the integration response. They can reference data made available at runtime as
context and stage variables.

The mapping can be as simple as an identity transform that passes the headers or body
through the integration as-is from the client to the backend for a request. The same is true for a
response, in which the payload is passed from the backend to the client.

Method request

The public interface of an API method in API Gateway that defines the parameters and body
that an app developer must send in requests to access the backend through the API.

Method response

The public interface of a REST API that defines the status codes, headers, and body models that
an app developer should expect in responses from the API.

API Gateway concepts 10

https://velocity.apache.org/engine/devel/vtl-reference.html
https://en.wikipedia.org/wiki/Identity_transform

Amazon API Gateway Developer Guide

Mock integration

In a mock integration, API responses are generated from API Gateway directly, without the
need for an integration backend. As an API developer, you decide how API Gateway responds
to a mock integration request. For this, you configure the method's integration request and
integration response to associate a response with a given status code.

Model

A data schema specifying the data structure of a request or response payload. A model is
required for generating a strongly typed SDK of an API. It is also used to validate payloads.
A model is convenient for generating a sample mapping template to initiate creation of a
production mapping template. Although useful, a model is not required for creating a mapping
template.

Private API

See Private API endpoint.

Private API endpoint

An API endpoint that is exposed through interface VPC endpoints and allows a client to securely
access private API resources inside a VPC. Private APIs are isolated from the public internet, and
they can only be accessed using VPC endpoints for API Gateway that have been granted access.

Private integration

An API Gateway integration type for a client to access resources inside a customer's VPC
through a private REST API endpoint without exposing the resources to the public internet.

Proxy integration

A simplified API Gateway integration configuration. You can set up a proxy integration as an
HTTP proxy integration or a Lambda proxy integration.

For HTTP proxy integration, API Gateway passes the entire request and response between the
frontend and an HTTP backend. For Lambda proxy integration, API Gateway sends the entire
request as input to a backend Lambda function. API Gateway then transforms the Lambda
function output to a frontend HTTP response.

In REST APIs, proxy integration is most commonly used with a proxy resource, which is
represented by a greedy path variable (for example, {proxy+}) combined with a catch-all ANY
method.

API Gateway concepts 11

Amazon API Gateway Developer Guide

Quick create

You can use quick create to simplify creating an HTTP API. Quick create creates an API with a
Lambda or HTTP integration, a default catch-all route, and a default stage that is configured to
automatically deploy changes. For more information, see the section called “Create an HTTP API
by using the AWS CLI”.

Regional API endpoint

The host name of an API that is deployed to the specified Region and intended to serve clients,
such as EC2 instances, in the same AWS Region. API requests are targeted directly to the
Region-specific API Gateway API without going through any CloudFront distribution. For in-
Region requests, a Regional endpoint bypasses the unnecessary round trip to a CloudFront
distribution.

In addition, you can apply latency-based routing on Regional endpoints to deploy an API to
multiple Regions using the same Regional API endpoint configuration, set the same custom
domain name for each deployed API, and configure latency-based DNS records in Route 53 to
route client requests to the Region that has the lowest latency.

See API endpoints.

Route

A WebSocket route in API Gateway is used to direct incoming messages to a specific integration,
such as an AWS Lambda function, based on the content of the message. When you define
your WebSocket API, you specify a route key and an integration backend. The route key is an
attribute in the message body. When the route key is matched in an incoming message, the
integration backend is invoked.

A default route can also be set for non-matching route keys or to specify a proxy model that
passes the message through as-is to backend components that perform the routing and process
the request.

Route request

The public interface of a WebSocket API method in API Gateway that defines the body that an
app developer must send in the requests to access the backend through the API.

Route response

The public interface of a WebSocket API that defines the status codes, headers, and body
models that an app developer should expect from API Gateway.

API Gateway concepts 12

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html#routing-policy-latency

Amazon API Gateway Developer Guide

Usage plan

A usage plan provides selected API clients with access to one or more deployed REST or
WebSocket APIs. You can use a usage plan to configure throttling and quota limits, which are
enforced on individual client API keys.

WebSocket connection

API Gateway maintains a persistent connection between clients and API Gateway itself. There
is no persistent connection between API Gateway and backend integrations such as Lambda
functions. Backend services are invoked as needed, based on the content of messages received
from clients.

Choosing between REST APIs and HTTP APIs

REST APIs and HTTP APIs are both RESTful API products. REST APIs support more features than
HTTP APIs, while HTTP APIs are designed with minimal features so that they can be offered at a
lower price. Choose REST APIs if you need features such as API keys, per-client throttling, request
validation, AWS WAF integration, or private API endpoints. Choose HTTP APIs if you don't need the
features included with REST APIs.

The following sections summarize core features that are available in REST APIs and HTTP APIs.

Endpoint type

The endpoint type refers to the endpoint that API Gateway creates for your API. For more
information, see the section called “Choose an API endpoint type”.

Endpoint types REST API HTTP API

Edge-optimized ✓

Regional ✓ ✓

Private ✓

Choosing between REST APIs and HTTP APIs 13

Amazon API Gateway Developer Guide

Security

API Gateway provides a number of ways to protect your API from certain threats, like malicious
actors or spikes in traffic. To learn more, see the section called “Protect” and the section called
“Protect”.

Security features REST API HTTP API

Mutual TLS authentication ✓ ✓

Certificates for backend
authentication

✓

AWS WAF ✓

Authorization

API Gateway supports multiple mechanisms for controlling and managing access to your API. For
more information, see the section called “Access control” and the section called “Access control”.

Authorization options REST API HTTP API

IAM ✓ ✓

Resource policies ✓

Amazon Cognito ✓ ✓ 1

Custom authorization with an
AWS Lambda function

✓ ✓

JSON Web Token (JWT) 2 ✓

1 You can use Amazon Cognito with a JWT authorizer.

2 You can use a Lambda authorizer to validate JWTs for REST APIs.

Security 14

Amazon API Gateway Developer Guide

API management

Choose REST APIs if you need API management capabilities such as API keys and per-client rate
limiting. For more information, see the section called “Distribute”, the section called “Custom
domain names”, and the section called “Custom domain names”.

Features REST API HTTP API

Custom domains ✓ ✓

API keys ✓

Per-client rate limiting ✓

Per-client usage throttling ✓

Development

As you're developing your API Gateway API, you decide on a number of characteristics of your API.
These characteristics depend on the use case of your API. For more information see the section
called “Develop” and the section called “Develop”.

Features REST API HTTP API

CORS configuration ✓ ✓

Test invocations ✓

Caching ✓

User-controlled deployments ✓ ✓

Automatic deployments ✓

Custom gateway responses ✓

Canary release deployments ✓

Request validation ✓

API management 15

Amazon API Gateway Developer Guide

Features REST API HTTP API

Request parameter transform
ation

✓ ✓

Request body transformation ✓

Monitoring

API Gateway supports several options to log API requests and monitor your APIs. For more
information, see the section called “Monitor” and the section called “Monitor”.

Feature REST API HTTP API

Amazon CloudWatch metrics ✓ ✓

Access logs to CloudWatch
Logs

✓ ✓

Access logs to Amazon Data
Firehose

✓

Execution logs ✓

AWS X-Ray tracing ✓

Integrations

Integrations connect your API Gateway API to backend resources. For more information, see the
section called “Integrations” and the section called “Integrations”.

Feature REST API HTTP API

Public HTTP endpoints ✓ ✓

AWS services ✓ ✓

Monitoring 16

Amazon API Gateway Developer Guide

Feature REST API HTTP API

AWS Lambda functions ✓ ✓

Private integrations with
Network Load Balancers

✓ ✓

Private integrations with
Application Load Balancers

✓

Private integrations with AWS
Cloud Map

✓

Mock integrations ✓

Getting started with the REST API console

In this getting started exercise, you create a serverless REST API using the API Gateway REST
API console. Serverless APIs let you focus on your applications instead of spending your time
provisioning and managing servers. This exercise should take less than 20 minutes to complete,
and is possible within the AWS Free Tier.

First, you create a Lambda function using the Lambda console. Next, you create a REST API using
the API Gateway REST API console. Then, you create an API method and integrate it with a Lambda
function using a Lambda proxy integration. Finally, you deploy and invoke your API.

When you invoke your REST API, API Gateway routes the request to your Lambda function. Lambda
runs the function and returns a response to API Gateway. API Gateway then returns that response
to you.

Getting started with the REST API console 17

https://aws.amazon.com/free

Amazon API Gateway Developer Guide

To complete this exercise, you need an AWS account and an AWS Identity and Access Management
(IAM) user with console access. For more information, see Prerequisites for getting started with API
Gateway.

Topics

• Step 1: Create a Lambda function

• Step 2: Create a REST API

• Step 3: Create a Lambda proxy integration

• Step 4: Deploy your API

• Step 5: Invoke your API

• (Optional) Step 6: Clean up

Step 1: Create a Lambda function

You use a Lambda function for the backend of your API. Lambda runs your code only when needed
and scales automatically, from a few requests per day to thousands per second.

For this exercise, you use a default Node.js function in the Lambda console.

To create a Lambda function

1. Sign in to the Lambda console at https://console.aws.amazon.com/lambda.

2. Choose Create function.

3. Under Basic information, for Function name, enter my-function.

4. Choose Create function.

The default Lambda function code should look similar to the following:

export const handler = async (event) => {
 const response = {
 statusCode: 200,
 body: JSON.stringify('The API Gateway REST API console is great!'),
 };
 return response;
};

Step 1: Create a Lambda function 18

https://console.aws.amazon.com/lambda

Amazon API Gateway Developer Guide

You can modify your Lambda function for this exercise, as long as the function's response aligns
with the format that API Gateway requires.

Replace the default response body (Hello from Lambda!) with The API Gateway REST API
console is great!. When you invoke the example function, it returns a 200 response to clients,
along with the updated response.

Step 2: Create a REST API

Next, you create a REST API with a root resource (/).

To create a REST API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Do one of the following:

• To create your first API, for REST API, choose Build.

• If you've created an API before, choose Create API, and then choose Build for REST API.

3. For API name, enter my-rest-api.

4. (Optional) For Description, enter a description.

5. Keep API endpoint type set to Regional.

6. Choose Create API.

Step 3: Create a Lambda proxy integration

Next, you create an API method for your REST API on the root resource (/) and integrate the
method with your Lambda function using a proxy integration. In a Lambda proxy integration, API
Gateway passes the incoming request from the client directly to the Lambda function.

To create a Lambda proxy integration

1. Select the / resource, and then choose Create method.

2. For Method type, select ANY.

3. For Integration type, select Lambda.

4. Turn on Lambda proxy integration.

5. For Lambda function, enter my-function, and then select your Lambda function.

6. Choose Create method.

Step 2: Create a REST API 19

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Step 4: Deploy your API

Next, you create an API deployment and associate it with a stage.

To deploy your API

1. Choose Deploy API.

2. For Stage, select New stage.

3. For Stage name, enter Prod.

4. (Optional) For Description, enter a description.

5. Choose Deploy.

Now clients can call your API. To test your API before deploying it, you can optionally choose the
ANY method, navigate to the Test tab, and then choose Test.

Step 5: Invoke your API

To invoke your API

1. From the main navigation pane, choose Stage.

2. Under Stage details, choose the copy icon to copy your API's invoke URL.

3. Enter the invoke URL in a web browser.

Step 4: Deploy your API 20

Amazon API Gateway Developer Guide

The full URL should look like https://abcd123.execute-api.us-
east-2.amazonaws.com/Prod.

Your browser sends a GET request to the API.

4. Verify your API's response. You should see the text "The API Gateway REST API console
is great!" in your browser.

(Optional) Step 6: Clean up

To prevent accruing unnecessary costs to your AWS account, delete the resources that you created
as part of this exercise. The following steps delete your REST API, your Lambda function, and the
associated resources.

To delete your REST API

1. In the Resources pane, choose API actions, Delete API.

2. In the Delete API dialog box, enter confirm, and then choose Delete.

To delete your Lambda function

1. Sign in to the Lambda console at https://console.aws.amazon.com/lambda.

2. On the Functions page, select your function. Choose Actions, Delete.

3. In the Delete 1 functions dialog box, enter delete, and then choose Delete.

To delete your Lambda function's log group

1. Open the Log groups page of the Amazon CloudWatch console.

2. On the Log groups page, select your function's log group (/aws/lambda/my-function).
Then, for Actions, choose Delete log group(s).

3. In the Delete log group(s) dialog box, choose Delete.

To delete your Lambda function's execution role

1. Open the Roles page of the IAM console.

2. (Optional) On the Roles page, in the search box, enter my-function.

(Optional) Step 6: Clean up 21

https://console.aws.amazon.com/lambda
https://console.aws.amazon.com/cloudwatch/home#logs:
https://console.aws.amazon.com/iam/home?#/roles

Amazon API Gateway Developer Guide

3. Select your function's role (for example, my-function-31exxmpl), and then choose Delete.

4. In the Delete my-function-31exxmpl? dialog box, enter the name of the role, and then
choose Delete.

Tip

You can automate the creation and cleanup of AWS resources by using AWS
CloudFormation or AWS Serverless Application Model (AWS SAM). For some example AWS
CloudFormation templates, see the example templates for API Gateway in the awsdocs
GitHub repository.

(Optional) Step 6: Clean up 22

https://github.com/awsdocs/amazon-api-gateway-developer-guide/tree/main/cloudformation-templates

Amazon API Gateway Developer Guide

Prerequisites for getting started with API Gateway

Before you use Amazon API Gateway for the first time, complete the following tasks.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

Sign up for an AWS account 23

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial

Amazon API Gateway Developer Guide

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Create an administrative user 24

https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html

Amazon API Gateway Developer Guide

Getting started with API Gateway

Note

The redesigned API Gateway console experience is now available. For a tutorial on how to
use the console to create a REST API, see Getting started with the REST API console.

In this getting started exercise, you create a serverless API. Serverless APIs let you focus on your
applications, instead of spending time provisioning and managing servers. This exercise takes less
than 20 minutes to complete, and is possible within the AWS Free Tier.

First, you create a Lambda function using the AWS Lambda console. Next, you create an HTTP API
using the API Gateway console. Then, you invoke your API.

Note

This exercise uses an HTTP API for simplicity. API Gateway also supports REST APIs, which
include more features. To learn more, see the section called “Choosing between REST APIs
and HTTP APIs ”.

When you invoke your HTTP API, API Gateway routes the request to your Lambda function.
Lambda runs the Lambda function and returns a response to API Gateway. API Gateway then
returns a response to you.

To complete this exercise, you need an AWS account and an AWS Identity and Access Management
user with console access. For more information, see Prerequisites.

Topics

• Step 1: Create a Lambda function

25

https://aws.amazon.com/free

Amazon API Gateway Developer Guide

• Step 2: Create an HTTP API

• Step 3: Test your API

• (Optional) Step 4: Clean up

• Next steps

Step 1: Create a Lambda function

You use a Lambda function for the backend of your API. Lambda runs your code only when needed
and scales automatically, from a few requests per day to thousands per second.

For this example, you use the default Node.js function from the Lambda console.

To create a Lambda function

1. Sign in to the Lambda console at https://console.aws.amazon.com/lambda.

2. Choose Create function.

3. For Function name, enter my-function.

4. Choose Create function.

The example function returns a 200 response to clients, and the text Hello from Lambda!.

You can modify your Lambda function, as long as the function's response aligns with the format
that API Gateway requires.

The default Lambda function code should look similar to the following:

export const handler = async (event) => {
 const response = {
 statusCode: 200,
 body: JSON.stringify('Hello from Lambda!'),
 };
 return response;
};

Step 2: Create an HTTP API

Next, you create an HTTP API. API Gateway also supports REST APIs and WebSocket APIs, but an
HTTP API is the best choice for this exercise. REST APIs support more features than HTTP APIs, but

Step 1: Create a Lambda function 26

https://console.aws.amazon.com/lambda

Amazon API Gateway Developer Guide

we don't need those features for this exercise. HTTP APIs are designed with minimal features so
that they can be offered at a lower price. WebSocket APIs maintain persistent connections with
clients for full-duplex communication, which isn't required for this example.

The HTTP API provides an HTTP endpoint for your Lambda function. API Gateway routes requests
to your Lambda function, and then returns the function's response to clients.

To create an HTTP API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Do one of the following:

• To create your first API, for HTTP API, choose Build.

• If you've created an API before, choose Create API, and then choose Build for HTTP API.

3. For Integrations, choose Add integration.

4. Choose Lambda.

5. For Lambda function, enter my-function.

6. For API name, enter my-http-api.

7. Choose Next.

8. Review the route that API Gateway creates for you, and then choose Next.

9. Review the stage that API Gateway creates for you, and then choose Next.

10. Choose Create.

Now you've created an HTTP API with a Lambda integration that's ready to receive requests from
clients.

Step 3: Test your API

Next, you test your API to make sure that it's working. For simplicity, use a web browser to invoke
your API.

To test your API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API.

3. Note your API's invoke URL.

Step 3: Test your API 27

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

4. Copy your API's invoke URL, and enter it in a web browser. Append the name of your Lambda
function to your invoke URL to call your Lambda function. By default, the API Gateway console
creates a route with the same name as your Lambda function, my-function.

The full URL should look like https://abcdef123.execute-api.us-
east-2.amazonaws.com/my-function.

Your browser sends a GET request to the API.

5. Verify your API's response. You should see the text "Hello from Lambda!" in your browser.

(Optional) Step 4: Clean up

To prevent unnecessary costs, delete the resources that you created as part of this getting
started exercise. The following steps delete your HTTP API, your Lambda function, and associated
resources.

To delete an HTTP API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. On the APIs page, select an API. Choose Actions, and then choose Delete.

3. Choose Delete.

(Optional) Step 4: Clean up 28

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

To delete a Lambda function

1. Sign in to the Lambda console at https://console.aws.amazon.com/lambda.

2. On the Functions page, select a function. Choose Actions, and then choose Delete.

3. Choose Delete.

To delete a Lambda function's log group

1. In the Amazon CloudWatch console, open the Log groups page.

2. On the Log groups page, select the function's log group (/aws/lambda/my-function).
Choose Actions, and then choose Delete log group.

3. Choose Delete.

To delete a Lambda function's execution role

1. In the AWS Identity and Access Management console, open the Roles page.

2. Select the function's role, for example, my-function-31exxmpl.

3. Choose Delete role.

4. Choose Yes, delete.

You can automate the creation and cleanup of AWS resources by using AWS CloudFormation
or AWS SAM. For example AWS CloudFormation templates, see example AWS CloudFormation
templates.

Next steps

For this example, you used the AWS Management Console to create a simple HTTP API. The HTTP
API invokes a Lambda function and returns a response to clients.

The following are next steps as you continue to work with API Gateway.

• Configure additional types of API integrations, including:

• HTTP endpoints

• Private resources in a VPC, such as Amazon ECS services

Next steps 29

https://console.aws.amazon.com/lambda
https://console.aws.amazon.com/cloudwatch/home#logs:
https://console.aws.amazon.com/iam/home?#/roles
https://github.com/awsdocs/amazon-api-gateway-developer-guide/tree/main/cloudformation-templates
https://github.com/awsdocs/amazon-api-gateway-developer-guide/tree/main/cloudformation-templates

Amazon API Gateway Developer Guide

• AWS services such as Amazon Simple Queue Service, AWS Step Functions, and Kinesis Data
Streams

• Control access to your APIs

• Enable logging for your APIs

• Configure throttling for your APIs

• Configure custom domains for your APIs

To get help with Amazon API Gateway from the community, see the API Gateway Discussion
Forum. When you enter this forum, AWS might require you to sign in.

To get help with API Gateway directly from AWS, see the support options on the AWS Support
page.

See also our frequently asked questions (FAQs), or contact us directly.

Next steps 30

https://forums.aws.amazon.com/forum.jspa?forumID=199
https://forums.aws.amazon.com/forum.jspa?forumID=199
https://aws.amazon.com/premiumsupport/
https://aws.amazon.com/premiumsupport/
https://aws.amazon.com/api-gateway/faqs/
https://aws.amazon.com/contact-us/

Amazon API Gateway Developer Guide

Amazon API Gateway tutorials and workshops

The following tutorials and workshops provide hands-on exercises to help you learn about API
Gateway.

REST API tutorials

• Build an API Gateway REST API with Lambda integration

• Tutorial: Create a REST API by importing an example

• Build an API Gateway REST API with HTTP integration

• Tutorial: Build a REST API with API Gateway private integration

• Tutorial: Build an API Gateway REST API with AWS integration

• Tutorial: Create a Calc REST API with two AWS service integrations and one Lambda non-proxy
integration

• Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway

• Tutorial: Create a REST API as an Amazon Kinesis proxy in API Gateway

• Tutorial: Building a private REST API

HTTP API tutorials

• Tutorial: Build a CRUD API with Lambda and DynamoDB

• Tutorial: Building an HTTP API with a private integration to an Amazon ECS service

WebSocket API tutorials

• Tutorial: Building a serverless chat app with a WebSocket API, Lambda and DynamoDB

Workshops

• Build a serverless web application

• CI/CD for serverless applications

• Serverless security workshop

• Serverless identity management, authentication and authorization

• The Amazon API Gateway Workshop

31

https://webapp.serverlessworkshops.io
https://cicd.serverlessworkshops.io
https://github.com/aws-samples/aws-serverless-security-workshop
https://auth.serverlessworkshops.io
https://catalog.workshops.aws/apigateway/en-US

Amazon API Gateway Developer Guide

Amazon API Gateway REST API tutorials

The following tutorials provide hands-on exercises to help you learn about API Gateway REST APIs.

Topics

• Build an API Gateway REST API with Lambda integration

• Tutorial: Create a REST API by importing an example

• Build an API Gateway REST API with HTTP integration

• Tutorial: Build a REST API with API Gateway private integration

• Tutorial: Build an API Gateway REST API with AWS integration

• Tutorial: Create a Calc REST API with two AWS service integrations and one Lambda non-proxy
integration

• Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway

• Tutorial: Create a REST API as an Amazon Kinesis proxy in API Gateway

• Tutorial: Building a private REST API

Build an API Gateway REST API with Lambda integration

To build an API with Lambda integrations, you can use Lambda proxy integration or Lambda non-
proxy integration.

In Lambda proxy integration, the input to the integrated Lambda function can be expressed
as any combination of request headers, path variables, query string parameters, and body. In
addition, the Lambda function can use API configuration settings to influence its execution logic.
For an API developer, setting up a Lambda proxy integration is simple. Other than choosing a
particular Lambda function in a given region, you have little else to do. API Gateway configures
the integration request and integration response for you. Once set up, the integrated API method
can evolve with the backend without modifying the existing settings. This is possible because the
backend Lambda function developer parses the incoming request data and responds with desired
results to the client when nothing goes wrong or responds with error messages when anything
goes wrong.

In Lambda non-proxy integration, you must ensure that input to the Lambda function is supplied
as the integration request payload. This implies that you, as an API developer, must map any input
data the client supplied as request parameters into the proper integration request body. You might

REST API tutorials 32

Amazon API Gateway Developer Guide

also need to translate the client-supplied request body into a format recognized by the Lambda
function.

Topics

• Tutorial: Build a Hello World REST API with Lambda proxy integration

• Tutorial: Build an API Gateway REST API with cross-account Lambda proxy integration

• Tutorial: Build an API Gateway REST API with Lambda non-proxy integration

Tutorial: Build a Hello World REST API with Lambda proxy integration

Lambda proxy integration is a lightweight, flexible API Gateway API integration type that allows
you to integrate an API method – or an entire API – with a Lambda function. The Lambda function
can be written in any language that Lambda supports. Because it's a proxy integration, you can
change the Lambda function implementation at any time without needing to redeploy your API.

In this tutorial, you do the following:

• Create a "Hello, World!" Lambda function to be the backend for the API.

• Create and test a "Hello, World!" API with Lambda proxy integration.

Topics

• Create a "Hello, World!" Lambda function

• Create a "Hello, World!" API

• Deploy and test the API

Create a "Hello, World!" Lambda function

To create a "Hello, World!" Lambda function in the Lambda console

1. Sign in to the Lambda console at https://console.aws.amazon.com/lambda.

2. On the AWS navigation bar, choose a Region (for example, US East (N. Virginia)).

Note

Note the region where you create the Lambda function. You'll need it when you create
the API.

Build an API with Lambda integration 33

https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://console.aws.amazon.com/lambda
https://docs.aws.amazon.com/general/latest/gr/rande.htmlrande.html#apigateway_region

Amazon API Gateway Developer Guide

3. Choose Functions in the navigation pane.

4. Choose Create function.

5. Choose Author from scratch.

6. Under Basic information, do the following:

a. In Function name, enter GetStartedLambdaProxyIntegration.

b. For Runtime, choose either the latest supported Node.js or Python runtime.

c. Under Permissions, expand Change default execution role. For Execution role dropdown
list, choose Create new role from AWS policy templates.

d. In Role name, enter GetStartedLambdaBasicExecutionRole.

e. Leave the Policy templates field blank.

f. Choose Create function.

7. Under Function code, in the inline code editor, copy/paste the following code:

Node.js

export const handler = function(event, context, callback) {
 console.log('Received event:', JSON.stringify(event, null, 2));
 var res ={
 "statusCode": 200,
 "headers": {
 "Content-Type": "*/*"
 }
 };
 var greeter = 'World';
 if (event.greeter && event.greeter!=="") {
 greeter = event.greeter;
 } else if (event.body && event.body !== "") {
 var body = JSON.parse(event.body);
 if (body.greeter && body.greeter !== "") {
 greeter = body.greeter;
 }
 } else if (event.queryStringParameters &&
 event.queryStringParameters.greeter && event.queryStringParameters.greeter !==
 "") {
 greeter = event.queryStringParameters.greeter;
 } else if (event.multiValueHeaders && event.multiValueHeaders.greeter &&
 event.multiValueHeaders.greeter != "") {
 greeter = event.multiValueHeaders.greeter.join(" and ");

Build an API with Lambda integration 34

Amazon API Gateway Developer Guide

 } else if (event.headers && event.headers.greeter && event.headers.greeter !
= "") {
 greeter = event.headers.greeter;
 }

 res.body = "Hello, " + greeter + "!";
 callback(null, res);
};

Python

import json

def lambda_handler(event, context):
 print(event)

 greeter = 'World'

 try:
 if (event['queryStringParameters']) and (event['queryStringParameters']
['greeter']) and (
 event['queryStringParameters']['greeter'] is not None):
 greeter = event['queryStringParameters']['greeter']
 except KeyError:
 print('No greeter')

 try:
 if (event['multiValueHeaders']) and (event['multiValueHeaders']
['greeter']) and (
 event['multiValueHeaders']['greeter'] is not None):
 greeter = " and ".join(event['multiValueHeaders']['greeter'])
 except KeyError:
 print('No greeter')

 try:
 if (event['headers']) and (event['headers']['greeter']) and (
 event['headers']['greeter'] is not None):
 greeter = event['headers']['greeter']
 except KeyError:
 print('No greeter')

 if (event['body']) and (event['body'] is not None):

Build an API with Lambda integration 35

Amazon API Gateway Developer Guide

 body = json.loads(event['body'])
 try:
 if (body['greeter']) and (body['greeter'] is not None):
 greeter = body['greeter']
 except KeyError:
 print('No greeter')

 res = {
 "statusCode": 200,
 "headers": {
 "Content-Type": "*/*"
 },
 "body": "Hello, " + greeter + "!"
 }

 return res

8. Choose Deploy.

Create a "Hello, World!" API

Now create an API for your "Hello, World!" Lambda function by using the API Gateway console.

To create a "Hello, World!" API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. If this is your first time using API Gateway, you see a page that introduces you to the features
of the service. Under REST API, choose Build. When the Create Example API popup appears,
choose OK.

If this is not your first time using API Gateway, choose Create API. Under REST API, choose
Build.

3. For API name, enter LambdaProxyAPI.

4. (Optional) For Description, enter a description.

5. Keep API endpoint type set to Regional.

6. Choose Create API.

After you create an API, you create a resource. Typically, API resources are organized in a resource
tree according to the application logic. For this example, you create a /helloworld resource.

Build an API with Lambda integration 36

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

To create a resource

1. Select the / resource, and then choose Create resource.

2. Keep Proxy resource turned off.

3. Keep Resource path as /.

4. For Resource name, enter helloworld.

5. Keep CORS (Cross Origin Resource Sharing) turned off.

6. Choose Create resource.

In a proxy integration, the entire request is sent to the backend Lambda function as-is, via a catch-
all ANY method that represents any HTTP method. The actual HTTP method is specified by the
client at run time. The ANY method allows you to use a single API method setup for all of the
supported HTTP methods: DELETE, GET, HEAD, OPTIONS, PATCH, POST, and PUT.

To create an ANY method

1. Select the /helloworld resource, and then choose Create method.

2. For Method type, select ANY.

3. For Integration type, select Lambda function.

4. Turn on Lambda proxy integration.

5. For Lambda function, select the AWS Region where you created your Lambda function, and
then enter the function name.

6. To use the default timeout value of 29 seconds, keep Default timeout turned on. To set a
custom timeout, choose Default timeout and enter a timeout value between 50 and 29000
milliseconds.

7. Choose Create method.

Deploy and test the API

To deploy your API

1. Choose Deploy API.

2. For Stage, select New stage.

3. For Stage name, enter test.

Build an API with Lambda integration 37

Amazon API Gateway Developer Guide

4. (Optional) For Description, enter a description.

5. Choose Deploy.

6. Under Stage details, choose the copy icon to copy your API's invoke URL.

Use browser and cURL to test an API with Lambda proxy integration

You can use a browser or cURL to test your API.

To test GET requests using only query string parameters, you can enter the URL for the API's
helloworld resource into a browser address bar.

To create the URL for the API's helloworld resource, append the resource helloworld and
the query string parameter ?greeter=John to your invoke URL. Your URL should look like the
following.

https://r275xc9bmd.execute-api.us-east-1.amazonaws.com/test/helloworld?greeter=John

For other methods, you must use more advanced REST API testing utilities, such as POSTMAN or
cURL. This tutorial uses cURL. The cURL command examples below assume that cURL is installed
on your computer.

To test your deployed API using cURL:

1. Open a terminal window.

2. Copy the following cURL command and paste it into the terminal window, and replace the
invoke URL with the one you copied in the previous step and add /helloworld to the end of
the URL.

Note

If you're running the command on Windows, use this syntax instead:

curl -v -X POST "https://r275xc9bmd.execute-api.us-east-1.amazonaws.com/
test/helloworld" -H "content-type: application/json" -d "{ \"greeter\":
 \"John\" }"

a. To call the API with the query string parameter of ?greeter=John:

Build an API with Lambda integration 38

https://curl.haxx.se/
https://www.postman.com/
https://curl.haxx.se/

Amazon API Gateway Developer Guide

curl -X GET 'https://r275xc9bmd.execute-api.us-east-1.amazonaws.com/test/
helloworld?greeter=John'

b. To call the API with a header parameter of greeter:John:

curl -X GET https://r275xc9bmd.execute-api.us-east-1.amazonaws.com/test/
helloworld \
 -H 'content-type: application/json' \
 -H 'greeter: John'

c. To call the API with a body of {"greeter":"John"}:

curl -X POST https://r275xc9bmd.execute-api.us-east-1.amazonaws.com/test/
helloworld \
 -H 'content-type: application/json' \
 -d '{ "greeter": "John" }'

In all the cases, the output is a 200 response with the following response body:

Hello, John!

Tutorial: Build an API Gateway REST API with cross-account Lambda proxy
integration

You can now use an AWS Lambda function from a different AWS account as your API integration
backend. Each account can be in any region where Amazon API Gateway is available. This makes it
easy to centrally manage and share Lambda backend functions across multiple APIs.

In this section, we show how to configure cross-account Lambda proxy integration using the
Amazon API Gateway console.

Create API for API Gateway cross-account Lambda integration

To create an API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

Build an API with Lambda integration 39

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

2. If this is your first time using API Gateway, you see a page that introduces you to the features
of the service. Under REST API, choose Build. When the Create Example API popup appears,
choose OK.

If this is not your first time using API Gateway, choose Create API. Under REST API, choose
Build.

3. For API name, enter CrossAccountLambdaAPI.

4. (Optional) For Description, enter a description.

5. Keep API endpoint type set to Regional.

6. Choose Create API.

Create Lambda integration function in another account

Now you'll create a Lambda function in a different account from the one in which you created the
example API.

Creating a Lambda function in another account

1. Log in to the Lambda console in a different account from the one where you created your API
Gateway API.

2. Choose Create function.

3. Choose Author from scratch.

4. Under Author from scratch, do the following:

a. For Function name, enter a name.

b. From the Runtime drop-down list, choose a supported Node.js runtime.

c. Under Permissions, expand Choose or create an execution role. You can create a role or
choose an existing role.

d. Choose Create function to continue.

5. Scroll down to the Function code pane.

6. Enter the Node.js function implementation from the section called “Tutorial: Hello World API
with Lambda proxy integration”.

7. Choose Deploy.

8. Note the full ARN for your function (in the upper right corner of the Lambda function pane).
You'll need it when you create your cross-account Lambda integration.

Build an API with Lambda integration 40

Amazon API Gateway Developer Guide

Configure cross-account Lambda integration

Once you have a Lambda integration function in a different account, you can use the API Gateway
console to add it to your API in your first account.

Note

If you are configuring a cross-region, cross-account authorizer, the sourceArn that is
added to the target function should use the region of the function, not the region of the
API.

After you create an API, you create a resource. Typically, API resources are organized in a resource
tree according to the application logic. For this example, you create a /helloworld resource.

To create a resource

1. Select the / resource, and then choose Create resource.

2. Keep Proxy resource turned off.

3. Keep Resource path as /.

4. For Resource name, enter helloworld.

5. Keep CORS (Cross Origin Resource Sharing) turned off.

6. Choose Create resource.

After you create an resource, you create a GET method. You integrate the GET method with a
Lambda function in another account.

To create a GET method

1. Select the /helloworld resource, and then choose Create method.

2. For Method type, select GET.

3. For Integration type, select Lambda function.

4. Turn on Lambda proxy integration.

5. For Lambda function, enter the full ARN of your Lambda function from Step 1.

In the Lambda console, you can find the ARN for your function in the upper right corner of the
console window.

Build an API with Lambda integration 41

Amazon API Gateway Developer Guide

6. When you enter the ARN, a aws lambda add-permission command string will appear. This
policy grants your first account access to your second account's Lambda function. Copy and
paste the aws lambda add-permission command string into an AWS CLI window that is
configured for your second account.

7. Choose Create method.

You can see your updated policy for your function in the Lambda console.

(Optional) To see your updated policy

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose your Lambda function.

3. Choose Permissions.

You should see an Allow policy with a Condition clause in which the in the AWS:SourceArn
is the ARN for your API's GET method.

Tutorial: Build an API Gateway REST API with Lambda non-proxy integration

In this walkthrough, we use the API Gateway console to build an API that enables a client to call
Lambda functions through the Lambda non-proxy integration (also known as custom integration).
For more information about AWS Lambda and Lambda functions, see the AWS Lambda Developer
Guide.

To facilitate learning, we chose a simple Lambda function with minimal API setup to walk you
through the steps of building an API Gateway API with the Lambda custom integration. When
necessary, we describe some of the logic. For a more detailed example of the Lambda custom
integration, see Tutorial: Create a Calc REST API with two AWS service integrations and one
Lambda non-proxy integration.

Before creating the API, set up the Lambda backend by creating a Lambda function in AWS
Lambda, described next.

Topics

• Create a Lambda function for Lambda non-proxy integration

• Create an API with Lambda non-proxy integration

Build an API with Lambda integration 42

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/
https://docs.aws.amazon.com/lambda/latest/dg/

Amazon API Gateway Developer Guide

• Test invoking the API method

• Deploy the API

• Test the API in a deployment stage

• Clean up

Create a Lambda function for Lambda non-proxy integration

Note

Creating Lambda functions may result in charges to your AWS account.

In this step, you create a "Hello, World!"-like Lambda function for the Lambda custom integration.
Throughout this walkthrough, the function is called GetStartedLambdaIntegration.

The implementation of this GetStartedLambdaIntegration Lambda function is as follows:

Node.js

'use strict';
var days = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday',
 'Saturday'];
var times = ['morning', 'afternoon', 'evening', 'night', 'day'];

console.log('Loading function');

export const handler = function(event, context, callback) {
 // Parse the input for the name, city, time and day property values
 let name = event.name === undefined ? 'you' : event.name;
 let city = event.city === undefined ? 'World' : event.city;
 let time = times.indexOf(event.time)<0 ? 'day' : event.time;
 let day = days.indexOf(event.day)<0 ? null : event.day;

 // Generate a greeting
 let greeting = 'Good ' + time + ', ' + name + ' of ' + city + '. ';
 if (day) greeting += 'Happy ' + day + '!';

 // Log the greeting to CloudWatch
 console.log('Hello: ', greeting);

Build an API with Lambda integration 43

Amazon API Gateway Developer Guide

 // Return a greeting to the caller
 callback(null, {
 "greeting": greeting
 });
};

Python

import json

days = {
 'Sunday',
 'Monday',
 'Tuesday',
 'Wednesday',
 'Thursday',
 'Friday',
 'Saturday'}
times = {'morning', 'afternoon', 'evening', 'night', 'day'}

def lambda_handler(event, context):
 print(event)
 # parse the input for the name, city, time, and day property values
 try:
 if event['name']:
 name = event['name']
 except KeyError:
 name = 'you'
 try:
 if event['city']:
 city = event['city']
 except KeyError:
 city = 'World'
 try:
 if event['time'] in times:
 time = event['time']
 else:
 time = 'day'
 except KeyError:
 time = 'day'
 try:
 if event['day'] in days:

Build an API with Lambda integration 44

Amazon API Gateway Developer Guide

 day = event['day']
 else:
 day = ''
 except KeyError:
 day = ''
 # Generate a greeting
 greeting = 'Good ' + time + ', ' + name + ' of ' + \
 city + '.' + ['', ' Happy ' + day + '!'][day != '']
 # Log the greeting to CloudWatch
 print(greeting)

 # Return a greeting to the caller
 return {"greeting": greeting}

For the Lambda custom integration, API Gateway passes the input to the Lambda function from
the client as the integration request body. The event object of the Lambda function handler is the
input.

Our Lambda function is simple. It parses the input event object for the name, city, time, and
day properties. It then returns a greeting, as a JSON object of {"message":greeting}, to the
caller. The message is in the "Good [morning|afternoon|day], [name|you] in [city|
World]. Happy day!" pattern. It is assumed that the input to the Lambda function is of the
following JSON object:

{
 "city": "...",
 "time": "...",
 "day": "...",
 "name" : "..."
}

For more information, see the AWS Lambda Developer Guide.

In addition, the function logs its execution to Amazon CloudWatch by calling
console.log(...). This is helpful for tracing calls when debugging the function. To allow the
GetStartedLambdaIntegration function to log the call, set an IAM role with appropriate
policies for the Lambda function to create the CloudWatch streams and add log entries to the
streams. The Lambda console guides you through to create the required IAM roles and policies.

Build an API with Lambda integration 45

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

Amazon API Gateway Developer Guide

If you set up the API without using the API Gateway console, such as when importing an API from
an OpenAPI file, you must explicitly create, if necessary, and set up an invocation role and policy
for API Gateway to invoke the Lambda functions. For more information on how to set up Lambda
invocation and execution roles for an API Gateway API, see Control access to an API with IAM
permissions.

Compared to GetStartedLambdaProxyIntegration, the Lambda function for the Lambda
proxy integration, the GetStartedLambdaIntegration Lambda function for the Lambda
custom integration only takes input from the API Gateway API integration request body. The
function can return an output of any JSON object, a string, a number, a Boolean, or even a
binary blob. The Lambda function for the Lambda proxy integration, in contrast, can take
the input from any request data, but must return an output of a particular JSON object. The
GetStartedLambdaIntegration function for the Lambda custom integration can have the API
request parameters as input, provided that API Gateway maps the required API request parameters
to the integration request body before forwarding the client request to the backend. For this to
happen, the API developer must create a mapping template and configure it on the API method
when creating the API.

Now, create the GetStartedLambdaIntegration Lambda function.

To create the GetStartedLambdaIntegration Lambda function for Lambda custom
integration

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Do one of the following:

• If the welcome page appears, choose Get Started Now and then choose Create function.

• If the Lambda > Functions list page appears, choose Create function.

3. Choose Author from scratch.

4. In the Author from scratch pane, do the following:

a. For Name, enter GetStartedLambdaIntegration as the Lambda function name.

b. For Runtime, choose either the latest supported Node.js or Python runtime.

c. Under Permissions, expand Change default execution role. For Execution role dropdown
list, choose Create new role from AWS policy templates.

d. For Role name, enter a name for your role (for example,
GetStartedLambdaIntegrationRole).

Build an API with Lambda integration 46

https://github.com/awslabs/api-gateway-secure-pet-store/blob/master/src/main/resources/swagger.yaml#L39
https://github.com/awslabs/api-gateway-secure-pet-store/blob/master/src/main/resources/swagger.yaml#L39
https://console.aws.amazon.com/lambda/

Amazon API Gateway Developer Guide

e. For Policy templates, choose Simple microservice permissions.

f. Choose Create function.

5. In the Configure function pane, under Function code do the following:

a. Copy the Lambda function code listed in the beginning of this section and paste it in the
inline code editor.

b. Leave the default choices for all other fields in this section.

c. Choose Deploy.

6. To test the newly created function, choose the Test tab.

a. For Event name, enter HelloWorldTest.

b. For Event JSON, replace the default code with the following.

{
 "name": "Jonny",
 "city": "Seattle",
 "time": "morning",
 "day": "Wednesday"
}

c. Choose Test to invoke the function. The Execution result: succeeded section is shown.
Expand Details and you see the following output.

{
 "greeting": "Good morning, Jonny of Seattle. Happy Wednesday!"
}

The output is also written to CloudWatch Logs.

As a side exercise, you can use the IAM console to view the IAM role
(GetStartedLambdaIntegrationRole) that was created as part of the Lambda function
creation. Attached to this IAM role are two inline policies. One stipulates the most basic
permissions for Lambda execution. It permits calling the CloudWatch CreateLogGroup
for any CloudWatch resources of your account in the region where the Lambda function is
created. This policy also allows creating the CloudWatch streams and logging events for the
HelloWorldForLambdaIntegration Lambda function.

Build an API with Lambda integration 47

Amazon API Gateway Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "logs:CreateLogGroup",
 "Resource": "arn:aws:logs:region:account-id:*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:region:account-id:log-group:/aws/lambda/
GetStartedLambdaIntegration:*"
]
 }
]
}

The other policy document applies to invoking another AWS service that is not used in this
example. You can skip it for now.

Associated with the IAM role is a trusted entity, which is lambda.amazonaws.com. Here is the
trust relationship:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Build an API with Lambda integration 48

Amazon API Gateway Developer Guide

The combination of this trust relationship and the inline policy makes it possible for the Lambda
function to invoke a console.log() function to log events to CloudWatch Logs.

If you did not use the AWS Management Console to create the Lambda function, you need to
follow these examples to create the required IAM role and policies and then manually attach the
role to your function.

Create an API with Lambda non-proxy integration

With the Lambda function (GetStartedLambdaIntegration) created and tested, you are ready
to expose the function through an API Gateway API. For illustration purposes, we expose the
Lambda function with a generic HTTP method. We use the request body, a URL path variable,
a query string, and a header to receive required input data from the client. We turn on the API
Gateway request validator for the API to ensure that all of the required data is properly defined
and specified. We configure a mapping template for API Gateway to transform the client-supplied
request data into the valid format as required by the backend Lambda function.

To create an API with a Lambda non-proxy integration

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. If this is your first time using API Gateway, you see a page that introduces you to the features
of the service. Under REST API, choose Build. When the Create Example API popup appears,
choose OK.

If this is not your first time using API Gateway, choose Create API. Under REST API, choose
Build.

3. For API name, enter LambdaNonProxyAPI.

4. (Optional) For Description, enter a description.

5. Keep API endpoint type set to Regional.

6. Choose Create API.

After creating your API, you create a /{city} resource. This is an example of a resource with a path
variable that takes an input from the client. Later, you map this path variable into the Lambda
function input using a mapping template.

To create a resource

1. Choose Create resource.

Build an API with Lambda integration 49

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

2. Keep Proxy resource turned off.

3. Keep Resource path as /.

4. For Resource name, enter {city}.

5. Keep CORS (Cross Origin Resource Sharing) turned off.

6. Choose Create resource.

After creating your /{city} resource, you create an ANY method. The ANY HTTP verb is a
placeholder for a valid HTTP method that a client submits at run time. This example shows that
ANY method can be used for Lambda custom integration as well as for Lambda proxy integration.

To create an ANY method

1. Select the /{city} resource, and then choose Create method.

2. For Method type, select ANY.

3. For Integration type, select Lambda function.

4. Keep Lambda proxy integration turned off.

5. For Lambda function, select the AWS Region where you created your Lambda function, and
then enter the function name.

6. Choose Method request settings.

Now, you turn on a request validator for a URL path variable, a query string parameter, and a
header to ensure that all of the required data is defined. For this example, you create a time
query string parameter and a day header.

7. For Request validator, select Validate query string parameters and headers.

8. Choose URL query string parameters and do the following:

a. Choose Add query string.

b. For Name, enter time.

c. Turn on Required.

d. Keep Caching turned off.

9. Choose HTTP request headers and do the following:

a. Choose Add header.

b. For Name, enter day.

Build an API with Lambda integration 50

Amazon API Gateway Developer Guide

c. Turn on Required.

d. Keep Caching turned off.

10. Choose Create method.

After turning on a request validator, you configure the integration request for the ANY method
by adding a body-mapping template to transform the incoming request into a JSON payload, as
required by the backend Lambda function.

To configure the integration request

1. On the Integration request tab, under the Integration request settings, choose Edit.

2. For Request body passthrough, select When there are no templates defined
(recommended).

3. Choose Mapping templates.

4. Choose Add mapping template.

5. For Content type, enter application/json.

6. For Template body, enter the following code:

#set($inputRoot = $input.path('$'))
{
 "city": "$input.params('city')",
 "time": "$input.params('time')",
 "day": "$input.params('day')",
 "name": "$inputRoot.callerName"
}

7. Choose Save.

Test invoking the API method

The API Gateway console provides a testing facility for you to test invoking the API before it is
deployed. You use the Test feature of the console to test the API by submitting the following
request:

POST /Seattle?time=morning
day:Wednesday

{

Build an API with Lambda integration 51

Amazon API Gateway Developer Guide

 "callerName": "John"
}

In this test request, you'll set ANY to POST, set {city} to Seattle, assign Wednesday as the day
header value, and assign "John" as the callerName value.

To test the ANY method

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.

2. For Method type, select POST.

3. For Path, under city, enter Seattle.

4. For Query strings, enter time=morning.

5. For Headers, enter day:Wednesday.

6. For Request Body, enter { "callerName": "John" }.

7. Choose Test.

Verify that the returned response payload is as follows:

{
 "greeting": "Good morning, John of Seattle. Happy Wednesday!"
}

You can also view the logs to examine how API Gateway processes the request and response.

Execution log for request test-request
Thu Aug 31 01:07:25 UTC 2017 : Starting execution for request: test-invoke-request
Thu Aug 31 01:07:25 UTC 2017 : HTTP Method: POST, Resource Path: /Seattle
Thu Aug 31 01:07:25 UTC 2017 : Method request path: {city=Seattle}
Thu Aug 31 01:07:25 UTC 2017 : Method request query string: {time=morning}
Thu Aug 31 01:07:25 UTC 2017 : Method request headers: {day=Wednesday}
Thu Aug 31 01:07:25 UTC 2017 : Method request body before transformations:
 { "callerName": "John" }
Thu Aug 31 01:07:25 UTC 2017 : Request validation succeeded for content type
 application/json
Thu Aug 31 01:07:25 UTC 2017 : Endpoint request URI: https://
lambda.us-west-2.amazonaws.com/2015-03-31/functions/arn:aws:lambda:us-
west-2:123456789012:function:GetStartedLambdaIntegration/invocations
Thu Aug 31 01:07:25 UTC 2017 : Endpoint request headers: {x-amzn-lambda-integration-
tag=test-request,

Build an API with Lambda integration 52

Amazon API Gateway Developer Guide

 Authorization=**338c72,
 X-Amz-Date=20170831T010725Z, x-amzn-apigateway-api-id=beags1mnid, X-Amz-
Source-Arn=arn:aws:execute-api:us-west-2:123456789012:beags1mnid/null/POST/
{city}, Accept=application/json, User-Agent=AmazonAPIGateway_beags1mnid,
 X-Amz-Security-Token=FQoDYXdzELL//////////wEaDMHGzEdEOT/VvGhabiK3AzgKrJw
+3zLqJZG4PhOq12K6W21+QotY2rrZyOzqhLoiuRg3CAYNQ2eqgL5D54+63ey9bIdtwHGoyBdq8ecWxJK/
YUnT2Rau0L9HCG5p7FC05h3IvwlFfvcidQNXeYvsKJTLXI05/
yEnY3ttIAnpNYLOezD9Es8rBfyruHfJfOqextKlsC8DymCcqlGkig8qLKcZ0hWJWVwiPJiFgL7laabXs+
+ZhCa4hdZo4iqlG729DE4gaV1mJVdoAagIUwLMo+y4NxFDu0r7I0/
EO5nYcCrppGVVBYiGk7H4T6sXuhTkbNNqVmXtV3ch5bOlh7 [TRUNCATED]
Thu Aug 31 01:07:25 UTC 2017 : Endpoint request body after transformations: {
 "city": "Seattle",
 "time": "morning",
 "day": "Wednesday",
 "name" : "John"
}
Thu Aug 31 01:07:25 UTC 2017 : Sending request to https://lambda.us-
west-2.amazonaws.com/2015-03-31/functions/arn:aws:lambda:us-
west-2:123456789012:function:GetStartedLambdaIntegration/invocations
Thu Aug 31 01:07:25 UTC 2017 : Received response. Integration latency: 328 ms
Thu Aug 31 01:07:25 UTC 2017 : Endpoint response body before transformations:
 {"greeting":"Good morning, John of Seattle. Happy Wednesday!"}
Thu Aug 31 01:07:25 UTC 2017 : Endpoint response headers: {x-amzn-Remapped-Content-
Length=0, x-amzn-RequestId=c0475a28-8de8-11e7-8d3f-4183da788f0f, Connection=keep-
alive, Content-Length=62, Date=Thu, 31 Aug 2017 01:07:25 GMT, X-Amzn-Trace-
Id=root=1-59a7614d-373151b01b0713127e646635;sampled=0, Content-Type=application/json}
Thu Aug 31 01:07:25 UTC 2017 : Method response body after transformations:
 {"greeting":"Good morning, John of Seattle. Happy Wednesday!"}
Thu Aug 31 01:07:25 UTC 2017 : Method response headers: {X-Amzn-Trace-
Id=sampled=0;root=1-59a7614d-373151b01b0713127e646635, Content-Type=application/json}
Thu Aug 31 01:07:25 UTC 2017 : Successfully completed execution
Thu Aug 31 01:07:25 UTC 2017 : Method completed with status: 200

The logs show the incoming request before the mapping and the integration request after the
mapping. When a test fails, the logs are useful for evaluating whether the original input is correct
or the mapping template works correctly.

Deploy the API

The test invocation is a simulation and has limitations. For example, it bypasses any authorization
mechanism enacted on the API. To test the API execution in real time, you must deploy the API
first. To deploy an API, you create a stage to create a snapshot of the API at that time. The stage

Build an API with Lambda integration 53

Amazon API Gateway Developer Guide

name also defines the base path after the API's default host name. The API's root resource is
appended after the stage name. When you modify the API, you must redeploy it to a new or
existing stage before the changes take effect.

To deploy the API to a stage

1. Choose Deploy API.

2. For Stage, select New stage.

3. For Stage name, enter test.

Note

The input must be UTF-8 encoded (i.e., unlocalized) text.

4. (Optional) For Description, enter a description.

5. Choose Deploy.

Under Stage details, choose the copy icon to copy your API's invoke URL. The general pattern of
the API's base URL is https://api-id.region.amazonaws.com/stageName. For example, the
base URL of the API (beags1mnid) created in the us-west-2 region and deployed to the test
stage is https://beags1mnid.execute-api.us-west-2.amazonaws.com/test.

Test the API in a deployment stage

There are several ways you can test a deployed API. For GET requests using only URL path variables
or query string parameters, you can enter the API resource URL in a browser. For other methods,
you must use more advanced REST API testing utilities, such as POSTMAN or cURL.

To test the API using cURL

1. Open a terminal window on your local computer connected to the internet.

2. To test POST /Seattle?time=evening:

Copy the following cURL command and paste it into the terminal window.

curl -v -X POST \
 'https://beags1mnid.execute-api.us-west-2.amazonaws.com/test/Seattle?
time=evening' \
 -H 'content-type: application/json' \

Build an API with Lambda integration 54

https://www.postman.com/
https://curl.haxx.se/

Amazon API Gateway Developer Guide

 -H 'day: Thursday' \
 -H 'x-amz-docs-region: us-west-2' \
 -d '{
 "callerName": "John"
}'

You should get a successful response with the following payload:

{"greeting":"Good evening, John of Seattle. Happy Thursday!"}

If you change POST to PUT in this method request, you get the same response.

Clean up

If you no longer need the Lambda functions you created for this walkthrough, you can delete them
now. You can also delete the accompanying IAM resources.

Warning

If you plan to complete the other walkthroughs in this series, do not delete the Lambda
execution role or the Lambda invocation role. If you delete a Lambda function that your
APIs rely on, those APIs will no longer work. Deleting a Lambda function cannot be undone.
If you want to use the Lambda function again, you must re-create the function.
If you delete an IAM resource that a Lambda function relies on, that Lambda function will
no longer work, and any APIs that rely on that function will no longer work. Deleting an
IAM resource cannot be undone. If you want to use the IAM resource again, you must re-
create the resource.

To delete the Lambda functions

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. From the list of functions, choose GetHelloWorld, choose Actions, and then choose Delete
function. When prompted, choose Delete again.

3. From the list of functions, choose GetHelloWithName, choose Actions, and then choose
Delete function. When prompted, choose Delete again.

Build an API with Lambda integration 55

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon API Gateway Developer Guide

To delete the associated IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. From Details, choose Roles.

3. From the list of roles, choose APIGatewayLambdaExecRole, choose Role Actions, and then
choose Delete Role. When prompted, choose Yes, Delete.

4. From Details, choose Policies.

5. From the list of policies, choose APIGatewayLambdaExecPolicy, choose Policy Actions, and
then choose Delete. When prompted, choose Delete.

Tutorial: Create a REST API by importing an example

You can use the Amazon API Gateway console to create and test a simple REST API with the HTTP
integration for a PetStore website. The API definition is preconfigured as a OpenAPI 2.0 file. After
loading the API definition into API Gateway, you can use the API Gateway console to examine the
API's basic structure or simply deploy and test the API.

The PetStore example API supports the following methods for a client to access the HTTP backend
website of http://petstore-demo-endpoint.execute-api.com/petstore/pets.

Note

This tutorial uses an HTTP endpoint as an example. When you create your own APIs, we
recommend you use HTTPS endpoints for your HTTP integrations.

• GET /: for read access of the API's root resource that is not integrated with any backend
endpoint. API Gateway responds with an overview of the PetStore website. This is an example of
the MOCK integration type.

• GET /pets: for read access to the API's /pets resource that is integrated with the like-named
backend /pets resource. The backend returns a page of available pets in the PetStore. This
is an example of the HTTP integration type. The URL of the integration endpoint is http://
petstore-demo-endpoint.execute-api.com/petstore/pets.

• POST /pets: for write access to the API's /pets resource that is integrated with the backend /
petstore/pets resource. Upon receiving a correct request, the backend adds the specified pet
to the PetStore and returns the result to the caller. The integration is also HTTP.

Tutorial: Create a REST API by importing an example 56

https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide

• GET /pets/{petId}: for read access to a pet as identified by a petId value as specified as a
path variable of the incoming request URL. This method also has the HTTP integration type. The
backend returns the specified pet found in the PetStore. The URL of the backend HTTP endpoint
is http://petstore-demo-endpoint.execute-api.com/petstore/pets/n, where n is
an integer as the identifier of the queried pet.

The API supports CORS access via the OPTIONS methods of the MOCK integration type. API
Gateway returns the required headers supporting CORS access.

The following procedure walks you through the steps to create and test an API from an example
using the API Gateway Console.

To import, build, and test the example API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Do one of the following:

• To create your first API, for REST API, choose Build.

• If you've created an API before, choose Create API, and then choose Build for REST API.

3. Under Create REST API, choose Example API and then choose Create API to create the
example API.

Tutorial: Create a REST API by importing an example 57

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

You can scroll down the OpenAPI definition for details of this example API before choosing
Create API.

4. In the main navigation pane, choose Resources. The newly created API is shown as follows:

Tutorial: Create a REST API by importing an example 58

Amazon API Gateway Developer Guide

The Resources pane shows the structure of the created API as a tree of nodes. API methods
defined on each resource are edges of the tree. When a resource is selected, all of its methods
are listed in the Methods table on the right. Displayed with each method is the method type,
integration type, authorization type, and API key requirement.

5. To view the details of a method, to modify its set-up, or to test the method invocation, choose
the method name from either the method list or the resource tree. Here, we choose the
POST /pets method as an illustration:

Tutorial: Create a REST API by importing an example 59

Amazon API Gateway Developer Guide

The resulting Method execution pane presents a logical view of the chosen (POST /pets)
method's structure and behaviors.

The Method request and Method response represent the API's interface with the frontend,
and the Integration request and Integration response represent the API's interface with the
backend.

A client uses the API to access a backend feature through the Method request. API Gateway
translates the client request, if necessary, into the form acceptable to the backend in
Integration request before forwarding the incoming request to the backend. The transformed
request is known as the integration request. Similarly, the backend returns the response to
API Gateway in Integration response. API Gateway then routes it to Method Response before
sending it to the client. Again, if necessary, API Gateway can map the backend response data
to a form expected by the client.

For the POST method on an API resource, the method request payload can be passed through
to the integration request without modification, if the method request's payload is of the same
format as the integration request's payload.

The GET / method request uses the MOCK integration type and is not tied to any real backend
endpoint. The corresponding Integration response is set up to return a static HTML page.
When the method is called, the API Gateway simply accepts the request and immediately
returns the configured integration response to the client by way of Method response. You can
use the mock integration to test an API without requiring a backend endpoint. You can also
use it to serve a local response, generated from a response body-mapping template.

As an API developer, you control the behaviors of your API's frontend interactions by
configuring the method request and a method response. You control the behaviors of your
API's backend interactions by setting up the integration request and integration response.
These involve data mappings between a method and its corresponding integration. For now,
we focus on testing the API to provide an end-to-end user experience.

6. Select the Test tab. You might need to choose the right arrow button to show the tab.

7. For example, to test the POST /pets method, enter the following {"type":
"dog","price": 249.99} payload into the Request body, and then choose Test.

Tutorial: Create a REST API by importing an example 60

Amazon API Gateway Developer Guide

The input specifies the attributes of the pet that we want to add to the list of pets on the
PetStore website.

8. The results display as follows:

Tutorial: Create a REST API by importing an example 61

Amazon API Gateway Developer Guide

The Log entry of the output shows the state changes from the method request to the
integration request, and from the integration response to the method response. This can be
useful for troubleshooting any mapping errors that cause the request to fail. In this example,
no mapping is applied: the method request payload is passed through the integration request
to the backend and, similarly, the backend response is passed through the integration response
to the method response.

To test the API using a client other than the API Gateway test-invoke-request feature, you
must first deploy the API to a stage.

Tutorial: Create a REST API by importing an example 62

Amazon API Gateway Developer Guide

9. To deploy the sample API, choose Deploy API.

10. For Stage, select New stage, and then enter test.

11. (Optional) For Description, enter a description.

12. Choose Deploy.

13. In the resulting Stages pane, under Stage details, the Invoke URL displays the URL to invoke
the API's GET / method request.

Tutorial: Create a REST API by importing an example 63

Amazon API Gateway Developer Guide

14. Choose the copy icon to copy your API's invoke URL, and then enter your API's invoke URL in a
web browser. A successful response return the result, generated from the mapping template in
the integration response.

15. In the Stages navigation pane, expand the test stage, select GET on /pets/
{petId}, and then copy the Invoke URL value of https://api-id.execute-
api.region.amazonaws.com/test/pets/{petId}. {petId} stands for a path variable.

Paste the Invoke URL value (obtained in the previous step) into the address bar of a browser,
replacing {petId} by, for example, 1, and press Enter to submit the request. A 200 OK
response should return with the following JSON payload:

{
 "id": 1,
 "type": "dog",
 "price": 249.99
}

Invoking the API method as shown is possible because its Authorization type is set to NONE. If
the AWS_IAM authorization were used, you would sign the request using the Signature Version
4 (SigV4) protocols. For an example of such a request, see the section called “Tutorial: Build an
API with HTTP non-proxy integration”.

Tutorial: Create a REST API by importing an example 64

https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

Amazon API Gateway Developer Guide

Build an API Gateway REST API with HTTP integration

To build an API with HTTP integration, you can use either the HTTP proxy integration or the HTTP
custom integration. We recommend that you use the HTTP proxy integration, whenever possible,
for the streamlined API set up while providing versatile and powerful features. The HTTP custom
integration can be compelling if it is necessary to transform client request data for the backend or
transform the backend response data for the client.

Topics

• Tutorial: Build a REST API with HTTP proxy integration

• Tutorial: Build a REST API with HTTP non-proxy integration

Tutorial: Build a REST API with HTTP proxy integration

HTTP proxy integration is a simple, powerful, and versatile mechanism to build an API that allows
a web application to access multiple resources or features of the integrated HTTP endpoint, for
example the entire website, with a streamlined setup of a single API method. In HTTP proxy
integration, API Gateway passes the client-submitted method request to the backend. The request
data that is passed through includes the request headers, query string parameters, URL path
variables, and payload. The backend HTTP endpoint or the web server parses the incoming request
data to determine the response that it returns. HTTP proxy integration makes the client and
backend interact directly with no intervention from API Gateway after the API method is set up,
except for known issues such as unsupported characters, which are listed in the section called
“Important notes”.

With the all-encompassing proxy resource {proxy+}, and the catch-all ANY verb for the HTTP
method, you can use an HTTP proxy integration to create an API of a single API method. The
method exposes the entire set of the publicly accessible HTTP resources and operations of a
website. When the backend web server opens more resources for public access, the client can
use these new resources with the same API setup. To enable this, the website developer must
communicate clearly to the client developer what the new resources are and what operations are
applicable for each of them.

As a quick introduction, the following tutorial demonstrates the HTTP proxy integration. In the
tutorial, we create an API using the API Gateway console to integrate with the PetStore website
through a generic proxy resource {proxy+}, and create the HTTP method placeholder of ANY.

Build an API with HTTP integration 65

Amazon API Gateway Developer Guide

Topics

• Create an API with HTTP proxy integration using the API Gateway console

• Test an API with HTTP proxy integration

Create an API with HTTP proxy integration using the API Gateway console

The following procedure walks you through the steps to create and test an API with a proxy
resource for an HTTP backend using the API Gateway console. The HTTP backend is the PetStore
website (http://petstore-demo-endpoint.execute-api.com/petstore/pets) from
Tutorial: Build a REST API with HTTP non-proxy integration, in which screenshots are used as visual
aids to illustrate the API Gateway UI elements. If you are new to using the API Gateway console to
create an API, you may want to follow that section first.

To create an API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. If this is your first time using API Gateway, you see a page that introduces you to the features
of the service. Under REST API, choose Build. When the Create Example API popup appears,
choose OK.

If this is not your first time using API Gateway, choose Create API. Under REST API, choose
Build.

3. For API name, enter HTTPProxyAPI.

4. (Optional) For Description, enter a description.

5. Keep API endpoint type set to Regional.

6. Choose Create API.

In this step, you create a proxy resource path of {proxy+}. This is the placeholder of any of
the backend endpoints under http://petstore-demo-endpoint.execute-api.com/. For
example, it can be petstore, petstore/pets, and petstore/pets/{petId}. API Gateway
creates the ANY method when you create the {proxy+} resource and serves as a placeholder for
any of the supported HTTP verbs at run time.

To create a /{proxy+} resource

1. Choose your API.

Build an API with HTTP integration 66

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

2. In the main navigation pane, choose Resources.

3. Choose Create resource.

4. Turn on Proxy resource.

5. Keep Resource path as /.

6. For Resource name, enter {proxy+}.

7. Keep CORS (Cross Origin Resource Sharing) turned off.

8. Choose Create resource.

In this step, you integrate the ANY method with a backend HTTP endpoint, using a proxy
integration. In a proxy integration, API Gateway passes the client-submitted method request to the
backend with no intervention from API Gateway.

To create an ANY method

1. Choose the /{proxy+} resource.

2. Choose the ANY method.

3. Under the warning symbol, choose Edit integration. You cannot deploy an API that has a
method without an integration.

4. For Integration type, select HTTP.

Build an API with HTTP integration 67

Amazon API Gateway Developer Guide

5. Turn on HTTP proxy integration.

6. For HTTP method, select ANY.

7. For Endpoint URL, enter http://petstore-demo-endpoint.execute-api.com/
{proxy}.

8. Choose Save.

Test an API with HTTP proxy integration

Whether a particular client request succeeds depends on the following:

• If the backend has made the corresponding backend endpoint available and, if so, has granted
the required access permissions.

• If the client supplies the correct input.

For example, the PetStore API used here does not expose the /petstore resource. As such, you
get a 404 Resource Not Found response containing the error message of Cannot GET /
petstore.

In addition, the client must be able to handle the output format of the backend in order to parse
the result correctly. API Gateway does not mediate to facilitate interactions between the client and
backend.

To test an API integrated with the PetStore website using HTTP proxy integration through the
proxy resource

1. Select the Test tab. You might need to choose the right arrow button to show the tab.

2. For Method type, select GET.

3. For Path, under proxy, enter petstore/pets.

4. For Query strings, enter type=fish.

5. Choose Test.

Build an API with HTTP integration 68

Amazon API Gateway Developer Guide

Because the backend website supports the GET /petstore/pets?type=fish request, it
returns a successful response similar to the following:

[
 {
 "id": 1,
 "type": "fish",
 "price": 249.99
 },
 {
 "id": 2,
 "type": "fish",
 "price": 124.99

Build an API with HTTP integration 69

Amazon API Gateway Developer Guide

 },
 {
 "id": 3,
 "type": "fish",
 "price": 0.99
 }
]

If you try to call GET /petstore, you get a 404 response with an error message of Cannot
GET /petstore. This is because the backend does not support the specified operation. If
you call GET /petstore/pets/1, you get a 200 OK response with the following payload,
because the request is supported by the PetStore website.

{
 "id": 1,
 "type": "dog",
 "price": 249.99
}

You can also use a browser to test your API. Deploy your API and associate it to a stage to create
your API's Invoke URL.

To deploy your API

1. Choose Deploy API.

2. For Stage, select New stage.

3. For Stage name, enter test.

4. (Optional) For Description, enter a description.

5. Choose Deploy.

Now clients can call your API.

To invoke your API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API.

3. In the main navigation pane, choose Stage.

Build an API with HTTP integration 70

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

4. Under Stage details, choose the copy icon to copy your API's invoke URL.

Enter your API's invoke URL in a web browser.

The full URL should look like https://abcdef123.execute-api.us-
east-2.amazonaws.com/test/petstore/pets?type=fish.

Your browser sends a GET request to the API.

5. The result should be the same as returned when you use Test in the API Gateway console.

Tutorial: Build a REST API with HTTP non-proxy integration

In this tutorial, you create an API from scratch using the Amazon API Gateway console. You can
think of the console as an API design studio and use it to scope the API features, to experiment
with its behaviors, to build the API, and to deploy your API in stages.

Topics

• Create an API with HTTP custom integration

• (Optional) Map request parameters

Create an API with HTTP custom integration

This section walks you through the steps to create resources, expose methods on a resource,
configure a method to achieve the desired API behaviors, and to test and deploy the API.

In this step, you create an empty API. In the following steps you create resources and methods to
connect your API to the http://petstore-demo-endpoint.execute-api.com/petstore/
pets endpoint, using a non-proxy HTTP integration.

To create an API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. If this is your first time using API Gateway, you see a page that introduces you to the features
of the service. Under REST API, choose Build. When the Create Example API popup appears,
choose OK.

If this is not your first time using API Gateway, choose Create API. Under REST API, choose
Build.

Build an API with HTTP integration 71

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

3. For API name, enter HTTPNonProxyAPI.

4. (Optional) For Description, enter a description.

5. Keep API endpoint type set to Regional.

6. Choose Create API.

The Resources tree shows the root resource (/) without any methods. In this exercise, we will
build the API with the HTTP custom integration of the PetStore website (http://petstore-demo-
endpoint.execute-api.com/petstore/pets.) For illustration purposes, we will create a /pets
resource as a child of the root and expose a GET method on this resource for a client to retrieve a
list of available Pets items from the PetStore website.

To create a /pets resource

1. Select the / resource, and then choose Create resource.

2. Keep Proxy resource turned off.

3. Keep Resource path as /.

4. For Resource name, enter pets.

5. Keep CORS (Cross Origin Resource Sharing) turned off.

6. Choose Create resource.

In this step, you create a GET method on the /pets resource. The GET method is integrated with
the http://petstore-demo-endpoint.execute-api.com/petstore/pets website. Other
options for an API method include the following:

• POST, primarily used to create child resources.

• PUT, primarily used to update existing resources (and, although not recommended, can be used
to create child resources).

• DELETE, used to delete resources.

• PATCH, used to update resources.

• HEAD, primarily used in testing scenarios. It is the same as GET but does not return the resource
representation.

• OPTIONS, which can be used by callers to get information about available communication
options for the target service.

Build an API with HTTP integration 72

Amazon API Gateway Developer Guide

For the integration request's HTTP method, you must choose one supported by the backend. For
HTTP or Mock integration, it makes sense that the method request and the integration request
use the same HTTP verb. For other integration types the method request will likely use an HTTP
verb different from the integration request. For example, to call a Lambda function, the integration
request must use POST to invoke the function, whereas the method request may use any HTTP
verb depending on the logic of the Lambda function.

To create a GET method on the /pets resource

1. Select the /pets resource.

2. Choose Create method.

3. For Method type, select GET.

4. For Integration type, select HTTP integration.

5. Keep HTTP proxy integration turned off.

6. For HTTP method, select GET.

7. For Endpoint URL, enter http://petstore-demo-endpoint.execute-api.com/
petstore/pets.

The PetStore website allows you to retrieve a list of Pet items by the pet type, such as "Dog"
or "Cat", on a given page.

8. For Content handling, select Passthrough.

9. Choose URL query string parameters.

The PetStore website uses the type and page query string parameters to accept an input. You
add query string parameters to the method request and map them into corresponding query
string parameters of the integration request.

10. To add the query string parameters, do the following:

a. Choose Add query string.

b. For Name, enter type

c. Keep Required and Caching turned off.

Repeat the previous steps to create an additional query string with the name page.

11. Choose Create method.

Build an API with HTTP integration 73

Amazon API Gateway Developer Guide

The client can now supply a pet type and a page number as query string parameters when
submitting a request. These input parameters must be mapped into the integration's query string
parameters to forward the input values to our PetStore website in the backend.

To map input parameters to the Integration request

1. On the Integration request tab, under Integration request settings, choose Edit.

2. Choose URL query string parameters, and then do the following:

a. Choose Add query string parameter.

b. For Name, enter type.

c. For Mapped from, enter method.request.querystring.type

d. Keep Caching turned off.

e. Choose Add query string parameter.

f. For Name, enter page.

g. For Mapped from, enter method.request.querystring.page

h. Keep Caching turned off.

3. Choose Save.

To test the API

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.

2. For Query strings, enter type=Dog&page=2.

3. Choose Test.

The result is similar to the following:

Build an API with HTTP integration 74

Amazon API Gateway Developer Guide

Now that the test is successful, we can deploy the API to make it publicly available.

4. Choose Deploy API.

5. For Stage, select New stage.

6. For Stage name, enter Prod.

7. (Optional) For Description, enter a description.

Build an API with HTTP integration 75

Amazon API Gateway Developer Guide

8. Choose Deploy.

9. (Optional) Under Stage details, for Invoke URL, you can choose the copy icon to copy your
API's invoke URL. You can use this with tools such as Postman and cURL to test your API.

If you use an SDK to create a client, you can call the methods exposed by the SDK to sign the
request. For implementation details, see the AWS SDK of your choosing.

Note

When changes are made to your API, you must redeploy the API to make the new or
updated features available before invoking the request URL again.

(Optional) Map request parameters

Map request parameters for an API Gateway API

This tutorial shows how to create a path parameter of {petId} on the API's method request URL
to specify an item ID, map it to the {id} path parameter in the integration request URL, and send
the request to the HTTP endpoint.

Note

If you enter the incorrect case of a letter, such as lowercase letter instead of an uppercase
letter, this will cause errors later in the walkthrough.

Step 1: Create resources

In this step, you create a resource with a path parameter {petId}.

To create the {petId} resource

1. Select the /pets resource, and then choose Create resource.

2. Keep Proxy resource turned off.

3. For Resource path, select /pets/.

4. For Resource name, enter {petId}.

Build an API with HTTP integration 76

http://www.postman.com
https://curl.haxx.se/
https://aws.amazon.com/tools/

Amazon API Gateway Developer Guide

Use the curly braces ({ }) around petId so that /pets/{petId} is displayed.

5. Keep CORS (Cross Origin Resource Sharing) turned off.

6. Choose Create resource.

Step 2: Create and test the methods

In this step, you create a GET method with a {petId} path parameter.

To set up GET method

1. Select the /{petId} resource, and then choose Create method.

2. For Method type, select GET.

3. For Integration type, select HTTP integration.

4. Keep HTTP proxy integration turned off.

5. For HTTP method, select GET.

6. For Endpoint URL, enter http://petstore-demo-endpoint.execute-api.com/
petstore/pets/{id}

7. For Content handling, select Passthrough.

8. Keep the Default timeout turned on.

9. Choose Create method.

Now you map the {petId} path parameter to the {id} path parameter in the HTTP endpoint.

To map the {petId} path parameter

1. On the Integration request tab, under Integration request settings, choose Edit.

2. Choose URL path parameters.

3. API Gateway creates a path parameter for the integration request named petId. This doesn't
work for your backend. The HTTP endpoint uses {id} as the path parameter. Rename petId to
id.

This maps the method request's path parameter of petId to the integration request's path
parameter of id.

4. Choose Save.

Build an API with HTTP integration 77

Amazon API Gateway Developer Guide

Now you test the method.

To test the method

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.

2. Under Path for petId, enter 4.

3. Choose Test.

If successful, Response body displays the following:

{
 "id": 4,
 "type": "bird",
 "price": 999.99
}

Step 3: Deploy the API

In this step, you deploy the API so that you can begin calling it outside of the API Gateway console.

To deploy the API

1. Choose Deploy API.

2. For Stage, select Prod.

3. (Optional) For Description, enter a description.

4. Choose Deploy.

Step 4: Test the API

In this step, you go outside of the API Gateway console and use your API to access the HTTP
endpoint.

1. In the main navigation pane, choose Stage.

2. Under Stage details, choose the copy icon to copy your API's invoke URL.

It should look something like this:

https://my-api-id.execute-api.region-id.amazonaws.com/prod

Build an API with HTTP integration 78

Amazon API Gateway Developer Guide

3. Enter this URL in the address box of a new browser tab and append /pets/4 to the URL
before you submit your request.

4. The browser will return the following:

{
 "id": 4,
 "type": "bird",
 "price": 999.99
}

Next steps

You can further customize your API by turning on request validation, transforming data, or creating
custom gateway responses.

To explore more ways to customize your API, see the following tutorials:

• For more information about request validation, see Set up basic request validation in API
Gateway.

• For information about how to transform request and response payloads, see Set up data
transformations in API Gateway.

• For information about how to create custom gateway responses see, Set up a gateway response
for a REST API using the API Gateway console.

Tutorial: Build a REST API with API Gateway private integration

You can create an API Gateway API with private integration to provide your customers access
to HTTP/HTTPS resources within your Amazon Virtual Private Cloud (Amazon VPC). Such VPC
resources are HTTP/HTTPS endpoints on an EC2 instance behind a Network Load Balancer in the
VPC. The Network Load Balancer encapsulates the VPC resource and routes incoming requests to
the targeted resource.

When a client calls the API, API Gateway connects to the Network Load Balancer through the
pre-configured VPC link. A VPC link is encapsulated by an API Gateway resource of VpcLink. It
is responsible for forwarding API method requests to the VPC resources and returns backend
responses to the caller. For an API developer, a VpcLink is functionally equivalent to an
integration endpoint.

Tutorial: Build an API with private integration 79

https://docs.aws.amazon.com/apigateway/latest/api/API_VpcLink.html

Amazon API Gateway Developer Guide

To create an API with private integration, you must create a new VpcLink, or choose an existing
one, that is connected to a Network Load Balancer that targets the desired VPC resources.
You must have appropriate permissions to create and manage a VpcLink. You then set up an
API method and integrate it with the VpcLink by setting either HTTP or HTTP_PROXY as the
integration type, setting VPC_LINK as the integration connection type, and setting the VpcLink
identifier on the integration connectionId.

Note

The Network Load Balancer and API must be owned by the same AWS account.

To quickly get started creating an API to access VPC resources, we walk through the essential steps
for building an API with the private integration, using the API Gateway console. Before creating the
API, do the following:

1. Create a VPC resource, create or choose a Network Load Balancer under your account in the
same region, and add the EC2 instance hosting the resource as a target of the Network Load
Balancer. For more information, see Set up a Network Load Balancer for API Gateway private
integrations.

2. Grant permissions to create the VPC links for private integrations. For more information, see
Grant permissions to create a VPC link.

After creating your VPC resource and your Network Load Balancer with your VPC resource
configured in its target groups, follow the instructions below to create an API and integrate it with
the VPC resource via a VpcLink in a private integration.

To create an API with a private integration

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. If this is your first time using API Gateway, you see a page that introduces you to the features
of the service. Under REST API, choose Build. When the Create Example API popup appears,
choose OK.

If this is not your first time using API Gateway, choose Create API. Under REST API, choose
Build.

3. Create an edge-optimized or Regional REST API.

Tutorial: Build an API with private integration 80

https://docs.aws.amazon.com/apigateway/latest/api/API_Method.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html#type
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html#connectionType
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html#connectionId
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

4. Select your API.

5. Choose Create method, and then do the following:

a. For Method type, select GET.

b. For Integration type, select VPC link.

c. Turn on VPC proxy integration.

d. For HTTP method, select GET.

e. For VPC link, select [Use stage variable] and enter ${stageVariables.vpcLinkId} in
the text box below.

You define the vpcLinkId stage variable after deploying the API to a stage and set its
value to the ID of the VpcLink.

f. For Endpoint URL, enter a URL, for example, http://myApi.example.com.

Here, the host name (for example, myApi.example.com) is used to set the Host header
of the integration request.

g. Choose Create method.

With the proxy integration, the API is ready for deployment. Otherwise, you need to
proceed to set up appropriate method responses and integration responses.

6. Choose Deploy API, and then do the following:

a. For Stage, select New stage.

b. For Stage name, enter a stage name.

c. (Optional) For Description, enter a description.

d. Choose Deploy.

7. Under the Stage details section, note the resulting Invoke URL. You need it to invoke the API.
Before doing that, you must set up the vpcLinkId stage variable.

8. In the Stages pane, choose the Stage variables tab, and then do the following:

a. Choose Manage variables, and then choose Add stage variable.

b. For Name, enter vpcLinkId.

c. For Value, enter the ID of VPC_LINK, for example, gix6s7.

d. Choose Save.
Tutorial: Build an API with private integration 81

Amazon API Gateway Developer Guide

Using the stage variable, you can easily switch to different VPC links for the API by
changing the stage variable value.

Tutorial: Build an API Gateway REST API with AWS integration

Both the Tutorial: Build a Hello World REST API with Lambda proxy integration and Build an API
Gateway REST API with Lambda integration topics describe how to create an API Gateway API to
expose the integrated Lambda function. In addition, you can create an API Gateway API to expose
other AWS services, such as Amazon SNS, Amazon S3, Amazon Kinesis, and even AWS Lambda. This
is made possible by the AWS integration. The Lambda integration or the Lambda proxy integration
is a special case, where the Lambda function invocation is exposed through the API Gateway API.

All AWS services support dedicated APIs to expose their features. However, the application
protocols or programming interfaces are likely to differ from service to service. An API Gateway API
with the AWS integration has the advantage of providing a consistent application protocol for your
client to access different AWS services.

In this walkthrough, we create an API to expose Amazon SNS. For more examples of integrating an
API with other AWS services, see Amazon API Gateway tutorials and workshops.

Unlike the Lambda proxy integration, there is no corresponding proxy integration for other AWS
services. Hence, an API method is integrated with a single AWS action. For more flexibility, similar
to the proxy integration, you can set up a Lambda proxy integration. The Lambda function then
parses and processes requests for other AWS actions.

API Gateway does not retry when the endpoint times out. The API caller must implement retry
logic to handle endpoint timeouts.

This walkthrough builds on the instructions and concepts in Build an API Gateway REST API with
Lambda integration. If you have not yet completed that walkthrough, we suggest that you do it
first.

Topics

• Prerequisites

• Step 1: Create the AWS service proxy execution role

• Step 2: Create the resource

Tutorial: Build an API with AWS integration 82

Amazon API Gateway Developer Guide

• Step 3: Create the GET method

• Step 4: Specify method settings and test the method

• Step 5: Deploy the API

• Step 6: Test the API

• Step 7: Clean up

Prerequisites

Before you begin this walkthrough, do the following:

1. Complete the steps in Prerequisites for getting started with API Gateway.

2. Create a new API named MyDemoAPI. For more information, see Tutorial: Build a REST API with
HTTP non-proxy integration.

3. Deploy the API at least once to a stage named test. For more information, see Deploy the API
in Build an API Gateway REST API with Lambda integration.

4. Complete the rest of the steps in Build an API Gateway REST API with Lambda integration.

5. Create at least one topic in Amazon Simple Notification Service (Amazon SNS). You will use the
deployed API to get a list of topics in Amazon SNS that are associated with your AWS account.
To learn how to create a topic in Amazon SNS, see Create a Topic. (You do not need to copy the
topic ARN mentioned in step 5.)

Step 1: Create the AWS service proxy execution role

To allow the API to invoke Amazon SNS actions, you must have the appropriate IAM policies
attached to an IAM role.

To create the AWS service proxy execution role

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Roles.

3. Choose Create role.

4. Choose AWS service under Select type of trusted entity, and then select API Gateway and
select Allows API Gateway to push logs to CloudWatch Logs.

5. Choose Next, and then choose Next.

Tutorial: Build an API with AWS integration 83

https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide

6. For Role name, enter APIGatewaySNSProxyPolicy, and then choose Create role.

7. In the Roles list, choose the role you just created. You may need to scroll or use the search bar
to find the role.

8. For the selected role, select the Add permissions tab.

9. Choose Attach policies from the dropdown list.

10. In the search bar, enter AmazonSNSReadOnlyAccess and choose Add permissions.

Note

This tutorial uses a managed policy for simplicity. As a best practice, you should create
your own IAM policy to grant the minimum permissions required.

11. Note the newly created Role ARN, you will use it later.

Step 2: Create the resource

In this step, you create a resource that enables the AWS service proxy to interact with the AWS
service.

To create the resource

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API.

3. Select the root resource, /, represented by a single forward slash (/), and then choose Create
resource.

4. Keep Proxy resource turned off.

5. Keep Resource path as /.

6. For Resource name, enter mydemoawsproxy.

7. Keep CORS (Cross Origin Resource Sharing) turned off.

8. Choose Create resource.

Step 3: Create the GET method

In this step, you create a GET method that enables the AWS service proxy to interact with the AWS
service.

Tutorial: Build an API with AWS integration 84

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

To create the GET method

1. Select the /mydemoawsproxy resource, and then choose Create method.

2. For method type, select GET.

3. For Integration type, select AWS service.

4. For AWS Region, select the AWS Region where you created your Amazon SNS topic.

5. For AWS service, select Amazon SNS.

6. Keep AWS subdomain blank.

7. For HTTP method, select GET.

8. For Action type, select Use action name.

9. For Action name, enter ListTopics.

10. For Execution role, enter the role ARN for APIGatewaySNSProxyPolicy.

11. Choose Create method.

Step 4: Specify method settings and test the method

You can now test your GET method to verify that it has been properly set up to list your Amazon
SNS topics.

To test the GET method

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.

2. Choose Test.

The result displays response similar to the following:

{
 "ListTopicsResponse": {
 "ListTopicsResult": {
 "NextToken": null,
 "Topics": [
 {
 "TopicArn": "arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-1"
 },
 {
 "TopicArn": "arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-2"
 },

Tutorial: Build an API with AWS integration 85

Amazon API Gateway Developer Guide

 ...
 {
 "TopicArn": "arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-N"
 }
]
 },
 "ResponseMetadata": {
 "RequestId": "abc1de23-45fa-6789-b0c1-d2e345fa6b78"
 }
 }
}

Step 5: Deploy the API

In this step, you deploy the API so that you can call it from outside of the API Gateway console.

To deploy the API

1. Choose Deploy API.

2. For Stage, select New stage.

3. For Stage name, enter test.

4. (Optional) For Description, enter a description.

5. Choose Deploy.

Step 6: Test the API

In this step, you go outside of the API Gateway console and use your AWS service proxy to interact
with the Amazon SNS service.

1. In the main navigation pane, choose Stage.

2. Under Stage details, choose the copy icon to copy your API's invoke URL.

It should look like this:

https://my-api-id.execute-api.region-id.amazonaws.com/test

3. Enter the URL into the address box of a new browser tab.

4. Append /mydemoawsproxy so that the URL looks like this:

Tutorial: Build an API with AWS integration 86

Amazon API Gateway Developer Guide

https://my-api-id.execute-api.region-id.amazonaws.com/test/mydemoawsproxy

Browse to the URL. Information similar to the following should be displayed:

{"ListTopicsResponse":{"ListTopicsResult":{"NextToken": null,"Topics":
[{"TopicArn": "arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-1"},{"TopicArn":
 "arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-2"},...{"TopicArn":
 "arn:aws:sns:us-east-1:80398EXAMPLE:MySNSTopic-N}]},"ResponseMetadata":
{"RequestId":"abc1de23-45fa-6789-b0c1-d2e345fa6b78}}}

Step 7: Clean up

You can delete the IAM resources the AWS service proxy needs to work.

Warning

If you delete an IAM resource an AWS service proxy relies on, that AWS service proxy and
any APIs that rely on it will no longer work. Deleting an IAM resource cannot be undone. If
you want to use the IAM resource again, you must re-create it.

To delete the associated IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the Details area, choose Roles.

3. Select APIGatewayAWSProxyExecRole, and then choose Role Actions, Delete Role. When
prompted, choose Yes, Delete.

4. In the Details area, choose Policies.

5. Select APIGatewayAWSProxyExecPolicy, and then choose Policy Actions, Delete. When
prompted, choose Delete.

You have reached the end of this walkthrough. For more detailed discussions about creating API
as an AWS service proxy, see Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway,
Tutorial: Create a Calc REST API with two AWS service integrations and one Lambda non-proxy
integration, or Tutorial: Create a REST API as an Amazon Kinesis proxy in API Gateway.

Tutorial: Build an API with AWS integration 87

https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide

Tutorial: Create a Calc REST API with two AWS service integrations and
one Lambda non-proxy integration

The Getting Started non-proxy integration tutorial uses Lambda Function integration exclusively.
Lambda Function integration is a special case of the AWS Service integration type that
performs much of the integration setup for you, such as automatically adding the required
resource-based permissions for invoking the Lambda function. Here, two of the three integrations
use AWS Service integration. In this integration type, you have more control, but you'll need
to manually perform tasks like creating and specifying an IAM role containing appropriate
permissions.

In this tutorial, you'll create a Calc Lambda function that implements basic arithmetic operations,
accepting and returning JSON-formatted input and output. Then you'll create a REST API and
integrate it with the Lambda function in the following ways:

1. By exposing a GET method on the /calc resource to invoke the Lambda function, supplying
the input as query string parameters. (AWS Service integration)

2. By exposing a POST method on the /calc resource to invoke the Lambda function, supplying
the input in the method request payload. (AWS Service integration)

3. By exposing a GET on nested /calc/{operand1}/{operand2}/{operator} resources to
invoke the Lambda function, supplying the input as path parameters. (Lambda Function
integration)

In addition to trying out this tutorial, you may wish to study the OpenAPI definition file for the
Calc API, which you can import into API Gateway by following the instructions in the section
called “OpenAPI”.

Topics

• Create an assumable IAM role

• Create a Calc Lambda function

• Test the Calc Lambda function

• Create a Calc API

• Integration 1: Create a GET method with query parameters to call the Lambda function

• Integration 2: Create a POST method with a JSON payload to call the Lambda function

• Integration 3: Create a GET method with path parameters to call the Lambda function

Tutorial: Calc API with three integrations 88

Amazon API Gateway Developer Guide

• OpenAPI definitions of sample API integrated with a Lambda function

Create an assumable IAM role

In order for your API to invoke your Calc Lambda function, you'll need to have an API Gateway
assumable IAM role, which is an IAM role with the following trusted relationship:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

The role you create will need to have Lambda InvokeFunction permission. Otherwise, the API caller
will receive a 500 Internal Server Error response. To give the role this permission, you'll
attach the following IAM policy to it:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "*"
 }
]
}

Here's how to accomplish all this:

Create an API Gateway assumable IAM role

1. Log in to the IAM console.

Tutorial: Calc API with three integrations 89

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon API Gateway Developer Guide

2. Choose Roles.

3. Choose Create Role.

4. Under Select type of trusted entity, choose AWS Service.

5. Under Choose the service that will use this role, choose Lambda.

6. Choose Next: Permissions.

7. Choose Create Policy.

A new Create Policy console window will open up. In that window, do the following:

a. In the JSON tab, replace the existing policy with the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "*"
 }
]
}

b. Choose Review policy.

c. Under Review Policy, do the following:

i. For Name, type a name such as lambda_execute.

ii. Choose Create Policy.

8. In the original Create Role console window, do the following:

a. Under Attach permissions policies, choose your lambda_execute policy from the
dropdown list.

If you don't see your policy in the list, choose the refresh button at the top of the list.
(Don't refresh the browser page!)

b. Choose Next:Tags.

c. Choose Next:Review.
Tutorial: Calc API with three integrations 90

Amazon API Gateway Developer Guide

d. For the Role name, type a name such as
lambda_invoke_function_assume_apigw_role.

e. Choose Create role.

9. Choose your lambda_invoke_function_assume_apigw_role from the list of roles.

10. Choose the Trust relationships tab.

11. Choose Edit trust relationship.

12. Replace the existing policy with the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lambda.amazonaws.com",
 "apigateway.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

13. Choose Update Trust Policy.

14. Make a note of the role ARN for the role you just created. You'll need it later.

Create a Calc Lambda function

Next you'll create a Lambda function using the Lambda console.

1. In the Lambda console, choose Create function.

2. Choose Author from Scratch.

3. For Name, enter Calc.

4. For Runtime, choose either the latest supported Node.js or Python runtime.

Tutorial: Calc API with three integrations 91

Amazon API Gateway Developer Guide

5. Choose Create function.

6. Copy the following Lambda function in your preferred runtime and paste it into the code
editor in the Lambda console.

Node.js

export const handler = async function (event, context) {
 console.log("Received event:", JSON.stringify(event));

 if (
 event.a === undefined ||
 event.b === undefined ||
 event.op === undefined
) {
 return "400 Invalid Input";
 }

 const res = {};
 res.a = Number(event.a);
 res.b = Number(event.b);
 res.op = event.op;
 if (isNaN(event.a) || isNaN(event.b)) {
 return "400 Invalid Operand";
 }
 switch (event.op) {
 case "+":
 case "add":
 res.c = res.a + res.b;
 break;
 case "-":
 case "sub":
 res.c = res.a - res.b;
 break;
 case "*":
 case "mul":
 res.c = res.a * res.b;
 break;
 case "/":
 case "div":
 if (res.b == 0) {
 return "400 Divide by Zero";
 } else {
 res.c = res.a / res.b;

Tutorial: Calc API with three integrations 92

Amazon API Gateway Developer Guide

 }
 break;
 default:
 return "400 Invalid Operator";
 }

 return res;
};

Python

import json

def lambda_handler(event, context):
 print(event)

 try:
 (event['a']) and (event['b']) and (event['op'])
 except KeyError:
 return '400 Invalid Input'

 try:
 res = {
 "a": float(
 event['a']), "b": float(
 event['b']), "op": event['op']}
 except ValueError:
 return '400 Invalid Operand'

 if event['op'] == '+':
 res['c'] = res['a'] + res['b']
 elif event['op'] == '-':
 res['c'] = res['a'] - res['b']
 elif event['op'] == '*':
 res['c'] = res['a'] * res['b']
 elif event['op'] == '/':
 if res['b'] == 0:
 return '400 Divide by Zero'
 else:
 res['c'] = res['a'] / res['b']
 else:
 return '400 Invalid Operator'

Tutorial: Calc API with three integrations 93

Amazon API Gateway Developer Guide

 return res

7. Under Execution role, choose Choose an existing role.

8. Enter the role ARN for the lambda_invoke_function_assume_apigw_role role you
created earlier.

9. Choose Deploy.

This function requires two operands (a and b) and an operator (op) from the event input
parameter. The input is a JSON object of the following format:

{
 "a": "Number" | "String",
 "b": "Number" | "String",
 "op": "String"
}

This function returns the calculated result (c) and the input. For an invalid input, the function
returns either the null value or the "Invalid op" string as the result. The output is of the following
JSON format:

{
 "a": "Number",
 "b": "Number",
 "op": "String",
 "c": "Number" | "String"
}

You should test the function in the Lambda console before integrating it with the API in the next
step.

Test the Calc Lambda function

Here's how to test your Calc function in the Lambda console:

1. Choose the Test tab.

Tutorial: Calc API with three integrations 94

Amazon API Gateway Developer Guide

2. For the test event name, enter calc2plus5.

3. Replace the test event definition with the following:

{
 "a": "2",
 "b": "5",
 "op": "+"
}

4. Choose Save.

5. Choose Test.

6. Expand Execution result: succeeded. You should see the following:

{
 "a": 2,
 "b": 5,
 "op": "+",
 "c": 7
}

Create a Calc API

The following procedure shows how to create an API for the Calc Lambda function you just
created. In subsequent sections, you'll add resources and methods to it.

To create an API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. If this is your first time using API Gateway, you see a page that introduces you to the features
of the service. Under REST API, choose Build. When the Create Example API popup appears,
choose OK.

If this is not your first time using API Gateway, choose Create API. Under REST API, choose
Build.

3. For API name, enter LambdaCalc.

4. (Optional) For Description, enter a description.

5. Keep API endpoint type set to Regional.

Tutorial: Calc API with three integrations 95

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

6. Choose Create API.

Integration 1: Create a GET method with query parameters to call the Lambda
function

By creating a GET method that passes query string parameters to the Lambda function, you enable
the API to be invoked from a browser. This approach can be useful, especially for APIs that allow
open access.

After you create an API, you create a resource. Typically, API resources are organized in a resource
tree according to the application logic. For this step, you create a /calc resource.

To create a /calc resource

1. Choose Create resource.

2. Keep Proxy resource turned off.

3. Keep Resource path as /.

4. For Resource name, enter calc.

5. Keep CORS (Cross Origin Resource Sharing) turned off.

6. Choose Create resource.

By creating a GET method that passes query string parameters to the Lambda function, you enable
the API to be invoked from a browser. This approach can be useful, especially for APIs that allow
open access.

In this method, Lambda requires that the POST request be used to invoke any Lambda function.
This example shows that the HTTP method in a frontend method request can be different from the
integration request in the backend.

To create a GET method

1. Select the /calc resource, and then choose Create method.

2. For Method type, select GET.

3. For Integration type, select AWS service.

4. For AWS Region, select the AWS Region where you created your Lambda function.

5. For AWS service, select Lambda.

Tutorial: Calc API with three integrations 96

Amazon API Gateway Developer Guide

6. Keep AWS subdomain blank.

7. For HTTP method, select POST.

8. For Action type, select Use path override. This option allows us to specify the ARN of the
Invoke action to execute our Calc function.

9. For Path override, enter 2015-03-31/functions/arn:aws:lambda:us-
east-2:account-id:function:Calc/invocations. For account-id, enter your AWS
account ID. For us-east-2, enter the AWS Region where you created your Lambda function.

10. For Execution role, enter the role ARN for
lambda_invoke_function_assume_apigw_role.

11. Do not change the settings of Credential cache and Default timeout.

12. Choose Method request settings.

13. For Request validator, select Validate query string parameters and headers.

This setting will cause an error message to return if the client does not specify the required
parameters.

14. Choose URL query string parameters.

Now you set up query string parameters for the GET method on the /calc resource so it can
receive input on behalf of the backend Lambda function.

To create the query string parameters do the following:

a. Choose Add query string.

b. For Name, enter operand1.

c. Turn on Required.

d. Keep Caching turned off.

Repeat the same steps and create a query string named operand2 and a query string named
operator.

15. Choose Create method.

Now, you create a mapping template to translate the client-supplied query strings to the
integration request payload as required by the Calc function. This template maps the three query
string parameters declared in Method request into designated property values of the JSON object

Tutorial: Calc API with three integrations 97

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon API Gateway Developer Guide

as the input to the backend Lambda function. The transformed JSON object will be included as the
integration request payload.

To map input parameters to the integration request

1. On the Integration request tab, under Integration request settings, choose Edit.

2. For Request body passthrough, select When there are no templates defined
(recommended).

3. Choose Mapping templates.

4. Choose Add mapping template.

5. For Content type, enter application/json.

6. For Template body, enter the following code:

{
 "a": "$input.params('operand1')",
 "b": "$input.params('operand2')",
 "op": "$input.params('operator')"
}

7. Choose Save.

You can now test your GET method to verify that it has been properly set up to invoke the Lambda
function.

To test the GET method

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.

2. For Query strings, enter operand1=2&operand2=3&operator=+.

3. Choose Test.

The results should look similar to this:

Tutorial: Calc API with three integrations 98

Amazon API Gateway Developer Guide

Tutorial: Calc API with three integrations 99

Amazon API Gateway Developer Guide

Integration 2: Create a POST method with a JSON payload to call the Lambda
function

By creating a POST method with a JSON payload to call the Lambda function, you make it so that
the client must provide the necessary input to the backend function in the request body. To ensure
that the client uploads the correct input data, you'll enable request validation on the payload.

To create a POST method with a JSON payload

1. Select the /calc resource, and then choose Create method.

2. For Method type, select POST.

3. For Integration type, select AWS service.

4. For AWS Region, select the AWS Region where you created your Lambda function.

5. For AWS service, select Lambda.

6. Keep AWS subdomain blank.

7. For HTTP method, select POST.

8. For Action type, select Use path override. This option allows us to specify the ARN of the
Invoke action to execute our Calc function.

9. For Path override, enter 2015-03-31/functions/arn:aws:lambda:us-
east-2:account-id:function:Calc/invocations. For account-id, enter your AWS
account ID. For us-east-2, enter the AWS Region where you created your Lambda function.

10. For Execution role, enter the role ARN for
lambda_invoke_function_assume_apigw_role.

11. Do not change the settings of Credential cache and Default timeout.

12. Choose Create method.

Now you create an input model to describe the input data structure and validate the incoming
request body.

To create an input model

1. In the main navigation pane, choose Models.

2. Choose Create model.

3. For Name, enter input.

4. For Content type, enter application/json.

Tutorial: Calc API with three integrations 100

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon API Gateway Developer Guide

If no matching content type is found, request validation is not performed. To use the same
model regardless of the content type, enter $default.

5. For Model schema, enter the following model:

{
 "type":"object",
 "properties":{
 "a":{"type":"number"},
 "b":{"type":"number"},
 "op":{"type":"string"}
 },
 "title":"input"
}

6. Choose Create model.

You now create an output model. This model describes the data structure of the calculated output
from the backend. It can be used to map the integration response data to a different model. This
tutorial relies on the passthrough behavior and does not use this model.

To create an output model

1. Choose Create model.

2. For Name, enter output.

3. For Content type, enter application/json.

If no matching content type is found, request validation is not performed. To use the same
model regardless of the content type, enter $default.

4. For Model schema, enter the following model:

{
 "type":"object",
 "properties":{
 "c":{"type":"number"}
 },
 "title":"output"
}

5. Choose Create model.

Tutorial: Calc API with three integrations 101

Amazon API Gateway Developer Guide

You now create a result model. This model describes the data structure of the returned response
data. It references both the input and output schemas defined in your API.

To create a result model

1. Choose Create model.

2. For Name, enter result.

3. For Content type, enter application/json.

If no matching content type is found, request validation is not performed. To use the same
model regardless of the content type, enter $default.

4. For Model schema, enter the following model with your restapi-id. Your restapi-id is
listed in parenthesis at the top of the console in the following flow: API Gateway > APIs >
LambdaCalc (abc123).

{
 "type":"object",
 "properties":{
 "input":{
 "$ref":"https://apigateway.amazonaws.com/restapis/restapi-id/models/
input"
 },
 "output":{
 "$ref":"https://apigateway.amazonaws.com/restapis/restapi-id/models/
output"
 }
 },
 "title":"result"
}

5. Choose Create model.

You now configure the method request of your POST method to enable request validation on the
incoming request body.

To enable request validation on the POST method

1. In the main navigation pane, choose Resources, and then select the POST method from the
resource tree.

2. On the Method request tab, under Method request settings, choose Edit.

Tutorial: Calc API with three integrations 102

Amazon API Gateway Developer Guide

3. For Request validator, select Validate body.

4. Choose Request body, and then choose Add model.

5. For Content type, enter application/json.

If no matching content type is found, request validation is not performed. To use the same
model regardless of the content type, enter $default.

6. For Model, select input.

7. Choose Save.

You can now test your POST method to verify that it has been properly set up to invoke the
Lambda function.

To test the POST method

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.

2. For Request body, enter the following JSON payload.

{
 "a": 1,
 "b": 2,
 "op": "+"
}

3. Choose Test.

You should see the following output:

{
 "a": 1,
 "b": 2,
 "op": "+",
 "c": 3
}

Tutorial: Calc API with three integrations 103

Amazon API Gateway Developer Guide

Integration 3: Create a GET method with path parameters to call the Lambda
function

Now you'll create a GET method on a resource specified by a sequence of path parameters to call
the backend Lambda function. The path parameter values specify the input data to the Lambda
function. You'll use a mapping template to map the incoming path parameter values to the
required integration request payload.

The resulting API resource structure will look like this:

Tutorial: Calc API with three integrations 104

Amazon API Gateway Developer Guide

To create a /{operand1}/{operand2}/{operator} resource

1. Choose Create resource.

2. For Resource path, select /calc.

3. For Resource name, enter {operand1}.

4. Keep CORS (Cross Origin Resource Sharing) turned off.

5. Choose Create resource.

6. For Resource path, select /calc/{operand1}/.

7. For Resource name, enter {operand2}.

8. Keep CORS (Cross Origin Resource Sharing) turned off.

9. Choose Create resource.

10. For Resource path, select /calc/{operand1}/{operand2}/.

11. For Resource name, enter {operator}.

12. Keep CORS (Cross Origin Resource Sharing) turned off.

13. Choose Create resource.

This time you'll use the built-in Lambda integration in the API Gateway console to set up the
method integration.

To set up a method integration

1. Select the /{operand1}/{operand2}/{operator} resource, and then choose Create method.

2. For Method type, select GET.

3. For Integration type, select Lambda.

4. Keep Lambda proxy integration turned off.

5. For Lambda function, select the AWS Region where you created your Lambda function and
enter Calc.

6. Keep Default timeout turned on.

7. Choose Create method.

You now create a mapping template to map the three URL path parameters, declared when the /
calc/{operand1}/{operand2}/{operator} resource was created, into designated property values in
the JSON object. Because URL paths must be URL-encoded, the division operator must be specified

Tutorial: Calc API with three integrations 105

Amazon API Gateway Developer Guide

as %2F instead of /. This template translates the %2F into '/' before passing it to the Lambda
function.

To create a mapping template

1. On the Integration request tab, under Integration request settings, choose Edit.

2. For Request body passthrough, select When there are no templates defined
(recommended).

3. Choose Mapping templates.

4. For Content type, enter application/json.

5. For Template body, enter the following code:

{
 "a": "$input.params('operand1')",
 "b": "$input.params('operand2')",
 "op":
 #if($input.params('operator')=='%2F')"/"#{else}"$input.params('operator')"#end
}

6. Choose Save.

You can now test your GET method to verify that it has been properly set up to invoke the Lambda
function and pass the original output through the integration response without mapping.

To test the GET method

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.

2. For the Path, do the following:

a. For operand1, enter 1.

b. For operand2, enter 1.

c. For operator, enter +.

3. Choose Test.

4. The result should look like this:

Tutorial: Calc API with three integrations 106

Amazon API Gateway Developer Guide

Next, you model the data structure of the method response payload after the result schema.

By default, the method response body is assigned an empty model. This will cause the integration
response body to be passed through without mapping. However, when you generate an SDK for
one of the strongly-type languages, such as Java or Objective-C, your SDK users will receive an

Tutorial: Calc API with three integrations 107

Amazon API Gateway Developer Guide

empty object as the result. To ensure that both the REST client and SDK clients receive the desired
result, you must model the response data using a predefined schema. Here you'll define a model
for the method response body and to construct a mapping template to translate the integration
response body into the method response body.

To create a method response

1. On the Method response tab, under Response 200, choose Edit.

2. Under Response body, choose Add model.

3. For Content type, enter application/json.

4. For Model, select result.

5. Choose Save.

Setting the model for the method response body ensures that the response data will be cast into
the result object of a given SDK. To make sure that the integration response data is mapped
accordingly, you'll need a mapping template.

To create a mapping template

1. On the Integration response tab, under Default - Response, choose Edit.

2. Choose Mapping templates.

3. For Content type, enter application/json.

4. For Generate template, select result.

5. Modify the generated mapping template to match the following:

#set($inputRoot = $input.path('$'))
{
 "input" : {
 "a" : $inputRoot.a,
 "b" : $inputRoot.b,
 "op" : "$inputRoot.op"
 },
 "output" : {
 "c" : $inputRoot.c
 }
}

6. Choose Save.

Tutorial: Calc API with three integrations 108

Amazon API Gateway Developer Guide

To test the mapping template

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.

2. For the Path, do the following:

a. For operand1, enter 1.

b. For operand2, enter 2.

c. For operator, enter +.

3. Choose Test.

4. The result will look like the following:

{
 "input": {
 "a": 1,
 "b": 2,
 "op": "+"
 },
 "output": {
 "c": 3
 }
}

At this point, you can only call the API using the Test feature in the API Gateway console. To make
it available to clients, you'll need to deploy your API. Always be sure to redeploy your API whenever
you add, modify, or delete a resource or method, update a data mapping, or update stage settings.
Otherwise, new features or updates will not be available to clients of your API. as follows:

To deploy the API

1. Choose Deploy API.

2. For Stage, select New stage.

3. For Stage name, enter Prod.

4. (Optional) For Description, enter a description.

5. Choose Deploy.

6. (Optional) Under Stage details, for Invoke URL, you can choose the copy icon to copy your
API's invoke URL. You can use this with tools such as Postman and cURL to test your API.

Tutorial: Calc API with three integrations 109

http://www.postman.com
https://curl.haxx.se/

Amazon API Gateway Developer Guide

Note

Always redeploy your API whenever you add, modify, or delete a resource or method,
update a data mapping, or update stage settings. Otherwise, new features or updates will
not be available to clients of your API.

OpenAPI definitions of sample API integrated with a Lambda function

OpenAPI 2.0

{
 "swagger": "2.0",
 "info": {
 "version": "2017-04-20T04:08:08Z",
 "title": "LambdaCalc"
 },
 "host": "uojnr9hd57.execute-api.us-east-1.amazonaws.com",
 "basePath": "/test",
 "schemes": [
 "https"
],
 "paths": {
 "/calc": {
 "get": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "operand2",
 "in": "query",
 "required": true,
 "type": "string"
 },
 {
 "name": "operator",
 "in": "query",

Tutorial: Calc API with three integrations 110

Amazon API Gateway Developer Guide

 "required": true,
 "type": "string"
 },
 {
 "name": "operand1",
 "in": "query",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Result"
 },
 "headers": {
 "operand_1": {
 "type": "string"
 },
 "operand_2": {
 "type": "string"
 },
 "operator": {
 "type": "string"
 }
 }
 }
 },
 "x-amazon-apigateway-request-validator": "Validate query string parameters
 and headers",
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.operator": "integration.response.body.op",
 "method.response.header.operand_2": "integration.response.body.b",
 "method.response.header.operand_1": "integration.response.body.a"
 },
 "responseTemplates": {

Tutorial: Calc API with three integrations 111

Amazon API Gateway Developer Guide

 "application/json": "#set($res = $input.path('$'))\n{\n \"result
\": \"$res.a, $res.b, $res.op => $res.c\",\n \"a\" : \"$res.a\",\n \"b\" :
 \"$res.b\",\n \"op\" : \"$res.op\",\n \"c\" : \"$res.c\"\n}"
 }
 }
 },
 "uri": "arn:aws:apigateway:us-west-2:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-west-2:123456789012:function:Calc/invocations",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "POST",
 "requestTemplates": {
 "application/json": "{\n \"a\": \"$input.params('operand1')\",\n
 \"b\": \"$input.params('operand2')\", \n \"op\": \"$input.params('operator')\"
 \n}"
 },
 "type": "aws"
 }
 },
 "post": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "in": "body",
 "name": "Input",
 "required": true,
 "schema": {
 "$ref": "#/definitions/Input"
 }
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Result"
 }
 }
 },
 "x-amazon-apigateway-request-validator": "Validate body",

Tutorial: Calc API with three integrations 112

Amazon API Gateway Developer Guide

 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200",
 "responseTemplates": {
 "application/json": "#set($inputRoot = $input.path('$'))\n{\n \"a
\" : $inputRoot.a,\n \"b\" : $inputRoot.b,\n \"op\" : $inputRoot.op,\n \"c\" :
 $inputRoot.c\n}"
 }
 }
 },
 "uri": "arn:aws:apigateway:us-west-2:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-west-2:123456789012:function:Calc/invocations",
 "passthroughBehavior": "when_no_templates",
 "httpMethod": "POST",
 "type": "aws"
 }
 }
 },
 "/calc/{operand1}/{operand2}/{operator}": {
 "get": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "operand2",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "operator",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "operand1",
 "in": "path",

Tutorial: Calc API with three integrations 113

Amazon API Gateway Developer Guide

 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Result"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "default": {
 "statusCode": "200",
 "responseTemplates": {
 "application/json": "#set($inputRoot = $input.path('$'))\n{\n
 \"input\" : {\n \"a\" : $inputRoot.a,\n \"b\" : $inputRoot.b,\n \"op\" :
 \"$inputRoot.op\"\n },\n \"output\" : {\n \"c\" : $inputRoot.c\n }\n}"
 }
 }
 },
 "uri": "arn:aws:apigateway:us-west-2:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-west-2:123456789012:function:Calc/invocations",
 "passthroughBehavior": "when_no_templates",
 "httpMethod": "POST",
 "requestTemplates": {
 "application/json": "{\n \"a\": \"$input.params('operand1')\",
\n \"b\": \"$input.params('operand2')\",\n \"op\":
 #if($input.params('operator')=='%2F')\"/\"#{else}\"$input.params('operator')\"#end
\n \n}"
 },
 "contentHandling": "CONVERT_TO_TEXT",
 "type": "aws"
 }
 }
 }
 },
 "definitions": {
 "Input": {
 "type": "object",
 "required": [

Tutorial: Calc API with three integrations 114

Amazon API Gateway Developer Guide

 "a",
 "b",
 "op"
],
 "properties": {
 "a": {
 "type": "number"
 },
 "b": {
 "type": "number"
 },
 "op": {
 "type": "string",
 "description": "binary op of ['+', 'add', '-', 'sub', '*', 'mul', '%2F',
 'div']"
 }
 },
 "title": "Input"
 },
 "Output": {
 "type": "object",
 "properties": {
 "c": {
 "type": "number"
 }
 },
 "title": "Output"
 },
 "Result": {
 "type": "object",
 "properties": {
 "input": {
 "$ref": "#/definitions/Input"
 },
 "output": {
 "$ref": "#/definitions/Output"
 }
 },
 "title": "Result"
 }
 },
 "x-amazon-apigateway-request-validators": {
 "Validate body": {
 "validateRequestParameters": false,

Tutorial: Calc API with three integrations 115

Amazon API Gateway Developer Guide

 "validateRequestBody": true
 },
 "Validate query string parameters and headers": {
 "validateRequestParameters": true,
 "validateRequestBody": false
 }
 }
}

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway

As an example to showcase using a REST API in API Gateway to proxy Amazon S3, this section
describes how to create and configure a REST API to expose the following Amazon S3 operations:

• Expose GET on the API's root resource to list all of the Amazon S3 buckets of a caller.

• Expose GET on a Folder resource to view a list of all of the objects in an Amazon S3 bucket.

• Expose GET on a Folder/Item resource to view or download an object from an Amazon S3 bucket.

You might want to import the sample API as an Amazon S3 proxy, as shown in OpenAPI definitions
of the sample API as an Amazon S3 proxy. This sample contains more exposed methods. For
instructions on how to import an API using the OpenAPI definition, see Configuring a REST API
using OpenAPI.

Note

To integrate your API Gateway API with Amazon S3, you must choose a region where both
the API Gateway and Amazon S3 services are available. For region availability, see Amazon
API Gateway Endpoints and Quotas.

Topics

• Set up IAM permissions for the API to invoke Amazon S3 actions

• Create API resources to represent Amazon S3 resources

• Expose an API method to list the caller's Amazon S3 buckets

• Expose API methods to access an Amazon S3 bucket

• Expose API methods to access an Amazon S3 object in a bucket

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 116

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/general/latest/gr/apigateway.html
https://docs.aws.amazon.com/general/latest/gr/apigateway.html

Amazon API Gateway Developer Guide

• OpenAPI definitions of the sample API as an Amazon S3 proxy

• Call the API using a REST API client

Set up IAM permissions for the API to invoke Amazon S3 actions

To allow the API to invoke Amazon S3 actions, you must have the appropriate IAM policies
attached to an IAM role.

To create the AWS service proxy execution role

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Roles.

3. Choose Create role.

4. Choose AWS service under Select type of trusted entity, and then select API Gateway and
select Allows API Gateway to push logs to CloudWatch Logs.

5. Choose Next, and then choose Next.

6. For Role name, enter APIGatewayS3ProxyPolicy, and then choose Create role.

7. In the Roles list, choose the role you just created. You may need to scroll or use the search bar
to find the role.

8. For the selected role, select the Add permissions tab.

9. Choose Attach policies from the dropdown list.

10. In the search bar, enter AmazonS3FullAccess and choose Add permissions.

Note

This tutorial uses a managed policy for simplicity. As a best practice, you should create
your own IAM policy to grant the minimum permissions required.

11. Note the newly created Role ARN, you will use it later.

Create API resources to represent Amazon S3 resources

You use the API's root (/) resource as the container of an authenticated caller's Amazon S3 buckets.
You also create a Folder and Item resources to represent a particular Amazon S3 bucket and a

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 117

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide

particular Amazon S3 object, respectively. The folder name and object key will be specified, in the
form of path parameters as part of a request URL, by the caller.

Note

When accessing objects whose object key includes / or any other special character, the
character needs to be URL encoded. For example, test/test.txt should be encoded to
test%2Ftest.txt.

To create an API resource that exposes the Amazon S3 service features

1. In the same AWS Region you created your Amazon S3 bucket, create an API named MyS3. This
API's root resource (/) represents the Amazon S3 service. In this step, you create two additional
resources /{folder} and /{item}.

2. Select the API's root resource, and then choose Create resource.

3. Keep Proxy resource turned off.

4. For Resource path, select /.

5. For Resource name, enter {folder}.

6. Keep CORS (Cross Origin Resource Sharing) unchecked.

7. Choose Create resource.

8. Select the /{folder} resource, and then choose Create resource.

9. Use the previous steps to create a child resource of /{folder} named {item}.

Your final API should look similar to the following:

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 118

Amazon API Gateway Developer Guide

Expose an API method to list the caller's Amazon S3 buckets

Getting the list of Amazon S3 buckets of the caller involves invoking the GET Service action on
Amazon S3. On the API's root resource, (/), create the GET method. Configure the GET method to
integrate with the Amazon S3, as follows.

To create and initialize the API's GET / method

1. Select the / resource, and then choose Create method.

2. For method type, select GET.

3. For Integration type, select AWS service.

4. For AWS Region, select the AWS Region where you created your Amazon S3 bucket.

5. For AWS service, select Amazon Simple Storage Service.

6. Keep AWS subdomain blank.

7. For HTTP method, select GET.

8. For Action type, select Use path override.

With path override, API Gateway forwards the client request to Amazon S3 as the
corresponding Amazon S3 REST API path-style request, in which a Amazon S3 resource is
expressed by the resource path of the s3-host-name/bucket/key pattern. API Gateway

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 119

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAPI.html

Amazon API Gateway Developer Guide

sets the s3-host-name and passes the client specified bucket and key from the client to
Amazon S3.

9. For Path override, enter /.

10. For Execution role, enter the role ARN for APIGatewayS3ProxyPolicy.

11. Choose Method request settings.

You use the method request settings to control who can call this method of your API.

12. For Authorization, from the dropdown menu, select AWS_IAM.

13. Choose Create method.

This setup integrates the frontend GET https://your-api-host/stage/ request with the
backend GET https://your-s3-host/.

For your API to return successful responses and exceptions properly to the caller, you declare the
200, 400 and 500 responses in Method response. You use the default mapping for 200 responses
so that backend responses of the status code not declared here will be returned to the caller as 200
ones.

To declare response types for the GET / method

1. On the Method response tab, under Response 200, choose Edit.

2. Choose Add header and do the following:

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 120

Amazon API Gateway Developer Guide

a. For Header name, enter Content-Type.

b. Choose Add header.

Repeat these steps to create a Timestamp header and a Content-Length header.

3. Choose Save.

4. On the Method response tab, under Method responses, choose Create response.

5. For HTTP status code, enter 400.

You do not set any headers for this response.

6. Choose Save.

7. Repeat the following steps to create the 500 response.

You do not set any headers for this response.

Because the successful integration response from Amazon S3 returns the bucket list as an XML
payload and the default method response from API Gateway returns a JSON payload, you must
map the backend Content-Type header parameter value to the frontend counterpart. Otherwise,
the client will receive application/json for the content type when the response body is actually
an XML string. The following procedure shows how to set this up. In addition, you also want to
display to the client other header parameters, such as Date and Content-Length.

To set up response header mappings for the GET / method

1. On the Integration response tab, under Default - Response, choose Edit.

2. For the Content-Length header, enter integration.response.header.Content-Length
for the mapping value.

3. For the Content-Type header, enter integration.response.header.Content-Type for
the mapping value.

4. For the Timestamp header, enter integration.response.header.Date for the mapping
value.

5. Choose Save. The result should look similar to the following:

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 121

Amazon API Gateway Developer Guide

6. On the Integration response tab, under Integration responses, choose Create response.

7. For HTTP status regex, enter 4\d{2}. This maps all 4xx HTTP response status codes to the
method response.

8. For Method response status code, select 400.

9. Choose Create.

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 122

Amazon API Gateway Developer Guide

10. Repeat the following steps to create an integration response for the 500 method response. For
HTTP status regex, enter 5\d{2}.

As a good practice, you can test the API you have configured so far.

To test the GET / method

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.

2. Choose Test. The result should look like the following image:

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 123

Amazon API Gateway Developer Guide

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 124

Amazon API Gateway Developer Guide

Expose API methods to access an Amazon S3 bucket

To work with an Amazon S3 bucket, you expose the GET method on the /{folder} resource to list
objects in a bucket. The instructions are similar to those described in Expose an API method to list
the caller's Amazon S3 buckets. For more methods, you can import the sample API here, OpenAPI
definitions of the sample API as an Amazon S3 proxy.

To expose the GET method on a folder resource

1. Select the /{folder} resource, and then choose Create method.

2. For method type, select GET.

3. For Integration type, select AWS service.

4. For AWS Region, select the AWS Region where you created your Amazon S3 bucket.

5. For AWS service, select Amazon Simple Storage Service.

6. Keep AWS subdomain blank.

7. For HTTP method, select GET.

8. For Action type, select Use path override.

9. For Path override, enter {bucket}.

10. For Execution role, enter the role ARN for APIGatewayS3ProxyPolicy.

11. Choose Create method.

You set the {folder} path parameter in the Amazon S3 endpoint URL. You need to map the
{folder} path parameter of the method request to the {bucket} path parameter of the
integration request.

To map {folder} to {bucket}

1. On the Integration request tab, under Integration request settings, choose Edit.

2. Choose URL path parameters, and then choose Add path parameter.

3. For Name, enter bucket.

4. For Mapped from, enter method.request.path.folder.

5. Choose Save.

Now, you test your API.

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 125

Amazon API Gateway Developer Guide

To test the /{folder} GET method.

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.

2. Under Path, for folder, enter the name of your bucket.

3. Choose Test.

The test result will contain a list of object in your bucket.

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 126

Amazon API Gateway Developer Guide

Expose API methods to access an Amazon S3 object in a bucket

Amazon S3 supports GET, DELETE, HEAD, OPTIONS, POST and PUT actions to access and manage
objects in a given bucket. In this tutorial, you expose a GET method on the {folder}/{item}
resource to get an image from a bucket. For more applications of the {folder}/{item} resource,
see the sample API, OpenAPI definitions of the sample API as an Amazon S3 proxy.

To expose the GET method on a item resource

1. Select the /{item} resource, and then choose Create method.

2. For method type, select GET.

3. For Integration type, select AWS service.

4. For AWS Region, select the AWS Region where you created your Amazon S3 bucket.

5. For AWS service, select Amazon Simple Storage Service.

6. Keep AWS subdomain blank.

7. For HTTP method, select GET.

8. For Action type, select Use path override.

9. For Path override, enter {bucket}/{object}.

10. For Execution role, enter the role ARN for APIGatewayS3ProxyPolicy.

11. Choose Create method.

You set the {folder} and {item} path parameters in the Amazon S3 endpoint URL. You need to
map the path parameter of the method request to the path parameter of the integration request.

In this step, you do the following:

• Map the {folder} path parameter of the method request to the {bucket} path parameter of
the integration request.

• Map the {item} path parameter of the method request to the {object} path parameter of the
integration request.

To map {folder} to {bucket} and {item} to {object}

1. On the Integration request tab, under Integration request settings, choose Edit.

2. Choose URL path parameters.

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 127

Amazon API Gateway Developer Guide

3. Choose Add path parameter.

4. For Name, enter bucket.

5. For Mapped from, enter method.request.path.folder.

6. Choose Add path parameter.

7. For Name, enter object.

8. For Mapped from, enter method.request.path.item.

9. Choose Save.

To test the /{folder}/{object} GET method.

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.

2. Under Path, for folder, enter the name of your bucket.

3. Under Path, for item, enter the name of an item.

4. Choose Test.

The response body will contain the contents of the item.

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 128

Amazon API Gateway Developer Guide

The request correctly returns the plain text of ("Hello world") as the content of the specified
file (test.txt) in the given Amazon S3 bucket (DOC-EXAMPLE-BUCKET).

To download or upload binary files, which in API Gateway is considered any thing other than utf-8
encoded JSON content, additional API settings are necessary. This is outlined as follows:

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 129

Amazon API Gateway Developer Guide

To download or upload binary files from S3

1. Register the media types of the affected file to the API's binaryMediaTypes. You can do this in
the console:

a. Choose API settings for the API.

b. Under Binary media types, choose Manage media types.

c. Choose Add binary media type, and then enter the required media type, for example,
image/png.

d. Choose Save changes to save the setting.

2. Add the Content-Type (for upload) and/or Accept (for download) header to the method
request to require the client to specify the required binary media type and map them to the
integration request.

3. Set Content Handling to Passthrough in the integration request (for upload) and in a
integration response (for download). Make sure that no mapping template is defined for the
affected content type. For more information, see Integration Passthrough Behaviors and Select
VTL Mapping Templates.

The payload size limit is 10 MB. See API Gateway quotas for configuring and running a REST API.

Make sure that files on Amazon S3 have the correct content types added as the files' metadata. For
streamable media content, Content-Disposition:inline may also need to be added to the
metadata.

For more information about the binary support in API Gateway, see Content type conversions in
API Gateway.

OpenAPI definitions of the sample API as an Amazon S3 proxy

The following OpenAPI definitions describes an API that works as an Amazon S3 proxy. This API
contains more Amazon S3 operations than the API you created in the tutorial. The following
methods are exposed in the OpenAPI definitions:

• Expose GET on the API's root resource to list all of the Amazon S3 buckets of a caller.

• Expose GET on a Folder resource to view a list of all of the objects in an Amazon S3 bucket.

• Expose PUT on a Folder resource to add a bucket to Amazon S3.

• Expose DELETE on a Folder resource to remove a bucket from Amazon S3.

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 130

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETE.html

Amazon API Gateway Developer Guide

• Expose GET on a Folder/Item resource to view or download an object from an Amazon S3 bucket.

• Expose PUT on a Folder/Item resource to upload an object to an Amazon S3 bucket.

• Expose HEAD on a Folder/Item resource to get object metadata in an Amazon S3 bucket.

• Expose DELETE on a Folder/Item resource to remove an object from an Amazon S3 bucket.

For instructions on how to import an API using the OpenAPI definition, see Configuring a REST API
using OpenAPI.

For instructions on how to create a similar API, see Tutorial: Create a REST API as an Amazon S3
proxy in API Gateway.

To learn how to invoke this API using Postman, which supports the AWS IAM authorization, see Call
the API using a REST API client.

OpenAPI 2.0

{
 "swagger": "2.0",
 "info": {
 "version": "2016-10-13T23:04:43Z",
 "title": "MyS3"
 },
 "host": "9gn28ca086.execute-api.{region}.amazonaws.com",
 "basePath": "/S3",
 "schemes": [
 "https"
],
 "paths": {
 "/": {
 "get": {
 "produces": [
 "application/json"
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Length": {

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 131

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html
https://www.postman.com/

Amazon API Gateway Developer Guide

 "type": "string"
 },
 "Timestamp": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }
 },
 "400": {
 "description": "400 response"
 },
 "500": {
 "description": "500 response"
 }
 },
 "security": [
 {
 "sigv4": []
 }
],
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "4\\d{2}": {
 "statusCode": "400"
 },
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type",
 "method.response.header.Content-Length":
 "integration.response.header.Content-Length",
 "method.response.header.Timestamp":
 "integration.response.header.Date"
 }
 },
 "5\\d{2}": {
 "statusCode": "500"
 }
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path//",

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 132

Amazon API Gateway Developer Guide

 "passthroughBehavior": "when_no_match",
 "httpMethod": "GET",
 "type": "aws"
 }
 }
 },
 "/{folder}": {
 "get": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "folder",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Length": {
 "type": "string"
 },
 "Date": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }
 },
 "400": {
 "description": "400 response"
 },
 "500": {
 "description": "500 response"
 }
 },

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 133

Amazon API Gateway Developer Guide

 "security": [
 {
 "sigv4": []
 }
],
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "4\\d{2}": {
 "statusCode": "400"
 },
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type",
 "method.response.header.Date": "integration.response.header.Date",
 "method.response.header.Content-Length":
 "integration.response.header.content-length"
 }
 },
 "5\\d{2}": {
 "statusCode": "500"
 }
 },
 "requestParameters": {
 "integration.request.path.bucket": "method.request.path.folder"
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "GET",
 "type": "aws"
 }
 },
 "put": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "Content-Type",
 "in": "header",
 "required": false,
 "type": "string"

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 134

Amazon API Gateway Developer Guide

 },
 {
 "name": "folder",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Length": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }
 },
 "400": {
 "description": "400 response"
 },
 "500": {
 "description": "500 response"
 }
 },
 "security": [
 {
 "sigv4": []
 }
],
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "4\\d{2}": {
 "statusCode": "400"
 },
 "default": {
 "statusCode": "200",
 "responseParameters": {

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 135

Amazon API Gateway Developer Guide

 "method.response.header.Content-Type":
 "integration.response.header.Content-Type",
 "method.response.header.Content-Length":
 "integration.response.header.Content-Length"
 }
 },
 "5\\d{2}": {
 "statusCode": "500"
 }
 },
 "requestParameters": {
 "integration.request.path.bucket": "method.request.path.folder",
 "integration.request.header.Content-Type":
 "method.request.header.Content-Type"
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "PUT",
 "type": "aws"
 }
 },
 "delete": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "folder",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Date": {
 "type": "string"
 },
 "Content-Type": {

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 136

Amazon API Gateway Developer Guide

 "type": "string"
 }
 }
 },
 "400": {
 "description": "400 response"
 },
 "500": {
 "description": "500 response"
 }
 },
 "security": [
 {
 "sigv4": []
 }
],
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "4\\d{2}": {
 "statusCode": "400"
 },
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type",
 "method.response.header.Date": "integration.response.header.Date"
 }
 },
 "5\\d{2}": {
 "statusCode": "500"
 }
 },
 "requestParameters": {
 "integration.request.path.bucket": "method.request.path.folder"
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "DELETE",
 "type": "aws"
 }
 }
 },

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 137

Amazon API Gateway Developer Guide

 "/{folder}/{item}": {
 "get": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "item",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "folder",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "content-type": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }
 },
 "400": {
 "description": "400 response"
 },
 "500": {
 "description": "500 response"
 }
 },
 "security": [
 {
 "sigv4": []

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 138

Amazon API Gateway Developer Guide

 }
],
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "4\\d{2}": {
 "statusCode": "400"
 },
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.content-type":
 "integration.response.header.content-type",
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type"
 }
 },
 "5\\d{2}": {
 "statusCode": "500"
 }
 },
 "requestParameters": {
 "integration.request.path.object": "method.request.path.item",
 "integration.request.path.bucket": "method.request.path.folder"
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "GET",
 "type": "aws"
 }
 },
 "head": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "item",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "folder",

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 139

Amazon API Gateway Developer Guide

 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Length": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }
 },
 "400": {
 "description": "400 response"
 },
 "500": {
 "description": "500 response"
 }
 },
 "security": [
 {
 "sigv4": []
 }
],
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "4\\d{2}": {
 "statusCode": "400"
 },
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type",

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 140

Amazon API Gateway Developer Guide

 "method.response.header.Content-Length":
 "integration.response.header.Content-Length"
 }
 },
 "5\\d{2}": {
 "statusCode": "500"
 }
 },
 "requestParameters": {
 "integration.request.path.object": "method.request.path.item",
 "integration.request.path.bucket": "method.request.path.folder"
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "HEAD",
 "type": "aws"
 }
 },
 "put": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "Content-Type",
 "in": "header",
 "required": false,
 "type": "string"
 },
 {
 "name": "item",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "folder",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 141

Amazon API Gateway Developer Guide

 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Length": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }
 },
 "400": {
 "description": "400 response"
 },
 "500": {
 "description": "500 response"
 }
 },
 "security": [
 {
 "sigv4": []
 }
],
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "4\\d{2}": {
 "statusCode": "400"
 },
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type",
 "method.response.header.Content-Length":
 "integration.response.header.Content-Length"
 }
 },
 "5\\d{2}": {
 "statusCode": "500"
 }
 },

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 142

Amazon API Gateway Developer Guide

 "requestParameters": {
 "integration.request.path.object": "method.request.path.item",
 "integration.request.path.bucket": "method.request.path.folder",
 "integration.request.header.Content-Type":
 "method.request.header.Content-Type"
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "PUT",
 "type": "aws"
 }
 },
 "delete": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "item",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "folder",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Length": {
 "type": "string"
 },
 "Content-Type": {
 "type": "string"
 }
 }

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 143

Amazon API Gateway Developer Guide

 },
 "400": {
 "description": "400 response"
 },
 "500": {
 "description": "500 response"
 }
 },
 "security": [
 {
 "sigv4": []
 }
],
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "responses": {
 "4\\d{2}": {
 "statusCode": "400"
 },
 "default": {
 "statusCode": "200"
 },
 "5\\d{2}": {
 "statusCode": "500"
 }
 },
 "requestParameters": {
 "integration.request.path.object": "method.request.path.item",
 "integration.request.path.bucket": "method.request.path.folder"
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "DELETE",
 "type": "aws"
 }
 }
 }
 },
 "securityDefinitions": {
 "sigv4": {
 "type": "apiKey",
 "name": "Authorization",
 "in": "header",
 "x-amazon-apigateway-authtype": "awsSigv4"

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 144

Amazon API Gateway Developer Guide

 }
 },
 "definitions": {
 "Empty": {
 "type": "object",
 "title": "Empty Schema"
 }
 }
}

OpenAPI 3.0

{
 "openapi" : "3.0.1",
 "info" : {
 "title" : "MyS3",
 "version" : "2016-10-13T23:04:43Z"
 },
 "servers" : [{
 "url" : "https://9gn28ca086.execute-api.{region}.amazonaws.com/{basePath}",
 "variables" : {
 "basePath" : {
 "default" : "S3"
 }
 }
 }],
 "paths" : {
 "/{folder}" : {
 "get" : {
 "parameters" : [{
 "name" : "folder",
 "in" : "path",
 "required" : true,
 "schema" : {
 "type" : "string"
 }
 }],
 "responses" : {
 "400" : {
 "description" : "400 response",
 "content" : { }
 },
 "500" : {

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 145

Amazon API Gateway Developer Guide

 "description" : "500 response",
 "content" : { }
 },
 "200" : {
 "description" : "200 response",
 "headers" : {
 "Content-Length" : {
 "schema" : {
 "type" : "string"
 }
 },
 "Date" : {
 "schema" : {
 "type" : "string"
 }
 },
 "Content-Type" : {
 "schema" : {
 "type" : "string"
 }
 }
 },
 "content" : {
 "application/json" : {
 "schema" : {
 "$ref" : "#/components/schemas/Empty"
 }
 }
 }
 }
 },
 "x-amazon-apigateway-integration" : {
 "credentials" : "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "httpMethod" : "GET",
 "uri" : "arn:aws:apigateway:us-west-2:s3:path/{bucket}",
 "responses" : {
 "4\\d{2}" : {
 "statusCode" : "400"
 },
 "default" : {
 "statusCode" : "200",
 "responseParameters" : {
 "method.response.header.Content-Type" :
 "integration.response.header.Content-Type",

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 146

Amazon API Gateway Developer Guide

 "method.response.header.Date" : "integration.response.header.Date",
 "method.response.header.Content-Length" :
 "integration.response.header.content-length"
 }
 },
 "5\\d{2}" : {
 "statusCode" : "500"
 }
 },
 "requestParameters" : {
 "integration.request.path.bucket" : "method.request.path.folder"
 },
 "passthroughBehavior" : "when_no_match",
 "type" : "aws"
 }
 },
 "put" : {
 "parameters" : [{
 "name" : "Content-Type",
 "in" : "header",
 "schema" : {
 "type" : "string"
 }
 }, {
 "name" : "folder",
 "in" : "path",
 "required" : true,
 "schema" : {
 "type" : "string"
 }
 }],
 "responses" : {
 "400" : {
 "description" : "400 response",
 "content" : { }
 },
 "500" : {
 "description" : "500 response",
 "content" : { }
 },
 "200" : {
 "description" : "200 response",
 "headers" : {
 "Content-Length" : {

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 147

Amazon API Gateway Developer Guide

 "schema" : {
 "type" : "string"
 }
 },
 "Content-Type" : {
 "schema" : {
 "type" : "string"
 }
 }
 },
 "content" : {
 "application/json" : {
 "schema" : {
 "$ref" : "#/components/schemas/Empty"
 }
 }
 }
 }
 },
 "x-amazon-apigateway-integration" : {
 "credentials" : "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "httpMethod" : "PUT",
 "uri" : "arn:aws:apigateway:us-west-2:s3:path/{bucket}",
 "responses" : {
 "4\\d{2}" : {
 "statusCode" : "400"
 },
 "default" : {
 "statusCode" : "200",
 "responseParameters" : {
 "method.response.header.Content-Type" :
 "integration.response.header.Content-Type",
 "method.response.header.Content-Length" :
 "integration.response.header.Content-Length"
 }
 },
 "5\\d{2}" : {
 "statusCode" : "500"
 }
 },
 "requestParameters" : {
 "integration.request.path.bucket" : "method.request.path.folder",
 "integration.request.header.Content-Type" :
 "method.request.header.Content-Type"

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 148

Amazon API Gateway Developer Guide

 },
 "passthroughBehavior" : "when_no_match",
 "type" : "aws"
 }
 },
 "delete" : {
 "parameters" : [{
 "name" : "folder",
 "in" : "path",
 "required" : true,
 "schema" : {
 "type" : "string"
 }
 }],
 "responses" : {
 "400" : {
 "description" : "400 response",
 "content" : { }
 },
 "500" : {
 "description" : "500 response",
 "content" : { }
 },
 "200" : {
 "description" : "200 response",
 "headers" : {
 "Date" : {
 "schema" : {
 "type" : "string"
 }
 },
 "Content-Type" : {
 "schema" : {
 "type" : "string"
 }
 }
 },
 "content" : {
 "application/json" : {
 "schema" : {
 "$ref" : "#/components/schemas/Empty"
 }
 }
 }

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 149

Amazon API Gateway Developer Guide

 }
 },
 "x-amazon-apigateway-integration" : {
 "credentials" : "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "httpMethod" : "DELETE",
 "uri" : "arn:aws:apigateway:us-west-2:s3:path/{bucket}",
 "responses" : {
 "4\\d{2}" : {
 "statusCode" : "400"
 },
 "default" : {
 "statusCode" : "200",
 "responseParameters" : {
 "method.response.header.Content-Type" :
 "integration.response.header.Content-Type",
 "method.response.header.Date" : "integration.response.header.Date"
 }
 },
 "5\\d{2}" : {
 "statusCode" : "500"
 }
 },
 "requestParameters" : {
 "integration.request.path.bucket" : "method.request.path.folder"
 },
 "passthroughBehavior" : "when_no_match",
 "type" : "aws"
 }
 }
 },
 "/{folder}/{item}" : {
 "get" : {
 "parameters" : [{
 "name" : "item",
 "in" : "path",
 "required" : true,
 "schema" : {
 "type" : "string"
 }
 }, {
 "name" : "folder",
 "in" : "path",
 "required" : true,
 "schema" : {

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 150

Amazon API Gateway Developer Guide

 "type" : "string"
 }
 }],
 "responses" : {
 "400" : {
 "description" : "400 response",
 "content" : { }
 },
 "500" : {
 "description" : "500 response",
 "content" : { }
 },
 "200" : {
 "description" : "200 response",
 "headers" : {
 "content-type" : {
 "schema" : {
 "type" : "string"
 }
 },
 "Content-Type" : {
 "schema" : {
 "type" : "string"
 }
 }
 },
 "content" : {
 "application/json" : {
 "schema" : {
 "$ref" : "#/components/schemas/Empty"
 }
 }
 }
 }
 },
 "x-amazon-apigateway-integration" : {
 "credentials" : "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "httpMethod" : "GET",
 "uri" : "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
 "responses" : {
 "4\\d{2}" : {
 "statusCode" : "400"
 },
 "default" : {

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 151

Amazon API Gateway Developer Guide

 "statusCode" : "200",
 "responseParameters" : {
 "method.response.header.content-type" :
 "integration.response.header.content-type",
 "method.response.header.Content-Type" :
 "integration.response.header.Content-Type"
 }
 },
 "5\\d{2}" : {
 "statusCode" : "500"
 }
 },
 "requestParameters" : {
 "integration.request.path.object" : "method.request.path.item",
 "integration.request.path.bucket" : "method.request.path.folder"
 },
 "passthroughBehavior" : "when_no_match",
 "type" : "aws"
 }
 },
 "put" : {
 "parameters" : [{
 "name" : "Content-Type",
 "in" : "header",
 "schema" : {
 "type" : "string"
 }
 }, {
 "name" : "item",
 "in" : "path",
 "required" : true,
 "schema" : {
 "type" : "string"
 }
 }, {
 "name" : "folder",
 "in" : "path",
 "required" : true,
 "schema" : {
 "type" : "string"
 }
 }],
 "responses" : {
 "400" : {

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 152

Amazon API Gateway Developer Guide

 "description" : "400 response",
 "content" : { }
 },
 "500" : {
 "description" : "500 response",
 "content" : { }
 },
 "200" : {
 "description" : "200 response",
 "headers" : {
 "Content-Length" : {
 "schema" : {
 "type" : "string"
 }
 },
 "Content-Type" : {
 "schema" : {
 "type" : "string"
 }
 }
 },
 "content" : {
 "application/json" : {
 "schema" : {
 "$ref" : "#/components/schemas/Empty"
 }
 }
 }
 }
 },
 "x-amazon-apigateway-integration" : {
 "credentials" : "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "httpMethod" : "PUT",
 "uri" : "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
 "responses" : {
 "4\\d{2}" : {
 "statusCode" : "400"
 },
 "default" : {
 "statusCode" : "200",
 "responseParameters" : {
 "method.response.header.Content-Type" :
 "integration.response.header.Content-Type",

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 153

Amazon API Gateway Developer Guide

 "method.response.header.Content-Length" :
 "integration.response.header.Content-Length"
 }
 },
 "5\\d{2}" : {
 "statusCode" : "500"
 }
 },
 "requestParameters" : {
 "integration.request.path.object" : "method.request.path.item",
 "integration.request.path.bucket" : "method.request.path.folder",
 "integration.request.header.Content-Type" :
 "method.request.header.Content-Type"
 },
 "passthroughBehavior" : "when_no_match",
 "type" : "aws"
 }
 },
 "delete" : {
 "parameters" : [{
 "name" : "item",
 "in" : "path",
 "required" : true,
 "schema" : {
 "type" : "string"
 }
 }, {
 "name" : "folder",
 "in" : "path",
 "required" : true,
 "schema" : {
 "type" : "string"
 }
 }],
 "responses" : {
 "400" : {
 "description" : "400 response",
 "content" : { }
 },
 "500" : {
 "description" : "500 response",
 "content" : { }
 },
 "200" : {

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 154

Amazon API Gateway Developer Guide

 "description" : "200 response",
 "headers" : {
 "Content-Length" : {
 "schema" : {
 "type" : "string"
 }
 },
 "Content-Type" : {
 "schema" : {
 "type" : "string"
 }
 }
 },
 "content" : {
 "application/json" : {
 "schema" : {
 "$ref" : "#/components/schemas/Empty"
 }
 }
 }
 }
 },
 "x-amazon-apigateway-integration" : {
 "credentials" : "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "httpMethod" : "DELETE",
 "uri" : "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
 "responses" : {
 "4\\d{2}" : {
 "statusCode" : "400"
 },
 "default" : {
 "statusCode" : "200"
 },
 "5\\d{2}" : {
 "statusCode" : "500"
 }
 },
 "requestParameters" : {
 "integration.request.path.object" : "method.request.path.item",
 "integration.request.path.bucket" : "method.request.path.folder"
 },
 "passthroughBehavior" : "when_no_match",
 "type" : "aws"
 }

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 155

Amazon API Gateway Developer Guide

 },
 "head" : {
 "parameters" : [{
 "name" : "item",
 "in" : "path",
 "required" : true,
 "schema" : {
 "type" : "string"
 }
 }, {
 "name" : "folder",
 "in" : "path",
 "required" : true,
 "schema" : {
 "type" : "string"
 }
 }],
 "responses" : {
 "400" : {
 "description" : "400 response",
 "content" : { }
 },
 "500" : {
 "description" : "500 response",
 "content" : { }
 },
 "200" : {
 "description" : "200 response",
 "headers" : {
 "Content-Length" : {
 "schema" : {
 "type" : "string"
 }
 },
 "Content-Type" : {
 "schema" : {
 "type" : "string"
 }
 }
 },
 "content" : {
 "application/json" : {
 "schema" : {
 "$ref" : "#/components/schemas/Empty"

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 156

Amazon API Gateway Developer Guide

 }
 }
 }
 }
 },
 "x-amazon-apigateway-integration" : {
 "credentials" : "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "httpMethod" : "HEAD",
 "uri" : "arn:aws:apigateway:us-west-2:s3:path/{bucket}/{object}",
 "responses" : {
 "4\\d{2}" : {
 "statusCode" : "400"
 },
 "default" : {
 "statusCode" : "200",
 "responseParameters" : {
 "method.response.header.Content-Type" :
 "integration.response.header.Content-Type",
 "method.response.header.Content-Length" :
 "integration.response.header.Content-Length"
 }
 },
 "5\\d{2}" : {
 "statusCode" : "500"
 }
 },
 "requestParameters" : {
 "integration.request.path.object" : "method.request.path.item",
 "integration.request.path.bucket" : "method.request.path.folder"
 },
 "passthroughBehavior" : "when_no_match",
 "type" : "aws"
 }
 }
 },
 "/" : {
 "get" : {
 "responses" : {
 "400" : {
 "description" : "400 response",
 "content" : { }
 },
 "500" : {
 "description" : "500 response",

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 157

Amazon API Gateway Developer Guide

 "content" : { }
 },
 "200" : {
 "description" : "200 response",
 "headers" : {
 "Content-Length" : {
 "schema" : {
 "type" : "string"
 }
 },
 "Timestamp" : {
 "schema" : {
 "type" : "string"
 }
 },
 "Content-Type" : {
 "schema" : {
 "type" : "string"
 }
 }
 },
 "content" : {
 "application/json" : {
 "schema" : {
 "$ref" : "#/components/schemas/Empty"
 }
 }
 }
 }
 },
 "x-amazon-apigateway-integration" : {
 "credentials" : "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "httpMethod" : "GET",
 "uri" : "arn:aws:apigateway:us-west-2:s3:path//",
 "responses" : {
 "4\\d{2}" : {
 "statusCode" : "400"
 },
 "default" : {
 "statusCode" : "200",
 "responseParameters" : {
 "method.response.header.Content-Type" :
 "integration.response.header.Content-Type",

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 158

Amazon API Gateway Developer Guide

 "method.response.header.Content-Length" :
 "integration.response.header.Content-Length",
 "method.response.header.Timestamp" :
 "integration.response.header.Date"
 }
 },
 "5\\d{2}" : {
 "statusCode" : "500"
 }
 },
 "passthroughBehavior" : "when_no_match",
 "type" : "aws"
 }
 }
 }
 },
 "components" : {
 "schemas" : {
 "Empty" : {
 "title" : "Empty Schema",
 "type" : "object"
 }
 }
 }
}

Call the API using a REST API client

To provide an end-to-end tutorial, we now show how to call the API using Postman, which supports
the AWS IAM authorization.

To call our Amazon S3 proxy API using Postman

1. Deploy or redeploy the API. Make a note of the base URL of the API that is displayed next to
Invoke URL at the top of the Stage Editor.

2. Launch Postman.

3. Choose Authorization and then choose AWS Signature. Type your IAM user's Access Key ID
and Secret Access Key into the AccessKey and SecretKeyinput fields, respectively. Type the
AWS region to which your API is deployed in the AWS Region text box. Type execute-api in
the Service Name input field.

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 159

https://www.postman.com/

Amazon API Gateway Developer Guide

You can create a pair of the keys from the Security Credentials tab from your IAM user
account in the IAM Management Console.

4. To add a bucket named apig-demo-5 to your Amazon S3 account in the {region} region:

Note

Be sure that the bucket name must be globally unique.

a. Choose PUT from the drop-down method list and type the method URL (https://api-
id.execute-api.aws-region.amazonaws.com/stage/folder-name

b. Set the Content-Type header value as application/xml. You may need to delete any
existing headers before setting the content type.

c. Choose Body menu item and type the following XML fragment as the request body:

<CreateBucketConfiguration>
 <LocationConstraint>{region}</LocationConstraint>
</CreateBucketConfiguration>

d. Choose Send to submit the request. If successful, you should receive a 200 OK response
with an empty payload.

5. To add a text file to a bucket, follow the instructions above. If you specify a bucket name of
apig-demo-5 for {folder} and a file name of Readme.txt for {item} in the URL and
provide a text string of Hello, World! as the file contents (thereby making it the request
payload), the request becomes

PUT /S3/apig-demo-5/Readme.txt HTTP/1.1
Host: 9gn28ca086.execute-api.{region}.amazonaws.com
Content-Type: application/xml
X-Amz-Date: 20161015T062647Z
Authorization: AWS4-HMAC-SHA256 Credential=access-key-id/20161015/{region}/execute-
api/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=ccadb877bdb0d395ca38cc47e18a0d76bb5eaf17007d11e40bf6fb63d28c705b
Cache-Control: no-cache
Postman-Token: 6135d315-9cc4-8af8-1757-90871d00847e

Hello, World!

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 160

Amazon API Gateway Developer Guide

If everything goes well, you should receive a 200 OK response with an empty payload.

6. To get the content of the Readme.txt file we just added to the apig-demo-5 bucket, do a
GET request like the following one:

GET /S3/apig-demo-5/Readme.txt HTTP/1.1
Host: 9gn28ca086.execute-api.{region}.amazonaws.com
Content-Type: application/xml
X-Amz-Date: 20161015T063759Z
Authorization: AWS4-HMAC-SHA256 Credential=access-key-id/20161015/{region}/
execute-api/aws4_request, SignedHeaders=content-type;host;x-amz-date,
 Signature=ba09b72b585acf0e578e6ad02555c00e24b420b59025bc7bb8d3f7aed1471339
Cache-Control: no-cache
Postman-Token: d60fcb59-d335-52f7-0025-5bd96928098a

If successful, you should receive a 200 OK response with the Hello, World! text string as
the payload.

7. To list items in the apig-demo-5 bucket, submit the following request:

GET /S3/apig-demo-5 HTTP/1.1
Host: 9gn28ca086.execute-api.{region}.amazonaws.com
Content-Type: application/xml
X-Amz-Date: 20161015T064324Z
Authorization: AWS4-HMAC-SHA256 Credential=access-key-id/20161015/{region}/
execute-api/aws4_request, SignedHeaders=content-type;host;x-amz-date,
 Signature=4ac9bd4574a14e01568134fd16814534d9951649d3a22b3b0db9f1f5cd4dd0ac
Cache-Control: no-cache
Postman-Token: 9c43020a-966f-61e1-81af-4c49ad8d1392

If successful, you should receive a 200 OK response with an XML payload showing a single
item in the specified bucket, unless you added more files to the bucket before submitting this
request.

<?xml version="1.0" encoding="UTF-8"?>
<ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Name>apig-demo-5</Name>
 <Prefix></Prefix>
 <Marker></Marker>
 <MaxKeys>1000</MaxKeys>
 <IsTruncated>false</IsTruncated>

Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway 161

Amazon API Gateway Developer Guide

 <Contents>
 <Key>Readme.txt</Key>
 <LastModified>2016-10-15T06:26:48.000Z</LastModified>
 <ETag>"65a8e27d8879283831b664bd8b7f0ad4"</ETag>
 <Size>13</Size>
 <Owner>
 <ID>06e4b09e9d...603addd12ee</ID>
 <DisplayName>user-name</DisplayName>
 </Owner>
 <StorageClass>STANDARD</StorageClass>
 </Contents>
</ListBucketResult>

Note

To upload or download an image, you need to set content handling to
CONVERT_TO_BINARY.

Tutorial: Create a REST API as an Amazon Kinesis proxy in API Gateway

This page describes how to create and configure a REST API with an integration of the AWS type to
access Kinesis.

Note

To integrate your API Gateway API with Kinesis, you must choose a region where both the
API Gateway and Kinesis services are available. For region availability, see Service Endpoints
and Quotas.

For the purpose of illustration, we create an example API to enable a client to do the following:

1. List the user's available streams in Kinesis

2. Create, describe, or delete a specified stream

3. Read data records from or write data records into the specified stream

Tutorial: Create a REST API as an Amazon Kinesis proxy 162

https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html
https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html

Amazon API Gateway Developer Guide

To accomplish the preceding tasks, the API exposes methods on various resources to invoke the
following, respectively:

1. The ListStreams action in Kinesis

2. The CreateStream, DescribeStream, or DeleteStream action

3. The GetRecords or PutRecords (including PutRecord) action in Kinesis

Specifically, we build the API as follows:

• Expose an HTTP GET method on the API's /streams resource and integrate the method with the
ListStreams action in Kinesis to list the streams in the caller's account.

• Expose an HTTP POST method on the API's /streams/{stream-name} resource and integrate
the method with the CreateStream action in Kinesis to create a named stream in the caller's
account.

• Expose an HTTP GET method on the API's /streams/{stream-name} resource and integrate
the method with the DescribeStream action in Kinesis to describe a named stream in the caller's
account.

• Expose an HTTP DELETE method on the API's /streams/{stream-name} resource and
integrate the method with the DeleteStream action in Kinesis to delete a stream in the caller's
account.

• Expose an HTTP PUT method on the API's /streams/{stream-name}/record resource and
integrate the method with the PutRecord action in Kinesis. This enables the client to add a single
data record to the named stream.

• Expose an HTTP PUT method on the API's /streams/{stream-name}/records resource and
integrate the method with the PutRecords action in Kinesis. This enables the client to add a list
of data records to the named stream.

• Expose an HTTP GET method on the API's /streams/{stream-name}/records resource and
integrate the method with the GetRecords action in Kinesis. This enables the client to list data
records in the named stream, with a specified shard iterator. A shard iterator specifies the shard
position from which to start reading data records sequentially.

• Expose an HTTP GET method on the API's /streams/{stream-name}/sharditerator
resource and integrate the method with the GetShardIterator action in Kinesis. This helper
method must be supplied to the ListStreams action in Kinesis.

Tutorial: Create a REST API as an Amazon Kinesis proxy 163

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_ListStreams.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_CreateStream.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DescribeStream.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DeleteStream.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetShardIterator.html

Amazon API Gateway Developer Guide

You can apply the instructions presented here to other Kinesis actions. For the complete list of the
Kinesis actions, see Amazon Kinesis API Reference.

Instead of using the API Gateway console to create the sample API, you can import the sample API
into API Gateway using the API Gateway Import API. For information on how to use the Import API,
see Configuring a REST API using OpenAPI.

Create an IAM role and policy for the API to access Kinesis

To allow the API to invoke Kinesis actions, you must have the appropriate IAM policies attached to
an IAM role.

To create the AWS service proxy execution role

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Roles.

3. Choose Create role.

4. Choose AWS service under Select type of trusted entity, and then select API Gateway and
select Allows API Gateway to push logs to CloudWatch Logs.

5. Choose Next, and then choose Next.

6. For Role name, enter APIGatewayKinesisProxyPolicy, and then choose Create role.

7. In the Roles list, choose the role you just created. You may need to scroll or use the search bar
to find the role.

8. For the selected role, select the Add permissions tab.

9. Choose Attach policies from the dropdown list.

10. In the search bar, enter AmazonKinesisFullAccess and choose Add permissions.

Note

This tutorial uses a managed policy for simplicity. As a best practice, you should create
your own IAM policy to grant the minimum permissions required.

11. Note the newly created Role ARN, you will use it later.

Tutorial: Create a REST API as an Amazon Kinesis proxy 164

https://docs.aws.amazon.com/kinesis/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-import/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide

Start to create an API as a Kinesis proxy

Use the following steps to create the API in the API Gateway console.

To create an API as an AWS service proxy for Kinesis

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. If this is your first time using API Gateway, you see a page that introduces you to the features
of the service. Under REST API, choose Build. When the Create Example API popup appears,
choose OK.

If this is not your first time using API Gateway, choose Create API. Under REST API, choose
Build.

3. Choose New API.

4. In API name, enter KinesisProxy. Keep the default values for all other fields.

5. (Optional) For Description, enter a description.

6. Choose Create API.

After the API is created, the API Gateway console displays the Resources page, which contains only
the API's root (/) resource.

List streams in Kinesis

Kinesis supports the ListStreams action with the following REST API call:

POST /?Action=ListStreams HTTP/1.1
Host: kinesis.<region>.<domain>
Content-Length: <PayloadSizeBytes>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.1
Authorization: <AuthParams>
X-Amz-Date: <Date>

{
 ...
}

In the above REST API request, the action is specified in the Action query parameter. Alternatively,
you can specify the action in a X-Amz-Target header, instead:

Tutorial: Create a REST API as an Amazon Kinesis proxy 165

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

POST / HTTP/1.1
Host: kinesis.<region>.<domain>
Content-Length: <PayloadSizeBytes>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.1
Authorization: <AuthParams>
X-Amz-Date: <Date>
X-Amz-Target: Kinesis_20131202.ListStreams
{
 ...
}

In this tutorial, we use the query parameter to specify action.

To expose a Kinesis action in the API, add a /streams resource to the API's root. Then set a GET
method on the resource and integrate the method with the ListStreams action of Kinesis.

The following procedure describes how to list Kinesis streams by using the API Gateway console.

To list Kinesis streams by using the API Gateway console

1. Select the / resource, and then choose Create resource.

2. For Resource name, enter streams.

3. Keep CORS (Cross Origin Resource Sharing) turned off.

4. Choose Create resource.

5. Choose the /streams resource, and then choose Create method, and then do the following:

a. For Method type, select GET.

Note

The HTTP verb for a method invoked by a client may differ from the HTTP verb
for an integration required by the backend. We select GET here, because listing
streams is intuitively a READ operation.

b. For Integration type, select AWS service.

c. For AWS Region, select the AWS Region where you created your Kinesis stream.

d. For AWS service, select Kinesis.

e. Keep AWS subdomain blank.

Tutorial: Create a REST API as an Amazon Kinesis proxy 166

Amazon API Gateway Developer Guide

f. For HTTP method, choose POST.

Note

We chose POST here because Kinesis requires that the ListStreams action be
invoked with it.

g. For Action type, choose Use action name.

h. For Action name, enter ListStreams.

i. For Execution role, enter the ARN for your execution role.

j. Keep the default of Passthrough for Content Handling.

k. Choose Create method.

6. On the Integration request tab, under Integration request settings, choose Edit.

7. For Request body passthrough, select When there are no templates defined
(recommended).

8. Choose URL request headers parameters, and then do the following:

a. Choose Add request headers parameter.

b. For Name, enter Content-Type.

c. For Mapped from, enter 'application/x-amz-json-1.1'.

We use a request parameter mapping to set the Content-Type header to the static value of
'application/x-amz-json-1.1' to inform Kinesis that the input is of a specific version of
JSON.

9. Choose Mapping templates, and then choose Add mapping template, and do the following:

a. For Content-Type, enter application/json.

b. For Template body, enter {}.

c. Choose Save.

The ListStreams request takes a payload of the following JSON format:

{
 "ExclusiveStartStreamName": "string",

Tutorial: Create a REST API as an Amazon Kinesis proxy 167

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_ListStreams.html#API_ListStreams_RequestSyntax

Amazon API Gateway Developer Guide

 "Limit": number
}

However, the properties are optional. To use the default values, we opted for an empty JSON
payload here.

10. Test the GET method on the /streams resource to invoke the ListStreams action in Kinesis:

Choose the Test tab. You might need to choose the right arrow button to show the tab.

Choose Test to test your method.

If you already created two streams named "myStream" and "yourStream" in Kinesis, the
successful test returns a 200 OK response containing the following payload:

{
 "HasMoreStreams": false,
 "StreamNames": [
 "myStream",
 "yourStream"
]
}

Create, describe, and delete a stream in Kinesis

Creating, describing, and deleting a stream in Kinesis involves making the following Kinesis REST
API requests, respectively:

POST /?Action=CreateStream HTTP/1.1
Host: kinesis.region.domain
...
Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
 "ShardCount": number,
 "StreamName": "string"
}

Tutorial: Create a REST API as an Amazon Kinesis proxy 168

Amazon API Gateway Developer Guide

POST /?Action=DescribeStream HTTP/1.1
Host: kinesis.region.domain
...
Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
 "StreamName": "string"
}

POST /?Action=DeleteStream HTTP/1.1
Host: kinesis.region.domain
...
Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
 "StreamName":"string"
}

We can build the API to accept the required input as a JSON payload of the method request and
pass the payload through to the integration request. However, to provide more examples of data
mapping between method and integration requests, and method and integration responses, we
create our API somewhat differently.

We expose the GET, POST, and Delete HTTP methods on a to-be-named Stream resource. We use
the {stream-name} path variable as the placeholder of the stream resource and integrate these
API methods with the Kinesis' DescribeStream, CreateStream, and DeleteStream actions,
respectively. We require that the client pass other input data as headers, query parameters, or the
payload of a method request. We provide mapping templates to transform the data to the required
integration request payload.

To create the {stream-name} resource

1. Choose the /streams resource, and then choose Create resource.

Tutorial: Create a REST API as an Amazon Kinesis proxy 169

Amazon API Gateway Developer Guide

2. Keep Proxy resource turned off.

3. For Resource path, select /streams.

4. For Resource name, enter {stream-name}.

5. Keep CORS (Cross Origin Resource Sharing) turned off.

6. Choose Create resource.

To configure and test the GET method on a stream resource

1. Choose the /{stream-name} resource, and then choose Create method.

2. For Method type, select GET.

3. For Integration type, select AWS service.

4. For AWS Region, select the AWS Region where you created your Kinesis stream.

5. For AWS service, select Kinesis.

6. Keep AWS subdomain blank.

7. For HTTP method, choose POST.

8. For Action type, choose Use action name.

9. For Action name, enter DescribeStream.

10. For Execution role, enter the ARN for your execution role.

11. Keep the default of Passthrough for Content Handling.

12. Choose Create method.

13. In the Integration request section, add the following URL request headers parameters:

Content-Type: 'x-amz-json-1.1'

The task follows the same procedure to set up the request parameter mapping for the GET /
streams method.

14. Add the following body mapping template to map data from the GET /streams/{stream-
name} method request to the POST /?Action=DescribeStream integration request:

{
 "StreamName": "$input.params('stream-name')"
}

Tutorial: Create a REST API as an Amazon Kinesis proxy 170

Amazon API Gateway Developer Guide

This mapping template generates the required integration request payload for the
DescribeStream action of Kinesis from the method request's stream-name path parameter
value.

15. To test the GET /stream/{stream-name} method to invoke the DescribeStream action in
Kinesis, choose the Test tab.

16. For Path, under stream-name, enter the name of an existing Kinesis stream.

17. Choose Test. If the test is successful, a 200 OK response is returned with a payload similar to
the following:

{
 "StreamDescription": {
 "HasMoreShards": false,
 "RetentionPeriodHours": 24,
 "Shards": [
 {
 "HashKeyRange": {
 "EndingHashKey": "68056473384187692692674921486353642290",
 "StartingHashKey": "0"
 },
 "SequenceNumberRange": {
 "StartingSequenceNumber":
 "49559266461454070523309915164834022007924120923395850242"
 },
 "ShardId": "shardId-000000000000"
 },
 ...
 {
 "HashKeyRange": {
 "EndingHashKey": "340282366920938463463374607431768211455",
 "StartingHashKey": "272225893536750770770699685945414569164"
 },
 "SequenceNumberRange": {
 "StartingSequenceNumber":
 "49559266461543273504104037657400164881014714369419771970"
 },
 "ShardId": "shardId-000000000004"
 }
],
 "StreamARN": "arn:aws:kinesis:us-east-1:12345678901:stream/myStream",
 "StreamName": "myStream",

Tutorial: Create a REST API as an Amazon Kinesis proxy 171

Amazon API Gateway Developer Guide

 "StreamStatus": "ACTIVE"
 }
}

After you deploy the API, you can make a REST request against this API method:

GET https://your-api-id.execute-api.region.amazonaws.com/stage/streams/myStream
 HTTP/1.1
Host: your-api-id.execute-api.region.amazonaws.com
Content-Type: application/json
Authorization: ...
X-Amz-Date: 20160323T194451Z

To configure and test the POST method on a stream resource

1. Choose the /{stream-name} resource, and then choose Create method.

2. For Method type, select POST.

3. For Integration type, select AWS service.

4. For AWS Region, select the AWS Region where you created your Kinesis stream.

5. For AWS service, select Kinesis.

6. Keep AWS subdomain blank.

7. For HTTP method, choose POST.

8. For Action type, choose Use action name.

9. For Action name, enter CreateStream.

10. For Execution role, enter the ARN for your execution role.

11. Keep the default of Passthrough for Content Handling.

12. Choose Create method.

13. In the Integration request section, add the following URL request headers parameters:

Content-Type: 'x-amz-json-1.1'

Tutorial: Create a REST API as an Amazon Kinesis proxy 172

Amazon API Gateway Developer Guide

The task follows the same procedure to set up the request parameter mapping for the GET /
streams method.

14. Add the following body mapping template to map data from the POST /streams/{stream-
name} method request to the POST /?Action=CreateStream integration request:

{
 "ShardCount": #if($input.path('$.ShardCount') == '') 5 #else
 $input.path('$.ShardCount') #end,
 "StreamName": "$input.params('stream-name')"
}

In the preceding mapping template, we set ShardCount to a fixed value of 5 if the client does
not specify a value in the method request payload.

15. To test the POST /stream/{stream-name} method to invoke the CreateStream action in
Kinesis, choose the Test tab.

16. For Path, under stream-name, enter the name of a new Kinesis stream.

17. Choose Test. If the test is successful, a 200 OK response is returned with no data.

After you deploy the API, you can also make a REST API request against the POST method on a
Stream resource to invoke the CreateStream action in Kinesis:

POST https://your-api-id.execute-api.region.amazonaws.com/stage/streams/yourStream
 HTTP/1.1
Host: your-api-id.execute-api.region.amazonaws.com
Content-Type: application/json
Authorization: ...
X-Amz-Date: 20160323T194451Z

{
 "ShardCount": 5
}

Configure and test the DELETE method on a stream resource

1. Choose the /{stream-name} resource, and then choose Create method.

Tutorial: Create a REST API as an Amazon Kinesis proxy 173

Amazon API Gateway Developer Guide

2. For Method type, select DELETE.

3. For Integration type, select AWS service.

4. For AWS Region, select the AWS Region where you created your Kinesis stream.

5. For AWS service, select Kinesis.

6. Keep AWS subdomain blank.

7. For HTTP method, choose POST.

8. For Action type, choose Use action name.

9. For Action name, enter DeleteStream.

10. For Execution role, enter the ARN for your execution role.

11. Keep the default of Passthrough for Content Handling.

12. Choose Create method.

13. In the Integration request section, add the following URL request headers parameters:

Content-Type: 'x-amz-json-1.1'

The task follows the same procedure to set up the request parameter mapping for the GET /
streams method.

14. Add the following body mapping template to map data from the DELETE /streams/
{stream-name} method request to the corresponding integration request of POST /?
Action=DeleteStream :

{
 "StreamName": "$input.params('stream-name')"
}

This mapping template generates the required input for the DELETE /streams/{stream-
name} action from the client-supplied URL path name of stream-name.

15. To test the DELETE /stream/{stream-name} method to invoke the DeleteStream action
in Kinesis, choose the Test tab.

16. For Path, under stream-name, enter the name of an existing Kinesis stream.

17. Choose Test. If the test is successful, a 200 OK response is returned with no data.

After you deploy the API, you can also make the following REST API request against the
DELETE method on the Stream resource to call the DeleteStream action in Kinesis:

Tutorial: Create a REST API as an Amazon Kinesis proxy 174

Amazon API Gateway Developer Guide

DELETE https://your-api-id.execute-api.region.amazonaws.com/stage/
streams/yourStream HTTP/1.1
Host: your-api-id.execute-api.region.amazonaws.com
Content-Type: application/json
Authorization: ...
X-Amz-Date: 20160323T194451Z

{}

Get records from and add records to a stream in Kinesis

After you create a stream in Kinesis, you can add data records to the stream and read the data from
the stream. Adding data records involves calling the PutRecords or PutRecord action in Kinesis. The
former adds multiple records whereas the latter adds a single record to the stream.

POST /?Action=PutRecords HTTP/1.1
Host: kinesis.region.domain
Authorization: AWS4-HMAC-SHA256 Credential=..., ...
...
Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
 "Records": [
 {
 "Data": blob,
 "ExplicitHashKey": "string",
 "PartitionKey": "string"
 }
],
 "StreamName": "string"
}

or

Tutorial: Create a REST API as an Amazon Kinesis proxy 175

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html#API_PutRecords_Examples
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html#API_PutRecord_Examples

Amazon API Gateway Developer Guide

POST /?Action=PutRecord HTTP/1.1
Host: kinesis.region.domain
Authorization: AWS4-HMAC-SHA256 Credential=..., ...
...
Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
 "Data": blob,
 "ExplicitHashKey": "string",
 "PartitionKey": "string",
 "SequenceNumberForOrdering": "string",
 "StreamName": "string"
}

Here, StreamName identifies the target stream to add records. StreamName, Data, and
PartitionKey are required input data. In our example, we use the default values for all of the
optional input data and will not explicitly specify values for them in the input to the method
request.

Reading data in Kinesis amounts to calling the GetRecords action:

POST /?Action=GetRecords HTTP/1.1
Host: kinesis.region.domain
Authorization: AWS4-HMAC-SHA256 Credential=..., ...
...
Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
 "ShardIterator": "string",
 "Limit": number
}

Here, the source stream from which we are getting records is specified in the required
ShardIterator value, as is shown in the following Kinesis action to obtain a shard iterator:

POST /?Action=GetShardIterator HTTP/1.1
Host: kinesis.region.domain
Authorization: AWS4-HMAC-SHA256 Credential=..., ...

Tutorial: Create a REST API as an Amazon Kinesis proxy 176

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html#API_GetRecords_Examples

Amazon API Gateway Developer Guide

...
Content-Type: application/x-amz-json-1.1
Content-Length: PayloadSizeBytes

{
 "ShardId": "string",
 "ShardIteratorType": "string",
 "StartingSequenceNumber": "string",
 "StreamName": "string"
}

For the GetRecords and PutRecords actions, we expose the GET and PUT methods, respectively,
on a /records resource that is appended to a named stream resource (/{stream-name}).
Similarly, we expose the PutRecord action as a PUT method on a /record resource.

Because the GetRecords action takes as input a ShardIterator value, which is obtained
by calling the GetShardIterator helper action, we expose a GET helper method on a
ShardIterator resource (/sharditerator).

To create the /record, /records, and /sharditerator resources

1. Choose the /{stream-name} resource, and then choose Create resource.

2. Keep Proxy resource turned off.

3. For Resource path, select /{stream-name}.

4. For Resource name, enter record.

5. Keep CORS (Cross Origin Resource Sharing) turned off.

6. Choose Create resource.

7. Repeat the previous steps to create a /records and a /sharditerator resource. The final API
should look like the following:

Tutorial: Create a REST API as an Amazon Kinesis proxy 177

Amazon API Gateway Developer Guide

Tutorial: Create a REST API as an Amazon Kinesis proxy 178

Amazon API Gateway Developer Guide

The following four procedures describe how to set up each of the methods, how to map data from
the method requests to the integration requests, and how to test the methods.

To set up and test the PUT /streams/{stream-name}/record method to invoke PutRecord
in Kinesis:

1. Choose the /record, and then choose Create method.

2. For Method type, select PUT.

3. For Integration type, select AWS service.

4. For AWS Region, select the AWS Region where you created your Kinesis stream.

5. For AWS service, select Kinesis.

6. Keep AWS subdomain blank.

7. For HTTP method, choose POST.

8. For Action type, choose Use action name.

9. For Action name, enter PutRecord.

10. For Execution role, enter the ARN for your execution role.

11. Keep the default of Passthrough for Content Handling.

12. Choose Create method.

13. In the Integration request section, add the following URL request headers parameters:

Content-Type: 'x-amz-json-1.1'

The task follows the same procedure to set up the request parameter mapping for the GET /
streams method.

14. Add the following body mapping template to map data from the PUT /streams/{stream-
name}/record method request to the corresponding integration request of POST /?
Action=PutRecord:

{
 "StreamName": "$input.params('stream-name')",
 "Data": "$util.base64Encode($input.json('$.Data'))",
 "PartitionKey": "$input.path('$.PartitionKey')"
}

This mapping template assumes that the method request payload is of the following format:

Tutorial: Create a REST API as an Amazon Kinesis proxy 179

Amazon API Gateway Developer Guide

{
 "Data": "some data",
 "PartitionKey": "some key"
}

This data can be modeled by the following JSON schema:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "PutRecord proxy single-record payload",
 "type": "object",
 "properties": {
 "Data": { "type": "string" },
 "PartitionKey": { "type": "string" }
 }
}

You can create a model to include this schema and use the model to facilitate generating the
mapping template. However, you can generate a mapping template without using any model.

15. To test the PUT /streams/{stream-name}/record method, set the stream-name path
variable to the name of an existing stream, supply a payload of the required format, and then
submit the method request. The successful result is a 200 OK response with a payload of the
following format:

{
 "SequenceNumber": "49559409944537880850133345460169886593573102115167928386",
 "ShardId": "shardId-000000000004"
}

To set up and test the PUT /streams/{stream-name}/records method to invoke
PutRecords in Kinesis

1. Choose the /records resource, and then choose Create method.

2. For Method type, select PUT.

3. For Integration type, select AWS service.

Tutorial: Create a REST API as an Amazon Kinesis proxy 180

Amazon API Gateway Developer Guide

4. For AWS Region, select the AWS Region where you created your Kinesis stream.

5. For AWS service, select Kinesis.

6. Keep AWS subdomain blank.

7. For HTTP method, choose POST.

8. For Action type, choose Use action name.

9. For Action name, enter PutRecords.

10. For Execution role, enter the ARN for your execution role.

11. Keep the default of Passthrough for Content Handling.

12. Choose Create method.

13. In the Integration request section, add the following URL request headers parameters:

Content-Type: 'x-amz-json-1.1'

The task follows the same procedure to set up the request parameter mapping for the GET /
streams method.

14. Add the following mapping template to map data from the PUT /streams/{stream-
name}/records method request to the corresponding integration request of POST /?
Action=PutRecords :

{
 "StreamName": "$input.params('stream-name')",
 "Records": [
 #foreach($elem in $input.path('$.records'))
 {
 "Data": "$util.base64Encode($elem.data)",
 "PartitionKey": "$elem.partition-key"
 }#if($foreach.hasNext),#end
 #end
]
}

This mapping template assumes that the method request payload can be modelled by the
following JSON schema:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "PutRecords proxy payload data",

Tutorial: Create a REST API as an Amazon Kinesis proxy 181

Amazon API Gateway Developer Guide

 "type": "object",
 "properties": {
 "records": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "data": { "type": "string" },
 "partition-key": { "type": "string" }
 }
 }
 }
 }
}

You can create a model to include this schema and use the model to facilitate generating the
mapping template. However, you can generate a mapping template without using any model.

In this tutorial, we used two slightly different payload formats to illustrate that an API
developer can choose to expose the backend data format to the client or hide it from the
client. One format is for the PUT /streams/{stream-name}/records method (above).
Another format is used for the PUT /streams/{stream-name}/record method (in the
previous procedure). In production environment, you should keep both formats consistent.

15.
To test the PUT /streams/{stream-name}/records method, set the stream-name path
variable to an existing stream, supply the following payload, and submit the method request.

{
 "records": [
 {
 "data": "some data",
 "partition-key": "some key"
 },
 {
 "data": "some other data",
 "partition-key": "some key"
 }
]
}

Tutorial: Create a REST API as an Amazon Kinesis proxy 182

Amazon API Gateway Developer Guide

The successful result is a 200 OK response with a payload similar to the following output:

{
 "FailedRecordCount": 0,
 "Records": [
 {
 "SequenceNumber": "49559409944537880850133345460167468741933742152373764162",
 "ShardId": "shardId-000000000004"
 },
 {
 "SequenceNumber": "49559409944537880850133345460168677667753356781548470338",
 "ShardId": "shardId-000000000004"
 }
]
}

To set up and test the GET /streams/{stream-name}/sharditerator method invoke
GetShardIterator in Kinesis

The GET /streams/{stream-name}/sharditerator method is a helper method to acquire a
required shard iterator before calling the GET /streams/{stream-name}/records method.

1. Choose the /sharditerator resource, and then choose Create method.

2. For Method type, select GET.

3. For Integration type, select AWS service.

4. For AWS Region, select the AWS Region where you created your Kinesis stream.

5. For AWS service, select Kinesis.

6. Keep AWS subdomain blank.

7. For HTTP method, choose POST.

8. For Action type, choose Use action name.

9. For Action name, enter GetShardIterator.

10. For Execution role, enter the ARN for your execution role.

11. Keep the default of Passthrough for Content Handling.

12. Choose URL query string parameters.

Tutorial: Create a REST API as an Amazon Kinesis proxy 183

Amazon API Gateway Developer Guide

The GetShardIterator action requires an input of a ShardId value. To pass a client-supplied
ShardId value, we add a shard-id query parameter to the method request, as shown in the
following step.

13. Choose Add query string.

14. For Name, enter shard-id.

15. Keep Required and Caching turned off.

16. Choose Create method.

17. In the Integration request section, add the following mapping template to generate the
required input (ShardId and StreamName) to the GetShardIterator action from the
shard-id and stream-name parameters of the method request. In addition, the mapping
template also sets ShardIteratorType to TRIM_HORIZON as a default.

{
 "ShardId": "$input.params('shard-id')",
 "ShardIteratorType": "TRIM_HORIZON",
 "StreamName": "$input.params('stream-name')"
}

18. Using the Test option in the API Gateway console, enter an existing stream name as the
stream-name Path variable value, set the shard-id Query string to an existing ShardId
value (e.g., shard-000000000004), and choose Test.

The successful response payload is similar to the following output:

{
 "ShardIterator": "AAAAAAAAAAFYVN3VlFy..."
}

Make note of the ShardIterator value. You need it to get records from a stream.

To configure and test the GET /streams/{stream-name}/records method to invoke the
GetRecords action in Kinesis

1. Choose the /records resource, and then choose Create method.

2. For Method type, select GET.

3. For Integration type, select AWS service.

Tutorial: Create a REST API as an Amazon Kinesis proxy 184

Amazon API Gateway Developer Guide

4. For AWS Region, select the AWS Region where you created your Kinesis stream.

5. For AWS service, select Kinesis.

6. Keep AWS subdomain blank.

7. For HTTP method, choose POST.

8. For Action type, choose Use action name.

9. For Action name, enter GetRecords.

10. For Execution role, enter the ARN for your execution role.

11. Keep the default of Passthrough for Content Handling.

12. Choose HTTP request headers.

The GetRecords action requires an input of a ShardIterator value. To pass a client-
supplied ShardIterator value, we add a Shard-Iterator header parameter to the
method request.

13. Choose Add header.

14. For Name, enter Shard-Iterator.

15. Keep Required and Caching turned off.

16. Choose Create method.

17. In the Integration request section, add the following body mapping template to map the
Shard-Iterator header parameter value to the ShardIterator property value of the
JSON payload for the GetRecords action in Kinesis.

{
 "ShardIterator": "$input.params('Shard-Iterator')"
}

18. Using the Test option in the API Gateway console, enter an existing stream name as the
stream-name Path variable value, set the Shard-Iterator Header to the ShardIterator
value obtained from the test run of the GET /streams/{stream-name}/sharditerator
method (above), and choose Test.

The successful response payload is similar to the following output:

{
 "MillisBehindLatest": 0,
 "NextShardIterator": "AAAAAAAAAAF...",
 "Records": [...]

Tutorial: Create a REST API as an Amazon Kinesis proxy 185

Amazon API Gateway Developer Guide

}

OpenAPI definitions of a sample API as a Kinesis proxy

Following are OpenAPI definitions for the sample API as a Kinesis proxy used in this tutorial.

OpenAPI 3.0

{
 "openapi": "3.0.0",
 "info": {
 "title": "KinesisProxy",
 "version": "2016-03-31T18:25:32Z"
 },
 "paths": {
 "/streams/{stream-name}/sharditerator": {
 "get": {
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "schema": {
 "type": "string"
 }
 },
 {
 "name": "shard-id",
 "in": "query",
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Empty"
 }

Tutorial: Create a REST API as an Amazon Kinesis proxy 186

Amazon API Gateway Developer Guide

 }
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "type": "aws",
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/GetShardIterator",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-
json-1.1'"
 },
 "requestTemplates": {
 "application/json": "{\n \"ShardId\": \"$input.params('shard-
id')\",\n \"ShardIteratorType\": \"TRIM_HORIZON\",\n \"StreamName\":
 \"$input.params('stream-name')\"\n}"
 },
 "passthroughBehavior": "when_no_match",
 "httpMethod": "POST"
 }
 }
 },
 "/streams/{stream-name}/records": {
 "get": {
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "schema": {
 "type": "string"
 }
 },
 {
 "name": "Shard-Iterator",
 "in": "header",
 "schema": {
 "type": "string"
 }

Tutorial: Create a REST API as an Amazon Kinesis proxy 187

Amazon API Gateway Developer Guide

 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Empty"
 }
 }
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "type": "aws",
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/GetRecords",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-
json-1.1'"
 },
 "requestTemplates": {
 "application/json": "{\n \"ShardIterator\": \"$input.params('Shard-
Iterator')\"\n}"
 },
 "passthroughBehavior": "when_no_match",
 "httpMethod": "POST"
 }
 },
 "put": {
 "parameters": [
 {
 "name": "Content-Type",
 "in": "header",
 "schema": {
 "type": "string"
 }
 },

Tutorial: Create a REST API as an Amazon Kinesis proxy 188

Amazon API Gateway Developer Guide

 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
],
 "requestBody": {
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/PutRecordsMethodRequestPayload"
 }
 },
 "application/x-amz-json-1.1": {
 "schema": {
 "$ref": "#/components/schemas/PutRecordsMethodRequestPayload"
 }
 }
 },
 "required": true
 },
 "responses": {
 "200": {
 "description": "200 response",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Empty"
 }
 }
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "type": "aws",
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/PutRecords",
 "responses": {
 "default": {
 "statusCode": "200"
 }

Tutorial: Create a REST API as an Amazon Kinesis proxy 189

Amazon API Gateway Developer Guide

 },
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-
json-1.1'"
 },
 "requestTemplates": {
 "application/json": "{\n \"StreamName\": \"$input.params('stream-
name')\",\n \"Records\": [\n {\n \"Data\":
 \"$util.base64Encode($elem.data)\",\n \"PartitionKey\":
 \"$elem.partition-key\"\n }#if($foreach.hasNext),#end\n]\n}",
 "application/x-amz-json-1.1": "{\n \"StreamName\":
 \"$input.params('stream-name')\",\n \"records\" : [\n {\n \"Data
\" : \"$elem.data\",\n \"PartitionKey\" : \"$elem.partition-key\"\n
 }#if($foreach.hasNext),#end\n]\n}"
 },
 "passthroughBehavior": "when_no_match",
 "httpMethod": "POST"
 }
 }
 },
 "/streams/{stream-name}": {
 "get": {
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Empty"
 }
 }
 }
 }
 },

Tutorial: Create a REST API as an Amazon Kinesis proxy 190

Amazon API Gateway Developer Guide

 "x-amazon-apigateway-integration": {
 "type": "aws",
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/DescribeStream",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestTemplates": {
 "application/json": "{\n \"StreamName\": \"$input.params('stream-
name')\"\n}"
 },
 "passthroughBehavior": "when_no_match",
 "httpMethod": "POST"
 }
 },
 "post": {
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Empty"
 }
 }
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "type": "aws",
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/CreateStream",

Tutorial: Create a REST API as an Amazon Kinesis proxy 191

Amazon API Gateway Developer Guide

 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-
json-1.1'"
 },
 "requestTemplates": {
 "application/json": "{\n \"ShardCount\": 5,\n \"StreamName\":
 \"$input.params('stream-name')\"\n}"
 },
 "passthroughBehavior": "when_no_match",
 "httpMethod": "POST"
 }
 },
 "delete": {
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "headers": {
 "Content-Type": {
 "schema": {
 "type": "string"
 }
 }
 },
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Empty"
 }
 }

Tutorial: Create a REST API as an Amazon Kinesis proxy 192

Amazon API Gateway Developer Guide

 }
 },
 "400": {
 "description": "400 response",
 "headers": {
 "Content-Type": {
 "schema": {
 "type": "string"
 }
 }
 },
 "content": {}
 },
 "500": {
 "description": "500 response",
 "headers": {
 "Content-Type": {
 "schema": {
 "type": "string"
 }
 }
 },
 "content": {}
 }
 },
 "x-amazon-apigateway-integration": {
 "type": "aws",
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/DeleteStream",
 "responses": {
 "4\\d{2}": {
 "statusCode": "400",
 "responseParameters": {
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type"
 }
 },
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type"
 }
 },

Tutorial: Create a REST API as an Amazon Kinesis proxy 193

Amazon API Gateway Developer Guide

 "5\\d{2}": {
 "statusCode": "500",
 "responseParameters": {
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type"
 }
 }
 },
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-
json-1.1'"
 },
 "requestTemplates": {
 "application/json": "{\n \"StreamName\": \"$input.params('stream-
name')\"\n}"
 },
 "passthroughBehavior": "when_no_match",
 "httpMethod": "POST"
 }
 }
 },
 "/streams/{stream-name}/record": {
 "put": {
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Empty"
 }
 }
 }
 }

Tutorial: Create a REST API as an Amazon Kinesis proxy 194

Amazon API Gateway Developer Guide

 },
 "x-amazon-apigateway-integration": {
 "type": "aws",
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/PutRecord",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-
json-1.1'"
 },
 "requestTemplates": {
 "application/json": "{\n \"StreamName\": \"$input.params('stream-
name')\",\n \"Data\": \"$util.base64Encode($input.json('$.Data'))\",\n
 \"PartitionKey\": \"$input.path('$.PartitionKey')\"\n}"
 },
 "passthroughBehavior": "when_no_match",
 "httpMethod": "POST"
 }
 }
 },
 "/streams": {
 "get": {
 "responses": {
 "200": {
 "description": "200 response",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Empty"
 }
 }
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "type": "aws",
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/ListStreams",
 "responses": {
 "default": {

Tutorial: Create a REST API as an Amazon Kinesis proxy 195

Amazon API Gateway Developer Guide

 "statusCode": "200"
 }
 },
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-
json-1.1'"
 },
 "requestTemplates": {
 "application/json": "{\n}"
 },
 "passthroughBehavior": "when_no_match",
 "httpMethod": "POST"
 }
 }
 }
 },
 "components": {
 "schemas": {
 "Empty": {
 "type": "object"
 },
 "PutRecordsMethodRequestPayload": {
 "type": "object",
 "properties": {
 "records": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "data": {
 "type": "string"
 },
 "partition-key": {
 "type": "string"
 }
 }
 }
 }
 }
 }
 }
 }
}

Tutorial: Create a REST API as an Amazon Kinesis proxy 196

Amazon API Gateway Developer Guide

OpenAPI 2.0

{
 "swagger": "2.0",
 "info": {
 "version": "2016-03-31T18:25:32Z",
 "title": "KinesisProxy"
 },
 "basePath": "/test",
 "schemes": [
 "https"
],
 "paths": {
 "/streams": {
 "get": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "type": "aws",
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/ListStreams",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-
json-1.1'"
 },
 "requestTemplates": {
 "application/json": "{\n}"

Tutorial: Create a REST API as an Amazon Kinesis proxy 197

Amazon API Gateway Developer Guide

 },
 "passthroughBehavior": "when_no_match",
 "httpMethod": "POST"
 }
 }
 },
 "/streams/{stream-name}": {
 "get": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "type": "aws",
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/DescribeStream",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestTemplates": {
 "application/json": "{\n \"StreamName\": \"$input.params('stream-
name')\"\n}"
 },
 "passthroughBehavior": "when_no_match",

Tutorial: Create a REST API as an Amazon Kinesis proxy 198

Amazon API Gateway Developer Guide

 "httpMethod": "POST"
 }
 },
 "post": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "type": "aws",
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/CreateStream",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-
json-1.1'"
 },
 "requestTemplates": {
 "application/json": "{\n \"ShardCount\": 5,\n \"StreamName\":
 \"$input.params('stream-name')\"\n}"
 },
 "passthroughBehavior": "when_no_match",

Tutorial: Create a REST API as an Amazon Kinesis proxy 199

Amazon API Gateway Developer Guide

 "httpMethod": "POST"
 }
 },
 "delete": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 },
 "headers": {
 "Content-Type": {
 "type": "string"
 }
 }
 },
 "400": {
 "description": "400 response",
 "headers": {
 "Content-Type": {
 "type": "string"
 }
 }
 },
 "500": {
 "description": "500 response",
 "headers": {
 "Content-Type": {
 "type": "string"
 }

Tutorial: Create a REST API as an Amazon Kinesis proxy 200

Amazon API Gateway Developer Guide

 }
 }
 },
 "x-amazon-apigateway-integration": {
 "type": "aws",
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/DeleteStream",
 "responses": {
 "4\\d{2}": {
 "statusCode": "400",
 "responseParameters": {
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type"
 }
 },
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type"
 }
 },
 "5\\d{2}": {
 "statusCode": "500",
 "responseParameters": {
 "method.response.header.Content-Type":
 "integration.response.header.Content-Type"
 }
 }
 },
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-
json-1.1'"
 },
 "requestTemplates": {
 "application/json": "{\n \"StreamName\": \"$input.params('stream-
name')\"\n}"
 },
 "passthroughBehavior": "when_no_match",
 "httpMethod": "POST"
 }
 }
 },
 "/streams/{stream-name}/record": {

Tutorial: Create a REST API as an Amazon Kinesis proxy 201

Amazon API Gateway Developer Guide

 "put": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "type": "aws",
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/PutRecord",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-
json-1.1'"
 },
 "requestTemplates": {
 "application/json": "{\n \"StreamName\": \"$input.params('stream-
name')\",\n \"Data\": \"$util.base64Encode($input.json('$.Data'))\",\n
 \"PartitionKey\": \"$input.path('$.PartitionKey')\"\n}"
 },
 "passthroughBehavior": "when_no_match",
 "httpMethod": "POST"
 }

Tutorial: Create a REST API as an Amazon Kinesis proxy 202

Amazon API Gateway Developer Guide

 }
 },
 "/streams/{stream-name}/records": {
 "get": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "Shard-Iterator",
 "in": "header",
 "required": false,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "type": "aws",
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/GetRecords",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-
json-1.1'"

Tutorial: Create a REST API as an Amazon Kinesis proxy 203

Amazon API Gateway Developer Guide

 },
 "requestTemplates": {
 "application/json": "{\n \"ShardIterator\": \"$input.params('Shard-
Iterator')\"\n}"
 },
 "passthroughBehavior": "when_no_match",
 "httpMethod": "POST"
 }
 },
 "put": {
 "consumes": [
 "application/json",
 "application/x-amz-json-1.1"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "Content-Type",
 "in": "header",
 "required": false,
 "type": "string"
 },
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "in": "body",
 "name": "PutRecordsMethodRequestPayload",
 "required": true,
 "schema": {
 "$ref": "#/definitions/PutRecordsMethodRequestPayload"
 }
 },
 {
 "in": "body",
 "name": "PutRecordsMethodRequestPayload",
 "required": true,
 "schema": {
 "$ref": "#/definitions/PutRecordsMethodRequestPayload"

Tutorial: Create a REST API as an Amazon Kinesis proxy 204

Amazon API Gateway Developer Guide

 }
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "type": "aws",
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/PutRecords",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-
json-1.1'"
 },
 "requestTemplates": {
 "application/json": "{\n \"StreamName\": \"$input.params('stream-
name')\",\n \"Records\": [\n {\n \"Data\":
 \"$util.base64Encode($elem.data)\",\n \"PartitionKey\":
 \"$elem.partition-key\"\n }#if($foreach.hasNext),#end\n]\n}",
 "application/x-amz-json-1.1": "{\n \"StreamName\":
 \"$input.params('stream-name')\",\n \"records\" : [\n {\n \"Data
\" : \"$elem.data\",\n \"PartitionKey\" : \"$elem.partition-key\"\n
 }#if($foreach.hasNext),#end\n]\n}"
 },
 "passthroughBehavior": "when_no_match",
 "httpMethod": "POST"
 }
 }
 },
 "/streams/{stream-name}/sharditerator": {
 "get": {
 "consumes": [
 "application/json"
],

Tutorial: Create a REST API as an Amazon Kinesis proxy 205

Amazon API Gateway Developer Guide

 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "stream-name",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "shard-id",
 "in": "query",
 "required": false,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "type": "aws",
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "uri": "arn:aws:apigateway:us-east-1:kinesis:action/GetShardIterator",
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestParameters": {
 "integration.request.header.Content-Type": "'application/x-amz-
json-1.1'"
 },
 "requestTemplates": {
 "application/json": "{\n \"ShardId\": \"$input.params('shard-
id')\",\n \"ShardIteratorType\": \"TRIM_HORIZON\",\n \"StreamName\":
 \"$input.params('stream-name')\"\n}"
 },
 "passthroughBehavior": "when_no_match",

Tutorial: Create a REST API as an Amazon Kinesis proxy 206

Amazon API Gateway Developer Guide

 "httpMethod": "POST"
 }
 }
 }
 },
 "definitions": {
 "Empty": {
 "type": "object"
 },
 "PutRecordsMethodRequestPayload": {
 "type": "object",
 "properties": {
 "records": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "data": {
 "type": "string"
 },
 "partition-key": {
 "type": "string"
 }
 }
 }
 }
 }
 }
 }
}

Tutorial: Building a private REST API

In this tutorial, you create a private REST API. Clients can access the API only from within your
Amazon VPC. The API is isolated from the public internet, which is a common security requirement.

This tutorial takes approximately 30 minutes to complete. First, you use an AWS CloudFormation
template to create an Amazon VPC, a VPC endpoint, an AWS Lambda function, and launch
an Amazon EC2 instance that you'll use to test your API. Next, you use the AWS Management
Console to create a private API and attach a resource policy that allows access only from your VPC
endpoint. Lastly, you test your API.

Build a private REST API 207

Amazon API Gateway Developer Guide

To complete this tutorial, you need an AWS account and an AWS Identity and Access Management
user with console access. For more information, see Prerequisites.

In this tutorial, you use the AWS Management Console. For an AWS CloudFormation template that
creates this API and all related resources, see template.yaml.

Topics

• Step 1: Create dependencies

• Step 2: Create a private API

• Step 3: Create a method and integration

• Step 4: Attach a resource policy

• Step 5: Deploy your API

• Step 6: Verify that your API isn't publicly accessible

• Step 7: Connect to an instance in your VPC and invoke your API

• Step 8: Clean up

• Next steps: Automate with AWS CloudFormation

Step 1: Create dependencies

Download and unzip this AWS CloudFormation template. You use the template to create all of
the dependencies for your private API, including an Amazon VPC, a VPC endpoint, and a Lambda
function that serves as the backend of your API. You create the private API later.

To create an AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Choose Create stack and then choose With new resources (standard).

Build a private REST API 208

samples/private-api-full-template.zip
samples/private-api-starter-template.zip
https://console.aws.amazon.com/cloudformation/

Amazon API Gateway Developer Guide

3. For Specify template, choose Upload a template file.

4. Select the template that you downloaded.

5. Choose Next.

6. For Stack name, enter private-api-tutorial and then choose Next.

7. For Configure stack options, choose Next.

8. For Capabilities, acknowledge that AWS CloudFormation can create IAM resources in your
account.

9. Choose Submit.

AWS CloudFormation provisions the dependencies for your API, which can take a few minutes.
When the status of your AWS CloudFormation stack is CREATE_COMPLETE, choose Outputs. Note
your VPC endpoint ID. You need it for later steps in this tutorial.

Step 2: Create a private API

You create a private API to allow only clients within your VPC to access it.

To create a private API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose Create API, and then for REST API, choose Build.

3. For API name, enter private-api-tutorial.

4. For API endpoint type, select Private.

5. For VPC endpoint IDs, enter the VPC endpoint ID from the Outputs of your AWS
CloudFormation stack.

6. Choose Create API.

Step 3: Create a method and integration

You create a GET method and Lambda integration to handle GET requests to your API. When a
client invokes your API, API Gateway sends the request to the Lambda function that you created in
Step 1, and then returns a response to the client.

To create a method and integration

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

Build a private REST API 209

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

2. Choose your API.

3. Select the / resource, and then choose Create method.

4. For Method type select GET.

5. For Integration type, select Lambda function.

6. Turn on Lambda proxy integration. With a Lambda proxy integration, API Gateway sends an
event to Lambda with a defined structure, and transforms the response from your Lambda
function to an HTTP response.

7. For Lambda function, choose the function that you created with the AWS CloudFormation
template in Step 1. The function's name begins with private-api-tutorial.

8. Choose Create method.

Step 4: Attach a resource policy

You attach a resource policy to your API that allows clients to invoke your API only through your
VPC endpoint. To further restrict access to your API, you can also configure a VPC endpoint policy
for your VPC endpoint, but that's not necessary for this tutorial.

To attach a resource policy

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API.

3. Choose Resource policy, and then choose Create policy.

4. Enter the following policy. Replace vpceID with your VPC endpoint ID from the Outputs of
your AWS CloudFormation stack.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Principal": "*",
 "Action": "execute-api:Invoke",
 "Resource": "execute-api:/*",
 "Condition": {
 "StringNotEquals": {
 "aws:sourceVpce": "vpceID"
 }

Build a private REST API 210

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

 }
 },
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "execute-api:Invoke",
 "Resource": "execute-api:/*"
 }
]
}

5. Choose Save changes.

Step 5: Deploy your API

Next, you deploy your API to make it available to clients in your Amazon VPC.

To deploy an API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API.

3. Choose Deploy API.

4. For Stage, select New stage.

5. For Stage name, enter test.

6. (Optional) For Description, enter a description.

7. Choose Deploy.

Now you're ready to test your API.

Step 6: Verify that your API isn't publicly accessible

Use curl to verify that you can't invoke your API from outside of your Amazon VPC.

To test your API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API.

3. In the main navigation pane, choose Stages, and then choose the test stage.

Build a private REST API 211

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

4. Under Stage details, choose the copy icon to copy your API's invoke URL. The URL looks
like https://abcdef123.execute-api.us-west-2.amazonaws.com/test. The VPC
endpoint that you created in Step 1 has private DNS enabled, so you can use the provided URL
to invoke your API.

5. Use curl to attempt to invoke your API from outside of your VPC.

curl https://abcdef123.execute-api.us-west-2.amazonaws.com/test

Curl indicates that your API's endpoint can't be resolved. If you get a different response, go
back to Step 2, and make sure that you choose Private for your API's endpoint type.

curl: (6) Could not resolve host: abcdef123.execute-api.us-west-2.amazonaws.com/
test

Next, you connect to an Amazon EC2 instance in your VPC to invoke your API.

Step 7: Connect to an instance in your VPC and invoke your API

Next, you test your API from within your Amazon VPC. To access your private API, you connect
to an Amazon EC2 instance in your VPC and then use curl to invoke your API. You use Systems
Manager Session Manager to connect to your instance in the browser.

To test your API

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose Instances.

3. Choose the instance named private-api-tutorial that you created with the AWS
CloudFormation template in Step 1.

4. Choose Connect and then choose Session Manager.

5. Choose Connect to launch a browser-based session to your instance.

6. In your Session Manager session, use curl to invoke your API. You can invoke your API because
you're using an instance in your Amazon VPC.

curl https://abcdef123.execute-api.us-west-2.amazonaws.com/test

Verify that you get the response Hello from Lambda!.

Build a private REST API 212

https://console.aws.amazon.com/ec2/

Amazon API Gateway Developer Guide

You successfully created an API that's accessible only from within your Amazon VPC and then
verified that it works.

Step 8: Clean up

To prevent unnecessary costs, delete the resources that you created as part of this tutorial. The
following steps delete your REST API and your AWS CloudFormation stack.

To delete a REST API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. On the APIs page, select an API. Choose API actions, choose Delete API, and then confirm
your choice.

To delete an AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Select your AWS CloudFormation stack.

3. Choose Delete and then confirm your choice.

Next steps: Automate with AWS CloudFormation

You can automate the creation and cleanup of all AWS resources involved in this tutorial. For a full
example AWS CloudFormation template, see template.yaml.

Amazon API Gateway HTTP API tutorials

The following tutorials provide hands-on exercises to help you learn about API Gateway HTTP APIs.

HTTP API tutorials 213

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/cloudformation/
samples/private-api-full-template.zip

Amazon API Gateway Developer Guide

Topics

• Tutorial: Build a CRUD API with Lambda and DynamoDB

• Tutorial: Building an HTTP API with a private integration to an Amazon ECS service

Tutorial: Build a CRUD API with Lambda and DynamoDB

In this tutorial, you create a serverless API that creates, reads, updates, and deletes items from a
DynamoDB table. DynamoDB is a fully managed NoSQL database service that provides fast and
predictable performance with seamless scalability. This tutorial takes approximately 30 minutes to
complete, and you can do it within the AWS Free Tier.

First, you create a DynamoDB table using the DynamoDB console. Then you create a Lambda
function using the AWS Lambda console. Next, you create an HTTP API using the API Gateway
console. Lastly, you test your API.

When you invoke your HTTP API, API Gateway routes the request to your Lambda function. The
Lambda function interacts with DynamoDB, and returns a response to API Gateway. API Gateway
then returns a response to you.

To complete this exercise, you need an AWS account and an AWS Identity and Access Management
user with console access. For more information, see Prerequisites.

In this tutorial, you use the AWS Management Console. For an AWS SAM template that creates this
API and all related resources, see template.yaml.

Topics

• Step 1: Create a DynamoDB table

• Step 2: Create a Lambda function

• Step 3: Create an HTTP API

• Step 4: Create routes

• Step 5: Create an integration

CRUD API with Lambda and DynamoDB 214

https://aws.amazon.com/free
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
samples/http-dynamo-tutorial.zip

Amazon API Gateway Developer Guide

• Step 6: Attach your integration to routes

• Step 7: Test your API

• Step 8: Clean up

• Next steps: Automate with AWS SAM or AWS CloudFormation

Step 1: Create a DynamoDB table

You use a DynamoDB table to store data for your API.

Each item has a unique ID, which we use as the partition key for the table.

To create a DynamoDB table

1. Open the DynamoDB console at https://console.aws.amazon.com/dynamodb/.

2. Choose Create table.

3. For Table name, enter http-crud-tutorial-items.

4. For Partition key, enter id.

5. Choose Create table.

Step 2: Create a Lambda function

You create a Lambda function for the backend of your API. This Lambda function creates, reads,
updates, and deletes items from DynamoDB. The function uses events from API Gateway to
determine how to interact with DynamoDB. For simplicity this tutorial uses a single Lambda
function. As a best practice, you should create separate functions for each route.

To create a Lambda function

1. Sign in to the Lambda console at https://console.aws.amazon.com/lambda.

2. Choose Create function.

3. For Function name, enter http-crud-tutorial-function.

4. For Runtime, choose either the latest supported Node.js or Python runtime.

5. Under Permissions choose Change default execution role.

6. Select Create a new role from AWS policy templates.

7. For Role name, enter http-crud-tutorial-role.

CRUD API with Lambda and DynamoDB 215

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.PrimaryKey
https://console.aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://console.aws.amazon.com/lambda

Amazon API Gateway Developer Guide

8. For Policy templates, choose Simple microservice permissions. This policy grants the
Lambda function permission to interact with DynamoDB.

Note

This tutorial uses a managed policy for simplicity. As a best practice, you should create
your own IAM policy to grant the minimum permissions required.

9. Choose Create function.

10. Open the Lambda function in the console's code editor, and replace its contents with the
following code. Choose Deploy to update your function.

Node.js

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import {
 DynamoDBDocumentClient,
 ScanCommand,
 PutCommand,
 GetCommand,
 DeleteCommand,
} from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});

const dynamo = DynamoDBDocumentClient.from(client);

const tableName = "http-crud-tutorial-items";

export const handler = async (event, context) => {
 let body;
 let statusCode = 200;
 const headers = {
 "Content-Type": "application/json",
 };

 try {
 switch (event.routeKey) {
 case "DELETE /items/{id}":
 await dynamo.send(
 new DeleteCommand({

CRUD API with Lambda and DynamoDB 216

Amazon API Gateway Developer Guide

 TableName: tableName,
 Key: {
 id: event.pathParameters.id,
 },
 })
);
 body = `Deleted item ${event.pathParameters.id}`;
 break;
 case "GET /items/{id}":
 body = await dynamo.send(
 new GetCommand({
 TableName: tableName,
 Key: {
 id: event.pathParameters.id,
 },
 })
);
 body = body.Item;
 break;
 case "GET /items":
 body = await dynamo.send(
 new ScanCommand({ TableName: tableName })
);
 body = body.Items;
 break;
 case "PUT /items":
 let requestJSON = JSON.parse(event.body);
 await dynamo.send(
 new PutCommand({
 TableName: tableName,
 Item: {
 id: requestJSON.id,
 price: requestJSON.price,
 name: requestJSON.name,
 },
 })
);
 body = `Put item ${requestJSON.id}`;
 break;
 default:
 throw new Error(`Unsupported route: "${event.routeKey}"`);
 }
 } catch (err) {
 statusCode = 400;

CRUD API with Lambda and DynamoDB 217

Amazon API Gateway Developer Guide

 body = err.message;
 } finally {
 body = JSON.stringify(body);
 }

 return {
 statusCode,
 body,
 headers,
 };
};

Python

import json
import boto3
from decimal import Decimal

client = boto3.client('dynamodb')
dynamodb = boto3.resource("dynamodb")
table = dynamodb.Table('http-crud-tutorial-items')
tableName = 'http-crud-tutorial-items'

def lambda_handler(event, context):
 print(event)
 body = {}
 statusCode = 200
 headers = {
 "Content-Type": "application/json"
 }

 try:
 if event['routeKey'] == "DELETE /items/{id}":
 table.delete_item(
 Key={'id': event['pathParameters']['id']})
 body = 'Deleted item ' + event['pathParameters']['id']
 elif event['routeKey'] == "GET /items/{id}":
 body = table.get_item(
 Key={'id': event['pathParameters']['id']})
 body = body["Item"]
 responseBody = [

CRUD API with Lambda and DynamoDB 218

Amazon API Gateway Developer Guide

 {'price': float(body['price']), 'id': body['id'], 'name':
 body['name']}]
 body = responseBody
 elif event['routeKey'] == "GET /items":
 body = table.scan()
 body = body["Items"]
 print("ITEMS----")
 print(body)
 responseBody = []
 for items in body:
 responseItems = [
 {'price': float(items['price']), 'id': items['id'], 'name':
 items['name']}]
 responseBody.append(responseItems)
 body = responseBody
 elif event['routeKey'] == "PUT /items":
 requestJSON = json.loads(event['body'])
 table.put_item(
 Item={
 'id': requestJSON['id'],
 'price': Decimal(str(requestJSON['price'])),
 'name': requestJSON['name']
 })
 body = 'Put item ' + requestJSON['id']
 except KeyError:
 statusCode = 400
 body = 'Unsupported route: ' + event['routeKey']
 body = json.dumps(body)
 res = {
 "statusCode": statusCode,
 "headers": {
 "Content-Type": "application/json"
 },
 "body": body
 }
 return res

Step 3: Create an HTTP API

The HTTP API provides an HTTP endpoint for your Lambda function. In this step, you create an
empty API. In the following steps, you configure routes and integrations to connect your API and
your Lambda function.

CRUD API with Lambda and DynamoDB 219

Amazon API Gateway Developer Guide

To create an HTTP API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose Create API, and then for HTTP API, choose Build.

3. For API name, enter http-crud-tutorial-api.

4. Choose Next.

5. For Configure routes, choose Next to skip route creation. You create routes later.

6. Review the stage that API Gateway creates for you, and then choose Next.

7. Choose Create.

Step 4: Create routes

Routes are a way to send incoming API requests to backend resources. Routes consist of two parts:
an HTTP method and a resource path, for example, GET /items. For this example API, we create
four routes:

• GET /items/{id}

• GET /items

• PUT /items

• DELETE /items/{id}

To create routes

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API.

3. Choose Routes.

4. Choose Create.

5. For Method, choose GET.

6. For the path, enter /items/{id}. The {id} at the end of the path is a path parameter that
API Gateway retrieves from the request path when a client makes a request.

7. Choose Create.

8. Repeat steps 4-7 for GET /items, DELETE /items/{id}, and PUT /items.

CRUD API with Lambda and DynamoDB 220

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Step 5: Create an integration

You create an integration to connect a route to backend resources. For this example API, you create
one Lambda integration that you use for all routes.

To create an integration

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API.

3. Choose Integrations.

4. Choose Manage integrations and then choose Create.

5. Skip Attach this integration to a route. You complete that in a later step.

6. For Integration type, choose Lambda function.

7. For Lambda function, enter http-crud-tutorial-function.

8. Choose Create.

CRUD API with Lambda and DynamoDB 221

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Step 6: Attach your integration to routes

For this example API, you use the same Lambda integration for all routes. After you attach the
integration to all of the API's routes, your Lambda function is invoked when a client calls any of
your routes.

To attach integrations to routes

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API.

3. Choose Integrations.

4. Choose a route.

5. Under Choose an existing integration, choose http-crud-tutorial-function.

6. Choose Attach integration.

7. Repeat steps 4-6 for all routes.

All routes show that an AWS Lambda integration is attached.

CRUD API with Lambda and DynamoDB 222

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Now that you have an HTTP API with routes and integrations, you can test your API.

Step 7: Test your API

To make sure that your API is working, you use curl.

To get the URL to invoke your API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API.

3. Note your API's invoke URL. It appears under Invoke URL on the Details page.

4. Copy your API's invoke URL.

The full URL looks like https://abcdef123.execute-api.us-west-2.amazonaws.com.

To create or update an item

• Use the following command to create or update an item. The command includes a request
body with the item's ID, price, and name.

CRUD API with Lambda and DynamoDB 223

https://curl.se
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

curl -X "PUT" -H "Content-Type: application/json" -d "{\"id\": \"123\",
 \"price\": 12345, \"name\": \"myitem\"}" https://abcdef123.execute-api.us-
west-2.amazonaws.com/items

To get all items

• Use the following command to list all items.

curl https://abcdef123.execute-api.us-west-2.amazonaws.com/items

To get an item

• Use the following command to get an item by its ID.

curl https://abcdef123.execute-api.us-west-2.amazonaws.com/items/123

To delete an item

1. Use the following command to delete an item.

curl -X "DELETE" https://abcdef123.execute-api.us-west-2.amazonaws.com/items/123

2. Get all items to verify that the item was deleted.

curl https://abcdef123.execute-api.us-west-2.amazonaws.com/items

Step 8: Clean up

To prevent unnecessary costs, delete the resources that you created as part of this getting
started exercise. The following steps delete your HTTP API, your Lambda function, and associated
resources.

To delete a DynamoDB table

1. Open the DynamoDB console at https://console.aws.amazon.com/dynamodb/.

2. Select your table.

CRUD API with Lambda and DynamoDB 224

https://console.aws.amazon.com/dynamodb/

Amazon API Gateway Developer Guide

3. Choose Delete table.

4. Confirm your choice, and choose Delete.

To delete an HTTP API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. On the APIs page, select an API. Choose Actions, and then choose Delete.

3. Choose Delete.

To delete a Lambda function

1. Sign in to the Lambda console at https://console.aws.amazon.com/lambda.

2. On the Functions page, select a function. Choose Actions, and then choose Delete.

3. Choose Delete.

To delete a Lambda function's log group

1. In the Amazon CloudWatch console, open the Log groups page.

2. On the Log groups page, select the function's log group (/aws/lambda/http-crud-
tutorial-function). Choose Actions, and then choose Delete log group.

3. Choose Delete.

To delete a Lambda function's execution role

1. In the AWS Identity and Access Management console, open the Roles page.

2. Select the function's role, for example, http-crud-tutorial-role.

3. Choose Delete role.

4. Choose Yes, delete.

Next steps: Automate with AWS SAM or AWS CloudFormation

You can automate the creation and cleanup of AWS resources by using AWS CloudFormation or
AWS SAM. For an example AWS SAM template for this tutorial, see template.yaml.

For example AWS CloudFormation templates, see example AWS CloudFormation templates.

CRUD API with Lambda and DynamoDB 225

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/lambda
https://console.aws.amazon.com/cloudwatch/home#logs:
https://console.aws.amazon.com/iam/home?#/roles
samples/http-dynamo-tutorial.zip
https://github.com/awsdocs/amazon-api-gateway-developer-guide/tree/main/cloudformation-templates

Amazon API Gateway Developer Guide

Tutorial: Building an HTTP API with a private integration to an Amazon
ECS service

In this tutorial, you create a serverless API that connects to an Amazon ECS service that runs in
an Amazon VPC. Clients outside of your Amazon VPC can use the API to access your Amazon ECS
service.

This tutorial takes approximately an hour to complete. First, you use an AWS CloudFormation
template to create a Amazon VPC and Amazon ECS service. Then you use the API Gateway console
to create a VPC link. The VPC link allows API Gateway to access the Amazon ECS service that runs in
your Amazon VPC. Next, you create an HTTP API that uses the VPC link to connect to your Amazon
ECS service. Lastly, you test your API.

When you invoke your HTTP API, API Gateway routes the request to your Amazon ECS service
through your VPC link, and then returns the response from the service.

To complete this tutorial, you need an AWS account and an AWS Identity and Access Management
user with console access. For more information, see Prerequisites.

In this tutorial, you use the AWS Management Console. For an AWS CloudFormation template that
creates this API and all related resources, see template.yaml.

Topics

• Step 1: Create an Amazon ECS service

• Step 2: Create a VPC link

• Step 3: Create an HTTP API

• Step 4: Create a route

• Step 5: Create an integration

Private integration to Amazon ECS 226

samples/private-integration-full-template.zip

Amazon API Gateway Developer Guide

• Step 6: Test your API

• Step 7: Clean up

• Next steps: Automate with AWS CloudFormation

Step 1: Create an Amazon ECS service

Amazon ECS is a container management service that makes it easy to run, stop, and manage
Docker containers on a cluster. In this tutorial, you run your cluster on a serverless infrastructure
that's managed by Amazon ECS.

Download and unzip this AWS CloudFormation template, which creates all of the dependencies for
the service, including an Amazon VPC. You use the template to create an Amazon ECS service that
uses an Application Load Balancer.

To create an AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Choose Create stack and then choose With new resources (standard).

3. For Specify template, choose Upload a template file.

4. Select the template that you downloaded.

5. Choose Next.

6. For Stack name, enter http-api-private-integrations-tutorial and then choose
Next.

7. For Configure stack options, choose Next.

8. For Capabilities, acknowledge that AWS CloudFormation can create IAM resources in your
account.

9. Choose Submit.

AWS CloudFormation provisions the ECS service, which can take a few minutes. When the status of
your AWS CloudFormation stack is CREATE_COMPLETE, you're ready to move on to the next step.

Step 2: Create a VPC link

A VPC link allows API Gateway to access private resources in an Amazon VPC. You use a VPC link to
allow clients to access your Amazon ECS service through your HTTP API.

Private integration to Amazon ECS 227

samples/private-integration-cfn.zip
https://console.aws.amazon.com/cloudformation/

Amazon API Gateway Developer Guide

To create a VPC link

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. On the main navigation pane, choose VPC links and then choose Create.

You might need to choose the menu icon to open the main navigation pane.

3. For Choose a VPC link version, select VPC link for HTTP APIs.

4. For Name, enter private-integrations-tutorial.

5. For VPC, choose the VPC that you created in step 1. The name should start with
PrivateIntegrationsStack.

6. For Subnets, select the two private subnets in your VPC. Their names end with
PrivateSubnet.

7. Choose Create.

After you create your VPC link, API Gateway provisions Elastic Network Interfaces to access your
VPC. The process can take a few minutes. In the meantime, you can create your API.

Step 3: Create an HTTP API

The HTTP API provides an HTTP endpoint for your Amazon ECS service. In this step, you create an
empty API. In Steps 4 and 5, you configure a route and an integration to connect your API and your
Amazon ECS service.

To create an HTTP API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose Create API, and then for HTTP API, choose Build.

3. For API name, enter http-private-integrations-tutorial.

4. Choose Next.

5. For Configure routes, choose Next to skip route creation. You create routes later.

6. Review the stage that API Gateway creates for you. API Gateway creates a $default stage
with automatic deployments enabled, which is the best choice for this tutorial. Choose Next.

7. Choose Create.

Private integration to Amazon ECS 228

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Step 4: Create a route

Routes are a way to send incoming API requests to backend resources. Routes consist of two parts:
an HTTP method and a resource path, for example, GET /items. For this example API, we create
one route.

To create a route

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API.

3. Choose Routes.

4. Choose Create.

5. For Method, choose ANY.

6. For the path, enter /{proxy+}. The {proxy+} at the end of the path is a greedy path
variable. API Gateway sends all requests to your API to this route.

7. Choose Create.

Step 5: Create an integration

You create an integration to connect a route to backend resources.

To create an integration

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API.

3. Choose Integrations.

4. Choose Manage integrations and then choose Create.

5. For Attach this integration to a route, select the ANY /{proxy+} route that you created earlier.

6. For Integration type, choose Private resource.

7. For Integration details, choose Select manually.

8. For Target service, choose ALB/NLB.

9. For Load balancer, choose the load balancer that you created with the AWS CloudFormation
template in Step 1. It's name should start with http-Priva.

10. For Listener, choose HTTP 80.

Private integration to Amazon ECS 229

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

11. For VPC link, choose the VPC link that you created in Step 2. It's name should be private-
integrations-tutorial.

12. Choose Create.

To verify that your route and integration are set up correctly, select Attach integrations to routes.
The console shows that you have an ANY /{proxy+} route with an integration to a VPC Load
Balancer.

Now you're ready to test your API.

Step 6: Test your API

Next, you test your API to make sure that it's working. For simplicity, use a web browser to invoke
your API.

To test your API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

Private integration to Amazon ECS 230

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

2. Choose your API.

3. Note your API's invoke URL.

4. In a web browser, go to your API's invoke URL.

The full URL should look like https://abcdef123.execute-api.us-
east-2.amazonaws.com.

Your browser sends a GET request to the API.

5. Verify that your API's response is a welcome message that tells you that your app is running on
Amazon ECS.

If you see the welcome message, you successfully created an Amazon ECS service that runs in
an Amazon VPC, and you used an API Gateway HTTP API with a VPC link to access the Amazon
ECS service.

Step 7: Clean up

To prevent unnecessary costs, delete the resources that you created as part of this tutorial. The
following steps delete your VPC link, AWS CloudFormation stack, and HTTP API.

Private integration to Amazon ECS 231

Amazon API Gateway Developer Guide

To delete an HTTP API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. On the APIs page, select an API. Choose Actions, choose Delete, and then confirm your choice.

To delete a VPC link

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose VPC link.

3. Select your VPC link, choose Delete, and then confirm your choice.

To delete an AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Select your AWS CloudFormation stack.

3. Choose Delete and then confirm your choice.

Next steps: Automate with AWS CloudFormation

You can automate the creation and cleanup of all AWS resources involved in this tutorial. For a full
example AWS CloudFormation template, see template.yaml.

Amazon API Gateway WebSocket API tutorials

The following tutorials provide a hands-on exercise to help you learn about API Gateway
WebSocket APIs.

Topics

• Tutorial: Building a serverless chat app with a WebSocket API, Lambda and DynamoDB

• Tutorial: Building a serverless application with three integration types

WebSocket API tutorials 232

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/cloudformation/
samples/private-integration-full-template.zip

Amazon API Gateway Developer Guide

Tutorial: Building a serverless chat app with a WebSocket API, Lambda
and DynamoDB

In this tutorial, you'll create a serverless chat application with a WebSocket API. With a WebSocket
API, you can support two-way communication between clients. Clients can receive messages
without having to poll for updates.

This tutorial takes approximately 30 minutes to complete. First, you'll use an AWS CloudFormation
template to create Lambda functions that will handle API requests, as well as a DynamoDB table
that stores your client IDs. Then, you'll use the API Gateway console to create a WebSocket API that
integrates with your Lambda functions. Lastly, you'll test your API to verify that messages are sent
and received.

To complete this tutorial, you need an AWS account and an AWS Identity and Access Management
user with console access. For more information, see Prerequisites.

You also need wscat to connect to your API. For more information, see the section called “Use
wscat to connect to a WebSocket API and send messages to it”.

Topics

• Step 1: Create Lambda functions and a DynamoDB table

• Step 2: Create a WebSocket API

WebSocket chat app 233

Amazon API Gateway Developer Guide

• Step 3: Test your API

• Step 4: Clean up

• Next steps: Automate with AWS CloudFormation

Step 1: Create Lambda functions and a DynamoDB table

Download and unzip the app creation template for AWS CloudFormation. You'll use this template
to create a Amazon DynamoDB table to store your app's client IDs. Each connected client has
a unique ID which we will use as the table's partition key. This template also creates Lambda
functions that update your client connections in DynamoDB and handle sending messages to
connected clients.

To create an AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Choose Create stack and then choose With new resources (standard).

3. For Specify template, choose Upload a template file.

4. Select the template that you downloaded.

5. Choose Next.

6. For Stack name, enter websocket-api-chat-app-tutorial and then choose Next.

7. For Configure stack options, choose Next.

8. For Capabilities, acknowledge that AWS CloudFormation can create IAM resources in your
account.

9. Choose Submit.

AWS CloudFormation provisions the resources specified in the template. It can take a few minutes
to finish provisioning your resources. When the status of your AWS CloudFormation stack is
CREATE_COMPLETE, you're ready to move on to the next step.

Step 2: Create a WebSocket API

You'll create a WebSocket API to handle client connections and route requests to the Lambda
functions that you created in Step 1.

WebSocket chat app 234

samples/ws-chat-app-starter.zip
https://console.aws.amazon.com/cloudformation/

Amazon API Gateway Developer Guide

To create a WebSocket API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose Create API. Then for WebSocket API, choose Build.

3. For API name, enter websocket-chat-app-tutorial.

4. For Route selection expression, enter request.body.action. The route selection
expression determines the route that API Gateway invokes when a client sends a message.

5. Choose Next.

6. For Predefined routes, choose Add $connect, Add $disconnect, and Add $default. The
$connect and $disconnect routes are special routes that API Gateway invokes automatically
when a client connects to or disconnects from an API. API Gateway invokes the $default
route when no other routes match a request.

7. For Custom routes, choose Add custom route. For Route key, enter sendmessage. This
custom route handles messages that are sent to connected clients.

8. Choose Next.

9. Under Attach integrations, for each route and Integration type, choose Lambda.

For Lambda, choose the corresponding Lambda function that you created with AWS
CloudFormation in Step 1. Each function's name matches a route. For example, for
the $connect route, choose the function named websocket-chat-app-tutorial-
ConnectHandler.

10. Review the stage that API Gateway creates for you. By default, API Gateway creates a stage
name production and automatically deploys your API to that stage. Choose Next.

11. Choose Create and deploy.

Step 3: Test your API

Next, you'll test your API to make sure that it works correctly. Use the wscat command to connect
to the API.

To to get the invoke URL for your API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API.

3. Choose Stages, and then choose production.

WebSocket chat app 235

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

4. Note your API's WebSocket URL. The URL should look like wss://abcdef123.execute-
api.us-east-2.amazonaws.com/production.

To connect to your API

1. Use the following command to connect to your API. When you connect to your API, API
Gateway invokes the $connect route. When this route is invoked, it calls a Lambda function
that stores your connection ID in DynamoDB.

wscat -c wss://abcdef123.execute-api.us-west-2.amazonaws.com/production

Connected (press CTRL+C to quit)

2. Open a new terminal and run the wscat command again with the following parameters.

wscat -c wss://abcdef123.execute-api.us-west-2.amazonaws.com/production

Connected (press CTRL+C to quit)

This gives you two connected clients that can exchange messages.

To send a message

• API Gateway determines which route to invoke based on your API's route selection expression.
Your API's route selection expression is $request.body.action. As a result, API Gateway
invokes the sendmessage route when you send the following message:

{"action": "sendmessage", "message": "hello, everyone!"}

The Lambda function associated with the invoked route collects the client IDs from
DynamoDB. Then, the function calls the API Gateway Management API and sends the message
to those clients. All connected clients receive the following message:

< hello, everyone!

WebSocket chat app 236

Amazon API Gateway Developer Guide

To invoke your API's $default route

• API Gateway invokes your API's default route when a client sends a message that doesn't
match your defined routes. The Lambda function associated with the $default route uses the
API Gateway Management API to send the client information about their connection.

test

Use the sendmessage route to send a message. Your info:
 {"ConnectedAt":"2022-01-25T18:50:04.673Z","Identity":
{"SourceIp":"192.0.2.1","UserAgent":null},"LastActiveAt":"2022-01-25T18:50:07.642Z","connectionID":"Mg_ugfpqPHcCIVA="}

To disconnect from your API

• Press CTRL+C to disconnect from your API. When a client disconnects from your API, API
Gateway invokes your API's $disconnect route. The Lambda integration for your API's
$disconnect route removes the connection ID from DynamoDB.

Step 4: Clean up

To prevent unnecessary costs, delete the resources that you created as part of this tutorial. The
following steps delete your AWS CloudFormation stack and WebSocket API.

To delete a WebSocket API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. On the APIs page, select your websocket-chat-app-tutorial API. Choose Actions, choose
Delete, and then confirm your choice.

To delete an AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Select your AWS CloudFormation stack.

3. Choose Delete and then confirm your choice.

WebSocket chat app 237

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/cloudformation/

Amazon API Gateway Developer Guide

Next steps: Automate with AWS CloudFormation

You can automate the creation and cleanup of all of the AWS resources involved in this tutorial.
For an AWS CloudFormation template that creates this API and all related resources, see chat-
app.yaml.

Tutorial: Building a serverless application with three integration types

In this tutorial, you create a serverless broadcast application with a WebSocket API. Clients can
receive messages without having to poll for updates.

This tutorial shows how to broadcast messages to connected clients and includes an example of a
Lambda authorizer, a mock integration, and a non-proxy integration to Step Functions.

After you create your resources using a AWS CloudFormation template, you'll use the API Gateway
console to create a WebSocket API that integrates with your AWS resources. You'll attach a Lambda
authorizer to your API and create an AWS service integration with Step Functions to start a state
machine execution. The Step Functions state machine will invoke a Lambda function that sends a
message to all connected clients.

After you build your API, you'll test your connection to your API and verify that messages are sent
and received. This tutorial takes approximately 45 minutes to complete.

Topics

WebSocket Step Functions app 238

samples/ws-chat-app.zip
samples/ws-chat-app.zip

Amazon API Gateway Developer Guide

• Prerequisites

• Step 1: Create resources

• Step 2: Create a WebSocket API

• Step 3: Create a Lambda authorizer

• Step 4: Create a mock two-way integration

• Step 5: Create a non-proxy integration with Step Functions

• Step 6: Test your API

• Step 7: Clean up

• Next steps

Prerequisites

You need the following prerequisites:

• An AWS account and an AWS Identity and Access Management user with console access. For
more information, see Prerequisites.

• wscat to connect to your API. For more information, see the section called “Use wscat to
connect to a WebSocket API and send messages to it”.

We recommend that you complete the WebSocket chat app tutorial before you start this tutorial.
To complete the WebSocket chat app tutorial, see the section called “WebSocket chat app”.

Step 1: Create resources

Download and unzip the app creation template for AWS CloudFormation. You'll use this template
to create the following:

• Lambda functions that handle API requests and authorize access to your API.

• A DynamoDB table to store client IDs.

• A Step Functions state machine to send messages to connected clients.

To create an AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Choose Create stack and then choose With new resources (standard).

WebSocket Step Functions app 239

samples/ws-sfn-starter.zip
https://console.aws.amazon.com/cloudformation/

Amazon API Gateway Developer Guide

3. For Specify template, choose Upload a template file.

4. Select the template that you downloaded.

5. Choose Next.

6. For Stack name, enter websocket-step-functions-tutorial and then choose Next.

7. For Configure stack options, choose Next.

8. For Capabilities, acknowledge that AWS CloudFormation can create IAM resources in your
account.

9. Choose Submit.

AWS CloudFormation provisions the resources specified in the template. It can take a few minutes
to finish provisioning your resources. Choose the Outputs tab to see your created resources and
their ARNs. When the status of your AWS CloudFormation stack is CREATE_COMPLETE, you're
ready to move on to the next step.

Step 2: Create a WebSocket API

You'll create a WebSocket API to handle client connections and route requests to the resources that
you created in Step 1.

To create a WebSocket API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose Create API. Then for WebSocket API, choose Build.

3. For API name, enter websocket-step-functions-tutorial.

4. For Route selection expression, enter request.body.action.

The route selection expression determines the route that API Gateway invokes when a client
sends a message.

5. Choose Next.

6. For Predefined routes, choose Add $connect, Add $disconnect, Add $default.

The $connect and $disconnect routes are special routes that API Gateway invokes
automatically when a client connects to or disconnects from an API. API Gateway invokes
the $default route when no other routes match a request. You will create a custom route to
connect to Step Functions after you create your API.

7. Choose Next.

WebSocket Step Functions app 240

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

8. For Integration for $connect, do the following:

a. For Integration type, choose Lambda.

b. For Lambda function, choose the corresponding $connect Lambda function that you
created with AWS CloudFormation in Step 1. The Lambda function name should start with
websocket-step.

9. For Integration for $disconnect, do the following:

a. For Integration type, choose Lambda.

b. For Lambda function, choose the corresponding $disconnect Lambda function that you
created with AWS CloudFormation in Step 1. The Lambda function name should start with
websocket-step.

10. For Integration for $default, choose mock.

In a mock integration, API Gateway manages the route response without an integration
backend.

11. Choose Next.

12. Review the stage that API Gateway creates for you. By default, API Gateway creates a stage
named production and automatically deploys your API to that stage. Choose Next.

13. Choose Create and deploy.

Step 3: Create a Lambda authorizer

To control access to your WebSocket API, you create a Lambda authorizer. The AWS
CloudFormation template created the Lambda authorizer function for you. You can see the
Lambda function in the Lambda console. The name should start with websocket-step-
functions-tutorial-AuthorizerHandler. This Lambda function denies all calls to the
WebSocket API unless the Authorization header is Allow.

In this step, you configure the $connect route to use the Lambda authorizer.

To create a Lambda authorizer

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the main navigation pane, choose Authorizers.

3. Choose Create an authorizer.

WebSocket Step Functions app 241

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

4. For Authorizer name, enter LambdaAuthorizer.

5. For Authorizer ARN, enter the name of the authorizer created by the AWS CloudFormation
template. The name should start with websocket-step-functions-tutorial-
AuthorizerHandler.

Note

We recommend that you don't use this example authorizer for your production APIs.

6. For Identity source type, choose Header. For Key, enter Authorization.

7. Choose Create authorizer.

After you create your authorizer, you attach it to the $connect route of your API.

To attach an authorizer to the $connect route

1. In the main navigation pane, choose Routes.

2. Choose the $connect route.

3. In the Route request settings section, choose Edit.

4. For Authorization, choose the dropdown menu, and then select your request authorizer.

5. Choose Save changes.

Step 4: Create a mock two-way integration

Next, you create the two-way mock integration for the $default route. A mock integration lets
you send a response to the client without using a backend. When you create an integration for the
$default route, you can show clients how to interact with your API.

You configure the $default route to inform clients to use the sendmessage route.

To create a mock integration

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose the $default route, and then choose the Integration request tab.

3. For Request templates, choose Edit.

4. For Template selection expression, enter 200, and then choose Edit.

WebSocket Step Functions app 242

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

5. On the Integration request tab, for Request templates, choose Create template.

6. For Template key, enter 200.

7. For Generate template, enter the following mapping template:

{"statusCode": 200}

Choose Create template.

The result should look like the following:

WebSocket Step Functions app 243

Amazon API Gateway Developer Guide

8. The the $default route pane, choose Enable two-way communication.

9. Choose the Integration response tab, and then choose Create integration response.

10. For Response key, enter $default.

11. For Template selection expression, enter 200.

12. Choose Create response.

13. Under Response templates, choose Create template.

WebSocket Step Functions app 244

Amazon API Gateway Developer Guide

14. For Template key, enter 200.

15. For Response template, enter the following mapping template:

{"Use the sendmessage route to send a message. Connection ID:
 $context.connectionId"}

16. Choose Create template.

The result should look like the following:

WebSocket Step Functions app 245

Amazon API Gateway Developer Guide

Step 5: Create a non-proxy integration with Step Functions

Next, you create a sendmessage route. Clients can invoke the sendmessage route to broadcast a
message to all connected clients. The sendmessage route has a non-proxy AWS service integration

WebSocket Step Functions app 246

Amazon API Gateway Developer Guide

with AWS Step Functions. The integration invokes the StartExecution command for the Step
Functions state machine that the AWS CloudFormation template created for you.

To create a non-proxy integration

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose Create route.

3. For Route key, enter sendmessage.

4. For Integration type, choose AWS service.

5. For AWS Region, enter the Region where you deployed your AWS CloudFormation template.

6. For AWS service, choose Step Functions.

7. For HTTP method, choose POST.

8. For Action name, enter StartExecution.

9. For Execution role, enter the execution role created by the AWS CloudFormation template.
The name should be WebsocketTutorialApiRole.

10. Choose Create route.

Next, you create a mapping template to send request parameters to the Step Functions state
machine.

To create a mapping template

1. Choose the sendmessage route, and then choose the Integration request tab.

2. In the Request templates section, choose Edit.

3. For Template selection expression, enter \$default.

4. Choose Edit.

5. In the Request templates section, choose Create template.

6. For Template key, enter \$default.

7. For Generate template, enter the following mapping template:

#set($domain = "$context.domainName")
#set($stage = "$context.stage")
#set($body = $input.json('$'))
#set($getMessage = $util.parseJson($body))
#set($mymessage = $getMessage.message)

WebSocket Step Functions app 247

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

{
"input": "{\"domain\": \"$domain\", \"stage\": \"$stage\", \"message\":
 \"$mymessage\"}",
"stateMachineArn": "arn:aws:states:us-east-2:123456789012:stateMachine:WebSocket-
Tutorial-StateMachine"
}

Replace the stateMachineArn with the ARN of the state machine created by AWS
CloudFormation.

The mapping template does the following:

• Creates the variable $domain using the context variable domainName.

• Creates the variable $stage using the context variable stage.

The $domain and $stage variables are required to build a callback URL.

• Takes in the incoming sendmessage JSON message, and extracts the message property.

• Creates the input for the state machine. The input is the domain and stage of the WebSocket
API and the message from the sendmessage route.

8. Choose Create template.

WebSocket Step Functions app 248

Amazon API Gateway Developer Guide

Step 6: Test your API

Next, you'll deploy and test your API to make sure that it works correctly. You will use the wscat
command to connect to the API and then, you will use a slash command to send a ping frame to
check the connection to the WebSocket API.

To deploy your API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the main navigation pane, choose Routes.

3. Choose Deploy API.

4. For Stage, choose production.

5. (Optional) For Deployment description, enter a description.

WebSocket Step Functions app 249

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

6. Choose Deploy.

After you deploy your API, you can invoke it. Use the invoke URL to call your API.

To get the invoke URL for your API

1. Choose your API.

2. Choose Stages, and then choose production.

3. Note your API's WebSocket URL. The URL should look like wss://abcdef123.execute-
api.us-east-2.amazonaws.com/production.

Now that you have your invoke URL, you can test the connection to your WebSocket API.

To test the connection to your API

1. Use the following command to connect to your API. First, you test the connection by invoking
the /ping path.

wscat -c wss://abcdef123.execute-api.us-east-2.amazonaws.com/production -H
 "Authorization: Allow" --slash -P

Connected (press CTRL+C to quit)

2. Enter the following command to ping the control frame. You can use a control frame for
keepalive purposes from the client side.

/ping

The result should look like the following:

< Received pong (data: "")

Now that you have tested the connection, you can test that your API works correctly. In this step,
you open a new terminal window so the WebSocket API can send a message to all connected
clients.

WebSocket Step Functions app 250

Amazon API Gateway Developer Guide

To test your API

1. Open a new terminal and run the wscat command again with the following parameters.

wscat -c wss://abcdef123.execute-api.us-east-2.amazonaws.com/production -H
 "Authorization: Allow"

Connected (press CTRL+C to quit)

2. API Gateway determines which route to invoke based on your API's route request selection
expression. Your API's route select expression is $request.body.action. As a result, API
Gateway invokes the sendmessage route when you send the following message:

{"action": "sendmessage", "message": "hello, from Step Functions!"}

The Step Functions state machine associated with the route invokes a Lambda function with
the message and the callback URL. The Lambda function calls the API Gateway Management
API and sends the message to all connected clients. All clients receive the following message:

< hello, from Step Functions!

Now that you have tested your WebSocket API, you can disconnect from your API.

To disconnect from your API

• Press CTRL+Cto disconnect from your API.

When a client disconnects from your API, API Gateway invokes your API's $disconnect route.
The Lambda integration for your API's $disconnect route removes the connection ID from
DynamoDB.

Step 7: Clean up

To prevent unnecessary costs, delete the resources that you created as part of this tutorial. The
following steps delete your AWS CloudFormation stack and WebSocket API.

WebSocket Step Functions app 251

Amazon API Gateway Developer Guide

To delete a WebSocket API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. On the APIs page, select your websocket-api.

3. Choose Actions, choose Delete, and then confirm your choice.

To delete an AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Select your AWS CloudFormation stack.

3. Choose Delete and then confirm your choice.

Next steps

You can automate the creation and cleanup of all the AWS resources involved in this tutorial. For
an example of an AWS CloudFormation template that automates these actions for this tutorial, see
ws-sfn.zip.

WebSocket Step Functions app 252

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/cloudformation/
samples/ws-sfn-complete.zip

Amazon API Gateway Developer Guide

Working with REST APIs

A REST API in API Gateway is a collection of resources and methods that are integrated with
backend HTTP endpoints, Lambda functions, or other AWS services. You can use API Gateway
features to help you with all aspects of the API lifecycle, from creation through monitoring your
production APIs.

API Gateway REST APIs use a request/response model where a client sends a request to a service
and the service responds back synchronously. This kind of model is suitable for many different
kinds of applications that depend on synchronous communication.

Topics

• Developing a REST API in API Gateway

• Publishing REST APIs for customers to invoke

• Optimizing performance of REST APIs

• Distributing your REST API to clients

• Protecting your REST API

• Monitoring REST APIs

Developing a REST API in API Gateway

This section provides details about API Gateway capabilities that you need while you're developing
your API Gateway APIs.

As you're developing your API Gateway API, you decide on a number of characteristics of your API.
These characteristics depend on the use case of your API. For example, you might want to only
allow certain clients to call your API, or you might want it to be available to everyone. You might
want an API call to execute a Lambda function, make a database query, or call an application.

Topics

• Creating a REST API in Amazon API Gateway

• Controlling and managing access to a REST API in API Gateway

• Setting up REST API integrations

• Use request validation in API Gateway

• Setting up data transformations for REST APIs

Develop 253

Amazon API Gateway Developer Guide

• Gateway responses in API Gateway

• Enabling CORS for a REST API resource

• Working with binary media types for REST APIs

• Invoking a REST API in Amazon API Gateway

• Configuring a REST API using OpenAPI

Creating a REST API in Amazon API Gateway

In Amazon API Gateway, you build a REST API as a collection of programmable entities known
as API Gateway resources. For example, you use a RestApi resource to represent an API that
can contain a collection of Resource entities. Each Resource entity can in turn have one or
more Method resources. Expressed in the request parameters and body, a Method defines the
application programming interface for the client to access the exposed Resource and represents
an incoming request submitted by the client. You then create an Integration resource to
integrate the Method with a backend endpoint, also known as the integration endpoint, by
forwarding the incoming request to a specified integration endpoint URI. If necessary, you
transform request parameters or body to meet the backend requirements. For responses, you can
create a MethodResponse resource to represent a request response received by the client and you
create an IntegrationResponse resource to represent the request response that is returned by
the backend. You can configure the integration response to transform the backend response data
before returning the data to the client or to pass the backend response as-is to the client.

To help your customers understand your API, you can also provide documentation for the API, as
part of the API creation or after the API is created. To enable this, add a DocumentationPart
resource for a supported API entity.

To control how clients call an API, use IAM permissions, a Lambda authorizer, or an Amazon
Cognito user pool. To meter the use of your API, set up usage plans to throttle API requests. You
can enable these when creating or updating the API.

You can perform these and other tasks by using the API Gateway console, the API Gateway REST
API, the AWS CLI, or one of the AWS SDKs. We discuss how to perform these tasks next.

Topics

• Choose an endpoint type to set up for an API Gateway API

• Initialize REST API setup in API Gateway

Create and configure 254

https://docs.aws.amazon.com/apigateway/latest/api/API_Resource.html
https://docs.aws.amazon.com/apigateway/latest/api/API_RestApi.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Resource.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Method.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html
https://docs.aws.amazon.com/apigateway/latest/api/API_MethodResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_IntegrationResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html

Amazon API Gateway Developer Guide

• Set up REST API methods in API Gateway

Choose an endpoint type to set up for an API Gateway API

An API endpoint type refers to the hostname of the API. The API endpoint type can be edge-
optimized, regional, or private, depending on where the majority of your API traffic originates from.

Edge-optimized API endpoints

An edge-optimized API endpoint typically routes requests to the nearest CloudFront Point of
Presence (POP), which could help in cases where your clients are geographically distributed. This is
the default endpoint type for API Gateway REST APIs.

Edge-optimized APIs capitalize the names of HTTP headers (for example, Cookie).

CloudFront sorts HTTP cookies in natural order by cookie name before forwarding the request
to your origin. For more information about the way CloudFront processes cookies, see Caching
Content Based on Cookies.

Any custom domain name that you use for an edge-optimized API applies across all regions.

Regional API endpoints

A regional API endpoint is intended for clients in the same region. When a client running on an EC2
instance calls an API in the same region, or when an API is intended to serve a small number of
clients with high demands, a regional API reduces connection overhead.

For a regional API, any custom domain name that you use is specific to the region where the API
is deployed. If you deploy a regional API in multiple regions, it can have the same custom domain
name in all regions. You can use custom domains together with Amazon Route 53 to perform tasks
such as latency-based routing. For more information, see the section called “Setting up a regional
custom domain name” and the section called “Creating an edge-optimized custom domain name”.

Regional API endpoints pass all header names through as-is.

Private API endpoints

A private API endpoint is an API endpoint that can only be accessed from your Amazon Virtual
Private Cloud (VPC) using an interface VPC endpoint, which is an endpoint network interface (ENI)
that you create in your VPC. For more information, see the section called “Private APIs”.

Create and configure 255

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Cookies.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Cookies.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html#routing-policy-latency

Amazon API Gateway Developer Guide

Private API endpoints pass all header names through as-is.

Change a public or private API endpoint type in API Gateway

Changing an API endpoint type requires you to update the API's configuration. You can change an
existing API type using the API Gateway console, the AWS CLI, or an AWS SDK for API Gateway. The
endpoint type cannot be changed again until the current change is completed, but your API will be
available.

The following endpoint type changes are supported:

• From edge-optimized to regional or private

• From regional to edge-optimized or private

• From private to regional

You cannot change a private API into an edge-optimized API.

If you are changing a public API from edge-optimized to regional or vice versa, note that an
edge-optimized API may have different behaviors than a regional API. For example, an edge-
optimized API removes the Content-MD5 header. Any MD5 hash value passed to the backend can
be expressed in a request string parameter or a body property. However, the regional API passes
this header through, although it may remap the header name to some other name. Understanding
the differences helps you decide how to update an edge-optimized API to a regional one or from a
regional API to an edge-optimized one.

Topics

• Use the API Gateway console to change an API endpoint type

• Use the AWS CLI to change an API endpoint type

Use the API Gateway console to change an API endpoint type

To change the API endpoint type of your API, perform one of the following sets of steps:

To convert a public endpoint from Regional or edge-optimized and vice versa

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose a REST API.

Create and configure 256

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

3. Choose API settings.

4. In the API details section, choose Edit.

5. For API endpoint type, select either Edge-optimized or Regional.

6. Choose Save changes.

7. Redeploy your API so that the changes will take effect.

To convert a private endpoint to a regional endpoint

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose a REST API.

3. Edit the resource policy for your API to remove any mention of VPCs or VPC endpoints so that
API calls from outside your VPC as well as inside your VPC will succeed.

4. Choose API settings.

5. In the API details section, choose Edit.

6. For API endpoint type, select Regional.

7. Choose Save changes to start the update.

8. Remove the resource policy from your API.

9. Redeploy your API so that the changes will take effect.

Use the AWS CLI to change an API endpoint type

To use the AWS CLI to update an edge-optimized API whose API ID is {api-id}, call update-rest-
api as follows:

aws apigateway update-rest-api \
 --rest-api-id {api-id} \
 --patch-operations op=replace,path=/endpointConfiguration/types/EDGE,value=REGIONAL

The successful response has a status code of 200 OK and a payload similar to the following:

{

 "createdDate": "2017-10-16T04:09:31Z",
 "description": "Your first API with Amazon API Gateway. This is a sample API that
 integrates via HTTP with our demo Pet Store endpoints",

Create and configure 257

https://console.aws.amazon.com/apigateway
https://docs.aws.amazon.com/cli/latest/reference/apigateway/update-rest-api.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/update-rest-api.html

Amazon API Gateway Developer Guide

 "endpointConfiguration": {
 "types": "REGIONAL"
 },
 "id": "0gsnjtjck8",
 "name": "PetStore imported as edge-optimized"
}

Conversely, update a regional API to an edge-optimized API as follows:

aws apigateway update-rest-api \
 --rest-api-id {api-id} \
 --patch-operations op=replace,path=/endpointConfiguration/types/REGIONAL,value=EDGE

Because put-rest-api is for updating API definitions, it is not applicable to updating an API endpoint
type.

Initialize REST API setup in API Gateway

You can create a REST API using the API Gateway console, the API Gateway REST API, the AWS
SDKs for API Gateway, and the AWS Command Line Interface.

When you create a REST API using the API Gateway REST API, the AWS SDKs for API Gateway, or
the AWS Command Line Interface, the default configuration is an edge-optimized API. For more
information about API endpoint types, see the section called “Choose an API endpoint type”.

When you deploy your API to a stage, your API Gateway creates a default URL for your API. For
more information about the default URL, see the section called “Deploying a REST API”. You can
assign a custom domain name (for example, apis.example.com) as the API's host name and
call the API with a base URL of the https://apis.example.com/myApi format. For more
information about custom domain names, see the section called “Custom domain names”.

We recommend that you use one of the following examples to learn how to create a REST API.

Topics

• Set up an API using the API Gateway console

• Set up an edge-optimized API using AWS CLI commands

• Set up an edge-optimized API using the AWS SDK for Node.js

• Set up an edge-optimized API by importing OpenAPI definitions

Create and configure 258

https://docs.aws.amazon.com/cli/latest/reference/apigateway/put-rest-api.html

Amazon API Gateway Developer Guide

• Set up a Regional API in API Gateway

Set up an API using the API Gateway console

We recommend that you choose from the following tutorials to learn how to create a REST API
Gateway using the REST API Gateway console.

To create a REST API that passes an event to a Lambda function, choose the section called “Getting
started with the REST API console”.

To create a REST API where you configure the integration request payload to a Lambda function,
choose the section called “Tutorial: Build an API with Lambda non-proxy integration”.

To create a REST API that has an integration with an HTTP endpoint, choose the section called
“Tutorial: Build a REST API with HTTP proxy integration”.

To create a REST API that where you configure the integration request to an HTTP endpoint,
choose the section called “Tutorial: Build an API with HTTP non-proxy integration”.

To import an example API, choose the section called “Tutorial: Create a REST API by importing an
example”.

Alternatively, you can set up an API by using the API Gateway Import API feature to upload an
external API definition, such as one expressed in OpenAPI 2.0 with the Working with API Gateway
extensions to OpenAPI. The example provided in Tutorial: Create a REST API by importing an
example uses the Import API feature.

Set up an edge-optimized API using AWS CLI commands

Setting up an API using the AWS CLI requires working with the create-rest-api, create-
resource or get-resources, put-method, put-method-response, put-integration, and
put-integration-response commands. The following procedures show how to work with
these AWS CLI commands to create the simple PetStore API of the HTTP integration type.

To create a simple PetStore API using AWS CLI

1. Call the create-rest-api command to set up the RestApi in a specific region (us-
west-2).

aws apigateway create-rest-api --name 'Simple PetStore (AWS CLI)' --region us-
west-2

Create and configure 259

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://docs.aws.amazon.com/cli/latest/reference/apigateway/create-rest-api.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/create-resource.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/create-resource.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/get-resources.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/put-method.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/put-method-response.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/put-integration.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/put-integration-response.html

Amazon API Gateway Developer Guide

The following is the output of this command:

{
 "id": "vaz7da96z6",
 "name": "Simple PetStore (AWS CLI)",
 "createdDate": "2022-12-15T08:07:04-08:00",
 "apiKeySource": "HEADER",
 "endpointConfiguration": {
 "types": [
 "EDGE"
]
 },
 "disableExecuteApiEndpoint": false
}

Note the returned id of the newly created RestApi. You need it to set up other parts of the
API.

2. Call the get-resources command to retrieve the root resource identifier of the RestApi.

aws apigateway get-resources --rest-api-id vaz7da96z6 --region us-west-2

The following is the output of this command:

{
 "items": [
 {
 "id": "begaltmsm8",
 "path": "/"
 }
]
}

Note the root resource Id. You need it to start setting the API's resource tree and configuring
methods and integrations.

3. Call the create-resource command to append a child resource (pets) under the root
resource (begaltmsm8):

aws apigateway create-resource --rest-api-id vaz7da96z6 \
 --region us-west-2 \

Create and configure 260

Amazon API Gateway Developer Guide

 --parent-id begaltmsm8 \
 --path-part pets

The following is the output of this command:

{
 "id": "6sxz2j",
 "parentId": "begaltmsm8",
 "pathPart": "pets",
 "path": "/pets"
}

To append a child resource under the root, you specify the root resource Id as the parentId
property value. Similarly, to append a child resource under the pets resource, you repeat the
preceding step while replacing the parent-id value with the pets resource id of 6sxz2j:

aws apigateway create-resource --rest-api-id vaz7da96z6 \
 --region us-west-2 \
 --parent-id 6sxz2j \
 --path-part '{petId}'

To make a path part a path parameter, enclose it in a pair of curly brackets. If successful, this
command returns the following response:

{
 "id": "rjkmth",
 "parentId": "6sxz2j",
 "path": "/pets/{petId}",
 "pathPart": "{petId}"
}

Now that you created two resources: /pets (6sxz2j) and /pets/{petId} (rjkmth), you can
proceed to set up methods on them.

4. Call the put-method command to add the GET HTTP method on the /pets resource. This
creates an API Method of GET /pets with open access, referencing the /pets resource by its
ID value of 6sxz2j.

aws apigateway put-method --rest-api-id vaz7da96z6 \
 --resource-id 6sxz2j \

Create and configure 261

Amazon API Gateway Developer Guide

 --http-method GET \
 --authorization-type "NONE" \
 --region us-west-2

The following is the successful output of this command:

{
 "httpMethod": "GET",
 "authorizationType": "NONE",
 "apiKeyRequired": false
}

The method is for open access because authorization-type is set to NONE. To permit
only authenticated users to call the method, you can use IAM roles and policies, a Lambda
authorizer (formerly known as a custom authorizer), or an Amazon Cognito user pool. For more
information, see the section called “Access control”.

To enable read access to the /pets/{petId} resource (rjkmth), add the GET HTTP method
on it to create an API Method of GET /pets/{petId} as follows.

aws apigateway put-method --rest-api-id vaz7da96z6 \
 --resource-id rjkmth --http-method GET \
 --authorization-type "NONE" \
 --region us-west-2 \
 --request-parameters method.request.path.petId=true

The following is the successful output of this command:

{
 "httpMethod": "GET",
 "authorizationType": "NONE",
 "apiKeyRequired": false,
 "requestParameters": {
 "method.request.path.petId": true
 }
}

Note that the method request path parameter of petId must be specified as a required
request parameter for its dynamically set value to be mapped to a corresponding integration
request parameter and passed to the backend.

Create and configure 262

Amazon API Gateway Developer Guide

5. Call the put-method-response command to set up the 200 OK response of the GET /pets
method, specifying the /pets resource by its ID value of 6sxz2j.

aws apigateway put-method-response --rest-api-id vaz7da96z6 \
 --resource-id 6sxz2j --http-method GET \
 --status-code 200 --region us-west-2

The following is the output of this command:

{
 "statusCode": "200"
}

Similarly, to set the 200 OK response of the GET /pets/{petId} method, do the following,
specifying the /pets/{petId} resource by its resource ID value of rjkmth:

aws apigateway put-method-response --rest-api-id vaz7da96z6 \
 --resource-id rjkmth --http-method GET \
 --status-code 200 --region us-west-2

Having set up a simple client interface for the API, you can proceed to set up the integration of
the API methods with the backend.

6. Call the put-integration command to set up an Integration with a specified HTTP
endpoint for the GET /pets method. The /pets resource is identified by its resource Id
6sxz2j:

aws apigateway put-integration --rest-api-id vaz7da96z6 \
 --resource-id 6sxz2j --http-method GET --type HTTP \
 --integration-http-method GET \
 --uri 'http://petstore-demo-endpoint.execute-api.com/petstore/pets' \
 --region us-west-2

The following is the output of this command:

{
 "type": "HTTP",
 "httpMethod": "GET",
 "uri": "http://petstore-demo-endpoint.execute-api.com/petstore/pets",
 "connectionType": "INTERNET",

Create and configure 263

Amazon API Gateway Developer Guide

 "passthroughBehavior": "WHEN_NO_MATCH",
 "timeoutInMillis": 29000,
 "cacheNamespace": "6sxz2j",
 "cacheKeyParameters": []
}

Notice that the integration uri of http://petstore-demo-endpoint.execute-
api.com/petstore/pets specifies the integration endpoint of the GET /pets method.

Similarly, you create an integration request for the GET /pets/{petId} method as follows:

aws apigateway put-integration \
 --rest-api-id vaz7da96z6 \
 --resource-id rjkmth \
 --http-method GET \
 --type HTTP \
 --integration-http-method GET \
 --uri 'http://petstore-demo-endpoint.execute-api.com/petstore/pets/{id}' \
 --request-parameters
 '{"integration.request.path.id":"method.request.path.petId"}' \
 --region us-west-2

Here, the integration endpoint, uri of http://petstore-demo-endpoint.execute-
api.com/petstore/pets/{id}, also uses a path parameter (id). Its value is mapped from
the corresponding method request path parameter of {petId}. The mapping is defined as
part of the request-parameters. If this mapping is not defined here, the client gets an error
response when trying to call the method.

The following is the output of this command:

{
 "type": "HTTP",
 "httpMethod": "GET",
 "uri": "http://petstore-demo-endpoint.execute-api.com/petstore/pets/{id}",
 "connectionType": "INTERNET",
 "requestParameters": {
 "integration.request.path.id": "method.request.path.petId"
 },
 "passthroughBehavior": "WHEN_NO_MATCH",
 "timeoutInMillis": 29000,
 "cacheNamespace": "rjkmth",

Create and configure 264

Amazon API Gateway Developer Guide

 "cacheKeyParameters": []
}

7. Call the put-integration-response command to create an IntegrationResponse of
the GET /pets method integrated with an HTTP backend.

aws apigateway put-integration-response --rest-api-id vaz7da96z6 \
 --resource-id 6sxz2j --http-method GET \
 --status-code 200 --selection-pattern "" \
 --region us-west-2

The following is the output of this command:

{
 "statusCode": "200",
 "selectionPattern": ""
}

Similarly, call the following put-integration-response command to create an
IntegrationResponse of the GET /pets/{petId} method:

aws apigateway put-integration-response --rest-api-id vaz7da96z6 \
 --resource-id rjkmth --http-method GET
 --status-code 200 --selection-pattern ""
 --region us-west-2

With the preceding steps, you finished setting up a simple API that allows your customers
to query available pets on the PetStore website and to view an individual pet of a specified
identifier. To make it callable by your customer, you must deploy the API.

8. Deploy the API to a stage stage, for example, by calling create-deployment:

aws apigateway create-deployment --rest-api-id vaz7da96z6 \
 --region us-west-2 \
 --stage-name test \
 --stage-description 'Test stage' \
 --description 'First deployment'

The following is the output of this command:

Create and configure 265

Amazon API Gateway Developer Guide

{
 "id": "ab1c1d",
 "description": "First deployment",
 "createdDate": "2022-12-15T08:44:13-08:00"
}

You can test this API by typing the https://vaz7da96z6.execute-api.us-
west-2.amazonaws.com/test/pets URL in a browser, and substituting vaz7da96z6 with the
identifier of your API. The expected output should be as follows:

[
 {
 "id": 1,
 "type": "dog",
 "price": 249.99
 },
 {
 "id": 2,
 "type": "cat",
 "price": 124.99
 },
 {
 "id": 3,
 "type": "fish",
 "price": 0.99
 }
]

To test the GET /pets/{petId} method, type https://vaz7da96z6.execute-api.us-
west-2.amazonaws.com/test/pets/3 in the browser. You should receive the following
response:

{
 "id": 3,
 "type": "fish",
 "price": 0.99
}

Create and configure 266

Amazon API Gateway Developer Guide

Set up an edge-optimized API using the AWS SDK for Node.js

As an illustration, we use AWS SDK for Node.js to describe how you can use an AWS SDK to
create an API Gateway API. For more information using an AWS SDK, including how to set up the
development environment, see AWS SDKs.

Setting up an API using the AWS SDK for Node.js involves calling the createRestApi,
createResource or getResources, putMethod, putMethodResponse, putIntegration, and
putIntegrationResponse functions.

The following procedures walk you through the essential steps to use these SDK commands to set
up a simple PetStore API supporting the GET /pets and GET /pets/{petId} methods.

To set up a simple PetStore API using the AWS SDK for Node.js

1. Instantiate the SDK:

var AWS = require('aws-sdk');

AWS.config.region = 'us-west-2';
var apig = new AWS.APIGateway({apiVersion: '2015/07/09'});

2. Call the createRestApi function to set up the RestApi entity.

apig.createRestApi({
 name: "Simple PetStore (node.js SDK)",
 binaryMediaTypes: [
 '*'
],
 description: "Demo API created using the AWS SDK for node.js",
 version: "0.00.001"
}, function(err, data){
 if (!err) {
 console.log(data);
 } else {
 console.log('Create API failed:\n', err);
 }
});

The function returns an output similar to the following result:

{

Create and configure 267

https://aws.amazon.com/tools/
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/APIGateway.html#createRestApi-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/APIGateway.html#createResource-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/APIGateway.html#getResources-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/APIGateway.html#putMethod-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/APIGateway.html#putMethodResponse-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/APIGateway.html#putIntegration-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/APIGateway.html#putIntegrationResponse-property

Amazon API Gateway Developer Guide

 id: 'iuo308uaq7',
 name: 'PetStore (node.js SDK)',
 description: 'Demo API created using the AWS SDK for node.js',
 createdDate: 2017-09-05T19:32:35.000Z,
 version: '0.00.001',
 binaryMediaTypes: ['*']
}

The resulting API's identifier is iuo308uaq7. You need to supply this to continue the setup of
the API.

3. Call the getResources function to retrieve the root resource identifier of the RestApi.

apig.getResources({
 restApiId: 'iuo308uaq7'
}, function(err, data){
 if (!err) {
 console.log(data);
 } else {
 console.log('Get the root resource failed:\n', err);
 }
})

This function returns an output similar to the following result:

{
 "items": [
 {
 "path": "/",
 "id": "s4fb0trnk0"
 }
]
}

The root resource identifier is s4fb0trnk0. This is the starting point for you to build the API
resource tree, which you do next.

4. Call the createResource function to set up the /pets resource for the API, specifying the
root resource identifier (s4fb0trnk0) on the parentId property.

apig.createResource({
 restApiId: 'iuo308uaq7',

Create and configure 268

Amazon API Gateway Developer Guide

 parentId: 's4fb0trnk0',
 pathPart: 'pets'
}, function(err, data){
 if (!err) {
 console.log(data);
 } else {
 console.log("The '/pets' resource setup failed:\n", err);
 }
})

The successful result is as follows:

{
 "path": "/pets",
 "pathPart": "pets",
 "id": "8sxa2j",
 "parentId": "s4fb0trnk0'"
}

To set up the /pets/{petId} resource, call the following createResource function,
specifying the newly created /pets resource (8sxa2j) on the parentId property.

apig.createResource({
 restApiId: 'iuo308uaq7',
 parentId: '8sxa2j',
 pathPart: '{petId}'
}, function(err, data){
 if (!err) {
 console.log(data);
 } else {
 console.log("The '/pets/{petId}' resource setup failed:\n", err);
 }
})

The successful result returns the newly created resource id value:

{
 "path": "/pets/{petId}",
 "pathPart": "{petId}",
 "id": "au5df2",
 "parentId": "8sxa2j"

Create and configure 269

Amazon API Gateway Developer Guide

}

Throughout this procedure, you refer to the /pets resource by specifying its resource ID of
8sxa2j, and the /pets/{petId} resource by specifying its resource ID of au5df2.

5. Call the putMethod function to add the GET HTTP method on the /pets resource (8sxa2j).
This sets up the GET /pets Method with open access.

apig.putMethod({
 restApiId: 'iuo308uaq7',
 resourceId: '8sxa2j',
 httpMethod: 'GET',
 authorizationType: 'NONE'
}, function(err, data){
 if (!err) {
 console.log(data);
 } else {
 console.log("The 'GET /pets' method setup failed:\n", err);
 }
})

This function returns an output similar to the following result:

{
 "apiKeyRequired": false,
 "httpMethod": "GET",
 "authorizationType": "NONE"
}

To add the GET HTTP method on the /pets/{petId} resource (au5df2), which sets up
the API method of GET /pets/{petId} with open access, call the putMethod function as
follows.

apig.putMethod({
 restApiId: 'iuo308uaq7',
 resourceId: 'au5df2',
 httpMethod: 'GET',
 authorizationType: 'NONE',
 requestParameters: {
 "method.request.path.petId" : true
 }

Create and configure 270

Amazon API Gateway Developer Guide

}, function(err, data){
 if (!err) {
 console.log(data);
 } else {
 console.log("The 'GET /pets/{petId}' method setup failed:\n", err);
 }
})

This function returns an output similar to the following result:

{
 "apiKeyRequired": false,
 "httpMethod": "GET",
 "authorizationType": "NONE",
 "requestParameters": {
 "method.request.path.petId": true
 }
}

You need to set the requestParameters property as shown in the preceding example to
map and pass the client-supplied petId value to the backend.

6. Call the putMethodResponse function to set up a method response for the GET /pets
method.

apig.putMethodResponse({
 restApiId: 'iuo308uaq7',
 resourceId: "8sxa2j",
 httpMethod: 'GET',
 statusCode: '200'
}, function(err, data){
 if (!err) {
 console.log(data);
 } else {
 console.log("Set up the 200 OK response for the 'GET /pets' method failed:\n",
 err);
 }

})

This function returns an output similar to the following result:

Create and configure 271

Amazon API Gateway Developer Guide

{
 "statusCode": "200"
}

To set the 200 OK response of the GET /pets/{petId} method, call the
putMethodResponse function, specifying the /pets/{petId} resource identifier (au5df2)
on the resourceId property.

apig.putMethodResponse({
 restApiId: 'iuo308uaq7',
 resourceId: "au5df2",
 httpMethod: 'GET',
 statusCode: '200'
}, function(err, data){
 if (!err) {
 console.log(data);
 } else {
 console.log("Set up the 200 OK response for the 'GET /pets/{petId}' method
 failed:\n", err);
 }

})

7. Call the putIntegration function to set up the Integration with a specified HTTP
endpoint for the GET /pets method, supplying the /pets resource identifier (8sxa2j) on
the parentId property.

apig.putIntegration({
 restApiId: 'iuo308uaq7',
 resourceId: '8sxa2j',
 httpMethod: 'GET',
 type: 'HTTP',
 integrationHttpMethod: 'GET',
 uri: 'http://perstore-demo-endpoint.execute-api.com/pets'
}, function(err, data){
 if (!err) {
 console.log(data);
 } else {
 console.log("Set up the integration of the 'GET /' method of the API failed:\n",
 err);
 }

Create and configure 272

Amazon API Gateway Developer Guide

})

This function returns an output similar the following:

{
 "httpMethod": "GET",
 "passthroughBehavior": "WHEN_NO_MATCH",
 "cacheKeyParameters": [],
 "type": "HTTP",
 "uri": "http://petstore-demo-endpoint.execute-api.com/petstore/pets",
 "cacheNamespace": "8sxa2j"
}

To set up the integration of the GET /pets/{petId} method with the HTTP endpoint of
http://perstore-demo-endpoint.execute-api.com/pets/{id} of the backend,
call the following putIntegration function, supplying the API's /pets/{petId} resource
identifier (au5df2) on the parentId property.

apig.putIntegration({
 restApiId: 'iuo308uaq7',
 resourceId: 'au5df2',
 httpMethod: 'GET',
 type: 'HTTP',
 integrationHttpMethod: 'GET',
 uri: 'http://perstore-demo-endpoint.execute-api.com/pets/{id}',
 requestParameters: {
 "integration.request.path.id": "method.request.path.petId"
 }
}, function(err, data){
 if (!err) {
 console.log(data);
 } else {
 console.log("The 'GET /pets/{petId}' method integration setup failed:\n", err);
 }

})

This function returns a successful output similar to the following:

{

Create and configure 273

Amazon API Gateway Developer Guide

 "httpMethod": "GET",
 "passthroughBehavior": "WHEN_NO_MATCH",
 "cacheKeyParameters": [],
 "type": "HTTP",
 "uri": "http://petstore-demo-endpoint.execute-api.com/petstore/pets/{id}",
 "cacheNamespace": "au5df2",
 "requestParameters": {
 "integration.request.path.id": "method.request.path.petId"
 }
}

8. Call the putIntegrationResponse function to set up the 200 OK integration response
for the GET /pets method, specifying the API's /pets resource identifier (8sxa2j) on the
resourceId property.

apig.putIntegrationResponse({
 restApiId: 'iuo308uaq7',
 resourceId: '8sxa2j',
 httpMethod: 'GET',
 statusCode: '200',
 selectionPattern: ''
}, function(err, data){
 if (!err) {
 console.log(data);
 } else
 console.log("The 'GET /pets' method integration response setup failed:\n", err);

})

This function will return an output similar to the following result:

{
 "selectionPattern": "",
 "statusCode": "200"
}

To set up the 200 OK integration response of the GET /pets/{petId} method, call the
putIntegrationResponse function, specifying the API's /pets/{petId} resource
identifier (au5df2) on the resourceId property.

apig.putIntegrationResponse({

Create and configure 274

Amazon API Gateway Developer Guide

 restApiId: 'iuo308uaq7',
 resourceId: 'au5df2',
 httpMethod: 'GET',
 statusCode: '200',
 selectionPattern: ''
}, function(err, data){
 if (!err) {
 console.log(data);
 } else
 console.log("The 'GET /pets/{petId}' method integration response setup failed:
\n", err);

})

9. As a good practice, test invoking the API before deploying it. To test invoking the GET /pets
method, call the testInvokeMethod, specifying the /petsresource identifier (8sxa2j) on
the resourceId property:

apig.testInvokeMethod({
 restApiId: 'iuo308uaq7',
 resourceId: '8sxa2j',
 httpMethod: "GET",
 pathWithQueryString: '/'
}, function(err, data){
 if (!err) {
 console.log(data)
 } else {
 console.log('Test-invoke-method on 'GET /pets' failed:\n', err);
 }
})

To test invoking the GET /pets/{petId} method, call the testInvokeMethod, specifying
the /pets/{petId} resource identifier (au5df2) on the resourceId property:

apig.testInvokeMethod({
 restApiId: 'iuo308uaq7',
 resourceId: 'au5df2',
 httpMethod: "GET",
 pathWithQueryString: '/'
}, function(err, data){
 if (!err) {
 console.log(data)

Create and configure 275

Amazon API Gateway Developer Guide

 } else {
 console.log('Test-invoke-method on 'GET /pets/{petId}' failed:\n', err);
 }
})

10. Finally, you can deploy the API for your customers to call.

apig.createDeployment({
 restApiId: 'iuo308uaq7',
 stageName: 'test',
 stageDescription: 'test deployment',
 description: 'API deployment'
}, function(err, data){
 if (err) {
 console.log('Deploying API failed:\n', err);
 } else {
 console.log("Deploying API succeeded\n", data);
 }
})

Set up an edge-optimized API by importing OpenAPI definitions

You can set up an API in API Gateway by specifying OpenAPI definitions of appropriate API
Gateway API entities and importing the OpenAPI definitions into API Gateway.

The following OpenAPI definitions describe the simple API, exposing only the GET / method
integrated with an HTTP endpoint of the PetStore website in the backend, and returning a 200 OK
response.

OpenAPI 2.0

{
 "swagger": "2.0",
 "info": {
 "title": "Simple PetStore (OpenAPI)"
 },
 "schemes": [
 "https"
],
 "paths": {
 "/pets": {

Create and configure 276

Amazon API Gateway Developer Guide

 "get": {
 "responses": {
 "200": {
 "description": "200 response"
 }
 },
 "x-amazon-apigateway-integration": {
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "uri": "http://petstore-demo-endpoint.execute-api.com/petstore/pets",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "GET",
 "type": "http"
 }
 }
 },
 "/pets/{petId}": {
 "get": {
 "parameters": [
 {
 "name": "petId",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response"
 }
 },
 "x-amazon-apigateway-integration": {
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestParameters": {
 "integration.request.path.id": "method.request.path.petId"
 },
 "uri": "http://petstore-demo-endpoint.execute-api.com/petstore/pets/{id}",

Create and configure 277

Amazon API Gateway Developer Guide

 "passthroughBehavior": "when_no_match",
 "httpMethod": "GET",
 "type": "http"
 }
 }
 }
 }
}

The following procedure describes how to import these OpenAPI definitions into API Gateway
using the API Gateway console.

To import the simple OpenAPI definitions using the API Gateway console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose Create API, and then for REST API, choose Import.

3. If you saved the preceding OpenAPI definitions in a file, choose Choose file. You can also copy
the OpenAPI definitions and paste them into the import text editor.

4. For API endpoint type, select Edge-optimized.

5. Choose Create API to import the OpenAPI definitions.

To import the OpenAPI definitions using the AWS CLI, save the OpenAPI definitions into a file and
then run the following command, assuming that you use the us-west-2 region and the absolute
OpenAPI file path is file:///path/to/API_OpenAPI_template.json:

aws apigateway import-rest-api --body 'file:///path/to/API_OpenAPI_template.json' --
region us-west-2

Set up a Regional API in API Gateway

When API requests predominantly originate from an EC2 instance or services within the same
region as the API is deployed, a Regional API endpoint will typically lower the latency of
connections and is recommended for such scenarios.

Note

In cases where API clients are geographically dispersed, it may still make sense to use
a Regional API endpoint, together with your own Amazon CloudFront distribution to

Create and configure 278

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

ensure that API Gateway does not associate the API with service-controlled CloudFront
distributions. For more information about this use case, see How do I set up API Gateway
with my own CloudFront distribution?.

To create a Regional API, you follow the steps in creating an edge-optimized API, but must
explicitly set REGIONAL type as the only option of the API's endpointConfiguration.

In the following, we show how to create a Regional API using the API Gateway console, AWS CLI,
and the AWS SDK for Javascript for Node.js.

Topics

• Create a Regional API using the API Gateway console

• Create a Regional API using the AWS CLI

• Create a Regional API using the AWS SDK for JavaScript

• Create a Regional API using an OpenAPI definition

• Test a Regional API

Create a Regional API using the API Gateway console

To create a Regional API using the API Gateway console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Do one of the following:

• To create your first API, for REST API, choose Build.

• If you've created an API before, choose Create API, and then choose Build for REST API.

3. For Name, enter a name.

4. (Optional) For Description, enter a description.

5. Keep API endpoint type set to Regional.

6. Choose Create API.

Create a Regional API using the AWS CLI

To create a Regional API using the AWS CLI, call the create-rest-api command:

Create and configure 279

https://aws.amazon.com/premiumsupport/knowledge-center/api-gateway-cloudfront-distribution/
https://aws.amazon.com/premiumsupport/knowledge-center/api-gateway-cloudfront-distribution/
https://docs.aws.amazon.com/apigateway/latest/api/API_RestApi.html#endpointConfiguration
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

aws apigateway create-rest-api \
 --name 'Simple PetStore (AWS CLI, Regional)' \
 --description 'Simple regional PetStore API' \
 --region us-west-2 \
 --endpoint-configuration '{ "types": ["REGIONAL"] }'

A successful response returns a payload similar to the following:

{
 "createdDate": "2017-10-13T18:41:39Z",
 "description": "Simple regional PetStore API",
 "endpointConfiguration": {
 "types": "REGIONAL"
 },
 "id": "0qzs2sy7bh",
 "name": "Simple PetStore (AWS CLI, Regional)"
}

From here on, you can follow the same instructions given in the section called “Set up an edge-
optimized API using AWS CLI commands” to set up methods and integrations for this API.

Create a Regional API using the AWS SDK for JavaScript

To create a Regional API, using the AWS SDK for JavaScript:

apig.createRestApi({
 name: "Simple PetStore (node.js SDK, regional)",
 endpointConfiguration: {
 types: ['REGIONAL']
 },
 description: "Demo regional API created using the AWS SDK for node.js",
 version: "0.00.001"
}, function(err, data){
 if (!err) {
 console.log('Create API succeeded:\n', data);
 restApiId = data.id;
 } else {
 console.log('Create API failed:\n', err);
 }
});

A successful response returns a payload similar to the following:

Create and configure 280

Amazon API Gateway Developer Guide

{
 "createdDate": "2017-10-13T18:41:39Z",
 "description": "Demo regional API created using the AWS SDK for node.js",
 "endpointConfiguration": {
 "types": "REGIONAL"
 },
 "id": "0qzs2sy7bh",
 "name": "Simple PetStore (node.js SDK, regional)"
}

After completing the preceding steps, you can follow the instructions in the section called “Set up
an edge-optimized API using the AWS SDK for Node.js” to set up methods and integrations for this
API.

Create a Regional API using an OpenAPI definition

To import an API from an OpenAPI definition file using the AWS CLI, use the import-rest-api
command:

aws apigateway import-rest-api \
 --parameters endpointConfigurationTypes=REGIONAL \
 --fail-on-warnings \
 --body 'file://path/to/API_OpenAPI_template.json'

Test a Regional API

Once deployed, the Regional API's default URL host name is of the following format:

{restapi-id}.execute-api.{region}.amazonaws.com

The base URL to invoke the API is like the following:

https://{restapi-id}.execute-api.{region}.amazonaws.com/{stage}

Assuming you set up the GET /pets and GET /pets/{petId} methods in this example, you can
test the API by typing the following URLs in a browser:

https://0qzs2sy7bh.execute-api.us-west-2.amazonaws.com/test/pets

Create and configure 281

Amazon API Gateway Developer Guide

and

https://0qzs2sy7bh.execute-api.us-west-2.amazonaws.com/test/pets/1

Alternatively, you can use cURL commands:

curl -X GET https://0qzs2sy7bh.execute-api.us-west-2.amazonaws.com/test/pets

and

curl -X GET https://0qzs2sy7bh.execute-api.us-west-2.amazonaws.com/test/pets/2

Set up REST API methods in API Gateway

In API Gateway, an API method embodies a method request and a method response. You set up
an API method to define what a client should or must do to submit a request to access the service
at the backend and to define the responses that the client receives in return. For input, you can
choose method request parameters, or an applicable payload, for the client to provide the required
or optional data at run time. For output, you determine the method response status code, headers,
and applicable body as targets to map the backend response data into, before they are returned to
the client. To help the client developer understand the behaviors and the input and output formats
of your API, you can document your API and provide proper error messages for invalid requests.

An API method request is an HTTP request. To set up the method request, you configure an HTTP
method (or verb), the path to an API resource, headers, applicable query string parameters. You
also configure a payload when the HTTP method is POST, PUT, or PATCH. For example, to retrieve
a pet using the PetStore sample API, you define the API method request of GET /pets/{petId},
where {petId} is a path parameter that can take a number at run time.

GET /pets/1
Host: apigateway.us-east-1.amazonaws.com
...

If the client specifies an incorrect path, for example, /pet/1 or /pets/one instead of /pets/1,
an exception is thrown.

An API method response is an HTTP response with a given status code. For a non-proxy integration,
you must set up method responses to specify the required or optional targets of mappings. These

Create and configure 282

https://docs.aws.amazon.com/apigateway/latest/api/API_Method.html
https://docs.aws.amazon.com/apigateway/latest/api/API_MethodResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Resource.html

Amazon API Gateway Developer Guide

transform integration response headers or body to associated method response headers or body.
The mapping can be as simple as an identity transform that passes the headers or body through
the integration as-is. For example, the following 200 method response shows an example of
passthrough of a successful integration response as-is.

200 OK
Content-Type: application/json
...

{
 "id": "1",
 "type": "dog",
 "price": "$249.99"
}

In principle, you can define a method response corresponding to a specific response from the
backend. Typically, this involves any 2XX, 4XX, and 5XX responses. However, this may not be
practical, because often you may not know in advance all the responses that a backend may return.
In practice, you can designate one method response as the default to handle the unknown or
unmapped responses from the backend. It is good practice to designate the 500 response as the
default. In any case, you must set up at least one method response for non-proxy integrations.
Otherwise, API Gateway returns a 500 error response to the client even when the request succeeds
at the backend.

To support a strongly typed SDK, such as a Java SDK, for your API, you should define the data
model for input for the method request, and define the data model for output of the method
response.

Prerequisites

Before setting up an API method, verify the following:

• You must have the method available in API Gateway. Follow the instructions in Tutorial: Build a
REST API with HTTP non-proxy integration.

• If you want the method to communicate with a Lambda function, you must have already created
the Lambda invocation role and Lambda execution role in IAM. You must also have created the
Lambda function with which your method will communicate in AWS Lambda. To create the roles
and function, use the instructions in Create a Lambda function for Lambda non-proxy integration
of the Build an API Gateway REST API with Lambda integration.

Create and configure 283

https://en.wikipedia.org/wiki/Identity_transform

Amazon API Gateway Developer Guide

• If you want the method to communicate with an HTTP or HTTP proxy integration, you must
have already created, and have access to, the HTTP endpoint URL with which your method will
communicate.

• Verify that your certificates for HTTP and HTTP proxy endpoints are supported by API Gateway.
For details see API Gateway-supported certificate authorities for HTTP and HTTP proxy
integrations.

Note

When you create a method using the REST API console, you configure both the integration
request and the method request. For more information, see the section called “ Set up
integration request using the console”.

Topics

• Set up a method request in API Gateway

• Set up method responses in API Gateway

• Set up a method using the API Gateway console

Set up a method request in API Gateway

Setting up a method request involves performing the following tasks, after creating a RestApi
resource:

1. Creating a new API or choosing an existing API Resource entity.

2. Creating an API Method resource that is a specific HTTP verb on the new or chosen API
Resource. This task can be further divided into the following sub tasks:

• Adding an HTTP method to the method request

• Configuring request parameters

• Defining a model for the request body

• Enacting an authorization scheme

• Enabling request validation

You can perform these tasks using the following methods:

Create and configure 284

https://docs.aws.amazon.com/apigateway/latest/api/API_RestApi.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Resource.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Method.html

Amazon API Gateway Developer Guide

• API Gateway console

• AWS CLI commands (create-resource and put-method)

• AWS SDK functions (for example, in Node.js, createResource and putMethod)

• API Gateway REST API (resource:create and method:put).

For examples of using these tools, see Initialize REST API setup in API Gateway.

Topics

• Set up API resources

• Set up an HTTP method

• Set up method request parameters

• Set up method request model

• Set up method request authorization

• Set up method request validation

Set up API resources

In an API Gateway API, you expose addressable resources as a tree of API Resources entities, with
the root resource (/) at the top of the hierarchy. The root resource is relative to the API's base URL,
which consists of the API endpoint and a stage name. In the API Gateway console, this base URI is
referred to as the Invoke URI and is displayed in the API's stage editor after the API is deployed.

The API endpoint can be a default host name or a custom domain name. The default host name is
of the following format:

{api-id}.execute-api.{region}.amazonaws.com

In this format, the {api-id} represents the API identifier that is generated by API Gateway. The
{region} variable represents the AWS Region (for example, us-east-1) that you chose when
creating the API. A custom domain name is any user-friendly name under a valid internet domain.
For example, if you have registered an internet domain of example.com, any of *.example.com
is a valid custom domain name. For more information, see create a custom domain name.

For the PetStore sample API, the root resource (/) exposes the pet store. The /pets resource
represents the collection of pets available in the pet store. The /pets/{petId} exposes an

Create and configure 285

https://docs.aws.amazon.com/cli/latest/reference/apigateway/create-resource.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/put-method.html
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/APIGateway.html#createResource-property
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/APIGateway.html#putMethod-property
https://docs.aws.amazon.com/apigateway/latest/api/API_CreateResource.html
https://docs.aws.amazon.com/apigateway/latest/api/API_PutMethod.html
https://docs.aws.amazon.com/apigateway/latest/api/API_GetResources.html

Amazon API Gateway Developer Guide

individual pet of a given identifier (petId). The path parameter of {petId} is part of the request
parameters.

To set up an API resource, you choose an existing resource as its parent and then create the child
resource under this parent resource. You start with the root resource as a parent, add a resource to
this parent, add another resource to this child resource as the new parent, and so on, to its parent
identifier. Then you add the named resource to the parent.

With AWS CLI, you can call the get-resources command to find out which resources of an API
are available:

aws apigateway get-resources --rest-api-id <apiId> \
 --region <region>

The result is a list of the currently available resources of the API. For our PetStore sample API, this
list looks like the following:

{
 "items": [
 {
 "path": "/pets",
 "resourceMethods": {
 "GET": {}
 },
 "id": "6sxz2j",
 "pathPart": "pets",
 "parentId": "svzr2028x8"
 },
 {
 "path": "/pets/{petId}",
 "resourceMethods": {
 "GET": {}
 },
 "id": "rjkmth",
 "pathPart": "{petId}",
 "parentId": "6sxz2j"
 },
 {
 "path": "/",
 "id": "svzr2028x8"
 }
]

Create and configure 286

Amazon API Gateway Developer Guide

}

Each item lists the identifiers of the resource (id) and, except for the root resource, its immediate
parent (parentId), as well as the resource name (pathPart). The root resource is special in that it
does not have any parent. After choosing a resource as the parent, call the following command to
add a child resource.

aws apigateway create-resource --rest-api-id <apiId> \
 --region <region> \
 --parent-id <parentId> \
 --path-part <resourceName>

For example, to add pet food for sale on the PetStore website, add a food resource to the root
(/) by setting path-part to food and parent-id to svzr2028x8. The result looks like the
following:

{
 "path": "/food",
 "pathPart": "food",
 "id": "xdsvhp",
 "parentId": "svzr2028x8"
}

Use a proxy resource to streamline API setup

As business grows, the PetStore owner may decide to add food, toys, and other pet-related items
for sale. To support this, you can add /food, /toys, and other resources under the root resource.
Under each sale category, you may also want to add more resources, such as /food/{type}/
{item}, /toys/{type}/{item}, etc. This can get tedious. If you decide to add a middle layer
{subtype} to the resource paths to change the path hierarchy into /food/{type}/{subtype}/
{item}, /toys/{type}/{subtype}/{item}, etc., the changes will break the existing API set
up. To avoid this, you can use an API Gateway proxy resource to expose a set of API resources all at
once.

API Gateway defines a proxy resource as a placeholder for a resource to be specified when the
request is submitted. A proxy resource is expressed by a special path parameter of {proxy+},
often referred to as a greedy path parameter. The + sign indicates whichever child resources are
appended to it. The /parent/{proxy+} placeholder stands for any resource matching the path

Create and configure 287

Amazon API Gateway Developer Guide

pattern of /parent/*. The greedy path parameter name, proxy, can be replaced by another
string in the same way you treat a regular path parameter name.

Using the AWS CLI, you call the following command to set up a proxy resource under the root (/
{proxy+}):

aws apigateway create-resource --rest-api-id <apiId> \
 --region <region> \
 --parent-id <rootResourceId> \
 --path-part {proxy+}

The result is similar to the following:

{
 "path": "/{proxy+}",
 "pathPart": "{proxy+}",
 "id": "234jdr",
 "parentId": "svzr2028x8"
}

For the PetStore API example, you can use /{proxy+} to represent both the /pets and /pets/
{petId}. This proxy resource can also reference any other (existing or to-be-added) resources,
such as /food/{type}/{item}, /toys/{type}/{item}, etc., or /food/{type}/{subtype}/
{item}, /toys/{type}/{subtype}/{item}, etc. The backend developer determines the
resource hierarchy and the client developer is responsible for understanding it. API Gateway simply
passes whatever the client submitted to the backend.

An API can have more than one proxy resource. For example, the following proxy resources are
allowed within an API.

/{proxy+}
/parent/{proxy+}
/parent/{child}/{proxy+}

When a proxy resource has non-proxy siblings, the sibling resources are excluded from the
representation of the proxy resource. For the preceding examples, /{proxy+} refers to any
resources under the root resource except for the /parent[/*] resources. In other words, a
method request against a specific resource takes precedence over a method request against a
generic resource at the same level of the resource hierarchy.

Create and configure 288

Amazon API Gateway Developer Guide

A proxy resource cannot have any child resource. Any API resource after {proxy+} is redundant
and ambiguous. The following proxy resources are not allowed within an API.

/{proxy+}/child
/parent/{proxy+}/{child}
/parent/{child}/{proxy+}/{grandchild+}

Set up an HTTP method

An API method request is encapsulated by the API Gateway Method resource. To set up the method
request, you must first instantiate the Method resource, setting at least an HTTP method and an
authorization type on the method.

Closely associated with the proxy resource, API Gateway supports an HTTP method of ANY. This
ANY method represents any HTTP method that is to be supplied at run time. It allows you to use a
single API method setup for all of the supported HTTP methods of DELETE, GET, HEAD, OPTIONS,
PATCH, POST, and PUT.

You can set up the ANY method on a non-proxy resource as well. Combining the ANY method with
a proxy resource, you get a single API method setup for all of the supported HTTP methods against
any resources of an API. Furthermore, the backend can evolve without breaking the existing API
setup.

Before setting up an API method, consider who can call the method. Set the authorization
type according to your plan. For open access, set it to NONE. To use IAM permissions, set the
authorization type to AWS_IAM. To use a Lambda authorizer function, set this property to CUSTOM.
To use an Amazon Cognito user pool, set the authorization type to COGNITO_USER_POOLS.

The following AWS CLI command shows how to create a method request of the ANY verb against a
specified resource (6sxz2j), using the IAM permissions to control its access.

aws apigateway put-method --rest-api-id vaz7da96z6 \
 --resource-id 6sxz2j \
 --http-method ANY \
 --authorization-type AWS_IAM \
 --region us-west-2

To create an API method request with a different authorization type, see the section called “Set up
method request authorization”.

Create and configure 289

https://docs.aws.amazon.com/apigateway/latest/api/API_Method.html

Amazon API Gateway Developer Guide

Set up method request parameters

Method request parameters are a way for a client to provide input data or execution context
necessary to complete the method request. A method parameter can be a path parameter, a
header, or a query string parameter. As part of method request setup, you must declare required
request parameters to make them available for the client. For non-proxy integration, you can
translate these request parameters to a form that is compatible with the backend requirement.

For example, for the GET /pets/{petId} method request, the {petId} path variable is a
required request parameter. You can declare this path parameter when calling the put-method
command of the AWS CLI. This is illustrated as follows:

aws apigateway put-method --rest-api-id vaz7da96z6 \
 --resource-id rjkmth \
 --http-method GET \
 --authorization-type "NONE" \
 --region us-west-2 \
 --request-parameters method.request.path.petId=true

If a parameter is not required, you can set it to false in request-parameters. For example, if
the GET /pets method uses an optional query string parameter of type, and an optional header
parameter of breed, you can declare them using the following CLI command, assuming that the /
pets resource id is 6sxz2j:

aws apigateway put-method --rest-api-id vaz7da96z6 \
 --resource-id 6sxz2j \
 --http-method GET \
 --authorization-type "NONE" \
 --region us-west-2 \
 --request-parameters
 method.request.querystring.type=false,method.request.header.breed=false

Instead of this abbreviated form, you can use a JSON string to set the request-parameters
value:

'{"method.request.querystring.type":false,"method.request.header.breed":false}'

With this setup, the client can query pets by type:

GET /pets?type=dog

Create and configure 290

Amazon API Gateway Developer Guide

And the client can query dogs of the poodle breed as follows:

GET /pets?type=dog
breed:poodle

For information on how to map method request parameters to integration request parameters, see
the section called “Integrations”.

Set up method request model

For an API method that can take input data in a payload, you can use a model. A model is
expressed in a JSON schema draft 4 and describes the data structure of the request body. With
a model, a client can determine how to construct a method request payload as input. More
importantly, API Gateway uses the model to validate a request, generate an SDK, and initialize a
mapping template for setting up the integration in the API Gateway console. For information about
how to create a model, see Understanding data models.

Depending on the content types, a method payload can have different formats. A model is indexed
against the media type of the applied payload. API Gateway uses the Content-Type request
header to determine the content type. To set up method request models, add key-value pairs of
the "<media-type>":"<model-name>" format to the requestModels map when calling the
AWS CLI put-method command.

To use the same model regardless of the content type, specify $default as the key.

For example, to set a model on the JSON payload of the POST /pets method request of the
PetStore example API, you can call the following AWS CLI command:

aws apigateway put-method \
 --rest-api-id vaz7da96z6 \
 --resource-id 6sxz2j \
 --http-method POST \
 --authorization-type "NONE" \
 --region us-west-2 \
 --request-models '{"application/json":"petModel"}'

Here, petModel is the name property value of a Model resource describing a pet. The actual
schema definition is expressed as a JSON string value of the schema property of the Model
resource.

Create and configure 291

https://tools.ietf.org/html/draft-zyp-json-schema-04
https://docs.aws.amazon.com/apigateway/latest/api/API_Model.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Model.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Model.html#schema

Amazon API Gateway Developer Guide

In a Java, or other strongly typed SDK, of the API, the input data is cast as the petModel class
derived from the schema definition. With the request model, the input data in the generated SDK
is cast into the Empty class, which is derived from the default Empty model. In this case, the client
cannot instantiate the correct data class to provide the required input.

Set up method request authorization

To control who can call the API method, you can configure the authorization type on the method.
You can use this type to enact one of the supported authorizers, including IAM roles and policies
(AWS_IAM), an Amazon Cognito user pool (COGNITO_USER_POOLS), or a Lambda authorizer
(CUSTOM).

To use IAM permissions to authorize access to the API method, set the authorization-type
input property to AWS_IAM. When you set this option, API Gateway verifies the caller's signature on
the request based on the caller's credentials. If the verified user has permission to call the method,
it accepts the request. Otherwise, it rejects the request and the caller receives an unauthorized
error response. The call to the method doesn't succeed unless the caller has permission to invoke
the API method. The following IAM policy grants permission to the caller to call any API methods
created within the same AWS account:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:Invoke"
],
 "Resource": "arn:aws:execute-api:*:*:*"
 }
]
}

For more information, see the section called “Use IAM permissions”.

Currently, you can only grant this policy to the users, groups, and roles within the API owner's AWS
account. Users from a different AWS account can call the API methods only if allowed to assume
a role within the API owner's AWS account with the necessary permissions to call the execute-
api:Invoke action. For information on cross-account permissions, see Using IAM Roles.

Create and configure 292

https://docs.aws.amazon.com/apigateway/latest/api/API_Method.html#authorizationType
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html

Amazon API Gateway Developer Guide

You can use AWS CLI, an AWS SDK, or a REST API client, such as Postman, which implements
Signature Version 4 Signing.

To use a Lambda authorizer to authorize access to the API method, set the authorization-type
input property to CUSTOM and set the authorizer-id input property to the id property value of
a Lambda authorizer that already exists. The referenced Lambda authorizer can be of the TOKEN
or REQUEST type. For information about creating a Lambda authorizer, see the section called “Use
Lambda authorizers”.

To use an Amazon Cognito user pool to authorize access to the API method, set the
authorization-type input property to COGNITO_USER_POOLS and set the authorizer-id
input property to the id property value of the COGNITO_USER_POOLS authorizer that was already
created. For information about creating an Amazon Cognito user pool authorizer, see the section
called “Use Amazon Cognito user pool as authorizer for a REST API”.

Set up method request validation

You can enable request validation when setting up an API method request. You need to first create
a request validator:

aws apigateway create-request-validator \
 --rest-api-id 7zw9uyk9kl \
 --name bodyOnlyValidator \
 --validate-request-body \
 --no-validate-request-parameters

This CLI command creates a body-only request validator. Example output is as follows:

{
 "validateRequestParameters": false,
 "validateRequestBody": true,
 "id": "jgpyy6",
 "name": "bodyOnlyValidator"
}

With this request validator, you can enable request validation as part of the method request setup:

aws apigateway put-method \
 --rest-api-id 7zw9uyk9kl
 --region us-west-2
 --resource-id xdsvhp

Create and configure 293

https://www.postman.com/
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Method.html#authorizerId
https://docs.aws.amazon.com/apigateway/latest/api/API_Authorizer.html#id
https://docs.aws.amazon.com/apigateway/latest/api/API_Method.html#authorizerId
https://docs.aws.amazon.com/apigateway/latest/api/API_Authorizer.html#id
https://docs.aws.amazon.com/apigateway/latest/api/API_RequestValidator.html

Amazon API Gateway Developer Guide

 --http-method PUT
 --authorization-type "NONE"
 --request-parameters '{"method.request.querystring.type": false,
 "method.request.querystring.page":false}'
 --request-models '{"application/json":"petModel"}'
 --request-validator-id jgpyy6

To be included in request validation, a request parameter must be declared as required. If the query
string parameter for the page is used in request validation, the request-parameters map of the
preceding example must be specified as '{"method.request.querystring.type": false,
"method.request.querystring.page":true}'.

Set up method responses in API Gateway

An API method response encapsulates the output of an API method request that the client will
receive. The output data includes an HTTP status code, some headers, and possibly a body.

With non-proxy integrations, the specified response parameters and body can be mapped from
the associated integration response data or can be assigned certain static values according to
mappings. These mappings are specified in the integration response. The mapping can be an
identical transformation that passes the integration response through as-is.

With a proxy integration, API Gateway passes the backend response through to the method
response automatically. There is no need for you to set up the API method response. However, with
the Lambda proxy integration, the Lambda function must return a result of this output format for
API Gateway to successfully map the integration response to a method response.

Programmatically, the method response setup amounts to creating a MethodResponse resource of
API Gateway and setting the properties of statusCode, responseParameters, and responseModels.

When setting status codes for an API method, you should choose one as the default to handle
any integration response of an unanticipated status code. It is reasonable to set 500 as the
default because this amounts to casting otherwise unmapped responses as a server-side error. For
instructional reasons, the API Gateway console sets the 200 response as the default. But you can
reset it to the 500 response.

To set up a method response, you must have created the method request.

Set up method response status code

The status code of a method response defines a type of response. For example, responses of 200,
400, and 500 indicate successful, client-side error and server-side error responses, respectively.

Create and configure 294

https://docs.aws.amazon.com/apigateway/latest/api/API_MethodResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_MethodResponse.html#statusCode
https://docs.aws.amazon.com/apigateway/latest/api/API_MethodResponse.html#responseParameters
https://docs.aws.amazon.com/apigateway/latest/api/API_MethodResponse.html#responseModels

Amazon API Gateway Developer Guide

To set up a method response status code, set the statusCode property to an HTTP status code.
The following AWS CLI command creates a method response of 200.

aws apigateway put-method-response \
 --region us-west-2 \
 --rest-api-id vaz7da96z6 \
 --resource-id 6sxz2j \
 --http-method GET \
 --status-code 200

Set up method response parameters

Method response parameters define which headers the client receives in response to the associated
method request. Response parameters also specify a target to which API Gateway maps an
integration response parameter, according to mappings prescribed in the API method's integration
response.

To set up the method response parameters, add to the responseParameters map of
MethodResponse key-value pairs of the "{parameter-name}":"{boolean}" format. The
following CLI command shows an example of setting the my-header header.

aws apigateway put-method-response \
 --region us-west-2 \
 --rest-api-id vaz7da96z6 \
 --resource-id 6sxz2j \
 --http-method GET \
 --status-code 200 \
 --response-parameters method.response.header.my-header=false

Set up method response models

A method response model defines a format of the method response body. Before setting up
the response model, you must first create the model in API Gateway. To do so, you can call the
create-model command. The following example shows how to create a PetStorePet model to
describe the body of the response to the GET /pets/{petId} method request.

aws apigateway create-model \
 --region us-west-2 \
 --rest-api-id vaz7da96z6 \
 --content-type application/json \
 --name PetStorePet \

Create and configure 295

https://docs.aws.amazon.com/apigateway/latest/api/API_MethodResponse.html#statusCode
https://docs.aws.amazon.com/apigateway/latest/api/API_MethodResponse.html#responseParameters
https://docs.aws.amazon.com/cli/latest/reference/apigateway/create-model.html

Amazon API Gateway Developer Guide

 --schema '{ \
 "$schema": "http://json-schema.org/draft-04/schema#", \
 "title": "PetStorePet", \
 "type": "object", \
 "properties": { \
 "id": { "type": "number" }, \
 "type": { "type": "string" }, \
 "price": { "type": "number" } \
 } \
 }'

The result is created as an API Gateway Model resource.

To set up the method response models to define the payload format, add the "application/
json":"PetStorePet" key-value pair to the requestModels map of MethodResponse resource. The
following AWS CLI command of put-method-response shows how this is done:

aws apigateway put-method-response \
 --region us-west-2 \
 --rest-api-id vaz7da96z6 \
 --resource-id 6sxz2j \
 --http-method GET \
 --status-code 200 \
 --response-parameters method.response.header.my-header=false \
 --response-models '{"application/json":"PetStorePet"}'

Setting up a method response model is necessary when you generate a strongly typed SDK for
the API. It ensures that the output is cast into an appropriate class in Java or Objective-C. In other
cases, setting a model is optional.

Set up a method using the API Gateway console

When you create a method using the REST API console, you configure both the integration request
and the method request. By default, API Gateway creates the 200 method response for your
method.

The following instructions show how to edit the method request settings and how to create
additional method responses for your method.

Topics

• Edit an API Gateway method request in the API Gateway console

Create and configure 296

https://docs.aws.amazon.com/apigateway/latest/api/API_Model.html
https://docs.aws.amazon.com/apigateway/latest/api/API_MethodResponse.html#responseModels
https://docs.aws.amazon.com/apigateway/latest/api/API_MethodResponse.html

Amazon API Gateway Developer Guide

• Set up an API Gateway method response using the API Gateway console

Edit an API Gateway method request in the API Gateway console

These instructions assume you have already created your method request. For more information on
how to create a method, see the section called “ Set up integration request using the console”.

1. In the Resources pane, choose your method, and then choose the Method request tab.

2. In the Method request settings section, choose Edit.

3. For Authorization, select an available authorizer.

a. To enable open access to the method for any user, select None. This step can be skipped if
the default setting has not been changed.

b. To use IAM permissions to control the client access to the method, select AWS_IAM. With
this choice, only users of the IAM roles with the correct IAM policy attached are allowed to
call this method.

To create the IAM role, specify an access policy with a format like the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:Invoke"
],
 "Resource": [
 "resource-statement"
]
 }
]
}

In this access policy, resource-statement is the ARN of your method. You can find
the ARN of your method by selecting the method on the Resources page. For more
information about setting the IAM permissions, see Control access to an API with IAM
permissions.

To create the IAM role, you can adapt the instructions in the following tutorial, ???.

Create and configure 297

Amazon API Gateway Developer Guide

c. To use a Lambda authorizer, select a token or a request authorizer. Create the Lambda
authorizer to have this choice displayed in the dropdown menu. For information on how to
create a Lambda authorizer, see Use API Gateway Lambda authorizers.

d. To use an Amazon Cognito user pool, choose an available user pool under Cognito user
pool authorizers. Create a user pool in Amazon Cognito and an Amazon Cognito user
pool authorizer in API Gateway to have this choice displayed in the dropdown menu. For
information on how to create an Amazon Cognito user pool authorizer, see Control access
to a REST API using Amazon Cognito user pools as authorizer.

4. To specify request validation, select a value from the Request Validator dropdown menu. To
turn off request validation, select None. For more information about each option, see Use
request validation in API Gateway.

5. Select API key required to require an API key. When enabled, API keys are used in usage plans
to throttle client traffic.

6. (Optional) To assign an operation name in a Java SDK of this API, generated by API Gateway,
for Operation name, enter a name. For example, for the method request of GET /pets/
{petId}, the corresponding Java SDK operation name is, by default ,GetPetsPetId. This
name is constructed from the method's HTTP verb (GET) and the resource path variable names
(Pets and PetId). If you set the operation name as getPetById, the SDK operation name
becomes GetPetById.

7. To add a query string parameter to the method, do the following:

a. Choose URL Query string parameters, and then choose Add query string.

b. For Name, enter the name of the query string parameter.

c. Select Required if the newly created query string parameter is to be used for request
validation. For more information about the request validation, see Use request validation
in API Gateway.

d. Select Caching if the newly created query string parameter is to be used as part of
a caching key. For more information about caching, see Use method or integration
parameters as cache keys to index cached responses.

To remove the query string parameter, choose Remove.

8. To add a header parameter to the method, do the following:

a. Choose HTTP request headers, and then choose Add header.

b. For Name, enter the name of the header.

Create and configure 298

Amazon API Gateway Developer Guide

c. Select Required if the newly created header is to be used for request validation. For more
information about the request validation, see Use request validation in API Gateway.

d. Select Caching if the newly created header is to be used as part of a caching key. For more
information about caching, see Use method or integration parameters as cache keys to
index cached responses.

To remove the header, choose Remove.

9. To declare the payload format of a method request with the POST, PUT, or PATCH HTTP verb,
choose Request body, and do the following:

a. Choose Add model.

b. For Content-type, enter a MIME-type (for example, application/json).

c. For Model, select a model from the dropdown menu. The currently available models
for the API include the default Empty and Error models as well as any models you
have created and added to the Models collection of the API. For more information about
creating a model, see Understanding data models.

Note

The model is useful to inform the client of the expected data format of a payload.
It is helpful to generate a skeletal mapping template. It is important to generate
a strongly typed SDK of the API in such languages as Java, C#, Objective-C, and
Swift. It is only required if request validation is enabled against the payload.

10. Choose Save.

Set up an API Gateway method response using the API Gateway console

An API method can have one or more responses. Each response is indexed by its HTTP status code.
By default, the API Gateway console adds 200 response to the method responses. You can modify
it, for example, to have the method return 201 instead. You can add other responses, for example,
409 for access denial and 500 for uninitialized stage variables used.

To use the API Gateway console to modify, delete, or add a response to an API method, follow
these instructions.

Create and configure 299

https://docs.aws.amazon.com/apigateway/latest/api/API_Model.html

Amazon API Gateway Developer Guide

1. In the Resources pane, choose your method, and then choose the Method response tab. You
might need to choose the right arrow button to show the tab.

2. In the Method response settings section, choose Create response.

3. For HTTP status code, enter an HTTP status code such as 200, 400, or 500.

When a backend-returned response does not have a corresponding method response defined,
API Gateway fails to return the response to the client. Instead, it returns a 500 Internal
server error error response.

4. Choose Add header.

5. For Header name, enter a name.

To return a header from the backend to the client, add the header in the method response.

6. Choose Add model to define a format of the method response body.

Enter the media type of the response payload for Content type and choose a model from the
Models dropdown menu.

7. Choose Save.

To modify an existing response, navigate to your method response, and then choose Edit. To
change the HTTP status code, choose Delete and create a new method response.

For every response returned from the backend, you must have a compatible response configured
as the method response. However, the configuring method response headers and payload model
are optional unless you map the result from the backend to the method response before returning
to the client. Also, a method response payload model is important if you are generating a strongly
typed SDK for your API.

Controlling and managing access to a REST API in API Gateway

API Gateway supports multiple mechanisms for controlling and managing access to your API.

You can use the following mechanisms for authentication and authorization:

• Resource policies let you create resource-based policies to allow or deny access to your APIs and
methods from specified source IP addresses or VPC endpoints. For more information, see the
section called “Use API Gateway resource policies”.

• Standard AWS IAM roles and policies offer flexible and robust access controls that can be
applied to an entire API or individual methods. IAM roles and policies can be used for controlling

Access control 300

Amazon API Gateway Developer Guide

who can create and manage your APIs, as well as who can invoke them. For more information,
see the section called “Use IAM permissions”.

• IAM tags can be used together with IAM policies to control access. For more information, see the
section called “Attribute-based access control”.

• Endpoint policies for interface VPC endpoints allow you to attach IAM resource policies to
interface VPC endpoints to improve the security of your private APIs. For more information, see
the section called “Use VPC endpoint policies for private APIs”.

• Lambda authorizers are Lambda functions that control access to REST API methods using bearer
token authentication—as well as information described by headers, paths, query strings, stage
variables, or context variables request parameters. Lambda authorizers are used to control
who can invoke REST API methods. For more information, see the section called “Use Lambda
authorizers”.

• Amazon Cognito user pools let you create customizable authentication and authorization
solutions for your REST APIs. Amazon Cognito user pools are used to control who can invoke
REST API methods. For more information, see the section called “Use Amazon Cognito user pool
as authorizer for a REST API”.

You can use the following mechanisms for performing other tasks related to access control:

• Cross-origin resource sharing (CORS) lets you control how your REST API responds to cross-
domain resource requests. For more information, see the section called “CORS”.

• Client-side SSL certificates can be used to verify that HTTP requests to your backend system are
from API Gateway. For more information, see the section called “Client certificates”.

• AWS WAF can be used to protect your API Gateway API from common web exploits. For more
information, see the section called “AWS WAF”.

You can use the following mechanisms for tracking and limiting the access that you have granted
to authorized clients:

• Usage plans let you provide API keys to your customers—and then track and limit usage of your
API stages and methods for each API key. For more information, see the section called “Usage
plans”.

Access control 301

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-private-apis.html

Amazon API Gateway Developer Guide

Controlling access to an API with API Gateway resource policies

Amazon API Gateway resource policies are JSON policy documents that you attach to an API to
control whether a specified principal (typically an IAM role or group) can invoke the API. You can
use API Gateway resource policies to allow your API to be securely invoked by:

• Users from a specified AWS account.

• Specified source IP address ranges or CIDR blocks.

• Specified virtual private clouds (VPCs) or VPC endpoints (in any account).

You can use resource policies for all API endpoint types in API Gateway: private, edge-optimized,
and Regional.

For private APIs, you can use resource policies together with VPC endpoint policies to control which
principals have access to which resources and actions. For more information, see the section called
“Use VPC endpoint policies for private APIs”.

You can attach a resource policy to an API by using the AWS Management Console, AWS CLI, or
AWS SDKs.

API Gateway resource policies are different from IAM identity-based policies. IAM identity-based
policies are attached to IAM users, groups, or roles and define what actions those identities are
capable of doing on which resources. API Gateway resource policies are attached to resources. For
a more detailed discussion of the differences between identity-based policies and resource policies,
see Identity-Based Policies and Resource-Based Policies.

You can use API Gateway resource policies together with IAM policies.

Topics

• Access policy language overview for Amazon API Gateway

• How API Gateway resource policies affect authorization workflow

• API Gateway resource policy examples

• Create and attach an API Gateway resource policy to an API

• AWS condition keys that can be used in API Gateway resource policies

Access policy language overview for Amazon API Gateway

This page describes the basic elements used in Amazon API Gateway resource policies.

Access control 302

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-private-apis.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html

Amazon API Gateway Developer Guide

Resource policies are specified using the same syntax as IAM policies. For complete policy language
information, see Overview of IAM Policies and AWS Identity and Access Management Policy
Reference in the IAM User Guide.

For information about how an AWS service decides whether a given request should be allowed or
denied, see Determining Whether a Request is Allowed or Denied.

Common elements in an access policy

In its most basic sense, a resource policy contains the following elements:

• Resources – APIs are the Amazon API Gateway resources for which you can allow or deny
permissions. In a policy, you use the Amazon Resource Name (ARN) to identify the resource. You
can also use abbreviated syntax, which API Gateway automatically expands to the full ARN when
you save a resource policy. To learn more, see API Gateway resource policy examples.

For the format of the full Resource element, see Resource format of permissions for executing
API in API Gateway.

• Actions – For each resource, Amazon API Gateway supports a set of operations. You identify
resource operations that you will allow (or deny) by using action keywords.

For example, the execute-api:Invoke permission will allow the user permission to invoke an
API upon a client request.

For the format of the Action element, see Action format of permissions for executing API in API
Gateway.

• Effect – What the effect is when the user requests the specific action—this can be either Allow
or Deny. You can also explicitly deny access to a resource, which you might do in order to make
sure that a user cannot access it, even if a different policy grants access.

Note

"Implicit deny" is the same thing as "deny by default".
An "implicit deny" is different from an "explicit deny". For more information, see The
Difference Between Denying by Default and Explicit Deny.

• Principal – The account or user allowed access to the actions and resources in the statement. In a
resource policy, the principal is the user or account who receives this permission.

Access control 303

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#AccessPolicyLanguage_Interplay
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#AccessPolicyLanguage_Interplay

Amazon API Gateway Developer Guide

The following example resource policy shows the previous common policy elements. The policy
grants access to the API under the specified account-id in the specified region to any user
whose source IP address is in the address block 123.4.5.6/24. The policy denies all access to the
API if the user's source IP is not within the range.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "execute-api:Invoke",
 "Resource": "arn:aws:execute-api:region:account-id:*"
 },
 {
 "Effect": "Deny",
 "Principal": "*",
 "Action": "execute-api:Invoke",
 "Resource": "arn:aws:execute-api:region:account-id:*",
 "Condition": {
 "NotIpAddress": {
 "aws:SourceIp": "123.4.5.6/24"
 }
 }
 }
]
}

How API Gateway resource policies affect authorization workflow

When API Gateway evaluates the resource policy attached to your API, the result is affected by
the authentication type that you have defined for the API, as illustrated in the flowcharts in the
following sections.

Topics

• API Gateway resource policy only

• Lambda authorizer and resource policy

• IAM authentication and resource policy

• Amazon Cognito authentication and resource policy

• Policy evaluation outcome tables

Access control 304

Amazon API Gateway Developer Guide

API Gateway resource policy only

In this workflow, an API Gateway resource policy is attached to the API, but no authentication
type is defined for the API. Evaluation of the policy involves seeking an explicit allow based on the
inbound criteria of the caller. An implicit denial or any explicit denial results in denying the caller.

The following is an example of such a resource policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "execute-api:Invoke",
 "Resource": "arn:aws:execute-api:region:account-id:api-id/",
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": ["192.0.2.0/24", "198.51.100.0/24"]
 }
 }

Access control 305

Amazon API Gateway Developer Guide

 }
]
}

Lambda authorizer and resource policy

In this workflow, a Lambda authorizer is configured for the API in addition to a resource policy.
The resource policy is evaluated in two phases. Before calling the Lambda authorizer, API Gateway
first evaluates the policy and checks for any explicit denials. If found, the caller is denied access
immediately. Otherwise, the Lambda authorizer is called, and it returns a policy document, which is
evaluated in conjunction with the resource policy. The result is determined based on Table A (near
the end of this topic).

The following example resource policy allows calls only from the VPC endpoint whose VPC
endpoint ID is vpce-1a2b3c4d. During the "pre-auth" evaluation, only the calls coming from the
VPC endpoint indicated in the example are allowed to move forward and evaluate the Lambda
authorizer. All remaining calls are blocked.

Access control 306

Amazon API Gateway Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {

Access control 307

Amazon API Gateway Developer Guide

 "Effect": "Deny",
 "Principal": "*",
 "Action": "execute-api:Invoke",
 "Resource": [
 "arn:aws:execute-api:region:account-id:api-id/"
],
 "Condition" : {
 "StringNotEquals": {
 "aws:SourceVpce": "vpce-1a2b3c4d"
 }
 }
 }
]
}

IAM authentication and resource policy

In this workflow, you configure IAM authentication for the API in addition to a resource policy. After
you authenticate the user with the IAM service, the API evaluates both the policies attached to the
user and the resource policy. The outcome varies based on whether the caller is in the same AWS
account or a separate AWS account, from the API owner.

If the caller and API owner are from separate accounts, both the IAM policies and the resource
policy explicitly allow the caller to proceed. (See Table B at the end of this topic.) However, if the
caller and the API owner are in the same AWS account, then either the IAM user policies or the
resource policy must explicitly allow the caller to proceed. (See Table A below.)

Access control 308

Amazon API Gateway Developer Guide

The following is an example of a cross-account resource policy. Assuming the IAM policy contains
an allow effect, this resource policy allows calls only from the VPC whose VPC ID is vpc-2f09a348.
(See Table B at the end of this topic.)

{
 "Version": "2012-10-17",

Access control 309

Amazon API Gateway Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "execute-api:Invoke",
 "Resource": [
 "arn:aws:execute-api:region:account-id:api-id/"
],
 "Condition" : {
 "StringEquals": {
 "aws:SourceVpc": "vpc-2f09a348"
 }
 }
 }
]
}

Amazon Cognito authentication and resource policy

In this workflow, an Amazon Cognito user pool is configured for the API in addition to a resource
policy. API Gateway first attempts to authenticate the caller through Amazon Cognito. This
is typically performed through a JWT token that is provided by the caller. If authentication is
successful, the resource policy is evaluated independently, and an explicit allow is required. A deny
or "neither allow or deny" results in a deny. The following is an example of a resource policy that
might be used together with Amazon Cognito user pools.

Access control 310

https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html

Amazon API Gateway Developer Guide

Access control 311

Amazon API Gateway Developer Guide

The following is an example of a resource policy that allows calls only from specified source IPs,
assuming that the Amazon Cognito authentication token contains an allow. (See Table A near the
end of this topic.)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "execute-api:Invoke",
 "Resource": "arn:aws:execute-api:region:account-id:api-id/",
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": ["192.0.2.0/24", "198.51.100.0/24"]
 }
 }
 }
]
}

Policy evaluation outcome tables

Table A lists the resulting behavior when access to an API Gateway API is controlled by an IAM
policy (or a Lambda or Amazon Cognito user pools authorizer) and an API Gateway resource policy,
both of which are in the same AWS account.

Table A: Account A Calls API Owned by Account A

IAM policy (or Lambda or
Amazon Cognito user pools
authorizer)

API Gateway resource policy Resulting behavior

Allow Allow Allow

Allow Neither Allow nor Deny Allow

Allow Deny Explicit Deny

Neither Allow nor Deny Allow Allow

Neither Allow nor Deny Neither Allow nor Deny Implicit Deny

Access control 312

Amazon API Gateway Developer Guide

IAM policy (or Lambda or
Amazon Cognito user pools
authorizer)

API Gateway resource policy Resulting behavior

Neither Allow nor Deny Deny Explicit Deny

Deny Allow Explicit Deny

Deny Neither Allow nor Deny Explicit Deny

Deny Deny Explicit Deny

Table B lists the resulting behavior when access to an API Gateway API is controlled by an IAM
policy (or a Lambda or Amazon Cognito user pools authorizer) and an API Gateway resource policy,
which are in different AWS accounts. If either is silent (neither allow nor deny), cross-account access
is denied. This is because cross-account access requires that both the resource policy and the IAM
policy (or a Lambda or Amazon Cognito user pools authorizer) explicitly grant access.

Table B: Account B Calls API Owned by Account A

IAM policy (or Lambda or
Amazon Cognito user pools
authorizer)

API Gateway resource policy Resulting behavior

Allow Allow Allow

Allow Neither Allow nor Deny Implicit Deny

Allow Deny Explicit Deny

Neither Allow nor Deny Allow Implicit Deny

Neither Allow nor Deny Neither Allow nor Deny Implicit Deny

Neither Allow nor Deny Deny Explicit Deny

Deny Allow Explicit Deny

Deny Neither Allow nor Deny Explicit Deny

Access control 313

Amazon API Gateway Developer Guide

IAM policy (or Lambda or
Amazon Cognito user pools
authorizer)

API Gateway resource policy Resulting behavior

Deny Deny Explicit Deny

API Gateway resource policy examples

This page presents a few examples of typical use cases for API Gateway resource policies.

The following example policies use a simplified syntax to specify the API resource. This simplified
syntax is an abbreviated way that you can refer to an API resource, instead of specifying the full
Amazon Resource Name (ARN). API Gateway converts the abbreviated syntax to the full ARN
when you save the policy. For example, you can specify the resource execute-api:/stage-
name/GET/pets in a resource policy. API Gateway converts the resource to arn:aws:execute-
api:us-east-2:123456789012:aabbccddee/stage-name/GET/pets when you save the
resource policy. API Gateway builds the full ARN by using the current Region, your AWS account
ID, and the ID of the REST API that the resource policy is associated with. You can use execute-
api:/* to represent all stages, methods, and paths in the current API. For information about
access policy language, see Access policy language overview for Amazon API Gateway.

Topics

• Example: Allow roles in another AWS account to use an API

• Example: Deny API traffic based on source IP address or range

• Example: Deny API traffic based on source IP address or range when using a private API

• Example: Allow private API traffic based on source VPC or VPC endpoint

Example: Allow roles in another AWS account to use an API

The following example resource policy grants API access in one AWS account to two roles in a
different AWS account via Signature Version 4 (SigV4) protocols. Specifically, the developer and the
administrator role for the AWS account identified by account-id-2 are granted the execute-
api:Invoke action to execute the GET action on the pets resource (API) in your AWS account.

{
 "Version": "2012-10-17",
 "Statement": [

Access control 314

https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

Amazon API Gateway Developer Guide

 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::account-id-2:role/developer",
 "arn:aws:iam::account-id-2:role/Admin"
]
 },
 "Action": "execute-api:Invoke",
 "Resource": [
 "execute-api:/stage/GET/pets"
]
 }
]
}

Example: Deny API traffic based on source IP address or range

The following example resource policy denies (blocks) incoming traffic to an API from two specified
source IP address blocks.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "execute-api:Invoke",
 "Resource": [
 "execute-api:/*"
]
 },
 {
 "Effect": "Deny",
 "Principal": "*",
 "Action": "execute-api:Invoke",
 "Resource": [
 "execute-api:/*"
],
 "Condition" : {
 "IpAddress": {
 "aws:SourceIp": ["192.0.2.0/24", "198.51.100.0/24"]
 }

Access control 315

Amazon API Gateway Developer Guide

 }
 }
]
}

Example: Deny API traffic based on source IP address or range when using a private API

The following example resource policy denies (blocks) incoming traffic to a private API from two
specified source IP address blocks. When using private APIs, the VPC endpoint for execute-api
re-writes the original source IP address. The aws:VpcSourceIp condition filters the request
against the original requester IP address.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "execute-api:Invoke",
 "Resource": [
 "execute-api:/*"
]
 },
 {
 "Effect": "Deny",
 "Principal": "*",
 "Action": "execute-api:Invoke",
 "Resource": [
 "execute-api:/*"
],
 "Condition" : {
 "IpAddress": {
 "aws:VpcSourceIp": ["192.0.2.0/24", "198.51.100.0/24"]
 }
 }
 }
]
}

Access control 316

Amazon API Gateway Developer Guide

Example: Allow private API traffic based on source VPC or VPC endpoint

The following example resource policies allow incoming traffic to a private API only from a
specified virtual private cloud (VPC) or VPC endpoint.

This example resource policy specifies a source VPC:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "execute-api:Invoke",
 "Resource": [
 "execute-api:/*"
]
 },
 {
 "Effect": "Deny",
 "Principal": "*",
 "Action": "execute-api:Invoke",
 "Resource": [
 "execute-api:/*"
],
 "Condition" : {
 "StringNotEquals": {
 "aws:SourceVpc": "vpc-1a2b3c4d"
 }
 }
 }
]
}

This example resource policy specifies a source VPC endpoint:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "execute-api:Invoke",

Access control 317

Amazon API Gateway Developer Guide

 "Resource": [
 "execute-api:/*"
]
 },
 {
 "Effect": "Deny",
 "Principal": "*",
 "Action": "execute-api:Invoke",
 "Resource": [
 "execute-api:/*"
],
 "Condition" : {
 "StringNotEquals": {
 "aws:SourceVpce": "vpce-1a2b3c4d"
 }
 }
 }
]
}

Create and attach an API Gateway resource policy to an API

To allow a user to access your API by calling the API execution service, you must create an API
Gateway resource policy, which controls access to the API Gateway resources, and attach the policy
to the API.

Important

To update an API Gateway resource policy, you'll need to have
apigateway:UpdateRestApiPolicy permission in addition to apigateway:PATCH
permission.

The resource policy can be attached to the API when the API is being created, or it can be attached
afterwards. For private APIs, note that until you attach the resource policy to the private API, all
calls to the API will fail.

Important

If you update the resource policy after the API is created, you'll need to deploy the API to
propagate the changes after you've attached the updated policy. Updating or saving the

Access control 318

Amazon API Gateway Developer Guide

policy alone won't change the runtime behavior of the API. For more information about
deploying your API, see Deploying a REST API in Amazon API Gateway.

You can control access by IAM condition elements, including conditions on AWS accounts, source
VPCs, source VPC endpoints, or IP ranges. If you set the Principal in the policy to "*", you can
use other authorization types alongside the resource policy.

However, if you set the Principal to an AWS principal, such as the following: "Principal":
{ "AWS": "arn:aws:iam..." } Authorization fails for all resources not secured with AWS_IAM
authorization, including unsecured resources.

The following sections describe how to create your own API Gateway resource policy and attach it
to your API. Attaching a policy applies the permissions in the policy to the methods in the API.

Important

If you use the API Gateway console to attach a resource policy to a deployed API, or if you
update an existing resource policy, you'll need to redeploy the API in the console for the
changes to take effect.

Topics

• Attaching API Gateway resource policies (console)

• Attaching API Gateway resource policies (AWS CLI)

• Attaching API Gateway resource policies (AWS CloudFormation)

Attaching API Gateway resource policies (console)

You can use the AWS Management console to attach a resource policy to an API Gateway API.

To attach a resource policy to an API Gateway API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose a REST API.

3. In the main navigation pane, choose Resource policy.

4. Choose Create policy.

Access control 319

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

5. (Optional) Choose Select a template to generate an example policy.

In the example policies, placeholders are enclosed in double curly braces
("{{placeholder}}"). Replace each of the placeholders, including the curly braces, with the
necessary information.

6. If you don't use one of the template examples, enter your resource policy.

7. Choose Save changes.

If the API has been deployed previously in the API Gateway console, you'll need to redeploy it for
the resource policy to take effect.

Attaching API Gateway resource policies (AWS CLI)

To use the AWS CLI to create a new API and attach a resource policy to it, call the create-rest-
api command as follows:

aws apigateway create-rest-api \
 --name "api-name" \
 --policy "{\"jsonEscapedPolicyDocument\"}"

To use the AWS CLI to attach a resource policy to an existing API, call the update-rest-api
command as follows:

aws apigateway update-rest-api \
 --rest-api-id api-id \
 --patch-operations op=replace,path=/
policy,value='"{\"jsonEscapedPolicyDocument\"}"'

Attaching API Gateway resource policies (AWS CloudFormation)

You can use AWS CloudFormation to create an API with a resource policy. The following example
creates a REST API with the example resource policy, the section called “Example: Deny API traffic
based on source IP address or range”.

Example AWS CloudFormation template

AWSTemplateFormatVersion: 2010-09-09
Resources:
 Api:
 Type: 'AWS::ApiGateway::RestApi'

Access control 320

https://docs.aws.amazon.com/cli/latest/reference/apigateway/create-rest-api.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/create-rest-api.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/update-rest-api.html

Amazon API Gateway Developer Guide

 Properties:
 Name: testapi
 Policy:
 Statement:
 - Action: 'execute-api:Invoke'
 Effect: Allow
 Principal: '*'
 Resource: 'execute-api/*'
 - Action: 'execute-api:Invoke'
 Effect: Deny
 Principal: '*'
 Resource: 'execute-api/*'
 Condition:
 IpAddress:
 'aws:SourceIp': ["192.0.2.0/24", "198.51.100.0/24"]
 Version: 2012-10-17
 Resource:
 Type: 'AWS::ApiGateway::Resource'
 Properties:
 RestApiId: !Ref Api
 ParentId: !GetAtt Api.RootResourceId
 PathPart: 'helloworld'
 MethodGet:
 Type: 'AWS::ApiGateway::Method'
 Properties:
 RestApiId: !Ref Api
 ResourceId: !Ref Resource
 HttpMethod: GET
 ApiKeyRequired: false
 AuthorizationType: NONE
 Integration:
 Type: MOCK
 ApiDeployment:
 Type: 'AWS::ApiGateway::Deployment'
 DependsOn:
 - MethodGet
 Properties:
 RestApiId: !Ref Api
 StageName: test

Access control 321

Amazon API Gateway Developer Guide

AWS condition keys that can be used in API Gateway resource policies

The following table contains AWS condition keys that can be used in resource policies for APIs in
API Gateway for each authorization type.

For more information about AWS condition keys, see AWS Global Condition Context Keys.

Table of condition keys

Condition keys Criteria Needs AuthN? Authorization type

aws:CurrentTime None No All

aws:EpochTime None No All

aws:Token
IssueTime

Key is present only
in requests that
are signed using
temporary security
credentials.

Yes IAM

aws:Multi
FactorAut
hPresent

Key is present only
in requests that
are signed using
temporary security
credentials.

Yes IAM

aws:Multi
FactorAuthAge

Key is present only if
MFA is present in the
requests.

Yes IAM

aws:Princ
ipalAccount

None Yes IAM

aws:Princ
ipalArn

None Yes IAM

aws:Princ
ipalOrgID

This key is included in
the request context
only if the principal

Yes IAM

Access control 322

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon API Gateway Developer Guide

Condition keys Criteria Needs AuthN? Authorization type

is a member of an
organization.

aws:Princ
ipalOrgPaths

This key is included in
the request context
only if the principal
is a member of an
organization.

Yes IAM

aws:Princ
ipalTag

This key is included in
the request context
if the principal is
using an IAM user
with attached tags.
It is included for
a principal using
an IAM role with
attached tags or
session tags.

Yes IAM

aws:Princ
ipalType

None Yes IAM

aws:Referer Key is present only if
the value is provided
by the caller in the
HTTP header.

No All

aws:Secur
eTransport

None No All

aws:SourceArn None No All

aws:SourceIp None No All

aws:SourceVpc This key can be used
only for private APIs.

No All

Access control 323

Amazon API Gateway Developer Guide

Condition keys Criteria Needs AuthN? Authorization type

aws:SourceVpce This key can be used
only for private APIs.

No All

aws:UserAgent Key is present only if
the value is provided
by the caller in the
HTTP header.

No All

aws:userid None Yes IAM

aws:username None Yes IAM

Control access to an API with IAM permissions

You control access to your Amazon API Gateway API with IAM permissions by controlling access to
the following two API Gateway component processes:

• To create, deploy, and manage an API in API Gateway, you must grant the API developer
permissions to perform the required actions supported by the API management component of
API Gateway.

• To call a deployed API or to refresh the API caching, you must grant the API caller permissions to
perform required IAM actions supported by the API execution component of API Gateway.

The access control for the two processes involves different permissions models, explained next.

API Gateway permissions model for creating and managing an API

To allow an API developer to create and manage an API in API Gateway, you must create IAM
permissions policies that allow a specified API developer to create, update, deploy, view, or delete
required API entities. You attach the permissions policy to a user, role, or group.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

Access control 324

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_permissions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Resource.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html

Amazon API Gateway Developer Guide

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

For more information on how to use this permissions model, see the section called “API Gateway
identity-based policies”.

API Gateway permissions model for invoking an API

To allow an API caller to invoke the API or refresh its caching, you must create IAM policies that
permit a specified API caller to invoke the API method for which user authentication is enabled.
The API developer sets the method's authorizationType property to AWS_IAM to require that
the caller submit the user's credentials to be authenticated. Then, you attach the policy to a user,
role, or group.

In this IAM permissions policy statement, the IAM Resource element contains a list of deployed
API methods identified by given HTTP verbs and API Gateway resource paths. The IAM Action
element contains the required API Gateway API executing actions. These actions include execute-
api:Invoke or execute-api:InvalidateCache, where execute-api designates the
underlying API execution component of API Gateway.

For more information on how to use this permissions model, see Control access for invoking an
API.

When an API is integrated with an AWS service (for example, AWS Lambda) in the back end, API
Gateway must also have permissions to access integrated AWS resources (for example, invoking a
Lambda function) on behalf of the API caller. To grant these permissions, create an IAM role of the
AWS service for API Gateway type. When you create this role in the IAM Management console, this
resulting role contains the following IAM trust policy that declares API Gateway as a trusted entity
permitted to assume the role:

{
 "Version": "2012-10-17",

Access control 325

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.aws.amazon.com/apigateway/latest/api/API_Resource.html

Amazon API Gateway Developer Guide

 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

If you create the IAM role by calling the create-role command of CLI or a corresponding SDK
method, you must supply the above trust policy as the input parameter of assume-role-
policy-document. Do not attempt to create such a policy directly in the IAM Management
console or calling AWS CLI create-policy command or a corresponding SDK method.

For API Gateway to call the integrated AWS service, you must also attach to this role appropriate
IAM permissions policies for calling integrated AWS services. For example, to call a Lambda
function, you must include the following IAM permissions policy in the IAM role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "*"
 }
]
}

Note that Lambda supports resource-based access policy, which combines both trust and
permissions policies. When integrating an API with a Lambda function using the API Gateway
console, you are not asked to set this IAM role explicitly, because the console sets the resource-
based permissions on the Lambda function for you, with your consent.

Note

To enact access control to an AWS service, you can use either the caller-based permissions
model, where a permissions policy is directly attached to the caller's user or group, or

Access control 326

https://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-policy.html

Amazon API Gateway Developer Guide

the role-based permission model, where a permissions policy is attached to an IAM role
that API Gateway can assume. The permissions policies may differ in the two models. For
example, the caller-based policy blocks the access while the role-based policy allows it.
You can take advantage of this to require that a user access an AWS service through an API
Gateway API only.

Control access for invoking an API

In this section you will learn how to write up IAM policy statements to control who can call a
deployed API in API Gateway. Here, you will also find the policy statement reference, including the
formats of Action and Resource fields related to the API execution service. You should also study
the IAM section in the section called “How resource policies affect authorization workflow”.

For private APIs, you should use a combination of an API Gateway resource policy and a VPC
endpoint policy. For more information, see the following topics:

• the section called “Use API Gateway resource policies”

• the section called “Use VPC endpoint policies for private APIs”

Control who can call an API Gateway API method with IAM policies

To control who can or cannot call a deployed API with IAM permissions, create an IAM policy
document with required permissions. A template for such a policy document is shown as follows.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Permission",
 "Action": [
 "execute-api:Execution-operation"
],
 "Resource": [
 "arn:aws:execute-api:region:account-id:api-id/stage/METHOD_HTTP_VERB/Resource-
path"
]
 }
]
}

Access control 327

Amazon API Gateway Developer Guide

Here, Permission is to be replaced by Allow or Deny depending on whether you want to grant
or revoke the included permissions. Execution-operation is to be replaced by the operations
supported by the API execution service. METHOD_HTTP_VERB stands for a HTTP verb supported
by the specified resources. Resource-path is the placeholder for the URL path of a deployed
API Resource instance supporting the said METHOD_HTTP_VERB. For more information, see
Statement reference of IAM policies for executing API in API Gateway.

Note

For IAM policies to be effective, you must have enabled IAM authentication on API methods
by setting AWS_IAM for the methods' authorizationType property. Failing to do so will
make these API methods publicly accessible.

For example, to grant a user permission to view a list of pets exposed by a specified API, but to
deny the user permission to add a pet to the list, you could include the following statement in the
IAM policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:Invoke"
],
 "Resource": [
 "arn:aws:execute-api:us-east-1:account-id:api-id/*/GET/pets"
]
 },
 {
 "Effect": "Deny",
 "Action": [
 "execute-api:Invoke"
],
 "Resource": [
 "arn:aws:execute-api:us-east-1:account-id:api-id/*/POST/pets"
]
 }
]

Access control 328

https://docs.aws.amazon.com/apigateway/latest/api/API_Resource.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Method.html#authorizationType

Amazon API Gateway Developer Guide

}

To grant a user permission to view a specific pet exposed by an API that is configured as GET /
pets/{petId}, you could include the following statement in the IAM policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:Invoke"
],
 "Resource": [
 "arn:aws:execute-api:us-east-1:account-id:api-id/*/GET/pets/a1b2"
]
 }
]
}

Statement reference of IAM policies for executing API in API Gateway

The following information describes the Action and Resource format of IAM policy statements of
access permissions for executing an API.

Action format of permissions for executing API in API Gateway

The API-executing Action expression has the following general format:

execute-api:action

where action is an available API-executing action:

• *, which represents all of the following actions.

• Invoke, used to invoke an API upon a client request.

• InvalidateCache, used to invalidate API cache upon a client request.

Resource format of permissions for executing API in API Gateway

The API-executing Resource expression has the following general format:

Access control 329

Amazon API Gateway Developer Guide

arn:aws:execute-api:region:account-id:api-id/stage-name/HTTP-VERB/resource-path-
specifier

where:

• region is the AWS region (such as us-east-1 or * for all AWS regions) that corresponds to the
deployed API for the method.

• account-id is the 12-digit AWS account Id of the REST API owner.

• api-id is the identifier API Gateway has assigned to the API for the method.

• stage-name is the name of the stage associated with the method.

• HTTP-VERB is the HTTP verb for the method. It can be one of the following: GET, POST, PUT,
DELETE, PATCH.

• resource-path-specifier is the path to the desired method.

Note

If you specify a wildcard (*), the Resource expression applies the wildcard to the rest of
the expression.

Some example resource expressions include:

• arn:aws:execute-api:*:*:* for any resource path in any stage, for any API in any AWS
region.

• arn:aws:execute-api:us-east-1:*:* for any resource path in any stage, for any API in the
AWS region of us-east-1.

• arn:aws:execute-api:us-east-1:*:api-id/* for any resource path in any stage, for the
API with the identifier of api-id in the AWS region of us-east-1.

• arn:aws:execute-api:us-east-1:*:api-id/test/* for resource path in the stage of
test, for the API with the identifier of api-id in the AWS region of us-east-1.

To learn more, see API Gateway Amazon Resource Name (ARN) reference.

IAM policy examples for API execution permissions

For permissions model and other background information, see Control access for invoking an API.

Access control 330

Amazon API Gateway Developer Guide

The following policy statement gives the user permission to call any POST method along the
path of mydemoresource, in the stage of test, for the API with the identifier of a123456789,
assuming the corresponding API has been deployed to the AWS region of us-east-1:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:Invoke"
],
 "Resource": [
 "arn:aws:execute-api:us-east-1:*:a123456789/test/POST/mydemoresource/*"
]
 }
]
}

The following example policy statement gives the user permission to call any method on the
resource path of petstorewalkthrough/pets, in any stage, for the API with the identifier of
a123456789, in any AWS region where the corresponding API has been deployed:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:Invoke"
],
 "Resource": [
 "arn:aws:execute-api:*:*:a123456789/*/*/petstorewalkthrough/pets"
]
 }
]
}

Create and attach a policy to a user

To enable a user to call the API managing service or the API execution service, you must create an
IAM policy which controls access to the API Gateway entities.

Access control 331

Amazon API Gateway Developer Guide

To use the JSON policy editor to create a policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

3. At the top of the page, choose Create policy.

4. In the Policy editor section, choose the JSON option.

5. Enter the following JSON policy document:

{
 "Version": "2012-10-17",
 "Statement" : [
 {
 "Effect" : "Allow",
 "Action" : [
 "action-statement"
],
 "Resource" : [
 "resource-statement"
]
 },
 {
 "Effect" : "Allow",
 "Action" : [
 "action-statement"
],
 "Resource" : [
 "resource-statement"
]
 }
]
}

6. Choose Next.

Access control 332

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon API Gateway Developer Guide

Note

You can switch between the Visual and JSON editor options anytime. However, if you
make changes or choose Next in the Visual editor, IAM might restructure your policy to
optimize it for the visual editor. For more information, see Policy restructuring in the
IAM User Guide.

7. On the Review and create page, enter a Policy name and a Description (optional) for the
policy that you are creating. Review Permissions defined in this policy to see the permissions
that are granted by your policy.

8. Choose Create policy to save your new policy.

In this statement, substitute action-statement and resource-statement as needed, and add
other statements to specify the API Gateway entities you want to allow the user to manage, the
API methods the user can call, or both. By default, the user does not have permissions unless there
is an explicit corresponding Allow statement.

You have just created an IAM policy. It won't have any effect until you attach it.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Access control 333

https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon API Gateway Developer Guide

To attach an IAM policy document to an IAM group

1. Choose Groups from the main navigation pane.

2. Choose the Permissions tab under the chosen group.

3. Choose Attach policy.

4. Choose the policy document that you previously created, and then choose Attach policy.

For API Gateway to call other AWS services on your behalf, create an IAM role of the Amazon API
Gateway type.

To create an Amazon API Gateway type of role

1. Choose Roles from the main navigation pane.

2. Choose Create New Role.

3. Type a name for Role name and then choose Next Step.

4. Under Select Role Type, in AWS Service Roles, choose Select next to Amazon API Gateway.

5. Choose an available managed IAM permissions policy, for example,
AmazonAPIGatewayPushToCloudWatchLog if you want API Gateway to log metrics in
CloudWatch, under Attach Policy and then choose Next Step.

6. Under Trusted Entities, verify that apigateway.amazonaws.com is listed as an entry, and then
choose Create Role.

7. In the newly created role, choose the Permissions tab and then choose Attach Policy.

8. Choose the previously created custom IAM policy document and then choose Attach Policy.

Use VPC endpoint policies for private APIs in API Gateway

You can improve the security of your private APIs by configuring API Gateway to use an interface
VPC endpoint. Interface endpoints are powered by AWS PrivateLink, a technology that enables you
to privately access AWS services by using private IP addresses. For more information about creating
VPC endpoints, see Creating an Interface Endpoint.

A VPC endpoint policy is an IAM resource policy that you can attach to an interface VPC endpoint to
control access to the endpoint. For more information, see Controlling Access to Services with VPC
Endpoints. You can use an endpoint policy to restrict the traffic going from your internal network
to access your private APIs. You can choose to allow or disallow access to specific private APIs that
can be accessed through the VPC endpoint.

Access control 334

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-private-apis.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon API Gateway Developer Guide

VPC endpoint policies can be used together with API Gateway resource policies. The resource policy
is used to specify which principals can access the API. The endpoint policy specifies which private
APIs can be called via the VPC endpoint. For more information about resource policies, see the
section called “Use API Gateway resource policies”.

VPC endpoint policy considerations

• If a policy restricts IAM principals, you must set the authorizationType of the method to
AWS_IAM or NONE.

• The identity of the invoker is evaluated based on the Authorization header value. Depending
on your authorizationType, this may lead to an 403 IncompleteSignatureException or
an 403 InvalidSignatureException error. The following table shows the Authorization
header values for each authorizationType.

authorizationType Authorization header
evaluated?

Allowed Authorization
header values

NONE with the default full
access policy

No Not passed

NONE with a custom access
policy

Yes Must be a valid SigV4 value

IAM Yes Must be a valid SigV4 value

CUSTOM or COGNITO_U
SER_POOLS

No Not passed

VPC endpoint policy examples

You can create policies for Amazon Virtual Private Cloud endpoints for Amazon API Gateway in
which you can specify:

• The principal that can perform actions.

• The actions that can be performed.

• The resources that can have actions performed on them.

Access control 335

https://docs.aws.amazon.com/IAM/latest/UserGuide/create-signed-request.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/create-signed-request.html

Amazon API Gateway Developer Guide

To attach the policy to the VPC endpoint, you'll need to use the VPC console. For more information,
see Controlling Access to Services with VPC Endpoints.

Example 1: VPC endpoint policy granting access to two APIs

The following example policy grants access to only two specific APIs via the VPC endpoint that the
policy is attached to.

{
 "Statement": [
 {
 "Principal": "*",
 "Action": [
 "execute-api:Invoke"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:execute-api:us-east-1:123412341234:a1b2c3d4e5/*",
 "arn:aws:execute-api:us-east-1:123412341234:aaaaa11111/*"
]
 }
]
}

Example 2: VPC endpoint policy granting access to GET methods

The following example policy grants users access to GET methods for a specific API via the VPC
endpoint that the policy is attached to.

{
 "Statement": [
 {
 "Principal": "*",
 "Action": [
 "execute-api:Invoke"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:execute-api:us-east-1:123412341234:a1b2c3d4e5/stageName/GET/*"
]
 }
]

Access control 336

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon API Gateway Developer Guide

}

Example 3: VPC endpoint policy granting a specific user access to a specific API

The following example policy grants a specific user access to a specific API via the VPC endpoint
that the policy is attached to.

{
 "Statement": [
 {
 "Principal": {
 "AWS": [
 "arn:aws:iam::123412341234:user/MyUser"
]
 },
 "Action": [
 "execute-api:Invoke"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:execute-api:us-east-1:123412341234:a1b2c3d4e5/*"
]
 }
]
}

Using tags to control access to a REST API in API Gateway

Permission to access REST APIs can be fine-tuned using attribute-based access control in IAM
policies.

For more information, see the section called “Attribute-based access control”.

Use API Gateway Lambda authorizers

A Lambda authorizer (formerly known as a custom authorizer) is an API Gateway feature that uses a
Lambda function to control access to your API.

A Lambda authorizer is useful if you want to implement a custom authorization scheme that uses
a bearer token authentication strategy such as OAuth or SAML, or that uses request parameters to
determine the caller's identity.

Access control 337

Amazon API Gateway Developer Guide

When a client makes a request to one of your API's methods, API Gateway calls your Lambda
authorizer, which takes the caller's identity as input and returns an IAM policy as output.

There are two types of Lambda authorizers:

• A token-based Lambda authorizer (also called a TOKEN authorizer) receives the caller's identity in
a bearer token, such as a JSON Web Token (JWT) or an OAuth token. For an example application,
see Open Banking Brazil - Authorization Samples on GitHub.

• A request parameter-based Lambda authorizer (also called a REQUEST authorizer) receives the
caller's identity in a combination of headers, query string parameters, stageVariables, and
$context variables.

For WebSocket APIs, only request parameter-based authorizers are supported.

It is possible to use an AWS Lambda function from an AWS account that is different from the one
in which you created your API. For more information, see the section called “Configure a cross-
account Lambda authorizer”.

For example Lambda functions, see aws-apigateway-lambda-authorizer-blueprints on GitHub.

Topics

• Lambda authorizer Auth workflow

• Steps to create an API Gateway Lambda authorizer

• Create an API Gateway Lambda authorizer function in the Lambda console

• Configure a Lambda authorizer using the API Gateway console

• Input to an Amazon API Gateway Lambda authorizer

• Output from an Amazon API Gateway Lambda authorizer

• Call an API with API Gateway Lambda authorizers

• Configure a cross-account Lambda authorizer

Lambda authorizer Auth workflow

The following diagram illustrates the authorization workflow for Lambda authorizers.

Access control 338

https://github.com/aws-samples/openbanking-brazilian-auth-samples
https://github.com/awslabs/aws-apigateway-lambda-authorizer-blueprints

Amazon API Gateway Developer Guide

API Gateway Lambda authorization workflow

1. The client calls a method on an API Gateway API method, passing a bearer token or request
parameters.

2. API Gateway checks whether a Lambda authorizer is configured for the method. If it is, API
Gateway calls the Lambda function.

3. The Lambda function authenticates the caller by means such as the following:

• Calling out to an OAuth provider to get an OAuth access token.

• Calling out to a SAML provider to get a SAML assertion.

• Generating an IAM policy based on the request parameter values.

• Retrieving credentials from a database.

4. If the call succeeds, the Lambda function grants access by returning an output object
containing at least an IAM policy and a principal identifier.

5. API Gateway evaluates the policy.

• If access is denied, API Gateway returns a suitable HTTP status code, such as 403
ACCESS_DENIED.

Access control 339

Amazon API Gateway Developer Guide

• If access is allowed, API Gateway invokes the method. If caching is enabled in the authorizer
settings, API Gateway also caches the policy so that the Lambda authorizer function doesn't
need to be invoked again.

6. The call can fail if the Lambda function returns a 401 Unauthorized response. You can
customize the 401 Unauthorized gateway response. To learn more, see the section called
“Gateway responses”.

Steps to create an API Gateway Lambda authorizer

To create a Lambda authorizer, you need to perform the following tasks:

1. Create the Lambda authorizer function in the Lambda console as described in the section
called “Create a Lambda authorizer function in the Lambda console”. You can use one of the
blueprint examples as a starting point and customize the input and output as desired.

2. Configure the Lambda function as an API Gateway authorizer and configure an API method
to require it, as described in the section called “Configure a Lambda authorizer using the
console”. Alternatively, if you need a cross-account Lambda authorizer, see the section called
“Configure a cross-account Lambda authorizer”.

Note

You can also configure an authorizer by using the AWS CLI or an AWS SDK.

3. Test your authorizer by using Postman as described in the section called “Call an API with
Lambda authorizers”.

Create an API Gateway Lambda authorizer function in the Lambda console

Before configuring a Lambda authorizer, you must first create the Lambda function that
implements the logic to authorize and, if necessary, to authenticate the caller. The Lambda console
provides a Python blueprint, which you can use by choosing Use a blueprint and choosing the api-
gateway-authorizer-python blueprint. Otherwise, you'll want to use one of the blueprints in the
awslabs GitHub repository as a starting point.

For the example Lambda authorizer functions in this section, which don't call other services, you
can use the built-in AWSLambdaBasicExecutionRole. When creating the Lambda function
for your own API Gateway Lambda authorizer, you'll need to assign an IAM execution role to the

Access control 340

https://www.postman.com/
https://github.com/awslabs/aws-apigateway-lambda-authorizer-blueprints
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html

Amazon API Gateway Developer Guide

Lambda function if it calls other AWS services. To create the role, follow the instructions in AWS
Lambda Execution Role.

For more example Lambda functions, see aws-apigateway-lambda-authorizer-blueprints on
GitHub. For an example application, see Open Banking Brazil - Authorization Samples on GitHub.

EXAMPLE: Create a token-based Lambda authorizer function

To create a token-based Lambda authorizer function, enter the following Node.js code for the most
recent runtime in the Lambda console. Then, you test the authorizer in the API Gateway console.

To create the token-based Lambda authorizer function

1. In the Lambda console, choose Create function.

2. Choose Author from scratch.

3. Enter a name for the function.

4. For Runtime, choose either the latest supported Node.js or Python runtime.

5. Choose Create function.

6. Copy/paste the following code into the code editor.

Node.js

// A simple token-based authorizer example to demonstrate how to use an
 authorization token
// to allow or deny a request. In this example, the caller named 'user' is
 allowed to invoke
// a request if the client-supplied token value is 'allow'. The caller is not
 allowed to invoke
// the request if the token value is 'deny'. If the token value is
 'unauthorized' or an empty
// string, the authorizer function returns an HTTP 401 status code. For any
 other token value,
// the authorizer returns an HTTP 500 status code.
// Note that token values are case-sensitive.

export const handler = function(event, context, callback) {
 var token = event.authorizationToken;
 switch (token) {
 case 'allow':
 callback(null, generatePolicy('user', 'Allow', event.methodArn));
 break;

Access control 341

https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://github.com/awslabs/aws-apigateway-lambda-authorizer-blueprints
https://github.com/aws-samples/openbanking-brazilian-auth-samples

Amazon API Gateway Developer Guide

 case 'deny':
 callback(null, generatePolicy('user', 'Deny', event.methodArn));
 break;
 case 'unauthorized':
 callback("Unauthorized"); // Return a 401 Unauthorized response
 break;
 default:
 callback("Error: Invalid token"); // Return a 500 Invalid token
 response
 }
};

// Help function to generate an IAM policy
var generatePolicy = function(principalId, effect, resource) {
 var authResponse = {};

 authResponse.principalId = principalId;
 if (effect && resource) {
 var policyDocument = {};
 policyDocument.Version = '2012-10-17';
 policyDocument.Statement = [];
 var statementOne = {};
 statementOne.Action = 'execute-api:Invoke';
 statementOne.Effect = effect;
 statementOne.Resource = resource;
 policyDocument.Statement[0] = statementOne;
 authResponse.policyDocument = policyDocument;
 }

 // Optional output with custom properties of the String, Number or Boolean
 type.
 authResponse.context = {
 "stringKey": "stringval",
 "numberKey": 123,
 "booleanKey": true
 };
 return authResponse;
}

Python

A simple token-based authorizer example to demonstrate how to use an
 authorization token

Access control 342

Amazon API Gateway Developer Guide

to allow or deny a request. In this example, the caller named 'user' is
 allowed to invoke
a request if the client-supplied token value is 'allow'. The caller is not
 allowed to invoke
the request if the token value is 'deny'. If the token value is 'unauthorized'
 or an empty
string, the authorizer function returns an HTTP 401 status code. For any other
 token value,
the authorizer returns an HTTP 500 status code.
Note that token values are case-sensitive.

import json

def lambda_handler(event, context):
 token = event['authorizationToken']
 if token == 'allow':
 print('authorized')
 response = generatePolicy('user', 'Allow', event['methodArn'])
 elif token == 'deny':
 print('unauthorized')
 response = generatePolicy('user', 'Deny', event['methodArn'])
 elif token == 'unauthorized':
 print('unauthorized')
 raise Exception('Unauthorized') # Return a 401 Unauthorized response
 return 'unauthorized'
 try:
 return json.loads(response)
 except BaseException:
 print('unauthorized')
 return 'unauthorized' # Return a 500 error

def generatePolicy(principalId, effect, resource):
 authResponse = {}
 authResponse['principalId'] = principalId
 if (effect and resource):
 policyDocument = {}
 policyDocument['Version'] = '2012-10-17'
 policyDocument['Statement'] = []
 statementOne = {}
 statementOne['Action'] = 'execute-api:Invoke'
 statementOne['Effect'] = effect
 statementOne['Resource'] = resource

Access control 343

Amazon API Gateway Developer Guide

 policyDocument['Statement'] = [statementOne]
 authResponse['policyDocument'] = policyDocument
 authResponse['context'] = {
 "stringKey": "stringval",
 "numberKey": 123,
 "booleanKey": True
 }
 authResponse_JSON = json.dumps(authResponse)
 return authResponse_JSON

7. Choose Deploy.

After you create your Lambda function, you create and test a token-based Lambda authorizer in
the API Gateway console.

To create a token-based Lambda authorizer

1. In the API Gateway console, create a simple API if you don't already have one.

2. Choose your API from the API list.

3. Choose Authorizers.

4. Choose Create authorizer.

5. For Authorizer name, enter a name.

6. For Authorizer type, select Lambda.

7. For Lambda function, select the AWS Region where you created your Lambda authorizer
function, and then enter the function name.

8. Keep Lambda invoke role blank.

9. For Lambda event payload, select Token.

10. For Token source, enter authorizationToken.

11. Choose Create authorizer.

To test your authorizer

1. Select the name of the authorizer.

2. Under Test authorizer, for the authorizationToken value, enter allow.

3. Choose Test authorizer.

Access control 344

Amazon API Gateway Developer Guide

In this example, when the API receives a method request, API Gateway passes the source token
to this Lambda authorizer function in the event.authorizationToken attribute. The Lambda
authorizer function reads the token and acts as follows:

• If the token value is 'allow', the test of the authorizer function returns a 200 OK HTTP
response and an IAM policy that looks like the following, and the method request succeeds:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "execute-api:Invoke",
 "Effect": "Allow",
 "Resource": "arn:aws:execute-api:us-east-1:123456789012:ivdtdhp7b5/
ESTestInvoke-stage/GET/"
 }
]
}

• If the token value is 'deny', the test of the authorizer function returns a 200 OK HTTP response
and a Deny IAM policy that looks like the following, and the method request fails:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "execute-api:Invoke",
 "Effect": "Deny",
 "Resource": "arn:aws:execute-api:us-east-1:123456789012:ivdtdhp7b5/
ESTestInvoke-stage/GET/"
 }
]
}

Note

Outside of the test environment, the authorizer function returns a 403 Forbidden
HTTP response and the method request fails.

• If the token value is 'unauthorized' or an empty string, the test of the authorizer function
returns a 401 Unauthorized HTTP response, and the method call fails.

Access control 345

Amazon API Gateway Developer Guide

• If the token is anything else, the client receives a 500 Invalid token response, and the
method call fails.

Note

In production code, you may need to authenticate the user before granting authorization.
If so, you can add authentication logic in the Lambda function as well by calling an
authentication provider as directed in the documentation for that provider.

In addition to returning an IAM policy, the Lambda authorizer function must also return the
caller's principal identifier. It can also optionally return a context object containing additional
information that can be passed into the integration backend. For more information, see Output
from an Amazon API Gateway Lambda authorizer.

EXAMPLE: Create a request-based Lambda authorizer function

To create a request-based Lambda authorizer function, enter the following Node.js code for the
most recent runtime in the Lambda console. Then, you test the authorizer in the API Gateway
console.

1. In the Lambda console, choose Create function.

2. Choose Author from scratch.

3. Enter a name for the function.

4. For Runtime, choose either the latest supported Node.js or Python runtime.

5. Choose Create function.

6. Copy/paste the following code into the code editor.

Node.js

 // A simple request-based authorizer example to demonstrate how to use
 request
 // parameters to allow or deny a request. In this example, a request is
 // authorized if the client-supplied headerauth1 header, QueryString1
 // query parameter, and stage variable of StageVar1 all match
 // specified values of 'headerValue1', 'queryValue1', and 'stageValue1',
 // respectively.

Access control 346

Amazon API Gateway Developer Guide

export const handler = function(event, context, callback) {
 console.log('Received event:', JSON.stringify(event, null, 2));

 // Retrieve request parameters from the Lambda function input:
 var headers = event.headers;
 var queryStringParameters = event.queryStringParameters;
 var pathParameters = event.pathParameters;
 var stageVariables = event.stageVariables;

 // Parse the input for the parameter values
 var tmp = event.methodArn.split(':');
 var apiGatewayArnTmp = tmp[5].split('/');
 var awsAccountId = tmp[4];
 var region = tmp[3];
 var restApiId = apiGatewayArnTmp[0];
 var stage = apiGatewayArnTmp[1];
 var method = apiGatewayArnTmp[2];
 var resource = '/'; // root resource
 if (apiGatewayArnTmp[3]) {
 resource += apiGatewayArnTmp[3];
 }

 // Perform authorization to return the Allow policy for correct parameters
 and
 // the 'Unauthorized' error, otherwise.
 var authResponse = {};
 var condition = {};
 condition.IpAddress = {};

 if (headers.headerauth1 === "headerValue1"
 && queryStringParameters.QueryString1 === "queryValue1"
 && stageVariables.StageVar1 === "stageValue1") {
 callback(null, generateAllow('me', event.methodArn));
 } else {
 callback("Unauthorized");
 }
}

// Help function to generate an IAM policy
var generatePolicy = function(principalId, effect, resource) {
 // Required output:
 var authResponse = {};
 authResponse.principalId = principalId;
 if (effect && resource) {

Access control 347

Amazon API Gateway Developer Guide

 var policyDocument = {};
 policyDocument.Version = '2012-10-17'; // default version
 policyDocument.Statement = [];
 var statementOne = {};
 statementOne.Action = 'execute-api:Invoke'; // default action
 statementOne.Effect = effect;
 statementOne.Resource = resource;
 policyDocument.Statement[0] = statementOne;
 authResponse.policyDocument = policyDocument;
 }
 // Optional output with custom properties of the String, Number or Boolean
 type.
 authResponse.context = {
 "stringKey": "stringval",
 "numberKey": 123,
 "booleanKey": true
 };
 return authResponse;
}

var generateAllow = function(principalId, resource) {
 return generatePolicy(principalId, 'Allow', resource);
}

var generateDeny = function(principalId, resource) {
 return generatePolicy(principalId, 'Deny', resource);
}

Python

A simple request-based authorizer example to demonstrate how to use request
parameters to allow or deny a request. In this example, a request is
authorized if the client-supplied headerauth1 header, QueryString1
query parameter, and stage variable of StageVar1 all match
specified values of 'headerValue1', 'queryValue1', and 'stageValue1',
respectively.

import json

def lambda_handler(event, context):
 print(event)

Access control 348

Amazon API Gateway Developer Guide

 # Retrieve request parameters from the Lambda function input:
 headers = event['headers']
 queryStringParameters = event['queryStringParameters']
 pathParameters = event['pathParameters']
 stageVariables = event['stageVariables']

 # Parse the input for the parameter values
 tmp = event['methodArn'].split(':')
 apiGatewayArnTmp = tmp[5].split('/')
 awsAccountId = tmp[4]
 region = tmp[3]
 restApiId = apiGatewayArnTmp[0]
 stage = apiGatewayArnTmp[1]
 method = apiGatewayArnTmp[2]
 resource = '/'

 if (apiGatewayArnTmp[3]):
 resource += apiGatewayArnTmp[3]

 # Perform authorization to return the Allow policy for correct parameters
 # and the 'Unauthorized' error, otherwise.

 authResponse = {}
 condition = {}
 condition['IpAddress'] = {}

 if (headers['headerauth1'] == "headerValue1" and
 queryStringParameters["QueryString1"]
 == "queryValue1" and stageVariables["StageVal1"] == "stageValue1"):
 response = generateAllow('me', event['methodArn'])
 print('authorized')
 return json.loads(response)
 else:
 print('unauthorized')
 raise Exception('Unauthorized') # Return a 401 Unauthorized response
 return 'unauthorized'

 # Help function to generate IAM policy

def generatePolicy(principalId, effect, resource):
 authResponse = {}
 authResponse['principalId'] = principalId
 if (effect and resource):

Access control 349

Amazon API Gateway Developer Guide

 policyDocument = {}
 policyDocument['Version'] = '2012-10-17'
 policyDocument['Statement'] = []
 statementOne = {}
 statementOne['Action'] = 'execute-api:Invoke'
 statementOne['Effect'] = effect
 statementOne['Resource'] = resource
 policyDocument['Statement'] = [statementOne]
 authResponse['policyDocument'] = policyDocument

 authResponse['context'] = {
 "stringKey": "stringval",
 "numberKey": 123,
 "booleanKey": True
 }

 authResponse_JSON = json.dumps(authResponse)

 return authResponse_JSON

def generateAllow(principalId, resource):
 return generatePolicy(principalId, 'Allow', resource)

def generateDeny(principalId, resource):
 return generatePolicy(principalId, 'Deny', resource)

7. Choose Deploy.

After you create your Lambda function, you create and test a request-based Lambda authorizer in
the API Gateway console.

To create a request-based Lambda authorizer

1. In the API Gateway console, create a simple API if you don't already have one.

2. Choose your API from the API list.

3. Choose Authorizers.

4. Choose Create authorizer.

5. For Authorizer name, enter a name.

6. For Authorizer type, select Lambda.

Access control 350

Amazon API Gateway Developer Guide

7. For Lambda function, select the AWS Region where you created your Lambda authorizer
function, and then enter the function name.

8. Keep Lambda invoke role blank.

9. For Lambda event payload, select Request.

10. Under Identity source type, enter the following:

a. Select Header and enter headerauth1, and then choose Add parameter.

b. Under Identity source type, select Query string and enter QueryString1, and then
choose Add parameter.

c. Under Identity source type, select Stage variable and enter StageVar1.

11. Choose Create authorizer.

To test your authorizer

1. Select the name of the authorizer.

2. Under Test authorizer, enter the following:

a. Select Header and enter headerValue1, and then choose Add parameter.

b. Under Identity source type, select Query string and enter queryValue1, and then
choose Add parameter.

c. Under Identity source type, select Stage variable and enter stageValue1.

3. Choose Test authorizer.

In this example, the Lambda authorizer function checks the input parameters and acts as follows:

• If all the required parameter values match the expected values, the authorizer function returns a
200 OK HTTP response and an IAM policy that looks like the following, and the method request
succeeds:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "execute-api:Invoke",
 "Effect": "Allow",

Access control 351

Amazon API Gateway Developer Guide

 "Resource": "arn:aws:execute-api:us-east-1:123456789012:ivdtdhp7b5/
ESTestInvoke-stage/GET/"
 }
]
}

• Otherwise, the authorizer function returns a 401 Unauthorized HTTP response, and the
method call fails.

Note

In production code, you may need to authenticate the user before granting authorization.
If so, you can add authentication logic in the Lambda function as well by calling an
authentication provider as directed in the documentation for that provider.

In addition to returning an IAM policy, the Lambda authorizer function must also return the
caller's principal identifier. It can also optionally return a context object containing additional
information that can be passed into the integration backend. For more information, see Output
from an Amazon API Gateway Lambda authorizer.

Configure a Lambda authorizer using the API Gateway console

After you create the Lambda function and verify that it works, use the following steps to configure
the API Gateway Lambda authorizer (formerly known as the custom authorizer) in the API Gateway
console.

To configure a Lambda authorizer using the API Gateway console

1. Sign in to the API Gateway console.

2. Create a new or select an existing API, and then choose Authorizers.

3. Choose Create authorizer.

4. For Authorizer name, enter a name for the authorizer.

5. For Authorizer type, select Lambda.

6. For Lambda function, select the AWS Region where you created your Lambda authorizer
function, and then enter the function name.

7. Keep Lambda invoke role blank to let the API Gateway console set a resource-based policy.
The policy grants API Gateway permissions to invoke the authorizer Lambda function. You can

Access control 352

Amazon API Gateway Developer Guide

also choose to enter the name of an IAM role to allow API Gateway to invoke the authorizer
Lambda function. For an example of such a role, see Create an assumable IAM role.

8. For Lambda event payload, select either Token for a TOKEN authorizer or Request for a
REQUEST authorizer. (This is the same as setting the type property to TOKEN or REQUEST.)

9. Depending on the choice of the previous step, do one of the following:

a. For the Token option, do the following:

• For Token source, enter the header name that contains the authorization token. The
API client must include a header of this name to send the authorization token to the
Lambda authorizer.

• Optionally, for Token validation, enter a RegEx statement. API Gateway performs initial
validation of the input token against this expression and invokes the authorizer upon
successful validation. This helps reduce calls to your API.

• To cache the authorization policy generated by the authorizer, keep Authorization
caching turned on. When policy caching is enabled, you can choose to modify the TTL
value. Setting the TTL to zero disables policy caching. When policy caching is enabled,
the header name specified in Token source becomes the cache key. If multiple values
are passed to this header in the request, all values will become the cache key, with the
order preserved.

Note

The default TTL value is 300 seconds. The maximum value is 3600 seconds; this
limit cannot be increased.

b. For the Request option, do the following:

• For Identity source type, select a parameter type. Supported parameter types are
Header, Query string, Stage variable, and Context. To add more identity
sources, choose Add parameter.

• To cache the authorization policy generated by the authorizer, keep Authorization
caching turned on. When policy caching is enabled, you can choose to modify the TTL
value. Setting the TTL to zero disables policy caching.

API Gateway uses the specified identity sources as the request authorizer caching key.
When caching is enabled, API Gateway calls the authorizer's Lambda function only

Access control 353

https://docs.aws.amazon.com/apigateway/latest/api/API_Authorizer.html#type

Amazon API Gateway Developer Guide

after successfully verifying that all the specified identity sources are present at runtime.
If a specified identify source is missing, null, or empty, API Gateway returns a 401
Unauthorized response without calling the authorizer Lambda function.

When multiple identity sources are defined, they are all used to derive the authorizer's
cache key. Changing any of the cache key parts causes the authorizer to discard the
cached policy document and generate a new one. If a header with multiple values
is passed in the request, then all values will be part of the cache key, with the order
preserved.

• When caching is turned off, it is not necessary to specify an identity source. API Gateway
directly passes the request to the authorizer Lambda function.

Note

To enable caching, your authorizer must return a policy that is applicable to
all methods across an API. To enforce method-specific policy, you can turn off
Authorization caching.

10. Choose Create authorizer.

11. After the authorizer is created for the API, you can test the authorizer before it is configured
on a method. To test an authorizer, select the name of the authorizer.

12. a. For the TOKEN authorizer, under Token value, enter a valid token. Choose Test authorizer.
The token will be passed to the Lambda function as the header you specified in the Token
source setting of the authorizer.

b. For the REQUEST authorizer, under Identity source type, select a parameter type and
enter a value. To add more parameters, select Add parameter. Choose Test authorizer.

In addition to using the API Gateway console, you can use AWS CLI or an AWS SDK for API
Gateway to test invoking an authorizer. To do so using the AWS CLI, see test-invoke-authorizer.

Note

Test-invoke for method executions test-invoke for authorizers are independent
processes.

Access control 354

https://docs.aws.amazon.com/cli/latest/reference/apigateway/test-invoke-authorizer.html

Amazon API Gateway Developer Guide

To test invoking a method using the API Gateway console, see Use the console to test
a REST API method. To test invoking a method using the AWS CLI, see test-invoke-
method.
To test invoking a method and a configured authorizer, deploy the API, and then
use cURL or Postman to call the method, providing the required token or request
parameters.

The next procedure shows how to configure an API method to use the Lambda authorizer.

To configure an API method to use a Lambda authorizer

1. Choose Resources. Choose a new method or choose an existing method. If necessary, create a
new resource.

2. On the Method request tab, under Method request settings, choose Edit.

3. For Authorizer, from the dropdown menu, select the Lambda authorizer you just created.

4. (Optional) If you want to pass the authorization token to the backend, choose HTTP request
headers. Choose Add header, and then add the name of the authorization header. In Name,
enter the header name that matches the Token source name you specified when you created
the Lambda authorizer for the API. This step does not apply to REQUEST authorizers.

5. Choose Save.

6. Choose Deploy API to deploy the API to a stage. Note the Invoke URL value. You need it when
calling the API. For a REQUEST authorizer using stage variables, you must also define the
required stage variables and specify their values while on the Stages page.

Input to an Amazon API Gateway Lambda authorizer

TOKEN input format

For a Lambda authorizer (formerly known as a custom authorizer) of the TOKEN type, you must
specify a custom header as the Token Source when you configure the authorizer for your API. The
API client must pass the required authorization token in that header in the incoming request. Upon
receiving the incoming method request, API Gateway extracts the token from the custom header. It
then passes the token as the authorizationToken property of the event object of the Lambda
function, in addition to the method ARN as the methodArn property:

{

Access control 355

https://docs.aws.amazon.com/cli/latest/reference/apigateway/test-invoke-method.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/test-invoke-method.html

Amazon API Gateway Developer Guide

 "type":"TOKEN",
 "authorizationToken":"{caller-supplied-token}",
 "methodArn":"arn:aws:execute-api:{regionId}:{accountId}:{apiId}/{stage}/{httpVerb}/
[{resource}/[{child-resources}]]"
}

In this example, the type property specifies the authorizer type, which is a TOKEN authorizer. The
{caller-supplied-token} originates from the authorization header in a client request, and can
be any string value. The methodArn is the ARN of the incoming method request and is populated
by API Gateway in accordance with the Lambda authorizer configuration.

REQUEST input format

For a Lambda authorizer of the REQUEST type, API Gateway passes request parameters to the
authorizer Lambda function as part of the event object. The request parameters include headers,
path parameters, query string parameters, stage variables, and some of request context variables.
The API caller can set the path parameters, headers, and query string parameters. The API
developer must set the stage variables during the API deployment and API Gateway provides the
request context at run time.

Note

Path parameters can be passed as request parameters to the Lambda authorizer function,
but they cannot be used as identity sources.

The following example shows an input to a REQUEST authorizer for an API method (GET /
request) with a proxy integration:

{
 "type": "REQUEST",
 "methodArn": "arn:aws:execute-api:us-east-1:123456789012:abcdef123/test/GET/request",
 "resource": "/request",
 "path": "/request",
 "httpMethod": "GET",
 "headers": {
 "X-AMZ-Date": "20170718T062915Z",
 "Accept": "*/*",
 "HeaderAuth1": "headerValue1",
 "CloudFront-Viewer-Country": "US",

Access control 356

Amazon API Gateway Developer Guide

 "CloudFront-Forwarded-Proto": "https",
 "CloudFront-Is-Tablet-Viewer": "false",
 "CloudFront-Is-Mobile-Viewer": "false",
 "User-Agent": "..."
 },
 "queryStringParameters": {
 "QueryString1": "queryValue1"
 },
 "pathParameters": {},
 "stageVariables": {
 "StageVar1": "stageValue1"
 },
 "requestContext": {
 "path": "/request",
 "accountId": "123456789012",
 "resourceId": "05c7jb",
 "stage": "test",
 "requestId": "...",
 "identity": {
 "apiKey": "...",
 "sourceIp": "...",
 "clientCert": {
 "clientCertPem": "CERT_CONTENT",
 "subjectDN": "www.example.com",
 "issuerDN": "Example issuer",
 "serialNumber": "a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1",
 "validity": {
 "notBefore": "May 28 12:30:02 2019 GMT",
 "notAfter": "Aug 5 09:36:04 2021 GMT"
 }
 }
 },
 "resourcePath": "/request",
 "httpMethod": "GET",
 "apiId": "abcdef123"
 }
}

The requestContext is a map of key-value pairs and corresponds to the $context variable. Its
outcome is API-dependent. API Gateway may add new keys to the map. For more information
about Lambda function input in Lambda proxy integration, see Input format of a Lambda function
for proxy integration.

Access control 357

Amazon API Gateway Developer Guide

Output from an Amazon API Gateway Lambda authorizer

A Lambda authorizer function's output is a dictionary-like object, which must include the principal
identifier (principalId) and a policy document (policyDocument) containing a list of policy
statements. The output can also include a context map containing key-value pairs. If the API uses
a usage plan (the apiKeySource is set to AUTHORIZER), the Lambda authorizer function must
return one of the usage plan's API keys as the usageIdentifierKey property value.

The following shows an example of this output.

{
 "principalId": "yyyyyyyy", // The principal user identification associated with the
 token sent by the client.
 "policyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "execute-api:Invoke",
 "Effect": "Allow|Deny",
 "Resource": "arn:aws:execute-
api:{regionId}:{accountId}:{apiId}/{stage}/{httpVerb}/[{resource}/[{child-resources}]]"
 }
]
 },
 "context": {
 "stringKey": "value",
 "numberKey": "1",
 "booleanKey": "true"
 },
 "usageIdentifierKey": "{api-key}"
}

Here, a policy statement specifies whether to allow or deny (Effect) the API Gateway execution
service to invoke (Action) the specified API method (Resource). You can use a wild card (*) to
specify a resource type (method). For information about setting valid policies for calling an API, see
Statement reference of IAM policies for executing API in API Gateway.

For an authorization-enabled method ARN, e.g., arn:aws:execute-
api:{regionId}:{accountId}:{apiId}/{stage}/{httpVerb}/[{resource}/[{child-
resources}]], the maximum length is 1600 bytes. The path parameter values, the size of which

Access control 358

https://docs.aws.amazon.com/apigateway/latest/api/API_RestApi.html#apiKeySource

Amazon API Gateway Developer Guide

are determined at run time, can cause the ARN length to exceed the limit. When this happens, the
API client will receive a 414 Request URI too long response.

In addition, the Resource ARN, as shown in the policy statement output by the authorizer, is
currently limited to 512 characters long. For this reason, you must not use URI with a JWT token
of a significant length in a request URI. You can safely pass the JWT token in a request header,
instead.

You can access the principalId value in a mapping template using the
$context.authorizer.principalId variable. This is useful if you want to pass the value to
the backend. For more information, see $context Variables for data models, authorizers, mapping
templates, and CloudWatch access logging.

You can access the stringKey, numberKey, or booleanKey value (for example,
"value", "1", or "true") of the context map in a mapping template by calling
$context.authorizer.stringKey, $context.authorizer.numberKey, or
$context.authorizer.booleanKey, respectively. The returned values are all stringified. Notice
that you cannot set a JSON object or array as a valid value of any key in the context map.

You can use the context map to return cached credentials from the authorizer to the backend,
using an integration request mapping template. This enables the backend to provide an improved
user experience by using the cached credentials to reduce the need to access the secret keys and
open the authorization tokens for every request.

For the Lambda proxy integration, API Gateway passes the context object from
a Lambda authorizer directly to the backend Lambda function as part of the input
event. You can retrieve the context key-value pairs in the Lambda function by calling
$event.requestContext.authorizer.key.

{api-key} stands for an API key in the API stage's usage plan. For more information, see the
section called “Usage plans”.

The following shows example output from the example Lambda authorizer. The example output
contains a policy statement to block (Deny) calls to the GET method for the dev stage of an API
(ymy8tbxw7b) of an AWS account (123456789012).

{
 "principalId": "user",
 "policyDocument": {

Access control 359

Amazon API Gateway Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "execute-api:Invoke",
 "Effect": "Deny",
 "Resource": "arn:aws:execute-api:us-west-2:123456789012:ymy8tbxw7b/dev/GET/"
 }
]
 }
}

Call an API with API Gateway Lambda authorizers

Having configured the Lambda authorizer (formerly known as the custom authorizer) and deployed
the API, you should test the API with the Lambda authorizer enabled. For this, you need a REST
client, such as cURL or Postman. For the following examples, we use Postman.

Note

When calling an authorizer-enabled method, API Gateway does not log the call to
CloudWatch if the required token for the TOKEN authorizer is not set, is null, or is
invalidated by the specified Token validation expression. Similarly, API Gateway does
not log the call to CloudWatch if any of the required identity sources for the REQUEST
authorizer are not set, are null, or are empty.

In the following, we show how to use Postman to call or test an API with a Lambda TOKEN
authorizer. The method can be applied to calling an API with a Lambda REQUEST authorizer, if you
specify the required path, header, or query string parameters explicitly.

To call an API with the custom TOKEN authorizer

1. Open Postman, choose the GET method, and paste the API's Invoke URL into the adjacent URL
field.

Add the Lambda authorization token header and set the value to allow. Choose Send.

Access control 360

https://www.postman.com/

Amazon API Gateway Developer Guide

The response shows that the API Gateway Lambda authorizer returns a 200 OK response
and successfully authorizes the call to access the HTTP endpoint (http://httpbin.org/get)
integrated with the method.

2. Still in Postman, change the Lambda authorization token header value to deny. Choose Send.

Access control 361

Amazon API Gateway Developer Guide

The response shows that the API Gateway Lambda authorizer returns a 403 Forbidden
response without authorizing the call to access the HTTP endpoint.

3. In Postman, change the Lambda authorization token header value to unauthorized and
choose Send.

Access control 362

Amazon API Gateway Developer Guide

The response shows that API Gateway returns a 401 Unauthorized response without
authorizing the call to access the HTTP endpoint.

4. Now, change the Lambda authorization token header value to fail. Choose Send.

Access control 363

Amazon API Gateway Developer Guide

The response shows that API Gateway returns a 500 Internal Server Error response without
authorizing the call to access the HTTP endpoint.

Configure a cross-account Lambda authorizer

You can now also use an AWS Lambda function from a different AWS account as your API
authorizer function. Each account can be in any region where Amazon API Gateway is available.
The Lambda authorizer function can use bearer token authentication strategies such as OAuth
or SAML. This makes it easy to centrally manage and share a central Lambda authorizer function
across multiple API Gateway APIs.

In this section, we show how to configure a cross-account Lambda authorizer function using the
Amazon API Gateway console.

These instructions assume that you already have an API Gateway API in one AWS account and a
Lambda authorizer function in another account.

Configure a cross-account Lambda authorizer using the API Gateway console

Log in to the Amazon API Gateway console in the account that has your API in it, and then do the
following:

1. Choose your API, and then in the main navigation pane, choose Authorizers.

2. Choose Create authorizer.

3. For Authorizer name, enter a name for the authorizer.

4. For Authorizer type, select Lambda.

5. For Lambda Function, enter the full ARN for the Lambda authorizer function that you have in
your second account.

Note

In the Lambda console, you can find the ARN for your function in the upper right
corner of the console window.

6. A warning with an aws lambda add-permission command string will appear. This policy
grants API Gateway permission to invoke the authorizer Lambda function. Copy the command
and save it for later. You run the command after you create the authorizer.

Access control 364

Amazon API Gateway Developer Guide

7. Keep Lambda invoke role blank to let the API Gateway console set a resource-based policy.
The policy grants API Gateway permission to invoke the authorizer Lambda function. You
can also choose to enter an IAM role to allow API Gateway to invoke the authorizer Lambda
function. For an example of such a role, see Create an assumable IAM role.

8. For Lambda event payload, select either Token for a TOKEN authorizer or Request for a
REQUEST authorizer.

9. Depending on the choice of the previous step, do one of the following:

a. For the Token option, do the following:

• For Token source, enter the header name that contains the authorization token. The
API client must include a header of this name to send the authorization token to the
Lambda authorizer.

• Optionally, for Token validation, enter a RegEx statement. API Gateway performs initial
validation of the input token against this expression and invokes the authorizer upon
successful validation. This helps reduce calls to your API.

• To cache the authorization policy generated by the authorizer, keep Authorization
caching turned on. When policy caching is enabled, you can choose to modify the TTL
value. Setting the TTL to zero disables policy caching. When policy caching is enabled,
the header name specified in Token source becomes the cache key. If multiple values
are passed to this header in the request, all values will become the cache key, with the
order preserved.

Note

The default TTL value is 300 seconds. The maximum value is 3600 seconds; this
limit cannot be increased.

b. For the Request option, do the following:

• For Identity source type, select a parameter type. Supported parameter types are
Header, Query string, Stage variable, and Context. To add more identity
sources, choose Add parameter.

• To cache the authorization policy generated by the authorizer, keep Authorization
caching turned on. When policy caching is enabled, you can choose to modify the TTL
value. Setting the TTL to zero disables policy caching.

Access control 365

Amazon API Gateway Developer Guide

API Gateway uses the specified identity sources as the request authorizer caching key.
When caching is enabled, API Gateway calls the authorizer's Lambda function only
after successfully verifying that all the specified identity sources are present at runtime.
If a specified identify source is missing, null, or empty, API Gateway returns a 401
Unauthorized response without calling the authorizer Lambda function.

When multiple identity sources are defined, they are all used to derive the authorizer's
cache key. Changing any of the cache key parts causes the authorizer to discard the
cached policy document and generate a new one. If a header with multiple values
is passed in the request, then all values will be part of the cache key, with the order
preserved.

• When caching is turned off, it is not necessary to specify an identity source.

Note

To enable caching, your authorizer must return a policy that is applicable to
all methods across an API. To enforce method-specific policy, you can turn off
Authorization caching.

10. Choose Create authorizer.

11. Paste the aws lambda add-permission command string that you copied in a previous step
into an AWS CLI window that is configured for your second account. Replace AUTHORIZER_ID
with your authorizer's ID. This will grant your first account access to your second account's
Lambda authorizer function.

Control access to a REST API using Amazon Cognito user pools as authorizer

As an alternative to using IAM roles and policies or Lambda authorizers (formerly known as custom
authorizers), you can use an Amazon Cognito user pool to control who can access your API in
Amazon API Gateway.

To use an Amazon Cognito user pool with your API, you must first create an authorizer of the
COGNITO_USER_POOLS type and then configure an API method to use that authorizer. After the
API is deployed, the client must first sign the user in to the user pool, obtain an identity or access
token for the user, and then call the API method with one of the tokens, which are typically set to
the request's Authorization header. The API call succeeds only if the required token is supplied

Access control 366

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html

Amazon API Gateway Developer Guide

and the supplied token is valid, otherwise, the client isn't authorized to make the call because the
client did not have credentials that could be authorized.

The identity token is used to authorize API calls based on identity claims of the signed-in user.
The access token is used to authorize API calls based on the custom scopes of specified access-
protected resources. For more information, see Using Tokens with User Pools and Resource Server
and Custom Scopes.

To create and configure an Amazon Cognito user pool for your API, you perform the following
tasks:

• Use the Amazon Cognito console, CLI/SDK, or API to create a user pool—or use one that's owned
by another AWS account.

• Use the API Gateway console, CLI/SDK, or API to create an API Gateway authorizer with the
chosen user pool.

• Use the API Gateway console, CLI/SDK, or API to enable the authorizer on selected API methods.

To call any API methods with a user pool enabled, your API clients perform the following tasks:

• Use the Amazon Cognito CLI/SDK or API to sign a user in to the chosen user pool, and obtain
an identity token or access token. To learn more about using the SDKs, see Code examples for
Amazon Cognito using AWS SDKs.

• Use a client-specific framework to call the deployed API Gateway API and supply the appropriate
token in the Authorization header.

As the API developer, you must provide your client developers with the user pool ID, a client ID, and
possibly the associated client secrets that are defined as part of the user pool.

Note

To let a user sign in using Amazon Cognito credentials and also obtain temporary
credentials to use with the permissions of an IAM role, use Amazon Cognito Federated
Identities. For each API resource endpoint HTTP method, set the authorization type,
category Method Execution, to AWS_IAM.

Access control 367

https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-define-resource-servers.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-define-resource-servers.html
https://docs.aws.amazon.com/cognito/latest/developerguide/service_code_examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/service_code_examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html

Amazon API Gateway Developer Guide

In this section, we describe how to create a user pool, how to integrate an API Gateway API with
the user pool, and how to invoke an API that's integrated with the user pool.

Topics

• Obtain permissions to create Amazon Cognito user pool authorizers for a REST API

• Create an Amazon Cognito user pool for a REST API

• Integrate a REST API with an Amazon Cognito user pool

• Call a REST API integrated with an Amazon Cognito user pool

• Configure cross-account Amazon Cognito authorizer for a REST API using the API Gateway
console

• Create an Amazon Cognito authorizer for a REST API using AWS CloudFormation

Obtain permissions to create Amazon Cognito user pool authorizers for a REST API

To create an authorizer with an Amazon Cognito user pool, you must have Allow permissions
to create or update an authorizer with the chosen Amazon Cognito user pool. The following IAM
policy document shows an example of such permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "apigateway:POST"
],
 "Resource": "arn:aws:apigateway:*::/restapis/*/authorizers",
 "Condition": {
 "ArnLike": {
 "apigateway:CognitoUserPoolProviderArn": [
 "arn:aws:cognito-idp:us-east-1:123456789012:userpool/us-
east-1_aD06NQmjO",
 "arn:aws:cognito-idp:us-east-1:234567890123:userpool/us-
east-1_xJ1MQtPEN"
]
 }
 }
 },
 {

Access control 368

Amazon API Gateway Developer Guide

 "Effect": "Allow",
 "Action": [
 "apigateway:PATCH"
],
 "Resource": "arn:aws:apigateway:*::/restapis/*/authorizers/*",
 "Condition": {
 "ArnLike": {
 "apigateway:CognitoUserPoolProviderArn": [
 "arn:aws:cognito-idp:us-east-1:123456789012:userpool/us-
east-1_aD06NQmjO",
 "arn:aws:cognito-idp:us-east-1:234567890123:userpool/us-
east-1_xJ1MQtPEN"
]
 }
 }
 }
]
}

Make sure that the policy is attached to an IAM group that you belong to or an IAM role that you're
assigned to.

In the preceding policy document, the apigateway:POST action is for creating a new authorizer,
and the apigateway:PATCH action is for updating an existing authorizer. You can restrict the
policy to a specific region or a particular API by overriding the first two wildcard (*) characters of
the Resource values, respectively.

The Condition clauses that are used here are to restrict the Allowed permissions to the specified
user pools. When a Condition clause is present, access to any user pools that don't match the
conditions is denied. When a permission doesn't have a Condition clause, access to any user pool
is allowed.

You have the following options to set the Condition clause:

• You can set an ArnLike or ArnEquals conditional expression to permit creating or updating
COGNITO_USER_POOLS authorizers with the specified user pools only.

• You can set an ArnNotLike or ArnNotEquals conditional expression to permit creating or
updating COGNITO_USER_POOLS authorizers with any user pool that isn't specified in the
expression.

• You can omit the Condition clause to permit creating or updating COGNITO_USER_POOLS
authorizers with any user pool, of any AWS account, and in any region.

Access control 369

Amazon API Gateway Developer Guide

For more information on the Amazon Resource Name (ARN) conditional expressions,
see Amazon Resource Name Condition Operators. As shown in the example,
apigateway:CognitoUserPoolProviderArn is a list of ARNs of the COGNITO_USER_POOLS
user pools that can or can't be used with an API Gateway authorizer of the COGNITO_USER_POOLS
type.

Create an Amazon Cognito user pool for a REST API

Before integrating your API with a user pool, you must create the user pool in Amazon Cognito.
Your user pool configuration must follow all resource quotas for Amazon Cognito. All user-
defined Amazon Cognito variables such as groups, users, and roles should use only alphanumeric
characters. For instructions on how to create a user pool, see Tutorial: Creating a user pool in the
Amazon Cognito Developer Guide.

Note the user pool ID, client ID, and any client secret. The client must provide them to Amazon
Cognito for the user to register with the user pool, to sign in to the user pool, and to obtain an
identity or access token to be included in requests to call API methods that are configured with
the user pool. Also, you must specify the user pool name when you configure the user pool as an
authorizer in API Gateway, as described next.

If you're using access tokens to authorize API method calls, be sure to configure the app integration
with the user pool to set up the custom scopes that you want on a given resource server. For more
information about using tokens with Amazon Cognito user pools, see Using Tokens with User
Pools. For more information about resource servers, see Defining Resource Servers for Your User
Pool.

Note the configured resource server identifiers and custom scope names. You need
them to construct the access scope full names for OAuth Scopes, which is used by the
COGNITO_USER_POOLS authorizer.

Access control 370

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_ARN
https://docs.aws.amazon.com/cognito/latest/developerguide/limits.html
https://docs.aws.amazon.com/cognito/latest/developerguide/tutorial-create-user-pool.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-define-resource-servers.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-define-resource-servers.html

Amazon API Gateway Developer Guide

Integrate a REST API with an Amazon Cognito user pool

After creating an Amazon Cognito user pool, in API Gateway, you must then create a
COGNITO_USER_POOLS authorizer that uses the user pool. The following procedure shows you
how to do this using the API Gateway console.

Note

You can use the CreateAuthorizer action to create a COGNITO_USER_POOLS
authorizer that uses multiple user pools. You can use up to 1,000 user pools for one
COGNITO_USER_POOLS authorizer. This limit cannot be increased.

Important

After performing any of the procedures below, you'll need to deploy or redeploy your API
to propagate the changes. For more information about deploying your API, see Deploying a
REST API in Amazon API Gateway.

Access control 371

https://docs.aws.amazon.com/apigateway/latest/api/API_CreateAuthorizer.html

Amazon API Gateway Developer Guide

To create a COGNITO_USER_POOLS authorizer by using the API Gateway console

1. Create a new API, or select an existing API in API Gateway.

2. In the main navigation pane, choose Authorizers.

3. Choose Create authorizer.

4. To configure the new authorizer to use a user pool, do the following:

a. For Authorizer name, enter a name.

b. For Authorizer type, select Cognito.

c. For Cognito user pool, choose the AWS Region where you created your Amazon Cognito
and select an available user pool.

d. For Token source, enter Authorization as the header name to pass the identity or
access token that's returned by Amazon Cognito when a user signs in successfully.

e. (Optional) Enter a regular expression in the Token validation field to validate the aud
(audience) field of the identity token before the request is authorized with Amazon
Cognito. Note that when using an access token this validation rejects the request due to
the access token not containing the aud field.

f. Choose Create authorizer.

5. After creating the COGNITO_USER_POOLS authorizer, you can optionally test invoke it by
supplying an identity token that's provisioned from the user pool. You can obtain this identity
token by calling the Amazon Cognito Identity SDK to perform user sign-in. You can also use
the InitiateAuth action. If you do not configure any Authorization scopes, API Gateway
treats the supplied token as an identity token.

The preceding procedure creates a COGNITO_USER_POOLS authorizer that uses the newly created
Amazon Cognito user pool. Depending on how you enable the authorizer on an API method, you
can use either an identity token or an access token that's provisioned from the integrated user
pool.

To configure a COGNITO_USER_POOLS authorizer on methods

1. Choose Resources. Choose a new method or choose an existing method. If necessary, create a
resource.

2. On the Method request tab, under Method request settings, choose Edit.

Access control 372

https://docs.aws.amazon.com/cognito/latest/developerguide/setting-up-the-javascript-sdk.html
https://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html

Amazon API Gateway Developer Guide

3. For Authorizer, from the dropdown menu, select the Amazon Cognito user pool authorizers
you just created.

4. To use an identity token, do the following:

a. Keep Authorization Scopes empty.

b. If needed, in the Integration request, add the
$context.authorizer.claims['property-name'] or
$context.authorizer.claims.property-name expressions in a body-mapping
template to pass the specified identity claims property from the user pool to the backend.
For simple property names, such as sub or custom-sub, the two notations are identical.
For complex property names, such as custom:role, you can't use the dot notation. For
example, the following mapping expressions pass the claim's standard fields of sub and
email to the backend:

{
 "context" : {
 "sub" : "$context.authorizer.claims.sub",
 "email" : "$context.authorizer.claims.email"
 }
}

If you declared a custom claim field when you configured a user pool, you can follow the
same pattern to access the custom fields. The following example gets a custom role field
of a claim:

{
 "context" : {
 "role" : "$context.authorizer.claims.role"
 }
}

If the custom claim field is declared as custom:role, use the following example to get
the claim's property:

{
 "context" : {
 "role" : "$context.authorizer.claims['custom:role']"
 }

Access control 373

http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

Amazon API Gateway Developer Guide

}

5. To use an access token, do the following:

a. For Authorization Scopes, enter one or more full names of a scope that has been
configured when the Amazon Cognito user pool was created. For example, following the
example given in Create an Amazon Cognito user pool for a REST API, one of the scopes is
https://my-petstore-api.example.com/cats.read.

At runtime, the method call succeeds if any scope that's specified on the method in this
step matches a scope that's claimed in the incoming token. Otherwise, the call fails with a
401 Unauthorized response.

b. Choose Save.

6. Repeat these steps for other methods that you choose.

With the COGNITO_USER_POOLS authorizer, if the OAuth Scopes option isn't specified, API
Gateway treats the supplied token as an identity token and verifies the claimed identity against the
one from the user pool. Otherwise, API Gateway treats the supplied token as an access token and
verifies the access scopes that are claimed in the token against the authorization scopes declared
on the method.

Instead of using the API Gateway console, you can also enable an Amazon Cognito user pool on a
method by specifying an OpenAPI definition file and importing the API definition into API Gateway.

To import a COGNITO_USER_POOLS authorizer with an OpenAPI definition file

1. Create (or export) an OpenAPI definition file for your API.

2. Specify the COGNITO_USER_POOLS authorizer (MyUserPool) JSON definition as part of the
securitySchemes section in OpenAPI 3.0 or the securityDefinitions section in Open
API 2.0 as follows:

OpenAPI 3.0

 "securitySchemes": {
 "MyUserPool": {
 "type": "apiKey",
 "name": "Authorization",
 "in": "header",
 "x-amazon-apigateway-authtype": "cognito_user_pools",

Access control 374

Amazon API Gateway Developer Guide

 "x-amazon-apigateway-authorizer": {
 "type": "cognito_user_pools",
 "providerARNs": [
 "arn:aws:cognito-idp:{region}:{account_id}:userpool/{user_pool_id}"
]
 }
 }

OpenAPI 2.0

 "securityDefinitions": {
 "MyUserPool": {
 "type": "apiKey",
 "name": "Authorization",
 "in": "header",
 "x-amazon-apigateway-authtype": "cognito_user_pools",
 "x-amazon-apigateway-authorizer": {
 "type": "cognito_user_pools",
 "providerARNs": [
 "arn:aws:cognito-idp:{region}:{account_id}:userpool/{user_pool_id}"
]
 }
 }

3. To use the identity token for method authorization, add { "MyUserPool": [] } to the
security definition of the method, as shown in the following GET method on the root
resource.

 "paths": {
 "/": {
 "get": {
 "consumes": [
 "application/json"
],
 "produces": [
 "text/html"
],
 "responses": {
 "200": {
 "description": "200 response",
 "headers": {
 "Content-Type": {
 "type": "string"

Access control 375

Amazon API Gateway Developer Guide

 }
 }
 }
 },
 "security": [
 {
 "MyUserPool": []
 }
],
 "x-amazon-apigateway-integration": {
 "type": "mock",
 "responses": {
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type": "'text/html'"
 },
 }
 },
 "requestTemplates": {
 "application/json": "{\"statusCode\": 200}"
 },
 "passthroughBehavior": "when_no_match"
 }
 },
 ...
 }

4. To use the access token for method authorization, change the above security definition to
{ "MyUserPool": [resource-server/scope, ...] }:

 "paths": {
 "/": {
 "get": {
 "consumes": [
 "application/json"
],
 "produces": [
 "text/html"
],
 "responses": {
 "200": {
 "description": "200 response",

Access control 376

Amazon API Gateway Developer Guide

 "headers": {
 "Content-Type": {
 "type": "string"
 }
 }
 }
 },
 "security": [
 {
 "MyUserPool": ["https://my-petstore-api.example.com/cats.read",
 "http://my.resource.com/file.read"]
 }
],
 "x-amazon-apigateway-integration": {
 "type": "mock",
 "responses": {
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.Content-Type": "'text/html'"
 },
 }
 },
 "requestTemplates": {
 "application/json": "{\"statusCode\": 200}"
 },
 "passthroughBehavior": "when_no_match"
 }
 },
 ...
 }

5. If needed, you can set other API configuration settings by using the appropriate OpenAPI
definitions or extensions. For more information, see Working with API Gateway extensions to
OpenAPI.

Call a REST API integrated with an Amazon Cognito user pool

To call a method with a user pool authorizer configured, the client must do the following:

• Enable the user to sign up with the user pool.

• Enable the user to sign in to the user pool.

Access control 377

Amazon API Gateway Developer Guide

• Obtain an identity or access token of the signed-in user from the user pool.

• Include the token in the Authorization header (or another header you specified when you
created the authorizer).

You can use AWS Amplify to perform these tasks. See Integrating Amazon Cognito With Web and
Mobile Apps for more information.

• For Android, see Getting Started with Amplify for Android.

• To use iOS see Getting started with Amplify for iOS.

• To use JavaScript, see Getting Started with Amplify for Javascript.

Configure cross-account Amazon Cognito authorizer for a REST API using the API Gateway
console

You can now also use a Amazon Cognito user pool from a different AWS account as your API
authorizer. Each account can be in any region where Amazon API Gateway is available. The Amazon
Cognito user pool can use bearer token authentication strategies such as OAuth or SAML. This
makes it easy to centrally manage and share a central Amazon Cognito user pool authorizer across
multiple API Gateway APIs.

In this section, we show how to configure a cross-account Amazon Cognito user pool using the
Amazon API Gateway console.

These instructions assume that you already have an API Gateway API in one AWS account and a
Amazon Cognito user pool in another account.

Configure cross-account Amazon Cognito authorizer using the API Gateway console

Log in to the Amazon API Gateway console in the account that has your API in it, and then do the
following:

1. Create a new API, or select an existing API in API Gateway.

2. In the main navigation pane, choose Authorizers.

3. Choose Create authorizer.

4. To configure the new authorizer to use a user pool, do the following:

a. For Authorizer name, enter a name.

b. For Authorizer type, select Cognito.

Access control 378

https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
https://docs.aws.amazon.com/amplify/
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-integrate-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-integrate-apps.html
https://docs.amplify.aws/android/build-a-backend/auth
https://docs.amplify.aws/swift/build-a-backend/auth
https://docs.amplify.aws/javascript/build-a-backend/auth

Amazon API Gateway Developer Guide

c. For Cognito user pool, enter the full ARN for the user pool that you have in your second
account.

Note

In the Amazon Cognito console, you can find the ARN for your user pool in the
Pool ARN field of the General Settings pane.

d. For Token source, enter Authorization as the header name to pass the identity or
access token that's returned by Amazon Cognito when a user signs in successfully.

e. (Optional) Enter a regular expression in the Token validation field to validate the aud
(audience) field of the identity token before the request is authorized with Amazon
Cognito. Note that when using an access token this validation rejects the request due to
the access token not containing the aud field.

f. Choose Create authorizer.

Create an Amazon Cognito authorizer for a REST API using AWS CloudFormation

You can use AWS CloudFormation to create an Amazon Cognito user pool and an Amazon Cognito
authorizer. The example AWS CloudFormation template does the following:

• Create an Amazon Cognito user pool. The client must first sign the user in to the user pool and
obtain an identity or access token. If you're using access tokens to authorize API method calls,
be sure to configure the app integration with the user pool to set up the custom scopes that you
want on a given resource server.

• Creates an API Gateway API with a GET method.

• Creates an Amazon Cognito authorizer that uses the Authorization header as the token
source.

AWSTemplateFormatVersion: 2010-09-09
Resources:
 UserPool:
 Type: AWS::Cognito::UserPool
 Properties:
 AccountRecoverySetting:
 RecoveryMechanisms:
 - Name: verified_phone_number

Access control 379

https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html

Amazon API Gateway Developer Guide

 Priority: 1
 - Name: verified_email
 Priority: 2
 AdminCreateUserConfig:
 AllowAdminCreateUserOnly: true
 EmailVerificationMessage: The verification code to your new account is {####}
 EmailVerificationSubject: Verify your new account
 SmsVerificationMessage: The verification code to your new account is {####}
 VerificationMessageTemplate:
 DefaultEmailOption: CONFIRM_WITH_CODE
 EmailMessage: The verification code to your new account is {####}
 EmailSubject: Verify your new account
 SmsMessage: The verification code to your new account is {####}
 UpdateReplacePolicy: Retain
 DeletionPolicy: Retain
 CogAuthorizer:
 Type: AWS::ApiGateway::Authorizer
 Properties:
 Name: CognitoAuthorizer
 RestApiId:
 Ref: Api
 Type: COGNITO_USER_POOLS
 IdentitySource: method.request.header.Authorization
 ProviderARNs:
 - Fn::GetAtt:
 - UserPool
 - Arn
 Api:
 Type: AWS::ApiGateway::RestApi
 Properties:
 Name: MyCogAuthApi
 ApiDeployment:
 Type: AWS::ApiGateway::Deployment
 Properties:
 RestApiId:
 Ref: Api
 DependsOn:
 - CogAuthorizer
 - ApiGET
 ApiDeploymentStageprod:
 Type: AWS::ApiGateway::Stage
 Properties:
 RestApiId:
 Ref: Api

Access control 380

Amazon API Gateway Developer Guide

 DeploymentId:
 Ref: ApiDeployment
 StageName: prod
 ApiGET:
 Type: AWS::ApiGateway::Method
 Properties:
 HttpMethod: GET
 ResourceId:
 Fn::GetAtt:
 - Api
 - RootResourceId
 RestApiId:
 Ref: Api
 AuthorizationType: COGNITO_USER_POOLS
 AuthorizerId:
 Ref: CogAuthorizer
 Integration:
 IntegrationHttpMethod: GET
 Type: HTTP_PROXY
 Uri: http://petstore-demo-endpoint.execute-api.com/petstore/pets
Outputs:
 ApiEndpoint:
 Value:
 Fn::Join:
 - ""
 - - https://
 - Ref: Api
 - .execute-api.
 - Ref: AWS::Region
 - "."
 - Ref: AWS::URLSuffix
 - /
 - Ref: ApiDeploymentStageprod
 - /

Setting up REST API integrations

After setting up an API method, you must integrate it with an endpoint in the backend. A backend
endpoint is also referred to as an integration endpoint and can be a Lambda function, an HTTP
webpage, or an AWS service action.

As with the API method, the API integration has an integration request and an integration
response. An integration request encapsulates an HTTP request received by the backend. It might

Integrations 381

Amazon API Gateway Developer Guide

or might not differ from the method request submitted by the client. An integration response is an
HTTP response encapsulating the output returned by the backend.

Setting up an integration request involves the following: configuring how to pass client-submitted
method requests to the backend; configuring how to transform the request data, if necessary, to
the integration request data; and specifying which Lambda function to call, specifying which HTTP
server to forward the incoming request to, or specifying the AWS service action to invoke.

Setting up an integration response (applicable to non-proxy integrations only) involves the
following: configuring how to pass the backend-returned result to a method response of a
given status code, configuring how to transform specified integration response parameters to
preconfigured method response parameters, and configuring how to map the integration response
body to the method response body according to the specified body-mapping templates.

Programmatically, an integration request is encapsulated by the Integration resource and an
integration response by the IntegrationResponse resource of API Gateway.

To set up an integration request, you create an Integration resource and use it to configure the
integration endpoint URL. You then set the IAM permissions to access the backend, and specify
mappings to transform the incoming request data before passing it to the backend. To set up an
integration response for non-proxy integration, you create an IntegrationResponse resource
and use it to set its target method response. You then configure how to map backend output to the
method response.

Topics

• Set up an integration request in API Gateway

• Set up an integration response in API Gateway

• Set up Lambda integrations in API Gateway

• Set up HTTP integrations in API Gateway

• Set up API Gateway private integrations

• Set up mock integrations in API Gateway

Set up an integration request in API Gateway

To set up an integration request, you perform the following required and optional tasks:

1. Choose an integration type that determines how method request data is passed to the backend.

Integrations 382

https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html
https://docs.aws.amazon.com/apigateway/latest/api/API_IntegrationResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html
https://docs.aws.amazon.com/apigateway/latest/api/API_IntegrationResponse.html

Amazon API Gateway Developer Guide

2. For non-mock integrations, specify an HTTP method and the URI of the targeted integration
endpoint, except for the MOCK integration.

3. For integrations with Lambda functions and other AWS service actions, set an IAM role with
required permissions for API Gateway to call the backend on your behalf.

4. For non-proxy integrations, set necessary parameter mappings to map predefined method
request parameters to appropriate integration request parameters.

5. For non-proxy integrations, set necessary body mappings to map the incoming method request
body of a given content type according to the specified mapping template.

6. For non-proxy integrations, specify the condition under which the incoming method request
data is passed through to the backend as-is.

7. Optionally, specify how to handle type conversion for a binary payload.

8. Optionally, declare a cache namespace name and cache key parameters to enable API caching.

Performing these tasks involves creating an Integration resource of API Gateway and setting
appropriate property values. You can do so using the API Gateway console, AWS CLI commands, an
AWS SDK, or the API Gateway REST API.

Topics

• Basic tasks of an API integration request

• Choose an API Gateway API integration type

• Set up a proxy integration with a proxy resource

• Set up an API integration request using the API Gateway console

Basic tasks of an API integration request

An integration request is an HTTP request that API Gateway submits to the backend, passing along
the client-submitted request data, and transforming the data, if necessary. The HTTP method
(or verb) and URI of the integration request are dictated by the backend (that is, the integration
endpoint). They can be the same as or different from the method request's HTTP method and URI,
respectively.

For example, when a Lambda function returns a file that is fetched from Amazon S3, you
can expose this operation intuitively as a GET method request to the client even though the
corresponding integration request requires that a POST request be used to invoke the Lambda
function. For an HTTP endpoint, it is likely that the method request and the corresponding

Integrations 383

https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html

Amazon API Gateway Developer Guide

integration request both use the same HTTP verb. However, this is not required. You can integrate
the following method request:

GET /{var}?query=value
Host: api.domain.net

With the following integration request:

POST /
Host: service.domain.com
Content-Type: application/json
Content-Length: ...

{
 path: "{var}'s value",
 type: "value"
}

As an API developer, you can use whatever HTTP verb and URI for a method request suit your
requirements. But you must follow the requirements of the integration endpoint. When the
method request data differs from the integration request data, you can reconcile the difference by
providing mappings from the method request data to the integration request data.

In the preceding examples, the mapping translates the path variable ({var}) and the query
parameter (query) values of the GET method request to the values of the integration request's
payload properties of path and type. Other mappable request data includes request headers and
body. These are described in Set up request and response data mappings using the API Gateway
console.

When setting up the HTTP or HTTP proxy integration request, you assign the backend HTTP
endpoint URL as the integration request URI value. For example, in the PetStore API, the method
request to get a page of pets has the following integration request URI:

http://petstore-demo-endpoint.execute-api.com/petstore/pets

When setting up the Lambda or Lambda proxy integration, you assign the Amazon Resource Name
(ARN) for invoking the Lambda function as the integration request URI value. This ARN has the
following format:

Integrations 384

Amazon API Gateway Developer Guide

arn:aws:apigateway:api-region:lambda:path//2015-03-31/functions/arn:aws:lambda:lambda-
region:account-id:function:lambda-function-name/invocations

The part after arn:aws:apigateway:api-region:lambda:path/, namely, /2015-03-31/
functions/arn:aws:lambda:lambda-region:account-id:function:lambda-function-
name/invocations, is the REST API URI path of the Lambda Invoke action. If you use the API
Gateway console to set up the Lambda integration, API Gateway creates the ARN and assigns it to
the integration URI after prompting you to choose the lambda-function-name from a region.

When setting up the integration request with another AWS service action, the integration request
URI is also an ARN, similar to the integration with the Lambda Invoke action. For example, for the
integration with the GetBucket action of Amazon S3, the integration request URI is an ARN of the
following format:

arn:aws:apigateway:api-region:s3:path/{bucket}

The integration request URI is of the path convention to specify the action, where {bucket} is
the placeholder of a bucket name. Alternatively, an AWS service action can be referenced by its
name. Using the action name, the integration request URI for the GetBucket action of Amazon S3
becomes the following:

arn:aws:apigateway:api-region:s3:action/GetBucket

With the action-based integration request URI, the bucket name ({bucket}) must be specified
in the integration request body ({ Bucket: "{bucket}" }), following the input format of
GetBucket action.

For AWS integrations, you must also configure credentials to allow API Gateway to call the
integrated actions. You can create a new or choose an existing IAM role for API Gateway to call the
action and then specify the role using its ARN. The following shows an example of this ARN:

arn:aws:iam::account-id:role/iam-role-name

This IAM role must contain a policy to allow the action to be executed. It must also have API
Gateway declared (in the role's trust relationship) as a trusted entity to assume the role. Such
permissions can be granted on the action itself. They are known as resource-based permissions. For
the Lambda integration, you can call the Lambda's addPermission action to set the resource-based
permissions and then set credentials to null in the API Gateway integration request.

Integrations 385

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html#credentials
https://docs.aws.amazon.com/lambda/latest/dg/API_AddPermission.html

Amazon API Gateway Developer Guide

We discussed the basic integration setup. Advanced settings involve mapping method request
data to the integration request data. After discussing the basic setup for an integration response,
we cover advanced topics in Set up request and response data mappings using the API Gateway
console, where we also cover passing payload through and handling content encodings.

Choose an API Gateway API integration type

You choose an API integration type according to the types of integration endpoint you work with
and how you want data to pass to and from the integration endpoint. For a Lambda function, you
can have the Lambda proxy integration, or the Lambda custom integration. For an HTTP endpoint,
you can have the HTTP proxy integration or the HTTP custom integration. For an AWS service
action, you have the AWS integration of the non-proxy type only. API Gateway also supports the
mock integration, where API Gateway serves as an integration endpoint to respond to a method
request.

The Lambda custom integration is a special case of the AWS integration, where the integration
endpoint corresponds to the function-invoking action of the Lambda service.

Programmatically, you choose an integration type by setting the type property on the
Integration resource. For the Lambda proxy integration, the value is AWS_PROXY. For the
Lambda custom integration and all other AWS integrations, it is AWS. For the HTTP proxy
integration and HTTP integration, the value is HTTP_PROXY and HTTP, respectively. For the mock
integration, the type value is MOCK.

The Lambda proxy integration supports a streamlined integration setup with a single Lambda
function. The setup is simple and can evolve with the backend without having to tear down the
existing setup. For these reasons, it is highly recommended for integration with a Lambda function.

In contrast, the Lambda custom integration allows for reuse of configured mapping templates for
various integration endpoints that have similar requirements of the input and output data formats.
The setup is more involved and is recommended for more advanced application scenarios.

Similarly, the HTTP proxy integration has a streamlined integration setup and can evolve with the
backend without having to tear down the existing setup. The HTTP custom integration is more
involved to set up, but allows for reuse of configured mapping templates for other integration
endpoints.

The following list summarizes the supported integration types:

Integrations 386

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html#type
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html

Amazon API Gateway Developer Guide

• AWS: This type of integration lets an API expose AWS service actions. In AWS integration, you
must configure both the integration request and integration response and set up necessary
data mappings from the method request to the integration request, and from the integration
response to the method response.

• AWS_PROXY: This type of integration lets an API method be integrated with the Lambda function
invocation action with a flexible, versatile, and streamlined integration setup. This integration
relies on direct interactions between the client and the integrated Lambda function.

With this type of integration, also known as the Lambda proxy integration, you do not set the
integration request or the integration response. API Gateway passes the incoming request
from the client as the input to the backend Lambda function. The integrated Lambda function
takes the input of this format and parses the input from all available sources, including request
headers, URL path variables, query string parameters, and applicable body. The function returns
the result following this output format.

This is the preferred integration type to call a Lambda function through API Gateway and is not
applicable to any other AWS service actions, including Lambda actions other than the function-
invoking action.

• HTTP: This type of integration lets an API expose HTTP endpoints in the backend. With the
HTTP integration, also known as the HTTP custom integration, you must configure both the
integration request and integration response. You must set up necessary data mappings from
the method request to the integration request, and from the integration response to the method
response.

• HTTP_PROXY: The HTTP proxy integration allows a client to access the backend HTTP endpoints
with a streamlined integration setup on single API method. You do not set the integration
request or the integration response. API Gateway passes the incoming request from the client to
the HTTP endpoint and passes the outgoing response from the HTTP endpoint to the client.

• MOCK: This type of integration lets API Gateway return a response without sending the
request further to the backend. This is useful for API testing because it can be used to test the
integration set up without incurring charges for using the backend and to enable collaborative
development of an API.

In collaborative development, a team can isolate their development effort by setting up
simulations of API components owned by other teams by using the MOCK integrations. It is also
used to return CORS-related headers to ensure that the API method permits CORS access. In
fact, the API Gateway console integrates the OPTIONS method to support CORS with a mock
integration. Gateway responses are other examples of mock integrations.

Integrations 387

Amazon API Gateway Developer Guide

Set up a proxy integration with a proxy resource

To set up a proxy integration in an API Gateway API with a proxy resource, you perform the
following tasks:

• Create a proxy resource with a greedy path variable of {proxy+}.

• Set the ANY method on the proxy resource.

• Integrate the resource and method with a backend using the HTTP or Lambda integration type.

Note

Greedy path variables, ANY methods, and proxy integration types are independent features,
although they are commonly used together. You can configure a specific HTTP method on a
greedy resource or apply non-proxy integration types to a proxy resource.

API Gateway enacts certain restrictions and limitations when handling methods with either
a Lambda proxy integration or an HTTP proxy integration. For details, see the section called
“Important notes”.

Note

When using proxy integration with a passthrough, API Gateway returns the default
Content-Type:application/json header if the content type of a payload is
unspecified.

A proxy resource is most powerful when it is integrated with a backend using either HTTP proxy
integration or Lambda proxy integration.

HTTP proxy integration with a proxy resource

The HTTP proxy integration, designated by HTTP_PROXY in the API Gateway REST API, is for
integrating a method request with a backend HTTP endpoint. With this integration type, API
Gateway simply passes the entire request and response between the frontend and the backend,
subject to certain restrictions and limitations.

Integrations 388

https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html

Amazon API Gateway Developer Guide

Note

HTTP proxy integration supports multi-valued headers and query strings.

When applying the HTTP proxy integration to a proxy resource, you can set up your API to expose
a portion or an entire endpoint hierarchy of the HTTP backend with a single integration setup. For
example, suppose the backend of the website is organized into multiple branches of tree nodes off
the root node (/site) as: /site/a0/a1/.../aN, /site/b0/b1/.../bM, etc. If you integrate the
ANY method on a proxy resource of /api/{proxy+} with the backend endpoints with URL paths
of /site/{proxy}, a single integration request can support any HTTP operations (GET, POST,
etc.) on any of [a0, a1, ..., aN, b0, b1, ...bM, ...]. If you apply a proxy integration to a
specific HTTP method, for example, GET, instead, the resulting integration request works with the
specified (that is, GET) operations on any of those backend nodes.

Lambda proxy integration with a proxy resource

The Lambda proxy integration, designated by AWS_PROXY in the API Gateway REST API, is for
integrating a method request with a Lambda function in the backend. With this integration
type, API Gateway applies a default mapping template to send the entire request to the Lambda
function and transforms the output from the Lambda function to HTTP responses.

Similarly, you can apply the Lambda proxy integration to a proxy resource of /api/{proxy+} to
set up a single integration to have a backend Lambda function react individually to changes in any
of the API resources under /api.

Set up an API integration request using the API Gateway console

An API method setup defines the method and describes its behaviors. To set up a method, you
must specify a resource, including the root ("/"), on which the method is exposed, an HTTP method
(GET, POST, etc.), and how it will be integrated with the targeted backend. The method request
and response specify the contract with the calling app, stipulating which parameters the API can
receive and what the response looks like.

The following procedures describe how to use the API Gateway console to create an integration
request.

Topics

• Set up a Lambda integration

Integrations 389

Amazon API Gateway Developer Guide

• Set up an HTTP integration

• Set up an AWS service integration

• Set up a mock integration

Set up a Lambda integration

Use a Lambda function integration to integrate your API with a Lambda function. At the API level,
this is an AWS integration type if you create a non-proxy integration, or an AWS_PROXY integration
type if you create a proxy integration.

To set up a Lambda integration

1. In the Resources pane, choose Create method.

2. For Method type, select an HTTP method.

3. For Integration type, choose Lambda function.

4. To use a Lambda proxy integration, turn on Lambda proxy integration. To learn more about
Lambda proxy integrations, see the section called “ Understand Lambda proxy integration ”.

5. For Lambda function, enter the name of the Lambda function.

If you are using a Lambda function in a different Region than your API, select the Region from
the dropdown menu and enter the name of the Lambda function. If you are using a cross-
account Lambda function, enter the function ARN.

6. To use the default timeout value of 29 seconds, keep Default timeout turned on. To set a
custom timeout, choose Default timeout and enter a timeout value between 50 and 29000
milliseconds.

7. (Optional) You can configure the method request settings using the following dropdown
menus. Choose Method request settings and configure your method request. For more
information, see step 3 of the section called “Edit a method request in the console”.

You can also configure your method request settings after you create your method.

8. Choose Create method.

Set up an HTTP integration

Use an HTTP integration to integrate your API with an HTTP endpoint. At the API level, this is the
HTTP integration type.

Integrations 390

Amazon API Gateway Developer Guide

To set up an HTTP integration

1. In the Resources pane, choose Create method.

2. For Method type, select an HTTP method.

3. For Integration type, choose HTTP.

4. To use an HTTP proxy integration, turn on HTTP proxy integration. To learn more about HTTP
proxy integrations, see the section called “Set up HTTP proxy integrations in API Gateway”.

5. For HTTP method, choose the HTTP method type that most closely matches the method in
the HTTP backend.

6. For Endpoint URL, enter the URL of the HTTP backend you want this method to use.

7. For Content handling, select a content handling behavior.

8. To use the default timeout value of 29 seconds, keep Default timeout turned on. To set a
custom timeout, choose Default timeout and enter a timeout value between 50 and 29000
milliseconds.

9. (Optional) You can configure the method request settings using the following dropdown
menus. Choose Method request settings and configure your method request. For more
information, see step 3 of the section called “Edit a method request in the console”.

You can also configure your method request settings after you create your method.

10. Choose Create method.

Set up an AWS service integration

Use an AWS service integration to integrate your API directly with an AWS service. At the API level,
this is the AWS integration type.

To set up an API Gateway API to do any of the following:

• Create a new Lambda function.

• Set a resource permission on the Lambda function.

• Perform any other Lambda service actions.

You must choose AWS service.

Integrations 391

Amazon API Gateway Developer Guide

To set up an AWS service integration

1. In the Resources pane, choose Create method.

2. For Method type, select an HTTP method.

3. For Integration type, choose AWS service.

4. For AWS Region, choose the AWS Region you want this method to use to call the action.

5. For AWS service, choose the AWS service you want this method to call.

6. For AWS subdomain, enter the subdomain used by the AWS service. Typically, you would
leave this blank. Some AWS services can support subdomains as part of the hosts. Consult the
service documentation for the availability and, if available, details.

7. For HTTP method, choose the HTTP method type that corresponds to the action. For HTTP
method type, see the API reference documentation for the AWS service you chose for AWS
service.

8. For Action type, select to either Use action name to use an API action or Use path override
to use a custom resource path. For available actions and custom resource paths, see the API
reference documentation for the AWS service you chose for AWS service.

9. Enter either an Action name or Path override.

10. For Execution role, enter the ARN of the IAM role that the method will use to call the action.

To create the IAM role, you can adapt the instructions in the section called “Step 1: Create the
AWS service proxy execution role”. Specify an access policy of the following format, with the
desired number of action and resource statements:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "action-statement"
],
 "Resource": [
 "resource-statement"
]
 },
 ...
]

Integrations 392

Amazon API Gateway Developer Guide

}

For the action and resource statement syntax, see the documentation for the AWS service you
chose for AWS service.

For the IAM role's trust relationship, specify the following, which enables API Gateway to take
action on behalf of your AWS account:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

11. To use the default timeout value of 29 seconds, keep Default timeout turned on. To set a
custom timeout, choose Default timeout and enter a timeout value between 50 and 29000
milliseconds.

12. (Optional) You can configure the method request settings using the following dropdown
menus. Choose Method request settings and configure your method request. For more
information, see step 3 of the section called “Edit a method request in the console”.

You can also configure your method request settings after you create your method.

13. Choose Create method.

Set up a mock integration

Use a mock integration if you want API Gateway to act as your backend to return static responses.
At the API level, this is the MOCK integration type. Typically, you can use the MOCK integration when
your API is not yet final, but you want to generate API responses to unblock dependent teams for
testing. For the OPTION method, API Gateway sets the MOCK integration as default to return CORS-
enabling headers for the applied API resource.

Integrations 393

Amazon API Gateway Developer Guide

To set up a mock integration

1. In the Resources pane, choose Create method.

2. For Method type, select an HTTP method.

3. For Integration type, choose Mock.

4. (Optional) You can configure the method request settings using the following dropdown
menus. Choose Method request settings and configure your method request. For more
information, see step 3 of the section called “Edit a method request in the console”.

You can also configure your method request settings after you create your method.

5. Choose Create method.

Set up an integration response in API Gateway

For a non-proxy integration, you must set up at least one integration response, and make it the
default response, to pass the result returned from the backend to the client. You can choose to
pass through the result as-is or to transform the integration response data to the method response
data if the two have different formats.

For a proxy integration, API Gateway automatically passes the backend output to the client as an
HTTP response. You do not set either an integration response or a method response.

To set up an integration response, you perform the following required and optional tasks:

1. Specify an HTTP status code of a method response to which the integration response data is
mapped. This is required.

2. Define a regular expression to select backend output to be represented by this integration
response. If you leave this empty, the response is the default response that is used to catch any
response not yet configured.

3. If needed, declare mappings consisting of key-value pairs to map specified integration response
parameters to given method response parameters.

4. If needed, add body-mapping templates to transform given integration response payloads into
specified method response payloads.

5. If needed, specify how to handle type conversion for a binary payload.

Integrations 394

Amazon API Gateway Developer Guide

An integration response is an HTTP response encapsulating the backend response. For an HTTP
endpoint, the backend response is an HTTP response. The integration response status code
can take the backend-returned status code, and the integration response body is the backend-
returned payload. For a Lambda endpoint, the backend response is the output returned from
the Lambda function. With the Lambda integration, the Lambda function output is returned as
a 200 OK response. The payload can contain the result as JSON data, including a JSON string or
a JSON object, or an error message as a JSON object. You can assign a regular expression to the
selectionPattern property to map an error response to an appropriate HTTP error response. For
more information about the Lambda function error response, see Handle Lambda errors in API
Gateway. With the Lambda proxy integration, the Lambda function must return output of the
following format:

{
 statusCode: "...", // a valid HTTP status code
 headers: {
 custom-header: "..." // any API-specific custom header
 },
 body: "...", // a JSON string.
 isBase64Encoded: true|false // for binary support
}

There is no need to map the Lambda function response to its proper HTTP response.

To return the result to the client, set up the integration response to pass the endpoint response
through as-is to the corresponding method response. Or you can map the endpoint response data
to the method response data. The response data that can be mapped includes the response status
code, response header parameters, and response body. If no method response is defined for the
returned status code, API Gateway returns a 500 error. For more information, see Use a mapping
template to override an API's request and response parameters and status codes.

Set up Lambda integrations in API Gateway

You can integrate an API method with a Lambda function using Lambda proxy integration or
Lambda non-proxy (custom) integration.

In Lambda proxy integration, the required setup is simple. Set the integration's HTTP method to
POST, the integration endpoint URI to the ARN of the Lambda function invocation action of a
specific Lambda function, and grant API Gateway permission to call the Lambda function on your
behalf.

Integrations 395

https://docs.aws.amazon.com/apigateway/latest/api/API_IntegrationResponse.html#selectionPattern

Amazon API Gateway Developer Guide

In Lambda non-proxy integration, in addition to the proxy integration setup steps, you also specify
how the incoming request data is mapped to the integration request and how the resulting
integration response data is mapped to the method response.

Topics

• Set up Lambda proxy integrations in API Gateway

• Set up Lambda custom integrations in API Gateway

• Set up asynchronous invocation of the backend Lambda function

• Handle Lambda errors in API Gateway

Set up Lambda proxy integrations in API Gateway

Topics

• Understand API Gateway Lambda proxy integration

• Support for multi-value headers and query string parameters

• Set up a proxy resource with Lambda proxy integration

• Set up Lambda proxy integration using the AWS CLI

• Input format of a Lambda function for proxy integration

• Output format of a Lambda function for proxy integration

Understand API Gateway Lambda proxy integration

Amazon API Gateway Lambda proxy integration is a simple, powerful, and nimble mechanism to
build an API with a setup of a single API method. The Lambda proxy integration allows the client to
call a single Lambda function in the backend. The function accesses many resources or features of
other AWS services, including calling other Lambda functions.

In Lambda proxy integration, when a client submits an API request, API Gateway passes to the
integrated Lambda function an event object, except that the order of the request parameters
is not preserved. This request data includes the request headers, query string parameters, URL
path variables, payload, and API configuration data. The configuration data can include current
deployment stage name, stage variables, user identity, or authorization context (if any). The
backend Lambda function parses the incoming request data to determine the response that it
returns. For API Gateway to pass the Lambda output as the API response to the client, the Lambda
function must return the result in this format.

Integrations 396

Amazon API Gateway Developer Guide

Because API Gateway doesn't intervene very much between the client and the backend Lambda
function for the Lambda proxy integration, the client and the integrated Lambda function can
adapt to changes in each other without breaking the existing integration setup of the API. To
enable this, the client must follow application protocols enacted by the backend Lambda function.

You can set up a Lambda proxy integration for any API method. But a Lambda proxy integration
is more potent when it is configured for an API method involving a generic proxy resource. The
generic proxy resource can be denoted by a special templated path variable of {proxy+}, the
catch-all ANY method placeholder, or both. The client can pass the input to the backend Lambda
function in the incoming request as request parameters or applicable payload. The request
parameters include headers, URL path variables, query string parameters, and the applicable
payload. The integrated Lambda function verifies all of the input sources before processing the
request and responding to the client with meaningful error messages if any of the required input is
missing.

When calling an API method integrated with the generic HTTP method of ANY and the generic
resource of {proxy+}, the client submits a request with a particular HTTP method in place of ANY.
The client also specifies a particular URL path instead of {proxy+}, and includes any required
headers, query string parameters, or an applicable payload.

The following list summarizes runtime behaviors of different API methods with the Lambda proxy
integration:

• ANY /{proxy+}: The client must choose a particular HTTP method, must set a particular
resource path hierarchy, and can set any headers, query string parameters, and applicable
payload to pass the data as input to the integrated Lambda function.

• ANY /res: The client must choose a particular HTTP method and can set any headers, query
string parameters, and applicable payload to pass the data as input to the integrated Lambda
function.

• GET|POST|PUT|... /{proxy+}: The client can set a particular resource path hierarchy,
any headers, query string parameters, and applicable payload to pass the data as input to the
integrated Lambda function.

• GET|POST|PUT|... /res/{path}/...: The client must choose a particular path segment
(for the {path} variable) and can set any request headers, query string parameters, and
applicable payload to pass input data to the integrated Lambda function.

• GET|POST|PUT|... /res: The client can choose any request headers, query string parameters,
and applicable payload to pass input data to the integrated Lambda function.

Integrations 397

Amazon API Gateway Developer Guide

Both the proxy resource of {proxy+} and the custom resource of {custom} are expressed as
templated path variables. However {proxy+} can refer to any resource along a path hierarchy,
while {custom} refers to a particular path segment only. For example, a grocery store might
organize its online product inventory by department names, produce categories, and product
types. The grocery store's website can then represent available products by the following
templated path variables of custom resources: /{department}/{produce-category}/
{product-type}. For example, apples are represented by /produce/fruit/apple and carrots
by /produce/vegetables/carrot. It can also use /{proxy+} to represent any department, any
produce category, or any product type that a customer can search for while shopping in the online
store. For example, /{proxy+} can refer to any of the following items:

• /produce

• /produce/fruit

• /produce/vegetables/carrot

To let customers search for any available product, its produce category, and the associated store
department, you can expose a single method of GET /{proxy+} with read-only permissions.
Similarly, to allow a supervisor to update the produce department's inventory, you can set
up another single method of PUT /produce/{proxy+} with read/write permissions. To
allow a cashier to update the running total of a vegetable, you can set up a POST /produce/
vegetables/{proxy+} method with read/write permissions. To let a store manager perform
any possible action on any available product, the online store developer can expose the ANY /
{proxy+} method with read/write permissions. In any case, at run time, the customer or the
employee must select a particular product of a given type in a chosen department, a specific
produce category in a chosen department, or a specific department.

For more information about setting up API Gateway proxy integrations, see Set up a proxy
integration with a proxy resource.

Proxy integration requires that the client have more detailed knowledge of the backend
requirements. Therefore, to ensure optimal app performance and user experience, the backend
developer must communicate clearly to the client developer the requirements of the backend, and
provide a robust error feedback mechanism when the requirements are not met.

Integrations 398

Amazon API Gateway Developer Guide

Support for multi-value headers and query string parameters

API Gateway supports multiple headers and query string parameters that have the same name.
Multi-value headers as well as single-value headers and parameters can be combined in the same
requests and responses. For more information, see Input format of a Lambda function for proxy
integration and Output format of a Lambda function for proxy integration.

Set up a proxy resource with Lambda proxy integration

To set up a proxy resource with the Lambda proxy integration type, create an API
resource with a greedy path parameter (for example, /parent/{proxy+}) and integrate
this resource with a Lambda function backend (for example, arn:aws:lambda:us-
west-2:123456789012:function:SimpleLambda4ProxyResource) on the ANY method. The
greedy path parameter must be at the end of the API resource path. As with a non-proxy resource,
you can set up the proxy resource by using the API Gateway console, importing an OpenAPI
definition file, or calling the API Gateway REST API directly.

The following OpenAPI API definition file shows an example of an API with a proxy resource that is
integrated with a Lambda function named SimpleLambda4ProxyResource.

OpenAPI 3.0

{
 "openapi": "3.0.0",
 "info": {
 "version": "2016-09-12T17:50:37Z",
 "title": "ProxyIntegrationWithLambda"
 },
 "paths": {
 "/{proxy+}": {
 "x-amazon-apigateway-any-method": {
 "parameters": [
 {
 "name": "proxy",
 "in": "path",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {},

Integrations 399

Amazon API Gateway Developer Guide

 "x-amazon-apigateway-integration": {
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "uri": "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/
functions/arn:aws:lambda:us-east-1:123456789012:function:SimpleLambda4ProxyResource/
invocations",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "POST",
 "cacheNamespace": "roq9wj",
 "cacheKeyParameters": [
 "method.request.path.proxy"
],
 "type": "aws_proxy"
 }
 }
 }
 },
 "servers": [
 {
 "url": "https://gy415nuibc.execute-api.us-east-1.amazonaws.com/{basePath}",
 "variables": {
 "basePath": {
 "default": "/testStage"
 }
 }
 }
]
}

OpenAPI 2.0

{
 "swagger": "2.0",
 "info": {
 "version": "2016-09-12T17:50:37Z",
 "title": "ProxyIntegrationWithLambda"
 },
 "host": "gy415nuibc.execute-api.us-east-1.amazonaws.com",
 "basePath": "/testStage",
 "schemes": [

Integrations 400

Amazon API Gateway Developer Guide

 "https"
],
 "paths": {
 "/{proxy+}": {
 "x-amazon-apigateway-any-method": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "proxy",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {},
 "x-amazon-apigateway-integration": {
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "uri": "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-east-1:123456789012:function:SimpleLambda4ProxyResource/
invocations",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "POST",
 "cacheNamespace": "roq9wj",
 "cacheKeyParameters": [
 "method.request.path.proxy"
],
 "type": "aws_proxy"
 }
 }
 }
 }
}

In Lambda proxy integration, at run time, API Gateway maps an incoming request into the input
event parameter of the Lambda function. The input includes the request method, path, headers,
any query string parameters, any payload, associated context, and any defined stage variables.

Integrations 401

Amazon API Gateway Developer Guide

The input format is explained in Input format of a Lambda function for proxy integration. For
API Gateway to map the Lambda output to HTTP responses successfully, the Lambda function
must output the result in the format described in Output format of a Lambda function for proxy
integration.

In Lambda proxy integration of a proxy resource through the ANY method, the single backend
Lambda function serves as the event handler for all requests through the proxy resource. For
example, to log traffic patterns, you can have a mobile device send its location information of
state, city, street, and building by submitting a request with /state/city/street/house in the
URL path for the proxy resource. The backend Lambda function can then parse the URL path and
insert the location tuples into a DynamoDB table.

Set up Lambda proxy integration using the AWS CLI

In this section, we show how to use AWS CLI to set up an API with the Lambda proxy integration.

Note

For detailed instructions for using the API Gateway console to configure a proxy resource
with the Lambda proxy integration, see Tutorial: Build a Hello World REST API with Lambda
proxy integration.

As an example, we use the following sample Lambda function as the backend of the API:

export const handler = function(event, context, callback) {
 console.log('Received event:', JSON.stringify(event, null, 2));
 var res ={
 "statusCode": 200,
 "headers": {
 "Content-Type": "*/*"
 }
 };
 var greeter = 'World';
 if (event.greeter && event.greeter!=="") {
 greeter = event.greeter;
 } else if (event.body && event.body !== "") {
 var body = JSON.parse(event.body);
 if (body.greeter && body.greeter !== "") {
 greeter = body.greeter;
 }

Integrations 402

Amazon API Gateway Developer Guide

 } else if (event.queryStringParameters && event.queryStringParameters.greeter &&
 event.queryStringParameters.greeter !== "") {
 greeter = event.queryStringParameters.greeter;
 } else if (event.multiValueHeaders && event.multiValueHeaders.greeter &&
 event.multiValueHeaders.greeter != "") {
 greeter = event.multiValueHeaders.greeter.join(" and ");
 } else if (event.headers && event.headers.greeter && event.headers.greeter != "") {
 greeter = event.headers.greeter;
 }

 res.body = "Hello, " + greeter + "!";
 callback(null, res);
};

Comparing this to the Lambda custom integration setup, the input to this Lambda function can be
expressed in the request parameters and body. You have more latitude to allow the client to pass
the same input data. Here, the client can pass the greeter's name in as a query string parameter, a
header, or a body property. The function can also support the Lambda custom integration. The API
setup is simpler. You do not configure the method response or integration response at all.

To set up a Lambda proxy integration using the AWS CLI

1. Call the create-rest-api command to create an API:

aws apigateway create-rest-api --name 'HelloWorld (AWS CLI)' --region us-west-2

Note the resulting API's id value (te6si5ach7) in the response:

{
 "name": "HelloWorldProxy (AWS CLI)",
 "id": "te6si5ach7",
 "createdDate": 1508461860
}

You need the API id throughout this section.

2. Call the get-resources command to get the root resource id:

aws apigateway get-resources --rest-api-id te6si5ach7 --region us-west-2

The successful response is shown as follows:

Integrations 403

Amazon API Gateway Developer Guide

{
 "items": [
 {
 "path": "/",
 "id": "krznpq9xpg"
 }
]
}

Note the root resource id value (krznpq9xpg). You need it in the next step and later.

3. Call create-resource to create an API Gateway Resource of /greeting:

aws apigateway create-resource --rest-api-id te6si5ach7 \
 --region us-west-2 \
 --parent-id krznpq9xpg \
 --path-part {proxy+}

The successful response is similar to the following:

{
 "path": "/{proxy+}",
 "pathPart": "{proxy+}",
 "id": "2jf6xt",
 "parentId": "krznpq9xpg"
}

Note the resulting {proxy+} resource's id value (2jf6xt). You need it to create a method on
the /{proxy+} resource in the next step.

4. Call put-method to create an ANY method request of ANY /{proxy+}:

aws apigateway put-method --rest-api-id te6si5ach7 \
 --region us-west-2 \
 --resource-id 2jf6xt \
 --http-method ANY \
 --authorization-type "NONE"

The successful response is similar to the following:

Integrations 404

https://docs.aws.amazon.com/apigateway/latest/api/API_Resource.html

Amazon API Gateway Developer Guide

{
 "apiKeyRequired": false,
 "httpMethod": "ANY",
 "authorizationType": "NONE"
}

This API method allows the client to receive or send greetings from the Lambda function at
the backend.

5. Call put-integration to set up the integration of the ANY /{proxy+} method with a
Lambda function, named HelloWorld. This function responds to the request with a message
of "Hello, {name}!", if the greeter parameter is provided, or "Hello, World!", if the
query string parameter is not set.

aws apigateway put-integration \
 --region us-west-2 \
 --rest-api-id te6si5ach7 \
 --resource-id 2jf6xt \
 --http-method ANY \
 --type AWS_PROXY \
 --integration-http-method POST \
 --uri arn:aws:apigateway:us-west-2:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-west-2:123456789012:function:HelloWorld/invocations \
 --credentials arn:aws:iam::123456789012:role/apigAwsProxyRole

Important

For Lambda integrations, you must use the HTTP method of POST for the integration
request, according to the specification of the Lambda service action for function
invocations. The IAM role of apigAwsProxyRole must have policies allowing the
apigateway service to invoke Lambda functions. For more information about IAM
permissions, see the section called “ API Gateway permissions model for invoking an
API”.

The successful output is similar to the following:

{
 "passthroughBehavior": "WHEN_NO_MATCH",

Integrations 405

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon API Gateway Developer Guide

 "cacheKeyParameters": [],
 "uri": "arn:aws:apigateway:us-west-2:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-west-2:1234567890:function:HelloWorld/invocations",
 "httpMethod": "POST",
 "cacheNamespace": "vvom7n",
 "credentials": "arn:aws:iam::1234567890:role/apigAwsProxyRole",
 "type": "AWS_PROXY"
}

Instead of supplying an IAM role for credentials, you can call the add-permission command
to add resource-based permissions. This is what the API Gateway console does.

6. Call create-deployment to deploy the API to a test stage:

aws apigateway create-deployment --rest-api-id te6si5ach7 --stage-name test --
region us-west-2

7. Test the API using the following cURL commands in a terminal.

Calling the API with the query string parameter of ?greeter=jane:

curl -X GET 'https://te6si5ach7.execute-api.us-west-2.amazonaws.com/test/greeting?
greeter=jane'

Calling the API with a header parameter of greeter:jane:

curl -X GET https://te6si5ach7.execute-api.us-west-2.amazonaws.com/test/hi \
 -H 'content-type: application/json' \
 -H 'greeter: jane'

Calling the API with a body of {"greeter":"jane"}:

curl -X POST https://te6si5ach7.execute-api.us-west-2.amazonaws.com/test/hi \
 -H 'content-type: application/json' \
 -d '{ "greeter": "jane" }'

In all the cases, the output is a 200 response with the following response body:

Hello, jane!

Integrations 406

https://docs.aws.amazon.com/cli/latest/reference/lambda/add-permission.html

Amazon API Gateway Developer Guide

Input format of a Lambda function for proxy integration

In Lambda proxy integration, API Gateway maps the entire client request to the input event
parameter of the backend Lambda function. The following example shows the structure of an
event that API Gateway sends to a Lambda proxy integration.

{
 "resource": "/my/path",
 "path": "/my/path",
 "httpMethod": "GET",
 "headers": {
 "header1": "value1",
 "header2": "value1,value2"
 },
 "multiValueHeaders": {
 "header1": [
 "value1"
],
 "header2": [
 "value1",
 "value2"
]
 },
 "queryStringParameters": {
 "parameter1": "value1,value2",
 "parameter2": "value"
 },
 "multiValueQueryStringParameters": {
 "parameter1": [
 "value1",
 "value2"
],
 "parameter2": [
 "value"
]
 },
 "requestContext": {
 "accountId": "123456789012",
 "apiId": "id",
 "authorizer": {
 "claims": null,
 "scopes": null
 },

Integrations 407

Amazon API Gateway Developer Guide

 "domainName": "id.execute-api.us-east-1.amazonaws.com",
 "domainPrefix": "id",
 "extendedRequestId": "request-id",
 "httpMethod": "GET",
 "identity": {
 "accessKey": null,
 "accountId": null,
 "caller": null,
 "cognitoAuthenticationProvider": null,
 "cognitoAuthenticationType": null,
 "cognitoIdentityId": null,
 "cognitoIdentityPoolId": null,
 "principalOrgId": null,
 "sourceIp": "IP",
 "user": null,
 "userAgent": "user-agent",
 "userArn": null,
 "clientCert": {
 "clientCertPem": "CERT_CONTENT",
 "subjectDN": "www.example.com",
 "issuerDN": "Example issuer",
 "serialNumber": "a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1",
 "validity": {
 "notBefore": "May 28 12:30:02 2019 GMT",
 "notAfter": "Aug 5 09:36:04 2021 GMT"
 }
 }
 },
 "path": "/my/path",
 "protocol": "HTTP/1.1",
 "requestId": "id=",
 "requestTime": "04/Mar/2020:19:15:17 +0000",
 "requestTimeEpoch": 1583349317135,
 "resourceId": null,
 "resourcePath": "/my/path",
 "stage": "$default"
 },
 "pathParameters": null,
 "stageVariables": null,
 "body": "Hello from Lambda!",
 "isBase64Encoded": false
}

Integrations 408

Amazon API Gateway Developer Guide

Note

In the input:

• The headers key can only contain single-value headers.

• The multiValueHeaders key can contain multi-value headers as well as single-value
headers.

• If you specify values for both headers and multiValueHeaders, API Gateway merges
them into a single list. If the same key-value pair is specified in both, only the values
from multiValueHeaders will appear in the merged list.

In the input to the backend Lambda function, the requestContext object is a map of key-value
pairs. In each pair, the key is the name of a $context variable property, and the value is the value of
that property. API Gateway may add new keys to the map.

Depending on the features that are enabled, the requestContext map may vary from
API to API. For example, in the preceding example, no authorization type is specified, so no
$context.authorizer.* or $context.identity.* properties are present. When an
authorization type is specified, this causes API Gateway to pass authorized user information to the
integration endpoint in a requestContext.identity object as follows:

• When the authorization type is AWS_IAM, the authorized user information includes
$context.identity.* properties.

• When the authorization type is COGNITO_USER_POOLS (Amazon Cognito authorizer),
the authorized user information includes $context.identity.cognito* and
$context.authorizer.claims.* properties.

• When the authorization type is CUSTOM (Lambda authorizer), the authorized user
information includes $context.authorizer.principalId and other applicable
$context.authorizer.* properties.

Output format of a Lambda function for proxy integration

In Lambda proxy integration, API Gateway requires the backend Lambda function to return output
according to the following JSON format:

{

Integrations 409

Amazon API Gateway Developer Guide

 "isBase64Encoded": true|false,
 "statusCode": httpStatusCode,
 "headers": { "headerName": "headerValue", ... },
 "multiValueHeaders": { "headerName": ["headerValue", "headerValue2", ...], ... },
 "body": "..."
}

In the output:

• The headers and multiValueHeaders keys can be unspecified if no extra response headers
are to be returned.

• The headers key can only contain single-value headers.

• The multiValueHeaders key can contain multi-value headers as well as single-value headers.
You can use the multiValueHeaders key to specify all of your extra headers, including any
single-value ones.

• If you specify values for both headers and multiValueHeaders, API Gateway merges
them into a single list. If the same key-value pair is specified in both, only the values from
multiValueHeaders will appear in the merged list.

To enable CORS for the Lambda proxy integration, you must add Access-Control-Allow-
Origin:domain-name to the output headers. domain-name can be * for any domain name.
The output body is marshalled to the frontend as the method response payload. If body is a binary
blob, you can encode it as a Base64-encoded string by setting isBase64Encoded to true and
configuring */* as a Binary Media Type. Otherwise, you can set it to false or leave it unspecified.

Note

For more information about enabling binary support, see Enabling binary support using
the API Gateway console. For an example Lambda function, see Return binary media from a
Lambda proxy integration.

If the function output is of a different format, API Gateway returns a 502 Bad Gateway error
response.

To return a response in a Lambda function in Node.js, you can use commands such as the following:

Integrations 410

Amazon API Gateway Developer Guide

• To return a successful result, call callback(null, {"statusCode": 200, "body":
"results"}).

• To throw an exception, call callback(new Error('internal server error')).

• For a client-side error (if, for example, a required parameter is missing), you can call
callback(null, {"statusCode": 400, "body": "Missing parameters of ..."})
to return the error without throwing an exception.

In a Lambda async function in Node.js, the equivalent syntax would be:

• To return a successful result, call return {"statusCode": 200, "body": "results"}.

• To throw an exception, call throw new Error("internal server error").

• For a client-side error (if, for example, a required parameter is missing), you can call return
{"statusCode": 400, "body": "Missing parameters of ..."} to return the error
without throwing an exception.

Set up Lambda custom integrations in API Gateway

To show how to set up the Lambda custom integration, we create an API Gateway API to expose
the GET /greeting?greeter={name} method to invoke a Lambda function. Use one of the
following example Lambda functions for you API.

Use one of the following example Lambda functions:

Node.js

export const handler = function(event, context, callback) {
 var res ={
 "statusCode": 200,
 "headers": {
 "Content-Type": "*/*"
 }
 };
 if (event.greeter==null) {
 callback(new Error('Missing the required greeter parameter.'));
 } else if (event.greeter === "") {
 res.body = "Hello, World";
 callback(null, res);
 } else {

Integrations 411

Amazon API Gateway Developer Guide

 res.body = "Hello, " + event.greeter +"!";
 callback(null, res);
 }
};

Python

import json

def lambda_handler(event, context):
 print(event)
 res = {
 "statusCode": 200,
 "headers": {
 "Content-Type": "*/*"
 }
 }

 if event['greeter'] == "":
 res['body'] = "Hello, World"
 elif (event['greeter']):
 res['body'] = "Hello, " + event['greeter'] + "!"
 else:
 raise Exception('Missing the required greeter parameter.')

 return res

The function responds with a message of "Hello, {name}!" if the greeter parameter value
is a non-empty string. It returns a message of "Hello, World!" if the greeter value is an
empty string. The function returns an error message of "Missing the required greeter
parameter." if the greeter parameter is not set in the incoming request. We name the function
HelloWorld.

You can create it in the Lambda console or by using the AWS CLI. In this section, we reference this
function using the following ARN:

arn:aws:lambda:us-east-1:123456789012:function:HelloWorld

With the Lambda function set in the backend, proceed to set up the API.

Integrations 412

Amazon API Gateway Developer Guide

To set up the Lambda custom integration using the AWS CLI

1. Call the create-rest-api command to create an API:

aws apigateway create-rest-api --name 'HelloWorld (AWS CLI)' --region us-west-2

Note the resulting API's id value (te6si5ach7) in the response:

{
 "name": "HelloWorld (AWS CLI)",
 "id": "te6si5ach7",
 "createdDate": 1508461860
}

You need the API id throughout this section.

2. Call the get-resources command to get the root resource id:

aws apigateway get-resources --rest-api-id te6si5ach7 --region us-west-2

The successful response is as follows:

{
 "items": [
 {
 "path": "/",
 "id": "krznpq9xpg"
 }
]
}

Note the root resource id value (krznpq9xpg). You need it in the next step and later.

3. Call create-resource to create an API Gateway Resource of /greeting:

aws apigateway create-resource --rest-api-id te6si5ach7 \
 --region us-west-2 \
 --parent-id krznpq9xpg \
 --path-part greeting

The successful response is similar to the following:
Integrations 413

https://docs.aws.amazon.com/apigateway/latest/api/API_Resource.html

Amazon API Gateway Developer Guide

{
 "path": "/greeting",
 "pathPart": "greeting",
 "id": "2jf6xt",
 "parentId": "krznpq9xpg"
}

Note the resulting greeting resource's id value (2jf6xt). You need it to create a method on
the /greeting resource in the next step.

4. Call put-method to create an API method request of GET /greeting?greeter={name}:

aws apigateway put-method --rest-api-id te6si5ach7 \
 --region us-west-2 \
 --resource-id 2jf6xt \
 --http-method GET \
 --authorization-type "NONE" \
 --request-parameters method.request.querystring.greeter=false

The successful response is similar to the following:

{
 "apiKeyRequired": false,
 "httpMethod": "GET",
 "authorizationType": "NONE",
 "requestParameters": {
 "method.request.querystring.greeter": false
 }
}

This API method allows the client to receive a greeting from the Lambda function at the
backend. The greeter parameter is optional because the backend should handle either an
anonymous caller or a self-identified caller.

5. Call put-method-response to set up the 200 OK response to the method request of GET /
greeting?greeter={name}:

aws apigateway put-method-response \
 --region us-west-2 \
 --rest-api-id te6si5ach7 \
 --resource-id 2jf6xt \

Integrations 414

Amazon API Gateway Developer Guide

 --http-method GET \
 --status-code 200

6. Call put-integration to set up the integration of the GET /greeting?greeter={name}
method with a Lambda function, named HelloWorld. The function responds to the request
with a message of "Hello, {name}!", if the greeter parameter is provided, or "Hello,
World!", if the query string parameter is not set.

aws apigateway put-integration \
 --region us-west-2 \
 --rest-api-id te6si5ach7 \
 --resource-id 2jf6xt \
 --http-method GET \
 --type AWS \
 --integration-http-method POST \
 --uri arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-east-1:123456789012:function:HelloWorld/invocations \
 --request-templates '{"application/json":"{\"greeter\":
\"$input.params('greeter')\"}"}' \
 --credentials arn:aws:iam::123456789012:role/apigAwsProxyRole

The mapping template supplied here translates the greeter query string parameter to the
greeter property of the JSON payload. This is necessary because the input to a Lambda
function must be expressed in the body.

Important

For Lambda integrations, you must use the HTTP method of POST for the integration
request, according to the specification of the Lambda service action for function
invocations. The uri parameter is the ARN of the function-invoking action.
Successful output is similar to the following:

{
 "passthroughBehavior": "WHEN_NO_MATCH",
 "cacheKeyParameters": [],
 "uri": "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-east-1:123456789012:function:HelloWorld/invocations",
 "httpMethod": "POST",

Integrations 415

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon API Gateway Developer Guide

 "requestTemplates": {
 "application/json": "{\"greeter\":\"$input.params('greeter')\"}"
 },
 "cacheNamespace": "krznpq9xpg",
 "credentials": "arn:aws:iam::123456789012:role/apigAwsProxyRole",
 "type": "AWS"
}

The IAM role of apigAwsProxyRole must have policies that allow the apigateway service
to invoke Lambda functions. Instead of supplying an IAM role for credentials, you can call
the add-permission command to add resource-based permissions. This is how the API Gateway
console adds these permissions.

7. Call put-integration-response to set up the integration response to pass the Lambda
function output to the client as the 200 OK method response.

 aws apigateway put-integration-response \
 --region us-west-2 \
 --rest-api-id te6si5ach7 \
 --resource-id 2jf6xt \
 --http-method GET \
 --status-code 200 \
 --selection-pattern ""

By setting the selection-pattern to an empty string, the 200 OK response is the default.

The successful response should be similar to the following:

 {
 "selectionPattern": "",
 "statusCode": "200"
}

8. Call create-deployment to deploy the API to a test stage:

aws apigateway create-deployment --rest-api-id te6si5ach7 --stage-name test --
region us-west-2

9. Test the API using the following cURL command in a terminal:

Integrations 416

https://docs.aws.amazon.com/cli/latest/reference/lambda/add-permission.html

Amazon API Gateway Developer Guide

curl -X GET 'https://te6si5ach7.execute-api.us-west-2.amazonaws.com/test/greeting?
greeter=me' \
 -H 'authorization: AWS4-HMAC-SHA256 Credential={access_key}/20171020/us-
west-2/execute-api/aws4_request, SignedHeaders=content-type;host;x-amz-date,
 Signature=f327...5751'

Set up asynchronous invocation of the backend Lambda function

In Lambda non-proxy (custom) integration, the backend Lambda function is invoked synchronously
by default. This is the desired behavior for most REST API operations. Some applications, however,
require work to be performed asynchronously (as a batch operation or a long-latency operation),
typically by a separate backend component. In this case, the backend Lambda function is invoked
asynchronously, and the front-end REST API method doesn't return the result.

You can configure the Lambda function for a Lambda non-proxy integration to be invoked
asynchronously by specifying 'Event' as the Lambda invocation type. This is done as follows:

Configure Lambda asynchronous invocation in the API Gateway console

For all invocations to be asynchronous:

• In Integration request, add an X-Amz-Invocation-Type header with a static value of
'Event'.

For clients to decide if invocations are asynchronous or synchronous:

1. In Method request, add an InvocationType header.

2. In Integration request add an X-Amz-Invocation-Type header with a mapping expression
of method.request.header.InvocationType.

3. Clients can include the InvocationType: Event header in API requests for asynchronous
invocations or InvocationType: RequestResponse for synchronous invocations.

Configure Lambda asynchronous invocation using OpenAPI

For all invocations to be asynchronous:

• Add the X-Amz-Invocation-Type header to the x-amazon-apigateway-integration section.

Integrations 417

https://docs.aws.amazon.com/lambda/latest/dg/invocation-options.html

Amazon API Gateway Developer Guide

"x-amazon-apigateway-integration" : {
 "type" : "aws",
 "httpMethod" : "POST",
 "uri" : "arn:aws:apigateway:us-east-2:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-east-2:123456789012:function:my-function/invocations",
 "responses" : {
 "default" : {
 "statusCode" : "200"
 }
 },
 "requestParameters" : {
 "integration.request.header.X-Amz-Invocation-Type" : "'Event'"
 },
 "passthroughBehavior" : "when_no_match",
 "contentHandling" : "CONVERT_TO_TEXT"
 }

For clients to decide if invocations are asynchronous or synchronous:

1. Add the following header on any OpenAPI Path Item Object.

"parameters" : [{
"name" : "InvocationType",
"in" : "header",
"schema" : {
 "type" : "string"
}
}]

2. Add the X-Amz-Invocation-Type header to x-amazon-apigateway-integration section.

"x-amazon-apigateway-integration" : {
 "type" : "aws",
 "httpMethod" : "POST",
 "uri" : "arn:aws:apigateway:us-east-2:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-east-2:123456789012:function:my-function/invocations",
 "responses" : {
 "default" : {
 "statusCode" : "200"
 }
 },

Integrations 418

https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.1.0.md#pathItemObject

Amazon API Gateway Developer Guide

 "requestParameters" : {
 "integration.request.header.X-Amz-Invocation-Type" :
 "method.request.header.InvocationType"
 },
 "passthroughBehavior" : "when_no_match",
 "contentHandling" : "CONVERT_TO_TEXT"
 }

3. Clients can include the InvocationType: Event header in API requests for asynchronous
invocations or InvocationType: RequestResponse for synchronous invocations.

Handle Lambda errors in API Gateway

For Lambda custom integrations, you must map errors returned by Lambda in the integration
response to standard HTTP error responses for your clients. Otherwise, Lambda errors are returned
as 200 OK responses by default and the result is not intuitive for your API users.

There are two types of errors that Lambda can return: standard errors and custom errors. In your
API, you must handle these differently.

With the Lambda proxy integration, Lambda is required to return an output of the following
format:

{
 "isBase64Encoded" : "boolean",
 "statusCode": "number",
 "headers": { ... },
 "body": "JSON string"
}

In this output, statusCode is typically 4XX for a client error and 5XX for a server error. API
Gateway handles these errors by mapping the Lambda error to an HTTP error response,
according to the specified statusCode. For API Gateway to pass the error type (for example,
InvalidParameterException), as part of the response to the client, the Lambda function must
include a header (for example, "X-Amzn-ErrorType":"InvalidParameterException") in the
headers property.

Topics

• Handle standard Lambda errors in API Gateway

• Handle custom Lambda errors in API Gateway

Integrations 419

Amazon API Gateway Developer Guide

Handle standard Lambda errors in API Gateway

A standard AWS Lambda error has the following format:

{
 "errorMessage": "<replaceable>string</replaceable>",
 "errorType": "<replaceable>string</replaceable>",
 "stackTrace": [
 "<replaceable>string</replaceable>",
 ...
]
}

Here, errorMessage is a string expression of the error. The errorType is a language-dependent
error or exception type. The stackTrace is a list of string expressions showing the stack trace
leading to the occurrence of the error.

For example, consider the following JavaScript (Node.js) Lambda function.

export const handler = function(event, context, callback) {
 callback(new Error("Malformed input ..."));
};

This function returns the following standard Lambda error, containing Malformed input ... as
the error message:

{
 "errorMessage": "Malformed input ...",
 "errorType": "Error",
 "stackTrace": [
 "export const handler (/var/task/index.js:3:14)"
]
}

Similarly, consider the following Python Lambda function, which raises an Exception with the
same Malformed input ... error message.

def lambda_handler(event, context):
 raise Exception('Malformed input ...')

Integrations 420

Amazon API Gateway Developer Guide

This function returns the following standard Lambda error:

{
 "stackTrace": [
 [
 "/var/task/lambda_function.py",
 3,
 "lambda_handler",
 "raise Exception('Malformed input ...')"
]
],
 "errorType": "Exception",
 "errorMessage": "Malformed input ..."
}

Note that the errorType and stackTrace property values are language-dependent. The
standard error also applies to any error object that is an extension of the Error object or a
subclass of the Exception class.

To map the standard Lambda error to a method response, you must first decide on an HTTP
status code for a given Lambda error. You then set a regular expression pattern on the
selectionPattern property of the IntegrationResponse associated with the given HTTP status
code. In the API Gateway console, this selectionPattern is denoted as Lambda error regex in
the Integration response section, under each integration response.

Note

API Gateway uses Java pattern-style regexes for response mapping. For more information,
see Pattern in the Oracle documentation.

For example, to set up a new selectionPattern expression, using AWS CLI, call the following
put-integration-response command:

aws apigateway put-integration-response --rest-api-id z0vprf0mdh --resource-id x3o5ih
 --http-method GET --status-code 400 --selection-pattern "Malformed.*" --region us-
west-2

Make sure that you also set up the corresponding error code (400) on the method response.
Otherwise, API Gateway throws an invalid configuration error response at runtime.

Integrations 421

https://docs.aws.amazon.com/apigateway/latest/api/API_IntegrationResponse.html#selectionPattern
https://docs.aws.amazon.com/apigateway/latest/api/API_IntegrationResponse.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
http://docs.aws.amazon.com/cli/latest/reference/apigateway/put-integration-response.html

Amazon API Gateway Developer Guide

Note

At runtime, API Gateway matches the Lambda error's errorMessage against the pattern
of the regular expression on the selectionPattern property. If there is a match, API
Gateway returns the Lambda error as an HTTP response of the corresponding HTTP status
code. If there is no match, API Gateway returns the error as a default response or throws an
invalid configuration exception if no default response is configured.
Setting the selectionPattern value to .* for a given response amounts to resetting
this response as the default response. This is because such a selection pattern will match all
error messages, including null, i.e., any unspecified error message. The resulting mapping
overrides the default mapping.

To update an existing selectionPattern value using the AWS CLI, call the update-integration-
response operation to replace the /selectionPattern path value with the specified regex
expression of the Malformed* pattern.

To set the selectionPattern expression using the API Gateway console, enter the expression
in the Lambda error regex text box when setting up or updating an integration response of a
specified HTTP status code.

Handle custom Lambda errors in API Gateway

Instead of the standard error described in the preceding section, AWS Lambda allows you to return
a custom error object as JSON string. The error can be any valid JSON object. For example, the
following JavaScript (Node.js) Lambda function returns a custom error:

export const handler = (event, context, callback) => {
 ...
 // Error caught here:
 var myErrorObj = {
 errorType : "InternalServerError",
 httpStatus : 500,
 requestId : context.awsRequestId,
 trace : {
 "function": "abc()",
 "line": 123,
 "file": "abc.js"
 }
 }

Integrations 422

http://docs.aws.amazon.com/cli/latest/reference/apigateway/update-integration-response.html
http://docs.aws.amazon.com/cli/latest/reference/apigateway/update-integration-response.html

Amazon API Gateway Developer Guide

 callback(JSON.stringify(myErrorObj));
};

You must turn the myErrorObj object into a JSON string before calling callback to exit the
function. Otherwise, the myErrorObj is returned as a string of "[object Object]". When a
method of your API is integrated with the preceding Lambda function, API Gateway receives an
integration response with the following payload:

{
 "errorMessage": "{\"errorType\":\"InternalServerError\",\"httpStatus\":500,
\"requestId\":\"e5849002-39a0-11e7-a419-5bb5807c9fb2\",\"trace\":{\"function\":
\"abc()\",\"line\":123,\"file\":\"abc.js\"}}"
}

As with any integration response, you can pass through this error response as-is to the method
response. Or you can have a mapping template to transform the payload into a different format.
For example, consider the following body-mapping template for a method response of 500 status
code:

{
 errorMessage: $input.path('$.errorMessage');
}

This template translates the integration response body that contains the custom error JSON string
to the following method response body. This method response body contains the custom error
JSON object:

{
 "errorMessage" : {
 errorType : "InternalServerError",
 httpStatus : 500,
 requestId : context.awsRequestId,
 trace : {
 "function": "abc()",
 "line": 123,
 "file": "abc.js"
 }
 }
};

Integrations 423

Amazon API Gateway Developer Guide

Depending on your API requirements, you may need to pass some or all of the custom error
properties as method response header parameters. You can achieve this by applying the custom
error mappings from the integration response body to the method response headers.

For example, the following OpenAPI extension defines a mapping from the
errorMessage.errorType, errorMessage.httpStatus, errorMessage.trace.function,
and errorMessage.trace properties to the error_type, error_status,
error_trace_function, and error_trace headers, respectively.

"x-amazon-apigateway-integration": {
 "responses": {
 "default": {
 "statusCode": "200",
 "responseParameters": {
 "method.response.header.error_trace_function":
 "integration.response.body.errorMessage.trace.function",
 "method.response.header.error_status":
 "integration.response.body.errorMessage.httpStatus",
 "method.response.header.error_type":
 "integration.response.body.errorMessage.errorType",
 "method.response.header.error_trace":
 "integration.response.body.errorMessage.trace"
 },
 ...
 }
 }
}

At runtime, API Gateway deserializes the integration.response.body parameter when
performing header mappings. However, this deserialization applies only to body-to-header
mappings for Lambda custom error responses and does not apply to body-to-body mappings
using $input.body. With these custom-error-body-to-header mappings, the client receives
the following headers as part of the method response, provided that the error_status,
error_trace, error_trace_function, and error_type headers are declared in the method
request.

"error_status":"500",
"error_trace":"{\"function\":\"abc()\",\"line\":123,\"file\":\"abc.js\"}",
"error_trace_function":"abc()",
"error_type":"InternalServerError"

Integrations 424

Amazon API Gateway Developer Guide

The errorMessage.trace property of the integration response body is a complex property. It is
mapped to the error_trace header as a JSON string.

Set up HTTP integrations in API Gateway

You can integrate an API method with an HTTP endpoint using the HTTP proxy integration or the
HTTP custom integration.

API Gateway supports the following endpoint ports: 80, 443 and 1024-65535.

With proxy integration, setup is simple. You only need to set the HTTP method and the HTTP
endpoint URI, according to the backend requirements, if you are not concerned with content
encoding or caching.

With custom integration, setup is more involved. In addition to the proxy integration setup steps,
you need to specify how the incoming request data is mapped to the integration request and how
the resulting integration response data is mapped to the method response.

Topics

• Set up HTTP proxy integrations in API Gateway

• Set up HTTP custom integrations in API Gateway

Set up HTTP proxy integrations in API Gateway

To set up a proxy resource with the HTTP proxy integration type, create an API resource with
a greedy path parameter (for example, /parent/{proxy+}) and integrate this resource with
an HTTP backend endpoint (for example, https://petstore-demo-endpoint.execute-
api.com/petstore/{proxy}) on the ANY method. The greedy path parameter must be at the
end of the resource path.

As with a non-proxy resource, you can set up a proxy resource with the HTTP proxy integration by
using the API Gateway console, importing an OpenAPI definition file, or calling the API Gateway
REST API directly. For detailed instructions about using the API Gateway console to configure
a proxy resource with the HTTP integration, see Tutorial: Build a REST API with HTTP proxy
integration.

The following OpenAPI definition file shows an example of an API with a proxy resource that is
integrated with the PetStore website.

Integrations 425

http://petstore-demo-endpoint.execute-api.com/petstore/pets

Amazon API Gateway Developer Guide

OpenAPI 3.0

{
 "openapi": "3.0.0",
 "info": {
 "version": "2016-09-12T23:19:28Z",
 "title": "PetStoreWithProxyResource"
 },
 "paths": {
 "/{proxy+}": {
 "x-amazon-apigateway-any-method": {
 "parameters": [
 {
 "name": "proxy",
 "in": "path",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {},
 "x-amazon-apigateway-integration": {
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "requestParameters": {
 "integration.request.path.proxy": "method.request.path.proxy"
 },
 "uri": "http://petstore-demo-endpoint.execute-api.com/petstore/
{proxy}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "ANY",
 "cacheNamespace": "rbftud",
 "cacheKeyParameters": [
 "method.request.path.proxy"
],
 "type": "http_proxy"
 }
 }
 }
 },

Integrations 426

Amazon API Gateway Developer Guide

 "servers": [
 {
 "url": "https://4z9giyi2c1.execute-api.us-east-1.amazonaws.com/{basePath}",
 "variables": {
 "basePath": {
 "default": "/test"
 }
 }
 }
]
}

OpenAPI 2.0

{
 "swagger": "2.0",
 "info": {
 "version": "2016-09-12T23:19:28Z",
 "title": "PetStoreWithProxyResource"
 },
 "host": "4z9giyi2c1.execute-api.us-east-1.amazonaws.com",
 "basePath": "/test",
 "schemes": [
 "https"
],
 "paths": {
 "/{proxy+}": {
 "x-amazon-apigateway-any-method": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "proxy",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {},
 "x-amazon-apigateway-integration": {
 "responses": {
 "default": {

Integrations 427

Amazon API Gateway Developer Guide

 "statusCode": "200"
 }
 },
 "requestParameters": {
 "integration.request.path.proxy": "method.request.path.proxy"
 },
 "uri": "http://petstore-demo-endpoint.execute-api.com/petstore/{proxy}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "ANY",
 "cacheNamespace": "rbftud",
 "cacheKeyParameters": [
 "method.request.path.proxy"
],
 "type": "http_proxy"
 }
 }
 }
 }
}

In this example, a cache key is declared on the method.request.path.proxy path parameter
of the proxy resource. This is the default setting when you create the API using the API Gateway
console. The API's base path (/test, corresponding to a stage) is mapped to the website's PetStore
page (/petstore). The single integration request mirrors the entire PetStore website using the
API's greedy path variable and the catch-all ANY method. The following examples illustrate this
mirroring.

• Set ANY as GET and {proxy+} as pets

Method request initiated from the frontend:

GET https://4z9giyi2c1.execute-api.us-west-2.amazonaws.com/test/pets HTTP/1.1

Integration request sent to the backend:

GET http://petstore-demo-endpoint.execute-api.com/petstore/pets HTTP/1.1

Integrations 428

Amazon API Gateway Developer Guide

The run-time instances of the ANY method and proxy resource are both valid. The call returns
a 200 OK response with the payload containing the first batch of pets, as returned from the
backend.

• Set ANY as GET and {proxy+} as pets?type=dog

GET https://4z9giyi2c1.execute-api.us-west-2.amazonaws.com/test/pets?type=dog
 HTTP/1.1

Integration request sent to the backend:

GET http://petstore-demo-endpoint.execute-api.com/petstore/pets?type=dog HTTP/1.1

The run-time instances of the ANY method and proxy resource are both valid. The call returns a
200 OK response with the payload containing the first batch of specified dogs, as returned from
the backend.

• Set ANY as GET and {proxy+} as pets/{petId}

Method request initiated from the frontend:

GET https://4z9giyi2c1.execute-api.us-west-2.amazonaws.com/test/pets/1 HTTP/1.1

Integration request sent to the backend:

GET http://petstore-demo-endpoint.execute-api.com/petstore/pets/1 HTTP/1.1

The run-time instances of the ANY method and proxy resource are both valid. The call returns a
200 OK response with the payload containing the specified pet, as returned from the backend.

• Set ANY as POST and {proxy+} as pets

Method request initiated from the frontend:

POST https://4z9giyi2c1.execute-api.us-west-2.amazonaws.com/test/pets HTTP/1.1
Content-Type: application/json
Content-Length: ...

{
 "type" : "dog",

Integrations 429

Amazon API Gateway Developer Guide

 "price" : 1001.00
}

Integration request sent to the backend:

POST http://petstore-demo-endpoint.execute-api.com/petstore/pets HTTP/1.1
Content-Type: application/json
Content-Length: ...

{
 "type" : "dog",
 "price" : 1001.00
}

The run-time instances of the ANY method and proxy resource are both valid. The call returns
a 200 OK response with the payload containing the newly created pet, as returned from the
backend.

• Set ANY as GET and {proxy+} as pets/cat

Method request initiated from the frontend:

GET https://4z9giyi2c1.execute-api.us-west-2.amazonaws.com/test/pets/cat

Integration request sent to the backend:

GET http://petstore-demo-endpoint.execute-api.com/petstore/pets/cat

The run-time instance of the proxy resource path does not correspond to a backend endpoint
and the resulting request is invalid. As a result, a 400 Bad Request response is returned with
the following error message.

{
 "errors": [
 {
 "key": "Pet2.type",
 "message": "Missing required field"
 },
 {
 "key": "Pet2.price",

Integrations 430

Amazon API Gateway Developer Guide

 "message": "Missing required field"
 }
]
}

• Set ANY as GET and {proxy+} as null

Method request initiated from the frontend:

GET https://4z9giyi2c1.execute-api.us-west-2.amazonaws.com/test

Integration request sent to the backend:

GET http://petstore-demo-endpoint.execute-api.com/petstore/pets

The targeted resource is the parent of the proxy resource, but the run-time instance of the ANY
method is not defined in the API on that resource. As a result, this GET request returns a 403
Forbidden response with the Missing Authentication Token error message as returned
by API Gateway. If the API exposes the ANY or GET method on the parent resource (/), the call
returns a 404 Not Found response with the Cannot GET /petstore message as returned
from the backend.

For any client request, if the targeted endpoint URL is invalid or the HTTP verb is valid but not
supported, the backend returns a 404 Not Found response. For an unsupported HTTP method, a
403 Forbidden response is returned.

Set up HTTP custom integrations in API Gateway

With the HTTP custom integration, you have more control of which data to pass between an API
method and an API integration and how to pass the data. You do this using data mappings.

As part of the method request setup, you set the requestParameters property on a Method
resource. This declares which method request parameters, which are provisioned from the
client, are to be mapped to integration request parameters or applicable body properties before
being dispatched to the backend. Then, as part of the integration request setup, you set the
requestParameters property on the corresponding Integration resource to specify the parameter-
to-parameter mappings. You also set the requestTemplates property to specify mapping
templates, one for each supported content type. The mapping templates map method request
parameters, or body, to the integration request body.

Integrations 431

https://docs.aws.amazon.com/apigateway/latest/api/API_Method.html#requestParameters
https://docs.aws.amazon.com/apigateway/latest/api/API_Method.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html#requestParameters
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html#requestTemplates

Amazon API Gateway Developer Guide

Similarly, as part of the method response setup, you set the responseParameters property on the
MethodResponse resource. This declares which method response parameters, to be dispatched
to the client, are to be mapped from integration response parameters or certain applicable body
properties that were returned from the backend. Then, as part of the integration response setup,
you set the responseParameters property on the corresponding IntegrationResponse resource to
specify the parameter-to-parameter mappings. You also set the responseTemplates map to specify
mapping templates, one for each supported content type. The mapping templates map integration
response parameters, or integration response body properties, to the method response body.

For more information about setting up mapping templates, see Setting up data transformations
for REST APIs.

Set up API Gateway private integrations

The API Gateway private integration makes it simple to expose your HTTP/HTTPS resources within
an Amazon VPC for access by clients outside of the VPC. To extend access to your private VPC
resources beyond the VPC boundaries, you can create an API with private integration. You can
control access to your API by using any of the authorization methods that API Gateway supports.

To create a private integration, you must first create a Network Load Balancer. Your Network
Load Balancer must have a listener that routes requests to resources in your VPC. To improve
the availability of your API, ensure that your Network Load Balancer routes traffic to resources in
more than one Availability Zone in the AWS Region. Then, you create a VPC link that you use to
connect your API and your Network Load Balancer. After you create a VPC link, you create private
integrations to route traffic from your API to resources in your VPC through your VPC link and
Network Load Balancer.

Note

The Network Load Balancer and API must be owned by the same AWS account.

With the API Gateway private integration, you can enable access to HTTP/HTTPS resources within
a VPC without detailed knowledge of private network configurations or technology-specific
appliances.

Topics

• Set up a Network Load Balancer for API Gateway private integrations

Integrations 432

https://docs.aws.amazon.com/apigateway/latest/api/API_MethodResponse.html#responseParameters
https://docs.aws.amazon.com/apigateway/latest/api/API_MethodResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_IntegrationResponse.html#responseParameters
https://docs.aws.amazon.com/apigateway/latest/api/API_IntegrationResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_IntegrationResponse.html#responseTemplates
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-listeners.html

Amazon API Gateway Developer Guide

• Grant permissions to create a VPC link

• Set up an API Gateway API with private integrations using the API Gateway console

• Set up an API Gateway API with private integrations using the AWS CLI

• Set up API with private integrations using OpenAPI

• API Gateway accounts used for private integrations

Set up a Network Load Balancer for API Gateway private integrations

The following procedure outlines the steps to set up a Network Load Balancer (NLB) for API
Gateway private integrations using the Amazon EC2 console and provides references for detailed
instructions for each step.

For each VPC you have resources in, you only need to configure one NLB and one VPCLink. The NLB
supports multiple listeners and target groups per NLB. You can configure each service as a specific
listener on the NLB and use a single VPCLink to connect to the NLB. When creating the private
integration in API Gateway you then define each service using the specific port that is assigned
for each service. For more information, see the section called “Tutorial: Build an API with private
integration”.

Note

The Network Load Balancer and API must be owned by the same AWS account.

To create a Network Load Balancer for private integration using the API Gateway console

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. Set up a web server on an Amazon EC2 instance. For an example setup, see Installing a LAMP
Web Server on Amazon Linux 2.

3. Create a Network Load Balancer, register the EC2 instance with a target group, and add the
target group to a listener of the Network Load Balancer. For details, follow the instructions in
Getting Started with Network Load Balancers.

4. After the Network Load Balancer is created, do the following:

a. Note the ARN of the Network Load Balancer. You will need it to create a VPC link in API
Gateway for integrating the API with the VPC resources behind the Network Load Balancer

Integrations 433

https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-listeners.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-target-groups.html
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-lamp-amazon-linux-2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-lamp-amazon-linux-2.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/network-load-balancer-getting-started.html

Amazon API Gateway Developer Guide

b. Turn off security group evaluation for PrivateLink. Use the following command to turn off
inbound rules on PrivateLink traffic.

aws elbv2 set-security-groups --load-balancer-
arn arn:aws:elasticloadbalancing:us-east-2:111122223333:loadbalancer/net/my-
loadbalancer/abc12345 \
 --security-groups sg-123345a --enforce-security-group-inbound-rules-on-
private-link-traffic off

Note

Do not add any dependencies to API Gateway CIDRs as they are bound to change without
notice.

Grant permissions to create a VPC link

For you or a user in your account to create and maintain a VPC link, you or the user must have
permissions to create, delete, and view VPC endpoint service configurations, change VPC endpoint
service permissions, and examine load balancers. To grant such permissions, use the following
steps.

To grant permissions to create, update, and delete a VPC link

1. Create an IAM policy similar to the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "apigateway:POST",
 "apigateway:GET",
 "apigateway:PATCH",
 "apigateway:DELETE"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/vpclinks",
 "arn:aws:apigateway:us-east-1::/vpclinks/*"

Integrations 434

Amazon API Gateway Developer Guide

]
 },
 {
 "Effect": "Allow",
 "Action": [
 "elasticloadbalancing:DescribeLoadBalancers"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateVpcEndpointServiceConfiguration",
 "ec2:DeleteVpcEndpointServiceConfigurations",
 "ec2:DescribeVpcEndpointServiceConfigurations",
 "ec2:ModifyVpcEndpointServicePermissions"
],
 "Resource": "*"
 }
]
}

2. Create or choose an IAM role and attach the preceding policy to the role.

3. Assign the IAM role to you or a user in your account who is creating VPC links.

Set up an API Gateway API with private integrations using the API Gateway console

For instructions using the API Gateway Console to set up an API with private integration, see
Tutorial: Build a REST API with API Gateway private integration.

Set up an API Gateway API with private integrations using the AWS CLI

Before creating an API with the private integration, you must have your VPC resource set up
and a Network Load Balancer created and configured with your VPC source as the target. If
the requirements are not met, follow Set up a Network Load Balancer for API Gateway private
integrations to install the VPC resource, create a Network Load Balancer, and set the VPC resource
as a target of the Network Load Balancer.

Note

The Network Load Balancer and API must be owned by the same AWS account.

Integrations 435

Amazon API Gateway Developer Guide

For you to be able to create and manage a VpcLink, you must also have the appropriate
permissions configured. For more information, see Grant permissions to create a VPC link.

Note

You only need the permissions to create a VpcLink in your API. You do not need the
permissions to use the VpcLink.

After the Network Load Balancer is created, note its ARN. You need it to create a VPC link for the
private integration.

To set up an API with the private integration using AWS CLI

1. Create a VpcLink targeting the specified Network Load Balancer.

aws apigateway create-vpc-link \
 --name my-test-vpc-link \
 --target-arns arn:aws:elasticloadbalancing:us-east-2:123456789012:loadbalancer/
net/my-vpclink-test-nlb/1234567890abcdef

The output of this command acknowledges the receipt of the request and shows the PENDING
status for the VpcLink being created.

{
 "status": "PENDING",
 "targetArns": [
 "arn:aws:elasticloadbalancing:us-east-2:123456789012:loadbalancer/net/my-
vpclink-test-nlb/1234567890abcdef"
],
 "id": "gim7c3",
 "name": "my-test-vpc-link"
}

It takes 2-4 minutes for API Gateway to finish creating the VpcLink. When the operation
finishes successfully, the status is AVAILABLE. You can verify this by calling the following CLI
command:

aws apigateway get-vpc-link --vpc-link-id gim7c3

Integrations 436

Amazon API Gateway Developer Guide

If the operation fails, you get a FAILED status, with the statusMessage containing the error
message. For example, if you attempt to create a VpcLink with a Network Load Balancer
that is already associated with a VPC endpoint, you get the following on the statusMessage
property:

"NLB is already associated with another VPC Endpoint Service"

After the VpcLink is created successfully, you can create an API and integrate it with the VPC
resource through the VpcLink.

Note the id value of the newly created VpcLink (gim7c3 in the preceding output). You need
it to set up the private integration.

2. Set up an API by creating an API Gateway RestApi resource:

aws apigateway create-rest-api --name 'My VPC Link Test'

Note the RestApi's id value in the returned result. You need this value to perform further
operations on the API.

For illustration purposes, we will create an API with only a GET method on the root resource (/)
and integrate the method with the VpcLink.

3. Set up the GET / method. First get the identifier of the root resource (/):

aws apigateway get-resources --rest-api-id abcdef123

In the output, note the id value of the / path. In this example, we assume it to be
skpp60rab7.

Set up the method request for the API method of GET /:

aws apigateway put-method \
 --rest-api-id abcdef123 \
 --resource-id skpp60rab7 \
 --http-method GET \
 --authorization-type "NONE"

Integrations 437

https://docs.aws.amazon.com/apigateway/latest/api/API_RestApi.html

Amazon API Gateway Developer Guide

If you do not use the proxy integration with the VpcLink, you must also set up at least a
method response of the 200 status code. We will use the proxy integration here.

4. Set up the private integration of the HTTP_PROXY type and call the put-integration
command as follows:

aws apigateway put-integration \
 --rest-api-id abcdef123 \
 --resource-id skpp60rab7 \
 --uri 'http://my-vpclink-test-nlb-1234567890abcdef.us-east-2.amazonaws.com' \
 --http-method GET \
 --type HTTP_PROXY \
 --integration-http-method GET \
 --connection-type VPC_LINK \
 --connection-id gim7c3

For a private integration, set connection-type to VPC_LINK and set connection-id to
either your VpcLink's identifier or a stage variable referencing your VpcLink ID. The uri
parameter is not used for routing requests to your endpoint, but is used for setting the Host
header and for certificate validation.

The command returns the following output:

{
 "passthroughBehavior": "WHEN_NO_MATCH",
 "timeoutInMillis": 29000,
 "connectionId": "gim7c3",
 "uri": "http://my-vpclink-test-nlb-1234567890abcdef.us-east-2.amazonaws.com",
 "connectionType": "VPC_LINK",
 "httpMethod": "GET",
 "cacheNamespace": "skpp60rab7",
 "type": "HTTP_PROXY",
 "cacheKeyParameters": []
}

Using a stage variable, you set the connectionId property when creating the integration:

aws apigateway put-integration \
 --rest-api-id abcdef123 \
 --resource-id skpp60rab7 \
 --uri 'http://my-vpclink-test-nlb-1234567890abcdef.us-east-2.amazonaws.com' \

Integrations 438

Amazon API Gateway Developer Guide

 --http-method GET \
 --type HTTP_PROXY \
 --integration-http-method GET \
 --connection-type VPC_LINK \
 --connection-id "\${stageVariables.vpcLinkId}"

Make sure to double-quote the stage variable expression (${stageVariables.vpcLinkId})
and escape the $ character.

Alternatively, you can update the integration to reset the connectionId value with a stage
variable:

 aws apigateway update-integration \
 --rest-api-id abcdef123 \
 --resource-id skpp60rab7 \
 --http-method GET \
 --patch-operations '[{"op":"replace","path":"/
connectionId","value":"${stageVariables.vpcLinkId}"}]'

Make sure to use a stringified JSON list as the patch-operations parameter value.

You can use a stage variable to integrate your API with a different VPC or Network Load
Balancer by resetting the VpcLinks stage variable value.

Because we used the private proxy integration, the API is now ready for deployment and
for test runs. With the non-proxy integration, you must also set up the method response
and integration response, just as you would when setting up an API with HTTP custom
integrations.

5. To test the API, deploy the API. This is necessary if you have used the stage variable as a
placeholder of the VpcLink ID. To deploy the API with a stage variable, call the create-
deployment command as follows:

aws apigateway create-deployment \
 --rest-api-id abcdef123 \
 --stage-name test \
 --variables vpcLinkId=gim7c3

To update the stage variable with a different VpcLink ID (e.g., asf9d7), call the update-
stage command:

Integrations 439

Amazon API Gateway Developer Guide

aws apigateway update-stage \
 --rest-api-id abcdef123 \
 --stage-name test \
 --patch-operations op=replace,path='/variables/vpcLinkId',value='asf9d7'

Use the following command to invoke your API:

curl -X GET https://abcdef123.execute-api.us-east-2.amazonaws.com/test

Alternatively, you can type the API's invoke-URL in a web browser to view the result.

When you hardcode the connection-id property with the VpcLink ID literal, you can also
call test-invoke-method to test invoking the API before it is deployed.

Set up API with private integrations using OpenAPI

You can set up an API with the private integration by importing the API's OpenAPI file. The settings
are similar to the OpenAPI definitions of an API with HTTP integrations, with the following
exceptions:

• You must explicitly set connectionType to VPC_LINK.

• You must explicitly set connectionId to the ID of a VpcLink or to a stage variable referencing
the ID of a VpcLink.

• The uri parameter in the private integration points to an HTTP/HTTPS endpoint in the VPC, but
is used instead to set up the integration request's Host header.

• The uri parameter in the private integration with an HTTPS endpoint in the VPC is used to
verify the stated domain name against the one in the certificate installed on the VPC endpoint.

You can use a stage variable to reference the VpcLink ID. Or you can assign the ID value directly to
connectionId.

The following JSON-formatted OpenAPI file shows an example of an API with a VPC link as
referenced by a stage variable (${stageVariables.vpcLinkId}):

OpenAPI 2.0

{

Integrations 440

Amazon API Gateway Developer Guide

 "swagger": "2.0",
 "info": {
 "version": "2017-11-17T04:40:23Z",
 "title": "MyApiWithVpcLink"
 },
 "host": "p3wocvip9a.execute-api.us-west-2.amazonaws.com",
 "basePath": "/test",
 "schemes": [
 "https"
],
 "paths": {
 "/": {
 "get": {
 "produces": [
 "application/json"
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "responses": {
 "default": {
 "statusCode": "200"
 }
 },
 "uri": "http://my-vpclink-test-nlb-1234567890abcdef.us-
east-2.amazonaws.com",
 "passthroughBehavior": "when_no_match",
 "connectionType": "VPC_LINK",
 "connectionId": "${stageVariables.vpcLinkId}",
 "httpMethod": "GET",
 "type": "http_proxy"
 }
 }
 }
 },
 "definitions": {
 "Empty": {
 "type": "object",

Integrations 441

Amazon API Gateway Developer Guide

 "title": "Empty Schema"
 }
 }
}

API Gateway accounts used for private integrations

The following region-specific API Gateway account IDs are automatically added to your VPC
endpoint service as AllowedPrincipals when you create a VpcLink.

Region Account ID

us-east-1 392220576650

us-east-2 718770453195

us-west-1 968246515281

us-west-2 109351309407

ca-central-1 796887884028

eu-west-1 631144002099

eu-west-2 544388816663

eu-west-3 061510835048

eu-central-1 474240146802

eu-central-2 166639821150

eu-north-1 394634713161

eu-south-1 753362059629

eu-south-2 359345898052

ap-northeast-1 969236854626

ap-northeast-2 020402002396

Integrations 442

Amazon API Gateway Developer Guide

Region Account ID

ap-northeast-3 360671645888

ap-southeast-1 195145609632

ap-southeast-2 798376113853

ap-southeast-3 652364314486

ap-southeast-4 849137399833

ap-south-1 507069717855

ap-south-2 644042651268

ap-east-1 174803364771

sa-east-1 287228555773

me-south-1 855739686837

me-central-1 614065512851

Set up mock integrations in API Gateway

Amazon API Gateway supports mock integrations for API methods. This feature enables API
developers to generate API responses from API Gateway directly, without the need for an
integration backend. As an API developer, you can use this feature to unblock dependent teams
that need to work with an API before the project development is complete. You can also use this
feature to provision a landing page for your API, which can provide an overview of and navigation
to your API. For an example of such a landing page, see the integration request and response of the
GET method on the root resource of the example API discussed in Tutorial: Create a REST API by
importing an example.

As an API developer, you decide how API Gateway responds to a mock integration request. For this,
you configure the method's integration request and integration response to associate a response
with a given status code. For a method with the mock integration to return a 200 response,
configure the integration request body mapping template to return the following.

Integrations 443

Amazon API Gateway Developer Guide

{"statusCode": 200}

Configure a 200 integration response to have the following body mapping template, for example:

{
 "statusCode": 200,
 "message": "Go ahead without me."
}

Similarly, for the method to return, for example, a 500 error response, set up the integration
request body mapping template to return the following.

{"statusCode": 500}

Set up a 500 integration response with, for example, the following mapping template:

{
 "statusCode": 500,
 "message": "The invoked method is not supported on the API resource."
}

Alternatively, you can have a method of the mock integration return the default integration
response without defining the integration request mapping template. The default integration
response is the one with an undefined HTTP status regex. Make sure appropriate passthrough
behaviors are set.

Note

Mock integrations aren't intended to support large response templates. If you need them
for your use case, you should consider using a Lambda integration instead.

Using an integration request mapping template, you can inject application logic to decide which
mock integration response to return based on certain conditions. For example, you could use a
scope query parameter on the incoming request to determine whether to return a successful
response or an error response:

{

Integrations 444

Amazon API Gateway Developer Guide

 #if($input.params('scope') == "internal")
 "statusCode": 200
 #else
 "statusCode": 500
 #end
}

This way, the method of the mock integration lets internal calls to go through while rejecting other
types of calls with an error response.

In this section, we describe how to use the API Gateway console to enable the mock integration for
an API method.

Topics

• Enable mock integration using the API Gateway console

Enable mock integration using the API Gateway console

You must have a method available in API Gateway. Follow the instructions in Tutorial: Build a REST
API with HTTP non-proxy integration.

1. Choose an API resource and choose Create method.

To create the method, do the following:

a. For Method type, select a method.

b. For Integration type, select Mock.

c. Choose Create method.

d. On the Method request tab, for Method request settings, choose Edit.

e. Choose URL query string parameters. Choose Add query string and for Name, enter
scope. This query parameter determines if the caller is internal or otherwise.

f. Choose Save.

2. On the Method response tab, choose Create response, and then do the following:

a. For HTTP Status, enter 500.

b. Choose Save.

3. On the Integration request tab, for Integration request settings, choose Edit.

Integrations 445

Amazon API Gateway Developer Guide

4. Choose Mapping templates, and then do the following:

a. Choose Add mapping template.

b. For Content type, enter application/json.

c. For Template body, enter the following:

{
 #if($input.params('scope') == "internal")
 "statusCode": 200
 #else
 "statusCode": 500
 #end
}

d. Choose Save.

5. On the Integration response tab, for the Default - Response choose Edit.

6. Choose Mapping templates, and then do the following:

a. For Content type, enter application/json.

b. For Template body, enter the following:

{
 "statusCode": 200,
 "message": "Go ahead without me"
}

c. Choose Save.

7. Choose Create response.

To create a 500 response, do the following:

a. For HTTP status regex, enter 5\d{2}.

b. For Method response status, select 500.

c. Choose Save.

d. For 5\d{2} - Response, choose Edit.

e. Choose Mapping templates, and then choose Add mapping template.

f. For Content type, enter application/json.

g. For Template body, enter the following:
Integrations 446

Amazon API Gateway Developer Guide

{
 "statusCode": 500,
 "message": "The invoked method is not supported on the API resource."
}

h. Choose Save.

8. Choose the Test tab. You might need to choose the right arrow button to show the tab. To test
your mock integration, do the following:

a. Enter scope=internal under Query strings. Choose Test. The test result shows:

Request: /?scope=internal
Status: 200
Latency: 26 ms
Response Body

{
 "statusCode": 200,
 "message": "Go ahead without me"
}

Response Headers

{"Content-Type":"application/json"}

b. Enter scope=public under Query strings or leave it blank. Choose Test. The test
result shows:

Request: /
Status: 500
Latency: 16 ms
Response Body

{
 "statusCode": 500,
 "message": "The invoked method is not supported on the API resource."
}

Integrations 447

Amazon API Gateway Developer Guide

Response Headers

{"Content-Type":"application/json"}

You can also return headers in a mock integration response by first adding a header to the method
response and then setting up a header mapping in the integration response. In fact, this is how the
API Gateway console enables CORS support by returning CORS required headers.

Use request validation in API Gateway

You can configure API Gateway to perform basic validation of an API request before proceeding
with the integration request. When the validation fails, API Gateway immediately fails the request,
returns a 400 error response to the caller, and publishes the validation results in CloudWatch Logs.
This reduces unnecessary calls to the backend. More importantly, it lets you focus on the validation
efforts specific to your application. You can validate a request body by verifying that required
request parameters are valid and non-null or by specifying a model schema for more complicated
data validation.

Topics

• Overview of basic request validation in API Gateway

• Understanding data models

• Set up basic request validation in API Gateway

• OpenAPI definitions of a sample API with basic request validation

• AWS CloudFormation template of a sample API with basic request validation

Overview of basic request validation in API Gateway

API Gateway can perform the basic request validation, so that you can focus on app-specific
validation in the backend. For validation, API Gateway verifies either or both of the following
conditions:

• The required request parameters in the URI, query string, and headers of an incoming request are
included and not blank.

• The applicable request payload adheres to the configured JSON schema request of the method.

Request validation 448

https://tools.ietf.org/html/draft-zyp-json-schema-04

Amazon API Gateway Developer Guide

To turn on validation, you specify validation rules in a request validator, add the validator to the
API's map of request validators, and assign the validator to individual API methods.

Note

Request body validation and Integration passthrough behaviors are two separate topics.
When a request payload does not have a matching model schema, you can choose
to passthrough or block the original payload. For more information, see Integration
passthrough behaviors.

Understanding data models

In API Gateway, a model defines the data structure of a payload. In API Gateway, models are
defined using the JSON schema draft 4. The following JSON object is sample data in the Pet Store
example.

{
 "id": 1,
 "type": "dog",
 "price": 249.99
}

The data contains the id, type, and price of the pet. A model of this data allows you to:

• Use basic request validation.

• Create mapping templates for data transformation.

• Create a user-defined data type (UDT) when you generate an SDK.

Request validation 449

https://docs.aws.amazon.com/apigateway/latest/api/API_RequestValidator.html
https://docs.aws.amazon.com/apigateway/latest/api/API_RequestValidator.html
https://tools.ietf.org/html/draft-zyp-json-schema-04

Amazon API Gateway Developer Guide

In this model:

1. The $schema object represents a valid JSON Schema version identifier. This schema is the JSON
Schema draft v4.

2. The title object is a human-readable identifier for the model. This title is PetStoreModel.

3. The required validation keyword requires type, and price for basic request validation.

4. The properties of the model are id, type, and price. Each object has properties that are
described in the model.

5. The object type can have only the values dog, cat, or fish.

6. The object price is a number and is constrained with a minimum of 25 and a maximum of 500.

PetStore model

1 {
2 "$schema": "http://json-schema.org/draft-04/schema#",
3 "title": "PetStoreModel",
4 "type" : "object",
5 "required" : ["price", "type"],
6 "properties" : {
7 "id" : {
8 "type" : "integer"
9 },
10 "type" : {
11 "type" : "string",
12 "enum" : ["dog", "cat", "fish"]
13 },
14 "price" : {
15 "type" : "number",
16 "minimum" : 25.0,
17 "maximum" : 500.0
18 }
19 }
20 }

In this model:

1. On line 2, the $schema object represents a valid JSON Schema version identifier. This schema is
the JSON Schema draft v4.

Request validation 450

Amazon API Gateway Developer Guide

2. On line 3, the title object is a human-readable identifier for the model. This title is
PetStoreModel.

3. On line 5, the required validation keyword requires type, and price for basic request
validation.

4. On lines 6 -- 17, the properties of the model are id, type, and price. Each object has
properties that are described in the model.

5. On line 12, the object type can have only the values dog, cat, or fish.

6. On lines 14 -- 17, the object price is a number and is constrained with a minimum of 25 and a
maximum of 500.

Creating more complex models

You can use the $ref primitive to create reusable definitions for longer models. For example, you
can create a definition called Price in the definitions section describing the price object. The
value of $ref is the Price definition.

{
 "$schema" : "http://json-schema.org/draft-04/schema#",
 "title" : "PetStoreModelReUsableRef",
 "required" : ["price", "type"],
 "type" : "object",
 "properties" : {
 "id" : {
 "type" : "integer"
 },
 "type" : {
 "type" : "string",
 "enum" : ["dog", "cat", "fish"]
 },
 "price" : {
 "$ref": "#/definitions/Price"
 }
 },
 "definitions" : {
 "Price": {
 "type" : "number",
 "minimum" : 25.0,
 "maximum" : 500.0
 }
 }

Request validation 451

Amazon API Gateway Developer Guide

}

You can also reference another model schema defined in an external model file. Set the value of
the $ref property to the location of the model. In the following example, the Price model is
defined in the PetStorePrice model in API a1234.

{
 "$schema" : "http://json-schema.org/draft-04/schema#",
 "title" : "PetStorePrice",
 "type": "number",
 "minimum": 25,
 "maximum": 500
}

The longer model can reference the PetStorePrice model.

{
 "$schema" : "http://json-schema.org/draft-04/schema#",
 "title" : "PetStoreModelReusableRefAPI",
 "required" : ["price", "type"],
 "type" : "object",
 "properties" : {
 "id" : {
 "type" : "integer"
 },
 "type" : {
 "type" : "string",
 "enum" : ["dog", "cat", "fish"]
 },
 "price" : {
 "$ref": "https://apigateway.amazonaws.com/restapis/a1234/models/PetStorePrice"
 }
 }
}

Using output data models

If you transform your data, you can define a payload model in the integration response. A payload
model can be used when you generate an SDK. For strongly typed languages, such as Java,
Objective-C, or Swift, the object corresponds to a user-defined data type (UDT). API Gateway

Request validation 452

Amazon API Gateway Developer Guide

creates a UDT if you provide it with a data model when you generate an SDK. For more information
about data transformations, see Understanding mapping templates.

Output data {
 [
 {
 "description" : "Item 1 is a
 dog.",
 "askingPrice" : 249.99
 },
 {
 "description" : "Item 2 is a
 cat.",
 "askingPrice" : 124.99
 },
 {
 "description" : "Item 3 is a
 fish.",
 "askingPrice" : 0.99
 }
]
}

Output model {
"$schema": "http://json-schema.org/
draft-04/schema#",
 "title": ”PetStoreOutputModel",
 "type" : "object",
 "required" : ["description",
 "askingPrice"],
 "properties" : {
 "description" : {
 "type" : "string"
 },
 "askingPrice" : {
 "type" : "number",
 "minimum" : 25.0,
 "maximum" : 500.0
 }
 }
}

Request validation 453

Amazon API Gateway Developer Guide

With this model, you can call an SDK to retrieve the description and askingPrice
property values by reading the PetStoreOutputModel[i].description and
PetStoreOutputModel[i].askingPrice properties. If no model is provided, API Gateway uses
the empty model to create a default UDT.

Next steps

• This section provides resources that you can use to gain more knowledge about the concepts
presented in this topic.

You can follow the request validation tutorials:

• Set up request validation using the API Gateway console

• Set up basic request validation using the AWS CLI

• Set up basic request validation using an OpenAPI definition

• You can get more information about data transformation and mapping templates,
Understanding mapping templates.

• You can also see a more advanced photo album example model. See Photos example.

Set up basic request validation in API Gateway

This section shows how to set up request validation for API Gateway using the console, AWS CLI,
and an OpenAPI definition.

Topics

• Set up request validation using the API Gateway console

• Set up basic request validation using the AWS CLI

• Set up basic request validation using an OpenAPI definition

Set up request validation using the API Gateway console

You can use the API Gateway console to validate a request by selecting one of three validators for
an API request:

• Validate body.

• Validate query string parameters and headers.

• Validate body, query string parameters, and headers.

Request validation 454

Amazon API Gateway Developer Guide

When you apply one of the validators on an API method, the API Gateway console adds the
validator to the API's RequestValidators map.

To follow this tutorial, you'll use an AWS CloudFormation template to create an incomplete API
Gateway API. This API has a /validator resource with GET and POST methods. Both methods are
integrated with the http://petstore-demo-endpoint.execute-api.com/petstore/pets
HTTP endpoint. You will configure two kinds of request validation:

• In the GET method, you will configure request validation for URL query string parameters.

• In the POST method, you will configure request validation for the request body.

This will allow only certain API calls to pass through to the API.

Download and unzip the app creation template for AWS CloudFormation. You'll use this template
to create an incomplete API. You will finish the rest of the steps in the API Gateway console.

To create an AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Choose Create stack and then choose With new resources (standard).

3. For Specify template, choose Upload a template file.

4. Select the template that you downloaded.

5. Choose Next.

6. For Stack name, enter request-validation-tutorial-console and then choose Next.

7. For Configure stack options, choose Next.

8. For Capabilities, acknowledge that AWS CloudFormation can create IAM resources in your
account.

9. Choose Submit.

AWS CloudFormation provisions the resources specified in the template. It can take a few minutes
to finish provisioning your resources. When the status of your AWS CloudFormation stack is
CREATE_COMPLETE, you're ready to move on to the next step.

To select your newly created API

1. Select the newly created request-validation-tutorial-console stack.

Request validation 455

https://docs.aws.amazon.com/apigateway/latest/api/API_RequestValidator.html
samples/request-validation-tutorial-console.zip
https://console.aws.amazon.com/cloudformation/

Amazon API Gateway Developer Guide

2. Choose Resources.

3. Under Physical ID, choose your API. This link will direct you to the API Gateway console.

Before you modify the GET and POST methods, you must create a model.

To create a model

1. A model is required to use request validation on the body of an incoming request. To create a
model, in the main navigation pane, choose Models.

2. Choose Create model.

3. For Name, enter PetStoreModel.

4. For Content Type, enter application/json. If no matching content type is found, request
validation is not performed. To use the same model regardless of the content type, enter
$default.

5. For Description, enter My PetStore Model as the model description.

6. For Model schema, paste the following model into the code editor, and choose Create.

{
 "type" : "object",
 "required" : ["name", "price", "type"],
 "properties" : {
 "id" : {
 "type" : "integer"
 },
 "type" : {
 "type" : "string",
 "enum" : ["dog", "cat", "fish"]
 },
 "name" : {
 "type" : "string"
 },
 "price" : {
 "type" : "number",
 "minimum" : 25.0,
 "maximum" : 500.0
 }
 }
}

Request validation 456

Amazon API Gateway Developer Guide

For more information about the model, see Understanding data models.

To configure request validation for a GET method

1. In the main navigation pane, choose Resources, and then select the GET method.

2. On the Method request tab, under Method request settings, choose Edit.

3. For Request validator, select Validate query string parameters and headers.

4. Under URL query string parameters, do the following:

a. Choose Add query string.

b. For Name, enter petType.

c. Turn on Required.

d. Keep Caching turned off.

5. Choose Save.

6. On the Integration request tab, under Integration request settings, choose Edit.

7. Under URL query string parameters, do the following:

a. Choose Add query string.

b. For Name, enter petType.

c. For Mapped from, enter method.request.querystring.petType. This maps the
petType to the pet's type.

For more information about data mapping, see the data mapping tutorial.

d. Keep Caching turned off.

8. Choose Save.

To test request validation for the GET method

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.

2. For Query strings, enter petType=dog, and then choose Test.

3. The method test will return 200 OK and a list of dogs.

For information about how to transform this output data, see the data mapping tutorial.

4. Remove petType=dog and choose Test.

5. The method test will return a 400 error with the following error message:

Request validation 457

Amazon API Gateway Developer Guide

{
 "message": "Missing required request parameters: [petType]"
}

To configure request validation for the POST method

1. In the main navigation pane, choose Resources, and then select the POST method.

2. On the Method request tab, under Method request settings, choose Edit.

3. For Request validator, select Validate body.

4. Under Request body, choose Add model.

5. For Content type, enter application/json, and then for Model, select PetStoreModel.

6. Choose Save.

To test request validation for a POST method

1. Choose the Test tab. You might need to choose the right arrow button to show the tab.

2. For Request body paste the following into the code editor:

{
 "id": 2,
 "name": "Bella",
 "type": "dog",
 "price": 400
}

Choose Test.

3. The method test will return 200 OK and a success message.

4. For Request body paste the following into the code editor:

{
 "id": 2,
 "name": "Bella",
 "type": "dog",
 "price": 4000
}

Request validation 458

Amazon API Gateway Developer Guide

Choose Test.

5. The method test will return a 400 error with the following error message:

{
 "message": "Invalid request body"
}

At the bottom of the test logs, the reason for the invalid request body is returned. In this case,
the price of the pet was outside the maximum specified in the model.

To delete an AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Select your AWS CloudFormation stack.

3. Choose Delete and then confirm your choice.

Next steps

• For information about how to transform output data and perform more data mapping, see the
data mapping tutorial.

• Follow the Set up basic request validation using the AWS CLI tutorial, to do similar steps using
the AWS CLI.

Set up basic request validation using the AWS CLI

You can create a validator to set up request validation using the AWS CLI. To follow this tutorial,
you'll use an AWS CloudFormation template to create an incomplete API Gateway API.

Note

This is not the same AWS CloudFormation template as the console tutorial.

Using a pre-exposed /validatorresource, you will create GET and POST methods. Both
methods will be integrated with the http://petstore-demo-endpoint.execute-api.com/
petstore/pets HTTP endpoint. You will configure the following two request validations:

Request validation 459

https://console.aws.amazon.com/cloudformation/

Amazon API Gateway Developer Guide

• On the GET method, you will create a params-only validator to validate URL query string
parameters.

• On the POST method, you will create a body-only validator to validate the request body.

This will allow only certain API calls to pass through to the API.

To create an AWS CloudFormation stack

Download and unzip the app creation template for AWS CloudFormation.

To complete the following tutorial, you need the AWS Command Line Interface (AWS CLI) version 2.

For long commands, an escape character (\) is used to split a command over multiple lines.

Note

In Windows, some Bash CLI commands that you commonly use (such as zip) are not
supported by the operating system's built-in terminals. To get a Windows-integrated
version of Ubuntu and Bash, install the Windows Subsystem for Linux. Example CLI
commands in this guide use Linux formatting. Commands which include inline JSON
documents must be reformatted if you are using the Windows CLI.

1. Use the following command to create the AWS CloudFormation stack.

aws cloudformation create-stack --stack-name request-validation-tutorial-cli
 --template-body file://request-validation-tutorial-cli.zip --capabilities
 CAPABILITY_NAMED_IAM

2. AWS CloudFormation provisions the resources specified in the template. It can take a few
minutes to finish provisioning your resources. Use the following command to see the status of
your AWS CloudFormation stack.

aws cloudformation describe-stacks --stack-name request-validation-tutorial-cli

3. When the status of your AWS CloudFormation stack is StackStatus: "CREATE_COMPLETE",
use the following command to retrieve relevant output values for future steps.

Request validation 460

samples/request-validation-tutorial-cli.zip
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Amazon API Gateway Developer Guide

 aws cloudformation describe-stacks --stack-name request-validation-tutorial-cli
 --query "Stacks[*].Outputs[*].{OutputKey: OutputKey, OutputValue: OutputValue,
 Description: Description}"

The output values are the following:

• ApiId, which is the ID for the API. For this tutorial, the API ID is abc123.

• ResourceId, which is the ID for the validator resource where the GET and POST methods are
exposed. For this tutorial, the Resource ID is efg456

To create the request validators and import a model

1. A validator is required to use request validation with the AWS CLI. Use the following command
to create a validator that validates only request parameters.

aws apigateway create-request-validator --rest-api-id abc123 \
 --no-validate-request-body \
 --validate-request-parameters \
 --name params-only

Note the ID of the params-only validator.

2. Use the following command to create a validator that validates only the request body.

aws apigateway create-request-validator --rest-api-id abc123 \
 --validate-request-body \
 --no-validate-request-parameters \
 --name body-only

Note the ID of the body-only validator.

3. A model is required to use request validation on the body of an incoming request. Use the
following command to import a model.

aws apigateway create-model --rest-api-id abc123 --name PetStoreModel --description
 'My PetStore Model' --content-type 'application/json' --schema '{"type":
 "object", "required" : ["name", "price", "type"], "properties" : { "id" :
 {"type" : "integer"},"type" : {"type" : "string", "enum" : ["dog", "cat",

Request validation 461

Amazon API Gateway Developer Guide

 "fish"]},"name" : { "type" : "string"},"price" : {"type" : "number","minimum" :
 25.0, "maximum" : 500.0}}}}'

If no matching content type is found, request validation is not performed. To use the same
model regardless of the content type, specify $default as the key.

To create the GET and POST methods

1. Use the following command to add the GET HTTP method on the /validate resource. This
command creates the GETmethod, adds the params-only validator, and sets the query string
petType as required.

aws apigateway put-method --rest-api-id abc123 \
 --resource-id efg456 \
 --http-method GET \
 --authorization-type "NONE" \
 --request-validator-id aaa111 \
 --request-parameters "method.request.querystring.petType=true"

Use the following command to add the POST HTTP method on the /validate resource. This
command creates the POSTmethod, adds the body-only validator, and attaches the model to
the body-only validator.

aws apigateway put-method --rest-api-id abc123 \
 --resource-id efg456 \
 --http-method POST \
 --authorization-type "NONE" \
 --request-validator-id bbb222 \
 --request-models 'application/json'=PetStoreModel

2. Use the following command to set up the 200 OK response of the GET /validate method.

aws apigateway put-method-response --rest-api-id abc123 \
 --resource-id efg456 \
 --http-method GET \
 --status-code 200

Use the following command to set up the 200 OK response of the POST /validate method.

Request validation 462

Amazon API Gateway Developer Guide

aws apigateway put-method-response --rest-api-id abc123 \
 --resource-id efg456 \
 --http-method POST \
 --status-code 200

3. Use the following command to set up an Integration with a specified HTTP endpoint for
the GET /validation method.

aws apigateway put-integration --rest-api-id abc123 \
 --resource-id efg456 \
 --http-method GET \
 --type HTTP \
 --integration-http-method GET \
 --request-parameters '{"integration.request.querystring.type" :
 "method.request.querystring.petType"}' \
 --uri 'http://petstore-demo-endpoint.execute-api.com/petstore/pets'

Use the following command to set up an Integration with a specified HTTP endpoint for
the POST /validation method.

aws apigateway put-integration --rest-api-id abc123 \
 --resource-id efg456 \
 --http-method POST \
 --type HTTP \
 --integration-http-method GET \
 --uri 'http://petstore-demo-endpoint.execute-api.com/petstore/pets'

4. Use the following command to set up an integration response for the GET /validation
method.

aws apigateway put-integration-response --rest-api-id abc123 \
 --resource-id efg456\
 --http-method GET \
 --status-code 200 \
 --selection-pattern ""

Use the following command to set up an integration response for the POST /validation
method.

aws apigateway put-integration-response --rest-api-id abc123 \

Request validation 463

Amazon API Gateway Developer Guide

 --resource-id efg456 \
 --http-method POST \
 --status-code 200 \
 --selection-pattern ""

To test the API

1. To test the GET method, which will perform request validation for the query strings, use the
following command:

aws apigateway test-invoke-method --rest-api-id abc123 \
 --resource-id efg456 \
 --http-method GET \
 --path-with-query-string '/validate?petType=dog'

The result will return a 200 OK and list of dogs.

2. Use the following command to test without including the query string petType

aws apigateway test-invoke-method --rest-api-id abc123 \
 --resource-id efg456 \
 --http-method GET

The result will return a 400 error.

3. To test the POST method, which will perform request validation for the request body, use the
following command:

 aws apigateway test-invoke-method --rest-api-id abc123 \
 --resource-id efg456 \
 --http-method POST \
 --body '{"id": 1, "name": "bella", "type": "dog", "price" : 400 }'

The result will return a 200 OK and a success message.

4. Use the following command to test using an invalid body.

 aws apigateway test-invoke-method --rest-api-id abc123 \
 --resource-id efg456 \
 --http-method POST \
 --body '{"id": 1, "name": "bella", "type": "dog", "price" : 1000 }'

Request validation 464

Amazon API Gateway Developer Guide

The result will return a 400 error, as the price of the dog is over the maximum price defined by
the model.

To delete an AWS CloudFormation stack

• Use the following command to delete your AWS CloudFormation resources.

aws cloudformation delete-stack --stack-name request-validation-tutorial-cli

Set up basic request validation using an OpenAPI definition

You can declare a request validator at the API level by specifying a set of the x-amazon-
apigateway-request-validators.requestValidator object objects in the x-amazon-apigateway-
request-validators object map to select what part of the request will be validated. In the example
OpenAPI definition, there are two validators:

• all validator which validates both the body, using the RequestBodyModel data model, and the
parameters.

• param-only which validates only the parameters.

To turn a request validator on all methods of an API, specify an x-amazon-apigateway-request-
validator property property at the API level of the OpenAPI definition. In the example OpenAPI
definition, the all validator is used on all API methods, unless otherwise overridden. When using
a model to validate the body, if no matching content type is found, request validation is not
performed. To use the same model regardless of the content type, specify $default as the key.

To turn on a request validator on an individual method, specify the x-amazon-apigateway-
request-validator property at the method level. In the example, OpenAPI definition, the
param-only validator overwrites the all validator on the GET method.

To import the OpenAPI example into API Gateway, see the following instructions to Import a
regional API into API Gateway or to Import an edge-optimized API into API Gateway.

OpenAPI 3.0

{

Request validation 465

Amazon API Gateway Developer Guide

 "openapi" : "3.0.1",
 "info" : {
 "title" : "ReqValidators Sample",
 "version" : "1.0.0"
 },
 "servers" : [{
 "url" : "/{basePath}",
 "variables" : {
 "basePath" : {
 "default" : "/v1"
 }
 }
 }],
 "paths" : {
 "/validation" : {
 "get" : {
 "parameters" : [{
 "name" : "q1",
 "in" : "query",
 "required" : true,
 "schema" : {
 "type" : "string"
 }
 }],
 "responses" : {
 "200" : {
 "description" : "200 response",
 "headers" : {
 "test-method-response-header" : {
 "schema" : {
 "type" : "string"
 }
 }
 },
 "content" : {
 "application/json" : {
 "schema" : {
 "$ref" : "#/components/schemas/ArrayOfError"
 }
 }
 }
 }
 },
 "x-amazon-apigateway-request-validator" : "params-only",

Request validation 466

Amazon API Gateway Developer Guide

 "x-amazon-apigateway-integration" : {
 "httpMethod" : "GET",
 "uri" : "http://petstore-demo-endpoint.execute-api.com/petstore/pets",
 "responses" : {
 "default" : {
 "statusCode" : "400",
 "responseParameters" : {
 "method.response.header.test-method-response-header" : "'static
 value'"
 },
 "responseTemplates" : {
 "application/xml" : "xml 400 response template",
 "application/json" : "json 400 response template"
 }
 },
 "2\\d{2}" : {
 "statusCode" : "200"
 }
 },
 "requestParameters" : {
 "integration.request.querystring.type" : "method.request.querystring.q1"
 },
 "passthroughBehavior" : "when_no_match",
 "type" : "http"
 }
 },
 "post" : {
 "parameters" : [{
 "name" : "h1",
 "in" : "header",
 "required" : true,
 "schema" : {
 "type" : "string"
 }
 }],
 "requestBody" : {
 "content" : {
 "application/json" : {
 "schema" : {
 "$ref" : "#/components/schemas/RequestBodyModel"
 }
 }
 },
 "required" : true

Request validation 467

Amazon API Gateway Developer Guide

 },
 "responses" : {
 "200" : {
 "description" : "200 response",
 "headers" : {
 "test-method-response-header" : {
 "schema" : {
 "type" : "string"
 }
 }
 },
 "content" : {
 "application/json" : {
 "schema" : {
 "$ref" : "#/components/schemas/ArrayOfError"
 }
 }
 }
 }
 },
 "x-amazon-apigateway-request-validator" : "all",
 "x-amazon-apigateway-integration" : {
 "httpMethod" : "POST",
 "uri" : "http://petstore-demo-endpoint.execute-api.com/petstore/pets",
 "responses" : {
 "default" : {
 "statusCode" : "400",
 "responseParameters" : {
 "method.response.header.test-method-response-header" : "'static
 value'"
 },
 "responseTemplates" : {
 "application/xml" : "xml 400 response template",
 "application/json" : "json 400 response template"
 }
 },
 "2\\d{2}" : {
 "statusCode" : "200"
 }
 },
 "requestParameters" : {
 "integration.request.header.custom_h1" : "method.request.header.h1"
 },
 "passthroughBehavior" : "when_no_match",

Request validation 468

Amazon API Gateway Developer Guide

 "type" : "http"
 }
 }
 }
 },
 "components" : {
 "schemas" : {
 "RequestBodyModel" : {
 "required" : ["name", "price", "type"],
 "type" : "object",
 "properties" : {
 "id" : {
 "type" : "integer"
 },
 "type" : {
 "type" : "string",
 "enum" : ["dog", "cat", "fish"]
 },
 "name" : {
 "type" : "string"
 },
 "price" : {
 "maximum" : 500.0,
 "minimum" : 25.0,
 "type" : "number"
 }
 }
 },
 "ArrayOfError" : {
 "type" : "array",
 "items" : {
 "$ref" : "#/components/schemas/Error"
 }
 },
 "Error" : {
 "type" : "object"
 }
 }
 },
 "x-amazon-apigateway-request-validators" : {
 "all" : {
 "validateRequestParameters" : true,
 "validateRequestBody" : true
 },

Request validation 469

Amazon API Gateway Developer Guide

 "params-only" : {
 "validateRequestParameters" : true,
 "validateRequestBody" : false
 }
 }
}

OpenAPI 2.0

{
 "swagger" : "2.0",
 "info" : {
 "version" : "1.0.0",
 "title" : "ReqValidators Sample"
 },
 "basePath" : "/v1",
 "schemes" : ["https"],
 "paths" : {
 "/validation" : {
 "get" : {
 "produces" : ["application/json", "application/xml"],
 "parameters" : [{
 "name" : "q1",
 "in" : "query",
 "required" : true,
 "type" : "string"
 }],
 "responses" : {
 "200" : {
 "description" : "200 response",
 "schema" : {
 "$ref" : "#/definitions/ArrayOfError"
 },
 "headers" : {
 "test-method-response-header" : {
 "type" : "string"
 }
 }
 }
 },
 "x-amazon-apigateway-request-validator" : "params-only",
 "x-amazon-apigateway-integration" : {
 "httpMethod" : "GET",

Request validation 470

Amazon API Gateway Developer Guide

 "uri" : "http://petstore-demo-endpoint.execute-api.com/petstore/pets",
 "responses" : {
 "default" : {
 "statusCode" : "400",
 "responseParameters" : {
 "method.response.header.test-method-response-header" : "'static
 value'"
 },
 "responseTemplates" : {
 "application/xml" : "xml 400 response template",
 "application/json" : "json 400 response template"
 }
 },
 "2\\d{2}" : {
 "statusCode" : "200"
 }
 },
 "requestParameters" : {
 "integration.request.querystring.type" : "method.request.querystring.q1"
 },
 "passthroughBehavior" : "when_no_match",
 "type" : "http"
 }
 },
 "post" : {
 "consumes" : ["application/json"],
 "produces" : ["application/json", "application/xml"],
 "parameters" : [{
 "name" : "h1",
 "in" : "header",
 "required" : true,
 "type" : "string"
 }, {
 "in" : "body",
 "name" : "RequestBodyModel",
 "required" : true,
 "schema" : {
 "$ref" : "#/definitions/RequestBodyModel"
 }
 }],
 "responses" : {
 "200" : {
 "description" : "200 response",
 "schema" : {

Request validation 471

Amazon API Gateway Developer Guide

 "$ref" : "#/definitions/ArrayOfError"
 },
 "headers" : {
 "test-method-response-header" : {
 "type" : "string"
 }
 }
 }
 },
 "x-amazon-apigateway-request-validator" : "all",
 "x-amazon-apigateway-integration" : {
 "httpMethod" : "POST",
 "uri" : "http://petstore-demo-endpoint.execute-api.com/petstore/pets",
 "responses" : {
 "default" : {
 "statusCode" : "400",
 "responseParameters" : {
 "method.response.header.test-method-response-header" : "'static
 value'"
 },
 "responseTemplates" : {
 "application/xml" : "xml 400 response template",
 "application/json" : "json 400 response template"
 }
 },
 "2\\d{2}" : {
 "statusCode" : "200"
 }
 },
 "requestParameters" : {
 "integration.request.header.custom_h1" : "method.request.header.h1"
 },
 "passthroughBehavior" : "when_no_match",
 "type" : "http"
 }
 }
 }
 },
 "definitions" : {
 "RequestBodyModel" : {
 "type" : "object",
 "required" : ["name", "price", "type"],
 "properties" : {
 "id" : {

Request validation 472

Amazon API Gateway Developer Guide

 "type" : "integer"
 },
 "type" : {
 "type" : "string",
 "enum" : ["dog", "cat", "fish"]
 },
 "name" : {
 "type" : "string"
 },
 "price" : {
 "type" : "number",
 "minimum" : 25.0,
 "maximum" : 500.0
 }
 }
 },
 "ArrayOfError" : {
 "type" : "array",
 "items" : {
 "$ref" : "#/definitions/Error"
 }
 },
 "Error" : {
 "type" : "object"
 }
 },
 "x-amazon-apigateway-request-validators" : {
 "all" : {
 "validateRequestParameters" : true,
 "validateRequestBody" : true
 },
 "params-only" : {
 "validateRequestParameters" : true,
 "validateRequestBody" : false
 }
 }
}

Request validation 473

Amazon API Gateway Developer Guide

OpenAPI definitions of a sample API with basic request validation

The following OpenAPI definition defines a sample API with request validation enabled. The API is
a subset of the PetStore API. It exposes a POST method to add a pet to the pets collection and a
GET method to query pets by a specified type.

There are two request validators declared in the x-amazon-apigateway-request-validators
map at the API level. The params-only validator is enabled on the API and inherited by the GET
method. This validator allows API Gateway to verify that the required query parameter (q1) is
included and not blank in the incoming request. The all validator is enabled on the POST method.
This validator verifies that the required header parameter (h1) is set and not blank. It also verifies
that the payload format adheres to the specified RequestBodyModel If there is no matching
content type is found, request validation is not performed. When using a model to validate the
body, if no matching content type is found, request validation is not performed. To use the same
model regardless of the content type, specify $default as the key.

This model requires that the input JSON object contains the name, type, and price properties.
The name property can be any string, type must be one of the specified enumeration fields
(["dog", "cat", "fish"]), and price must range between 25 and 500. The id parameter is
not required.

OpenAPI 2.0

{
 "swagger": "2.0",
 "info": {
 "title": "ReqValidators Sample",
 "version": "1.0.0"
 },
 "schemes": [
 "https"
],
 "basePath": "/v1",
 "produces": [
 "application/json"
],
 "x-amazon-apigateway-request-validators" : {
 "all" : {
 "validateRequestBody" : true,
 "validateRequestParameters" : true
 },

Request validation 474

http://petstore-demo-endpoint.execute-api.com/petstore/pets

Amazon API Gateway Developer Guide

 "params-only" : {
 "validateRequestBody" : false,
 "validateRequestParameters" : true
 }
 },
 "x-amazon-apigateway-request-validator" : "params-only",
 "paths": {
 "/validation": {
 "post": {
 "x-amazon-apigateway-request-validator" : "all",
 "parameters": [
 {
 "in": "header",
 "name": "h1",
 "required": true
 },
 {
 "in": "body",
 "name": "RequestBodyModel",
 "required": true,
 "schema": {
 "$ref": "#/definitions/RequestBodyModel"
 }
 }
],
 "responses": {
 "200": {
 "schema": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/Error"
 }
 },
 "headers" : {
 "test-method-response-header" : {
 "type" : "string"
 }
 }
 }
 },
 "security" : [{
 "api_key" : []
 }],
 "x-amazon-apigateway-auth" : {

Request validation 475

Amazon API Gateway Developer Guide

 "type" : "none"
 },
 "x-amazon-apigateway-integration" : {
 "type" : "http",
 "uri" : "http://petstore-demo-endpoint.execute-api.com/petstore/pets",
 "httpMethod" : "POST",
 "requestParameters": {
 "integration.request.header.custom_h1": "method.request.header.h1"
 },
 "responses" : {
 "2\\d{2}" : {
 "statusCode" : "200"
 },
 "default" : {
 "statusCode" : "400",
 "responseParameters" : {
 "method.response.header.test-method-response-header" : "'static
 value'"
 },
 "responseTemplates" : {
 "application/json" : "json 400 response template",
 "application/xml" : "xml 400 response template"
 }
 }
 }
 }
 },
 "get": {
 "parameters": [
 {
 "name": "q1",
 "in": "query",
 "required": true
 }
],
 "responses": {
 "200": {
 "schema": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/Error"
 }
 },
 "headers" : {

Request validation 476

Amazon API Gateway Developer Guide

 "test-method-response-header" : {
 "type" : "string"
 }
 }
 }
 },
 "security" : [{
 "api_key" : []
 }],
 "x-amazon-apigateway-auth" : {
 "type" : "none"
 },
 "x-amazon-apigateway-integration" : {
 "type" : "http",
 "uri" : "http://petstore-demo-endpoint.execute-api.com/petstore/pets",
 "httpMethod" : "GET",
 "requestParameters": {
 "integration.request.querystring.type": "method.request.querystring.q1"
 },
 "responses" : {
 "2\\d{2}" : {
 "statusCode" : "200"
 },
 "default" : {
 "statusCode" : "400",
 "responseParameters" : {
 "method.response.header.test-method-response-header" : "'static
 value'"
 },
 "responseTemplates" : {
 "application/json" : "json 400 response template",
 "application/xml" : "xml 400 response template"
 }
 }
 }
 }
 }
 }
 },
 "definitions": {
 "RequestBodyModel": {
 "type": "object",
 "properties": {
 "id": { "type": "integer" },

Request validation 477

Amazon API Gateway Developer Guide

 "type": { "type": "string", "enum": ["dog", "cat", "fish"] },
 "name": { "type": "string" },
 "price": { "type": "number", "minimum": 25, "maximum": 500 }
 },
 "required": ["type", "name", "price"]
 },
 "Error": {
 "type": "object",
 "properties": {

 }
 }
 }
}

AWS CloudFormation template of a sample API with basic request validation

The following AWS CloudFormation example template definition defines a sample API with request
validation enabled. The API is a subset of the PetStore API. It exposes a POST method to add a pet
to the pets collection and a GET method to query pets by a specified type.

There are two request validators declared:

GETValidator

This validator is enabled on the GET method. It allows API Gateway to verify that the required
query parameter (q1) is included and not blank in the incoming request.

POSTValidator

This validator is enabled on the POST method. It allows API Gateway to verify that payload
request format adheres to the specified RequestBodyModel when the content type is
application/json if no matching content type is found, request validation is not performed.
To use the same model regardless of the content type, specify $default. RequestBodyModel
contains an additional model, RequestBodyModelId, to define the pet ID.

AWSTemplateFormatVersion: 2010-09-09
Parameters:
 StageName:
 Type: String
 Default: v1

Request validation 478

http://petstore-demo-endpoint.execute-api.com/petstore/pets

Amazon API Gateway Developer Guide

 Description: Name of API stage.
Resources:
 Api:
 Type: 'AWS::ApiGateway::RestApi'
 Properties:
 Name: ReqValidatorsSample
 RequestBodyModelId:
 Type: 'AWS::ApiGateway::Model'
 Properties:
 RestApiId: !Ref Api
 ContentType: application/json
 Description: Request body model for Pet ID.
 Schema:
 $schema: 'http://json-schema.org/draft-04/schema#'
 title: RequestBodyModelId
 properties:
 id:
 type: integer
 RequestBodyModel:
 Type: 'AWS::ApiGateway::Model'
 Properties:
 RestApiId: !Ref Api
 ContentType: application/json
 Description: Request body model for Pet type, name, price, and ID.
 Schema:
 $schema: 'http://json-schema.org/draft-04/schema#'
 title: RequestBodyModel
 required:
 - price
 - name
 - type
 type: object
 properties:
 id:
 "$ref": !Sub
 - 'https://apigateway.amazonaws.com/restapis/${Api}/models/
${RequestBodyModelId}'
 - Api: !Ref Api
 RequestBodyModelId: !Ref RequestBodyModelId
 price:
 type: number
 minimum: 25
 maximum: 500
 name:

Request validation 479

Amazon API Gateway Developer Guide

 type: string
 type:
 type: string
 enum:
 - "dog"
 - "cat"
 - "fish"
 GETValidator:
 Type: AWS::ApiGateway::RequestValidator
 Properties:
 Name: params-only
 RestApiId: !Ref Api
 ValidateRequestBody: False
 ValidateRequestParameters: True
 POSTValidator:
 Type: AWS::ApiGateway::RequestValidator
 Properties:
 Name: body-only
 RestApiId: !Ref Api
 ValidateRequestBody: True
 ValidateRequestParameters: False
 ValidationResource:
 Type: 'AWS::ApiGateway::Resource'
 Properties:
 RestApiId: !Ref Api
 ParentId: !GetAtt Api.RootResourceId
 PathPart: 'validation'
 ValidationMethodGet:
 Type: 'AWS::ApiGateway::Method'
 Properties:
 RestApiId: !Ref Api
 ResourceId: !Ref ValidationResource
 HttpMethod: GET
 AuthorizationType: NONE
 RequestValidatorId: !Ref GETValidator
 RequestParameters:
 method.request.querystring.q1: true
 Integration:
 Type: HTTP_PROXY
 IntegrationHttpMethod: GET
 Uri: http://petstore-demo-endpoint.execute-api.com/petstore/pets/
 ValidationMethodPost:
 Type: 'AWS::ApiGateway::Method'
 Properties:

Request validation 480

Amazon API Gateway Developer Guide

 RestApiId: !Ref Api
 ResourceId: !Ref ValidationResource
 HttpMethod: POST
 AuthorizationType: NONE
 RequestValidatorId: !Ref POSTValidator
 RequestModels:
 application/json : !Ref RequestBodyModel
 Integration:
 Type: HTTP_PROXY
 IntegrationHttpMethod: POST
 Uri: http://petstore-demo-endpoint.execute-api.com/petstore/pets/
 ApiDeployment:
 Type: 'AWS::ApiGateway::Deployment'
 DependsOn:
 - ValidationMethodGet
 - RequestBodyModel
 Properties:
 RestApiId: !Ref Api
 StageName: !Sub '${StageName}'
Outputs:
 ApiRootUrl:
 Description: Root Url of the API
 Value: !Sub 'https://${Api}.execute-api.${AWS::Region}.amazonaws.com/${StageName}'

Setting up data transformations for REST APIs

In API Gateway, an API's method request can take a payload in a different format from the
integration request payload. Similarly, the backend may return an integration response payload
different from the method response payload. You can map URL path parameters, URL query string
parameters, HTTP headers, and the request body across API Gateway using mapping templates.

A mapping template is a script expressed in Velocity Template Language (VTL) and applied to the
payload using JSONPath expressions.

The payload can have a data model according to the JSON schema draft 4. To learn more about
models, see Understanding data models.

Data transformations 481

https://velocity.apache.org/engine/devel/vtl-reference.html
http://goessner.net/articles/JsonPath/
https://tools.ietf.org/html/draft-zyp-json-schema-04

Amazon API Gateway Developer Guide

Note

You don't have to define any model to create a mapping template, but you must define
a model in order to have API Gateway to generate a SDK or to turn on request body
validation for your API.

Topics

• Understanding mapping templates

• Set up data transformations in API Gateway

• Use a mapping template to override an API's request and response parameters and status codes

• Set up request and response data mappings using the API Gateway console

• Models and mapping template examples

• Amazon API Gateway API request and response data mapping reference

• API Gateway mapping template and access logging variable reference

Understanding mapping templates

In API Gateway, an API's method request or response can take a payload in a different format from
the integration request or response.

You can transform your data to:

• Match the payload to an API-specified format.

• Override an API's request and response parameters and status codes.

• Return client selected response headers.

• Associate path parameters, query string parameters, or header parameters in the method
request of HTTP proxy or AWS service proxy.

• Select which data to send using integration with AWS services, such as Amazon DynamoDB or
Lambda functions, or HTTP endpoints.

You can use mapping templates to transform your data. A mapping template is a script expressed in
Velocity Template Language (VTL) and applied to the payload using JSONPath .

Data transformations 482

https://velocity.apache.org/engine/devel/vtl-reference.html
http://goessner.net/articles/JsonPath/

Amazon API Gateway Developer Guide

The following example shows input data, a mapping template, and output data for a
transformation of the PetStore data.

Input
data

[
 {
 "id": 1,
 "type": "dog",
 "price": 249.99
 },
 {
 "id": 2,
 "type": "cat",
 "price": 124.99
 },
 {
 "id": 3,
 "type": "fish",
 "price": 0.99
 }
]

Mapping
template

#set($inputRoot = $input.path('$'))
[
#foreach($elem in $inputRoot)
 {
 "description" : "Item $elem.id is a $elem.type.",
 "askingPrice" : $elem.price
 }#if($foreach.hasNext),#end

#end
]

Output
data

[
 {
 "description" : "Item 1 is a dog.",
 "askingPrice" : 249.99
 },
 {
 "description" : "Item 2 is a cat.",
 "askingPrice" : 124.99
 },

Data transformations 483

http://petstore-demo-endpoint.execute-api.com/petstore/pets

Amazon API Gateway Developer Guide

 {
 "description" : "Item 3 is a fish.",
 "askingPrice" : 0.99
 }
]

The following diagram shows details of this mapping template.

1. The $inputRoot variable represents the root object in the original JSON data from the previous
section. Directives begin with the # symbol.

2. A foreach loop iterates though each object in the original JSON data.

3. The description is a concatenation of the Pet's id and type from the original JSON data.

4. askingPrice is the price is the price from the original JSON data.

PetStore mapping template

1 #set($inputRoot = $input.path('$'))
2 [
3 #foreach($elem in $inputRoot)
4 {
5 "description" : "Item $elem.id is a $elem.type.",
6 "askingPrice" : $elem.price
7 }#if($foreach.hasNext),#end
8 #end
9]

In this mapping template:

1. On line 1, the $inputRoot variable represents the root object in the original JSON data from
the previous section. Directives begin with the # symbol.

2. On line 3, a foreach loop iterates through each object in the original JSON data.

3. On line 5, the description is a concatenation of the Pet's id and type from the original JSON
data.

Data transformations 484

Amazon API Gateway Developer Guide

4. On line 6, askingPrice is the price is the price from the original JSON data.

For more information about the Velocity Template Language, see Apache Velocity - VTL Reference.
For more information about JSONPath, see JSONPath - XPath for JSON.

The mapping template assumes that the underlying data is of a JSON object. It does not require
that a model be defined for the data. However, a model for the output data allows preceding
data to be returned as a language-specific object. For more information, see Understanding data
models.

Complex mapping templates

You can also create more complicated mapping templates. The following example shows the
concatenation of references and a cutoff of 100 to determine if a pet is affordable.

Input
data

[
 {
 "id": 1,
 "type": "dog",
 "price": 249.99
 },
 {
 "id": 2,
 "type": "cat",
 "price": 124.99
 },
 {
 "id": 3,
 "type": "fish",
 "price": 0.99
 }
]

Mapping
template

#set($inputRoot = $input.path('$'))
#set($cheap = 100)
[
#foreach($elem in $inputRoot)
 {
#set($name = "${elem.type}number$elem.id")
 "name" : $name,

Data transformations 485

https://velocity.apache.org/engine/devel/vtl-reference.html
http://goessner.net/articles/JsonPath

Amazon API Gateway Developer Guide

 "description" : "Item $elem.id is a $elem.type.",
 #if($elem.price > $cheap)#set ($afford = 'too much!') #{else}#set
 ($afford = $elem.price)#end
"askingPrice" : $afford
 }#if($foreach.hasNext),#end

#end
]

Output
data

[
 {
 "name" : dognumber1,
 "description" : "Item 1 is a dog.",
 "askingPrice" : too much!
 },
 {
 "name" : catnumber2,
 "description" : "Item 2 is a cat.",
 "askingPrice" : too much!
 },
 {
 "name" : fishnumber3,
 "description" : "Item 3 is a fish.",
 "askingPrice" : 0.99
 }
]

See the example photo album Photos example for a more complicated model.

Set up data transformations in API Gateway

This section shows how to set up mapping templates to transform integration requests and
responses using the console and AWS CLI.

Topics

• Set up data transformation using the API Gateway console

• Set up data transformation using the AWS CLI

• Completed data transformation AWS CloudFormation template

• Next steps

Data transformations 486

Amazon API Gateway Developer Guide

Set up data transformation using the API Gateway console

In this tutorial, you will create an incomplete API and DynamoDB table using the following .zip file
data-transformation-tutorial-console.zip. This incomplete API has a /pets resource with GET and
POST methods.

• The GET method will get data from the http://petstore-demo-endpoint.execute-
api.com/petstore/pets HTTP endpoint. The output data will be transformed according to
the mapping template in PetStore mapping template.

• The POST method will allow the user to POST pet information to a Amazon DynamoDB table
using a mapping template.

Download and unzip the app creation template for AWS CloudFormation. You'll use this template
to create a DynamoDB table to post pet information and an incomplete API. You will finish the rest
of the steps in the API Gateway console.

To create an AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Choose Create stack and then choose With new resources (standard).

3. For Specify template, choose Upload a template file.

4. Select the template that you downloaded.

5. Choose Next.

6. For Stack name, enter data-transformation-tutorial-console and then choose Next.

7. For Configure stack options, choose Next.

8. For Capabilities, acknowledge that AWS CloudFormation can create IAM resources in your
account.

9. Choose Submit.

AWS CloudFormation provisions the resources specified in the template. It can take a few minutes
to finish provisioning your resources. When the status of your AWS CloudFormation stack is
CREATE_COMPLETE, you're ready to move on to the next step.

Data transformations 487

samples/data-transformation-tutorial-console.zip
samples/data-transformation-tutorial-console.zip
https://console.aws.amazon.com/cloudformation/

Amazon API Gateway Developer Guide

To test the GET integration response

1. On the Resources tab of the AWS CloudFormation stack for data-transformation-
tutorial-console, select the physical ID of your API.

2. In the main navigation pane, choose Resources, and then select the GET method.

3. Choose the Test tab. You might need to choose the right arrow button to show the tab.

The output of the test will show the following:

[
 {
 "id": 1,
 "type": "dog",
 "price": 249.99
 },
 {
 "id": 2,
 "type": "cat",
 "price": 124.99
 },
 {
 "id": 3,
 "type": "fish",
 "price": 0.99
 }
]

You will transform this output according to the mapping template in PetStore mapping
template.

To transform the GET integration response

1. Choose the Integration response tab.

Currently, there are no mapping templates defined, so the integration response will not be
transformed.

2. For Default - Response, choose Edit.

3. Choose Mapping templates, and then do the following:

a. Choose Add mapping template.

Data transformations 488

Amazon API Gateway Developer Guide

b. For Content type, enter application/json.

c. For Template body, enter the following:

#set($inputRoot = $input.path('$'))
[
#foreach($elem in $inputRoot)
 {
 "description" : "Item $elem.id is a $elem.type.",
 "askingPrice" : $elem.price
 }#if($foreach.hasNext),#end

#end
]

Choose Save.

To test the GET integration response

• Choose the Test tab, and then choose Test.

The output of the test will show the transformed response.

[
 {
 "description" : "Item 1 is a dog.",
 "askingPrice" : 249.99
 },
 {
 "description" : "Item 2 is a cat.",
 "askingPrice" : 124.99
 },
 {
 "description" : "Item 3 is a fish.",
 "askingPrice" : 0.99
 }
]

Data transformations 489

Amazon API Gateway Developer Guide

To transform input data from the POST method

1. Choose the POST method.

2. Choose the Integration request tab, and then for Integration request settings, choose Edit.

The AWS CloudFormation template has populated some of the integration request fields.

• The integration type is AWS service.

• The AWS service is DynamoDB.

• The HTTP method is POST.

• The Action is PutItem.

• The Execution role allowing API Gateway to put an item into the DynamoDB table is
data-transformation-tutorial-console-APIGatewayRole. AWS CloudFormation
created this role to allow API Gateway to have the minimal permissions for interacting with
DynamoDB.

The name of the DynamoDB table has not been specified. You will specify the name in the
following steps.

3. For Request body passthrough, select Never.

This means that the API will reject data with Content-Types that do not have a mapping
template.

4. Choose Mapping templates.

5. The Content type is set to application/json. This means a content types that are not
application/json will be rejected by the API. For more information about the integration
passthrough behaviors, see Integration passthrough behaviors

6. Enter the following code into the text editor.

{
 "TableName":"data-transformation-tutorial-console-ddb",
 "Item": {
 "id": {
 "N": $input.json("$.id")
 },
 "type": {
 "S": $input.json("$.type")
 },

Data transformations 490

Amazon API Gateway Developer Guide

 "price": {
 "N": $input.json("$.price")
 }
 }
}

This template specifies the table as data-transformation-tutorial-console-ddb
and sets the items as id, type, and price. The items will come from the body of the
POST method. You also can use a data model to help create a mapping template. For more
information, see Use request validation in API Gateway.

7. Choose Save to save your mapping template.

To add a method and integration response from the POST method

The AWS CloudFormation created a blank method and integration response. You will edit this
response to provide more information. For more information about how to edit responses, see
Amazon API Gateway API request and response data mapping reference.

1. On the Integration response tab, for Default - Response, choose Edit.

2. Choose Mapping templates, and then choose Add mapping template.

3. For Content-type, enter application/json.

4. In the code editor, enter the following output mapping template to send an output message:

{ "message" : "Your response was recorded at $context.requestTime" }

For more information about context variables, see $context Variables for data models,
authorizers, mapping templates, and CloudWatch access logging.

5. Choose Save to save your mapping template.

Test the POST method

Choose the Test tab. You might need to choose the right arrow button to show the tab.

1. In the request body, enter the following example.

{
 "id": "4",

Data transformations 491

Amazon API Gateway Developer Guide

 "type" : "dog",
 "price": "321"
}

2. Choose Test.

The output should show your success message.

You can open the DynamoDB console at https://console.aws.amazon.com/dynamodb/ to
verify that the example item is in your table.

To delete an AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Select your AWS CloudFormation stack.

3. Choose Delete and then confirm your choice.

Set up data transformation using the AWS CLI

In this tutorial, you will create an incomplete API and DynamoDB table using the following .zip file
data-transformation-tutorial-cli.zip. This incomplete API has a /pets resource with a GET method
integrated with the http://petstore-demo-endpoint.execute-api.com/petstore/pets
HTTP endpoint. You will create a POST method to connect to a DynamoDB table and use mapping
templates to input data into a DynamoDB table.

• You will transform the output data according to the mapping template in PetStore mapping
template.

• You will create a POST method to allow the user to POST pet information to a Amazon
DynamoDB table using a mapping template.

To create an AWS CloudFormation stack

Download and unzip the app creation template for AWS CloudFormation.

To complete the following tutorial, you need the AWS Command Line Interface (AWS CLI) version 2.

For long commands, an escape character (\) is used to split a command over multiple lines.

Data transformations 492

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/cloudformation/
samples/data-transformation-tutorial-cli.zip
samples/data-transformation-tutorial-cli.zip
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Amazon API Gateway Developer Guide

Note

In Windows, some Bash CLI commands that you commonly use (such as zip) are not
supported by the operating system's built-in terminals. To get a Windows-integrated
version of Ubuntu and Bash, install the Windows Subsystem for Linux. Example CLI
commands in this guide use Linux formatting. Commands which include inline JSON
documents must be reformatted if you are using the Windows CLI.

1. Use the following command to create the AWS CloudFormation stack.

aws cloudformation create-stack --stack-name data-transformation-tutorial-cli
 --template-body file://data-transformation-tutorial-cli.zip --capabilities
 CAPABILITY_NAMED_IAM

2. AWS CloudFormation provisions the resources specified in the template. It can take a few
minutes to finish provisioning your resources. Use the following command to see the status of
your AWS CloudFormation stack.

aws cloudformation describe-stacks --stack-name data-transformation-tutorial-cli

3. When the status of your AWS CloudFormation stack is StackStatus: "CREATE_COMPLETE",
use the following command to retrieve relevant output values for future steps.

 aws cloudformation describe-stacks --stack-name data-transformation-tutorial-cli
 --query "Stacks[*].Outputs[*].{OutputKey: OutputKey, OutputValue: OutputValue,
 Description: Description}"

The output values are the following:

• ApiRole, which is the role name that allows API Gateway to put items in the DynamoDB
table. For this tutorial, the role name is data-transformation-tutorial-cli-
APIGatewayRole-ABCDEFG.

• DDBTableName, which is the name of the DynamoDB table. For this tutorial, the table name
is data-transformation-tutorial-cli-ddb

• ResourceId, which is the ID for the pets resource where the GET and POST methods are
exposed. For this tutorial, the Resource ID is efg456

• ApiId, which is the ID for the API. For this tutorial, the API ID is abc123.

Data transformations 493

https://docs.microsoft.com/en-us/windows/wsl/install-win10

Amazon API Gateway Developer Guide

To test the GET method before data transformation

• Use the following command to test the GET method.

aws apigateway test-invoke-method --rest-api-id abc123 \
 --resource-id efg456 \
 --http-method GET

The output of the test will show the following.

[
 {
 "id": 1,
 "type": "dog",
 "price": 249.99
 },
 {
 "id": 2,
 "type": "cat",
 "price": 124.99
 },
 {
 "id": 3,
 "type": "fish",
 "price": 0.99
 }
]

You will transform this output according to the mapping template in PetStore mapping
template.

To transform the GET integration response

• Use the following command to update the integration response for the GET method. Replace
the rest-api-id and resource-id with your values.

Use the following command to create the integration response.

aws apigateway put-integration-response --rest-api-id abc123 \
 --resource-id efg456 \
 --http-method GET \

Data transformations 494

Amazon API Gateway Developer Guide

 --status-code 200 \
 --selection-pattern "" \
 --response-templates '{"application/json": "#set($inputRoot = $input.path(\"$
\"))\n[\n#foreach($elem in $inputRoot)\n {\n \"description\": \"Item $elem.id is a
 $elem.type\",\n \"askingPrice\": \"$elem.price\"\n }#if($foreach.hasNext),#end\n
\n#end\n]"}'

To test the GET method

• Use the following command to test the GET method.

aws apigateway test-invoke-method --rest-api-id abc123 \
 --resource-id efg456 \
 --http-method GET \

The output of the test will show the transformed response.

[
 {
 "description" : "Item 1 is a dog.",
 "askingPrice" : 249.99
 },
 {
 "description" : "Item 2 is a cat.",
 "askingPrice" : 124.99
 },
 {
 "description" : "Item 3 is a fish.",
 "askingPrice" : 0.99
 }
]

To create a POST method

1. Use the following command to create a new method on the /pets resource.

aws apigateway put-method --rest-api-id abc123 \
 --resource-id efg456 \
 --http-method POST \

Data transformations 495

Amazon API Gateway Developer Guide

 --authorization-type "NONE" \

This method will allow you to send pet information to the DynamoDB table that your created
in the AWS CloudFormation stack.

2. Use the following command to create an AWS service integration on the POST method.

aws apigateway put-integration --rest-api-id abc123 \
 --resource-id efg456 \
 --http-method POST \
 --type AWS \
 --integration-http-method POST \
 --uri "arn:aws:apigateway:us-east-2:dynamodb:action/PutItem" \
 --credentials arn:aws:iam::111122223333:role/data-transformation-tutorial-cli-
APIGatewayRole-ABCDEFG \
 --request-templates '{"application/json":"{\"TableName\":\"data-transformation-
tutorial-cli-ddb\",\"Item\":{\"id\":{\"N\":$input.json(\"$.id\")},\"type\":{\"S\":
$input.json(\"$.type\")},\"price\":{\"N\":$input.json(\"$.price\")} }}"}'

3. Use the following command to create a method response for a successful call of the POST
method.

aws apigateway put-method-response --rest-api-id abc123 \
 --resource-id efg456 \
 --http-method POST \
 --status-code 200

4. Use the following command to create an integration response for the successful call of the
POST method.

aws apigateway put-integration-response --rest-api-id abc123 \
 --resource-id efg456 \
 --http-method POST \
 --status-code 200 \
 --selection-pattern "" \
 --response-templates '{"application/json": "{\"message\": \"Your response was
 recorded at $context.requestTime\"}"}'

To test the POST method

• Use the following command to test the POST method.

Data transformations 496

Amazon API Gateway Developer Guide

aws apigateway test-invoke-method --rest-api-id abc123 \
 --resource-id efg456 \
 --http-method POST \
 --body '{\"id\": \"4\", \"type\": \"dog\", \"price\": \"321\"}'

The output will show the successful message.

To delete an AWS CloudFormation stack

• Use the following command to delete your AWS CloudFormation resources.

aws cloudformation delete-stack --stack-name data-transformation-tutorial-cli

Completed data transformation AWS CloudFormation template

The following example is a completed AWS CloudFormation template, which creates an API and a
DynamoDB table with a /pets resource with GET and POST methods.

• The GET method will get data from the http://petstore-demo-endpoint.execute-
api.com/petstore/pets HTTP endpoint. The output data will be transformed according to
the mapping template in PetStore mapping template.

• The POST method will allow the user to POST pet information to a DynamoDB table using a
mapping template.

AWSTemplateFormatVersion: 2010-09-09
Description: A completed Amazon API Gateway REST API that uses non-proxy integration
 to POST to an Amazon DynamoDB table and non-proxy integration to GET transformed pets
 data.
Parameters:
 StageName:
 Type: String
 Default: v1
 Description: Name of API stage.
Resources:
 DynamoDBTable:
 Type: 'AWS::DynamoDB::Table'
 Properties:

Data transformations 497

Amazon API Gateway Developer Guide

 TableName: !Sub data-transformation-tutorial-complete
 AttributeDefinitions:
 - AttributeName: id
 AttributeType: N
 KeySchema:
 - AttributeName: id
 KeyType: HASH
 ProvisionedThroughput:
 ReadCapacityUnits: 5
 WriteCapacityUnits: 5
 APIGatewayRole:
 Type: 'AWS::IAM::Role'
 Properties:
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 - Action:
 - 'sts:AssumeRole'
 Effect: Allow
 Principal:
 Service:
 - apigateway.amazonaws.com
 Policies:
 - PolicyName: APIGatewayDynamoDBPolicy
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Action:
 - 'dynamodb:PutItem'
 Resource: !GetAtt DynamoDBTable.Arn
 Api:
 Type: 'AWS::ApiGateway::RestApi'
 Properties:
 Name: data-transformation-complete-api
 ApiKeySourceType: HEADER
 PetsResource:
 Type: 'AWS::ApiGateway::Resource'
 Properties:
 RestApiId: !Ref Api
 ParentId: !GetAtt Api.RootResourceId
 PathPart: 'pets'
 PetsMethodGet:
 Type: 'AWS::ApiGateway::Method'

Data transformations 498

Amazon API Gateway Developer Guide

 Properties:
 RestApiId: !Ref Api
 ResourceId: !Ref PetsResource
 HttpMethod: GET
 ApiKeyRequired: false
 AuthorizationType: NONE
 Integration:
 Type: HTTP
 Credentials: !GetAtt APIGatewayRole.Arn
 IntegrationHttpMethod: GET
 Uri: http://petstore-demo-endpoint.execute-api.com/petstore/pets/
 PassthroughBehavior: WHEN_NO_TEMPLATES
 IntegrationResponses:
 - StatusCode: '200'
 ResponseTemplates:
 application/json: "#set($inputRoot = $input.path(\"$
\"))\n[\n#foreach($elem in $inputRoot)\n {\n \"description\": \"Item $elem.id is a
 $elem.type\",\n \"askingPrice\": \"$elem.price\"\n }#if($foreach.hasNext),#end\n
\n#end\n]"
 MethodResponses:
 - StatusCode: '200'
 PetsMethodPost:
 Type: 'AWS::ApiGateway::Method'
 Properties:
 RestApiId: !Ref Api
 ResourceId: !Ref PetsResource
 HttpMethod: POST
 ApiKeyRequired: false
 AuthorizationType: NONE
 Integration:
 Type: AWS
 Credentials: !GetAtt APIGatewayRole.Arn
 IntegrationHttpMethod: POST
 Uri: arn:aws:apigateway:us-west-1:dynamodb:action/PutItem
 PassthroughBehavior: NEVER
 RequestTemplates:
 application/json: "{\"TableName\":\"data-transformation-tutorial-complete
\",\"Item\":{\"id\":{\"N\":$input.json(\"$.id\")},\"type\":{\"S\":$input.json(\"$.type
\")},\"price\":{\"N\":$input.json(\"$.price\")} }}"
 IntegrationResponses:
 - StatusCode: 200
 ResponseTemplates:
 application/json: "{\"message\": \"Your response was recorded at
 $context.requestTime\"}"

Data transformations 499

Amazon API Gateway Developer Guide

 MethodResponses:
 - StatusCode: '200'

 ApiDeployment:
 Type: 'AWS::ApiGateway::Deployment'
 DependsOn:
 - PetsMethodGet
 Properties:
 RestApiId: !Ref Api
 StageName: !Sub '${StageName}'
Outputs:
 ApiId:
 Description: API ID for CLI commands
 Value: !Ref Api
 ResourceId:
 Description: /pets resource ID for CLI commands
 Value: !Ref PetsResource
 ApiRole:
 Description: Role ID to allow API Gateway to put and scan items in DynamoDB table
 Value: !Ref APIGatewayRole
 DDBTableName:
 Description: DynamoDB table name
 Value: !Ref DynamoDBTable

Next steps

To explore more complex mapping templates, see the following examples:

• See more complex models and mapping templates with the example photo album Photos
example.

• For more information about models, see Understanding data models.

• For information about how to map different response code outputs, Set up request and response
data mappings using the API Gateway console.

• For information about how to set data mappings from an API's method request data, API
Gateway mapping template and access logging variable reference.

Data transformations 500

Amazon API Gateway Developer Guide

Use a mapping template to override an API's request and response parameters
and status codes

Standard API Gateway parameter and response code mapping templates allow you to map
parameters one-to-one and map a family of integration response status codes (matched by a
regular expression) to a single response status code. Mapping template overrides provides you with
the flexibility to perform many-to-one parameter mappings; override parameters after standard
API Gateway mappings have been applied; conditionally map parameters based on body content
or other parameter values; programmatically create new parameters on the fly; and override status
codes returned by your integration endpoint. Any type of request parameter, response header, or
response status code may be overridden.

Following are example uses for a mapping template override:

• To create a new header (or overwrite an existing header) as a concatenation of two parameters

• To override the response code to a success or failure code based on the contents of the body

• To conditionally remap a parameter based on its contents or the contents of some other
parameter

• To iterate over the contents of a json body and remap key value pairs to headers or query strings

To create a mapping template override, use one or more of the following $context variables in a
mapping template:

Request body mapping template Response body mapping template

$context.requestOverride.he
ader. header_name

$context.responseOverride.h
eader. header_name

$context.requestOverride.pa
th. path_name

$context.responseOverride.status

$context.requestOverride.qu
erystring. querystring_name

Data transformations 501

Amazon API Gateway Developer Guide

Note

Mapping template overrides cannot be used with proxy integration endpoints, which lack
data mappings. For more information about integration types, see Choose an API Gateway
API integration type.

Important

Overrides are final. An override may only be applied to each parameter once. Trying to
override the same parameter multiple times will result in 5XX responses from Amazon
API Gateway. If you must override the same parameter multiple times throughout the
template, we recommend creating a variable and applying the override at the end of the
template. Note that the template is applied only after the entire template is parsed. See
Tutorial: Override an API's request parameters and headers with the API Gateway console.

The following tutorials show how to create and test a mapping template override in the API
Gateway console. These tutorials use the PetStore sample API as a starting point. Both tutorials
assume that you have already created the PetStore sample API.

Topics

• Tutorial: Override an API's response status code with the API Gateway console

• Tutorial: Override an API's request parameters and headers with the API Gateway console

• Examples: Override an API's request parameters and headers with the API Gateway CLI

• Example: Override an API's request parameters and headers using the SDK for JavaScript

Tutorial: Override an API's response status code with the API Gateway console

To retrieve a pet using the PetStore sample API, you use the API method request of GET /pets/
{petId}, where {petId} is a path parameter that can take a number at run time.

In this tutorial, you'll override this GET method's response code by creating a mapping template
that maps $context.responseOverride.status to 400 when an error condition is detected.

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Under APIs, choose the PetStore API, and then choose Resources.

Data transformations 502

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

3. In the Resources tree, choose the GET method under /{petId}.

4. Choose the Test tab. You might need to choose the right arrow button to show the tab.

5. For petId, enter -1, and then choose Test.

In the results, you'll notice two things:

First, the Response body indicates an out-of-range error:

{
 "errors": [
 {
 "key": "GetPetRequest.petId",
 "message": "The value is out of range."
 }
]
}

Second, the last line under Log box ends with: Method completed with status: 200.

6. On the Integration response tab, for the Default - Response, choose Edit.

7. Choose Mapping templates.

8. Choose Add mapping template.

9. For Content type, enter application/json.

10. For Template body, enter the following:

#set($inputRoot = $input.path('$'))
$input.json("$")
#if($inputRoot.toString().contains("error"))
#set($context.responseOverride.status = 400)
#end

11. Choose Save.

12. Choose the Test tab.

13. For petId, enter -1.

14. In the results, the Response Body indicates an out-of-range error:

{
 "errors": [

Data transformations 503

Amazon API Gateway Developer Guide

 {
 "key": "GetPetRequest.petId",
 "message": "The value is out of range."
 }
]
}

However, the last line under Logs box now ends with: Method completed with status:
400.

Tutorial: Override an API's request parameters and headers with the API Gateway console

In this tutorial, you'll override the GET method's request header code by creating a mapping
template that maps $context.requestOverride.header.header_name to a new header that
combines two other headers.

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Under APIs, choose the PetStore API.

3. In the Resources tree, choose the GET method under /pet.

4. On the Method request tab, for Method request settings, choose Edit.

5. Choose HTTP request headers, and then choose Add header.

6. For Name, enter header1.

7. Choose Add header, and then create a second header called header2.

8. Choose Save.

9. On the Integration request tab, for Integration request settings, choose Edit.

10. For Request body passthrough, select When there are no templates defined
(recommended).

11. Choose Mapping templates, and then do the following:

a. Choose Add mapping template.

b. For Content type, enter application/json.

c. For Template body, enter the following:

#set($header1Override = "foo")
#set($header3Value = "$input.params('header1')$input.params('header2')")
$input.json("$")

Data transformations 504

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

#set($context.requestOverride.header.header3 = $header3Value)
#set($context.requestOverride.header.header1 = $header1Override)
#set($context.requestOverride.header.multivalueheader=[$header1Override,
 $header3Value])

12. Choose Save.

13. Choose the Test tab.

14. Under Headers for {pets}, copy the following code:

header1:header1Val
header2:header2Val

15. Choose Test.

In the Log, you should see an entry that includes this text:

Endpoint request headers: {header3=header1Valheader2Val,
header2=header2Val, header1=foo, x-amzn-apigateway-api-id=<api-id>,
Accept=application/json, multivalueheader=foo,header1Valheader2Val}

Examples: Override an API's request parameters and headers with the API Gateway CLI

The following CLI example shows how to use the put-integration command to override a
response code:

aws apigateway put-integration --rest-api-id <API_ID> --resource-
id <PATH_TO_RESOURCE_ID> --http-method <METHOD>
 --type <INTEGRATION_TYPE> --request-templates <REQUEST_TEMPLATE_MAP>

where <REQUEST_TEMPLATE_MAP> is a map from content type to a string of the template to
apply. The structure of that map is as follows:

Content_type1=template_string,Content_type2=template_string

or, in JSON syntax:

{"content_type1": "template_string"
...}

Data transformations 505

Amazon API Gateway Developer Guide

The following example shows how to use the put-integration-response command to
override an API's response code:

aws apigateway put-integration-response --rest-api-id <API_ID> --resource-
id <PATH_TO_RESOURCE_ID> --http-method <METHOD>
 --status-code <STATUS_CODE> --response-templates <RESPONSE_TEMPLATE_MAP>

where <RESPONSE_TEMPLATE_MAP> has the same format as <REQUEST_TEMPLATE_MAP> above.

Example: Override an API's request parameters and headers using the SDK for JavaScript

The following example shows how to use the put-integration command to override a response
code:

Request:

var params = {
 httpMethod: 'STRING_VALUE', /* required */
 resourceId: 'STRING_VALUE', /* required */
 restApiId: 'STRING_VALUE', /* required */
 type: HTTP | AWS | MOCK | HTTP_PROXY | AWS_PROXY, /* required */
 requestTemplates: {
 '<Content_type>': 'TEMPLATE_STRING',
 /* '<String>': ... */
 },
};
apigateway.putIntegration(params, function(err, data) {
 if (err) console.log(err, err.stack); // an error occurred
 else console.log(data); // successful response
});

Response:

var params = {
 httpMethod: 'STRING_VALUE', /* required */
 resourceId: 'STRING_VALUE', /* required */
 restApiId: 'STRING_VALUE', /* required */
 statusCode: 'STRING_VALUE', /* required */
 responseTemplates: {
 '<Content_type>': 'TEMPLATE_STRING',
 /* '<String>': ... */
 },

Data transformations 506

Amazon API Gateway Developer Guide

};
apigateway.putIntegrationResponse(params, function(err, data) {
 if (err) console.log(err, err.stack); // an error occurred
 else console.log(data); // successful response
});

Set up request and response data mappings using the API Gateway console

To use the API Gateway console to define the API's integration request/response, follow these
instructions.

Note

These instructions assume you have already completed the steps in Set up an API
integration request using the API Gateway console.

1. In the Resources pane, choose your method.

2. On the Integration request tab, under Integration request settings, choose Edit.

3. Choose an option for Request body passthrough to configure how the method request
body of an unmapped content type will be passed through the integration request without
transformation to the Lambda function, HTTP proxy, or AWS service proxy. There are three
options:

• Choose When no template matches the request content-type header if you want the
method request body to pass through the integration request to the backend without
transformation when the method request content type does not match any content types
associated with the mapping templates, as defined in the next step.

Note

When calling the API Gateway API, you choose this option by setting
WHEN_NO_MATCH as the passthroughBehavior property value on the Integration
resource.

• Choose When there are no templates defined (recommended) if you want the
method request body to pass through the integration request to the backend without
transformation when no mapping template is defined in the integration request. If a

Data transformations 507

https://docs.aws.amazon.com/apigateway/api-reference/resource/integration/

Amazon API Gateway Developer Guide

template is defined when this option is selected, the method request of an unmapped
content type will be rejected with an HTTP 415 Unsupported Media Type response.

Note

When calling the API Gateway API, you choose this option by setting
WHEN_NO_TEMPLATE as the passthroughBehavior property value on the
Integration resource.

• Choose Never if you do not want the method request to pass through when either the
method request content type does not match any content type associated with the mapping
templates defined in the integration request or no mapping template is defined in the
integration request. The method request of an unmapped content type will be rejected with
an HTTP 415 Unsupported Media Type response.

Note

When calling the API Gateway API, you choose this option by setting NEVER as the
passthroughBehavior property value on the Integration resource.

For more information about the integration passthrough behaviors, see Integration
passthrough behaviors.

4. For an HTTP proxy or an AWS service proxy, to associate a path parameter, a query string
parameter, or a header parameter defined in the integration request with a corresponding
path parameter, query string parameter, or header parameter in the method request of the
HTTP proxy or AWS service proxy, do the following:

a. Choose URL path parameters, URL query string parameters, or HTTP request headers
respectively, and then choose Add path, Add query string, or Add header, respectively.

b. For Name, type the name of the path parameter, query string parameter, or header
parameter in the HTTP proxy or AWS service proxy.

c. For Mapped from, enter the mapping value for the path parameter, query string
parameter, or header parameter. Use one of the following formats:

• method.request.path.parameter-name for a path parameter named parameter-
name as defined in the Method request page.

Data transformations 508

https://docs.aws.amazon.com/apigateway/api-reference/resource/integration/
https://docs.aws.amazon.com/apigateway/api-reference/resource/integration/

Amazon API Gateway Developer Guide

• method.request.querystring.parameter-name for a query string parameter
named parameter-name as defined in the Method request page.

• method.request.multivaluequerystring.parameter-name for a multi-valued
query string parameter named parameter-name as defined in the Method request
page.

• method.request.header.parameter-name for a header parameter named
parameter-name as defined in the Method request page.

Alternatively, you can set a literal string value (enclosed by a pair of single quotes) to an
integration header.

• method.request.multivalueheader.parameter-name for a multi-valued header
parameter named parameter-name as defined in the Method request page.

d. To add another parameter, choose the Add button.

5. To add a mapping template, choose Mapping templates.

6. To define a mapping template for an incoming request, choose Add mapping template. For
Content type, enter a content type (e.g., application/json). Then, enter the mapping
template manually or choose Generate template to create one from a model template. For
more information, see Understanding mapping templates.

7. Choose Save.

8. You can map an integration response from the backend to a method response of the API
returned to the calling app. This includes returning to the client selected response headers
from the available ones from the backend, transforming the data format of the backend
response payload to an API-specified format. You can specify such mapping by configuring
Method response and Integration responses.

To have the method receive a custom response data format based on the HTTP status code
returned by the Lambda function, HTTP proxy, or AWS service proxy, do the following:

a. Choose Integration responses. Choose either Edit on the Default - Response , to specify
settings for a 200 HTTP response code from the method, or choose Create response to
specify settings for any other HTTP response status code from the method.

b. For Lambda error regex (for a Lambda function) or HTTP status regex (for an HTTP proxy
or AWS service proxy), enter a regular expression to specify which Lambda function error
strings (for a Lambda function) or HTTP response status codes (for an HTTP proxy or AWS
service proxy) map to this output mapping. For example, to map all 2xx HTTP response

Data transformations 509

Amazon API Gateway Developer Guide

status codes from an HTTP proxy to this output mapping, type "2\d{2}" for HTTP status
regex. To return an error message containing "Invalid Request" from a Lambda function
to a 400 Bad Request response, enter ".*Invalid request.*" as the Lambda error
regex expression. On the other hand, to return 400 Bad Request for all unmapped
error messages from Lambda, enter "(\n|.)+" in Lambda error regex. This last regular
expression can be used for the default error response of an API.

Note

API Gateway uses Java pattern-style regexes for response mapping. For more
information, see Pattern in the Oracle documentation.
The error patterns are matched against the entire string of the
errorMessage property in the Lambda response, which is populated
by callback(errorMessage) in Node.js or by throw new
MyException(errorMessage) in Java. Also, escaped characters are unescaped
before the regular expression is applied.
If you use '.+' as the selection pattern to filter responses, be aware that it may not
match a response containing a newline ('\n') character.

c. If enabled, for Method response status, select the HTTP response status code you defined
on the Method response page.

d. For Header mappings, for each header you defined for the HTTP response status code on
the Method response page, specify a mapping value. For Mapping value, use one of the
following formats:

• integration.response.multivalueheaders.header-name where header-name
is the name of a multi-valued response header from the backend.

For example, to return the backend response's Date header as an API method's
response's Timestamp header, the Response header column will contain
a Timestamp entry, and the associated Mapping value should be set to
integration.response.multivalueheaders.Date.

• integration.response.header.header-name where header-name is the name
of a single-valued response header from the backend.

For example, to return the backend response's Date header as an API method's
response's Timestamp header, the Response header column will contain

Data transformations 510

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

Amazon API Gateway Developer Guide

a Timestamp entry, and the associated Mapping value should be set to
integration.response.header.Date.

e. Choose Mapping templates, and then choose Add mapping template. In the Content
type box, enter the content type of the data that will be passed from the Lambda
function, HTTP proxy, or AWS service proxy to the method. Then, enter the mapping
template manually or choose Generate template to create one from a model template.
For more information, see Understanding mapping templates.

f. Choose Save.

Models and mapping template examples

The following sections provide examples of models and mapping templates that could be used as a
starting point for your own APIs in API Gateway. For more information about models and mapping
templates in API Gateway, see PetStore mapping template.

Topics

• Photos example (API Gateway models and mapping templates)

• News article example (API Gateway models and mapping templates)

• Sales invoice example (API Gateway models and mapping templates)

• Employee record example (API Gateway models and mapping templates)

Photos example (API Gateway models and mapping templates)

The following example shows a photo album API in API Gateway. We provide an example data
transformation, additional models, and mapping templates. For more information about data
transformations, see Understanding mapping templates For more information about models and
mapping templates in API Gateway, see PetStore mapping template.

Topics

• Example data transformation

• Input model for photo data

• Output model for photo data

• Input mapping template for photo data

Data transformations 511

Amazon API Gateway Developer Guide

Example data transformation

The following example shows how you can transform input data about photos by using a Velocity
Template Language (VTL) mapping template. For more information about the Velocity Template
Language, see Apache Velocity - VTL Reference.

Input
data

{
 "photos": {
 "page": 1,
 "pages": "1234",
 "perpage": 100,
 "total": "123398",
 "photo": [
 {
 "id": "12345678901",
 "owner": "23456789@A12",
 "photographer_first_name" : "Saanvi",
 "photographer_last_name" : "Sarkar",
 "secret": "abc123d456",
 "server": "1234",
 "farm": 1,
 "title": "Sample photo 1",
 "ispublic": true,
 "isfriend": false,
 "isfamily": false
 },
 {
 "id": "23456789012",
 "owner": "34567890@B23",
 "photographer_first_name" : "Richard",
 "photographer_last_name" : "Roe",
 "secret": "bcd234e567",
 "server": "2345",
 "farm": 2,
 "title": "Sample photo 2",
 "ispublic": true,
 "isfriend": false,
 "isfamily": false
 }
]
 }
}

Data transformations 512

https://velocity.apache.org/engine/devel/vtl-reference.html

Amazon API Gateway Developer Guide

Output
mapping
template

#set($inputRoot = $input.path('$'))
{
 "photos": [
#foreach($elem in $inputRoot.photos.photo)
 {
 "id": "$elem.id",
 "photographedBy": "$elem.photographer_first_name $elem.pho
tographer_last_name",
 "title": "$elem.title",
 "ispublic": $elem.ispublic,
 "isfriend": $elem.isfriend,
 "isfamily": $elem.isfamily
 }#if($foreach.hasNext),#end

#end
]
}

Output
data

{
 "photos": [
 {
 "id": "12345678901",
 "photographedBy": "Saanvi Sarkar",
 "title": "Sample photo 1",
 "ispublic": true,
 "isfriend": false,
 "isfamily": false
 },
 {
 "id": "23456789012",
 "photographedBy": "Richard Roe",
 "title": "Sample photo 2",
 "ispublic": true,
 "isfriend": false,
 "isfamily": false
 }
]
}

Data transformations 513

Amazon API Gateway Developer Guide

Input model for photo data

You can define a model for your input data. This input model requires that you upload one photo,
and it specifies a minimum of 10 photos per page. You can use this input model to generate an
SDK or to turn on a request validation for your API.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "PhotosInputModel",
 "type": "object",
 "properties": {
 "photos": {
 "type": "object",
 "required" : [
 "photo"
],
 "properties": {
 "page": { "type": "integer" },
 "pages": { "type": "string" },
 "perpage": { "type": "integer", "minimum" : 10 },
 "total": { "type": "string" },
 "photo": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "id": { "type": "string" },
 "owner": { "type": "string" },
 "photographer_first_name" : {"type" : "string"},
 "photographer_last_name" : {"type" : "string"},
 "secret": { "type": "string" },
 "server": { "type": "string" },
 "farm": { "type": "integer" },
 "title": { "type": "string" },
 "ispublic": { "type": "boolean" },
 "isfriend": { "type": "boolean" },
 "isfamily": { "type": "boolean" }
 }
 }
 }
 }
 }
 }

Data transformations 514

Amazon API Gateway Developer Guide

}

Output model for photo data

You can define a model for your output data. You can use this model for a method response model,
which is necessary when you generate a strongly typed SDK for the API. This causes the output to
be cast into an appropriate class in Java or Objective-C.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "PhotosOutputModel",
 "type": "object",
 "properties": {
 "photos": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "id": { "type": "string" },
 "photographedBy": { "type": "string" },
 "title": { "type": "string" },
 "ispublic": { "type": "boolean" },
 "isfriend": { "type": "boolean" },
 "isfamily": { "type": "boolean" }
 }
 }
 }
 }
}

Input mapping template for photo data

You can define a mapping template to modify input data. You can modify input data for further
function integration or integration responses.

#set($inputRoot = $input.path('$'))
{
 "photos": {
 "page": $inputRoot.photos.page,
 "pages": "$inputRoot.photos.pages",
 "perpage": $inputRoot.photos.perpage,
 "total": "$inputRoot.photos.total",

Data transformations 515

Amazon API Gateway Developer Guide

 "photo": [
#foreach($elem in $inputRoot.photos.photo)
 {
 "id": "$elem.id",
 "owner": "$elem.owner",
 "photographer_first_name" : "$elem.photographer_first_name",
 "photographer_last_name" : "$elem.photographer_last_name",
 "secret": "$elem.secret",
 "server": "$elem.server",
 "farm": $elem.farm,
 "title": "$elem.title",
 "ispublic": $elem.ispublic,
 "isfriend": $elem.isfriend,
 "isfamily": $elem.isfamily
 }#if($foreach.hasNext),#end

#end
]
 }
}

News article example (API Gateway models and mapping templates)

The following sections provide examples of models and mapping templates that could be used
for a sample news article API in API Gateway. For more information about models and mapping
templates in API Gateway, see PetStore mapping template.

Topics

• Original data (news article example)

• Input model (news article example)

• Input mapping template (news article example)

• Transformed data (news article example)

• Output model (news article example)

• Output mapping template (news article example)

Original data (news article example)

The following is the original JSON data for the news article example:

{

Data transformations 516

Amazon API Gateway Developer Guide

 "count": 1,
 "items": [
 {
 "last_updated_date": "2015-04-24",
 "expire_date": "2016-04-25",
 "author_first_name": "John",
 "description": "Sample Description",
 "creation_date": "2015-04-20",
 "title": "Sample Title",
 "allow_comment": "1",
 "author": {
 "last_name": "Doe",
 "email": "johndoe@example.com",
 "first_name": "John"
 },
 "body": "Sample Body",
 "publish_date": "2015-04-25",
 "version": "1",
 "author_last_name": "Doe",
 "parent_id": 2345678901,
 "article_url": "http://www.example.com/articles/3456789012"
 }
],
 "version": 1
}

Input model (news article example)

The following is the input model that corresponds to the original JSON data for the news article
example:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "NewsArticleInputModel",
 "type": "object",
 "properties": {
 "count": { "type": "integer" },
 "items": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "last_updated_date": { "type": "string" },

Data transformations 517

Amazon API Gateway Developer Guide

 "expire_date": { "type": "string" },
 "author_first_name": { "type": "string" },
 "description": { "type": "string" },
 "creation_date": { "type": "string" },
 "title": { "type": "string" },
 "allow_comment": { "type": "string" },
 "author": {
 "type": "object",
 "properties": {
 "last_name": { "type": "string" },
 "email": { "type": "string" },
 "first_name": { "type": "string" }
 }
 },
 "body": { "type": "string" },
 "publish_date": { "type": "string" },
 "version": { "type": "string" },
 "author_last_name": { "type": "string" },
 "parent_id": { "type": "integer" },
 "article_url": { "type": "string" }
 }
 }
 },
 "version": { "type": "integer" }
 }
}

Input mapping template (news article example)

The following is the input mapping template that corresponds to the original JSON data for the
news article example:

#set($inputRoot = $input.path('$'))
{
 "count": $inputRoot.count,
 "items": [
#foreach($elem in $inputRoot.items)
 {
 "last_updated_date": "$elem.last_updated_date",
 "expire_date": "$elem.expire_date",
 "author_first_name": "$elem.author_first_name",
 "description": "$elem.description",
 "creation_date": "$elem.creation_date",

Data transformations 518

Amazon API Gateway Developer Guide

 "title": "$elem.title",
 "allow_comment": "$elem.allow_comment",
 "author": {
 "last_name": "$elem.author.last_name",
 "email": "$elem.author.email",
 "first_name": "$elem.author.first_name"
 },
 "body": "$elem.body",
 "publish_date": "$elem.publish_date",
 "version": "$elem.version",
 "author_last_name": "$elem.author_last_name",
 "parent_id": $elem.parent_id,
 "article_url": "$elem.article_url"
 }#if($foreach.hasNext),#end

#end
],
 "version": $inputRoot.version
}

Transformed data (news article example)

The following is one example of how the original news article example JSON data could be
transformed for output:

{
 "count": 1,
 "items": [
 {
 "creation_date": "2015-04-20",
 "title": "Sample Title",
 "author": "John Doe",
 "body": "Sample Body",
 "publish_date": "2015-04-25",
 "article_url": "http://www.example.com/articles/3456789012"
 }
],
 "version": 1
}

Output model (news article example)

The following is the output model that corresponds to the transformed JSON data format:

Data transformations 519

Amazon API Gateway Developer Guide

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "NewsArticleOutputModel",
 "type": "object",
 "properties": {
 "count": { "type": "integer" },
 "items": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "creation_date": { "type": "string" },
 "title": { "type": "string" },
 "author": { "type": "string" },
 "body": { "type": "string" },
 "publish_date": { "type": "string" },
 "article_url": { "type": "string" }
 }
 }
 },
 "version": { "type": "integer" }
 }
}

Output mapping template (news article example)

The following is the output mapping template that corresponds to the transformed JSON data
format. The template variables here are based on the original, not transformed, JSON data format:

#set($inputRoot = $input.path('$'))
{
 "count": $inputRoot.count,
 "items": [
#foreach($elem in $inputRoot.items)
 {
 "creation_date": "$elem.creation_date",
 "title": "$elem.title",
 "author": "$elem.author.first_name $elem.author.last_name",
 "body": "$elem.body",
 "publish_date": "$elem.publish_date",
 "article_url": "$elem.article_url"
 }#if($foreach.hasNext),#end

Data transformations 520

Amazon API Gateway Developer Guide

#end
],
 "version": $inputRoot.version
}

Sales invoice example (API Gateway models and mapping templates)

The following sections provide examples of models and mapping templates that could be used
for a sample sales invoice API in API Gateway. For more information about models and mapping
templates in API Gateway, see PetStore mapping template.

Topics

• Original data (sales invoice example)

• Input model (sales invoice example)

• Input mapping template (sales invoice example)

• Transformed data (sales invoice example)

• Output model (sales invoice example)

• Output mapping template (sales invoice example)

Original data (sales invoice example)

The following is the original JSON data for the sales invoice example:

{
 "DueDate": "2013-02-15",
 "Balance": 1990.19,
 "DocNumber": "SAMP001",
 "Status": "Payable",
 "Line": [
 {
 "Description": "Sample Expense",
 "Amount": 500,
 "DetailType": "ExpenseDetail",
 "ExpenseDetail": {
 "Customer": {
 "value": "ABC123",
 "name": "Sample Customer"
 },
 "Ref": {
 "value": "DEF234",

Data transformations 521

Amazon API Gateway Developer Guide

 "name": "Sample Construction"
 },
 "Account": {
 "value": "EFG345",
 "name": "Fuel"
 },
 "LineStatus": "Billable"
 }
 }
],
 "Vendor": {
 "value": "GHI456",
 "name": "Sample Bank"
 },
 "APRef": {
 "value": "HIJ567",
 "name": "Accounts Payable"
 },
 "TotalAmt": 1990.19
}

Input model (sales invoice example)

The following is the input model that corresponds to the original JSON data for the sales invoice
example:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "InvoiceInputModel",
 "type": "object",
 "properties": {
 "DueDate": { "type": "string" },
 "Balance": { "type": "number" },
 "DocNumber": { "type": "string" },
 "Status": { "type": "string" },
 "Line": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "Description": { "type": "string" },
 "Amount": { "type": "integer" },
 "DetailType": { "type": "string" },

Data transformations 522

Amazon API Gateway Developer Guide

 "ExpenseDetail": {
 "type": "object",
 "properties": {
 "Customer": {
 "type": "object",
 "properties": {
 "value": { "type": "string" },
 "name": { "type": "string" }
 }
 },
 "Ref": {
 "type": "object",
 "properties": {
 "value": { "type": "string" },
 "name": { "type": "string" }
 }
 },
 "Account": {
 "type": "object",
 "properties": {
 "value": { "type": "string" },
 "name": { "type": "string" }
 }
 },
 "LineStatus": { "type": "string" }
 }
 }
 }
 }
 },
 "Vendor": {
 "type": "object",
 "properties": {
 "value": { "type": "string" },
 "name": { "type": "string" }
 }
 },
 "APRef": {
 "type": "object",
 "properties": {
 "value": { "type": "string" },
 "name": { "type": "string" }
 }
 },

Data transformations 523

Amazon API Gateway Developer Guide

 "TotalAmt": { "type": "number" }
 }
}

Input mapping template (sales invoice example)

The following is the input mapping template that corresponds to the original JSON data for the
sales invoice example:

#set($inputRoot = $input.path('$'))
{
 "DueDate": "$inputRoot.DueDate",
 "Balance": $inputRoot.Balance,
 "DocNumber": "$inputRoot.DocNumber",
 "Status": "$inputRoot.Status",
 "Line": [
#foreach($elem in $inputRoot.Line)
 {
 "Description": "$elem.Description",
 "Amount": $elem.Amount,
 "DetailType": "$elem.DetailType",
 "ExpenseDetail": {
 "Customer": {
 "value": "$elem.ExpenseDetail.Customer.value",
 "name": "$elem.ExpenseDetail.Customer.name"
 },
 "Ref": {
 "value": "$elem.ExpenseDetail.Ref.value",
 "name": "$elem.ExpenseDetail.Ref.name"
 },
 "Account": {
 "value": "$elem.ExpenseDetail.Account.value",
 "name": "$elem.ExpenseDetail.Account.name"
 },
 "LineStatus": "$elem.ExpenseDetail.LineStatus"
 }
 }#if($foreach.hasNext),#end

#end
],
 "Vendor": {
 "value": "$inputRoot.Vendor.value",
 "name": "$inputRoot.Vendor.name"

Data transformations 524

Amazon API Gateway Developer Guide

 },
 "APRef": {
 "value": "$inputRoot.APRef.value",
 "name": "$inputRoot.APRef.name"
 },
 "TotalAmt": $inputRoot.TotalAmt
}

Transformed data (sales invoice example)

The following is one example of how the original sales invoice example JSON data could be
transformed for output:

{
 "DueDate": "2013-02-15",
 "Balance": 1990.19,
 "DocNumber": "SAMP001",
 "Status": "Payable",
 "Line": [
 {
 "Description": "Sample Expense",
 "Amount": 500,
 "DetailType": "ExpenseDetail",
 "Customer": "ABC123 (Sample Customer)",
 "Ref": "DEF234 (Sample Construction)",
 "Account": "EFG345 (Fuel)",
 "LineStatus": "Billable"
 }
],
 "TotalAmt": 1990.19
}

Output model (sales invoice example)

The following is the output model that corresponds to the transformed JSON data format:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "InvoiceOutputModel",
 "type": "object",
 "properties": {
 "DueDate": { "type": "string" },
 "Balance": { "type": "number" },

Data transformations 525

Amazon API Gateway Developer Guide

 "DocNumber": { "type": "string" },
 "Status": { "type": "string" },
 "Line": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "Description": { "type": "string" },
 "Amount": { "type": "integer" },
 "DetailType": { "type": "string" },
 "Customer": { "type": "string" },
 "Ref": { "type": "string" },
 "Account": { "type": "string" },
 "LineStatus": { "type": "string" }
 }
 }
 },
 "TotalAmt": { "type": "number" }
 }
}

Output mapping template (sales invoice example)

The following is the output mapping template that corresponds to the transformed JSON data
format. The template variables here are based on the original, not transformed, JSON data format:

#set($inputRoot = $input.path('$'))
{
 "DueDate": "$inputRoot.DueDate",
 "Balance": $inputRoot.Balance,
 "DocNumber": "$inputRoot.DocNumber",
 "Status": "$inputRoot.Status",
 "Line": [
#foreach($elem in $inputRoot.Line)
 {
 "Description": "$elem.Description",
 "Amount": $elem.Amount,
 "DetailType": "$elem.DetailType",
 "Customer": "$elem.ExpenseDetail.Customer.value
 ($elem.ExpenseDetail.Customer.name)",
 "Ref": "$elem.ExpenseDetail.Ref.value ($elem.ExpenseDetail.Ref.name)",
 "Account": "$elem.ExpenseDetail.Account.value
 ($elem.ExpenseDetail.Account.name)",

Data transformations 526

Amazon API Gateway Developer Guide

 "LineStatus": "$elem.ExpenseDetail.LineStatus"
 }#if($foreach.hasNext),#end

#end
],
 "TotalAmt": $inputRoot.TotalAmt
}

Employee record example (API Gateway models and mapping templates)

The following sections provide examples of models and mapping templates that can be used for
a sample employee record API in API Gateway. For more information about models and mapping
templates in API Gateway, see PetStore mapping template.

Topics

• Original data (employee record example)

• Input model (employee record example)

• Input mapping template (employee record example)

• Transformed data (employee record example)

• Output model (employee record example)

• Output mapping template (employee record example)

Original data (employee record example)

The following is the original JSON data for the employee record example:

{
 "QueryResponse": {
 "maxResults": "1",
 "startPosition": "1",
 "Employee": {
 "Organization": "false",
 "Title": "Mrs.",
 "GivenName": "Jane",
 "MiddleName": "Lane",
 "FamilyName": "Doe",
 "DisplayName": "Jane Lane Doe",
 "PrintOnCheckName": "Jane Lane Doe",
 "Active": "true",
 "PrimaryPhone": { "FreeFormNumber": "505.555.9999" },

Data transformations 527

Amazon API Gateway Developer Guide

 "PrimaryEmailAddr": { "Address": "janedoe@example.com" },
 "EmployeeType": "Regular",
 "status": "Synchronized",
 "Id": "ABC123",
 "SyncToken": "1",
 "MetaData": {
 "CreateTime": "2015-04-26T19:45:03Z",
 "LastUpdatedTime": "2015-04-27T21:48:23Z"
 },
 "PrimaryAddr": {
 "Line1": "123 Any Street",
 "City": "Any City",
 "CountrySubDivisionCode": "WA",
 "PostalCode": "01234"
 }
 }
 },
 "time": "2015-04-27T22:12:32.012Z"
}

Input model (employee record example)

The following is the input model that corresponds to the original JSON data for the employee
record example:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "EmployeeInputModel",
 "type": "object",
 "properties": {
 "QueryResponse": {
 "type": "object",
 "properties": {
 "maxResults": { "type": "string" },
 "startPosition": { "type": "string" },
 "Employee": {
 "type": "object",
 "properties": {
 "Organization": { "type": "string" },
 "Title": { "type": "string" },
 "GivenName": { "type": "string" },
 "MiddleName": { "type": "string" },
 "FamilyName": { "type": "string" },

Data transformations 528

Amazon API Gateway Developer Guide

 "DisplayName": { "type": "string" },
 "PrintOnCheckName": { "type": "string" },
 "Active": { "type": "string" },
 "PrimaryPhone": {
 "type": "object",
 "properties": {
 "FreeFormNumber": { "type": "string" }
 }
 },
 "PrimaryEmailAddr": {
 "type": "object",
 "properties": {
 "Address": { "type": "string" }
 }
 },
 "EmployeeType": { "type": "string" },
 "status": { "type": "string" },
 "Id": { "type": "string" },
 "SyncToken": { "type": "string" },
 "MetaData": {
 "type": "object",
 "properties": {
 "CreateTime": { "type": "string" },
 "LastUpdatedTime": { "type": "string" }
 }
 },
 "PrimaryAddr": {
 "type": "object",
 "properties": {
 "Line1": { "type": "string" },
 "City": { "type": "string" },
 "CountrySubDivisionCode": { "type": "string" },
 "PostalCode": { "type": "string" }
 }
 }
 }
 }
 }
 },
 "time": { "type": "string" }
 }
}

Data transformations 529

Amazon API Gateway Developer Guide

Input mapping template (employee record example)

The following is the input mapping template that corresponds to the original JSON data for the
employee record example:

#set($inputRoot = $input.path('$'))
{
 "QueryResponse": {
 "maxResults": "$inputRoot.QueryResponse.maxResults",
 "startPosition": "$inputRoot.QueryResponse.startPosition",
 "Employee": {
 "Organization": "$inputRoot.QueryResponse.Employee.Organization",
 "Title": "$inputRoot.QueryResponse.Employee.Title",
 "GivenName": "$inputRoot.QueryResponse.Employee.GivenName",
 "MiddleName": "$inputRoot.QueryResponse.Employee.MiddleName",
 "FamilyName": "$inputRoot.QueryResponse.Employee.FamilyName",
 "DisplayName": "$inputRoot.QueryResponse.Employee.DisplayName",
 "PrintOnCheckName": "$inputRoot.QueryResponse.Employee.PrintOnCheckName",
 "Active": "$inputRoot.QueryResponse.Employee.Active",
 "PrimaryPhone": { "FreeFormNumber":
 "$inputRoot.QueryResponse.Employee.PrimaryPhone.FreeFormNumber" },
 "PrimaryEmailAddr": { "Address":
 "$inputRoot.QueryResponse.Employee.PrimaryEmailAddr.Address" },
 "EmployeeType": "$inputRoot.QueryResponse.Employee.EmployeeType",
 "status": "$inputRoot.QueryResponse.Employee.status",
 "Id": "$inputRoot.QueryResponse.Employee.Id",
 "SyncToken": "$inputRoot.QueryResponse.Employee.SyncToken",
 "MetaData": {
 "CreateTime": "$inputRoot.QueryResponse.Employee.MetaData.CreateTime",
 "LastUpdatedTime": "$inputRoot.QueryResponse.Employee.MetaData.LastUpdatedTime"
 },
 "PrimaryAddr" : {
 "Line1": "$inputRoot.QueryResponse.Employee.PrimaryAddr.Line1",
 "City": "$inputRoot.QueryResponse.Employee.PrimaryAddr.City",
 "CountrySubDivisionCode":
 "$inputRoot.QueryResponse.Employee.PrimaryAddr.CountrySubDivisionCode",
 "PostalCode": "$inputRoot.QueryResponse.Employee.PrimaryAddr.PostalCode"
 }
 }
 },
 "time": "$inputRoot.time"
}

Data transformations 530

Amazon API Gateway Developer Guide

Transformed data (employee record example)

The following is one example of how the original employee record example JSON data could be
transformed for output:

{
 "QueryResponse": {
 "maxResults": "1",
 "startPosition": "1",
 "Employees": [
 {
 "Title": "Mrs.",
 "GivenName": "Jane",
 "MiddleName": "Lane",
 "FamilyName": "Doe",
 "DisplayName": "Jane Lane Doe",
 "PrintOnCheckName": "Jane Lane Doe",
 "Active": "true",
 "PrimaryPhone": "505.555.9999",
 "Email": [
 {
 "type": "primary",
 "Address": "janedoe@example.com"
 }
],
 "EmployeeType": "Regular",
 "PrimaryAddr": {
 "Line1": "123 Any Street",
 "City": "Any City",
 "CountrySubDivisionCode": "WA",
 "PostalCode": "01234"
 }
 }
]
 },
 "time": "2015-04-27T22:12:32.012Z"
}

Output model (employee record example)

The following is the output model that corresponds to the transformed JSON data format:

{

Data transformations 531

Amazon API Gateway Developer Guide

 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "EmployeeOutputModel",
 "type": "object",
 "properties": {
 "QueryResponse": {
 "type": "object",
 "properties": {
 "maxResults": { "type": "string" },
 "startPosition": { "type": "string" },
 "Employees": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "Title": { "type": "string" },
 "GivenName": { "type": "string" },
 "MiddleName": { "type": "string" },
 "FamilyName": { "type": "string" },
 "DisplayName": { "type": "string" },
 "PrintOnCheckName": { "type": "string" },
 "Active": { "type": "string" },
 "PrimaryPhone": { "type": "string" },
 "Email": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "type": { "type": "string" },
 "Address": { "type": "string" }
 }
 }
 },
 "EmployeeType": { "type": "string" },
 "PrimaryAddr": {
 "type": "object",
 "properties": {
 "Line1": {"type": "string" },
 "City": { "type": "string" },
 "CountrySubDivisionCode": { "type": "string" },
 "PostalCode": { "type": "string" }
 }
 }
 }
 }

Data transformations 532

Amazon API Gateway Developer Guide

 }
 }
 },
 "time": { "type": "string" }
 }
}

Output mapping template (employee record example)

The following is the output mapping template that corresponds to the transformed JSON data
format. The template variables here are based on the original, not transformed, JSON data format:

#set($inputRoot = $input.path('$'))
{
 "QueryResponse": {
 "maxResults": "$inputRoot.QueryResponse.maxResults",
 "startPosition": "$inputRoot.QueryResponse.startPosition",
 "Employees": [
 {
 "Title": "$inputRoot.QueryResponse.Employee.Title",
 "GivenName": "$inputRoot.QueryResponse.Employee.GivenName",
 "MiddleName": "$inputRoot.QueryResponse.Employee.MiddleName",
 "FamilyName": "$inputRoot.QueryResponse.Employee.FamilyName",
 "DisplayName": "$inputRoot.QueryResponse.Employee.DisplayName",
 "PrintOnCheckName": "$inputRoot.QueryResponse.Employee.PrintOnCheckName",
 "Active": "$inputRoot.QueryResponse.Employee.Active",
 "PrimaryPhone":
 "$inputRoot.QueryResponse.Employee.PrimaryPhone.FreeFormNumber",
 "Email" : [
 {
 "type": "primary",
 "Address": "$inputRoot.QueryResponse.Employee.PrimaryEmailAddr.Address"
 }
],
 "EmployeeType": "$inputRoot.QueryResponse.Employee.EmployeeType",
 "PrimaryAddr": {
 "Line1": "$inputRoot.QueryResponse.Employee.PrimaryAddr.Line1",
 "City": "$inputRoot.QueryResponse.Employee.PrimaryAddr.City",
 "CountrySubDivisionCode":
 "$inputRoot.QueryResponse.Employee.PrimaryAddr.CountrySubDivisionCode",
 "PostalCode": "$inputRoot.QueryResponse.Employee.PrimaryAddr.PostalCode"
 }
 }

Data transformations 533

Amazon API Gateway Developer Guide

]
 },
 "time": "$inputRoot.time"
}

Amazon API Gateway API request and response data mapping reference

This section explains how to set up data mappings from an API's method request data, including
other data stored in context, stage, or util variables, to the corresponding integration request
parameters and from an integration response data, including the other data, to the method
response parameters. The method request data includes request parameters (path, query string,
headers) and the body. The integration response data includes response parameters (headers) and
the body. For more information about using the stage variables, see Amazon API Gateway stage
variables reference.

Topics

• Map method request data to integration request parameters

• Map integration response data to method response headers

• Map request and response payloads between method and integration

• Integration passthrough behaviors

Map method request data to integration request parameters

Integration request parameters, in the form of path variables, query strings or headers, can be
mapped from any defined method request parameters and the payload.

In the following table, PARAM_NAME is the name of a method request parameter of the given
parameter type. It must match the regular expression '^[a-zA-Z0-9._$-]+$]'. It must have
been defined before it can be referenced. JSONPath_EXPRESSION is a JSONPath expression for a
JSON field of the body of a request or response.

Note

The "$" prefix is omitted in this syntax.

Data transformations 534

Amazon API Gateway Developer Guide

Integration request data mapping expressions

Mapped data source Mapping expression

Method request path method.request.path. PARAM_NAME

Method request query string method.request.querystring.
PARAM_NAME

Multi-value method request query string method.request.multivaluequ
erystring. PARAM_NAME

Method request header method.request.header. PARAM_NAME

Multi-value method request header method.request.multivaluehe
ader. PARAM_NAME

Method request body method.request.body

Method request body (JsonPath) method.request.body. JSONPath_
EXPRESSION .

Stage variables stageVariables. VARIABLE_NAME

Context variables context.VARIABLE_NAME that must be
one of the supported context variables.

Static value 'STATIC_VALUE' . The STATIC_VALUE is
a string literal and must be enclosed within a
pair of single quotes.

Example Mappings from method request parameter in OpenAPI

The following example shows an OpenAPI snippet that maps:

• the method request's header, named methodRequestHeaderParam, into the integration
request path parameter, named integrationPathParam

• the multi-value method request query string, named methodRequestQueryParam, into the
integration request query string, named integrationQueryParam

Data transformations 535

Amazon API Gateway Developer Guide

...
"requestParameters" : {

 "integration.request.path.integrationPathParam" :
 "method.request.header.methodRequestHeaderParam",
 "integration.request.querystring.integrationQueryParam" :
 "method.request.multivaluequerystring.methodRequestQueryParam"

}
...

Integration request parameters can also be mapped from fields in the JSON request body using a
JSONPath expression. The following table shows the mapping expressions for a method request
body and its JSON fields.

Example Mapping from method request body in OpenAPI

The following example shows an OpenAPI snippet that maps 1) the method request body to the
integration request header, named body-header, and 2) a JSON field of the body, as expressed by
a JSON expression (petstore.pets[0].name, without the $. prefix).

...
"requestParameters" : {

 "integration.request.header.body-header" : "method.request.body",
 "integration.request.path.pet-name" : "method.request.body.petstore.pets[0].name",

}
...

Map integration response data to method response headers

Method response header parameters can be mapped from any integration response header or
integration response body, $context variables, or static values.

Data transformations 536

http://goessner.net/articles/JsonPath/index.html#e2

Amazon API Gateway Developer Guide

Method response header mapping expressions

Mapped data source Mapping expression

Integration response header integration.response.header
. PARAM_NAME

Integration response header integration.response.multiv
alueheader. PARAM_NAME

Integration response body integration.response.body

Integration response body (JsonPath) integration.respon
se.body. JSONPath_EXPRESSION

Stage variable stageVariables. VARIABLE_NAME

Context variable context.VARIABLE_NAME that must be
one of the supported context variables.

Static value 'STATIC_VALUE' . The STATIC_VALUE is
a string literal and must be enclosed within a
pair of single quotes.

Example Data mapping from integration response in OpenAPI

The following example shows an OpenAPI snippet that maps 1) the integration response's
redirect.url, JSONPath field into the request response's location header; and 2) the
integration response's x-app-id header to the method response's id header.

...
"responseParameters" : {

 "method.response.header.location" : "integration.response.body.redirect.url",
 "method.response.header.id" : "integration.response.header.x-app-id",
 "method.response.header.items" : "integration.response.multivalueheader.item",

}
...

Data transformations 537

Amazon API Gateway Developer Guide

Map request and response payloads between method and integration

API Gateway uses Velocity Template Language (VTL) engine to process body mapping templates
for the integration request and integration response. The mapping templates translate method
request payloads to the corresponding integration request payloads and translate integration
response bodies to the method response bodies.

The VTL templates use JSONPath expressions, other parameters such as calling contexts and stage
variables, and utility functions to process the JSON data.

If a model is defined to describe the data structure of a payload, API Gateway can use the model
to generate a skeletal mapping template for an integration request or integration response. You
can use the skeletal template as an aid to customize and expand the mapping VTL script. However,
you can create a mapping template from scratch without defining a model for the payload's data
structure.

Select a VTL mapping template

API Gateway uses the following logic to select a mapping template, in Velocity Template Language
(VTL), to map the payload from a method request to the corresponding integration request or to
map the payload from an integration response to the corresponding method response.

For a request payload, API Gateway uses the request’s Content-Type header value as the key to
select the mapping template for the request payload. For a response payload, API Gateway uses
the incoming request’s Accept header value as the key to select the mapping template.

When the Content-Type header is absent in the request, API Gateway assumes that its default
value is application/json. For such a request, API Gateway uses application/json as the
default key to select the mapping template, if one is defined. When no template matches this key,
API Gateway passes the payload through unmapped if the passthroughBehavior property is set to
WHEN_NO_MATCH or WHEN_NO_TEMPLATES.

When the Accept header is not specified in the request, API Gateway assumes that its default
value is application/json. In this case, API Gateway selects an existing mapping template for
application/json to map the response payload. If no template is defined for application/
json, API Gateway selects the first existing template and uses it as the default to map the
response payload. Similarly, API Gateway uses the first existing template when the specified

Data transformations 538

https://velocity.apache.org/engine/devel/vtl-reference.html
https://velocity.apache.org/engine/devel/vtl-reference.html
https://velocity.apache.org/engine/devel/vtl-reference.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html#passthroughBehavior

Amazon API Gateway Developer Guide

Accept header value does not match any existing template key. If no template is defined, API
Gateway simply passes the response payload through unmapped.

For example, suppose that an API has a application/json template defined for a request
payload and has a application/xml template defined for the response payload. If the client sets
the "Content-Type : application/json", and "Accept : application/xml" headers
in the request, both the request and response payloads will be processed with the corresponding
mapping templates. If the Accept:application/xml header is absent, the application/
xml mapping template will be used to map the response payload. To return the response payload
unmapped instead, you must set up an empty template for application/json.

Only the MIME type is used from the Accept and Content-Type headers when selecting
a mapping template. For example, a header of "Content-Type: application/json;
charset=UTF-8" will have a request template with the application/json key selected.

Integration passthrough behaviors

With non-proxy integrations, when a method request carries a payload and either the Content-
Type header does not match any specified mapping template or no mapping template is defined,
you can choose to pass the client-supplied request payload through the integration request to the
backend without transformation. The process is known as integration passthrough.

For proxy integrations, API Gateway passes the entire request through to your backend, and you do
not have the option to modify the passthrough behaviors.

The actual passthrough behavior of an incoming request is determined by the option you choose
for a specified mapping template, during integration request set-up, and the Content Type header
that a client set in the incoming request. There are three options:

When no template matches the request Content-Type header

Choose this option if you want the method request body to pass through the integration
request to the backend without transformation when the method request content type does
not match any content types associated with the mapping templates.

When calling the API Gateway API, you choose this option by setting WHEN_NO_MATCH as the
passthroughBehavior property value on the Integration.

When there are no templates defined (recommended)

Choose this option if you want the method request body to pass through the integration
request to the backend without transformation when no mapping template is defined in the

Data transformations 539

https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html

Amazon API Gateway Developer Guide

integration request. If a template is defined when this option is selected, the method request
of an unmapped content type will be rejected with an HTTP 415 Unsupported Media Type
response.

When calling the API Gateway API, you choose this option by setting WHEN_NO_TEMPLATES as
the passthroughBehavior property value on the Integration.

Never

Choose this option if you do not want the method request body to pass through the integration
request to the backend without transformation when no mapping template is defined in the
integration request. If a template is defined when this option is selected, the method request
of an unmapped content type will be rejected with an HTTP 415 Unsupported Media Type
response.

When calling the API Gateway API, you choose this option by setting NEVER as the
passthroughBehavior property value on the Integration.

The following examples illustrate the possible passthrough behaviors.

Example 1: One mapping template is defined in the integration request for the application/
json content type.

Content-type header
\Selected passthrou
gh option

WHEN_NO_MATCH WHEN_NO_T
EMPLATES

NEVER

None (default to
application/
json)

The request payload
is transformed using
the template.

The request payload
is transformed using
the template.

The request payload
is transformed using
the template.

application/
json

The request payload
is transformed using
the template.

The request payload
is transformed using
the template.

The request payload
is transformed using
the template.

application/xml The request payload
is not transformed
and is sent to the
backend as-is.

The request is
rejected with
an HTTP 415
Unsupported

The request is
rejected with
an HTTP 415
Unsupported

Data transformations 540

https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html

Amazon API Gateway Developer Guide

Content-type header
\Selected passthrou
gh option

WHEN_NO_MATCH WHEN_NO_T
EMPLATES

NEVER

Media Type
response.

Media Type
response.

Example 2: One mapping template is defined in the integration request for the application/xml
content type.

Content-type header
\Selected passthrou
gh option

WHEN_NO_MATCH WHEN_NO_T
EMPLATES

NEVER

None (default to
application/
json)

The request payload
is not transformed
and is sent to the
backend as-is.

The request is
rejected with
an HTTP 415
Unsupported
Media Type
response.

The request is
rejected with
an HTTP 415
Unsupported
Media Type
response.

application/
json

The request payload
is not transformed
and is sent to the
backend as-is.

The request is
rejected with
an HTTP 415
Unsupported
Media Type
response.

The request is
rejected with
an HTTP 415
Unsupported
Media Type
response.

application/xml The request payload
is transformed using
the template.

The request payload
is transformed using
the template.

The request payload
is transformed using
the template.

API Gateway mapping template and access logging variable reference

This section provides reference information for the variables and functions that Amazon API
Gateway defines for use with data models, authorizers, mapping templates, and CloudWatch

Data transformations 541

Amazon API Gateway Developer Guide

access logging. For detailed information about how to use these variables and functions, see
Understanding mapping templates. For more information about the Velocity Template Language
(VTL), see the VTL Reference.

Topics

• $context Variables for data models, authorizers, mapping templates, and CloudWatch access
logging

• $context Variable template example

• $context Variables for access logging only

• $input Variables

• $input Variable template examples

• $stageVariables

• $util Variables

Note

For $method and $integration variables, see the section called “Request and response
data mapping reference”.

$context Variables for data models, authorizers, mapping templates, and CloudWatch access
logging

The following $context variables can be used in data models, authorizers, mapping templates,
and CloudWatch access logging.

For $context variables that can be used only in CloudWatch access logging, see the section called
“$context Variables for access logging only”.

Parameter Description

$context.accountId The API owner's AWS account ID.

$context.apiId The identifier API Gateway assigns to your API.

$context.authorizer.claims.
property

A property of the claims returned from the
Amazon Cognito user pool after the method

Data transformations 542

https://velocity.apache.org/engine/devel/vtl-reference.html

Amazon API Gateway Developer Guide

Parameter Description

caller is successfully authenticated. For more
information, see the section called “Use
Amazon Cognito user pool as authorizer for a
REST API”.

Note

Calling $context.authorize
r.claims returns null.

$context.authorizer.principalId The principal user identification associated
with the token sent by the client and returned
from an API Gateway Lambda authorizer
(formerly known as a custom authorizer). For
more information, see the section called “Use
Lambda authorizers”.

Data transformations 543

Amazon API Gateway Developer Guide

Parameter Description

$context.authorizer. property The stringified value of the specified key-value
pair of the context map returned from an
API Gateway Lambda authorizer function.
For example, if the authorizer returns the
following context map:

"context" : {
 "key": "value",
 "numKey": 1,
 "boolKey": true
}

calling $context.authorizer.key
returns the "value" string, calling
$context.authorizer.numKey returns
the "1" string, and calling $context.
authorizer.boolKey returns the
"true" string.

For more information, see the section called
“Use Lambda authorizers”.

$context.awsEndpointRequestId The AWS endpoint's request ID.

$context.domainName The full domain name used to invoke the API.
This should be the same as the incoming Host
header.

$context.domainPrefix The first label of the $context.domainNam
e .

Data transformations 544

Amazon API Gateway Developer Guide

Parameter Description

$context.error.message A string containing an API Gateway error
message. This variable can only be used for
simple variable substitution in a GatewayRe
sponse body-mapping template, which is not
processed by the Velocity Template Language
engine, and in access logging. For more
information, see the section called “Metrics”
 and the section called “Setting up gateway
responses to customize error responses”.

$context.error.messageString The quoted value of $context.error.mes
sage , namely "$context.error.me
ssage" .

$context.error.responseType A type of GatewayResponse. This variable
can only be used for simple variable substitut
ion in a GatewayResponse body-mapping
template, which is not processed by the
Velocity Template Language engine, and in
access logging. For more information, see the
section called “Metrics” and the section called
“Setting up gateway responses to customize
 error responses”.

$context.error.validationEr
rorString

A string containing a detailed validation error
message.

$context.extendedRequestId The extended ID that API Gateway generates
and assigns to the API request. The extended
request ID contains useful information for
debugging and troubleshooting.

$context.httpMethod The HTTP method used. Valid values include:
DELETE, GET, HEAD, OPTIONS, PATCH, POST,
and PUT.

Data transformations 545

https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html#responseType
https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html

Amazon API Gateway Developer Guide

Parameter Description

$context.identity.accountId The AWS account ID associated with the
request.

$context.identity.apiKey For API methods that require an API key,
this variable is the API key associated with
the method request. For methods that don't
require an API key, this variable is null. For
more information, see the section called
“Usage plans”.

$context.identity.apiKeyId The API key ID associated with an API request
that requires an API key.

$context.identity.caller The principal identifier of the caller that
signed the request. Supported for resources
that use IAM authorization.

$context.identity.cognitoAu
thenticationProvider

A comma-separated list of the Amazon
Cognito authentication providers used by the
caller making the request. Available only if
the request was signed with Amazon Cognito
credentials.

For example, for an identity from an
Amazon Cognito user pool, cognito-idp.
region.amazonaws.com/ user_pool
_id ,cognito-idp. region.amazonaw
s.com/ user_pool_id :CognitoS
ignIn: token subject claim

For information, see Using Federated Identitie
s in the Amazon Cognito Developer Guide.

Data transformations 546

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html

Amazon API Gateway Developer Guide

Parameter Description

$context.identity.cognitoAu
thenticationType

The Amazon Cognito authentication type
of the caller making the request. Available
only if the request was signed with Amazon
Cognito credentials. Possible values include
authenticated for authenticated identities
and unauthenticated for unauthenticated
identities.

$context.identity.cognitoId
entityId

The Amazon Cognito identity ID of the caller
making the request. Available only if the
request was signed with Amazon Cognito
credentials.

$context.identity.cognitoId
entityPoolId

The Amazon Cognito identity pool ID of the
caller making the request. Available only if
the request was signed with Amazon Cognito
credentials.

$context.identity.principalOrgId The AWS organization ID.

$context.identity.sourceIp The source IP address of the immediate
TCP connection making the request to API
Gateway endpoint.

$context.identity.clientCer
t.clientCertPem

The PEM-encoded client certificate that the
client presented during mutual TLS authentic
ation. Present when a client accesses an API by
using a custom domain name that has mutual
TLS enabled. Present only in access logs if
mutual TLS authentication fails.

Data transformations 547

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_org_details.html

Amazon API Gateway Developer Guide

Parameter Description

$context.identity.clientCer
t.subjectDN

The distinguished name of the subject of the
certificate that a client presents. Present when
a client accesses an API by using a custom
domain name that has mutual TLS enabled.
Present only in access logs if mutual TLS
authentication fails.

$context.identity.clientCer
t.issuerDN

The distinguished name of the issuer of the
certificate that a client presents. Present when
a client accesses an API by using a custom
domain name that has mutual TLS enabled.
Present only in access logs if mutual TLS
authentication fails.

$context.identity.clientCer
t.serialNumber

The serial number of the certificate. Present
when a client accesses an API by using a
custom domain name that has mutual TLS
enabled. Present only in access logs if mutual
TLS authentication fails.

$context.identity.clientCer
t.validity.notBefore

The date before which the certificate is invalid.
Present when a client accesses an API by using
a custom domain name that has mutual TLS
enabled. Present only in access logs if mutual
TLS authentication fails.

$context.identity.clientCer
t.validity.notAfter

The date after which the certificate is invalid.
Present when a client accesses an API by using
a custom domain name that has mutual TLS
enabled. Present only in access logs if mutual
TLS authentication fails.

$context.identity.user The principal identifier of the user that will be
authorized against resource access. Supported
for resources that use IAM authorization.

Data transformations 548

Amazon API Gateway Developer Guide

Parameter Description

$context.identity.userAgent The User-Agent header of the API caller.

$context.identity.userArn The Amazon Resource Name (ARN) of the
effective user identified after authentication.
For more information, see https://docs.aws.
amazon.com/IAM/latest/UserGuide/id_users.
html.

$context.path The request path. For example, for a non-
proxy request URL of https://{rest-
api-id}.execute-api.{region}.am
azonaws.com/{stage}/root/child ,
the $context.path value is /{stage}/
root/child .

$context.protocol The request protocol, for example, HTTP/1.1.

Note

API Gateway APIs can accept HTTP/2
requests, but API Gateway sends
requests to backend integrations using
HTTP/1.1. As a result, the request
protocol is logged as HTTP/1.1 even
if a client sends a request that uses
HTTP/2.

$context.requestId An ID for the request. Clients can override
this request ID. Use $context.extendedR
equestId for a unique request ID that API
Gateway generates.

Data transformations 549

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html

Amazon API Gateway Developer Guide

Parameter Description

$context.requestOverride.he
ader. header_name

The request header override. If this parameter
is defined, it contains the headers to be used
instead of the HTTP Headers that are defined
in the Integration Request pane. For more
information, see Use a mapping template
to override an API's request and response
parameters and status codes.

$context.requestOverride.pa
th. path_name

The request path override. If this parameter
is defined, it contains the request path to be
used instead of the URL Path Parameters that
are defined in the Integration Request pane.
For more information, see Use a mapping
template to override an API's request and
response parameters and status codes.

$context.requestOverride.qu
erystring. querystring_name

The request query string override. If this
parameter is defined, it contains the request
query strings to be used instead of the URL
Query String Parameters that are defined
in the Integration Request pane. For more
information, see Use a mapping template
to override an API's request and response
parameters and status codes.

$context.responseOverride.h
eader. header_name

The response header override. If this
parameter is defined, it contains the header to
be returned instead of the Response header
that is defined as the Default mapping in
the Integration Response pane. For more
information, see Use a mapping template
to override an API's request and response
parameters and status codes.

Data transformations 550

Amazon API Gateway Developer Guide

Parameter Description

$context.responseOverride.status The response status code override. If this
parameter is defined, it contains the status
code to be returned instead of the Method
response status that is defined as the Default
mapping in the Integration Response pane.
For more information, see Use a mapping
template to override an API's request and
response parameters and status codes.

$context.requestTime The CLF-formatted request time (dd/MMM/yy
yy:HH:mm:ss +-hhmm).

$context.requestTimeEpoch The Epoch-formatted request time, in
milliseconds.

$context.resourceId The identifier that API Gateway assigns to your
resource.

$context.resourcePath The path to your resource. For example, for
the non-proxy request URI of https://
{rest-api-id}.execute-api.{r
egion}.amazonaws.com/{stage}/
root/child , The $context.resourceP
ath value is /root/child . For more
information, see Tutorial: Build a REST API
with HTTP non-proxy integration.

$context.stage The deployment stage of the API request (for
example, Beta or Prod).

$context.wafResponseCode The response received from AWS WAF:
WAF_ALLOW or WAF_BLOCK . Will not be set
if the stage is not associated with a web ACL.
For more information, see the section called
“AWS WAF”.

Data transformations 551

https://httpd.apache.org/docs/current/logs.html#common
https://en.wikipedia.org/wiki/Unix_time
https://docs.aws.amazon.com/waf/latest/developerguide/waf-chapter.html

Amazon API Gateway Developer Guide

Parameter Description

$context.webaclArn The complete ARN of the web ACL that is
used to decide whether to allow or block the
request. Will not be set if the stage is not
associated with a web ACL. For more informati
on, see the section called “AWS WAF”.

$context Variable template example

You might want to use $context variables in a mapping template if your API method passes
structured data to a backend that requires the data to be in a particular format.

The following example shows a mapping template that maps incoming $context variables to
backend variables with slightly different names in an integration request payload:

Note

One of the variables is an API key. This example assumes that the method requires an API
key.

{
 "stage" : "$context.stage",
 "request_id" : "$context.requestId",
 "api_id" : "$context.apiId",
 "resource_path" : "$context.resourcePath",
 "resource_id" : "$context.resourceId",
 "http_method" : "$context.httpMethod",
 "source_ip" : "$context.identity.sourceIp",
 "user-agent" : "$context.identity.userAgent",
 "account_id" : "$context.identity.accountId",
 "api_key" : "$context.identity.apiKey",
 "caller" : "$context.identity.caller",
 "user" : "$context.identity.user",
 "user_arn" : "$context.identity.userArn"
}

The output of this mapping template should look like the following:

Data transformations 552

Amazon API Gateway Developer Guide

{
 stage: 'prod',
 request_id: 'abcdefg-000-000-0000-abcdefg',
 api_id: 'abcd1234',
 resource_path: '/',
 resource_id: 'efg567',
 http_method: 'GET',
 source_ip: '192.0.2.1',
 user-agent: 'curl/7.84.0',
 account_id: '111122223333',
 api_key: 'MyTestKey',
 caller: 'ABCD-0000-12345',
 user: 'ABCD-0000-12345',
 user_arn: 'arn:aws:sts::111122223333:assumed-role/Admin/carlos-salazar'
}

$context Variables for access logging only

The following $context variables are available only for access logging. For more information, see
the section called “CloudWatch logs”. (For WebSocket APIs, see the section called “Metrics”.)

Parameter Description

$context.authorize.error The authorization error message.

$context.authorize.latency The authorization latency in ms.

$context.authorize.status The status code returned from an authoriza
tion attempt.

$context.authorizer.error The error message returned from an authorize
r.

$context.authorizer.integra
tionLatency

The authorizer latency in ms.

$context.authorizer.integra
tionStatus

The status code returned from a Lambda
authorizer.

$context.authorizer.latency The authorizer latency in ms.

Data transformations 553

Amazon API Gateway Developer Guide

Parameter Description

$context.authorizer.requestId The AWS endpoint's request ID.

$context.authorizer.status The status code returned from an authorizer.

$context.authenticate.error The error message returned from an authentic
ation attempt.

$context.authenticate.latency The authentication latency in ms.

$context.authenticate.status The status code returned from an authentic
ation attempt.

$context.customDomain.baseP
athMatched

The path for an API mapping that an incoming
request matched. Applicable when a client
uses a custom domain name to access an
API. For example if a client sends a request
to https://api.example.com/v1/
orders/1234 , and the request matches
the API mapping with the path v1/orders ,
the value is v1/orders . To learn more, see
the section called “API mappings”.

$context.integration.error The error message returned from an integrati
on.

$context.integration.integr
ationStatus

For Lambda proxy integration, the status code
returned from AWS Lambda, not from the
backend Lambda function code.

$context.integration.latency The integration latency in ms. Equivalent to
$context.integrationLatency .

$context.integration.requestId The AWS endpoint's request ID. Equivalent to
$context.awsEndpointRequestId .

Data transformations 554

Amazon API Gateway Developer Guide

Parameter Description

$context.integration.status The status code returned from an integrati
on. For Lambda proxy integrations, this is the
status code that your Lambda function code
returns.

$context.integrationLatency The integration latency in ms.

$context.integrationStatus For Lambda proxy integration, this parameter
represents the status code returned from
AWS Lambda, not from the backend Lambda
function code.

$context.responseLatency The response latency in ms.

$context.responseLength The response payload length in bytes.

$context.status The method response status.

$context.waf.error The error message returned from AWS WAF.

$context.waf.latency The AWS WAF latency in ms.

$context.waf.status The status code returned from AWS WAF.

$context.xrayTraceId The trace ID for the X-Ray trace. For more
information, see the section called “Setting up
AWS X-Ray”.

$input Variables

The $input variable represents the method request payload and parameters to be processed by a
mapping template. It provides the following functions:

Variable and function Description

$input.body Returns the raw request payload as a string.

Data transformations 555

Amazon API Gateway Developer Guide

Variable and function Description

$input.json(x) This function evaluates a JSONPath expression
and returns the results as a JSON string.

For example, $input.json('$.pets')
returns a JSON string representing the pets
structure.

For more information about JSONPath, see
JSONPath or JSONPath for Java.

$input.params() Returns a map of all the request parameter
s. We recommend that you use $util.esc
apeJavaScript to sanitize the result to
avoid a potential injection attack. For full
control of request sanitization, use a proxy
integration without a template and handle
request sanitization in your integration.

$input.params(x) Returns the value of a method request
parameter from the path, query string, or
header value (searched in that order), given
a parameter name string x. We recommend
that you use $util.escapeJavaScript
to sanitize the parameter to avoid a potential
injection attack. For full control of parameter
sanitization, use a proxy integration without
a template and handle request sanitization in
your integration.

Data transformations 556

http://goessner.net/articles/JsonPath/
https://github.com/jayway/JsonPath

Amazon API Gateway Developer Guide

Variable and function Description

$input.path(x) Takes a JSONPath expression string (x) and
returns a JSON object representation of the
result. This allows you to access and manipulat
e elements of the payload natively in Apache
Velocity Template Language (VTL).

For example, if the expression $input.pa
th('$.pets') returns an object like this:

[
 {
 "id": 1,
 "type": "dog",
 "price": 249.99
 },
 {
 "id": 2,
 "type": "cat",
 "price": 124.99
 },
 {
 "id": 3,
 "type": "fish",
 "price": 0.99
 }
]

$input.path('$.pets').count()
would return "3".

For more information about JSONPath, see
JSONPath or JSONPath for Java.

Data transformations 557

https://velocity.apache.org/engine/devel/vtl-reference.html
https://velocity.apache.org/engine/devel/vtl-reference.html
http://goessner.net/articles/JsonPath/
https://github.com/jayway/JsonPath

Amazon API Gateway Developer Guide

$input Variable template examples

The following examples show how to use the $input variables in mapping templates. You can use
a mock integration or a Lambda non-proxy integration that returns the input event back to API
Gateway to try these examples.

Parameter mapping template example

The following example passes all request parameters, including path, querystring, and header,
through to the integration endpoint via a JSON payload:

#set($allParams = $input.params())
{
 "params" : {
 #foreach($type in $allParams.keySet())
 #set($params = $allParams.get($type))
 "$type" : {
 #foreach($paramName in $params.keySet())
 "$paramName" : "$util.escapeJavaScript($params.get($paramName))"
 #if($foreach.hasNext),#end
 #end
 }
 #if($foreach.hasNext),#end
 #end
 }
}

For a request that includes the following input parameters:

• A path parameter named myparam

• Query string parameters querystring1=value1,value2&querystring2=value3

• Headers "header1" : "value1", "header2" : "value2", "header3" : "value3".

The output of this mapping template should look like the following:

{
 "params" : {
 "path" : {
 "path" : "myparam"
 }

Data transformations 558

Amazon API Gateway Developer Guide

 , "querystring" : {
 "querystring1" : "value1,value2"
 , "querystring2" : "value3"
 }
 , "header" : {
 "header3" : "value3"
 , "header2" : "value2"
 , "header1" : "value1"
 }
 }
}

JSON mapping template example

You might want to use the $input variable to get query strings and the request body with or
without using models. You might also want to get the parameter and the payload, or a subsection
of the payload. The following three examples show how to do this.

The following example uses a mapping template to get a subsection of the payload. This example
get the input parameter name and then the the entire POST body:

{
 "name" : "$input.params('name')",
 "body" : $input.json('$')
}

For a request that includes the query string parameters name=Bella&type=dog and the following
body:

{
 "Price" : "249.99",
 "Age": "6"
}

The output of this mapping template should look like the following:

{
 "name" : "Bella",
 "body" : {"Price":"249.99","Age":"6"}
}

Data transformations 559

Amazon API Gateway Developer Guide

If the JSON input contains unescaped characters that cannot be parsed by JavaScript, API Gateway
might return a 400 response. Apply $util.escapeJavaScript($input.json('$')) to ensure
the JSON input can be parsed properly.

The previous example with $util.escapeJavaScript($input.json('$')) applied is as
follows:

{
 "name" : "$input.params('name')",
 "body" : $util.escapeJavaScript($input.json('$'))
}

In this case, the output of this mapping template should look like the following:

{
 "name" : "Bella",
 "body": {\"Price\":\"249.99\",\"Age\":\"6\"}
}

JSONPath expression example

The following example shows how to pass a JSONPath expression to the json() method. You
could also read a subsection of your request body object by using a period, ., to specify a property:

{
 "name" : "$input.params('name')",
 "body" : $input.json('$.Age')
}

For a request that includes the query string parameters name=Bella&type=dog and the following
body:

{
 "Price" : "249.99",
 "Age": "6"
}

The output of this mapping template should look like the following:

{

Data transformations 560

Amazon API Gateway Developer Guide

 "name" : "Bella",
 "body" : "6"
}

If a method request payload contains unescaped characters that cannot be parsed by JavaScript,
API Gateway might return a 400 response. Apply $util.escapeJavaScript() to ensure the
JSON input can be parsed properly.

The previous example with $util.escapeJavaScript($input.json('$.Age')) applied is as
follows:

{
 "name" : "$input.params('name')",
 "body" : "$util.escapeJavaScript($input.json('$.Age'))"
}

In this case, the output of this mapping template should look like the following:

{
 "name" : "Bella",
 "body": "\"6\""
}

Request and response example

The following example uses $input.params(), $input.path(), and $input.json() for a
resource with the path /things/{id}:

{
 "id" : "$input.params('id')",
 "count" : "$input.path('$.things').size()",
 "things" : $input.json('$.things')"
}

For a request that includes the path parameter 123 and the following body:

{
 "things": {
 "1": {},
 "2": {},

Data transformations 561

Amazon API Gateway Developer Guide

 "3": {}
 }
}

The output of this mapping template should look like the following:

{"id":"123","count":"3","things":{"1":{},"2":{},"3":{}}}

If a method request payload contains unescaped characters that cannot be parsed by JavaScript,
API Gateway might return a 400 response. Apply $util.escapeJavaScript() to ensure the
JSON input can be parsed properly.

The previous example with $util.escapeJavaScript($input.json('$.things')) applied
is as follows:

{
 "id" : "$input.params('id')",
 "count" : "$input.path('$.things').size()",
 "things" : "$util.escapeJavaScript($input.json('$.things'))"
}

The output of this mapping template should look like the following:

{"id":"123","count":"3","things":"{\"1\":{},\"2\":{},\"3\":{}}"}

For more mapping examples, see Understanding mapping templates.

$stageVariables

Stage variables can be used in parameter mapping and mapping templates and as placeholders in
ARNs and URLs used in method integrations. For more information, see the section called “Set up
stage variables”.

Syntax Description

$stageVariables. <variable_name> ,
$stageVariables[' <variable
_name> '], or ${stageVariables['
<variable_name> ']}

<variable_name> represents a stage
variable name.

Data transformations 562

Amazon API Gateway Developer Guide

$util Variables

The $util variable contains utility functions for use in mapping templates.

Note

Unless otherwise specified, the default character set is UTF-8.

Function Description

$util.escapeJavaScript() Escapes the characters in a string using
JavaScript string rules.

Note

This function will turn any regular
single quotes (') into escaped ones
(\'). However, the escaped single
quotes are not valid in JSON. Thus,
when the output from this function
is used in a JSON property, you must
turn any escaped single quotes (\')
back to regular single quotes ('). This
is shown in the following example:

 "input" : "$util.escapeJavaS
cript(data).replaceAll("\\'"
,"'")"

$util.parseJson() Takes "stringified" JSON and returns an object
representation of the result. You can use
the result from this function to access and
manipulate elements of the payload natively
in Apache Velocity Template Language
(VTL). For example, if you have the following
 payload:

Data transformations 563

Amazon API Gateway Developer Guide

Function Description

{"errorMessage":"{\"key1\":\"var1\",
\"key2\":{\"arr\":[1,2,3]}}"}

and use the following mapping template

#set ($errorMessageObj = $util.par
seJson($input.path('$.error
Message')))
{
 "errorMessageObjKey2ArrVal" :
 $errorMessageObj.key2.arr[0]
}

You will get the following output:

{
 "errorMessageObjKey2ArrVal" : 1
}

$util.urlEncode() Converts a string into "application/x-www-
form-urlencoded" format.

$util.urlDecode() Decodes an "application/x-www-form-url
encoded" string.

$util.base64Encode() Encodes the data into a base64-encoded
string.

$util.base64Decode() Decodes the data from a base64-encoded
string.

Gateway responses in API Gateway

A gateway response is identified by a response type that is defined by API Gateway. The response
consists of an HTTP status code, a set of additional headers that are specified by parameter
mappings, and a payload that is generated by a non-VTL mapping template.

Gateway responses 564

Amazon API Gateway Developer Guide

In the API Gateway REST API, a gateway response is represented by the GatewayResponse. In
OpenAPI, a GatewayResponse instance is described by the x-amazon-apigateway-gateway-
responses.gatewayResponse extension.

To enable a gateway response, you set up a gateway response for a supported response type at the
API level. Whenever API Gateway returns a response of this type, the header mappings and payload
mapping templates defined in the gateway response are applied to return the mapped results to
the API caller.

In the following section, we show how to set up gateway responses by using the API Gateway
console and the API Gateway REST API.

Setting up gateway responses to customize error responses

If API Gateway fails to process an incoming request, it returns to the client an error response
without forwarding the request to the integration backend. By default, the error response
contains a short descriptive error message. For example, if you attempt to call an operation on
an undefined API resource, you receive an error response with the { "message": "Missing
Authentication Token" } message. If you are new to API Gateway, you may find it difficult to
understand what actually went wrong.

For some of the error responses, API Gateway allows customization by API developers to return
the responses in different formats. For the Missing Authentication Token example, you
can add a hint to the original response payload with the possible cause, as in this example:
{"message":"Missing Authentication Token", "hint":"The HTTP method or
resources may not be supported."}.

When your API mediates between an external exchange and the AWS Cloud, you use VTL mapping
templates for integration request or integration response to map the payload from one format
to another. However, the VTL mapping templates work only for valid requests with successful
responses.

For invalid requests, API Gateway bypasses the integration altogether and returns an error
response. You must use the customization to render the error responses in an exchange-compliant
format. Here, the customization is rendered in a non-VTL mapping template supporting only
simple variable substitutions.

Generalizing the API Gateway-generated error response to any responses generated by API
Gateway, we refer to them as gateway responses. This distinguishes API Gateway-generated

Gateway responses 565

https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html

Amazon API Gateway Developer Guide

responses from the integration responses. A gateway response mapping template can access
$context variable values and $stageVariables property values, as well as method request
parameters, in the form of method.request.param-position.param-name.

For more information about $context variables, see $context Variables for data models,
authorizers, mapping templates, and CloudWatch access logging. For more information about
$stageVariables, see $stageVariables. For more information about method request
parameters, see the section called “$input Variables”.

Topics

• Set up a gateway response for a REST API using the API Gateway console

• Set up a gateway response using the API Gateway REST API

• Set up gateway response customization in OpenAPI

• Gateway response types

Set up a gateway response for a REST API using the API Gateway console

To customize a gateway response using the API Gateway console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose a REST API.

3. In the main navigation pane, choose Gateway responses.

4. Choose a response type, and then choose Edit. In this walkthrough, we use Missing
authentication token as an example.

5. You can change the API Gateway-generated Status code to return a different status code
that meets your API's requirements. In this example, the customization changes the status
code from the default (403) to 404 because this error message occurs when a client calls an
unsupported or invalid resource that can be thought of as not found.

6. To return custom headers, choose Add response header under Response headers. For
illustration purposes, we add the following custom headers:

Access-Control-Allow-Origin:'a.b.c'
x-request-id:method.request.header.x-amzn-RequestId
x-request-path:method.request.path.petId
x-request-query:method.request.querystring.q

Gateway responses 566

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

In the preceding header mappings, a static domain name ('a.b.c') is mapped to the Allow-
Control-Allow-Origin header to allow CORS access to the API; the input request header
of x-amzn-RequestId is mapped to request-id in the response; the petId path variable
of the incoming request is mapped to the request-path header in the response; and the
q query parameter of the original request is mapped to the request-query header of the
response.

7. Under Response templates, keep application/json for Content Type and enter the
following body mapping template in the Template body editor:

{
 "message":"$context.error.messageString",
 "type": "$context.error.responseType",
 "statusCode": "'404'",
 "stage": "$context.stage",
 "resourcePath": "$context.resourcePath",
 "stageVariables.a": "$stageVariables.a"
}

This example shows how to map $context and $stageVariables properties to properties
of the gateway response body.

8. Choose Save changes.

9. Deploy the API to a new or existing stage.

Test your gateway response by calling the following CURL command, assuming the
corresponding API method's invoke URL is https://o81lxisefl.execute-api.us-
east-1.amazonaws.com/custErr/pets/{petId}:

curl -v -H 'x-amzn-RequestId:123344566' https://o81lxisefl.execute-api.us-
east-1.amazonaws.com/custErr/pets/5/type?q=1

Because the extra query string parameter q=1 isn't compatible with the API, an error is returned to
trigger the specified gateway response. You should get a gateway response similar to the following:

> GET /custErr/pets/5?q=1 HTTP/1.1
Host: o81lxisefl.execute-api.us-east-1.amazonaws.com
User-Agent: curl/7.51.0
Accept: */*

Gateway responses 567

Amazon API Gateway Developer Guide

HTTP/1.1 404 Not Found
Content-Type: application/json
Content-Length: 334
Connection: keep-alive
Date: Tue, 02 May 2017 03:15:47 GMT
x-amzn-RequestId: 123344566
Access-Control-Allow-Origin: a.b.c
x-amzn-ErrorType: MissingAuthenticationTokenException
header-1: static
x-request-query: 1
x-request-path: 5
X-Cache: Error from cloudfront
Via: 1.1 441811a054e8d055b893175754efd0c3.cloudfront.net (CloudFront)
X-Amz-Cf-Id: nNDR-fX4csbRoAgtQJ16u0rTDz9FZWT-Mk93KgoxnfzDlTUh3flmzA==

{
 "message":"Missing Authentication Token",
 "type": MISSING_AUTHENTICATION_TOKEN,
 "statusCode": '404',
 "stage": custErr,
 "resourcePath": /pets/{petId},
 "stageVariables.a": a
}

The preceding example assumes that the API backend is Pet Store and the API has a stage variable,
a, defined.

Set up a gateway response using the API Gateway REST API

Before customizing a gateway response using the API Gateway REST API, you must have already
created an API and have obtained its identifier. To retrieve the API identifier, you can follow
restapi:gateway-responses link relation and examine the result.

To customize a gateway response using the API Gateway REST API

1. To overwrite an entire GatewayResponse instance, call the gatewayresponse:put action.
Specify a desired responseType in the URL path parameter, and supply in the request payload
the statusCode, responseParameters, and responseTemplates mappings.

2. To update part of a GatewayResponse instance, call the gatewayresponse:update
action. Specify a desired responseType in the URL path parameter, and supply in the

Gateway responses 568

http://petstore-demo-endpoint.execute-api.com/petstore/pets
https://docs.aws.amazon.com/apigateway/latest/api/API_GetGatewayResponses.html
https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_PutGatewayResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html#responseType
https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html#statusCode
https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html#responseParameters
https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html#responseTemplates
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateGatewayResponse.html

Amazon API Gateway Developer Guide

request payload the individual GatewayResponse properties you want—for example, the
responseParameters or the responseTemplates mapping.

Set up gateway response customization in OpenAPI

You can use the x-amazon-apigateway-gateway-responses extension at the API root level to
customize gateway responses in OpenAPI. The following OpenAPI definition shows an example for
customizing the GatewayResponse of the MISSING_AUTHENTICATION_TOKEN type.

 "x-amazon-apigateway-gateway-responses": {
 "MISSING_AUTHENTICATION_TOKEN": {
 "statusCode": 404,
 "responseParameters": {
 "gatewayresponse.header.x-request-path": "method.input.params.petId",
 "gatewayresponse.header.x-request-query": "method.input.params.q",
 "gatewayresponse.header.Access-Control-Allow-Origin": "'a.b.c'",
 "gatewayresponse.header.x-request-header": "method.input.params.Accept"
 },
 "responseTemplates": {
 "application/json": "{\n \"message\": $context.error.messageString,\n
 \"type\": \"$context.error.responseType\",\n \"stage\": \"$context.stage
\",\n \"resourcePath\": \"$context.resourcePath\",\n \"stageVariables.a\":
 \"$stageVariables.a\",\n \"statusCode\": \"'404'\"\n}"
 }
 }

In this example, the customization changes the status code from the default (403) to 404. It also
adds to the gateway response four header parameters and one body mapping template for the
application/json media type.

Gateway response types

API Gateway exposes the following gateway responses for customization by API developers.

Gateway response type Default status code Description

ACCESS_DENIED 403 The gateway response for
authorization failure—f
or example, when access
is denied by a custom or

Gateway responses 569

https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html

Amazon API Gateway Developer Guide

Gateway response type Default status code Description

Amazon Cognito authorizer. If
the response type is unspecifi
ed, this response defaults to
the DEFAULT_4XX type.

API_CONFIGURATION_
ERROR

500 The gateway response for
an invalid API configuration
—including when an invalid
endpoint address is submitted
, when base64 decoding
fails on binary data when
binary support is enacted, or
when integration response
mapping can't match any
template and no default
template is configured. If the
response type is unspecified,
this response defaults to the
DEFAULT_5XX type.

AUTHORIZER_CONFIGU
RATION_ERROR

500 The gateway response for
failing to connect to a custom
or Amazon Cognito authorize
r. If the response type is
unspecified, this response
defaults to the DEFAULT_5
XX type.

AUTHORIZER_FAILURE 500 The gateway response when
a custom or Amazon Cognito
authorizer failed to authentic
ate the caller. If the response
type is unspecified, this
response defaults to the
DEFAULT_5XX type.

Gateway responses 570

Amazon API Gateway Developer Guide

Gateway response type Default status code Description

BAD_REQUEST_PARAME
TERS

400 The gateway response when
the request parameter cannot
be validated according to an
enabled request validator. If
the response type is unspecifi
ed, this response defaults to
the DEFAULT_4XX type.

BAD_REQUEST_BODY 400 The gateway response when
the request body cannot be
validated according to an
enabled request validator. If
the response type is unspecifi
ed, this response defaults to
the DEFAULT_4XX type.

Gateway responses 571

Amazon API Gateway Developer Guide

Gateway response type Default status code Description

DEFAULT_4XX Null The default gateway response
for an unspecified response
type with the status code
of 4XX. Changing the status
code of this fallback gateway
response changes the status
codes of all other 4XX
responses to the new value.
Resetting this status code to
null reverts the status codes
of all other 4XX responses to
their original values.

Note

AWS WAF custom
responses take
precedence over
custom gateway
responses.

DEFAULT_5XX Null The default gateway response
for an unspecified response
type with a status code of
5XX. Changing the status
code of this fallback gateway
response changes the status
codes of all other 5XX
responses to the new value.
Resetting this status code to
null reverts the status codes
of all other 5XX responses to
their original values.

Gateway responses 572

https://docs.aws.amazon.com/waf/latest/developerguide/waf-custom-request-response.html
https://docs.aws.amazon.com/waf/latest/developerguide/waf-custom-request-response.html

Amazon API Gateway Developer Guide

Gateway response type Default status code Description

EXPIRED_TOKEN 403 The gateway response for an
AWS authentication token
expired error. If the response
type is unspecified, this
response defaults to the
DEFAULT_4XX type.

INTEGRATION_FAILURE 504 The gateway response for an
integration failed error. If the
response type is unspecified,
this response defaults to the
DEFAULT_5XX type.

INTEGRATION_TIMEOUT 504 The gateway response for an
integration timed out error. If
the response type is unspecifi
ed, this response defaults to
the DEFAULT_5XX type.

INVALID_API_KEY 403 The gateway response for an
invalid API key submitted for
a method requiring an API
key. If the response type is
unspecified, this response
defaults to the DEFAULT_4
XX type.

INVALID_SIGNATURE 403 The gateway response for an
invalid AWS signature error. If
the response type is unspecifi
ed, this response defaults to
the DEFAULT_4XX type.

Gateway responses 573

Amazon API Gateway Developer Guide

Gateway response type Default status code Description

MISSING_AUTHENTICA
TION_TOKEN

403 The gateway response for a
missing authentication token
error, including the cases
when the client attempts to
invoke an unsupported API
method or resource. If the
response type is unspecified,
this response defaults to the
DEFAULT_4XX type.

QUOTA_EXCEEDED 429 The gateway response for the
usage plan quota exceeded
error. If the response type
is unspecified, this response
defaults to the DEFAULT_4
XX type.

REQUEST_TOO_LARGE 413 The gateway response for
the request too large error. If
the response type is unspecifi
ed, this response defaults
to: HTTP content length
exceeded 10485760
bytes.

RESOURCE_NOT_FOUND 404 The gateway response when
API Gateway cannot find the
specified resource after an
API request passes authentic
ation and authorization,
except for API key authentic
ation and authorization. If the
response type is unspecified,
this response defaults to the
DEFAULT_4XX type.

Gateway responses 574

Amazon API Gateway Developer Guide

Gateway response type Default status code Description

THROTTLED 429 The gateway response when
usage plan-, method-, stage-,
or account-level throttlin
g limits exceeded. If the
response type is unspecified,
this response defaults to the
DEFAULT_4XX type.

UNAUTHORIZED 401 The gateway response when
the custom or Amazon
Cognito authorizer failed to
authenticate the caller.

UNSUPPORTED_MEDIA_
TYPE

415 The gateway response when a
payload is of an unsupported
media type, if strict passthrou
gh behavior is enabled. If the
response type is unspecified,
this response defaults to the
DEFAULT_4XX type.

WAF_FILTERED 403 The gateway response when
a request is blocked by AWS
WAF. If the response type is
unspecified, this response
defaults to the DEFAULT_4
XX type.

Note

AWS WAF custom
responses take
precedence over
custom gateway
responses.

Gateway responses 575

https://docs.aws.amazon.com/waf/latest/developerguide/waf-custom-request-response.html
https://docs.aws.amazon.com/waf/latest/developerguide/waf-custom-request-response.html

Amazon API Gateway Developer Guide

Enabling CORS for a REST API resource

Cross-origin resource sharing (CORS) is a browser security feature that restricts cross-origin HTTP
requests that are initiated from scripts running in the browser.

Determining whether to enable CORS support

A cross-origin HTTP request is one that is made to:

• A different domain (for example, from example.com to amazondomains.com)

• A different subdomain (for example, from example.com to petstore.example.com)

• A different port (for example, from example.com to example.com:10777)

• A different protocol (for example, from https://example.com to http://example.com)

If you cannot access your API and receive an error message that contains Cross-Origin Request
Blocked, you might need to enable CORS.

Cross-origin HTTP requests can be divided into two types: simple requests and non-simple requests.

Enabling CORS for a simple request

An HTTP request is simple if all of the following conditions are true:

• It is issued against an API resource that allows only GET, HEAD, and POST requests.

• If it is a POST method request, it must include an Origin header.

• The request payload content type is text/plain, multipart/form-data, or application/
x-www-form-urlencoded.

• The request does not contain custom headers.

• Any additional requirements that are listed in the Mozilla CORS documentation for simple
requests.

For simple cross-origin POST method requests, the response from your resource needs to
include the header Access-Control-Allow-Origin: '*' or Access-Control-Allow-
Origin:'origin'.

All other cross-origin HTTP requests are non-simple requests.

CORS 576

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS#Simple_requests
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS#Simple_requests

Amazon API Gateway Developer Guide

Enabling CORS for a non-simple request

If your API's resources receive non-simple requests, you must enable additional CORS support
depending on your integration type.

Enabling CORS for non-proxy integrations

For these integrations, the CORS protocol requires the browser to send a preflight request to the
server and wait for approval (or a request for credentials) from the server before sending the actual
request. You must configure your API to send an appropriate response to the preflight request.

To create a preflight response:

1. Create an OPTIONS method with a mock integration.

2. Add the following response headers to the 200 method response:

• Access-Control-Allow-Headers

• Access-Control-Allow-Methods

• Access-Control-Allow-Origin

3. Enter values for the response headers. To allow all origins, all methods, and common headers,
use the following header values:

• Access-Control-Allow-Headers: 'Content-Type,X-Amz-
Date,Authorization,X-Api-Key,X-Amz-Security-Token'

• Access-Control-Allow-Methods: '*'

• Access-Control-Allow-Origin: '*'

After creating the preflight request, you must return the Access-Control-Allow-Origin: '*'
or Access-Control-Allow-Origin:'origin' header for all CORS-enabled methods for at
least all 200 responses.

Enabling CORS for non-proxy integrations using the AWS Management Console

You can use the AWS Management Console to enable CORS. API Gateway creates an OPTIONS
method and adds the Access-Control-Allow-Origin header to your existing method
integration responses. This doesn’t always work, and sometimes you need to manually modify
the integration response to return the Access-Control-Allow-Origin header for all CORS-
enabled methods for at least all 200 responses.

CORS 577

https://fetch.spec.whatwg.org/#http-cors-protocol

Amazon API Gateway Developer Guide

Enabling CORS support for proxy integrations

For a Lambda proxy integration or HTTP proxy integration, your backend is responsible for
returning the Access-Control-Allow-Origin, Access-Control-Allow-Methods, and
Access-Control-Allow-Headers headers, because a proxy integration doesn't return an
integration response.

The following example Lambda functions return the required CORS headers:

Node.js

export const handler = async (event) => {
 const response = {
 statusCode: 200,
 headers: {
 "Access-Control-Allow-Headers" : "Content-Type",
 "Access-Control-Allow-Origin": "https://www.example.com",
 "Access-Control-Allow-Methods": "OPTIONS,POST,GET"
 },
 body: JSON.stringify('Hello from Lambda!'),
 };
 return response;
};

Python 3

import json

def lambda_handler(event, context):
 return {
 'statusCode': 200,
 'headers': {
 'Access-Control-Allow-Headers': 'Content-Type',
 'Access-Control-Allow-Origin': 'https://www.example.com',
 'Access-Control-Allow-Methods': 'OPTIONS,POST,GET'
 },
 'body': json.dumps('Hello from Lambda!')
 }

Topics

• Enable CORS on a resource using the API Gateway console

CORS 578

Amazon API Gateway Developer Guide

• Enable CORS on a resource using the API Gateway import API

• Testing CORS

Enable CORS on a resource using the API Gateway console

You can use the API Gateway console to enable CORS support for one or all methods on a REST API
resource that you have created.

Important

Resources can contain child resources. Enabling CORS support for a resource and its
methods does not recursively enable it for child resources and their methods.

To enable CORS support on a REST API resource

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose an API.

3. Choose a resource under Resources.

4. In the Resource details section, choose Enable CORS.

CORS 579

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

5. In the Enable CORS box, do the following:

a. (Optional) If you created a custom gateway response and want to enable CORS support
for a response, select a gateway response.

b. Select each method to enable CORS support. The OPTION method must have CORS
enabled.

If you enable CORS support for an ANY method, CORS is enabled for all methods.

c. In the Access-Control-Allow-Headers input field, enter a static string of a comma-
separated list of headers that the client must submit in the actual request of
the resource. Use the console-provided header list of 'Content-Type,X-Amz-
Date,Authorization,X-Api-Key,X-Amz-Security-Token' or specify your own
headers.

CORS 580

Amazon API Gateway Developer Guide

d. Use the console-provided value of '*' as the Access-Control-Allow-Origin header value
to allow access requests from all origins, or specify origins to be permitted to access the
resource.

e. Choose Save.

Important

When applying the above instructions to the ANY method in a proxy integration,
any applicable CORS headers will not be set. Instead, your backend must return the
applicable CORS headers, such as Access-Control-Allow-Origin.

CORS 581

Amazon API Gateway Developer Guide

After CORS is enabled on the GET method, an OPTIONS method is added to the resource, if it
is not already there. The 200 response of the OPTIONS method is automatically configured to
return the three Access-Control-Allow-* headers to fulfill preflight handshakes. In addition,
the actual (GET) method is also configured by default to return the Access-Control-Allow-
Origin header in its 200 response as well. For other types of responses, you will need to manually
configure them to return Access-Control-Allow-Origin' header with '*' or specific origins, if
you do not want to return the Cross-origin access error.

After you enable CORS support on your resource, you must deploy or redeploy the API for the new
settings to take effect. For more information, see the section called “Deploy a REST API (console)”.

Note

If you cannot enable CORS support on your resource after following the procedure,
we recommend that you compare your CORS configuration to the example API /pets
resource. To learn how to create the example API, see the section called “Tutorial: Create a
REST API by importing an example”.

Enable CORS on a resource using the API Gateway import API

If you are using the API Gateway Import API, you can set up CORS support using an OpenAPI file.
You must first define an OPTIONS method in your resource that returns the required headers.

Note

Web browsers expect Access-Control-Allow-Headers, and Access-Control-Allow-Origin
headers to be set up in each API method that accepts CORS requests. In addition, some
browsers first make an HTTP request to an OPTIONS method in the same resource, and
then expect to receive the same headers.

Example Options method

The following example creates an OPTIONS method for a mock integration.

OpenAPI 3.0

/users:

CORS 582

Amazon API Gateway Developer Guide

 options:
 summary: CORS support
 description: |
 Enable CORS by returning correct headers
 tags:
 - CORS
 responses:
 200:
 description: Default response for CORS method
 headers:
 Access-Control-Allow-Origin:
 schema:
 type: "string"
 Access-Control-Allow-Methods:
 schema:
 type: "string"
 Access-Control-Allow-Headers:
 schema:
 type: "string"
 content: {}
 x-amazon-apigateway-integration:
 type: mock
 requestTemplates:
 application/json: "{\"statusCode\": 200}"
 responses:
 default:
 statusCode: "200"
 responseParameters:
 method.response.header.Access-Control-Allow-Headers: "'Content-Type,X-
Amz-Date,Authorization,X-Api-Key'"
 method.response.header.Access-Control-Allow-Methods: "'*'"
 method.response.header.Access-Control-Allow-Origin: "'*'"

OpenAPI 2.0

/users:
 options:
 summary: CORS support
 description: |
 Enable CORS by returning correct headers
 consumes:
 - "application/json"

CORS 583

Amazon API Gateway Developer Guide

 produces:
 - "application/json"
 tags:
 - CORS
 x-amazon-apigateway-integration:
 type: mock
 requestTemplates: "{\"statusCode\": 200}"
 responses:
 "default":
 statusCode: "200"
 responseParameters:
 method.response.header.Access-Control-Allow-Headers : "'Content-
Type,X-Amz-Date,Authorization,X-Api-Key'"
 method.response.header.Access-Control-Allow-Methods : "'*'"
 method.response.header.Access-Control-Allow-Origin : "'*'"
 responses:
 200:
 description: Default response for CORS method
 headers:
 Access-Control-Allow-Headers:
 type: "string"
 Access-Control-Allow-Methods:
 type: "string"
 Access-Control-Allow-Origin:
 type: "string"

Once you have configured the OPTIONS method for your resource, you can add the required
headers to the other methods in the same resource that need to accept CORS requests.

1. Declare the Access-Control-Allow-Origin and Headers to the response types.

OpenAPI 3.0

 responses:
 200:
 description: Default response for CORS method
 headers:
 Access-Control-Allow-Origin:
 schema:
 type: "string"
 Access-Control-Allow-Methods:
 schema:

CORS 584

Amazon API Gateway Developer Guide

 type: "string"
 Access-Control-Allow-Headers:
 schema:
 type: "string"
 content: {}

OpenAPI 2.0

 responses:
 200:
 description: Default response for CORS method
 headers:
 Access-Control-Allow-Headers:
 type: "string"
 Access-Control-Allow-Methods:
 type: "string"
 Access-Control-Allow-Origin:
 type: "string"

2. In the x-amazon-apigateway-integration tag, set up the mapping for those headers to
your static values:

OpenAPI 3.0

 responses:
 default:
 statusCode: "200"
 responseParameters:
 method.response.header.Access-Control-Allow-Headers: "'Content-
Type,X-Amz-Date,Authorization,X-Api-Key'"
 method.response.header.Access-Control-Allow-Methods: "'*'"
 method.response.header.Access-Control-Allow-Origin: "'*'"
 responseTemplates:
 application/json: |
 {}

OpenAPI 2.0

 responses:
 "default":
 statusCode: "200"
 responseParameters:

CORS 585

Amazon API Gateway Developer Guide

 method.response.header.Access-Control-Allow-Headers : "'Content-
Type,X-Amz-Date,Authorization,X-Api-Key'"
 method.response.header.Access-Control-Allow-Methods : "'*'"
 method.response.header.Access-Control-Allow-Origin : "'*'"

Example API

The following example creates a complete API with an OPTIONS method and a GET method with
an HTTP integration.

OpenAPI 3.0

openapi: "3.0.1"
info:
 title: "cors-api"
 description: "cors-api"
 version: "2024-01-16T18:36:01Z"
servers:
- url: "/{basePath}"
 variables:
 basePath:
 default: "/test"
paths:
 /:
 get:
 operationId: "GetPet"
 responses:
 "200":
 description: "200 response"
 headers:
 Access-Control-Allow-Origin:
 schema:
 type: "string"
 content: {}
 x-amazon-apigateway-integration:
 httpMethod: "GET"
 uri: "http://petstore.execute-api.us-east-1.amazonaws.com/petstore/pets"
 responses:
 default:
 statusCode: "200"
 responseParameters:
 method.response.header.Access-Control-Allow-Origin: "'*'"

CORS 586

Amazon API Gateway Developer Guide

 passthroughBehavior: "when_no_match"
 type: "http"
 options:
 responses:
 "200":
 description: "200 response"
 headers:
 Access-Control-Allow-Origin:
 schema:
 type: "string"
 Access-Control-Allow-Methods:
 schema:
 type: "string"
 Access-Control-Allow-Headers:
 schema:
 type: "string"
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Empty"
 x-amazon-apigateway-integration:
 responses:
 default:
 statusCode: "200"
 responseParameters:
 method.response.header.Access-Control-Allow-Methods: "'GET,OPTIONS'"
 method.response.header.Access-Control-Allow-Headers: "'Content-Type,X-
Amz-Date,Authorization,X-Api-Key'"
 method.response.header.Access-Control-Allow-Origin: "'*'"
 requestTemplates:
 application/json: "{\"statusCode\": 200}"
 passthroughBehavior: "when_no_match"
 type: "mock"
components:
 schemas:
 Empty:
 type: "object"

OpenAPI 2.0

swagger: "2.0"
info:
 description: "cors-api"

CORS 587

Amazon API Gateway Developer Guide

 version: "2024-01-16T18:36:01Z"
 title: "cors-api"
basePath: "/test"
schemes:
- "https"
paths:
 /:
 get:
 operationId: "GetPet"
 produces:
 - "application/json"
 responses:
 "200":
 description: "200 response"
 headers:
 Access-Control-Allow-Origin:
 type: "string"
 x-amazon-apigateway-integration:
 httpMethod: "GET"
 uri: "http://petstore.execute-api.us-east-1.amazonaws.com/petstore/pets"
 responses:
 default:
 statusCode: "200"
 responseParameters:
 method.response.header.Access-Control-Allow-Origin: "'*'"
 passthroughBehavior: "when_no_match"
 type: "http"
 options:
 consumes:
 - "application/json"
 produces:
 - "application/json"
 responses:
 "200":
 description: "200 response"
 schema:
 $ref: "#/definitions/Empty"
 headers:
 Access-Control-Allow-Origin:
 type: "string"
 Access-Control-Allow-Methods:
 type: "string"
 Access-Control-Allow-Headers:
 type: "string"

CORS 588

Amazon API Gateway Developer Guide

 x-amazon-apigateway-integration:
 responses:
 default:
 statusCode: "200"
 responseParameters:
 method.response.header.Access-Control-Allow-Methods: "'GET,OPTIONS'"
 method.response.header.Access-Control-Allow-Headers: "'Content-Type,X-
Amz-Date,Authorization,X-Api-Key'"
 method.response.header.Access-Control-Allow-Origin: "'*'"
 requestTemplates:
 application/json: "{\"statusCode\": 200}"
 passthroughBehavior: "when_no_match"
 type: "mock"
definitions:
 Empty:
 type: "object"

Testing CORS

You can test your API's CORS configuration by invoking your API, and checking the CORS headers in
the response. The following curl command sends an OPTIONS request to a deployed API.

curl -v -X OPTIONS https://{restapi_id}.execute-api.{region}.amazonaws.com/{stage_name}

< HTTP/1.1 200 OK
< Date: Tue, 19 May 2020 00:55:22 GMT
< Content-Type: application/json
< Content-Length: 0
< Connection: keep-alive
< x-amzn-RequestId: a1b2c3d4-5678-90ab-cdef-abc123
< Access-Control-Allow-Origin: *
< Access-Control-Allow-Headers: Content-Type,Authorization,X-Amz-Date,X-Api-Key,X-Amz-
Security-Token
< x-amz-apigw-id: Abcd=
< Access-Control-Allow-Methods: DELETE,GET,HEAD,OPTIONS,PATCH,POST,PUT

The Access-Control-Allow-Origin, Access-Control-Allow-Headers, and Access-
Control-Allow-Methods headers in the response show that the API supports CORS. For more
information, see Enabling CORS for a REST API resource.

CORS 589

Amazon API Gateway Developer Guide

Working with binary media types for REST APIs

In API Gateway, the API request and response have a text or binary payload. A text payload is a
UTF-8-encoded JSON string. A binary payload is anything other than a text payload. The binary
payload can be, for example, a JPEG file, a GZip file, or an XML file. The API configuration required
to support binary media depends on whether your API uses proxy or non-proxy integrations.

AWS Lambda proxy integrations

To handle binary payloads for AWS Lambda proxy integrations, you must base64-encode your
function's response. You must also configure the binaryMediaTypes for your API. Your API's
binaryMediaTypes configuration is a list of content types that your API treats as binary data.
Example binary media types include image/png or application/octet-stream. You can use
the wildcard character (*) to cover multiple media types. For example, */* includes all content
types.

For example code, see the section called “Return binary media from a Lambda proxy integration”.

Non-proxy integrations

To handle binary payloads for non-proxy integrations, you add the media types to the
binaryMediaTypes list of the RestApi resource. Your API's binaryMediaTypes configuration
is a list of content types that your API treats as binary data. Alternatively, you can set the
contentHandling properties on the Integration and the IntegrationResponse resources. The
contentHandling value can be CONVERT_TO_BINARY, CONVERT_TO_TEXT, or undefined.

Depending on the contentHandling value, and whether the Content-Type header
of the response or the Accept header of the incoming request matches an entry in the
binaryMediaTypes list, API Gateway can encode the raw binary bytes as a base64-encoded
string, decode a base64-encoded string back to its raw bytes, or pass the body through without
modification.

You must configure the API as follows to support binary payloads for your API in API Gateway:

• Add the desired binary media types to the binaryMediaTypes list on the RestApi resource. If
this property and the contentHandling property are not defined, the payloads are handled as
UTF-8 encoded JSON strings.

• Address the contentHandling property of the Integration resource.

Binary media types 590

https://docs.aws.amazon.com/apigateway/latest/api/API_RestApi.html#apigw-Type-RestApi-binaryMediaTypes
https://docs.aws.amazon.com/apigateway/latest/api/API_RestApi.html#apigw-Type-RestApi-binaryMediaTypes
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html#contentHandling
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html
https://docs.aws.amazon.com/apigateway/latest/api/API_IntegrationResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_RestApi.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html

Amazon API Gateway Developer Guide

• To have the request payload converted from a base64-encoded string to its binary blob, set
the property to CONVERT_TO_BINARY.

• To have the request payload converted from a binary blob to a base64-encoded string, set the
property to CONVERT_TO_TEXT.

• To pass the payload through without modification, leave the property undefined. To pass a
binary payload through without modification, you must also ensure that the Content-Type
matches one of the binaryMediaTypes entries, and that passthrough behaviors are enabled
for the API.

• Set the contentHandling property of the IntegrationResponse resource. The
contentHandling property, Accept header in client requests, and your API's
binaryMediaTypes combined determine how API Gateway handles content type conversions.
For details, see the section called “Content type conversions in API Gateway”.

Important

When a request contains multiple media types in its Accept header, API Gateway honors
only the first Accept media type. If you can't control the order of the Accept media types
and the media type of your binary content isn't the first in the list, add the first Accept
media type in the binaryMediaTypes list of your API. API Gateway handles all content
types in this list as binary.
For example, to send a JPEG file using an element in a browser, the browser might
send Accept:image/webp,image/*,*/*;q=0.8 in a request. By adding image/webp to
the binaryMediaTypes list, the endpoint receives the JPEG file as binary.

For detailed information about how API Gateway handles the text and binary payloads, see
Content type conversions in API Gateway.

Content type conversions in API Gateway

The combination of your API's binaryMediaTypes, the headers in client requests, and the
integration contentHandling property determine how API Gateway encodes payloads.

The following table shows how API Gateway converts the request payload for specific
configurations of a request's Content-Type header, the binaryMediaTypes list of a RestApi
resource, and the contentHandling property value of the Integration resource.

Binary media types 591

https://docs.aws.amazon.com/apigateway/latest/api/API_IntegrationResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_RestApi.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html

Amazon API Gateway Developer Guide

API request content type conversions in API Gateway

Method request
payload

Request
Content-T
ype header

binaryMed
iaTypes

contentHa
ndling

Integration
request payload

Text data Any data type Undefined Undefined UTF8-encoded
string

Text data Any data type Undefined CONVERT_T
O_BINARY

Base64-decoded
binary blob

Text data Any data type Undefined CONVERT_T
O_TEXT

UTF8-encoded
string

Text data A text data type Set with
matching media
types

Undefined Text data

Text data A text data type Set with
matching media
types

CONVERT_T
O_BINARY

Base64-decoded
binary blob

Text data A text data type Set with
matching media
types

CONVERT_T
O_TEXT

Text data

Binary data A binary data
type

Set with
matching media
types

Undefined Binary data

Binary data A binary data
type

Set with
matching media
types

CONVERT_T
O_BINARY

Binary data

Binary data A binary data
type

Set with
matching media
types

CONVERT_T
O_TEXT

Base64-encoded
string

Binary media types 592

Amazon API Gateway Developer Guide

The following table shows how API Gateway converts the response payload for specific
configurations of a request's Accept header, the binaryMediaTypes list of a RestApi resource,
and the contentHandling property value of the IntegrationResponse resource.

Important

When a request contains multiple media types in its Accept header, API Gateway honors
only the first Accept media type. If you can't control the order of the Accept media types
and the media type of your binary content isn't the first in the list, add the first Accept
media type in the binaryMediaTypes list of your API. API Gateway handles all content
types in this list as binary.
For example, to send a JPEG file using an element in a browser, the browser might
send Accept:image/webp,image/*,*/*;q=0.8 in a request. By adding image/webp to
the binaryMediaTypes list, the endpoint receives the JPEG file as binary.

API Gateway response content type conversions

Integration
response
payload

Request Accept
header

binaryMed
iaTypes

contentHa
ndling

Method
response
payload

Text or binary
data

A text type Undefined Undefined UTF8-encoded
string

Text or binary
data

A text type Undefined CONVERT_T
O_BINARY

Base64-decoded
blob

Text or binary
data

A text type Undefined CONVERT_T
O_TEXT

UTF8-encoded
string

Text data A text type Set with
matching media
types

Undefined Text data

Text data A text type Set with
matching media
types

CONVERT_T
O_BINARY

Base64-decoded
blob

Binary media types 593

https://docs.aws.amazon.com/apigateway/latest/api/API_RestApi.html
https://docs.aws.amazon.com/apigateway/latest/api/API_IntegrationResponse.html

Amazon API Gateway Developer Guide

Integration
response
payload

Request Accept
header

binaryMed
iaTypes

contentHa
ndling

Method
response
payload

Text data A text type Set with
matching media
types

CONVERT_T
O_TEXT

UTF8-encoded
string

Text data A binary type Set with
matching media
types

Undefined Base64-decoded
blob

Text data A binary type Set with
matching media
types

CONVERT_T
O_BINARY

Base64-decoded
blob

Text data A binary type Set with
matching media
types

CONVERT_T
O_TEXT

UTF8-encoded
string

Binary data A text type Set with
matching media
types

Undefined Base64-encoded
string

Binary data A text type Set with
matching media
types

CONVERT_T
O_BINARY

Binary data

Binary data A text type Set with
matching media
types

CONVERT_T
O_TEXT

Base64-encoded
string

Binary data A binary type Set with
matching media
types

Undefined Binary data

Binary data A binary type Set with
matching media
types

CONVERT_T
O_BINARY

Binary data

Binary media types 594

Amazon API Gateway Developer Guide

Integration
response
payload

Request Accept
header

binaryMed
iaTypes

contentHa
ndling

Method
response
payload

Binary data A binary type Set with
matching media
types

CONVERT_T
O_TEXT

Base64-encoded
string

When converting a text payload to a binary blob, API Gateway assumes that the text data is a
base64-encoded string and outputs the binary data as a base64-decoded blob. If the conversion
fails, it returns a 500 response, which indicates an API configuration error. You don't provide a
mapping template for such a conversion, although you must enable the passthrough behaviors on
the API.

When converting a binary payload to a text string, API Gateway always applies a base64 encoding
on the binary data. You can define a mapping template for such a payload, but can only access the
base64-encoded string in the mapping template through $input.body, as shown in the following
excerpt of an example mapping template.

{
 "data": "$input.body"
}

To have the binary payload passed through without modification, you must enable the
passthrough behaviors on the API.

Enabling binary support using the API Gateway console

The section explains how to enable binary support using the API Gateway console. As an example,
we use an API that is integrated with Amazon S3. We focus on the tasks to set the supported media
types and to specify how the payload should be handled. For detailed information on how to
create an API integrated with Amazon S3, see Tutorial: Create a REST API as an Amazon S3 proxy in
API Gateway.

To enable binary support by using the API Gateway console

1. Set binary media types for the API:

a. Create a new API or choose an existing API. For this example, we name the API FileMan.

Binary media types 595

Amazon API Gateway Developer Guide

b. Under the selected API in the primary navigation panel, choose API settings.

c. In the API settings pane, choose Manage media types in the Binary Media Types section.

d. Choose Add binary media type.

e. Enter a required media type, for example, image/png, in the input text field. If needed,
repeat this step to add more media types. To support all binary media types, specify */*.

f. Choose Save changes.

2. Set how message payloads are handled for the API method:

a. Create a new or choose an existing resource in the API. For this example, we use the /
{folder}/{item} resource.

b. Create a new or choose an existing method on the resource. As an example, we use the
GET /{folder}/{item} method integrated with the Object GET action in Amazon S3.

c. For Content handling, choose an option.

Choose Passthrough if you don't want to convert the body when the client and backend
accepts the same binary format. Choose Convert to text to convert the binary body to
a base64-encoded string when, for example, the backend requires that a binary request
payload is passed in as a JSON property. And choose Convert to binary when the client
submits a base64-encoded string and the backend requires the original binary format, or
when the endpoint returns a base64-encoded string and the client accepts only the binary
output.

Binary media types 596

Amazon API Gateway Developer Guide

d. For Request body passthrough, choose When there are no templates defined
(recommended) to enable the passthrough behavior on the request body.

You could also choose Never. This means that the API will reject data with content-types
that do not have a mapping template.

e. Preserve the incoming request's Accept header in the integration request. You should do
this if you've set contentHandling to passthrough and want to override that setting
at runtime.

f. For conversion to text, define a mapping template to put the base64-encoded binary data
into the required format.

An example of a mapping template to convert to text is the following:

{
 "operation": "thumbnail",
 "base64Image": "$input.body"
}

The format of this mapping template depends on the endpoint requirements of the input.

g. Choose Save.

Enabling binary support using the API Gateway REST API

The following tasks show how to enable binary support using the API Gateway REST API calls.

Topics

• Add and update supported binary media types to an API

Binary media types 597

Amazon API Gateway Developer Guide

• Configure request payload conversions

• Configure response payload conversions

• Convert binary data to text data

• Convert text data to a binary payload

• Pass through a binary payload

Add and update supported binary media types to an API

To enable API Gateway to support a new binary media type, you must add the binary media type
to the binaryMediaTypes list of the RestApi resource. For example, to have API Gateway handle
JPEG images, submit a PATCH request to the RestApi resource:

PATCH /restapis/<restapi_id>

{
 "patchOperations" : [{
 "op" : "add",
 "path" : "/binaryMediaTypes/image~1jpeg"
 }
]
}

The MIME type specification of image/jpeg that is part of the path property value is escaped as
image~1jpeg.

To update the supported binary media types, replace or remove the media type from the
binaryMediaTypes list of the RestApi resource. For example, to change binary support from
JPEG files to raw bytes, submit a PATCH request to the RestApi resource, as follows:

PATCH /restapis/<restapi_id>

{
 "patchOperations" : [{
 "op" : "replace",
 "path" : "/binaryMediaTypes/image~1jpeg",
 "value" : "application/octet-stream"
 },
 {
 "op" : "remove",
 "path" : "/binaryMediaTypes/image~1jpeg"

Binary media types 598

Amazon API Gateway Developer Guide

 }]
}

Configure request payload conversions

If the endpoint requires a binary input, set the contentHandling property of the Integration
resource to CONVERT_TO_BINARY. To do so, submit a PATCH request, as follows:

PATCH /restapis/<restapi_id>/resources/<resource_id>/methods/<http_method>/integration

{
 "patchOperations" : [{
 "op" : "replace",
 "path" : "/contentHandling",
 "value" : "CONVERT_TO_BINARY"
 }]
}

Configure response payload conversions

If the client accepts the result as a binary blob instead of a base64-encoded payload returned from
the endpoint, set the contentHandling property of the IntegrationResponse resource to
CONVERT_TO_BINARY. To do this, submit a PATCH request, as follows:

PATCH /restapis/<restapi_id>/resources/<resource_id>/methods/<http_method>/integration/
responses/<status_code>

{
 "patchOperations" : [{
 "op" : "replace",
 "path" : "/contentHandling",
 "value" : "CONVERT_TO_BINARY"
 }]
}

Convert binary data to text data

To send binary data as a JSON property of the input to AWS Lambda or Kinesis through API
Gateway, do the following:

1. Enable the binary payload support of the API by adding the new binary media type of
application/octet-stream to the API's binaryMediaTypes list.

Binary media types 599

Amazon API Gateway Developer Guide

PATCH /restapis/<restapi_id>

{
 "patchOperations" : [{
 "op" : "add",
 "path" : "/binaryMediaTypes/application~1octet-stream"
 }
]
}

2. Set CONVERT_TO_TEXT on the contentHandling property of the Integration resource and
provide a mapping template to assign the base64-encoded string of the binary data to a JSON
property. In the following example, the JSON property is body and $input.body holds the
base64-encoded string.

PATCH /restapis/<restapi_id>/resources/<resource_id>/methods/<http_method>/
integration

{
 "patchOperations" : [
 {
 "op" : "replace",
 "path" : "/contentHandling",
 "value" : "CONVERT_TO_TEXT"
 },
 {
 "op" : "add",
 "path" : "/requestTemplates/application~1octet-stream",
 "value" : "{\"body\": \"$input.body\"}"
 }
]
}

Convert text data to a binary payload

Suppose a Lambda function returns an image file as a base64-encoded string. To pass this binary
output to the client through API Gateway, do the following:

1. Update the API's binaryMediaTypes list by adding the binary media type of application/
octet-stream, if it is not already in the list.

Binary media types 600

Amazon API Gateway Developer Guide

PATCH /restapis/<restapi_id>

{
 "patchOperations" : [{
 "op" : "add",
 "path" : "/binaryMediaTypes/application~1octet-stream",
 }]
}

2. Set the contentHandling property on the Integration resource to CONVERT_TO_BINARY.
Do not define a mapping template. If you don't define a mapping template, API Gateway invokes
the passthrough template to return the base64-decoded binary blob as the image file to the
client.

PATCH /restapis/<restapi_id>/resources/<resource_id>/methods/<http_method>/
integration/responses/<status_code>

{
 "patchOperations" : [
 {
 "op" : "replace",
 "path" : "/contentHandling",
 "value" : "CONVERT_TO_BINARY"
 }
]
}

Pass through a binary payload

To store an image in an Amazon S3 bucket using API Gateway, do the following:

1. Update the API's binaryMediaTypes list by adding the binary media type of application/
octet-stream, if it isn't already in the list.

PATCH /restapis/<restapi_id>

{
 "patchOperations" : [{
 "op" : "add",
 "path" : "/binaryMediaTypes/application~1octet-stream"

Binary media types 601

Amazon API Gateway Developer Guide

 }
]
}

2. On the contentHandling property of the Integration resource, set CONVERT_TO_BINARY.
Set WHEN_NO_MATCH as the passthroughBehavior property value without defining a
mapping template. This enables API Gateway to invoke the passthrough template.

PATCH /restapis/<restapi_id>/resources/<resource_id>/methods/<http_method>/
integration

{
 "patchOperations" : [
 {
 "op" : "replace",
 "path" : "/contentHandling",
 "value" : "CONVERT_TO_BINARY"
 },
 {
 "op" : "replace",
 "path" : "/passthroughBehaviors",
 "value" : "WHEN_NO_MATCH"
 }
]
}

Import and export content encodings

To import the binaryMediaTypes list on a RestApi, use the following API Gateway extension to
the API's OpenAPI definition file. The extension is also used to export the API settings.

• x-amazon-apigateway-binary-media-types property

To import and export the contentHandling property value on an Integration or
IntegrationResponse resource, use the following API Gateway extensions to the OpenAPI
definitions:

• x-amazon-apigateway-integration object

• x-amazon-apigateway-integration.response object

Binary media types 602

https://docs.aws.amazon.com/apigateway/latest/api/API_RestApi.html

Amazon API Gateway Developer Guide

Examples of binary support

The following examples demonstrate how to access a binary file in Amazon S3 or AWS Lambda
through an API Gateway API.

Topics

• Return binary media from a Lambda proxy integration

• Access binary files in Amazon S3 through an API Gateway API

• Access binary files in Lambda using an API Gateway API

Return binary media from a Lambda proxy integration

To return binary media from an AWS Lambda proxy integration, base64 encode the response from
your Lambda function. You must also configure your API's binary media types. The payload size
limit is 10 MB.

Note

To use a web browser to invoke an API with this example integration, set your API's binary
media types to */*. API Gateway uses the first Accept header from clients to determine
if a response should return binary media. To return binary media when you can't control
the order of Accept header values, such as requests from a browser, set your API's binary
media types to */* (for all content types).

The following example Lambda function can return a binary image from Amazon S3 or text to
clients. The function's response includes a Content-Type header to indicate to the client the
type of data that it returns. The function conditionally sets the isBase64Encoded property in its
response, depending on the type of data that it returns.

Node.js

import { S3Client, GetObjectCommand } from "@aws-sdk/client-s3"

const client = new S3Client({region: 'us-east-2'});

export const handler = async (event) => {

Binary media types 603

Amazon API Gateway Developer Guide

 var randomint = function(max) {
 return Math.floor(Math.random() * max);
 }
 var number = randomint(2);
 if (number == 1){
 const input = {
 "Bucket" : "bucket-name",
 "Key" : "image.png"
 }
 try {
 const command = new GetObjectCommand(input)
 const response = await client.send(command);
 var str = await response.Body.transformToByteArray();
 } catch (err) {
 console.error(err);
 }
 const base64body = Buffer.from(str).toString('base64');
 return {
 'headers': { "Content-Type": "image/png" },
 'statusCode': 200,
 'body': base64body,
 'isBase64Encoded': true
 }
 } else {
 return {
 'headers': { "Content-Type": "text/html" },
 'statusCode': 200,
 'body': "<h1>This is text</h1>",
 }
 }
}

Python

import base64
import boto3
import json
import random

s3 = boto3.client('s3')

def lambda_handler(event, context):
 number = random.randint(0,1)

Binary media types 604

Amazon API Gateway Developer Guide

 if number == 1:
 response = s3.get_object(
 Bucket='bucket-name',
 Key='image.png',
)
 image = response['Body'].read()
 return {
 'headers': { "Content-Type": "image/png" },
 'statusCode': 200,
 'body': base64.b64encode(image).decode('utf-8'),
 'isBase64Encoded': True
 }
 else:
 return {
 'headers': { "Content-type": "text/html" },
 'statusCode': 200,
 'body': "<h1>This is text</h1>",
 }

To learn more about binary media types, see Working with binary media types for REST APIs.

Access binary files in Amazon S3 through an API Gateway API

The following examples show the OpenAPI file used to access images in Amazon S3, how to
download an image from Amazon S3, and how to upload an image to Amazon S3.

Topics

• OpenAPI file of a sample API to access images in Amazon S3

• Download an image from Amazon S3

• Upload an image to Amazon S3

OpenAPI file of a sample API to access images in Amazon S3

The following OpenAPI file shows a sample API that illustrates downloading an image file
from Amazon S3 and uploading an image file to Amazon S3. This API exposes the GET /s3?
key={file-name} and PUT /s3?key={file-name} methods for downloading and uploading a
specified image file. The GET method returns the image file as a base64-encoded string as part of
a JSON output, following the supplied mapping template, in a 200 OK response. The PUT method
takes a raw binary blob as input and returns a 200 OK response with an empty payload.

Binary media types 605

Amazon API Gateway Developer Guide

OpenAPI 3.0

{
 "openapi": "3.0.0",
 "info": {
 "version": "2016-10-21T17:26:28Z",
 "title": "ApiName"
 },
 "paths": {
 "/s3": {
 "get": {
 "parameters": [
 {
 "name": "key",
 "in": "query",
 "required": false,
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Empty"
 }
 }
 }
 },
 "500": {
 "description": "500 response"
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/binarySupportRole",
 "responses": {
 "default": {
 "statusCode": "500"
 },
 "2\\d{2}": {
 "statusCode": "200"

Binary media types 606

Amazon API Gateway Developer Guide

 }
 },
 "requestParameters": {
 "integration.request.path.key": "method.request.querystring.key"
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{key}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "GET",
 "type": "aws"
 }
 },
 "put": {
 "parameters": [
 {
 "name": "key",
 "in": "query",
 "required": false,
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Empty"
 }
 },
 "application/octet-stream": {
 "schema": {
 "$ref": "#/components/schemas/Empty"
 }
 }
 }
 },
 "500": {
 "description": "500 response"
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/binarySupportRole",

Binary media types 607

Amazon API Gateway Developer Guide

 "responses": {
 "default": {
 "statusCode": "500"
 },
 "2\\d{2}": {
 "statusCode": "200"
 }
 },
 "requestParameters": {
 "integration.request.path.key": "method.request.querystring.key"
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{key}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "PUT",
 "type": "aws",
 "contentHandling": "CONVERT_TO_BINARY"
 }
 }
 }
 },
 "x-amazon-apigateway-binary-media-types": [
 "application/octet-stream",
 "image/jpeg"
],
 "servers": [
 {
 "url": "https://abcdefghi.execute-api.us-east-1.amazonaws.com/{basePath}",
 "variables": {
 "basePath": {
 "default": "/v1"
 }
 }
 }
],
 "components": {
 "schemas": {
 "Empty": {
 "type": "object",
 "title": "Empty Schema"
 }
 }
 }
}

Binary media types 608

Amazon API Gateway Developer Guide

OpenAPI 2.0

{
 "swagger": "2.0",
 "info": {
 "version": "2016-10-21T17:26:28Z",
 "title": "ApiName"
 },
 "host": "abcdefghi.execute-api.us-east-1.amazonaws.com",
 "basePath": "/v1",
 "schemes": [
 "https"
],
 "paths": {
 "/s3": {
 "get": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "key",
 "in": "query",
 "required": false,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 },
 "500": {
 "description": "500 response"
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/binarySupportRole",
 "responses": {
 "default": {
 "statusCode": "500"
 },

Binary media types 609

Amazon API Gateway Developer Guide

 "2\\d{2}": {
 "statusCode": "200" }
 },
 "requestParameters": {
 "integration.request.path.key": "method.request.querystring.key"
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{key}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "GET",
 "type": "aws"
 }
 },
 "put": {
 "produces": [
 "application/json", "application/octet-stream"
],
 "parameters": [
 {
 "name": "key",
 "in": "query",
 "required": false,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 },
 "500": {
 "description": "500 response"
 }
 },
 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/binarySupportRole",
 "responses": {
 "default": {
 "statusCode": "500"
 },
 "2\\d{2}": {
 "statusCode": "200"
 }

Binary media types 610

Amazon API Gateway Developer Guide

 },
 "requestParameters": {
 "integration.request.path.key": "method.request.querystring.key"
 },
 "uri": "arn:aws:apigateway:us-west-2:s3:path/{key}",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "PUT",
 "type": "aws",
 "contentHandling" : "CONVERT_TO_BINARY"
 }
 }
 }
 },
 "x-amazon-apigateway-binary-media-types" : ["application/octet-stream", "image/
jpeg"],
 "definitions": {
 "Empty": {
 "type": "object",
 "title": "Empty Schema"
 }
 }
}

Download an image from Amazon S3

To download an image file (image.jpg) as a binary blob from Amazon S3:

GET /v1/s3?key=image.jpg HTTP/1.1
Host: abcdefghi.execute-api.us-east-1.amazonaws.com
Content-Type: application/json
Accept: application/octet-stream

The successful response looks like this:

200 OK HTTP/1.1

[raw bytes]

The raw bytes are returned because the Accept header is set to a binary media type of
application/octet-stream and binary support is enabled for the API.

Binary media types 611

Amazon API Gateway Developer Guide

Alternatively, to download an image file (image.jpg) as a base64-encoded string (formatted as
a JSON property) from Amazon S3, add a response template to the 200 integration response, as
shown in the following bold-faced OpenAPI definition block:

 "x-amazon-apigateway-integration": {
 "credentials": "arn:aws:iam::123456789012:role/binarySupportRole",
 "responses": {
 "default": {
 "statusCode": "500"
 },
 "2\\d{2}": {
 "statusCode": "200",
 "responseTemplates": {
 "application/json": "{\n \"image\": \"$input.body\"\n}"
 }
 }
 },

The request to download the image file looks like the following:

GET /v1/s3?key=image.jpg HTTP/1.1
Host: abcdefghi.execute-api.us-east-1.amazonaws.com
Content-Type: application/json
Accept: application/json

The successful response looks like the following:

200 OK HTTP/1.1

{
 "image": "W3JhdyBieXRlc10="
}

Upload an image to Amazon S3

To upload an image file (image.jpg) as a binary blob to Amazon S3:

PUT /v1/s3?key=image.jpg HTTP/1.1
Host: abcdefghi.execute-api.us-east-1.amazonaws.com
Content-Type: application/octet-stream
Accept: application/json

Binary media types 612

Amazon API Gateway Developer Guide

[raw bytes]

The successful response looks like the following:

200 OK HTTP/1.1

To upload an image file (image.jpg) as a base64-encoded string to Amazon S3:

PUT /v1/s3?key=image.jpg HTTP/1.1
Host: abcdefghi.execute-api.us-east-1.amazonaws.com
Content-Type: application/json
Accept: application/json

W3JhdyBieXRlc10=

The input payload must be a base64-encoded string because the Content-Type header value is
set to application/json. The successful response looks like the following:

200 OK HTTP/1.1

Access binary files in Lambda using an API Gateway API

The following example demonstrates how to access a binary file in AWS Lambda through an API
Gateway API. The sample API is presented in an OpenAPI file. The code example uses the API
Gateway REST API calls.

Topics

• OpenAPI file of a sample API to access images in Lambda

• Download an image from Lambda

• Upload an image to Lambda

OpenAPI file of a sample API to access images in Lambda

The following OpenAPI file shows an example API that illustrates downloading an image file from
Lambda and uploading an image file to Lambda.

OpenAPI 3.0

{

Binary media types 613

Amazon API Gateway Developer Guide

 "openapi": "3.0.0",
 "info": {
 "version": "2016-10-21T17:26:28Z",
 "title": "ApiName"
 },
 "paths": {
 "/lambda": {
 "get": {
 "parameters": [
 {
 "name": "key",
 "in": "query",
 "required": false,
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Empty"
 }
 }
 }
 },
 "500": {
 "description": "500 response"
 }
 },
 "x-amazon-apigateway-integration": {
 "uri": "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/
functions/arn:aws:lambda:us-east-1:123456789012:function:image/invocations",
 "type": "AWS",
 "credentials": "arn:aws:iam::123456789012:role/Lambda",
 "httpMethod": "POST",
 "requestTemplates": {
 "application/json": "{\n \"imageKey\":
 \"$input.params('key')\"\n}"
 },
 "responses": {

Binary media types 614

Amazon API Gateway Developer Guide

 "default": {
 "statusCode": "500"
 },
 "2\\d{2}": {
 "statusCode": "200",
 "responseTemplates": {
 "application/json": "{\n \"image\": \"$input.body\"\n}"
 }
 }
 }
 }
 },
 "put": {
 "parameters": [
 {
 "name": "key",
 "in": "query",
 "required": false,
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Empty"
 }
 },
 "application/octet-stream": {
 "schema": {
 "$ref": "#/components/schemas/Empty"
 }
 }
 }
 },
 "500": {
 "description": "500 response"
 }
 },
 "x-amazon-apigateway-integration": {

Binary media types 615

Amazon API Gateway Developer Guide

 "uri": "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/
functions/arn:aws:lambda:us-east-1:123456789012:function:image/invocations",
 "type": "AWS",
 "credentials": "arn:aws:iam::123456789012:role/Lambda",
 "httpMethod": "POST",
 "contentHandling": "CONVERT_TO_TEXT",
 "requestTemplates": {
 "application/json": "{\n \"imageKey\": \"$input.params('key')\",
 \"image\": \"$input.body\"\n}"
 },
 "responses": {
 "default": {
 "statusCode": "500"
 },
 "2\\d{2}": {
 "statusCode": "200"
 }
 }
 }
 }
 }
 },
 "x-amazon-apigateway-binary-media-types": [
 "application/octet-stream",
 "image/jpeg"
],
 "servers": [
 {
 "url": "https://abcdefghi.execute-api.us-east-1.amazonaws.com/{basePath}",
 "variables": {
 "basePath": {
 "default": "/v1"
 }
 }
 }
],
 "components": {
 "schemas": {
 "Empty": {
 "type": "object",
 "title": "Empty Schema"
 }
 }
 }

Binary media types 616

Amazon API Gateway Developer Guide

}

OpenAPI 2.0

{
 "swagger": "2.0",
 "info": {
 "version": "2016-10-21T17:26:28Z",
 "title": "ApiName"
 },
 "host": "abcdefghi.execute-api.us-east-1.amazonaws.com",
 "basePath": "/v1",
 "schemes": [
 "https"
],
 "paths": {
 "/lambda": {
 "get": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "key",
 "in": "query",
 "required": false,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 },
 "500": {
 "description": "500 response"
 }
 },
 "x-amazon-apigateway-integration": {
 "uri": "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-east-1:123456789012:function:image/invocations",

Binary media types 617

Amazon API Gateway Developer Guide

 "type": "AWS",
 "credentials": "arn:aws:iam::123456789012:role/Lambda",
 "httpMethod": "POST",
 "requestTemplates": {
 "application/json": "{\n \"imageKey\": \"$input.params('key')\"\n}"
 },
 "responses": {
 "default": {
 "statusCode": "500"
 },
 "2\\d{2}": {
 "statusCode": "200",
 "responseTemplates": {
 "application/json": "{\n \"image\": \"$input.body\"\n}"
 }
 }
 }
 }
 },
 "put": {
 "produces": [
 "application/json", "application/octet-stream"
],
 "parameters": [
 {
 "name": "key",
 "in": "query",
 "required": false,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 },
 "500": {
 "description": "500 response"
 }
 },
 "x-amazon-apigateway-integration": {

Binary media types 618

Amazon API Gateway Developer Guide

 "uri": "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-east-1:123456789012:function:image/invocations",
 "type": "AWS",
 "credentials": "arn:aws:iam::123456789012:role/Lambda",
 "httpMethod": "POST",
 "contentHandling" : "CONVERT_TO_TEXT",
 "requestTemplates": {
 "application/json": "{\n \"imageKey\": \"$input.params('key')\",
 \"image\": \"$input.body\"\n}"
 },
 "responses": {
 "default": {
 "statusCode": "500"
 },
 "2\\d{2}": {
 "statusCode": "200"
 }
 }
 }
 }
 }
 },
 "x-amazon-apigateway-binary-media-types" : ["application/octet-stream", "image/
jpeg"],
 "definitions": {
 "Empty": {
 "type": "object",
 "title": "Empty Schema"
 }
 }
}

Download an image from Lambda

To download an image file (image.jpg) as a binary blob from Lambda:

GET /v1/lambda?key=image.jpg HTTP/1.1
Host: abcdefghi.execute-api.us-east-1.amazonaws.com
Content-Type: application/json
Accept: application/octet-stream

The successful response looks like the following:

Binary media types 619

Amazon API Gateway Developer Guide

200 OK HTTP/1.1

[raw bytes]

To download an image file (image.jpg) as a base64-encoded string (formatted as a JSON
property) from Lambda:

GET /v1/lambda?key=image.jpg HTTP/1.1
Host: abcdefghi.execute-api.us-east-1.amazonaws.com
Content-Type: application/json
Accept: application/json

The successful response looks like the following:

200 OK HTTP/1.1

{
 "image": "W3JhdyBieXRlc10="
}

Upload an image to Lambda

To upload an image file (image.jpg) as a binary blob to Lambda:

PUT /v1/lambda?key=image.jpg HTTP/1.1
Host: abcdefghi.execute-api.us-east-1.amazonaws.com
Content-Type: application/octet-stream
Accept: application/json

[raw bytes]

The successful response looks like the following:

200 OK

To upload an image file (image.jpg) as a base64-encoded string to Lambda:

PUT /v1/lambda?key=image.jpg HTTP/1.1
Host: abcdefghi.execute-api.us-east-1.amazonaws.com
Content-Type: application/json

Binary media types 620

Amazon API Gateway Developer Guide

Accept: application/json

W3JhdyBieXRlc10=

The successful response looks like the following:

200 OK

Invoking a REST API in Amazon API Gateway

To call a deployed API, clients submit requests to the URL for the API Gateway component service
for API execution, known as execute-api.

The base URL for REST APIs is in the following format:

https://restapi_id.execute-api.region.amazonaws.com/stage_name/

where restapi_id is the API identifier, region is the AWS Region, and stage_name is the stage
name of the API deployment.

Important

Before you can invoke an API, you must deploy it in API Gateway. For instructions on
deploying an API, see Deploying a REST API in Amazon API Gateway.

Topics

• Obtaining an API's invoke URL

• Invoking an API

• Use the API Gateway console to test a REST API method

• Call REST API through generated SDKs

• How to invoke a private API

Obtaining an API's invoke URL

You can use the console, the AWS CLI, or an exported OpenAPI definition to obtain an API's invoke
URL.

Invoke 621

Amazon API Gateway Developer Guide

Obtaining an API's invoke URL using the console

The following procedure shows how to obtain an API's invoke URL in the REST API console.

To obtain an API's invoke URL using the REST API console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose a deployed API.

3. From the main navigation pane, choose Stage.

4. Under Stage details, choose the copy icon to copy your API's invoke URL.

This URL is for the root resource of your API.

5. To obtain an API's invoke URL for another resource in your API, expand the stage under the
secondary navigation pane, and then choose a method.

6. Choose the copy icon to copy your API's resource-level invoke URL.

Invoke 622

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Obtaining an API's invoke URL using the AWS CLI

The following procedure shows how to obtain an API's invoke URL using the AWS CLI.

To obtain an API's invoke URL using the AWS CLI

1. Use the following command to obtain the rest-api-id. This command returns all rest-
api-id values in your Region. For more information, see get-rest-apis.

aws apigateway get-rest-apis

2. Replace the example rest-api-id with your rest-api-id, replace the example {stage-
name} with your {stage-name}, and replace the {region}, with your Region.

Invoke 623

https://docs.aws.amazon.com/cli/latest/reference/apigateway/get-rest-apis.html

Amazon API Gateway Developer Guide

https://{restapi_id}.execute-api.{region}.amazonaws.com/{stage_name}/

Obtaining an API's invoke URL using the exported OpenAPI definition file of the API

You can also construct the root URL by combining the host and basePath fields of an exported
OpenAPI definition file of the API. For instructions on how to export your API, see the section
called “Export a REST API”.

Invoking an API

You can call your deployed API using the browser, curl, or other applications, like Postman.

Additionally, you can use the API Gateway console to test an API call. Test uses the API Gateway's
TestInvoke feature, which allows API testing before the API is deployed. For more information,
see the section called “Use the console to test a REST API method”.

Note

Query string parameter values in an invocation URL cannot contain %%.

Invoking an API using a web browser

If your API permits anonymous access, you can use any web browser to invoke any GET method.
Enter the complete invocation URL in the browser's address bar.

For other methods or any authentication-required calls, you must specify a payload or sign the
requests. You can handle these in a script behind an HTML page or in a client application using one
of the AWS SDKs.

Invoking an API using curl

You can use a tool like curl in your terminal to call your API. The following example curl command
invokes the GET method on the getUsers resource of the prod stage of an API.

Linux or Macintosh

curl -X GET 'https://b123abcde4.execute-api.us-west-2.amazonaws.com/prod/getUsers'

Invoke 624

http://www.postman.com/
https://curl.haxx.se/

Amazon API Gateway Developer Guide

Windows

curl -X GET "https://b123abcde4.execute-api.us-west-2.amazonaws.com/prod/getUsers"

Use the API Gateway console to test a REST API method

Use the API Gateway console to test a REST API method.

Topics

• Prerequisites

• Test a method with the API Gateway console

Prerequisites

• You must specify the settings for the methods you want to test. Follow the instructions in Set
up REST API methods in API Gateway.

Test a method with the API Gateway console

Important

Testing methods with the API Gateway console might result in changes to resources that
cannot be undone. Testing a method with the API Gateway console is the same as calling
the method outside of the API Gateway console. For example, if you use the API Gateway
console to call a method that deletes an API's resources, if the method call is successful, the
API's resources will be deleted.

To test a method

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose a REST API.

3. In the Resources pane, choose the method you want to test.

4. Choose the Test tab. You might need to choose the right arrow button to show the tab.

Invoke 625

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Enter values in any of the displayed boxes (such as Query strings, Headers, and Request
body). The console includes these values in the method request in default application/json
form.

For additional options you might need to specify, contact the API owner.

5. Choose Test. The following information will be displayed:

• Request is the resource's path that was called for the method.

• Status is the response's HTTP status code.

• Latency is the time between the receipt of the request from the caller and the returned
response.

• Response body is the HTTP response body.

• Response headers are the HTTP response headers.

Tip

Depending on the mapping, the HTTP status code, response body, and response
headers might be different from those sent from the Lambda function, HTTP proxy,
or AWS service proxy.

• Log shows the simulated Amazon CloudWatch Logs entries that would have been written if
this method were called outside of the API Gateway console.

Invoke 626

Amazon API Gateway Developer Guide

Note

Although the CloudWatch Logs entries are simulated, the results of the method call
are real.

In addition to using the API Gateway console, you can use AWS CLI or an AWS SDK for API Gateway
to test invoking a method. To do so using AWS CLI, see test-invoke-method.

Call REST API through generated SDKs

This section shows how to call an API through a generated SDK in a client app written in Java, Java
for Android, JavaScript, Ruby, Objective-C and Swift.

Topics

• Use a Java SDK generated by API Gateway for a REST API

• Use an Android SDK generated by API Gateway for a REST API

• Use a JavaScript SDK generated by API Gateway for a REST API

• Use a Ruby SDK generated by API Gateway for a REST API

• Use iOS SDK generated by API Gateway for a REST API in Objective-C or Swift

Use a Java SDK generated by API Gateway for a REST API

In this section, we outline the steps to use a Java SDK generated by API Gateway for a REST API, by
using the Simple Calculator API as an example. Before proceeding, you must complete the steps in
Generate SDKs for an API using the API Gateway console.

To install and use a Java SDK generated by API Gateway

1. Extract the contents of the API Gateway-generated .zip file that you downloaded earlier.

2. Download and install Apache Maven (must be version 3.5 or later).

3. Download and install JDK 8.

4. Set the JAVA_HOME environment variable.

5. Go to the unzipped SDK folder where the pom.xml file is located. This folder is generated-
code by default. Run the mvn install command to install the compiled artifact files to your
local Maven repository. This creates a target folder containing the compiled SDK library.

Invoke 627

https://docs.aws.amazon.com/cli/latest/reference/apigateway/test-invoke-method.html
https://maven.apache.org/
https://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html

Amazon API Gateway Developer Guide

6. Type the following command in an empty directory to create a client project stub to call the
API using the installed SDK library.

mvn -B archetype:generate \
 -DarchetypeGroupdId=org.apache.maven.archetypes \
 -DgroupId=examples.aws.apig.simpleCalc.sdk.app \
 -DartifactId=SimpleCalc-sdkClient

Note

The separator \ in the preceding command is included for readability. The whole
command should be on a single line without the separator.

This command creates an application stub. The application stub contains a pom.xml file
and an src folder under the project's root directory (SimpleCalc-sdkClient in the
preceding command). Initially, there are two source files: src/main/java/{package-
path}/App.java and src/test/java/{package-path}/AppTest.java. In this example,
{package-path} is examples/aws/apig/simpleCalc/sdk/app. This package path is
derived from the DarchetypeGroupdId value. You can use the App.java file as a template
for your client application, and you can add others in the same folder if needed. You can use
the AppTest.java file as a unit test template for your application, and you can add other test
code files to the same test folder as needed.

7. Update the package dependencies in the generated pom.xml file to the following, substituting
your project's groupId, artifactId, version, and name properties, if necessary:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/
POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>examples.aws.apig.simpleCalc.sdk.app</groupId>
 <artifactId>SimpleCalc-sdkClient</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>SimpleCalc-sdkClient</name>
 <url>http://maven.apache.org</url>

 <dependencies>
 <dependency>

Invoke 628

Amazon API Gateway Developer Guide

 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-core</artifactId>
 <version>1.11.94</version>
 </dependency>
 <dependency>
 <groupId>my-apig-api-examples</groupId>
 <artifactId>simple-calc-sdk</artifactId>
 <version>1.0.0</version>
 </dependency>

 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 <scope>test</scope>
 </dependency>

 <dependency>
 <groupId>commons-io</groupId>
 <artifactId>commons-io</artifactId>
 <version>2.5</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.5.1</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Invoke 629

Amazon API Gateway Developer Guide

Note

When a newer version of dependent artifact of aws-java-sdk-core is incompatible
with the version specified above (1.11.94), you must update the <version> tag to
the new version.

8. Next, we show how to call the API using the SDK by calling the
getABOp(GetABOpRequest req), getApiRoot(GetApiRootRequest req), and
postApiRoot(PostApiRootRequest req) methods of the SDK. These methods
correspond to the GET /{a}/{b}/{op}, GET /?a={x}&b={y}&op={operator}, and
POST / methods, with a payload of {"a": x, "b": y, "op": "operator"} API
requests, respectively.

Update the App.java file as follows:

package examples.aws.apig.simpleCalc.sdk.app;

import java.io.IOException;

import com.amazonaws.opensdk.config.ConnectionConfiguration;
import com.amazonaws.opensdk.config.TimeoutConfiguration;

import examples.aws.apig.simpleCalc.sdk.*;
import examples.aws.apig.simpleCalc.sdk.model.*;
import examples.aws.apig.simpleCalc.sdk.SimpleCalcSdk.*;

public class App
{
 SimpleCalcSdk sdkClient;

 public App() {
 initSdk();
 }

 // The configuration settings are for illustration purposes and may not be a
 recommended best practice.
 private void initSdk() {
 sdkClient = SimpleCalcSdk.builder()
 .connectionConfiguration(
 new ConnectionConfiguration()
 .maxConnections(100)

Invoke 630

Amazon API Gateway Developer Guide

 .connectionMaxIdleMillis(1000))
 .timeoutConfiguration(
 new TimeoutConfiguration()
 .httpRequestTimeout(3000)
 .totalExecutionTimeout(10000)
 .socketTimeout(2000))
 .build();

 }
 // Calling shutdown is not necessary unless you want to exert explicit control
 of this resource.
 public void shutdown() {
 sdkClient.shutdown();
 }

 // GetABOpResult getABOp(GetABOpRequest getABOpRequest)
 public Output getResultWithPathParameters(String x, String y, String operator)
 {
 operator = operator.equals("+") ? "add" : operator;
 operator = operator.equals("/") ? "div" : operator;

 GetABOpResult abopResult = sdkClient.getABOp(new
 GetABOpRequest().a(x).b(y).op(operator));
 return abopResult.getResult().getOutput();
 }

 public Output getResultWithQueryParameters(String a, String b, String op) {
 GetApiRootResult rootResult = sdkClient.getApiRoot(new
 GetApiRootRequest().a(a).b(b).op(op));
 return rootResult.getResult().getOutput();
 }

 public Output getResultByPostInputBody(Double x, Double y, String o) {
 PostApiRootResult postResult = sdkClient.postApiRoot(
 new PostApiRootRequest().input(new Input().a(x).b(y).op(o)));
 return postResult.getResult().getOutput();
 }

 public static void main(String[] args)
 {
 System.out.println("Simple calc");
 // to begin
 App calc = new App();

Invoke 631

Amazon API Gateway Developer Guide

 // call the SimpleCalc API
 Output res = calc.getResultWithPathParameters("1", "2", "-");
 System.out.printf("GET /1/2/-: %s\n", res.getC());

 // Use the type query parameter
 res = calc.getResultWithQueryParameters("1", "2", "+");
 System.out.printf("GET /?a=1&b=2&op=+: %s\n", res.getC());

 // Call POST with an Input body.
 res = calc.getResultByPostInputBody(1.0, 2.0, "*");
 System.out.printf("PUT /\n\n{\"a\":1, \"b\":2,\"op\":\"*\"}\n %s\n",
 res.getC());

 }
}

In the preceding example, the configuration settings used to instantiate the SDK client are
for illustration purposes and are not necessarily recommended best practice. Also, calling
sdkClient.shutdown() is optional, especially if you need precise control on when to free
up resources.

We have shown the essential patterns to call an API using a Java SDK. You can extend the
instructions to calling other API methods.

Use an Android SDK generated by API Gateway for a REST API

In this section, we will outline the steps to use an Android SDK generated by API Gateway for a
REST API. Before proceeding further, you must have already completed the steps in Generate SDKs
for an API using the API Gateway console.

Note

The generated SDK is not compatible with Android 4.4 and earlier. For more information,
see the section called “Important notes”.

To install and use an Android SDK generated by API Gateway

1. Extract the contents of the API Gateway-generated .zip file that you downloaded earlier.

Invoke 632

Amazon API Gateway Developer Guide

2. Download and install Apache Maven (preferably version 3.x).

3. Download and install JDK 8.

4. Set the JAVA_HOME environment variable.

5. Run the mvn install command to install the compiled artifact files to your local Maven
repository. This creates a target folder containing the compiled SDK library.

6. Copy the SDK file (the name of which is derived from the Artifact Id and Artifact Version you
specified when generating the SDK, e.g., simple-calcsdk-1.0.0.jar) from the target
folder, along with all of the other libraries from the target/lib folder, into your project's
lib folder.

If you use Android Studio, create a libs folder under your client app module and copy the
required .jar file into this folder. Verify that the dependencies section in the module's gradle
file contains the following.

 compile fileTree(include: ['*.jar'], dir: 'libs')
 compile fileTree(include: ['*.jar'], dir: 'app/libs')

Make sure no duplicated .jar files are declared.

7. Use the ApiClientFactory class to initialize the API Gateway-generated SDK. For example:

ApiClientFactory factory = new ApiClientFactory();

// Create an instance of your SDK. Here, 'SimpleCalcClient.java' is the compiled
 java class for the SDK generated by API Gateway.
final SimpleCalcClient client = factory.build(SimpleCalcClient.class);

// Invoke a method:
// For the 'GET /?a=1&b=2&op=+' method exposed by the API, you can invoke it by
 calling the following SDK method:

Result output = client.rootGet("1", "2", "+");

// where the Result class of the SDK corresponds to the Result model of the
 API.
//

// For the 'GET /{a}/{b}/{op}' method exposed by the API, you can call the
 following SDK method to invoke the request,

Invoke 633

https://maven.apache.org/
https://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html

Amazon API Gateway Developer Guide

Result output = client.aBOpGet(a, b, c);

// where a, b, c can be "1", "2", "add", respectively.

// For the following API method:
// POST /
// host: ...
// Content-Type: application/json
//
// { "a": 1, "b": 2, "op": "+" }
// you can call invoke it by calling the rootPost method of the SDK as follows:
Input body = new Input();
input.a=1;
input.b=2;
input.op="+";
Result output = client.rootPost(body);

// where the Input class of the SDK corresponds to the Input model of the API.

// Parse the result:
// If the 'Result' object is { "a": 1, "b": 2, "op": "add", "c":3"}, you
 retrieve the result 'c') as

String result=output.c;

8. To use an Amazon Cognito credentials provider to authorize calls to your API, use the
ApiClientFactory class to pass a set of AWS credentials by using the SDK generated by API
Gateway, as shown in the following example.

// Use CognitoCachingCredentialsProvider to provide AWS credentials
// for the ApiClientFactory
AWSCredentialsProvider credentialsProvider = new CognitoCachingCredentialsProvider(
 context, // activity context
 "identityPoolId", // Cognito identity pool id
 Regions.US_EAST_1 // region of Cognito identity pool
);

ApiClientFactory factory = new ApiClientFactory()
 .credentialsProvider(credentialsProvider);

Invoke 634

Amazon API Gateway Developer Guide

9. To set an API key by using the API Gateway- generated SDK, use code similar to the following.

ApiClientFactory factory = new ApiClientFactory()
 .apiKey("YOUR_API_KEY");

Use a JavaScript SDK generated by API Gateway for a REST API

Note

These instructions assume you have already completed the instructions in Generate SDKs
for an API using the API Gateway console.

Important

If your API only has ANY methods defined, the generated SDK package will not contain an
apigClient.js file, and you will need to define the ANY methods yourself.

To install, initiate and call a JavaScript SDK generated by API Gateway for a REST API

1. Extract the contents of the API Gateway-generated .zip file you downloaded earlier.

2. Enable cross-origin resource sharing (CORS) for all of the methods the SDK generated by API
Gateway will call. For instructions, see Enabling CORS for a REST API resource.

3. In your web page, include references to the following scripts.

<script type="text/javascript" src="lib/axios/dist/axios.standalone.js"></script>
<script type="text/javascript" src="lib/CryptoJS/rollups/hmac-sha256.js"></script>
<script type="text/javascript" src="lib/CryptoJS/rollups/sha256.js"></script>
<script type="text/javascript" src="lib/CryptoJS/components/hmac.js"></script>
<script type="text/javascript" src="lib/CryptoJS/components/enc-base64.js"></
script>
<script type="text/javascript" src="lib/url-template/url-template.js"></script>
<script type="text/javascript" src="lib/apiGatewayCore/sigV4Client.js"></script>

Invoke 635

Amazon API Gateway Developer Guide

<script type="text/javascript" src="lib/apiGatewayCore/apiGatewayClient.js"></
script>
<script type="text/javascript" src="lib/apiGatewayCore/simpleHttpClient.js"></
script>
<script type="text/javascript" src="lib/apiGatewayCore/utils.js"></script>
<script type="text/javascript" src="apigClient.js"></script>

4. In your code, initialize the SDK generated by API Gateway by using code similar to the
following.

var apigClient = apigClientFactory.newClient();

To initialize the SDK generated by API Gateway with AWS credentials, use code similar to the
following. If you use AWS credentials, all requests to the API will be signed.

var apigClient = apigClientFactory.newClient({
 accessKey: 'ACCESS_KEY',
 secretKey: 'SECRET_KEY',
});

To use an API key with the SDK generated by API Gateway, pass the API key as a parameter to
the Factory object by using code similar to the following. If you use an API key, it is specified
as part of the x-api-key header and all requests to the API will be signed. This means you
must set the appropriate CORS Accept headers for each request.

var apigClient = apigClientFactory.newClient({
 apiKey: 'API_KEY'
});

5. Call the API methods in API Gateway by using code similar to the following. Each call returns a
promise with a success and failure callbacks.

var params = {
 // This is where any modeled request parameters should be added.
 // The key is the parameter name, as it is defined in the API in API Gateway.
 param0: '',
 param1: ''
};

var body = {

Invoke 636

Amazon API Gateway Developer Guide

 // This is where you define the body of the request,
};

var additionalParams = {
 // If there are any unmodeled query parameters or headers that must be
 // sent with the request, add them here.
 headers: {
 param0: '',
 param1: ''
 },
 queryParams: {
 param0: '',
 param1: ''
 }
};

apigClient.methodName(params, body, additionalParams)
 .then(function(result){
 // Add success callback code here.
 }).catch(function(result){
 // Add error callback code here.
 });

Here, the methodName is constructed from the method request's resource path and the HTTP
verb. For the SimpleCalc API, the SDK methods for the API methods of

1. GET /?a=...&b=...&op=...
2. POST /

 { "a": ..., "b": ..., "op": ...}
3. GET /{a}/{b}/{op}

the corresponding SDK methods are as follows:

1. rootGet(params); // where params={"a": ..., "b": ..., "op": ...} is
 resolved to the query parameters
2. rootPost(null, body); // where body={"a": ..., "b": ..., "op": ...}
3. aBOpGet(params); // where params={"a": ..., "b": ..., "op": ...} is
 resolved to the path parameters

Invoke 637

Amazon API Gateway Developer Guide

Use a Ruby SDK generated by API Gateway for a REST API

Note

These instructions assume you already completed the instructions in Generate SDKs for an
API using the API Gateway console.

To install, instantiate, and call a Ruby SDK generated by API Gateway for a REST API

1. Unzip the downloaded Ruby SDK file. The generated SDK source is shown as follows.

2. Build a Ruby Gem from the generated SDK source, using the following shell commands in a
terminal window:

change to /simplecalc-sdk directory
cd simplecalc-sdk

build the generated gem
gem build simplecalc-sdk.gemspec

Invoke 638

Amazon API Gateway Developer Guide

After this, simplecalc-sdk-1.0.0.gem becomes available.

3. Install the gem:

gem install simplecalc-sdk-1.0.0.gem

4. Create a client application. Instantiate and initialize the Ruby SDK client in the app:

require 'simplecalc-sdk'
client = SimpleCalc::Client.new(
 http_wire_trace: true,
 retry_limit: 5,
 http_read_timeout: 50
)

If the API has authorization of the AWS_IAM type is configured, you can include the caller's
AWS credentials by supplying accessKey and secretKey during the initialization:

require 'pet-sdk'
client = Pet::Client.new(
 http_wire_trace: true,
 retry_limit: 5,
 http_read_timeout: 50,
 access_key_id: 'ACCESS_KEY',
 secret_access_key: 'SECRET_KEY'
)

5. Make API calls through the SDK in the app.

Tip

If you are not familiar with the SDK method call conventions, you can review the
client.rb file in the generated SDK lib folder. The folder contains documentation
of each supported API method call.

To discover supported operations:

to show supported operations:
puts client.operation_names

Invoke 639

Amazon API Gateway Developer Guide

This results in the following display, corresponding to the API methods of GET /?
a={.}&b={.}&op={.}, GET /{a}/{b}/{op}, and POST /, plus a payload of the {a:"…",
b:"…", op:"…"} format, respectively:

[:get_api_root, :get_ab_op, :post_api_root]

To invoke the GET /?a=1&b=2&op=+ API method, call the following the Ruby SDK method:

resp = client.get_api_root({a:"1", b:"2", op:"+"})

To invoke the POST / API method with a payload of {a: "1", b: "2", "op": "+"}, call
the following Ruby SDK method:

resp = client.post_api_root(input: {a:"1", b:"2", op:"+"})

To invoke the GET /1/2/+ API method, call the following Ruby SDK method:

resp = client.get_ab_op({a:"1", b:"2", op:"+"})

The successful SDK method calls return the following response:

resp : {
 result: {
 input: {
 a: 1,
 b: 2,
 op: "+"
 },
 output: {
 c: 3
 }
 }
}

Invoke 640

Amazon API Gateway Developer Guide

Use iOS SDK generated by API Gateway for a REST API in Objective-C or Swift

In this tutorial, we will show how to use an iOS SDK generated by API Gateway for a REST API in an
Objective-C or Swift app to call the underlying API. We will use the SimpleCalc API as an example
to illustrate the following topics:

• How to install the required AWS Mobile SDK components into your Xcode project

• How to create the API client object before calling the API's methods

• How to call the API methods through the corresponding SDK methods on the API client object

• How to prepare a method input and parse its result using the corresponding model classes of the
SDK

Topics

• Use generated iOS SDK (Objective-C) to call API

• Use generated iOS SDK (Swift) to call API

Use generated iOS SDK (Objective-C) to call API

Before beginning the following procedure, you must complete the steps in Generate SDKs for
an API using the API Gateway console for iOS in Objective-C and download the .zip file of the
generated SDK.

Install the AWS mobile SDK and an iOS SDK generated by API Gateway in an Objective-C
project

The following procedure describes how to install the SDK.

To install and use an iOS SDK generated by API Gateway in Objective-C

1. Extract the contents of the API Gateway-generated .zip file you downloaded earlier. Using
the SimpleCalc API, you may want to rename the unzipped SDK folder to something like
sdk_objc_simple_calc. In this SDK folder there is a README.md file and a Podfile file.
The README.md file contains the instructions to install and use the SDK. This tutorial provides
details about these instructions. The installation leverages CocoaPods to import required API
Gateway libraries and other dependent AWS Mobile SDK components. You must update the
Podfile to import the SDKs into your app's Xcode project. The unarchived SDK folder also
contains a generated-src folder that contains the source code of the generated SDK of your
API.

Invoke 641

https://cocoapods.org

Amazon API Gateway Developer Guide

2. Launch Xcode and create a new iOS Objective-C project. Make a note of the project's target.
You will need to set it in the Podfile.

3. To import the AWS Mobile SDK for iOS into the Xcode project by using CocoaPods, do the
following:

a. Install CocoaPods by running the following command in a terminal window:

sudo gem install cocoapods
pod setup

b. Copy the Podfile file from the extracted SDK folder into the same directory containing
your Xcode project file. Replace the following block:

target '<YourXcodeTarget>' do
 pod 'AWSAPIGateway', '~> 2.4.7'
end

with your project's target name:

target 'app_objc_simple_calc' do
 pod 'AWSAPIGateway', '~> 2.4.7'
end

If your Xcode project already contains a file named Podfile, add the following line of
code to it:

pod 'AWSAPIGateway', '~> 2.4.7'

c. Open a terminal window and run the following command:
Invoke 642

Amazon API Gateway Developer Guide

pod install

This installs the API Gateway component and other dependent AWS Mobile SDK
components.

d. Close the Xcode project and then open the .xcworkspace file to relaunch Xcode.

e. Add all of the .h and .m files from the extracted SDK's generated-src directory into
your Xcode project.

To import the AWS Mobile SDK for iOS Objective-C into your project by explicitly downloading
AWS Mobile SDK or using Carthage, follow the instructions in the README.md file. Be sure to
use only one of these options to import the AWS Mobile SDK.

Call API methods using the iOS SDK generated by API Gateway in an Objective-C project

When you generated the SDK with the prefix of SIMPLE_CALC for this SimpleCalc API with two
models for input (Input) and output (Result) of the methods, in the SDK, the resulting API

Invoke 643

https://github.com/Carthage/Carthage#installing-carthage

Amazon API Gateway Developer Guide

client class becomes SIMPLE_CALCSimpleCalcClient and the corresponding data classes are
SIMPLE_CALCInput and SIMPLE_CALCResult, respectively. The API requests and responses are
mapped to the SDK methods as follows:

• The API request of

GET /?a=...&b=...&op=...

becomes the SDK method of

(AWSTask *)rootGet:(NSString *)op a:(NSString *)a b:(NSString *)b

The AWSTask.result property is of the SIMPLE_CALCResult type if the Result model was
added to the method response. Otherwise, the property is of the NSDictionary type.

• This API request of

POST /

{
 "a": "Number",
 "b": "Number",
 "op": "String"
}

becomes the SDK method of

(AWSTask *)rootPost:(SIMPLE_CALCInput *)body

• The API request of

GET /{a}/{b}/{op}

becomes the SDK method of

(AWSTask *)aBOpGet:(NSString *)a b:(NSString *)b op:(NSString *)op

The following procedure describes how to call the API methods in Objective-C app source code; for
example, as part of the viewDidLoad delegate in a ViewController.m file.

Invoke 644

Amazon API Gateway Developer Guide

To call the API through the iOS SDK generated by API Gateway

1. Import the API client class header file to make the API client class callable in the app:

#import "SIMPLE_CALCSimpleCalc.h"

The #import statement also imports SIMPLE_CALCInput.h and SIMPLE_CALCResult.h
for the two model classes.

2. Instantiate the API client class:

SIMPLE_CALCSimpleCalcClient *apiInstance = [SIMPLE_CALCSimpleCalcClient
 defaultClient];

To use Amazon Cognito with the API, set the defaultServiceConfiguration property
on the default AWSServiceManager object, as shown in the following, before calling the
defaultClient method to create the API client object (shown in the preceding example):

AWSCognitoCredentialsProvider *creds = [[AWSCognitoCredentialsProvider alloc]
 initWithRegionType:AWSRegionUSEast1 identityPoolId:your_cognito_pool_id];
AWSServiceConfiguration *configuration = [[AWSServiceConfiguration alloc]
 initWithRegion:AWSRegionUSEast1 credentialsProvider:creds];
AWSServiceManager.defaultServiceManager.defaultServiceConfiguration =
 configuration;

3. Call the GET /?a=1&b=2&op=+ method to perform 1+2:

[[apiInstance rootGet: @"+" a:@"1" b:@"2"] continueWithBlock:^id _Nullable(AWSTask
 * _Nonnull task) {
 _textField1.text = [self handleApiResponse:task];
 return nil;
}];

where the helper function handleApiResponse:task formats the result as a string to be
displayed in a text field (_textField1).

- (NSString *)handleApiResponse:(AWSTask *)task {
 if (task.error != nil) {
 return [NSString stringWithFormat: @"Error: %@", task.error.description];
 } else if (task.result != nil && [task.result isKindOfClass:[SIMPLE_CALCResult
 class]]) {

Invoke 645

Amazon API Gateway Developer Guide

 return [NSString stringWithFormat:@"%@ %@ %@ = %@\n",task.result.input.a,
 task.result.input.op, task.result.input.b, task.result.output.c];
 }
 return nil;
}

The resulting display is 1 + 2 = 3.

4. Call the POST / with a payload to perform 1-2:

SIMPLE_CALCInput *input = [[SIMPLE_CALCInput alloc] init];
 input.a = [NSNumber numberWithInt:1];
 input.b = [NSNumber numberWithInt:2];
 input.op = @"-";
 [[apiInstance rootPost:input] continueWithBlock:^id _Nullable(AWSTask *
 _Nonnull task) {
 _textField2.text = [self handleApiResponse:task];
 return nil;
 }];

The resulting display is 1 - 2 = -1.

5. Call the GET /{a}/{b}/{op} to perform 1/2:

[[apiInstance aBOpGet:@"1" b:@"2" op:@"div"] continueWithBlock:^id
 _Nullable(AWSTask * _Nonnull task) {
 _textField3.text = [self handleApiResponse:task];
 return nil;
}];

The resulting display is 1 div 2 = 0.5. Here, div is used in place of / because the simple
Lambda function in the backend does not handle URL encoded path variables.

Use generated iOS SDK (Swift) to call API

Before beginning the following procedure, you must complete the steps in Generate SDKs for an
API using the API Gateway console for iOS in Swift and download the .zip file of the generated
SDK.

Topics

• Install AWS mobile SDK and API Gateway-generated SDK in a Swift project

Invoke 646

Amazon API Gateway Developer Guide

• Call API methods through the iOS SDK generated by API Gateway in a Swift project

Install AWS mobile SDK and API Gateway-generated SDK in a Swift project

The following procedure describes how to install the SDK.

To install and use an iOS SDK generated by API Gateway in Swift

1. Extract the contents of the API Gateway-generated .zip file you downloaded earlier. Using
the SimpleCalc API, you may want to rename the unzipped SDK folder to something like
sdk_swift_simple_calc. In this SDK folder there is a README.md file and a Podfile file.
The README.md file contains the instructions to install and use the SDK. This tutorial provides
details about these instructions. The installation leverages CocoaPods to import required AWS
Mobile SDK components. You must update the Podfile to import the SDKs into your Swift
app's Xcode project. The unarchived SDK folder also contains a generated-src folder that
contains the source code of the generated SDK of your API.

2. Launch Xcode and create a new iOS Swift project. Make a note of the project's target. You will
need to set it in the Podfile.

3. To import the required AWS Mobile SDK components into the Xcode project by using
CocoaPods, do the following:

a. If it is not installed, install CocoaPods by running the following command in a terminal
window:

sudo gem install cocoapods

Invoke 647

https://cocoapods.org

Amazon API Gateway Developer Guide

pod setup

b. Copy the Podfile file from the extracted SDK folder into the same directory containing
your Xcode project file. Replace the following block:

target '<YourXcodeTarget>' do
 pod 'AWSAPIGateway', '~> 2.4.7'
end

with your project's target name as shown:

target 'app_swift_simple_calc' do
 pod 'AWSAPIGateway', '~> 2.4.7'
end

If your Xcode project already contains a Podfile with the correct target, you can simply
add the following line of code to the do ... end loop:

pod 'AWSAPIGateway', '~> 2.4.7'

c. Open a terminal window and run the following command in the app directory:

pod install

This installs the API Gateway component and any dependent AWS Mobile SDK
components into the app's project.

d. Close the Xcode project and then open the *.xcworkspace file to relaunch Xcode.

e. Add all of the SDK's header files (.h) and Swift source code files (.swift) from the
extracted generated-src directory to your Xcode project.

Invoke 648

Amazon API Gateway Developer Guide

f. To enable calling the Objective-C libraries of the AWS Mobile SDK from your Swift code
project, set the Bridging_Header.h file path on the Objective-C Bridging Header
property under the Swift Compiler - General setting of your Xcode project configuration:

Tip

You can type bridging in the search box of Xcode to locate the Objective-C
Bridging Header property.

g. Build the Xcode project to verify that it is properly configured before proceeding further.
If your Xcode uses a more recent version of Swift than the one supported for the AWS

Invoke 649

Amazon API Gateway Developer Guide

Mobile SDK, you will get Swift compiler errors. In this case, set the Use Legacy Swift
Language Version property to Yes under the Swift Compiler - Version setting:

To import the AWS Mobile SDK for iOS in Swift into your project by explicitly downloading the
AWS Mobile SDK or using Carthage, follow the instructions in the README.md file that comes
with the SDK package. Be sure to use only one of these options to import the AWS Mobile SDK.

Call API methods through the iOS SDK generated by API Gateway in a Swift project

When you generated the SDK with the prefix of SIMPLE_CALC for this SimpleCalc API with two
models to describe the input (Input) and output (Result) of the API's requests and responses,
in the SDK, the resulting API client class becomes SIMPLE_CALCSimpleCalcClient and the
corresponding data classes are SIMPLE_CALCInput and SIMPLE_CALCResult, respectively. The
API requests and responses are mapped to the SDK methods as follows:

• The API request of

GET /?a=...&b=...&op=...

becomes the SDK method of

public func rootGet(op: String?, a: String?, b: String?) -> AWSTask

The AWSTask.result property is of the SIMPLE_CALCResult type if the Result model was
added to the method response. Otherwise, it is of the NSDictionary type.

• This API request of

Invoke 650

https://github.com/Carthage/Carthage#installing-carthage

Amazon API Gateway Developer Guide

POST /

{
 "a": "Number",
 "b": "Number",
 "op": "String"
}

becomes the SDK method of

public func rootPost(body: SIMPLE_CALCInput) -> AWSTask

• The API request of

GET /{a}/{b}/{op}

becomes the SDK method of

public func aBOpGet(a: String, b: String, op: String) -> AWSTask

The following procedure describes how to call the API methods in Swift app source code; for
example, as part of the viewDidLoad() delegate in a ViewController.m file.

To call the API through the iOS SDK generated by API Gateway

1. Instantiate the API client class:

let client = SIMPLE_CALCSimpleCalcClient.default()

To use Amazon Cognito with the API, set a default AWS service configuration (shown
following) before getting the default method (shown previously):

let credentialsProvider =
 AWSCognitoCredentialsProvider(regionType: AWSRegionType.USEast1, identityPoolId:
 "my_pool_id")
let configuration = AWSServiceConfiguration(region: AWSRegionType.USEast1,
 credentialsProvider: credentialsProvider)

Invoke 651

Amazon API Gateway Developer Guide

AWSServiceManager.defaultServiceManager().defaultServiceConfiguration =
 configuration

2. Call the GET /?a=1&b=2&op=+ method to perform 1+2:

client.rootGet("+", a: "1", b:"2").continueWithBlock {(task: AWSTask) -> AnyObject?
 in
 self.showResult(task)
 return nil
}

where the helper function self.showResult(task) prints the result or error to the console;
for example:

func showResult(task: AWSTask) {
 if let error = task.error {
 print("Error: \(error)")
 } else if let result = task.result {
 if result is SIMPLE_CALCResult {
 let res = result as! SIMPLE_CALCResult
 print(String(format:"%@ %@ %@ = %@", res.input!.a!, res.input!.op!,
 res.input!.b!, res.output!.c!))
 } else if result is NSDictionary {
 let res = result as! NSDictionary
 print("NSDictionary: \(res)")
 }
 }
}

In a production app, you can display the result or error in a text field. The resulting display is 1
+ 2 = 3.

3. Call the POST / with a payload to perform 1-2:

let body = SIMPLE_CALCInput()
body.a=1
body.b=2
body.op="-"
client.rootPost(body).continueWithBlock {(task: AWSTask) -> AnyObject? in
 self.showResult(task)
 return nil
}

Invoke 652

Amazon API Gateway Developer Guide

The resultant display is 1 - 2 = -1.

4. Call the GET /{a}/{b}/{op} to perform 1/2:

client.aBOpGet("1", b:"2", op:"div").continueWithBlock {(task: AWSTask) ->
 AnyObject? in
 self.showResult(task)
 return nil
}

The resulting display is 1 div 2 = 0.5. Here, div is used in place of / because the simple
Lambda function in the backend does not handle URL encoded path variables.

How to invoke a private API

Private APIs are accessible only from within your VPCs, and the resource policies must allow access
from the VPCs and VPC endpoints you have configured. How you access your private API will
depend upon whether or not you have enabled private DNS on the VPC endpoint. For example,
while accessing private API from on-premises network via AWS Direct Connect, you will have
private DNS enabled on the VPC endpoint. In such a case, follow the steps outlined in Invoking
Your Private API Using Endpoint-Specific Public DNS Hostnames.

Once you have deployed a private API, you can access it via private DNS (if you've enabled private
DNS naming) and via public DNS.

To get the DNS names for your private API, do the following:

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc/.

2. In the left navigation pane, choose Endpoints and then choose your interface VPC endpoint
for API Gateway.

3. In the Details pane, you'll see 5 values in the DNS names field. The first 3 are the public DNS
names for your API. The other 2 are the private DNS names for it.

Invoke 653

https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

Amazon API Gateway Developer Guide

Invoking your private API using private DNS names

Warning

When you select the Enable Private DNS Name option while creating an interface VPC
endpoint for API Gateway, the VPC where the VPC Endpoint is present won't be able to
access public (edge-optimized and regional) APIs. For more information, see Why can't I
connect to my public API from an API Gateway VPC endpoint?.

If you've enabled private DNS, you can access your private API using the private DNS names as
follows:

{restapi-id}.execute-api.{region}.amazonaws.com

The base URL to invoke the API is in the following format:

https://{restapi-id}.execute-api.{region}.amazonaws.com/{stage}

For example, assuming you set up the GET /pets and GET /pets/{petId} methods in this
example, and assuming that your rest API ID was 01234567ab and your region was us-west-2,
you could test your API by typing the following URLs in a browser:

https://01234567ab.execute-api.us-west-2.amazonaws.com/test/pets

and

https://01234567ab.execute-api.us-west-2.amazonaws.com/test/pets/1

Alternatively, you could use the following cURL commands:

curl -X GET https://01234567ab.execute-api.us-west-2.amazonaws.com/test/pets

and

curl -X GET https://01234567ab.execute-api.us-west-2.amazonaws.com/test/pets/2

Invoke 654

https://aws.amazon.com/premiumsupport/knowledge-center/api-gateway-vpc-connections/
https://aws.amazon.com/premiumsupport/knowledge-center/api-gateway-vpc-connections/

Amazon API Gateway Developer Guide

Accessing your private API using AWS Direct Connect

You can also use AWS Direct Connect to establish a dedicated private connection from an on-
premises network to Amazon VPC and access your private API endpoint over that connection by
using public DNS names.

You can also use private DNS names to access your private API from an on-premises network by
setting up an Amazon Route 53 Resolver inbound endpoint and forwarding it all DNS queries of
the private DNS from your remote network. For more information, see Forwarding inbound DNS
queries to your VPCs in the Amazon Route 53 Developer Guide.

Accessing your private API using a Route53 alias

You can associate or disassociate a VPC endpoint with your private API by using the procedure
outlined in Associate or Disassociate a VPC Endpoint with a Private REST API.

Once you associate your private API's REST API ID with the VPC endpoints you'll be calling your
REST API from, you can use the following format base URL to invoke the API using a Route53 alias.

The generated base URL is in the following format:

https://{rest-api-id}-{vpce-id}.execute-api.{region}.amazonaws.com/{stage}

For example, assuming you set up the GET /pets and GET /pets/{petId} methods in
this example, and assuming that your API's API ID was 01234567ab, VPC Endpoint ID was
vpce-01234567abcdef012, and your Region was us-west-2, you can invoke your API as:

curl -v https://01234567ab-vpce-01234567abcdef012.execute-api.us-west-2.amazonaws.com/
test/pets/

Invoking your private API using endpoint-specific public DNS hostnames

You can access your private API using endpoint-specific DNS hostnames. These are public DNS
hostnames containing the VPC endpoint ID or API ID for your private API.

The generated base URL is in the following format:

https://{public-dns-hostname}.execute-api.{region}.vpce.amazonaws.com/{stage}

For example, assuming you set up the GET /pets and GET /pets/{petId} methods in this
example, and assuming that your API's API ID was abc1234, its public DNS hostname was vpce-

Invoke 655

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resolver-forwarding-inbound-queries.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resolver-forwarding-inbound-queries.html

Amazon API Gateway Developer Guide

def-01234567, and your Region was us-west-2, you could test your API via its VPCE ID by using
the Host header in a cURL command, as in the following example:

curl -v https://vpce-def-01234567.execute-api.us-west-2.vpce.amazonaws.com/test/pets -H
 'Host: abc1234.execute-api.us-west-2.amazonaws.com'

Alternatively, you can access your private API via its API ID by using the x-apigw-api-id header
in a cURL command in the following format:

curl -v https://{public-dns-hostname}.execute-api.{region}.vpce.amazonaws.com/test -
H'x-apigw-api-id:{api-id}'

Configuring a REST API using OpenAPI

You can use API Gateway to import a REST API from an external definition file into API Gateway.
Currently, API Gateway supports OpenAPI v2.0 and OpenAPI v3.0 definition files, with exceptions
listed in Amazon API Gateway important notes for REST APIs. You can update an API by
overwriting it with a new definition, or you can merge a definition with an existing API. You specify
the options by using a mode query parameter in the request URL.

For a tutorial on using the Import API feature from the API Gateway console, see Tutorial: Create a
REST API by importing an example.

Topics

• Import an edge-optimized API into API Gateway

• Import a regional API into API Gateway

• Import an OpenAPI file to update an existing API definition

• Set the OpenAPI basePath property

• AWS variables for OpenAPI import

• Errors and warnings during import

• Export a REST API from API Gateway

Import an edge-optimized API into API Gateway

You can import an API's OpenAPI definition file to create a new edge-optimized API by specifying
the EDGE endpoint type as an additional input, besides the OpenAPI file, to the import operation.
You can do so using the API Gateway console, AWS CLI, or an AWS SDK.

OpenAPI 656

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.1.md

Amazon API Gateway Developer Guide

For a tutorial on using the Import API feature from the API Gateway console, see Tutorial: Create a
REST API by importing an example.

Topics

• Import an edge-optimized API using the API Gateway console

• Import an edge-optimized API using the AWS CLI

Import an edge-optimized API using the API Gateway console

To import an edge-optimized API using the API Gateway console, do the following:

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose Create API.

3. Under REST API, choose Import.

4. Copy an API's OpenAPI definition and paste it into the code editor, or choose Choose file to
load an OpenAPI file from a local drive.

5. For API endpoint type, select Edge-optimized.

6. Choose Create API to start importing the OpenAPI definitions.

Import an edge-optimized API using the AWS CLI

To import an API from an OpenAPI definition file to create a new edge-optimized API using the
AWS CLI, use the import-rest-api command as follows:

aws apigateway import-rest-api \
 --fail-on-warnings \
 --body 'file://path/to/API_OpenAPI_template.json'

or with an explicit specification of the endpointConfigurationTypes query string parameter to
EDGE:

aws apigateway import-rest-api \
 --parameters endpointConfigurationTypes=EDGE \
 --fail-on-warnings \
 --body 'file://path/to/API_OpenAPI_template.json'

OpenAPI 657

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Import a regional API into API Gateway

When importing an API, you can choose the regional endpoint configuration for the API. You can
use the API Gateway console, the AWS CLI, or an AWS SDK.

When you export an API, the API endpoint configuration is not included in the exported API
definitions.

For a tutorial on using the Import API feature from the API Gateway console, see Tutorial: Create a
REST API by importing an example.

Topics

• Import a regional API using the API Gateway console

• Import a regional API using the AWS CLI

Import a regional API using the API Gateway console

To import an API of a regional endpoint using the API Gateway console, do the following:

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose Create API.

3. Under REST API, choose Import.

4. Copy an API's OpenAPI definition and paste it into the code editor, or choose Choose file to
load an OpenAPI file from a local drive.

5. For API endpoint type, select Regional.

6. Choose Create API to start importing the OpenAPI definitions.

Import a regional API using the AWS CLI

To import an API from an OpenAPI definition file using the AWS CLI, use the import-rest-api
command:

aws apigateway import-rest-api \
 --parameters endpointConfigurationTypes=REGIONAL \
 --fail-on-warnings \
 --body 'file://path/to/API_OpenAPI_template.json'

OpenAPI 658

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Import an OpenAPI file to update an existing API definition

You can import API definitions only to update an existing API, without changing its endpoint
configuration, as well as stages and stage variables, or references to API keys.

The import-to-update operation can occur in two modes: merge or overwrite.

When an API (A) is merged into another (B), the resulting API retains the definitions of both A
and B if the two APIs do not share any conflicting definitions. When conflicts arise, the method
definitions of the merging API (A) overrides the corresponding method definitions of the merged
API (B). For example, suppose B has declared the following methods to return 200 and 206
responses:

GET /a
POST /a

and A declares the following method to return 200 and 400 responses:

GET /a

When A is merged into B, the resulting API yields the following methods:

GET /a

which returns 200 and 400 responses, and

POST /a

which returns 200 and 206 responses.

Merging an API is useful when you have decomposed your external API definitions into multiple,
smaller parts and only want to apply changes from one of those parts at a time. For example,
this might occur if multiple teams are responsible for different parts of an API and have changes
available at different rates. In this mode, items from the existing API that aren't specifically defined
in the imported definition are left alone.

When an API (A) overwrites another API (B), the resulting API takes the definitions of the
overwriting API (A). Overwriting an API is useful when an external API definition contains the

OpenAPI 659

Amazon API Gateway Developer Guide

complete definition of an API. In this mode, items from an existing API that aren't specifically
defined in the imported definition are deleted.

To merge an API, submit a PUT request to https://apigateway.<region>.amazonaws.com/
restapis/<restapi_id>?mode=merge. The restapi_id path parameter value specifies the
API to which the supplied API definition will be merged.

The following code snippet shows an example of the PUT request to merge an OpenAPI API
definition in JSON, as the payload, with the specified API already in API Gateway.

PUT /restapis/<restapi_id>?mode=merge
Host:apigateway.<region>.amazonaws.com
Content-Type: application/json
Content-Length: ...

An OpenAPI API definition in JSON

The merging update operation takes two complete API definitions and merges them together. For a
small and incremental change, you can use the resource update operation.

To overwrite an API, submit a PUT request to https://
apigateway.<region>.amazonaws.com/restapis/<restapi_id>?mode=overwrite.
The restapi_id path parameter specifies the API that will be overwritten with the supplied API
definitions.

The following code snippet shows an example of an overwriting request with the payload of a
JSON-formatted OpenAPI definition:

PUT /restapis/<restapi_id>?mode=overwrite
Host:apigateway.<region>.amazonaws.com
Content-Type: application/json
Content-Length: ...

An OpenAPI API definition in JSON

When the mode query parameter isn't specified, merge is assumed.

OpenAPI 660

https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateResource.html

Amazon API Gateway Developer Guide

Note

The PUT operations are idempotent, but not atomic. That means if a system error occurs
part way through processing, the API can end up in a bad state. However, repeating the
operation successfully puts the API into the same final state as if the first operation had
succeeded.

Set the OpenAPI basePath property

In OpenAPI 2.0, you can use the basePath property to provide one or more path parts that
precede each path defined in the paths property. Because API Gateway has several ways to
express a resource's path, the Import API feature provides the following options for interpreting
the basePath property during import: ignore, prepend, and split.

In OpenAPI 3.0, basePath is no longer a top-level property. Instead, API Gateway uses a server
variable as a convention. The Import API feature provides the same options for interpreting the
base path during import. The base path is identified as follows:

• If the API doesn't contain any basePath variables, the Import API feature checks the
server.url string to see if it contains a path beyond "/". If it does, that path is used as the
base path.

• If the API contains only one basePath variable, the Import API feature uses it as the base path,
even if it's not referenced in the server.url.

• If the API contains multiple basePath variables, the Import API feature uses only the first one as
the base path.

Ignore

If the OpenAPI file has a basePath value of /a/b/c and the paths property contains /e and /f,
the following POST or PUT request:

POST /restapis?mode=import&basepath=ignore

PUT /restapis/api_id?basepath=ignore

results in the following resources in the API:

OpenAPI 661

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://swagger.io/docs/specification/api-host-and-base-path/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#serverVariableObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#serverVariableObject

Amazon API Gateway Developer Guide

• /

• /e

• /f

The effect is to treat the basePath as if it was not present, and all of the declared API resources
are served relative to the host. This can be used, for example, when you have a custom domain
name with an API mapping that doesn't include a Base Path and a Stage value that refers to your
production stage.

Note

API Gateway automatically creates a root resource for you, even if it isn't explicitly declared
in your definition file.

When unspecified, basePath takes ignore by default.

Prepend

If the OpenAPI file has a basePath value of /a/b/c and the paths property contains /e and /f,
the following POST or PUT request:

POST /restapis?mode=import&basepath=prepend

PUT /restapis/api_id?basepath=prepend

results in the following resources in the API:

• /

• /a

• /a/b

• /a/b/c

• /a/b/c/e

• /a/b/c/f

OpenAPI 662

Amazon API Gateway Developer Guide

The effect is to treat the basePath as specifying additional resources (without methods) and to
add them to the declared resource set. This can be used, for example, when different teams are
responsible for different parts of an API and the basePath could reference the path location for
each team's API part.

Note

API Gateway automatically creates intermediate resources for you, even if they aren't
explicitly declared in your definition.

Split

If the OpenAPI file has a basePath value of /a/b/c and the paths property contains /e and /f,
the following POST or PUT request:

POST /restapis?mode=import&basepath=split

PUT /restapis/api_id?basepath=split

results in the following resources in the API:

• /

• /b

• /b/c

• /b/c/e

• /b/c/f

The effect is to treat top-most path part, /a, as the beginning of each resource's path, and to
create additional (no method) resources within the API itself. This could, for example, be used when
a is a stage name that you want to expose as part of your API.

AWS variables for OpenAPI import

You can use the following AWS variables in OpenAPI definitions. API Gateway resolves the variables
when the API is imported. To specify a variable, use ${variable-name}.

OpenAPI 663

Amazon API Gateway Developer Guide

AWS variables

Variable name Description

AWS::AccountId The AWS account ID that
imports the API—for
example, 123456789012.

AWS::Partition The AWS partition in which
the API is imported. For
standard AWS Regions, the
partition is aws.

AWS::Region The AWS Region in which the
API is imported—for example,
us-east-2 .

AWS variables example

The following example uses AWS variables to specify an AWS Lambda function for an integration.

OpenAPI 3.0

openapi: "3.0.1"
info:
 title: "tasks-api"
 version: "v1.0"
paths:
 /:
 get:
 summary: List tasks
 description: Returns a list of tasks
 responses:
 200:
 description: "OK"
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: "#/components/schemas/Task"

OpenAPI 664

Amazon API Gateway Developer Guide

 500:
 description: "Internal Server Error"
 content: {}
 x-amazon-apigateway-integration:
 uri:
 arn:${AWS::Partition}:apigateway:${AWS::Region}:lambda:path/2015-03-31/
functions/arn:${AWS::Partition}:lambda:${AWS::Region}:
${AWS::AccountId}:function:LambdaFunctionName/invocations
 responses:
 default:
 statusCode: "200"
 passthroughBehavior: "when_no_match"
 httpMethod: "POST"
 contentHandling: "CONVERT_TO_TEXT"
 type: "aws_proxy"
components:
 schemas:
 Task:
 type: object
 properties:
 id:
 type: integer
 name:
 type: string
 description:
 type: string

Errors and warnings during import

Errors during import

During the import, errors can be generated for major issues like an invalid OpenAPI document.
Errors are returned as exceptions (for example, BadRequestException) in an unsuccessful
response. When an error occurs, the new API definition is discarded and no change is made to the
existing API.

Warnings during import

During the import, warnings can be generated for minor issues like a missing model reference. If
a warning occurs, the operation will continue if the failonwarnings=false query expression
is appended to the request URL. Otherwise, the updates will be rolled back. By default,

OpenAPI 665

Amazon API Gateway Developer Guide

failonwarnings is set to false. In such cases, warnings are returned as a field in the resulting
RestApi resource. Otherwise, warnings are returned as a message in the exception.

Export a REST API from API Gateway

Once you created and configured a REST API in API Gateway, using the API Gateway console or
otherwise, you can export it to an OpenAPI file using the API Gateway Export API, which is part
of the Amazon API Gateway Control Service. To use the API Gateway Export API, you need to sign
your API requests. For more information about signing requests, see Signing AWS API requests in
the IAM User Guide. You have options to include the API Gateway integration extensions, as well as
the Postman extensions, in the exported OpenAPI definition file.

Note

When exporting the API using the AWS CLI, be sure to include the extensions parameter as
shown in the following example, to ensure that the x-amazon-apigateway-request-
validator extension is included:

aws apigateway get-export --parameters extensions='apigateway' --rest-api-id
 abcdefg123 --stage-name dev --export-type swagger latestswagger2.json

You cannot export an API if its payloads are not of the application/json type. If you try, you
will get an error response stating that JSON body models are not found.

Request to export a REST API

With the Export API, you export an existing REST API by submitting a GET request, specifying the
to-be-exported API as part of URL paths. The request URL is of the following format:

OpenAPI 3.0

 https://<host>/restapis/<restapi_id>/stages/<stage_name>/exports/oas30

OpenAPI 2.0

OpenAPI 666

https://docs.aws.amazon.com/apigateway/api-reference/resource/rest-api/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
http://www.postman.com

Amazon API Gateway Developer Guide

 https://<host>/restapis/<restapi_id>/stages/<stage_name>/exports/swagger

You can append the extensions query string to specify whether to include API Gateway
extensions (with the integration value) or Postman extensions (with the postman value).

In addition, you can set the Accept header to application/json or application/yaml to
receive the API definition output in JSON or YAML format, respectively.

For more information about submitting GET requests using the API Gateway Export API, see
GetExport.

Note

If you define models in your API, they must be for the content type of "application/json"
for API Gateway to export the model. Otherwise, API Gateway throws an exception with the
"Only found non-JSON body models for ..." error message.
Models must contain properties or be defined as a particular JSONSchema type.

Download REST API OpenAPI definition in JSON

To export and download a REST API in OpenAPI definitions in JSON format:

OpenAPI 3.0

GET /restapis/<restapi_id>/stages/<stage_name>/exports/oas30
Host: apigateway.<region>.amazonaws.com
Accept: application/json

OpenAPI 2.0

GET /restapis/<restapi_id>/stages/<stage_name>/exports/swagger
Host: apigateway.<region>.amazonaws.com
Accept: application/json

OpenAPI 667

https://docs.aws.amazon.com/apigateway/latest/api/API_GetExport.html

Amazon API Gateway Developer Guide

Here, <region> could be, for example, us-east-1. For all the regions where API Gateway is
available, see Regions and Endpoints

Download REST API OpenAPI definition in YAML

To export and download a REST API in OpenAPI definitions in YAML format:

OpenAPI 3.0

GET /restapis/<restapi_id>/stages/<stage_name>/exports/oas30
Host: apigateway.<region>.amazonaws.com
Accept: application/yaml

OpenAPI 2.0

GET /restapis/<restapi_id>/stages/<stage_name>/exports/swagger
Host: apigateway.<region>.amazonaws.com
Accept: application/yaml

Download REST API OpenAPI definition with Postman extensions in JSON

To export and download a REST API in OpenAPI definitions with Postman in JSON format:

OpenAPI 3.0

GET /restapis/<restapi_id>/stages/<stage_name>/exports/oas30?extensions=postman
Host: apigateway.<region>.amazonaws.com
Accept: application/json

OpenAPI 668

https://docs.aws.amazon.com/general/latest/gr/rande.html#apigateway_region

Amazon API Gateway Developer Guide

OpenAPI 2.0

GET /restapis/<restapi_id>/stages/<stage_name>/exports/swagger?extensions=postman
Host: apigateway.<region>.amazonaws.com
Accept: application/json

Download REST API OpenAPI definition with API Gateway integration in YAML

To export and download a REST API in OpenAPI definitions with API Gateway integration in YAML
format:

OpenAPI 3.0

GET /restapis/<restapi_id>/stages/<stage_name>/exports/oas30?extensions=integrations
Host: apigateway.<region>.amazonaws.com
Accept: application/yaml

OpenAPI 2.0

GET /restapis/<restapi_id>/stages/<stage_name>/exports/swagger?
extensions=integrations
Host: apigateway.<region>.amazonaws.com
Accept: application/yaml

Export REST API using the API Gateway console

After deploying your REST API to a stage, you can proceed to export the API in the stage to an
OpenAPI file using the API Gateway console.

In the Stages pane in the API Gateway console, choose Stage actions, Export.

OpenAPI 669

Amazon API Gateway Developer Guide

Specify an API specification type, Format, and Extensions to download your API's OpenAPI
definition.

Publishing REST APIs for customers to invoke

Simply creating and developing an API Gateway API doesn't automatically make it callable by
your users. To make it callable, you must deploy your API to a stage. In addition, you might want
to customize the URL that your users will use to access your API. You can give it a domain that is
consistent with your brand or is more memorable than the default URL for your API.

In this section, you can learn how to deploy your API and customize the URL that you provide to
users to access it.

Note

To augment the security of your API Gateway APIs, the execute-api.
{region}.amazonaws.com domain is registered in the Public Suffix List (PSL). For further
security, we recommend that you use cookies with a __Host- prefix if you ever need to set
sensitive cookies in the default domain name for your API Gateway APIs. This practice will
help to defend your domain against cross-site request forgery attempts (CSRF). For more
information see the Set-Cookie page in the Mozilla Developer Network.

Topics

• Deploying a REST API in Amazon API Gateway

• Setting up custom domain names for REST APIs

Publish 670

https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

Amazon API Gateway Developer Guide

Deploying a REST API in Amazon API Gateway

After creating your API, you must deploy it to make it callable by your users.

To deploy an API, you create an API deployment and associate it with a stage. A stage is a logical
reference to a lifecycle state of your API (for example, dev, prod, beta, v2). API stages are
identified by the API ID and stage name. They're included in the URL that you use to invoke the
API. Each stage is a named reference to a deployment of the API and is made available for client
applications to call.

Important

Every time you update an API, you must redeploy the API to an existing stage or to a new
stage. Updating an API includes modifying routes, methods, integrations, authorizers, and
anything else other than stage settings.

As your API evolves, you can continue to deploy it to different stages as different versions of the
API. You can also deploy your API updates as a canary release deployment. This enables your API
clients to access, on the same stage, the production version through the production release, and
the updated version through the canary release.

To call a deployed API, the client submits a request against an API's URL. The URL is determined by
an API's protocol (HTTP(S) or (WSS)), hostname, stage name, and (for REST APIs) resource path. The
hostname and the stage name determine the API's base URL.

Using the API's default domain name, the base URL of a REST API (for example) in a given stage
({stageName}) is in the following format:

https://{restapi-id}.execute-api.{region}.amazonaws.com/{stageName}

To make the API's default base URL more user-friendly, you can create a custom domain name (for
example, api.example.com) to replace the default hostname of the API. To support multiple APIs
under the custom domain name, you must map an API stage to a base path.

With a custom domain name of {api.example.com} and the API stage mapped to a base path
of ({basePath}) under the custom domain name, the base URL of a REST API becomes the
following:

Deploying a REST API 671

Amazon API Gateway Developer Guide

https://{api.example.com}/{basePath}

For each stage, you can optimize API performance by adjusting the default account-level request
throttling limits and enabling API caching. You can also enable logging for API calls to CloudTrail or
CloudWatch, and can select a client certificate for the backend to authenticate the API requests. In
addition, you can override stage-level settings for individual methods and define stage variables to
pass stage-specific environment contexts to the API integration at runtime.

Stages enable robust version control of your API. For example, you can deploy an API to a test
stage and a prod stage, and use the test stage as a test build and use the prod stage as a stable
build. After the updates pass the test, you can promote the test stage to the prod stage. The
promotion can be done by redeploying the API to the prod stage or updating a stage variable
value from the stage name of test to that of prod.

In this section, we discuss how to deploy an API by using the API Gateway console or calling the API
Gateway REST API. To use other tools, see the documentation of the AWS CLI or an AWS SDK.

Topics

• Deploy a REST API in API Gateway

• Setting up a stage for a REST API

• Set up an API Gateway canary release deployment

• Updates to a REST API that require redeployment

Deploy a REST API in API Gateway

In API Gateway, a REST API deployment is represented by a Deployment resource. It's similar to an
executable of an API that is represented by a RestApi resource.

For the client to call your API, you must create a deployment and associate a stage with it. A
stage is represented by a Stage resource. It represents a snapshot of the API, including methods,
integrations, models, mapping templates, and Lambda authorizers (formerly known as custom
authorizers). When you update the API, you can redeploy the API by associating a new stage with
the existing deployment. We discuss creating a stage in the section called “Set up a stage”.

Topics

• Create a deployment using the AWS CLI

Deploying a REST API 672

https://console.aws.amazon.com/apigateway
https://docs.aws.amazon.com/apigateway/latest/api/
https://docs.aws.amazon.com/apigateway/latest/api/
https://docs.aws.amazon.com/cli/latest/reference/apigateway
https://aws.amazon.com/tools/#sdk
https://docs.aws.amazon.com/apigateway/latest/api/API_Deployment.html
https://docs.aws.amazon.com/apigateway/latest/api/API_RestApi.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html

Amazon API Gateway Developer Guide

• Deploying a REST API from the API Gateway console

Create a deployment using the AWS CLI

When you create a deployment, you instantiate the Deployment resource. You can use the API
Gateway console, the AWS CLI, an AWS SDK, or the API Gateway REST API to create a deployment.

To use the CLI to create a deployment, use the create-deployment command:

 aws apigateway create-deployment --rest-api-id <rest-api-id> --region <region>

The API is not callable until you associate this deployment with a stage. With an existing stage, you
can do this by updating the stage's deploymentId property with the newly created deployment ID
(<deployment-id>).

 aws apigateway update-stage --region <region> \
 --rest-api-id <rest-api-id> \
 --stage-name <stage-name> \
 --patch-operations op='replace',path='/deploymentId',value='<deployment-id>'

When deploying an API the first time, you can combine the stage creation and deployment creation
at the same time:

 aws apigateway create-deployment --region <region> \
 --rest-api-id <rest-api-id> \
 --stage-name <stage-name>

This is what is done behind the scenes in the API Gateway console when you deploy an API the first
time, or when you redeploy the API to a new stage.

Deploying a REST API from the API Gateway console

You must have created a REST API before deploying it for the first time. For more information, see
Creating a REST API in Amazon API Gateway.

Topics

• Deploy a REST API to a stage

• Redeploy a REST API to a stage

Deploying a REST API 673

https://docs.aws.amazon.com/apigateway/latest/api/API_Deployment.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html#deploymentId

Amazon API Gateway Developer Guide

• Update the stage configuration of a REST API deployment

• Set stage variables for a REST API deployment

• Associate a stage with a different REST API deployment

Deploy a REST API to a stage

The API Gateway console lets you deploy an API by creating a deployment and associating it with a
new or existing stage.

Note

To associate a stage in API Gateway with a different deployment, see Associate a stage with
a different REST API deployment instead.

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the APIs navigation pane, choose the API you want to deploy.

3. In the Resources pane, choose Deploy API.

4. For Stage, select from the following:

a. To create a new stage, select New stage, and then enter a name in Stage name.
Optionally, you can provide a description for the deployment in Deployment description.

b. To choose an existing stage, select the stage name from the dropdown menu. You might
want to provide a description of the new deployment in Deployment description.

c. To create a deployment that is not associated with a stage, select No stage. Later, you can
associate this deployment with a stage.

5. Choose Deploy.

Redeploy a REST API to a stage

To redeploy an API, perform the same steps as in the section called “Deploy a REST API to a stage”.
You can reuse the same stage as many times as desired.

Update the stage configuration of a REST API deployment

After an API is deployed, you can modify the stage settings to enable or disable the API
cache, logging, or request throttling. You can also choose a client certificate for the backend

Deploying a REST API 674

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

to authenticate API Gateway and set stage variables to pass deployment context to the API
integration at runtime. For more information, see Update stage settings.

Important

After modifying stage settings, you must redeploy the API for the changes to take effect.

Note

If the updated settings, such as enabling logging, requires a new IAM role, you can add the
required IAM role without redeploying the API. However, it can take a few minutes before
the new IAM role takes effect. Before that happens, traces of your API calls are not logged
even if you have enabled the logging option.

Set stage variables for a REST API deployment

For a deployment, you can set or modify stage variables to pass deployment-specific data to the
API integration at runtime. You can do this on the Stage Variables tab in the Stage Editor. For
more information, see instructions in Setting up stage variables for a REST API deployment.

Associate a stage with a different REST API deployment

Because a deployment represents an API snapshot and a stage defines a path into a snapshot,
you can choose different deployment-stage combinations to control how users call into different
versions of the API. This is useful, for example, when you want to roll back API state to a previous
deployment or to merge a 'private branch' of the API into the public one.

The following procedure shows how to do this using the Stage Editor in the API Gateway console.
It is assumed that you must have deployed an API more than once.

1. If you're not already on the Stages pane, in the main navigation pane, choose Stages.

2. Select the stage you want to update.

3. On the Deployment history tab, select the deployment you want the stage to use.

4. Choose Change active deployment.

5. Confirm you want to change the active deployment and choose Change active deployment in
the Make active deployment dialog box.

Deploying a REST API 675

Amazon API Gateway Developer Guide

Setting up a stage for a REST API

A stage is a named reference to a deployment, which is a snapshot of the API. You use a Stage to
manage and optimize a particular deployment. For example, you can configure stage settings to
enable caching, customize request throttling, configure logging, define stage variables, or attach a
canary release for testing.

Topics

• Setting up a stage using the API Gateway console

• Setting up tags for an API stage in API Gateway

• Setting up stage variables for a REST API deployment

Setting up a stage using the API Gateway console

Topics

• Create a new stage

• Update stage settings

• Override stage-level settings

• Delete a stage

Create a new stage

After the initial deployment, you can add more stages and associate them with existing
deployments. You can use the API Gateway console to create a new stage, or you can choose an
existing stage while deploying an API. In general, you can add a new stage to an API deployment
before redeploying the API. To create a new stage using the API Gateway console, follow these
steps:

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose a REST API.

3. In the main navigation pane, choose Stages under an API.

4. From the Stages navigation pane, choose Create stage.

5. For Stage name, enter a name, for example, prod.

Deploying a REST API 676

https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Note

Stage names can only contain alphanumeric characters, hyphens, and underscores.
Maximum length is 128 characters.

6. (Optional). For Description, enter a stage description.

7. For Deployment, select the date and time of the existing API deployment you want to
associate with this stage.

8. Under Additional settings, you can specify additional settings for your stage.

9. Choose Create stage.

Update stage settings

After a successful deployment of an API, the stage is populated with default settings. You can use
the console or the API Gateway REST API to change the stage settings, including API caching and
logging. The following steps show you how to do so using the Stage editor of the API Gateway
console.

Update stage settings using the API Gateway console

These steps assume that you've already deployed the API to a stage.

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose a REST API.

3. In the main navigation pane, choose Stages under an API.

4. In the Stages pane, choose the name of the stage.

5. In the Stage details section, choose Edit.

6. (Optional) For Stage description, edit the description.

7. For Additional settings, you modify the following settings:

Cache settings

To enable API caching for the stage, turn on Provision API cache. Then configure the
Default method-level caching, Cache capacity, Encrypt cache data, Cache time-to-live
(TTL), as well as any requirements for per-key cache invalidation.

Deploying a REST API 677

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Caching is not active until you turn on the default method-level caching or turn on the
method-level cache for a specific method.

For more information about cache settings, see Enabling API caching to enhance
responsiveness.

Note

If you enable API caching for an API stage, your AWS account might be charged for
API caching. Caching isn't eligible for the AWS Free Tier.

Throttling settings

To set stage-level throttling targets for all of the methods associated with this API, turn on
Throttling.

For Rate, enter a target rate. This is the rate, in requests per second, that tokens are added
to the token bucket. The stage-level rate must not be more than the account-level rate as
specified in API Gateway quotas for configuring and running a REST API.

For Burst, enter a target burst rate. The burst rate, is the capacity of the token bucket. This
allows more requests through for a period of time than the target rate. This stage-level
burst rate must not be more than the account-level burst rate as specified in API Gateway
quotas for configuring and running a REST API.

Note

Throttling rates are not hard limits, and are applied on a best-effort basis. In some
cases, clients can exceed the targets that you set. Don’t rely on throttling to control
costs or block access to an API. Consider using AWS Budgets to monitor costs and
AWS WAF to manage API requests.

Deploying a REST API 678

https://docs.aws.amazon.com/cost-management/latest/userguide/budgets-managing-costs.html
https://docs.aws.amazon.com/waf/latest/developerguide/waf-chapter.html

Amazon API Gateway Developer Guide

Firewall and certificate settings

To associate an AWS WAF web ACL with the stage, select a web ACL from the Web ACL
dropdown list. If desired, choose Block API Request if WebACL cannot be evaluated (Fail-
Close).

To select a client certificate for your stage, select a certificate from the Client certificate
dropdown menu.

8. Choose Save.

9. To enable Amazon CloudWatch Logs for all of the methods associated with this stage of this
API Gateway API, in the Logs and tracing section, choose Edit.

Note

To enable CloudWatch Logs, you must also specify the ARN of an IAM role that enables
API Gateway to write information to CloudWatch Logs on behalf of your user. To do so,
choose Settings from the APIs main navigation pane. Then, for CloudWatch log role,
enter the ARN of an IAM role.
For common application scenarios, the IAM role could attach the managed policy of
AmazonAPIGatewayPushToCloudWatchLogs, which contains the following access
policy statement:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents",
 "logs:GetLogEvents",
 "logs:FilterLogEvents"
],
 "Resource": "*"
 }
]

Deploying a REST API 679

Amazon API Gateway Developer Guide

}

The IAM role must also contain the following trust relationship statement:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

For more information about CloudWatch, see the Amazon CloudWatch User Guide.

10. Select a logging level from the CloudWatch Logs dropdown menu. The logging levels are the
following:

• Off – Logging is not turned on for this stage.

• Errors only – Logging is enabled for errors only.

• Errors and info logs – Logging is enabled for all events.

• Full request and response logs – Detailed logging is enabled for all events. This can be
useful to troubleshoot APIs, but can result in logging sensitive data.

Note

We recommend that you don't use Full request and response logs for production
APIs.

11. Select Detailed metrics to have API Gateway report to CloudWatch the API metrics of API
calls, Latency, Integration latency, 400 errors, and 500 errors. For more
information about CloudWatch, see the Basic monitoring and detailed monitoring in the
Amazon CloudWatch User Guide.

Deploying a REST API 680

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch-metrics-basic-detailed.html

Amazon API Gateway Developer Guide

Important

Your account is charged for accessing method-level CloudWatch metrics, but not the
API-level or stage-level metrics.

12. To enable access logging to a destination, turn on Custom access logging.

13. For Access log destination ARN, enter the ARN of a log group or a Firehose stream.

The ARN format for Firehose is arn:aws:firehose:{region}:{account-
id}:deliverystream/amazon-apigateway-{your-stream-name}. The name of your
Firehose stream must be amazon-apigateway-{your-stream-name}.

14. In Log format, enter a log format. To learn more about example log formats, see the section
called “CloudWatch log formats for API Gateway”.

15. To enable AWS X-Ray tracing for the API stage, select X-Ray tracing. For more information,
see Tracing user requests to REST APIs using X-Ray.

16. Choose Save changes. Redeploy your API for the new settings to take effect.

Override stage-level settings

You can override the following enabled stage-level settings. Some of these options might result in
additional charges to your AWS account.

Override stage-level settings using the API Gateway console

To override stage-level settings using the API Gateway console

1. To configure method overrides, expand the stage under the secondary navigation pane, and
then choose a method.

Deploying a REST API 681

https://docs.aws.amazon.com/xray/latest/devguide/xray-services-apigateway.html

Amazon API Gateway Developer Guide

2. For Method overrides, choose Edit.

3. To turn on method-level CloudWatch settings, for CloudWatch Logs, select a logging level.

4. To turn on method-level detailed metrics, select Detailed metrics. Your account is charged for
accessing method-level CloudWatch metrics, but not the API-level or stage-level metrics.

5. To turn on method-level throttling, select Throttling. Enter the appropriate method-level
options. To learn more about throttling, see the section called “Throttling”.

6. To configure the method-level cache, select Enable method cache. If you change the default
method-level caching setting in the Stage details, it doesn't affect this setting.

7. Choose Save.

Deploying a REST API 682

Amazon API Gateway Developer Guide

Delete a stage

When you no longer need a stage, you can delete it to avoid paying for unused resources. The
following steps show you how to use the API Gateway console to delete a stage.

Warning

Deleting a stage might cause part or all of the corresponding API to be unusable by API
callers. Deleting a stage cannot be undone, but you can recreate the stage and associate it
with the same deployment.

Delete a stage using the API Gateway console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose a REST API.

3. In the main navigation pane, choose Stages.

4. In the Stages pane, choose the stage you want to delete, and then choose Stage actions,
Delete stage.

5. When you're prompted, enter confirm, and then choose Delete.

Setting up tags for an API stage in API Gateway

In API Gateway, you can add a tag to an API stage, remove the tag from the stage, or view the tag.
To do this, you can use the API Gateway console, the AWS CLI/SDK, or the API Gateway REST API.

A stage can also inherit tags from its parent REST API. For more information, see the section called
“Tag inheritance in the Amazon API Gateway V1 API”.

For more information about tagging API Gateway resources, see Tagging.

Topics

• Set up tags for an API stage using the API Gateway console

• Set up tags for an API stage using the AWS CLI

• Set up tags for an API stage using the API Gateway REST API

Deploying a REST API 683

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Set up tags for an API stage using the API Gateway console

The following procedure describes how to set up tags for an API stage.

To set up tags for an API stage by using the API Gateway console

1. Sign in to the API Gateway console.

2. Choose an existing API, or create a new API that includes resources, methods, and the
corresponding integrations.

3. Choose a stage or deploy the API to a new stage.

4. In the main navigation pane, choose Stages.

5. Choose the Tags tab. You might need to choose the right arrow button to show the tab.

6. Choose Manage tags.

7. In the Tag Editor, choose Add tag. Enter a tag key (for example, Department) in the Key field,
and enter a tag value (for example, Sales) in the Value field. Choose Save to save the tag.

8. If needed, repeat step 5 to add more tags to the API stage. The maximum number of tags per
stage is 50.

9. To remove an existing tag from the stage, choose Remove.

10. If the API has been deployed previously in the API Gateway console, you need to redeploy it for
the changes to take effect.

Set up tags for an API stage using the AWS CLI

You can set up tags for an API stage using the AWS CLI using the create-stage command or the tag-
resource command. You can delete one or more tags from an API stage using the untag-resource
command.

The following example adds a tag when creating a test stage:

aws apigateway create-stage --rest-api-id abc1234 --stage-name test --description
 'Testing stage' --deployment-id efg456 --tag Department=Sales

The following example adds a tag to a prod stage:

aws apigateway tag-resource --resource-arn arn:aws:apigateway:us-east-2::/
restapis/abc123/stages/prod --tags Department=Sales

Deploying a REST API 684

https://docs.aws.amazon.com/cli/latest/reference/apigateway/create-stage.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/tag-resource.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/tag-resource.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/untag-resource.html

Amazon API Gateway Developer Guide

The following example removes the Department=Sales tag from the test stage:

aws apigateway untag-resource --resource-arn arn:aws:apigateway:us-east-2::/
restapis/abc123/stages/test --tag-keys Department

Set up tags for an API stage using the API Gateway REST API

You can set up tags for an API stage using the API Gateway REST API by doing one of the following:

• Call tags:tag to tag an API stage.

• Call tags:untag to delete one or more tags from an API stage.

• Call stage:create to add one or more tags to an API stage that you're creating.

You can also call tags:get to describe tags in an API stage.

Tag an API stage

After you deploy an API (m5zr3vnks7) to a stage (test), tag the stage by calling tags:tag.
The required stage Amazon Resource Name (ARN) (arn:aws:apigateway:us-east-1::/
restapis/m5zr3vnks7/stages/test) must be URL encoded (arn%3Aaws%3Aapigateway
%3Aus-east-1%3A%3A%2Frestapis%2Fm5zr3vnks7%2Fstages%2Ftest).

PUT /tags/arn%3Aaws%3Aapigateway%3Aus-east-1%3A%3A%2Frestapis%2Fm5zr3vnks7%2Fstages
%2Ftest

{
 "tags" : {
 "Department" : "Sales"
 }
}

You can also use the previous request to update an existing tag to a new value.

You can add tags to a stage when calling stage:create to create the stage:

POST /restapis/<restapi_id>/stages

{
 "stageName" : "test",
 "deploymentId" : "adr134",

Deploying a REST API 685

https://docs.aws.amazon.com/apigateway/latest/api/API_TagResource.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UntagResource.html
https://docs.aws.amazon.com/apigateway/latest/api/API_CreateStage.html
https://docs.aws.amazon.com/apigateway/latest/api/API_GetTags.html
https://docs.aws.amazon.com/apigateway/latest/api/API_TagResource.html
https://docs.aws.amazon.com/apigateway/latest/api/API_CreateStage.html

Amazon API Gateway Developer Guide

 "description" : "test deployment",
 "cacheClusterEnabled" : "true",
 "cacheClusterSize" : "500",
 "variables" : {
 "sv1" : "val1"
 },
 "documentationVersion" : "test",

 "tags" : {
 "Department" : "Sales",
 "Division" : "Retail"
 }
}

Untag an API stage

To remove the Department tag from the stage, call tags:untag:

DELETE /tags/arn%3Aaws%3Aapigateway%3Aus-east-1%3A%3A%2Frestapis%2Fm5zr3vnks7%2Fstages
%2Ftest?tagKeys=Department
Host: apigateway.us-east-1.amazonaws.com
Authorization: ...

To remove more than one tag, use a comma-separated list of tag keys in the query expression—for
example, ?tagKeys=Department,Division,….

Describe tags for an API stage

To describe existing tags on a given stage, call tags:get:

GET /tags/arn%3Aaws%3Aapigateway%3Aus-east-1%3A%3A%2Frestapis%2Fm5zr3vnks7%2Fstages
%2Ftags
Host: apigateway.us-east-1.amazonaws.com
Authorization: ...

The successful response is similar to the following:

200 OK

{
 "_links": {
 "curies": {

Deploying a REST API 686

https://docs.aws.amazon.com/apigateway/latest/api/API_UntagResource.html
https://docs.aws.amazon.com/apigateway/latest/api/API_GetTags.html

Amazon API Gateway Developer Guide

 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/
restapi-tags-{rel}.html",
 "name": "tags",
 "templated": true
 },
 "tags:tag": {
 "href": "/tags/arn%3Aaws%3Aapigateway%3Aus-east-1%3A%3A%2Frestapis
%2Fm5zr3vnks7%2Fstages%2Ftags"
 },
 "tags:untag": {
 "href": "/tags/arn%3Aaws%3Aapigateway%3Aus-east-1%3A%3A%2Frestapis
%2Fm5zr3vnks7%2Fstages%2Ftags{?tagKeys}",
 "templated": true
 }
 },
 "tags": {
 "Department": "Sales"
 }
}

Setting up stage variables for a REST API deployment

Stage variables are name-value pairs that you can define as configuration attributes associated
with a deployment stage of a REST API. They act like environment variables and can be used in
your API setup and mapping templates.

For example, you can define a stage variable in a stage configuration, and then set its value as the
URL string of an HTTP integration for a method in your REST API. Later, you can reference the URL
string by using the associated stage variable name from the API setup. By doing this, you can use
the same API setup with a different endpoint at each stage by resetting the stage variable value to
the corresponding URLs.

You can also access stage variables in the mapping templates, or pass configuration parameters to
your AWS Lambda or HTTP backend.

For more information about mapping templates, see API Gateway mapping template and access
logging variable reference.

Note

Stage variables are not intended to be used for sensitive data, such as credentials. To pass
sensitive data to integrations, use an AWS Lambda authorizer. You can pass sensitive data

Deploying a REST API 687

Amazon API Gateway Developer Guide

to integrations in the output of the Lambda authorizer. To learn more, see the section
called “Output from an Amazon API Gateway Lambda authorizer”.

Use cases

With deployment stages in API Gateway, you can manage multiple release stages for each API, such
as alpha, beta, and production. Using stage variables you can configure an API deployment stage to
interact with different backend endpoints.

For example, your API can pass a GET request as an HTTP proxy to the backend web host (for
example, http://example.com). In this case, the backend web host is configured in a stage
variable so that when developers call your production endpoint, API Gateway calls example.com.
When you call your beta endpoint, API Gateway uses the value configured in the stage variable for
the beta stage, and calls a different web host (for example, beta.example.com). Similarly, stage
variables can be used to specify a different AWS Lambda function name for each stage in your API.

You can also use stage variables to pass configuration parameters to a Lambda function through
your mapping templates. For example, you might want to reuse the same Lambda function for
multiple stages in your API, but the function should read data from a different Amazon DynamoDB
table depending on which stage is being called. In the mapping templates that generate the
request for the Lambda function, you can use stage variables to pass the table name to Lambda.

Examples

To use a stage variable to customize the HTTP integration endpoint, you must first configure a
stage variable of a specified name (for example, url), and then assign it a value, (for example,
example.com). Next, from your method configuration, set up an HTTP proxy integration. Instead
of entering the endpoint's URL, you can tell API Gateway to use the stage variable value, http://
${stageVariables.url}. This value tells API Gateway to substitute your stage variable ${} at
runtime, depending on which stage your API is running.

You can reference stage variables in a similar way to specify a Lambda function name, an AWS
Service Proxy path, or an AWS role ARN in the credentials field.

When specifying a Lambda function name as a stage variable value, you must configure the
permissions on the Lambda function manually. When you specify a Lambda function in the API
Gateway console, a AWS CLI command will pop-up to configure the proper permissions. You can
also use the AWS Command Line Interface (AWS CLI) to do this.

Deploying a REST API 688

Amazon API Gateway Developer Guide

aws lambda add-permission --function-name "arn:aws:lambda:us-
east-2:123456789012:function:my-function" --source-arn "arn:aws:execute-api:us-
east-2:123456789012:api_id/*/HTTP_METHOD/resource" --principal apigateway.amazonaws.com
 --statement-id apigateway-access --action lambda:InvokeFunction

Setting stage variables using the Amazon API Gateway console

In this tutorial, you learn how to set stage variables for two deployment stages of a sample API by
using the Amazon API Gateway console. Before you begin, make sure the following prerequisites
are met:

• You must have an API available in API Gateway. Follow the instructions in Creating a REST API in
Amazon API Gateway.

• You must have deployed the API at least once. Follow the instructions in Deploying a REST API in
Amazon API Gateway.

• You must have created the first stage for a deployed API. Follow the instructions in Create a new
stage.

To declare stage variables using the API Gateway console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Create an API, and then create a GET method on the API's root resource. Set the integration
type to HTTP and set the Endpoint URL to http://${stageVariables.url}.

3. Deploy the API to a new stage named beta.

4. In the main navigation pane, choose Stages, and then select the beta stage.

5. On the Stage variables tab, choose Edit.

6. Choose Add stage variable.

7. For Name, enter url. For value, enter httpbin.org/get.

8. Choose Add stage variable, and then do the following:

For Name, enter stageName. For value, enter beta.

9. Choose Add stage variable, and then do the following:

For Name, enter function. For value, enter HelloWorld.

Deploying a REST API 689

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Note

When setting a Lambda function as the value of a stage variable, use the function's
local name, possibly including its alias or version specification, as in HelloWorld,
HelloWorld:1 or HelloWorld:alpha. Do not use the function's ARN (for example,
arn:aws:lambda:us-east-1:123456789012:function:HelloWorld). The
API Gateway console assumes the stage variable value for a Lambda function as the
unqualified function name and expands the given stage variable into an ARN.

10. Choose Save.

11. Now create a second stage. From the Stages navigation pane, choose Create stage. For Stage
name, enter prod. Select a recent deployment from Deployment, and then choose Create
stage.

12. As with the beta stage, set the same three stage variables (url, stageName, and function) to
different values (petstore-demo-endpoint.execute-api.com/petstore/pets, prod,
and HelloEveryone), respectively.

To learn how to use stage variables, see the section called “Use stage variables ”.

Using Amazon API Gateway stage variables

You can use API Gateway stage variables to access the HTTP and Lambda backends for different
API deployment stages. You can also use stage variables to pass stage-specific configuration
metadata into an HTTP backend as a query parameter and into a Lambda function as a payload
that is generated in an input mapping template.

Prerequisites

You must create two stages with a url stage variable set to two different HTTP endpoints: a
function stage variable assigned to two different Lambda functions, and a stageName stage
variable containing stage-specific metadata.

Access an HTTP endpoint through an API with a stage variable

1. In the Stages navigation pane, choose beta. Under Stage details, choose the copy icon to copy
your API's invoke URL, and then enter your API's invoke URL in a web browser. This starts the
beta stage GET request on the root resource of the API.

Deploying a REST API 690

Amazon API Gateway Developer Guide

Note

The Invoke URL link points to the root resource of the API in its beta stage. Entering
the URL in a web browser calls the beta stage GET method on the root resource. If
methods are defined on child resources and not on the root resource itself, entering
the URL in a web browser returns a {"message":"Missing Authentication
Token"} error response. In this case, you must append the name of a specific child
resource to the Invoke URL link.

2. The response you get from the beta stage GET request is shown next. You can also verify the
result by using a browser to navigate to http://httpbin.org/get. This value was assigned to
the url variable in the beta stage. The two responses are identical.

3. In the Stages navigation pane, choose the prod stage. Under Stage details, choose the copy
icon to copy your API's invoke URL, and then enter your API's invoke URL in a web browser. This
starts the prod stage GET request on the root resource of the API.

4. The response you get from the prod stage GET request is shown next. You can verify the
result by using a browser to navigate to http://petstore-demo-endpoint.execute-api.com/
petstore/pets. This value was assigned to the url variable in the prod stage. The two
responses are identical.

Pass stage-specific metadata to an HTTP backend through a stage variable in a query
parameter expression

This procedure describes how to use a stage variable value in a query parameter expression to pass
stage-specific metadata into an HTTP backend. We will use the stageName stage variable declared
in Setting stage variables using the Amazon API Gateway console.

1. In the Resource navigation pane, choose the GET method.

To add a query string parameter to the method's URL, choose the Method request tab, and
then in the Method request settings section, choose Edit.

2. Choose URL query string parameters and do the following:

a. Choose Add query string.

b. For Name, enter stageName.

c. Keep Required and Caching turned off.

Deploying a REST API 691

Amazon API Gateway Developer Guide

3. Choose Save.

4. Choose the Integration request tab, and then in the Integration request settings section,
choose Edit.

5. For Endpoint URL, append ?stageName=${stageVariables.stageName}
to the previously defined URL value, so the entire Endpoint URL is http://
${stageVariables.url}?stageName=${stageVariables.stageName}.

6. Choose Deploy API and select the beta stage.

7. In the main navigation pane, choose Stages. In the Stages navigation pane, choose beta.
Under Stage details, choose the copy icon to copy your API's invoke URL, and then enter your
API's invoke URL in a web browser.

Note

We use the beta stage here because the HTTP endpoint (as specified by the url
variable "http://httpbin.org/get") accepts query parameter expressions and returns
them as the args object in its response.

8. You get the following response. Notice that beta, assigned to the stageName stage variable,
is passed in the backend as the stageName argument.

Deploying a REST API 692

Amazon API Gateway Developer Guide

Call a Lambda function through an API with a stage variable

This procedure describes how to use a stage variable to call a Lambda function as a backend of
your API. We will use the function stage variable declared earlier. For more information, see
Setting stage variables using the Amazon API Gateway console.

1. Create a Lambda function named HelloWorld using the default Node.js runtime. The code
must contain the following:

export const handler = function(event, context, callback) {
 if (event.stageName)
 callback(null, 'Hello, World! I\'m calling from the ' + event.stageName + '
 stage.');
 else
 callback(null, 'Hello, World! I\'m not sure where I\'m calling from...');
};

For more information on how to create a Lambda function, see Getting started with the REST
API console.

2. In the Resources pane, select Create resource, and then do the following:

a. For Resource path, select /.

b. For Resource name, enter lambdav1.

c. Choose Create resource.

3. Choose the /lambdav1 resource, and then choose Create method.

Then, do the following:

a. For Method type, select GET.

b. For Integration type, select Lambda function.

c. Keep Lambda proxy integration turned off.

d. For Lambda function, enter ${stageVariables.function}.

Deploying a REST API 693

Amazon API Gateway Developer Guide

Tip

When prompted with the Add permission command, copy the AWS CLI command.
Run the command on each Lambda function that will be assigned to the
function stage variable. For example, if the $stageVariables.function
value is HelloWorld, run the following AWS CLI command:

aws lambda add-permission --function-name arn:aws:lambda:us-
east-1:account-id:function:HelloWorld --source-arn arn:aws:execute-
api:us-east-1:account-id:api-id/*/GET/lambdav1 --principal
 apigateway.amazonaws.com --statement-id statement-id-guid --action
 lambda:InvokeFunction

Failing to do so results in a 500 Internal Server Error response when
invoking the method. Replace ${stageVariables.function} with the Lambda
function name that is assigned to the stage variable.

e. Choose Create method.

4. Deploy the API to both the prod and beta stages.

Deploying a REST API 694

Amazon API Gateway Developer Guide

5. In the main navigation pane, choose Stages. In the Stages navigation pane, choose beta.
Under Stage details, choose the copy icon to copy your API's invoke URL, and then enter your
API's invoke URL in a web browser. Append /lambdav1 to the URL before you press enter.

You get the following response.

"Hello, World! I'm not sure where I'm calling from..."

Pass stage-specific metadata to a Lambda function through a stage variable

This procedure describes how to use a stage variable to pass stage-specific configuration metadata
into a Lambda function. You create a POST method and an input mapping template to generate
payload using the stageName stage variable you declared earlier.

1. Choose the /lambdav1 resource, and then choose Create method.

Then, do the following:

a. For Method type, select POST.

b. For Integration type, select Lambda function.

c. Keep Lambda proxy integration turned off.

d. For Lambda function, enter ${stageVariables.function}.

e. When prompted with the Add permission command, copy the AWS CLI command. Run
the command on each Lambda function that will be assigned to the function stage
variable.

f. Choose Create method.

2. Choose the Integration request tab, and then in the Integration request settings section,
choose Edit.

3. Choose Mapping templates, and then choose Add mapping template.

4. For Content type, enter application/json.

5. For Template body, enter the following template:

#set($inputRoot = $input.path('$'))
{
 "stageName" : "$stageVariables.stageName"
}

Deploying a REST API 695

Amazon API Gateway Developer Guide

Note

In a mapping template, a stage variable must be referenced within quotes (as in
"$stageVariables.stageName" or "${stageVariables.stageName}"). In other
places, it must be referenced without quotes (as in ${stageVariables.function}).

6. Choose Save.

7. Deploy the API to both the beta and prod stages.

8. To use a REST API client to pass stage-specific metadata, do the following:

a. In the Stages navigation pane, choose beta. Under Stage details, choose the copy icon
to copy your API's invoke URL, and then enter your API's invoke URL in the input field of a
REST API client. Append /lambdav1 before you submit your request.

You get the following response.

"Hello, World! I'm calling from the beta stage."

b. In the Stages navigation pane, choose prod. Under Stage details, choose the copy icon
to copy your API's invoke URL, and then enter your API's invoke URL in the input field of a
REST API client. Append /lambdav1 before you submit your request.

You get the following response.

"Hello, World! I'm calling from the prod stage."

9. To use the Test feature to pass stage-specific metadata, do the following:

a. In the Resources navigation pane, choose the Test tab. You might need to choose the
right arrow button to show the tab.

b. For function, enter HelloWorld.

c. For stageName, enter beta.

d. Choose Test. You do not need to add a body to your POST request.

You get the following response.

"Hello, World! I'm calling from the beta stage."

Deploying a REST API 696

Amazon API Gateway Developer Guide

e. You can repeat the previous steps to test the Prod stage. For stageName, enter Prod.

You get the following response.

"Hello, World! I'm calling from the prod stage."

Amazon API Gateway stage variables reference

You can use API Gateway stage variables in the following cases.

Parameter mapping expressions

A stage variable can be used in a parameter mapping expression for an API method's request or
response header parameter, without any partial substitution. In the following example, the stage
variable is referenced without the $ and the enclosing {...}.

• stageVariables.<variable_name>

Mapping templates

A stage variable can be used anywhere in a mapping template, as shown in the following examples.

• { "name" : "$stageVariables.<variable_name>"}

• { "name" : "${stageVariables.<variable_name>}"}

HTTP integration URIs

A stage variable can be used as part of an HTTP integration URL, as shown in the following
examples:

• A full URI without protocol – http://${stageVariables.<variable_name>}

• A full domain – http://${stageVariables.<variable_name>}/resource/operation

• A subdomain – http://${stageVariables.<variable_name>}.example.com/
resource/operation

• A path – http://example.com/${stageVariables.<variable_name>}/bar

• A query string – http://example.com/foo?q=${stageVariables.<variable_name>}

Deploying a REST API 697

Amazon API Gateway Developer Guide

AWS integration URIs

A stage variable can be used as part of AWS URI action or path components, as shown in the
following example.

• arn:aws:apigateway:<region>:<service>:${stageVariables.<variable_name>}

AWS integration URIs (Lambda functions)

A stage variable can be used in place of a Lambda function name, or version/alias, as shown in the
following examples.

• arn:aws:apigateway:<region>:lambda:path/2015-03-31/
functions/arn:aws:lambda:<region>:<account_id>:function:
${stageVariables.<function_variable_name>}/invocations

• arn:aws:apigateway:<region>:lambda:path/2015-03-31/functions/
arn:aws:lambda:<region>:<account_id>:function:<function_name>:
${stageVariables.<version_variable_name>}/invocations

Note

To use a stage variable for a Lambda function, the function must be in the same account as
the API. Stage variables don't support cross-account Lambda functions.

AWS integration credentials

A stage variable can be used as part of AWS user/role credential ARN, as shown in the following
example.

• arn:aws:iam::<account_id>:${stageVariables.<variable_name>}

Set up an API Gateway canary release deployment

Canary release is a software development strategy in which a new version of an API (as well as
other software) is deployed for testing purposes, and the base version remains deployed as a
production release for normal operations on the same stage. For purposes of discussion, we refer

Deploying a REST API 698

https://martinfowler.com/bliki/CanaryRelease.html

Amazon API Gateway Developer Guide

to the base version as a production release in this documentation. Although this is reasonable, you
are free to apply canary release on any non-production version for testing.

In a canary release deployment, total API traffic is separated at random into a production release
and a canary release with a pre-configured ratio. Typically, the canary release receives a small
percentage of API traffic and the production release takes up the rest. The updated API features
are only visible to API traffic through the canary. You can adjust the canary traffic percentage to
optimize test coverage or performance.

By keeping canary traffic small and the selection random, most users are not adversely affected at
any time by potential bugs in the new version, and no single user is adversely affected all the time.

After the test metrics pass your requirements, you can promote the canary release to the
production release and disable the canary from the deployment. This makes the new features
available in the production stage.

Topics

• Canary release deployment in API Gateway

• Create a canary release deployment

• Update a canary release

• Promote a canary release

• Turn off a canary release

Canary release deployment in API Gateway

In API Gateway, a canary release deployment uses the deployment stage for the production release
of the base version of an API, and attaches to the stage a canary release for the new versions,
relative to the base version, of the API. The stage is associated with the initial deployment and the
canary with subsequent deployments. At the beginning, both the stage and the canary point to the
same API version. We use stage and production release interchangeably and use canary and canary
release interchangeably throughout this section.

To deploy an API with a canary release, you create a canary release deployment by adding canary
settings to the stage of a regular deployment. The canary settings describe the underlying canary
release and the stage represents the production release of the API within this deployment. To add
canary settings, set canarySettings on the deployment stage and specify the following:

• A deployment ID, initially identical to the ID of the base version deployment set on the stage.

Deploying a REST API 699

https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html#canarySettings
https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html#canarySettings
https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Deployment.html

Amazon API Gateway Developer Guide

• A percentage of API traffic, between 0.0 and 100.0 inclusive, for the canary release.

• Stage variables for the canary release that can override production release stage variables.

• The use of the stage cache for canary requests, if the useStageCache is set and API caching is
enabled on the stage.

After a canary release is enabled, the deployment stage cannot be associated with another non-
canary release deployment until the canary release is disabled and the canary settings removed
from the stage.

When you enable API execution logging, the canary release has its own logs and metrics generated
for all canary requests. They are reported to a production stage CloudWatch Logs log group as well
as a canary-specific CloudWatch Logs log group. The same applies to access logging. The separate
canary-specific logs are helpful to validate new API changes and decide whether to accept the
changes and promote the canary release to the production stage, or to discard the changes and
revert the canary release from the production stage.

The production stage execution log group is named API-Gateway-Execution-Logs/{rest-
api-id}/{stage-name} and the canary release execution log group is named API-Gateway-
Execution-Logs/{rest-api-id}/{stage-name}/Canary. For access logging, you must
create a new log group or choose an existing one. The canary release access log group name has
the /Canary suffix appended to the selected log group name.

A canary release can use the stage cache, if enabled, to store responses and use cached entries to
return results to the next canary requests, within a pre-configured time-to-live (TTL) period.

In a canary release deployment, the production release and canary release of the API can be
associated with the same version or with different versions. When they are associated with
different versions, responses for production and canary requests are cached separately and
the stage cache returns corresponding results for production and canary requests. When the
production release and canary release are associated with the same deployment, the stage cache
uses a single cache key for both types of requests and returns the same response for the same
requests from the production release and canary release.

Create a canary release deployment

You create a canary release deployment when deploying the API with canary settings as an
additional input to the deployment creation operation.

Deploying a REST API 700

https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html#percentTraffic
https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html#stageVariableOverrides
https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html#useStageCache
https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html#useStageCache
https://docs.aws.amazon.com/apigateway/latest/api/API_CreateDeployment.html#canarySettings
https://docs.aws.amazon.com/apigateway/latest/api/API_CreateDeployment.html

Amazon API Gateway Developer Guide

You can also create a canary release deployment from an existing non-canary deployment by
making a stage:update request to add the canary settings on the stage.

When creating a non-canary release deployment, you can specify a non-existing stage name. API
Gateway creates one if the specified stage does not exist. However, you cannot specify any non-
existing stage name when creating a canary release deployment. You will get an error and API
Gateway will not create any canary release deployment.

You can create a canary release deployment in API Gateway using the API Gateway console, the
AWS CLI, or an AWS SDK.

Topics

• Create a canary deployment using the API Gateway console

• Create a canary deployment using the AWS CLI

Create a canary deployment using the API Gateway console

To use the API Gateway console to create a canary release deployment, follow the instructions
below:

To create the initial canary release deployment

1. Sign in to the API Gateway console.

2. Choose an existing REST API or create a new REST API.

3. In the main navigation pane, choose Resources, and then choose Deploy API. Follow the on-
screen instructions in Deploy API to deploy the API to a new stage.

So far, you have deployed the API to a production release stage. Next, you configure canary
settings on the stage and, if needed, also enable caching, set stage variables, or configure API
execution or access logs.

4. To enable API caching or associate an AWS WAF web ACL with the stage, in the Stage details
section, choose Edit. For more information, see the section called “Cache settings” or the
section called “To associate an AWS WAF web ACL with an API Gateway API stage using the API
Gateway console”.

5. To configure execution or access logging, in the Logs and tracing section, choose Edit and
follow the on-screen instructions. For more information, see Setting up CloudWatch logging
for a REST API in API Gateway.

Deploying a REST API 701

https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateStage.html

Amazon API Gateway Developer Guide

6. To set stage variables, choose the Stage variables tab and follow the on-screen instructions
to add or modify stage variables. For more information, see the section called “Set up stage
variables”.

7. Choose the Canary tab, and then choose Create canary. You might need to choose the right
arrow button to show the Canary tab.

8. Under Canary settings, for Canary, enter the percentage of requests to be diverted to the
canary.

9. If desired, select Stage cache to turn on caching for the canary release. The cache is not
available for the canary release until API caching is enabled.

10. To override existing stage variables, for Canary override, enter a new stage variable value.

After the canary release is initialized on the deployment stage, you change the API and want to
test the changes. You can redeploy the API to the same stage so that both the updated version and
the base version are accessible through the same stage. The following steps describe how to do
that.

To deploy the latest API version to a canary

1. With each update of the API, choose Deploy API.

2. In Deploy API, choose the stage that contains a canary from the Deployment stage dropdown
list.

3. (Optional) Enter a description for Deployment description.

4. Choose Deploy to push the latest API version to the canary release.

5. If desired, reconfigure the stage settings, logs, or canary settings, as describe in To create the
initial canary release deployment.

As a result, the canary release points to the latest version while the production release still
points to the initial version of the API. The canarySettings now has a new deploymentId value,
whereas the stage still has the initial deploymentId value. Behind the scenes, the console calls
stage:update.

Create a canary deployment using the AWS CLI

First create a baseline deployment with two stage variables, but without any canary:

aws apigateway create-deployment \

Deploying a REST API 702

https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html#canarySettings
https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html#deploymentId
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateStage.html

Amazon API Gateway Developer Guide

 --variables sv0=val0,sv1=val1 \
 --rest-api-id abcd1234 \
 --stage-name 'prod' \

The command returns a representation of the resulting Deployment, similar to the following:

{
 "id": "du4ot1",
 "createdDate": 1511379050
}

The resulting deployment id identifies a snapshot (or version) of the API.

Now create a canary deployment on the prod stage:

aws apigateway create-deployment --rest-api-id abcd1234 \
 --canary-settings \
 '{
 "percentTraffic":10.5,
 "useStageCache":false,
 "stageVariableOverrides":{
 "sv1":"val2",
 "sv2":"val3"
 }
 }' \
 --stage-name 'prod'

If the specified stage (prod) does not exist, the preceding command returns an error. Otherwise, it
returns the newly created deployment resource representation similar to the following:

{
 "id": "a6rox0",
 "createdDate": 1511379433
}

The resulting deployment id identifies the test version of the API for the canary release. As a
result, the associated stage is canary-enabled. You can view this stage representation by calling the
get-stage command, similar to the following:

aws apigateway get-stage --rest-api-id acbd1234 --stage-name prod

Deploying a REST API 703

https://docs.aws.amazon.com/apigateway/latest/api/API_Deployment.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Deployment.html

Amazon API Gateway Developer Guide

The following shows a representation of the Stage as the output of the command:

{
 "stageName": "prod",
 "variables": {
 "sv0": "val0",
 "sv1": "val1"
 },
 "cacheClusterEnabled": false,
 "cacheClusterStatus": "NOT_AVAILABLE",
 "deploymentId": "du4ot1",
 "lastUpdatedDate": 1511379433,
 "createdDate": 1511379050,
 "canarySettings": {
 "percentTraffic": 10.5,
 "deploymentId": "a6rox0",
 "useStageCache": false,
 "stageVariableOverrides": {
 "sv2": "val3",
 "sv1": "val2"
 }
 },
 "methodSettings": {}
}

In this example, the base version of the API will use the stage variables of {"sv0":val0",
"sv1":val1"}, while the test version uses the stage variables of {"sv1":val2",
"sv2":val3"}. Both the production release and canary release use the same stage variable of
sv1, but with different values, val1 and val2, respectively. The stage variable of sv0 is used
solely in the production release and the stage variable of sv2 is used in the canary release only.

You can create a canary release deployment from an existing regular deployment by updating the
stage to enable a canary. To demonstrate this, create a regular deployment first:

aws apigateway create-deployment \
 --variables sv0=val0,sv1=val1 \
 --rest-api-id abcd1234 \
 --stage-name 'beta'

The command returns a representation of the base version deployment:

{

Deploying a REST API 704

Amazon API Gateway Developer Guide

 "id": "cifeiw",
 "createdDate": 1511380879
}

The associated beta stage does not have any canary settings:

{
 "stageName": "beta",
 "variables": {
 "sv0": "val0",
 "sv1": "val1"
 },
 "cacheClusterEnabled": false,
 "cacheClusterStatus": "NOT_AVAILABLE",
 "deploymentId": "cifeiw",
 "lastUpdatedDate": 1511380879,
 "createdDate": 1511380879,
 "methodSettings": {}
}

Now, create a new canary release deployment by attaching a canary on the stage:

aws apigateway update-stage \
 --rest-api-id abcd1234 \
 --stage-name 'beta' \
 --patch-operations '[{
 "op": "replace",
 "value": "0.0",
 "path": "/canarySettings/percentTraffic"
 }, {
 "op": "copy",
 "from": "/canarySettings/stageVariableOverrides",
 "path": "/variables"
 }, {
 "op": "copy",
 "from": "/canarySettings/deploymentId",
 "path": "/deploymentId"
 }]'

A representation of the updated stage looks like this:

{

Deploying a REST API 705

Amazon API Gateway Developer Guide

 "stageName": "beta",
 "variables": {
 "sv0": "val0",
 "sv1": "val1"
 },
 "cacheClusterEnabled": false,
 "cacheClusterStatus": "NOT_AVAILABLE",
 "deploymentId": "cifeiw",
 "lastUpdatedDate": 1511381930,
 "createdDate": 1511380879,
 "canarySettings": {
 "percentTraffic": 10.5,
 "deploymentId": "cifeiw",
 "useStageCache": false,
 "stageVariableOverrides": {
 "sv2": "val3",
 "sv1": "val2"
 }
 },
 "methodSettings": {}
}

Because we just enabled a canary on an existing version of the API, both the production release
(Stage) and canary release (canarySettings) point to the same deployment, i.e., the same
version (deploymentId) of the API. After you change the API and deploy it to this stage again, the
new version will be in the canary release, while the base version remains in the production release.
This is manifested in the stage evolution when the deploymentId in the canary release is updated
to the new deployment id and the deploymentId in the production release remains unchanged.

Update a canary release

After a canary release is deployed, you may want to adjust the percentage of the canary traffic or
enable or disable the use of a stage cache to optimize the test performance. You can also modify
stage variables used in the canary release when the execution context is updated. To make such
updates, call the stage:update operation with new values on canarySettings.

You can update a canary release using the API Gateway console, the AWS CLI update-stage
command or an AWS SDK.

Topics

• Update a canary release using the API Gateway console

Deploying a REST API 706

https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateStage.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html#canarySettings
https://docs.aws.amazon.com/cli/latest/reference/apigateway/update-stage.html

Amazon API Gateway Developer Guide

• Update a canary release using the AWS CLI

Update a canary release using the API Gateway console

To use the API Gateway console to update existing canary settings on a stage, do the following:

To update existing canary settings

1. Sign in to the API Gateway console and choose an existing REST API.

2. In the main navigation pane, choose Stages, and then choose an existing stage.

3. Choose the Canary tab, and then choose Edit. You might need to choose the right arrow
button to show the Canary tab.

4. Update the Request distribution by increasing or decreasing the percentage number between
0.0 and 100.0, inclusive.

5. Select or clear the Stage cache the check box.

6. Add, remove, or modify Canary stage variables.

7. Choose Save.

Update a canary release using the AWS CLI

To use the AWS CLI to update a canary, call the update-stage command.

To enable or disable the use of a stage cache for the canary, call the update-stage command as
follows:

aws apigateway update-stage \
 --rest-api-id {rest-api-id} \
 --stage-name '{stage-name}' \
 --patch-operations op=replace,path=/canarySettings/useStageCache,value=true

To adjust the canary traffic percentage, call update-stage to replace the /canarySettings/
percentTraffic value on the stage.

aws apigateway update-stage \
 --rest-api-id {rest-api-id} \
 --stage-name '{stage-name}' \
 --patch-operations op=replace,path=/canarySettings/percentTraffic,value=25.0

Deploying a REST API 707

https://docs.aws.amazon.com/cli/latest/reference/apigateway/update-stage.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/update-stage.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html

Amazon API Gateway Developer Guide

To update canary stage variables, including adding, replacing, or removing a canary stage variable:

aws apigateway update-stage \
 --rest-api-id {rest-api-id} \
 --stage-name '{stage-name}' \
 --patch-operations '[{
 "op": "replace",
 "path": "/canarySettings/stageVariableOverrides/newVar",
 "value": "newVal"
 }, {
 "op": "replace",
 "path": "/canarySettings/stageVariableOverrides/var2",
 "value": "val4"
 }, {
 "op": "remove",
 "path": "/canarySettings/stageVariableOverrides/var1"
 }]'

You can update all of the above by combining the operations into a single patch-operations
value:

aws apigateway update-stage \
 --rest-api-id {rest-api-id} \
 --stage-name '{stage-name}' \
 --patch-operations '[{
 "op": "replace",
 "path": "/canarySettings/percentTraffic",
 "value": "20.0"
 }, {
 "op": "replace",
 "path": "/canarySettings/useStageCache",
 "value": "true"
 }, {
 "op": "remove",
 "path": "/canarySettings/stageVariableOverrides/var1"
 }, {
 "op": "replace",
 "path": "/canarySettings/stageVariableOverrides/newVar",
 "value": "newVal"
 }, {
 "op": "replace",
 "path": "/canarySettings/stageVariableOverrides/val2",
 "value": "val4"

Deploying a REST API 708

Amazon API Gateway Developer Guide

 }]'

Promote a canary release

To promote a canary release makes it available in the production stage the API version under
testing. The operation involves the following tasks:

• Reset the deployment ID of the stage with the deployment ID settings of the canary. This
updates the API snapshot of the stage with the snapshot of the canary, making the test version
the production release as well.

• Update stage variables with canary stage variables, if any. This updates the API execution context
of the stage with that of the canary. Without this update, the new API version may produce
unexpected results if the test version uses different stage variables or different values of existing
stage variables.

• Set the percentage of canary traffic to 0.0%.

Promoting a canary release does not disable the canary on the stage. To disable a canary, you must
remove the canary settings on the stage.

Topics

• Promote a canary release using the API Gateway console

• Promote a canary release using the AWS CLI

Promote a canary release using the API Gateway console

To use the API Gateway console to promote a canary release deployment, do the following:

To promote a canary release deployment

1. Sign in to the API Gateway console and choose an existing API in the primary navigation pane.

2. In the main navigation pane, choose Stages, and then choose an existing stage.

3. Choose the Canary tab.

4. Choose Promote canary.

5. Confirm changes to be made and choose Promote canary.

Deploying a REST API 709

https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html#deploymentId
https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html#canarySettings

Amazon API Gateway Developer Guide

After the promotion, the production release references the same API version (deploymentId) as the
canary release. You can verify this using the AWS CLI. For example, see the section called “Promote
a canary release using the AWS CLI”.

Promote a canary release using the AWS CLI

To promote a canary release to the production release using the AWS CLI commands, call the
update-stage command to copy the canary-associated deploymentId to the stage-associated
deploymentId, to reset the canary traffic percentage to zero (0.0), and, to copy any canary-
bound stage variables to the corresponding stage-bound ones.

Suppose we have a canary release deployment, described by a stage similar to the following:

{
 "_links": {
 ...
 },
 "accessLogSettings": {
 ...
 },
 "cacheClusterEnabled": false,
 "cacheClusterStatus": "NOT_AVAILABLE",
 "canarySettings": {
 "deploymentId": "eh1sby",
 "useStageCache": false,
 "stageVariableOverrides": {
 "sv2": "val3",
 "sv1": "val2"
 },
 "percentTraffic": 10.5
 },
 "createdDate": "2017-11-20T04:42:19Z",
 "deploymentId": "nfcn0x",
 "lastUpdatedDate": "2017-11-22T00:54:28Z",
 "methodSettings": {
 ...
 },
 "stageName": "prod",
 "variables": {
 "sv1": "val1"
 }
}

Deploying a REST API 710

Amazon API Gateway Developer Guide

We call the following update-stage request to promote it:

aws apigateway update-stage \
 --rest-api-id {rest-api-id} \
 --stage-name '{stage-name}' \
 --patch-operations '[{
 "op": "replace",
 "value": "0.0",
 "path": "/canarySettings/percentTraffic"
 }, {
 "op": "copy",
 "from": "/canarySettings/stageVariableOverrides",
 "path": "/variables"
 }, {
 "op": "copy",
 "from": "/canarySettings/deploymentId",
 "path": "/deploymentId"
 }]'

After the promotion, the stage now looks like this:

{
 "_links": {
 ...
 },
 "accessLogSettings": {
 ...
 },
 "cacheClusterEnabled": false,
 "cacheClusterStatus": "NOT_AVAILABLE",
 "canarySettings": {
 "deploymentId": "eh1sby",
 "useStageCache": false,
 "stageVariableOverrides": {
 "sv2": "val3",
 "sv1": "val2"
 },
 "percentTraffic": 0
 },
 "createdDate": "2017-11-20T04:42:19Z",
 "deploymentId": "eh1sby",
 "lastUpdatedDate": "2017-11-22T05:29:47Z",
 "methodSettings": {

Deploying a REST API 711

Amazon API Gateway Developer Guide

 ...
 },
 "stageName": "prod",
 "variables": {
 "sv2": "val3",
 "sv1": "val2"
 }
}

As you can see, promoting a canary release to the stage does not disable the canary and the
deployment remains to be a canary release deployment. To make it a regular production release
deployment, you must disable the canary settings. For more information about how to disable a
canary release deployment, see the section called “Turn off a canary release”.

Turn off a canary release

To turn off a canary release deployment is to set the canarySettings to null to remove it from
the stage.

You can disable a canary release deployment using the API Gateway console, the AWS CLI, or an
AWS SDK.

Topics

• Turn off a canary release using the API Gateway console

• Turn off a canary release using the AWS CLI

Turn off a canary release using the API Gateway console

To use the API Gateway console to turn off a canary release deployment, use the following steps:

To turn off a canary release deployment

1. Sign in to the API Gateway console and choose an existing API in the main navigation pane.

2. In the main navigation pane, choose Stages, and then choose an existing stage.

3. Choose the Canary tab.

4. Choose Delete.

5. Confirm you want to delete the canary by choosing Delete.

Deploying a REST API 712

https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html#canarySettings

Amazon API Gateway Developer Guide

As a result, the canarySettings property becomes null and is removed from the deployment
stage. You can verify this using the AWS CLI. For example, see the section called “Turn off a canary
release using the AWS CLI”.

Turn off a canary release using the AWS CLI

To use the AWS CLI to turn off a canary release deployment, call the update-stage command as
follows:

aws apigateway update-stage \
 --rest-api-id abcd1234 \
 --stage-name canary \
 --patch-operations '[{"op":"remove", "path":"/canarySettings"}]'

A successful response returns a payload similar to the following:

{
 "stageName": "prod",
 "accessLogSettings": {
 ...
 },
 "cacheClusterEnabled": false,
 "cacheClusterStatus": "NOT_AVAILABLE",
 "deploymentId": "nfcn0x",
 "lastUpdatedDate": 1511309280,
 "createdDate": 1511152939,
 "methodSettings": {
 ...
 }
}

As shown in the output, the canarySettings property is no longer present in the stage of a
canary-disabled deployment.

Updates to a REST API that require redeployment

Maintaining an API amounts to viewing, updating and deleting the existing API setups. You can
maintain an API using the API Gateway console, AWS CLI, an SDK or the API Gateway REST API.
Updating an API involves modifying certain resource properties or configuration settings of the
API. Resource updates require redeploying the API, whereas configuration updates do not.

Deploying a REST API 713

https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html#canarySettings
https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html#canarySettings
https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html

Amazon API Gateway Developer Guide

API resources that can be updated are detailed in the following table.

API resource updates requiring redeployment of the API

Resource Remarks

ApiKey For applicable properties and supported operations, see apikey:update. The
update requires redeploying the API.

Authorizer For applicable properties and supported operations, see authorizer:update.
The update requires redeploying the API.

Documenta
tionPart

For applicable properties and supported operations, see documentationpart:
update. The update requires redeploying the API.

Documenta
tionVersion

For applicable properties and supported operations, see documentationversi
on:update. The update requires redeploying the API.

GatewayRe
sponse

For applicable properties and supported operations, see gatewayresponse:up
date. The update requires redeploying the API.

Integration For applicable properties and supported operations, see integration:update.
The update requires redeploying the API.

Integrati
onResponse

For applicable properties and supported operations, see integrationrespons
e:update. The update requires redeploying the API.

Method For applicable properties and supported operations, see method:update. The
update requires redeploying the API.

MethodRes
ponse

For applicable properties and supported operations, see methodresponse:upd
ate. The update requires redeploying the API.

Model For applicable properties and supported operations, see model:update. The
update requires redeploying the API.

RequestVa
lidator

For applicable properties and supported operations, see requestvalidator:u
pdate. The update requires redeploying the API.

Resource For applicable properties and supported operations, see resource:update. The
update requires redeploying the API.

Deploying a REST API 714

https://docs.aws.amazon.com/apigateway/latest/api/API_ApiKey.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateApiKey.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_Authorizer.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateAuthorizer.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateDocumentationPart.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateDocumentationPart.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationVersion.html
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationVersion.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateDocumentationVersion.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateDocumentationVersion.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateGatewayResponse.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateGatewayResponse.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateIntegration.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_IntegrationResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_IntegrationResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateIntegrationResponse.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateIntegrationResponse.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_Method.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateMethod.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_MethodResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_MethodResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateMethodResponse.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateMethodResponse.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_Model.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateModel.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_RequestValidator.html
https://docs.aws.amazon.com/apigateway/latest/api/API_RequestValidator.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateRequestValidator.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateRequestValidator.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_Resource.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateResource.html#remarks

Amazon API Gateway Developer Guide

Resource Remarks

RestApi For applicable properties and supported operations, see restapi:update. The
update requires redeploying the API.

VpcLink For applicable properties and supported operations, see vpclink:update. The
update requires redeploying the API.

API configurations that can be updated are detailed in the following table.

API configuration updates without requiring redeployment of the API

Configuration Remarks

Account For applicable properties and supported operations, see account:update. The
update does not require redeploying the API.

Deployment For applicable properties and supported operations, see deployment:update.

DomainName For applicable properties and supported operations, see domainname:update.
The update does not require redeploying the API.

BasePathM
apping

For applicable properties and supported operations, see basepathmapping:up
date. The update does not require redeploying the API.

Stage For applicable properties and supported operations, see stage:update. The
update does not require redeploying the API.

Usage For applicable properties and supported operations, see usage:update. The
update does not require redeploying the API.

UsagePlan For applicable properties and supported operations, see usageplan:update.
The update does not require redeploying the API.

Setting up custom domain names for REST APIs

Custom domain names are simpler and more intuitive URLs that you can provide to your API users.

Custom domain names 715

https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateRestApi.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateRestApi.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_VpcLink.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateVpcLink.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_GetAccount.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateAccount.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_Deployment.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateDeployment.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_DomainName.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateDomainName.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_BasePathMapping.html
https://docs.aws.amazon.com/apigateway/latest/api/API_BasePathMapping.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateBasePathMapping.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateBasePathMapping.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateStage.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_GetUsage.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateUsage.html#remarks
https://docs.aws.amazon.com/apigateway/latest/api/API_UsagePlan.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateUsagePlan.html#remarks

Amazon API Gateway Developer Guide

After deploying your API, you (and your customers) can invoke the API using the default base URL
of the following format:

https://api-id.execute-api.region.amazonaws.com/stage

where api-id is generated by API Gateway, region (AWS Region) is specified by you when
creating the API, and stage is specified by you when deploying the API.

The hostname portion of the URL (that is, api-id.execute-api.region.amazonaws.com)
refers to an API endpoint. The default API endpoint can be difficult to recall and not user-friendly.

With custom domain names, you can set up your API's hostname, and choose a base path (for
example, myservice) to map the alternative URL to your API. For example, a more user-friendly
API base URL can become:

https://api.example.com/myservice

Note

A Regional custom domain can be associated with REST APIs and HTTP APIs. You can use
API Gateway Version 2 APIs to create and manage Regional custom domain names for REST
APIs.
Custom domain names are not supported for private APIs.
You can choose a minimum TLS version that your REST API supports. For REST APIs, you
can choose TLS 1.2 or TLS 1.0.

Register a domain name

You must have a registered internet domain name in order to set up custom domain names for
your APIs. If needed, you can register an internet domain using Amazon Route 53 or using a
third-party domain registrar of your choice. An API's custom domain name can be the name of a
subdomain or the root domain (also known as "zone apex") of a registered internet domain.

After a custom domain name is created in API Gateway, you must create or update your DNS
provider's resource record to map to your API endpoint. Without such a mapping, API requests
bound for the custom domain name cannot reach API Gateway.

Custom domain names 716

https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/operations.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/

Amazon API Gateway Developer Guide

Note

An edge-optimized custom domain name is created in a specific Region and owned by
a specific AWS account. Moving such a custom domain name between Regions or AWS
accounts involves deleting the existing CloudFront distribution and creating a new one. The
process may take approximately 30 minutes before the new custom domain name becomes
available. For more information, see Updating CloudFront Distributions.

Edge-optimized custom domain names

When you deploy an edge-optimized API, API Gateway sets up an Amazon CloudFront distribution
and a DNS record to map the API domain name to the CloudFront distribution domain name.
Requests for the API are then routed to API Gateway through the mapped CloudFront distribution.

When you create a custom domain name for an edge-optimized API, API Gateway sets up a
CloudFront distribution. But you must set up a DNS record to map the custom domain name to
the CloudFront distribution domain name. This mapping is for API requests that are bound for the
custom domain name to be routed to API Gateway through the mapped CloudFront distribution.
You must also provide a certificate for the custom domain name.

Note

The CloudFront distribution created by API Gateway is owned by a Region-specific
account affiliated with API Gateway. When tracing operations to create and update such a
CloudFront distribution in CloudWatch Logs, you must use this API Gateway account ID. For
more information, see Log custom domain name creation in CloudTrail.

To set up an edge-optimized custom domain name or to update its certificate, you must have a
permission to update CloudFront distributions.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Custom domain names 717

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/HowToUpdateDistribution.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html

Amazon API Gateway Developer Guide

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

The following permissions are required to update CloudFront distributions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowCloudFrontUpdateDistribution",
 "Effect": "Allow",
 "Action": [
 "cloudfront:updateDistribution"
],
 "Resource": [
 "*"
]
 }
]
}

API Gateway supports edge-optimized custom domain names by leveraging Server Name
Indication (SNI) on the CloudFront distribution. For more information on using custom domain
names on a CloudFront distribution, including the required certificate format and the maximum
size of a certificate key length, see Using Alternate Domain Names and HTTPS in the Amazon
CloudFront Developer Guide.

To set up a custom domain name as your API's hostname, you, as the API owner, must provide an
SSL/TLS certificate for the custom domain name.

To provide a certificate for an edge-optimized custom domain name, you can request AWS
Certificate Manager (ACM) to generate a new certificate in ACM or to import into ACM one issued
by a third-party certificate authority in the us-east-1 Region (US East (N. Virginia)).

Custom domain names 718

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https-alternate-domain-names.html
https://docs.aws.amazon.com/acm/latest/userguide/
https://docs.aws.amazon.com/acm/latest/userguide/

Amazon API Gateway Developer Guide

Regional custom domain names

When you create a custom domain name for a Regional API, API Gateway creates a Regional
domain name for the API. You must set up a DNS record to map the custom domain name to the
Regional domain name. You must also provide a certificate for the custom domain name.

Wildcard custom domain names

With wildcard custom domain names, you can support an almost infinite number of domain names
without exceeding the default quota. For example, you could give each of your customers their own
domain name, customername.api.example.com.

To create a wildcard custom domain name, specify a wildcard (*) as the first subdomain of a
custom domain that represents all possible subdomains of a root domain.

For example, the wildcard custom domain name *.example.com results in subdomains such as
a.example.com, b.example.com, and c.example.com, which all route to the same domain.

Wildcard custom domain names support distinct configurations from API Gateway's standard
custom domain names. For example, in a single AWS account, you can configure *.example.com
and a.example.com to behave differently.

You can use the $context.domainName and $context.domainPrefix context variables
to determine the domain name that a client used to call your API. To learn more about context
variables, see API Gateway mapping template and access logging variable reference.

To create a wildcard custom domain name, you must provide a certificate issued by ACM that has
been validated using either the DNS or the email validation method.

Note

You can't create a wildcard custom domain name if a different AWS account has created a
custom domain name that conflicts with the wildcard custom domain name. For example,
if account A has created a.example.com, then account B can't create the wildcard custom
domain name *.example.com.
If account A and account B share an owner, you can contact the AWS Support Center to
request an exception.

Custom domain names 719

https://console.aws.amazon.com/support/home#/

Amazon API Gateway Developer Guide

Certificates for custom domain names

Important

You specify the certificate for your custom domain name. If your application uses certificate
pinning, sometimes known as SSL pinning, to pin an ACM certificate, the application
might not be able to connect to your domain after AWS renews the certificate. For more
information, see Certificate pinning problems in the AWS Certificate Manager User Guide.

To provide a certificate for a custom domain name in a Region where ACM is supported, you must
request a certificate from ACM. To provide a certificate for a Regional custom domain name in a
Region where ACM is not supported, you must import a certificate to API Gateway in that Region.

To import an SSL/TLS certificate, you must provide the PEM-formatted SSL/TLS certificate body,
its private key, and the certificate chain for the custom domain name. Each certificate stored in
ACM is identified by its ARN. To use an AWS managed certificate for a domain name, you simply
reference its ARN.

ACM makes it straightforward to set up and use a custom domain name for an API. You create
a certificate for the given domain name (or import a certificate), set up the domain name in API
Gateway with the ARN of the certificate provided by ACM, and map a base path under the custom
domain name to a deployed stage of the API. With certificates issued by ACM, you do not have to
worry about exposing any sensitive certificate details, such as the private key.

Topics

• Getting certificates ready in AWS Certificate Manager

• Choosing a security policy for your custom domain in API Gateway

• Creating an edge-optimized custom domain name

• Setting up a regional custom domain name in API Gateway

• Migrating a custom domain name to a different API endpoint

• Working with API mappings for REST APIs

• Disabling the default endpoint for a REST API

• Configure custom health checks for DNS failover

Custom domain names 720

https://docs.aws.amazon.com/acm/latest/userguide/troubleshooting-pinning.html

Amazon API Gateway Developer Guide

Getting certificates ready in AWS Certificate Manager

Before setting up a custom domain name for an API, you must have an SSL/TLS certificate ready in
AWS Certificate Manager. The following steps describe how to get this done. For more information,
see the AWS Certificate Manager User Guide.

Note

To use an ACM certificate with an API Gateway edge-optimized custom domain name, you
must request or import the certificate in the US East (N. Virginia) (us-east-1) Region.
For an API Gateway Regional custom domain name, you must request or import the
certificate in the same Region as your API. The certificate must be signed by a publicly
trusted Certificate Authority and cover the custom domain name.

First, register your internet domain, for example, example.com. You can use either Amazon
Route 53 or a third-party accredited domain registrar. For a list of such registrars, see Accredited
Registrar Directory at the ICANN website.

To create in or import into ACM an SSL/TLS certificate for a domain name, do one of the following:

To request a certificate provided by ACM for a domain name

1. Sign in to the AWS Certificate Manager console.

2. Choose Request a certificate.

3. Enter a custom domain name for your API, for example, api.example.com, in Domain name.

4. Optionally, choose Add another name to this certificate.

5. Choose Review and request.

6. Choose Confirm and request.

7. For a valid request, a registered owner of the internet domain must consent to the request
before ACM issues the certificate.

To import into ACM a certificate for a domain name

1. Get a PEM-encoded SSL/TLS certificate for your custom domain name from a certificate
authority. For a partial list of such CAs, see the Mozilla Included CA List

Custom domain names 721

https://docs.aws.amazon.com/acm/latest/userguide/
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/
http://www.internic.net/regist.html
http://www.internic.net/regist.html
https://console.aws.amazon.com/acm
https://ccadb-public.secure.force.com/mozilla/IncludedCACertificateReport

Amazon API Gateway Developer Guide

a. Generate a private key for the certificate and save the output to a file, using the OpenSSL
toolkit at the OpenSSL website:

openssl genrsa -out private-key-file 2048

Note

Amazon API Gateway leverages Amazon CloudFront to support certificates for
custom domain names. As such, the requirements and constraints of a custom
domain name SSL/TLS certificate are dictated by CloudFront. For example, the
maximum size of the public key is 2048 and the private key size can be 1024,
2048, and 4096. The public key size is determined by the certificate authority
you use. Ask your certificate authority to return keys of a size different from the
default length. For more information, see Secure access to your objects and Create
signed URLs and signed cookies.

b. Generate a certificate signing request (CSR) with the previously generated private key,
using OpenSSL:

openssl req -new -sha256 -key private-key-file -out CSR-file

c. Submit the CSR to the certificate authority and save the resulting certificate.

d. Download the certificate chain from the certificate authority.

Note

If you obtain the private key in another way and the key is encrypted, you can use the
following command to decrypt the key before submitting it to API Gateway for setting
up a custom domain name.

openssl pkcs8 -topk8 -inform pem -in MyEncryptedKey.pem -outform pem -
nocrypt -out MyDecryptedKey.pem

2. Upload the certificate to AWS Certificate Manager:

a. Sign in to the AWS Certificate Manager console.

Custom domain names 722

http://www.openssl.org
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https.html#cnames-and-https-requirements
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/SecureConnections.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-trusted-signers.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-trusted-signers.html
https://console.aws.amazon.com/acm

Amazon API Gateway Developer Guide

b. Choose Import a certificate.

c. For Certificate body, enter or paste the body of the PEM-formatted server certificate
from your certificate authority. The following shows an abbreviated example of such a
certificate.

-----BEGIN CERTIFICATE-----
EXAMPLECA+KgAwIBAgIQJ1XxJ8Pl++gOfQtj0IBoqDANBgkqhkiG9w0BAQUFADBB
...
az8Cg1aicxLBQ7EaWIhhgEXAMPLE
-----END CERTIFICATE-----

d. For Certificate private key, enter or paste your PEM-formatted certificate's private key.
The following shows an abbreviated example of such a key.

-----BEGIN RSA PRIVATE KEY-----
EXAMPLEBAAKCAQEA2Qb3LDHD7StY7Wj6U2/opV6Xu37qUCCkeDWhwpZMYJ9/nETO
...
1qGvJ3u04vdnzaYN5WoyN5LFckrlA71+CszD1CGSqbVDWEXAMPLE
-----END RSA PRIVATE KEY-----

e. For Certificate chain, enter or paste the PEM-formatted intermediate certificates and,
optionally, the root certificate, one after the other without any blank lines. If you include
the root certificate, your certificate chain must start with intermediate certificates and
end with the root certificate. Use the intermediate certificates provided by your certificate
authority. Do not include any intermediaries that are not in the chain of trust path. The
following shows an abbreviated example.

-----BEGIN CERTIFICATE-----
EXAMPLECA4ugAwIBAgIQWrYdrB5NogYUx1U9Pamy3DANBgkqhkiG9w0BAQUFADCB
...
8/ifBlIK3se2e4/hEfcEejX/arxbx1BJCHBvlEPNnsdw8EXAMPLE
-----END CERTIFICATE-----

Here is another example.

-----BEGIN CERTIFICATE-----
Intermediate certificate 2
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
Intermediate certificate 1

Custom domain names 723

Amazon API Gateway Developer Guide

-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
Optional: Root certificate
-----END CERTIFICATE-----

f. Choose Review and import.

After the certificate is successfully created or imported, make note of the certificate ARN. You need
it when setting up the custom domain name.

Choosing a security policy for your custom domain in API Gateway

For greater security of your Amazon API Gateway custom domain, you can choose a security policy
in the API Gateway console, the AWS CLI, or an AWS SDK.

A security policy is a predefined combination of minimum TLS version and cipher suites offered by
API Gateway. You can choose either a TLS version 1.2 or TLS version 1.0 security policy. The TLS
protocol addresses network security problems such as tampering and eavesdropping between a
client and server. When your clients establish a TLS handshake to your API through the custom
domain, the security policy enforces the TLS version and cipher suite options your clients can
choose to use.

In custom domain settings, a security policy determines two settings:

• The minimum TLS version that API Gateway uses to communicate with API clients

• The cipher that API Gateway uses to encrypt the content that it returns to API clients

If you choose a TLS 1.0 security policy, the security policy accepts TLS 1.0, TLS 1.2, and TLS 1.3
traffic. If you choose a TLS 1.2 security policy, the security policy accepts TLS 1.2 and TLS 1.3 traffic
and rejects TLS 1.0 traffic.

Note

You can only specify a security policy for a custom domain. For an API using a default
endpoint, API Gateway uses the following security policy:

• For edge-optimized APIs: TLS-1-0

• For Regional APIs: TLS-1-0

Custom domain names 724

Amazon API Gateway Developer Guide

• For private APIs: TLS-1-2

Topics

• How to specify a security policy for custom domains

• Supported security policies, TLS protocol versions, and ciphers for edge-optimized custom
domains

• Supported security policies, TLS protocol versions, and ciphers for Regional custom domains

• Supported TLS protocol versions and ciphers for private APIs

• OpenSSL and RFC cipher names

• Information about HTTP APIs and WebSocket APIs

How to specify a security policy for custom domains

When you create a custom domain name, you specify the security policy for it. To learn how to
create a custom domain, see the section called “Creating an edge-optimized custom domain name”
or the section called “Setting up a regional custom domain name”.

To change the security policy of your custom domain name, update the custom domain settings.
You can update your custom domain name settings using the AWS Management Console, the AWS
CLI, or an AWS SDK.

When you use the API Gateway REST API or AWS CLI, specify the new TLS version, TLS_1_0 or
TLS_1_2 in the securityPolicy parameter. For more information, see domainname:update in
the Amazon API Gateway REST API Reference or update-domain-name in the AWS CLI Reference.

The update operation may take few minutes to complete.

Supported security policies, TLS protocol versions, and ciphers for edge-optimized custom
domains

The following table describes the security policies that can be specified for edge-optimized custom
domain names.

Security policy TLS_1_0 TLS_1_2

TLS protocols

Custom domain names 725

https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateDomainName.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/update-domain-name.html

Amazon API Gateway Developer Guide

Security policy TLS_1_0 TLS_1_2

TLSv1.3 ♦ ♦

TLSv1.2 ♦ ♦

TLSv1.1 ♦

TLSv1 ♦

TLS ciphers

TLS_AES_128_GCM_SHA256 ♦ ♦

TLS_AES_256_GCM_SHA384 ♦ ♦

TLS_CHACHA20_POLY1
305_SHA256

♦ ♦

ECDHE-ECDSA-AES128-GCM-
SHA256

♦ ♦

ECDHE-ECDSA-AES128-
SHA256

♦ ♦

ECDHE-ECDSA-AES128-SHA ♦

ECDHE-ECDSA-AES256-GCM-
SHA384

♦ ♦

ECDHE-ECDSA-CHACHA20-
POLY1305

♦ ♦

ECDHE-ECDSA-AES256-
SHA384

♦ ♦

ECDHE-ECDSA-AES256-SHA ♦

ECDHE-RSA-AES128-GCM-
SHA256

♦ ♦

Custom domain names 726

Amazon API Gateway Developer Guide

Security policy TLS_1_0 TLS_1_2

ECDHE-RSA-AES128-SHA256 ♦ ♦

ECDHE-RSA-AES128-SHA ♦

ECDHE-RSA-AES256-GCM-
SHA384

♦ ♦

ECDHE-RSA-CHACHA20-
POLY1305

♦ ♦

ECDHE-RSA-AES256-SHA384 ♦ ♦

ECDHE-RSA-AES256-SHA ♦

AES128-GCM-SHA256 ♦

AES256-GCM-SHA384 ♦ ♦

AES128-SHA256 ♦ ♦

AES256-SHA ♦

AES128-SHA ♦

DES-CBC3-SHA ♦

Supported security policies, TLS protocol versions, and ciphers for Regional custom domains

The following table describes the security policies that can be specified for Regional custom
domain names.

Security policy TLS_1_0 TLS_1_2

TLS protocols

TLSv1.3 ♦ ♦

TLSv1.2 ♦ ♦

Custom domain names 727

Amazon API Gateway Developer Guide

Security policy TLS_1_0 TLS_1_2

TLSv1.1 ♦

TLSv1 ♦

TLS ciphers

TLS_AES_128_GCM_SHA256 ♦ ♦

TLS_AES_256_GCM_SHA384 ♦ ♦

TLS_CHACHA20_POLY1
305_SHA256

♦ ♦

ECDHE-ECDSA-AES128-GCM-
SHA256

♦ ♦

ECDHE-RSA-AES128-GCM-
SHA256

♦ ♦

ECDHE-ECDSA-AES128-
SHA256

♦ ♦

ECDHE-RSA-AES128-SHA256 ♦ ♦

ECDHE-ECDSA-AES128-SHA ♦

ECDHE-RSA-AES128-SHA ♦

ECDHE-ECDSA-AES256-GCM-
SHA384

♦ ♦

ECDHE-RSA-AES256-GCM-
SHA384

♦ ♦

ECDHE-ECDSA-AES256-
SHA384

♦ ♦

ECDHE-RSA-AES256-SHA384 ♦ ♦

Custom domain names 728

Amazon API Gateway Developer Guide

Security policy TLS_1_0 TLS_1_2

ECDHE-RSA-AES256-SHA ♦

ECDHE-ECDSA-AES256-SHA ♦

AES128-GCM-SHA256 ♦ ♦

AES128-SHA256 ♦ ♦

AES128-SHA ♦

AES256-GCM-SHA384 ♦ ♦

AES256-SHA256 ♦ ♦

AES256-SHA ♦

Supported TLS protocol versions and ciphers for private APIs

The following table describes the supported TLS protocol and ciphers for private APIs. Specifying a
security policy for private APIs is not supported.

Security policy TLS_1_2

TLS protocols

TLSv1.2 ♦

TLS ciphers

ECDHE-ECDSA-AES128-GCM-SHA256 ♦

ECDHE-RSA-AES128-GCM-SHA256 ♦

ECDHE-ECDSA-AES128-SHA256 ♦

ECDHE-RSA-AES128-SHA256 ♦

ECDHE-ECDSA-AES256-GCM-SHA384 ♦

Custom domain names 729

Amazon API Gateway Developer Guide

Security policy TLS_1_2

ECDHE-RSA-AES256-GCM-SHA384 ♦

ECDHE-ECDSA-AES256-SHA384 ♦

ECDHE-RSA-AES256-SHA384 ♦

AES128-GCM-SHA256 ♦

AES128-SHA256 ♦

AES256-GCM-SHA384 ♦

AES256-SHA256 ♦

OpenSSL and RFC cipher names

OpenSSL and IETF RFC 5246 use different names for the same ciphers. The following table maps
the OpenSSL name to the RFC name for each cipher.

OpenSSL cipher
name

RFC cipher name

TLS_AES_1
28_GCM_SH
A256

TLS_AES_128_GCM_SHA256

TLS_AES_2
56_GCM_SH
A384

TLS_AES_256_GCM_SHA384

TLS_CHACH
A20_POLY1
305_SHA256

TLS_CHACHA20_POLY1305_SHA256

ECDHE-RSA-
AES128-GCM-
SHA256

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

Custom domain names 730

Amazon API Gateway Developer Guide

OpenSSL cipher
name

RFC cipher name

ECDHE-RSA-
AES128-SHA256

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

ECDHE-RSA-
AES128-SHA

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

ECDHE-RSA-
AES256-GCM-
SHA384

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

ECDHE-RSA-
AES256-SHA384

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

ECDHE-RSA-
AES256-SHA

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

AES128-GCM-
SHA256

TLS_RSA_WITH_AES_128_GCM_SHA256

AES256-GCM-
SHA384

TLS_RSA_WITH_AES_256_GCM_SHA384

AES128-SHA256 TLS_RSA_WITH_AES_128_CBC_SHA256

AES256-SHA TLS_RSA_WITH_AES_256_CBC_SHA

AES128-SHA TLS_RSA_WITH_AES_128_CBC_SHA

DES-CBC3-SHA TLS_RSA_WITH_3DES_EDE_CBC_SHA

Information about HTTP APIs and WebSocket APIs

For more information about HTTP APIs and WebSocket APIs, see the section called “Security policy
for HTTP APIs” and the section called “Security policy for WebSocket APIs”.

Custom domain names 731

Amazon API Gateway Developer Guide

Creating an edge-optimized custom domain name

Topics

• Set up an edge-optimized custom domain name for an API Gateway API

• Log custom domain name creation in CloudTrail

• Configure base path mapping of an API with a custom domain name as its hostname

• Rotate a certificate imported into ACM

• Call your API with custom domain names

Set up an edge-optimized custom domain name for an API Gateway API

The following procedure describes how to create a custom domain name for an API using the API
Gateway console.

To create a custom domain name using the API Gateway console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose Custom domain names from the main navigation pane.

3. Choose Create.

4. For Domain name, enter a domain name.

5. Under Configuration, choose Edge-optimized.

6. Choose a minimum TLS version.

7. Choose an ACM certificate.

Note

To use an ACM certificate with an API Gateway edge-optimized custom domain name,
you must request or import the certificate in the us-east-1 Region (US East (N.
Virginia)).

8. Choose Create domain name.

9. After the custom domain name is created, the console displays the associated CloudFront
distribution domain name, in the form of distribution-id.cloudfront.net, along with
the certificate ARN. Note the CloudFront distribution domain name shown in the output. You

Custom domain names 732

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

need it in the next step to set the custom domain's CNAME value or A-record alias target in
your DNS.

Note

The newly created custom domain name takes about 40 minutes to be ready. In
the meantime, you can configure the DNS record alias to map the custom domain
name to the associated CloudFront distribution domain name and to set up the base
path mapping for the custom domain name while the custom domain name is being
initialized.

10. Next, you configure DNS records with your DNS provider to map the custom domain name
to the associated CloudFront distribution. For instructions for Amazon Route 53, see Routing
traffic to an Amazon API Gateway API by using your domain name in the Amazon Route 53
Developer Guide.

For most DNS providers, a custom domain name is added to the hosted zone as a CNAME
resource record set. The CNAME record name specifies the custom domain name you entered
earlier in Domain Name (for example, api.example.com). The CNAME record value specifies
the domain name for the CloudFront distribution. However, use of a CNAME record will not
work if your custom domain is a zone apex (i.e., example.com instead of api.example.com).
A zone apex is also commonly known as the root domain of your organization. For a zone apex
you need to use an A-record alias, provided that is supported by your DNS provider.

With Route 53 you can create an A record alias for your custom domain name and specify
the CloudFront distribution domain name as the alias target. This means that Route 53 can
route your custom domain name even if it is a zone apex. For more information, see Choosing
Between Alias and Non-Alias Resource Record Sets in the Amazon Route 53 Developer Guide.

Use of A-record aliases also eliminates exposure of the underlying CloudFront distribution
domain name because the domain name mapping takes place solely within Route 53. For
these reasons, we recommend that you use Route 53 A-record alias whenever possible.

In addition to using the API Gateway console, you can use the API Gateway REST API, AWS CLI
or one of the AWS SDKs to set up the custom domain name for your APIs. As an illustration, the
following procedure outlines the steps to do so using the REST API calls.

Custom domain names 733

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-api-gateway.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-api-gateway.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-choosing-alias-non-alias.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-choosing-alias-non-alias.html

Amazon API Gateway Developer Guide

To set up a custom domain name using the API Gateway REST API

1. Call domainname:create, specifying the custom domain name and the ARN of a certificate
stored in AWS Certificate Manager.

The successful API call returns a 201 Created response containing the certificate ARN as well
as the associated CloudFront distribution name in its payload.

2. Note the CloudFront distribution domain name shown in the output. You need it in the next
step to set the custom domain's CNAME value or A-record alias target in your DNS.

3. Follow the previous procedure to set up an A-record alias to map the custom domain name to
its CloudFront distribution name.

For code examples of this REST API call, see domainname:create.

Log custom domain name creation in CloudTrail

When CloudTrail is enabled for logging API Gateway calls made by your account, API Gateway
logs the associated CloudFront distribution updates when a custom domain name is created or
updated for an API. Because these CloudFront distributions are owned by API Gateway, each of
these reported CloudFront distributions is identified by one of the following Region-specific API
Gateway account IDs, instead of the API owner's account ID.

Region Account ID

us-east-1 392220576650

us-east-2 718770453195

us-west-1 968246515281

us-west-2 109351309407

ca-central-1 796887884028

eu-west-1 631144002099

eu-west-2 544388816663

eu-west-3 061510835048

Custom domain names 734

https://docs.aws.amazon.com/apigateway/latest/api/API_CreateDomainName.html
https://docs.aws.amazon.com/apigateway/latest/api/API_CreateDomainName.html

Amazon API Gateway Developer Guide

Region Account ID

eu-central-1 474240146802

eu-central-2 166639821150

eu-north-1 394634713161

eu-south-1 753362059629

eu-south-2 359345898052

ap-northeast-1 969236854626

ap-northeast-2 020402002396

ap-northeast-3 360671645888

ap-southeast-1 195145609632

ap-southeast-2 798376113853

ap-southeast-3 652364314486

ap-southeast-4 849137399833

ap-south-1 507069717855

ap-south-2 644042651268

ap-east-1 174803364771

sa-east-1 287228555773

me-south-1 855739686837

me-central-1 614065512851

Custom domain names 735

Amazon API Gateway Developer Guide

Configure base path mapping of an API with a custom domain name as its hostname

You can use a single custom domain name as the hostname of multiple APIs. You achieve this by
configuring the base path mappings on the custom domain name. With the base path mappings,
an API under the custom domain is accessible through the combination of the custom domain
name and the associated base path.

For example, if you created an API named PetStore and another API named PetShop and set
up a custom domain name of api.example.com in API Gateway, you can set the PetStore
API's URL as https://api.example.com or https://api.example.com/myPetStore.
The PetStore API is associated with the base path of an empty string or myPetStore under
the custom domain name of api.example.com. Similarly, you can assign a base path of
yourPetShop for the PetShop API. The URL of https://api.example.com/yourPetShop is
then the root URL of the PetShop API.

Before setting the base path for an API, complete the steps in Set up an edge-optimized custom
domain name for an API Gateway API.

The following procedure sets up API mappings to map paths from your custom domain name to
your API stages.

To create API mappings name using the API Gateway console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose a custom domain name.

3. Choose Configure API mappings.

4. Choose Add new mapping.

5. Specify the API, Stage, and Path (optional) for the mapping.

6. Choose Save.

In addition, you can call the API Gateway REST API, AWS CLI, or one of the AWS SDKs to set up the
base path mapping of an API with a custom domain name as its hostname. As an illustration, the
following procedure outlines the steps to do so using the REST API calls.

To set up the base path mapping of an API using the API Gateway REST API

• Call basepathmapping:create on a specific custom domain name, specifying the basePath,
restApiId, and a deployment stage property in the request payload.

Custom domain names 736

https://console.aws.amazon.com/apigateway
https://docs.aws.amazon.com/apigateway/latest/api/API_CreateBasePathMapping.html

Amazon API Gateway Developer Guide

The successful API call returns a 201 Created response.

For code examples of the REST API call, see basepathmapping:create.

Rotate a certificate imported into ACM

ACM automatically handles renewal of certificates it issues. You do not need to rotate any ACM-
issued certificates for your custom domain names. CloudFront handles it on your behalf.

However, if you import a certificate into ACM and use it for a custom domain name, you must
rotate the certificate before it expires. This involves importing a new third-party certificate for
the domain name and rotate the existing certificate to the new one. You need to repeat the
process when the newly imported certificate expires. Alternatively, you can request ACM to
issue a new certificate for the domain name and rotate the existing one to the new ACM-issued
certificate. After that, you can leave ACM and CloudFront to handle the certificate rotation for you
automatically. To create or import a new ACM certificate, follow the steps to request or import a
new ACM certificate for the specified domain name.

To rotate a certificate for a domain name, you can use the API Gateway console, the API Gateway
REST API, AWS CLI, or one of the AWS SDKs.

To rotate an expiring certificate imported into ACM using the API Gateway console

1. Request or import a certificate in ACM.

2. Go back to the API Gateway console.

3. Choose Custom domain names from the API Gateway console main navigation pane.

4. Choose a custom domain name.

5. Choose Edit.

6. Choose the desired certificate from the ACM certificate dropdown list.

7. Choose Save to begin rotating the certificate for the custom domain name.

Note

It takes about 40 minutes for the process to finish. After the rotation is done, you can
choose the two-way arrow icon next to ACM Certificate to roll back to the original
certificate.

Custom domain names 737

https://docs.aws.amazon.com/apigateway/latest/api/API_CreateBasePathMapping.html

Amazon API Gateway Developer Guide

To illustrate how to programmatically rotate an imported certificate for a custom domain name,
we outline the steps using the API Gateway REST API.

Rotate an imported certificate using the API Gateway REST API

• Call domainname:update action, specifying the ARN of the new ACM certificate for the
specified domain name.

Call your API with custom domain names

Calling an API with a custom domain name is the same as calling the API with its default domain
name, provided that the correct URL is used.

The following examples compare and contrast a set of default URLs and corresponding custom
URLs of two APIs (udxjef and qf3duz) in a specified Region (us-east-1), and of a given custom
domain name (api.example.com).

Root URLs of APIs with default and custom domain names

API ID Stage Default URL Base path Custom URL

udxjef prod https://u
dxjef.execute-
api.us-east-1
.amazonaw
s.com/prod

/petstore https://a
pi.example.com/
petstore

udxjef tst https://u
dxjef.execute-
api.us-east-1
.amazonaw
s.com/tst

/petdepot https://a
pi.example.com/
petdepot

qf3duz dev https://q
f3duz.execute-
api.us-east-1
.amazonaw
s.com/dev

/bookstore https://a
pi.example.com/
bookstore

Custom domain names 738

https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateDomainName.html

Amazon API Gateway Developer Guide

API ID Stage Default URL Base path Custom URL

qf3duz tst https://q
f3duz.execute-
api.us-east-1
.amazonaw
s.com/tst

/bookstand https://a
pi.example.com/
bookstand

API Gateway supports custom domain names for an API by using Server Name Indication (SNI). You
can invoke the API with a custom domain name using a browser or a client library that supports
SNI.

API Gateway enforces SNI on the CloudFront distribution. For information on how CloudFront uses
custom domain names, see Amazon CloudFront Custom SSL.

Setting up a regional custom domain name in API Gateway

You can create a custom domain name for a Regional API endpoint (for an AWS Region). To create
a custom domain name, you must provide a Region-specific ACM certificate. For more information
about creating or uploading a custom domain name certificate, see Getting certificates ready in
AWS Certificate Manager.

Important

For an API Gateway Regional custom domain name, you must request or import the
certificate in the same Region as your API.

When you create a Regional custom domain name (or migrate one) with an ACM certificate, API
Gateway creates a service-linked role in your account if the role doesn't exist already. The service-
linked role is required to attach your ACM certificate to your Regional endpoint. The role is named
AWSServiceRoleForAPIGateway and will have the APIGatewayServiceRolePolicy managed policy
attached to it. For more information about use of the service-linked role, see Using Service-Linked
Roles.

Custom domain names 739

https://en.wikipedia.org/wiki/Server_Name_Indication
https://aws.amazon.com/cloudfront/custom-ssl-domains/
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html

Amazon API Gateway Developer Guide

Important

You must create a DNS record to point the custom domain name to the Regional domain
name. This enables the traffic that is bound to the custom domain name to be routed to
the API's Regional hostname. The DNS record can be the CNAME or "A" type.

Topics

• Set up a regional custom domain name with an ACM certificate using the API Gateway console

• Set up a regional custom domain name with an ACM certificate using AWS CLI

Set up a regional custom domain name with an ACM certificate using the API Gateway console

To use the API Gateway console to set up a Regional custom domain name, use the following
procedure.

To set up a regional custom domain name using the API Gateway console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose Custom domain names from the main navigation pane.

3. Choose Create.

4. For Domain name, enter a domain name.

5. Under Configuration, choose Regional.

6. Choose a minimum TLS version.

7. Choose an ACM certificate. The certificate must be in the same Region as the API.

8. Choose Create.

9. Follow the Route 53 documentation on configuring Route 53 to route traffic to API Gateway.

The following procedure sets up API mappings to map paths from your custom domain name to
your API stages.

To create API mappings name using the API Gateway console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose a custom domain name.

Custom domain names 740

https://console.aws.amazon.com/apigateway
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-api-gateway.html
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

3. Choose Configure API mappings.

4. Choose Add new mapping.

5. Specify the API, Stage, and Path for the mapping.

6. Choose Save.

To learn about setting basepath mappings for the custom domain, see Configure base path
mapping of an API with a custom domain name as its hostname.

Set up a regional custom domain name with an ACM certificate using AWS CLI

To use the AWS CLI to set up a custom domain name for a Regional API, use the following
procedure.

1. Call create-domain-name, specifying a custom domain name and the ARN of a Regional
certificate.

aws apigatewayv2 create-domain-name \
 --domain-name 'regional.example.com' \
 --domain-name-configurations CertificateArn=arn:aws:acm:us-
west-2:123456789012:certificate/123456789012-1234-1234-1234-12345678

Note that the specified certificate is from the us-west-2 Region and for this example, we
assume that the underlying API is from the same Region.

If successful, the call returns a result similar to the following:

{
 "ApiMappingSelectionExpression": "$request.basepath",
 "DomainName": "regional.example.com",
 "DomainNameConfigurations": [
 {
 "ApiGatewayDomainName": "d-id.execute-api.us-west-2.amazonaws.com",
 "CertificateArn": "arn:aws:acm:us-west-2:123456789012:certificate/id",
 "DomainNameStatus": "AVAILABLE",
 "EndpointType": "REGIONAL",
 "HostedZoneId": "id",
 "SecurityPolicy": "TLS_1_2"
 }
]

Custom domain names 741

Amazon API Gateway Developer Guide

}

The DomainNameConfigurations property value returns the Regional API's hostname. You
must create a DNS record to point your custom domain name to this Regional domain name.
This enables the traffic that is bound to the custom domain name to be routed to this Regional
API's hostname.

2. Create a DNS record to associate the custom domain name and the Regional domain name.
This enables requests that are bound to the custom domain name to be routed to the API's
Regional hostname.

3. Add a base path mapping to expose the specified API (for example, 0qzs2sy7bh) in a
deployment stage (for example, test) under the specified custom domain name (for example,
regional.example.com).

aws apigatewayv2 create-api-mapping \
 --domain-name 'regional.example.com' \
 --api-mapping-key 'myApi' \
 --api-id 0qzs2sy7bh \
 --stage 'test'

As a result, the base URL using the custom domain name for the API that is deployed in the
stage becomes https://regional.example.com/myAPI.

4. Configure your DNS records to map the Regional custom domain name to its hostname of the
given hosted zone ID. First create a JSON file that contains the configuration for setting up a
DNS record for the Regional domain name. The following example shows how to create a DNS
A record to map a Regional custom domain name (regional.example.com) to its Regional
hostname (d-numh1z56v6.execute-api.us-west-2.amazonaws.com) provisioned as
part of the custom domain name creation. The DNSName and HostedZoneId properties of
AliasTarget can take the regionalDomainName and regionalHostedZoneId values,
respectively, of the custom domain name. You can also get the Regional Route 53 Hosted Zone
IDs in Amazon API Gateway Endpoints and Quotas.

{
 "Changes": [
 {
 "Action": "CREATE",
 "ResourceRecordSet": {
 "Name": "regional.example.com",
 "Type": "A",

Custom domain names 742

https://docs.aws.amazon.com/general/latest/gr/apigateway.html

Amazon API Gateway Developer Guide

 "AliasTarget": {
 "DNSName": "d-numh1z56v6.execute-api.us-west-2.amazonaws.com",
 "HostedZoneId": "Z2OJLYMUO9EFXC",
 "EvaluateTargetHealth": false
 }
 }
 }
]
}

5. Run the following CLI command:

aws route53 change-resource-record-sets \
 --hosted-zone-id {your-hosted-zone-id} \
 --change-batch file://path/to/your/setup-dns-record.json

where {your-hosted-zone-id} is the Route 53 Hosted Zone ID of the DNS record set
in your account. The change-batch parameter value points to a JSON file (setup-dns-
record.json) in a folder (path/to/your).

Migrating a custom domain name to a different API endpoint

You can migrate your custom domain name between edge-optimized and Regional endpoints. You
first add the new endpoint configuration type to the existing endpointConfiguration.types
list for the custom domain name. Next, you set up a DNS record to point the custom domain name
to the newly provisioned endpoint. An optional last step is to remove the obsolete custom domain
name configuration data.

When planning the migration, remember that for an edge-optimized API's custom domain name,
the required certificate provided by ACM must be from the US East (N. Virginia) Region (us-
east-1). This certificate is distributed to all the geographic locations. However, for a Regional API,
the ACM certificate for the Regional domain name must be from the same Region hosting the API.
You can migrate an edge-optimized custom domain name that is not in the us-east-1 Region to
a Regional custom domain name by first requesting a new ACM certificate from the Region that is
local to the API.

It may take up to 60 seconds to complete a migration between an edge-optimized custom domain
name and a Regional custom domain name in API Gateway. For the newly created endpoint to

Custom domain names 743

Amazon API Gateway Developer Guide

become ready to accept traffic, the migration time also depends on when you update your DNS
records.

Topics

• Migrate custom domain names using the AWS CLI

Migrate custom domain names using the AWS CLI

To use the AWS CLI to migrate a custom domain name from an edge-optimized endpoint to
a Regional endpoint or vice versa, call the update-domain-name command to add the new
endpoint type and, optionally, call the update-domain-name command to remove the old
endpoint type.

Topics

• Migrate an edge-optimized custom domain name to regional

• Migrate a regional custom domain name to edge-optimized

Migrate an edge-optimized custom domain name to regional

To migrate an edge-optimized custom domain name to a Regional custom domain name, call the
update-domain-name CLI command, as follows:

aws apigateway update-domain-name \
 --domain-name 'api.example.com' \
 --patch-operations [\
 { op:'add', path: '/endpointConfiguration/types',value: 'REGIONAL' }, \
 { op:'add', path: '/regionalCertificateArn', value: 'arn:aws:acm:us-
west-2:123456789012:certificate/cd833b28-58d2-407e-83e9-dce3fd852149' } \
]

The Regional certificate must be of the same Region as the Regional API.

The success response has a 200 OK status code and a body similar to the following:

{
 "certificateArn": "arn:aws:acm:us-
east-1:123456789012:certificate/34a95aa1-77fa-427c-aa07-3a88bd9f3c0a",
 "certificateName": "edge-cert",

Custom domain names 744

https://docs.aws.amazon.com/cli/latest/reference/apigateway/update-domain-name.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/update-domain-name.html

Amazon API Gateway Developer Guide

 "certificateUploadDate": "2017-10-16T23:22:57Z",
 "distributionDomainName": "d1frvgze7vy1bf.cloudfront.net",
 "domainName": "api.example.com",
 "endpointConfiguration": {
 "types": [
 "EDGE",
 "REGIONAL"
]
 },
 "regionalCertificateArn": "arn:aws:acm:us-west-2:123456789012:certificate/
cd833b28-58d2-407e-83e9-dce3fd852149",
 "regionalDomainName": "d-fdisjghyn6.execute-api.us-west-2.amazonaws.com"
}

For the migrated Regional custom domain name, the resulting regionalDomainName property
returns the Regional API hostname. You must set up a DNS record to point the Regional custom
domain name to this Regional hostname. This enables the traffic that is bound to the custom
domain name to be routed to the Regional host.

After the DNS record is set, you can remove the edge-optimized custom domain name by calling
the update-domain-name command of AWS CLI:

aws apigateway update-domain-name \
 --domain-name api.example.com \
 --patch-operations [\
 {op:'remove', path:'/endpointConfiguration/types', value:'EDGE'}, \
 {op:'remove', path:'certificateName'}, \
 {op:'remove', path:'certificateArn'} \
]

Migrate a regional custom domain name to edge-optimized

To migrate a Regional custom domain name to an edge-optimized custom domain name, call the
update-domain-name command of the AWS CLI, as follows:

aws apigateway update-domain-name \
 --domain-name 'api.example.com' \
 --patch-operations [\
 { op:'add', path:'/endpointConfiguration/types',value: 'EDGE' }, \
 { op:'add', path:'/certificateName', value:'edge-cert'}, \
 { op:'add', path:'/certificateArn', value: 'arn:aws:acm:us-
east-1:123456789012:certificate/34a95aa1-77fa-427c-aa07-3a88bd9f3c0a' } \

Custom domain names 745

https://docs.aws.amazon.com/cli/latest/reference/apigateway/update-domain-name.html

Amazon API Gateway Developer Guide

]

The edge-optimized domain certificate must be created in the us-east-1 Region.

The success response has a 200 OK status code and a body similar to the following:

{
 "certificateArn": "arn:aws:acm:us-
east-1:738575810317:certificate/34a95aa1-77fa-427c-aa07-3a88bd9f3c0a",
 "certificateName": "edge-cert",
 "certificateUploadDate": "2017-10-16T23:22:57Z",
 "distributionDomainName": "d1frvgze7vy1bf.cloudfront.net",
 "domainName": "api.example.com",
 "endpointConfiguration": {
 "types": [
 "EDGE",
 "REGIONAL"
]
 },
 "regionalCertificateArn": "arn:aws:acm:us-
east-1:123456789012:certificate/3d881b54-851a-478a-a887-f6502760461d",
 "regionalDomainName": "d-cgkq2qwgzf.execute-api.us-east-1.amazonaws.com"
}

For the specified custom domain name, API Gateway returns the edge-optimized API hostname
as the distributionDomainName property value. You must set a DNS record to point the edge-
optimized custom domain name to this distribution domain name. This enables traffic that is
bound to the edge-optimized custom domain name to be routed to the edge-optimized API
hostname.

After the DNS record is set, you can remove the REGION endpoint type of the custom domain
name:

aws apigateway update-domain-name \
 --domain-name api.example.com \
 --patch-operations [\
 {op:'remove', path:'/endpointConfiguration/types', value:'REGIONAL'}, \
 {op:'remove', path:'regionalCertificateArn'} \
]

The result of this command is similar to the following output, with only edge-optimized domain
name configuration data:

Custom domain names 746

Amazon API Gateway Developer Guide

{
 "certificateArn": "arn:aws:acm:us-
east-1:738575810317:certificate/34a95aa1-77fa-427c-aa07-3a88bd9f3c0a",
 "certificateName": "edge-cert",
 "certificateUploadDate": "2017-10-16T23:22:57Z",
 "distributionDomainName": "d1frvgze7vy1bf.cloudfront.net",
 "domainName": "regional.haymuto.com",
 "endpointConfiguration": {
 "types": "EDGE"
 }
}

Working with API mappings for REST APIs

You use API mappings to connect API stages to a custom domain name. After you create a domain
name and configure DNS records, you use API mappings to send traffic to your APIs through your
custom domain name.

An API mapping specifies an API, a stage, and optionally a path to use for the mapping. For
example, you can map the production stage of an API to https://api.example.com/orders.

You can map HTTP and REST API stages to the same custom domain name.

Before you create an API mapping, you must have an API, a stage, and a custom domain name. To
learn more about creating a custom domain name, see the section called “Setting up a regional
custom domain name”.

Routing API requests

You can configure API mappings with multiple levels, for example orders/v1/items and
orders/v2/items.

Note

To configure API mappings with multiple levels, your custom domain name must be
regional and use the TLS 1.2 security policy.

For API mappings with multiple levels, API Gateway routes requests to the API mapping that has
the longest matching path. API Gateway considers only the paths configured for API mappings, and

Custom domain names 747

Amazon API Gateway Developer Guide

not API routes, to select the API to invoke. If no path matches the request, API Gateway sends the
request to the API that you've mapped to the empty path (none).

For custom domain names that use API mappings with multiple levels, API Gateway routes requests
to the API mapping that has the longest matching prefix.

For example, consider a custom domain name https://api.example.com with the following
API mappings:

1. (none) mapped to API 1.

2. orders mapped to API 2.

3. orders/v1/items mapped to API 3.

4. orders/v2/items mapped to API 4.

5. orders/v2/items/categories mapped to API 5.

Request Selected API Explanation

https://api.exampl
e.com/orders

API 2 The request exactly matches
this API mapping.

https://api.exampl
e.com/orders/v1/it
ems

API 3 The request exactly matches
this API mapping.

https://api.exampl
e.com/orders/v2/it
ems

API 4 The request exactly matches
this API mapping.

https://api.exampl
e.com/orders/v1/it
ems/123

API 3 API Gateway chooses the
mapping that has the longest
matching path. The 123 at
the end of the request doesn't
affect the selection.

https://api.exampl
e.com/orders/v2/it
ems/categories/5

API 5 API Gateway chooses the
mapping that has the longest
matching path.

Custom domain names 748

Amazon API Gateway Developer Guide

Request Selected API Explanation

https://api.exampl
e.com/customers

API 1 API Gateway uses the empty
mapping as a catch-all.

https://api.exampl
e.com/ordersandmore

API 2 API Gateway chooses the
mapping that has the longest
matching prefix. For a custom
domain name configured
with single-level mappings,
such as only https://
api.example.com/
orders and https://a
pi.example.com/ , API
Gateway would choose API
1, as there is no matching
path with ordersandmore .

Restrictions

• In an API mapping, the custom domain name and mapped APIs must be in the same AWS
account.

• API mappings must contain only letters, numbers, and the following characters: $-_.+!*'()/.

• The maximum length for the path in an API mapping is 300 characters.

• You can have 200 API mappings with multiple levels for each domain name.

• You can only map HTTP APIs to a regional custom domain name with the TLS 1.2 security policy.

• You can't map WebSocket APIs to the same custom domain name as an HTTP API or REST API.

Create an API mapping

To create an API mapping, you must first create a custom domain name, API, and stage. For
information about creating a custom domain name, see the section called “Setting up a regional
custom domain name”.

For example AWS Serverless Application Model templates that create all resources, see Sessions
With SAM on GitHub.

Custom domain names 749

https://github.com/aws-samples/sessions-with-aws-sam/tree/master/custom-domains
https://github.com/aws-samples/sessions-with-aws-sam/tree/master/custom-domains

Amazon API Gateway Developer Guide

AWS Management Console

To create an API mapping

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose Custom domain names.

3. Select a custom domain name that you've already created.

4. Choose API mappings.

5. Choose Configure API mappings.

6. Choose Add new mapping.

7. Enter an API, a Stage, and optionally a Path.

8. Choose Save.

AWS CLI

The following AWS CLI command creates an API mapping. In this example, API Gateway sends
requests to api.example.com/v1/orders to the specified API and stage.

Note

To create API mappings with multiple levels, you must use apigatewayv2.

aws apigatewayv2 create-api-mapping \
 --domain-name api.example.com \
 --api-mapping-key v1/orders \
 --api-id a1b2c3d4 \
 --stage test

AWS CloudFormation

The following AWS CloudFormation example creates an API mapping.

Note

To create API mappings with multiple levels, you must use AWS::ApiGatewayV2.

Custom domain names 750

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

MyApiMapping:
 Type: 'AWS::ApiGatewayV2::ApiMapping'
 Properties:
 DomainName: api.example.com
 ApiMappingKey: 'orders/v2/items'
 ApiId: !Ref MyApi
 Stage: !Ref MyStage

Disabling the default endpoint for a REST API

By default, clients can invoke your API by using the execute-api endpoint that API Gateway
generates for your API. To ensure that clients can access your API only by using a custom domain
name, disable the default execute-api endpoint. Clients can still connect to your default
endpoint, but they will receive a 403 Forbidden status code.

Note

When you disable the default endpoint, it affects all stages of an API.

The following AWS CLI command disables the default endpoint for a REST API.

aws apigateway update-rest-api \
 --rest-api-id abcdef123 \
 --patch-operations op=replace,path=/disableExecuteApiEndpoint,value='True'

After you disable the default endpoint, you must deploy your API for the change to take effect.

The following AWS CLI command creates a deployment.

aws apigateway create-deployment \
 --rest-api-id abcdef123 \
 --stage-name dev

Configure custom health checks for DNS failover

You can use Amazon Route 53 health checks to control DNS failover from an API Gateway API in a
primary AWS Region to one in a secondary Region. This can help mitigate impacts in the event of

Custom domain names 751

Amazon API Gateway Developer Guide

a Regional issue. If you use a custom domain, you can perform failover without requiring clients to
change API endpoints.

When you choose Evaluate Target Health for an alias record, those records fail only when the
API Gateway service is unavailable in the Region. In some cases, your own API Gateway APIs
can experience interruption before that time. To control DNS failover directly, configure custom
Route 53 health checks for your API Gateway APIs. For this example, you use a CloudWatch alarm
that helps operators control DNS failover. For more examples and other considerations when you
configure failover, see Creating Disaster Recovery Mechanisms Using Route 53 and Performing
Route 53 health checks on private resources in a VPC with AWS Lambda and CloudWatch.

Topics

• Prerequisites

• Step 1: Set up resources

• Step 2: Initiate failover to the secondary Region

• Step 3: Test the failover

• Step 4: Return to the primary region

• Next steps: Customize and test regularly

Prerequisites

To complete this procedure, you must create and configure the following resources:

• A domain name that you own.

• An ACM certificate for that domain name in two AWS Regions. For more info, see the section
called “Getting certificates ready in AWS Certificate Manager”.

• A Route 53 hosted zone for your domain name. For more information, see Working with hosted
zones in the Amazon Route 53 Developer Guide.

For more information on how to create Route 53 failover DNS records for the domain names, see
Choose a routing policy in the Amazon Route 53 Developer Guide. For more information on how
to monitor a CloudWatch alarm, see Monitoring a CloudWatch alarm in the Amazon Route 53
Developer Guide.

Custom domain names 752

https://docs.aws.amazon.com/Route53/latest/APIReference/API_AliasTarget.html%23Route53-Type-AliasTarget-EvaluateTargetHealth%3EEvaluate%20Target%20Health
https://aws.amazon.com/blogs/networking-and-content-delivery/creating-disaster-recovery-mechanisms-using-amazon-route-53/
https://aws.amazon.com/blogs/networking-and-content-delivery/performing-route-53-health-checks-on-private-resources-in-a-vpc-with-aws-lambda-and-amazon-cloudwatch
https://aws.amazon.com/blogs/networking-and-content-delivery/performing-route-53-health-checks-on-private-resources-in-a-vpc-with-aws-lambda-and-amazon-cloudwatch
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/health-checks-creating-values.html#health-checks-creating-values-cloudwatch

Amazon API Gateway Developer Guide

Step 1: Set up resources

In this example, you create the following resources to configure DNS failover for your domain
name:

• API Gateway APIs in two AWS Regions

• API Gateway custom domain names with the same name in two AWS Regions

• API Gateway API mappings that connect your API Gateway APIs to the custom domain names

• Route 53 failover DNS records for the domain names

• A CloudWatch alarm in the secondary Region

• A Route 53 health check based on the CloudWatch alarm in the secondary Region

First, make sure that you have all of the required resources in the primary and secondary Regions.
The secondary Region should contain the alarm and health check. This way, you don't depend on
the primary Region to perform failover. For example AWS CloudFormation templates that create
these resources, see primary.yaml and secondary.yaml.

Important

Before failover to the secondary Region, make sure that all required resources are available.
Otherwise, your API won't be ready for traffic in the secondary Region.

Step 2: Initiate failover to the secondary Region

In the following example, the standby Region receives a CloudWatch metric and initiates failover.
We use a custom metric that requires operator intervention to initiate failover.

aws cloudwatch put-metric-data \
 --metric-name Failover \
 --namespace HealthCheck \
 --unit Count \
 --value 1 \
 --region us-west-1

Replace the metric data with the corresponding data for the CloudWatch alarm you configured.

Custom domain names 753

samples/primary.zip
samples/secondary.zip

Amazon API Gateway Developer Guide

Step 3: Test the failover

Invoke your API and verify that you get a response from the secondary Region. If you used the
example templates in step 1, the response changes from {"message": "Hello from the
primary Region!"} to {"message": "Hello from the secondary Region!"} after
failover.

curl https://my-api.example.com

{"message": "Hello from the secondary Region!"}

Step 4: Return to the primary region

To return to the primary Region, send a CloudWatch metric that causes the health check to pass.

aws cloudwatch put-metric-data \
 --metric-name Failover \
 --namespace HealthCheck \
 --unit Count \
 --value 0 \
 --region us-west-1

Replace the metric data with the corresponding data for the CloudWatch alarm you configured.

Invoke your API and verify that you get a response from the primary Region. If you used the
example templates in step 1, the response changes from {"message": "Hello from the
secondary Region!"} to {"message": "Hello from the primary Region!"}.

curl https://my-api.example.com

{"message": "Hello from the primary Region!"}

Next steps: Customize and test regularly

This example demonstrates one way to configure DNS failover. You can use a variety of
CloudWatch metrics or HTTP endpoints for the health checks that manage failover. Regularly test
your failover mechanisms to make sure that they work as expected, and that operators are familiar
with your failover procedures.

Custom domain names 754

Amazon API Gateway Developer Guide

Optimizing performance of REST APIs

After you've made your API available to be called, you might realize that it needs to be optimized
to improve responsiveness. API Gateway provides a few strategies for optimizing your API, like
response caching and payload compression. In this section, you can learn how to enable these
capabilities.

Topics

• Enabling API caching to enhance responsiveness

• Enabling payload compression for an API

Enabling API caching to enhance responsiveness

You can enable API caching in Amazon API Gateway to cache your endpoint's responses. With
caching, you can reduce the number of calls made to your endpoint and also improve the latency
of requests to your API.

When you enable caching for a stage, API Gateway caches responses from your endpoint for a
specified time-to-live (TTL) period, in seconds. API Gateway then responds to the request by
looking up the endpoint response from the cache instead of making a request to your endpoint.
The default TTL value for API caching is 300 seconds. The maximum TTL value is 3600 seconds.
TTL=0 means caching is disabled.

Note

Caching is best-effort. You can use the CacheHitCount and CacheMissCount metrics in
Amazon CloudWatch to monitor requests that API Gateway serves from the API cache.

The maximum size of a response that can be cached is 1048576 bytes. Cache data encryption may
increase the size of the response when it is being cached.

This is a HIPAA Eligible Service. For more information about AWS, U.S. Health Insurance Portability
and Accountability Act of 1996 (HIPAA), and using AWS services to process, store, and transmit
protected health information (PHI), see HIPAA Overview.

Optimize 755

https://aws.amazon.com/compliance/hipaa-compliance/

Amazon API Gateway Developer Guide

Important

When you enable caching for a stage, only GET methods have caching enabled by default.
This helps to ensure the safety and availability of your API. You can enable caching for
other methods by overriding method settings.

Important

Caching is charged by the hour based on the cache size that you select. Caching is not
eligible for the AWS Free Tier. For more information, see API Gateway Pricing.

Enable Amazon API Gateway caching

In API Gateway, you can enable caching for a specific stage.

When you enable caching, you must choose a cache capacity. In general, a larger capacity gives a
better performance, but also costs more. For supported cache sizes, see cacheClusterSize in the API
Gateway API Reference.

API Gateway enables caching by creating a dedicated cache instance. This process can take up to 4
minutes.

API Gateway changes caching capacity by removing the existing cache instance and creating a new
one with a modified capacity. All existing cached data is deleted.

Note

The cache capacity affects the CPU, memory, and network bandwidth of the cache instance.
As a result, the cache capacity can affect the performance of your cache.
API Gateway recommends that you run a 10-minute load test to verify that your cache
capacity is appropriate for your workload. Ensure that traffic during the load test mirrors
production traffic. For example, include ramp up, constant traffic, and traffic spikes. The
load test should include responses that can be served from the cache, as well as unique
responses that add items to the cache. Monitor the latency, 4xx, 5xx, cache hit, and cache
miss metrics during the load test. Adjust your cache capacity as needed based on these

Cache settings 756

https://aws.amazon.com/api-gateway/pricing/
https://docs.aws.amazon.com/apigateway/latest/api/API_CreateStage.html#apigw-CreateStage-request-cacheClusterSize

Amazon API Gateway Developer Guide

metrics. For more information about load testing, see How do I select the best API Gateway
cache capacity to avoid hitting a rate limit?.

In the API Gateway console, you configure caching on the Stages page. You provision the stage
cache and specify a default method-level cache setting. If you turn on the default method-level
cache, method-level caching is turned on for all methods on your stage, unless that method has a
method override. Any additional GET methods that you deploy to your stage will have a method-
level cache. To configure method-level caching setting for specific methods of your stage, you
can use method overrides. For more information about method overrides, see the section called
“Override stage caching for method caching”.

To configure API caching for a given stage:

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose Stages.

3. In the Stages list for the API, choose the stage.

4. In the Stage details section, choose Edit.

5. Under Additional settings, for Cache settings, turn on Provision API cache.

This provisions a cache cluster for your stage.

6. To activate caching for your stage, turn on Default method-level caching.

This turns on method-level caching for all methods on your stage. Any additional GET methods
that you deploy to this stage will have a method-level cache.

Note

If you have an existing setting for a method-level cache, changing the default method-
level caching setting doesn't affect that existing setting.

Cache settings 757

https://aws.amazon.com/premiumsupport/knowledge-center/api-gateway-cache-capacity/
https://aws.amazon.com/premiumsupport/knowledge-center/api-gateway-cache-capacity/
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

7. Choose Save changes.

Note

Creating or deleting a cache takes about 4 minutes for API Gateway to complete.
When a cache is created, the Cache cluster value changes from Create in progress to
Active. When cache deletion is completed, the Cache cluster value changes from Delete
in progress to Inactive.
When you turn on method-level caching for all methods on your stage, the Default
method-level caching value changes to Active. If you turn off method-level caching for
all methods on your stage, the Default method-level caching value changes to Inactive.
If you have an existing setting for a method-level cache, changing the status of the cache
doesn't affect that setting.

When you enable caching within a stage's Cache settings, only GET methods are cached. To ensure
the safety and availability of your API, we recommend that you don't change this setting. However,
you can enable caching for other methods by overriding method settings.

If you would like to verify if caching is functioning as expected, you have two general options:

• Inspect the CloudWatch metrics of CacheHitCount and CacheMissCount for your API and stage.

• Put a timestamp in the response.

Cache settings 758

Amazon API Gateway Developer Guide

Note

You should not use the X-Cache header from the CloudFront response to determine if your
API is being served from your API Gateway cache instance.

Override API Gateway stage-level caching for method-level caching

You can override stage-level cache settings by turning on or turning off caching for a specific
method. You can also modify the TTL period or turn encryption on or off for cached responses.

If you change the default method-level caching setting in the Stage details, it doesn't affect the
method-level cache settings that have overrides.

If you anticipate that a method that you are caching will receive sensitive data in its responses, in
Cache Settings, choose Encrypt cache data.

To configure API caching for individual methods using the console:

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose the API.

3. Choose Stages.

4. In the Stages list for the API, expand the stage and choose a method in the API.

5. In the Method overrides section, choose Edit.

6. In the Method settings section, turn on or off Enable method cache or customize any other
desired options.

Note

Caching is not active until you provision a cache cluster for your stage.

7. Choose Save.

Use method or integration parameters as cache keys to index cached responses

When a cached method or integration has parameters, which can take the form of custom headers,
URL paths, or query strings, you can use some or all of the parameters to form cache keys. API
Gateway can cache the method's responses, depending on the parameter values used.

Cache settings 759

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Note

Cache keys are required when setting up caching on a resource.

For example, suppose you have a request in the following format:

GET /users?type=... HTTP/1.1
host: example.com
...

In this request, type can take a value of admin or regular. If you include the type parameter as
part of the cache key, the responses from GET /users?type=admin are cached separately from
those from GET /users?type=regular.

When a method or integration request takes more than one parameter, you can choose to include
some or all of the parameters to create the cache key. For example, you can include only the type
parameter in the cache key for the following request, made in the listed order within a TTL period:

GET /users?type=admin&department=A HTTP/1.1
host: example.com
...

The response from this request is cached and is used to serve the following request:

GET /users?type=admin&department=B HTTP/1.1
host: example.com
...

To include a method or integration request parameter as part of a cache key in the API Gateway
console, select Caching after you add the parameter.

Cache settings 760

Amazon API Gateway Developer Guide

Flush the API stage cache in API Gateway

When API caching is enabled, you can flush your API stage's cache to ensure that your API's clients
get the most recent responses from your integration endpoints.

To flush the API stage cache, choose the Stage actions menu, and then select Flush stage cache.

Cache settings 761

Amazon API Gateway Developer Guide

Note

After the cache is flushed, responses are serviced from the integration endpoint until the
cache is built up again. During this period, the number of requests sent to the integration
endpoint may increase. This may temporarily increase the overall latency of your API.

Invalidate an API Gateway cache entry

A client of your API can invalidate an existing cache entry and reload it from the integration
endpoint for individual requests. The client must send a request that contains the Cache-
Control: max-age=0 header. The client receives the response directly from the integration
endpoint instead of the cache, provided that the client is authorized to do so. This replaces the
existing cache entry with the new response, which is fetched from the integration endpoint.

To grant permission for a client, attach a policy of the following format to an IAM execution role
for the user.

Note

Cross-account cache invalidation is not supported.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:InvalidateCache"
],
 "Resource": [
 "arn:aws:execute-api:region:account-id:api-id/stage-name/GET/resource-path-
specifier"
]
 }
]
}

Cache settings 762

Amazon API Gateway Developer Guide

This policy allows the API Gateway execution service to invalidate the cache for requests on the
specified resource (or resources). To specify a group of targeted resources, use a wildcard (*)
character for account-id, api-id, and other entries in the ARN value of Resource. For more
information on how to set permissions for the API Gateway execution service, see Control access to
an API with IAM permissions.

If you don't impose an InvalidateCache policy (or choose the Require authorization check box
in the console), any client can invalidate the API cache. If most or all of the clients invalidate the
API cache, this could significantly increase the latency of your API.

When the policy is in place, caching is enabled and authorization is required.

You can control how unauthorized requests are handled by choosing an option from Unauthorized
request handling in the API Gateway console.

Cache settings 763

Amazon API Gateway Developer Guide

The three options result in the following behaviors:

• Fail the request with 403 status code: returns a 403 Unauthorized response.

To set this option using the API, use FAIL_WITH_403.

• Ignore cache control header; Add a warning in response header: process the request and add a
warning header in the response.

To set this option using the API, use SUCCEED_WITH_RESPONSE_HEADER.

Cache settings 764

Amazon API Gateway Developer Guide

• Ignore cache control header: process the request and do not add a warning header in the
response.

To set this option using the API, use SUCCEED_WITHOUT_RESPONSE_HEADER.

Enabling payload compression for an API

API Gateway allows your client to call your API with compressed payloads by using one of the
supported content codings. By default, API Gateway supports decompression of the method
request payload. However, you must configure your API to enable compression of the method
response payload.

To enable compression on an API, set the minimumCompressionsSize property to a non-
negative integer between 0 and 10485760 (10M bytes) when you create the API or after you've
created the API. To disable compression on the API, set the minimumCompressionSize to null or
remove it altogether. You can enable or disable compression for an API by using the API Gateway
console, the AWS CLI, or the API Gateway REST API.

If you want the compression applied on a payload of any size, set the minimumCompressionSize
value to zero. However, compressing data of a small size might actually increase the final data size.
Furthermore, compression in API Gateway and decompression in the client might increase overall
latency and require more computing times. You should run test cases against your API to determine
an optimal value.

The client can submit an API request with a compressed payload and an appropriate Content-
Encoding header for API Gateway to decompress and apply applicable mapping templates, before
passing the request to the integration endpoint. After the compression is enabled and the API
is deployed, the client can receive an API response with a compressed payload if it specifies an
appropriate Accept-Encoding header in the method request.

When the integration endpoint expects and returns uncompressed JSON payloads, any mapping
template that's configured for an uncompressed JSON payload is applicable to the compressed
payload. For a compressed method request payload, API Gateway decompresses the payload,
applies the mapping template, and passes the mapped request to the integration endpoint. For
an uncompressed integration response payload, API Gateway applies the mapping template,
compresses the mapped payload, and returns the compressed payload to the client.

Topics

Content encoding 765

https://docs.aws.amazon.com/apigateway/latest/api/API_RestApi.html
https://docs.aws.amazon.com/apigateway/latest/api/API_RestApi.html#minimumCompressionSize

Amazon API Gateway Developer Guide

• Enable payload compression for an API

• Call an API method with a compressed payload

• Receive an API response with a compressed payload

Enable payload compression for an API

You can enable compression for an API using the API Gateway console, the AWS CLI, or an AWS
SDK.

For an existing API, you must deploy the API after enabling the compression in order for the
change to take effect. For a new API, you can deploy the API after the API setup is complete.

Note

The highest-priority content encoding must be one supported by API Gateway. If it is not,
compression is not applied to the response payload.

Topics

• Enable payload compression for an API using the API Gateway console

• Enable payload compression for an API using AWS CLI

• Content codings supported by API Gateway

Enable payload compression for an API using the API Gateway console

The following procedure describes how to enable payload compression for an API.

To enable payload compression by using the API Gateway console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose an existing API or create a new one.

3. In the main navigation pane, choose API settings.

4. In the API details section, choose Edit.

5. Turn on Content encoding to enable payload compression. For Minimum body size, enter a
number for the minimum compression size (in bytes). To turn off compression, turn off the
Content encoding option.

Content encoding 766

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

6. Choose Save changes.

Enable payload compression for an API using AWS CLI

To use the AWS CLI to create a new API and enable compression, call the create-rest-api
command as follows:

aws apigateway create-rest-api \
 --name "My test API" \
 --minimum-compression-size 0

To use the AWS CLI to enable compression on an existing API, call the update-rest-api
command as follows:

aws apigateway update-rest-api \
 --rest-api-id 1234567890 \
 --patch-operations op=replace,path=/minimumCompressionSize,value=0

The minimumCompressionSize property has a non-negative integer value between 0 and
10485760 (10M bytes). It measures the compression threshold. If the payload size is smaller than
this value, compression or decompression are not applied on the payload. Setting it to zero allows
compression for any payload size.

To use the AWS CLI to disable compression, call the update-rest-api command as follows:

aws apigateway update-rest-api \
 --rest-api-id 1234567890 \
 --patch-operations op=replace,path=/minimumCompressionSize,value=

You can also set value to an empty string "" or omit the value property altogether in the
preceding call.

Content codings supported by API Gateway

API Gateway supports the following content codings:

• deflate

• gzip

• identity

Content encoding 767

https://docs.aws.amazon.com/cli/latest/reference/apigateway/create-rest-api.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/update-rest-api.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/update-rest-api.html

Amazon API Gateway Developer Guide

API Gateway also supports the following Accept-Encoding header format, according to the RFC
7231 specification:

• Accept-Encoding:deflate,gzip

• Accept-Encoding:

• Accept-Encoding:*

• Accept-Encoding:deflate;q=0.5,gzip;q=1.0

• Accept-Encoding:gzip;q=1.0,identity;q=0.5,*;q=0

Call an API method with a compressed payload

To make an API request with a compressed payload, the client must set the Content-Encoding
header with one of the supported content codings.

Suppose that you're an API client and want to call the PetStore API method (POST /pets). Don't
call the method by using the following JSON output:

POST /pets
Host: {petstore-api-id}.execute-api.{region}.amazonaws.com
Content-Length: ...

{
 "type": "dog",
 "price": 249.99
}

Instead, you can call the method with the same payload compressed by using the GZIP coding:

POST /pets
Host: {petstore-api-id}.execute-api.{region}.amazonaws.com
Content-Encoding:gzip
Content-Length: ...

���RPP*�,HU�RPJ�OW��e&���L,�,-y�j

When API Gateway receives the request, it verifies if the specified content coding is supported.
Then, it attempts to decompress the payload with the specified content coding. If the
decompression is successful, it dispatches the request to the integration endpoint. If the specified

Content encoding 768

https://tools.ietf.org/html/rfc7231#section-5.3.4
https://tools.ietf.org/html/rfc7231#section-5.3.4

Amazon API Gateway Developer Guide

coding isn't supported or the supplied payload isn't compressed with specified coding, API
Gateway returns the 415 Unsupported Media Type error response. The error is not logged to
CloudWatch Logs, if it occurs in the early phase of decompression before your API and stage are
identified.

Receive an API response with a compressed payload

When making a request on a compression-enabled API, the client can choose to receive a
compressed response payload of a specific format by specifying an Accept-Encoding header
with a supported content coding.

API Gateway only compresses the response payload when the following conditions are satisfied:

• The incoming request has the Accept-Encoding header with a supported content coding and
format.

Note

If the header is not set, the default value is * as defined in RFC 7231. In such a case, API
Gateway does not compress the payload. Some browser or client may add Accept-
Encoding (for example, Accept-Encoding:gzip, deflate, br) automatically to
compression-enabled requests. This can trigger the payload compression in API Gateway.
Without an explicit specification of supported Accept-Encoding header values, API
Gateway does not compress the payload.

• The minimumCompressionSize is set on the API to enable compression.

• The integration response doesn't have a Content-Encoding header.

• The size of an integration response payload, after the applicable mapping template is applied, is
greater than or equal to the specified minimumCompressionSize value.

API Gateway applies any mapping template that's configured for the integration response before
compressing the payload. If the integration response contains a Content-Encoding header,
API Gateway assumes that the integration response payload is already compressed and skips the
compression processing.

An example is the PetStore API example and the following request:

GET /pets

Content encoding 769

https://tools.ietf.org/html/rfc7231#section-5.3.4

Amazon API Gateway Developer Guide

Host: {petstore-api-id}.execute-api.{region}.amazonaws.com
Accept: application/json

The backend responds to the request with an uncompressed JSON payload that's similar to the
following:

200 OK

[
 {
 "id": 1,
 "type": "dog",
 "price": 249.99
 },
 {
 "id": 2,
 "type": "cat",
 "price": 124.99
 },
 {
 "id": 3,
 "type": "fish",
 "price": 0.99
 }
]

To receive this output as a compressed payload, your API client can submit a request as follows:

GET /pets
Host: {petstore-api-id}.execute-api.{region}.amazonaws.com
Accept-Encoding:gzip

The client receives the response with a Content-Encoding header and GZIP-encoded payload
that are similar to the following:

200 OK
Content-Encoding:gzip
...

���RP�

J�)JV

Content encoding 770

Amazon API Gateway Developer Guide

�:P^IeA*������+(�L �X�YZ�ku0L0B7!9��C#�&����Y��a���^�X

When the response payload is compressed, only the compressed data size is billed for data transfer.

Distributing your REST API to clients

This section provides details about distributing your API Gateway APIs to your customers.
Distributing your API includes generating SDKs for your customers to download and integrate with
their client applications, documenting your API so customers know how to call it from their client
applications, and making your API available as part of product offerings.

Topics

• Creating and using usage plans with API keys

• Documenting REST APIs

• Generating an SDK for a REST API in API Gateway

• Sell your API Gateway APIs through AWS Marketplace

Creating and using usage plans with API keys

After you create, test, and deploy your APIs, you can use API Gateway usage plans to make them
available as product offerings for your customers. You can configure usage plans and API keys
to allow customers to access selected APIs, and begin throttling requests to those APIs based on
defined limits and quotas. These can be set at the API, or API method level.

What are usage plans and API keys?

A usage plan specifies who can access one or more deployed API stages and methods—and
optionally sets the target request rate to start throttling requests. The plan uses API keys to
identify API clients and who can access the associated API stages for each key.

API keys are alphanumeric string values that you distribute to application developer customers
to grant access to your API. You can use API keys together with Lambda authorizers, IAM roles, or
Amazon Cognito to control access to your APIs. API Gateway can generate API keys on your behalf,
or you can import them from a CSV file. You can generate an API key in API Gateway, or import it
into API Gateway from an external source. For more information, see the section called “Set up API
keys using the API Gateway console”.

Distribute 771

Amazon API Gateway Developer Guide

An API key has a name and a value. (The terms "API key" and "API key value" are often used
interchangeably.) The name cannot exceed 1024 characters. The value is an alphanumeric string
between 20 and 128 characters, for example, apikey1234abcdefghij0123456789.

Important

API key values must be unique. If you try to create two API keys with different names and
the same value, API Gateway considers them to be the same API key.
An API key can be associated with more than one usage plan. A usage plan can be
associated with more than one stage. However, a given API key can only be associated with
one usage plan for each stage of your API.

A throttling limit sets the target point at which request throttling should start. This can be set at
the API or API method level.

A quota limit sets the target maximum number of requests with a given API key that can be
submitted within a specified time interval. You can configure individual API methods to require API
key authorization based on usage plan configuration.

Throttling and quota limits apply to requests for individual API keys that are aggregated across all
API stages within a usage plan.

Note

Usage plan throttling and quotas are not hard limits, and are applied on a best-effort basis.
In some cases, clients can exceed the quotas that you set. Don’t rely on usage plan quotas
or throttling to control costs or block access to an API. Consider using AWS Budgets to
monitor costs and AWS WAF to manage API requests.

Best practices for API keys and usage plans

The following are suggested best practices to follow when using API keys and usage plans.

Important

• Don't use API keys for authentication or authorization to control access to your APIs. If
you have multiple APIs in a usage plan, a user with a valid API key for one API in that

Usage plans 772

https://docs.aws.amazon.com/cost-management/latest/userguide/budgets-managing-costs.html
https://docs.aws.amazon.com/waf/latest/developerguide/waf-chapter.html

Amazon API Gateway Developer Guide

usage plan can access all APIs in that usage plan. Instead, to control access to your API,
use an IAM role, a Lambda authorizer, or an Amazon Cognito user pool.

• Use API keys that API Gateway generates. API keys shouldn't include confidential
information; clients typically transmit them in headers that can be logged.

• If you're using a developer portal to publish your APIs, note that all APIs in a given usage plan are
subscribable, even if you haven't made them visible to your customers.

• In some cases, clients can exceed the quotas that you set. Don’t rely on usage plans to control
costs. Consider using AWS Budgets to monitor costs and AWS WAF to manage API requests.

• After you add an API key to a usage plan, the update operation might take a few minutes to
complete.

Steps to configure a usage plan

The following steps outline how you, as the API owner, create and configure a usage plan for your
customers.

To configure a usage plan

1. Create one or more APIs, configure the methods to require an API key, and deploy the APIs to
stages.

2. Generate or import API keys to distribute to application developers (your customers) who will
be using your API.

3. Create the usage plan with the desired throttle and quota limits.

4. Associate API stages and API keys with the usage plan.

Callers of the API must supply an assigned API key in the x-api-key header in requests to the API.

Note

To include API methods in a usage plan, you must configure individual API methods to
require an API key. For best practices to consider, see the section called “Best practices for
API keys and usage plans”.

Usage plans 773

https://docs.aws.amazon.com/cost-management/latest/userguide/budgets-managing-costs.html
https://docs.aws.amazon.com/waf/latest/developerguide/waf-chapter.html

Amazon API Gateway Developer Guide

Choose an API key source

When you associate a usage plan with an API and enable API keys on API methods, every incoming
request to the API must contain an API key. API Gateway reads the key and compares it against the
keys in the usage plan. If there is a match, API Gateway throttles the requests based on the plan's
request limit and quota. Otherwise, it throws an InvalidKeyParameter exception. As a result,
the caller receives a 403 Forbidden response.

Your API Gateway API can receive API keys from one of two sources:

HEADER

You distribute API keys to your customers and require them to pass the API key as the X-API-
Key header of each incoming request.

AUTHORIZER

You have a Lambda authorizer return the API key as part of the authorization response. For
more information on the authorization response, see the section called “Output from an
Amazon API Gateway Lambda authorizer”.

Note

For best practices to consider, see the section called “Best practices for API keys and usage
plans”.

To choose an API key source for an API by using the API Gateway console

1. Sign in to the API Gateway console.

2. Choose an existing API or create a new one.

3. In the main navigation pane, choose API settings.

4. In the API details section, choose Edit.

5. Under API key source, select Header or Authorizer from the dropdown list.

6. Choose Save changes.

To choose an API key source for an API by using the AWS CLI, call the update-rest-api
command as follows:

Usage plans 774

https://docs.aws.amazon.com/cli/latest/reference/apigateway/update-rest-api.html

Amazon API Gateway Developer Guide

aws apigateway update-rest-api --rest-api-id 1234123412 --patch-operations
 op=replace,path=/apiKeySource,value=AUTHORIZER

To have the client submit an API key, set the value to HEADER in the preceding CLI command.

To choose an API key source for an API by using the API Gateway REST API, call restapi:update
as follows:

PATCH /restapis/fugvjdxtri/ HTTP/1.1
Content-Type: application/json
Host: apigateway.us-east-1.amazonaws.com
X-Amz-Date: 20160603T205348Z
Authorization: AWS4-HMAC-SHA256 Credential={access_key_ID}/20160603/us-east-1/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature={sig4_hash}

{
 "patchOperations" : [
 {
 "op" : "replace",
 "path" : "/apiKeySource",
 "value" : "HEADER"
 }
]
}

To have an authorizer return an API key, set the value to AUTHORIZER in the previous
patchOperations input.

Depending on the API key source type you choose, use one of the following procedures to use
header-sourced API keys or authorizer-returned API keys in method invocation:

To use header-sourced API keys:

1. Create an API with desired API methods, and then deploy the API to a stage.

2. Create a new usage plan or choose an existing one. Add the deployed API stage to the usage
plan. Attach an API key to the usage plan or choose an existing API key in the plan. Note the
chosen API key value.

3. Set up API methods to require an API key.

Usage plans 775

https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateRestApi.html

Amazon API Gateway Developer Guide

4. Redeploy the API to the same stage. If you deploy the API to a new stage, make sure to update
the usage plan to attach the new API stage.

The client can now call the API methods while supplying the x-api-key header with the chosen
API key as the header value.

To use authorizer-sourced API keys:

1. Create an API with desired API methods, and then deploy the API to a stage.

2. Create a new usage plan or choose an existing one. Add the deployed API stage to the usage
plan. Attach an API key to the usage plan or choose an existing API key in the plan. Note the
chosen API key value.

3. Create a token-based Lambda authorizer. Include, usageIdentifierKey:{api-key} as
a root-level property of the authorization response. For instructions on creating a token-
based authorizer, see the section called “EXAMPLE: Create a token-based Lambda authorizer
function”.

4. Set up API methods to require an API key and enable the Lambda authorizer on the methods
as well.

5. Redeploy the API to the same stage. If you deploy the API to a new stage, make sure to update
the usage plan to attach the new API stage.

The client can now call the API key-required methods without explicitly supplying any API key. The
authorizer-returned API key is used automatically.

Set up API keys using the API Gateway console

To set up API keys, do the following:

• Configure API methods to require an API key.

• Create or import an API key for the API in a region.

Before setting up API keys, you must have created an API and deployed it to a stage. After you
create an API key value, it cannot be changed.

For instructions on how to create and deploy an API by using the API Gateway console, see
Creating a REST API in Amazon API Gateway and Deploying a REST API in Amazon API Gateway,
respectively.

Usage plans 776

Amazon API Gateway Developer Guide

After you create an API key, you must associate it with a usage plan. For more information, see
Create, configure, and test usage plans with the API Gateway console.

Note

For best practices to consider, see the section called “Best practices for API keys and usage
plans”.

Topics

• Require API key on a method

• Create an API key

• Import API keys

Require API key on a method

The following procedure describes how to configure an API method to require an API key.

To configure an API method to require an API key

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose a REST API.

3. In the API Gateway main navigation pane, choose Resources.

4. Under Resources, create a new method or choose an existing one.

5. On the Method request tab, under Method request settings, choose Edit.

Usage plans 777

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

6. Select API key required.

7. Choose Save.

8. Deploy or redeploy the API for the requirement to take effect.

If the API key required option is set to false and you don't execute the previous steps, any API
key that's associated with an API stage isn't used for the method.

Create an API key

If you've already created or imported API keys for use with usage plans, you can skip this and the
next procedure.

To create an API key

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

Usage plans 778

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

2. Choose a REST API.

3. In the API Gateway main navigation pane, choose API keys.

4. Choose Create API key.

5. For Name, enter a name.

6. (Optional) For Description, enter a description.

7. For API key, choose Auto generate to have API Gateway generate the key value, or choose
Custom to create your own key value.

8. Choose Save.

Import API keys

The following procedure describes how to import API keys to use with usage plans.

To import API keys

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose a REST API.

3. In the main navigation pane, choose API keys.

4. Choose the Actions dropdown menu, and then choose Import API keys.

5. To load a comma-separated key file, choose Choose file. You can also enter the keys in the text
editor. For information about the file format, see the section called “API Gateway API key file
format”.

6. Choose Fail on warnings to stop the import when there's an error, or choose Ignore warnings
to continue to import valid key entries when there's an warning.

Usage plans 779

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

7. Choose Import to import your API keys.

Create, configure, and test usage plans with the API Gateway console

Before creating a usage plan, make sure that you've set up the desired API keys. For more
information, see Set up API keys using the API Gateway console.

This section describes how to create and use a usage plan by using the API Gateway console.

Topics

• Migrate your API to default usage plans (if needed)

• Create a usage plan

• Test a usage plan

• Maintain a usage plan

Migrate your API to default usage plans (if needed)

If you started to use API Gateway after the usage plans feature was rolled out on August 11, 2016,
you will automatically have usage plans enabled for you in all supported Regions.

If you started to use API Gateway before that date, you might need to migrate to default usage
plans. You'll be prompted with the Enable Usage Plans option before using usage plans for the
first time in the selected Region. When you enable this option, you have default usage plans
created for every unique API stage that's associated with existing API keys. In the default usage
plan, no throttle or quota limits are set initially, and the associations between the API keys and API
stages are copied to the usage plans. The API behaves the same as before. However, you must use
the UsagePlan apiStages property to associate specified API stage values (apiId and stage)
with included API keys (via UsagePlanKey), instead of using the ApiKey stageKeys property.

To check whether you've already migrated to default usage plans, use the get-account CLI
command. In the command output, the features list includes an entry of "UsagePlans" when
usage plans are enabled.

You can also migrate your APIs to default usage plans by using the AWS CLI as follows:

To migrate to default usage plans using the AWS CLI

1. Call this CLI command: update-account.

Usage plans 780

https://docs.aws.amazon.com/apigateway/api-reference/resource/usage-plan/
https://docs.aws.amazon.com/apigateway/api-reference/resource/usage-plan-key/
https://docs.aws.amazon.com/apigateway/api-reference/resource/api-key/
https://docs.aws.amazon.com/cli/latest/reference/apigateway/get-account.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/update-account.html

Amazon API Gateway Developer Guide

2. For the cli-input-json parameter, use the following JSON:

[
 {
 "op": "add",
 "path": "/features",
 "value": "UsagePlans"
 }
]

Create a usage plan

The following procedure describes how to create a usage plan.

To create a usage plan

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the API Gateway main navigation pane, choose Usage plans, and then choose Create usage
plan.

3. For Name, enter a name.

4. (Optional) For Description, enter a description.

5. By default, usage plans enable throttling. Enter a Rate and a Burst for your usage plan. Choose
Throttling to turn off throttling.

6. By default, usage plans enable a quota for a time period. For Requests, enter the total number
of requests that a user can make in the time period of your usage plan. Choose Quota to turn
off the quota.

7. Choose Create usage plan.

Usage plans 781

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

To add a stage to the usage plan

1. Select your usage plan.

2. Under the Associated stages tab, choose Add stage.

3. For API, select an API.

4. For Stage, select a stage.

5. (Optional) To turn on method-level throttling, do the following:

a. Choose Method-level throttling, and then choose Add method.

b. For Resource, select a resource from your API.

c. For Method, select a method from your API.

Usage plans 782

Amazon API Gateway Developer Guide

d. Enter a Rate and a Burst for your usage plan.

6. Choose Add to usage plan.

To add a key to the usage plan

1. Under the Associated API keys tab, choose Add API key.

2. a. To associate an existing key to your usage plan, select Add existing key, and then select
your existing key from the dropdown menu.

Usage plans 783

Amazon API Gateway Developer Guide

b. To create a new API key, select Create and add new key, and then create a new key. For
more information on how to create a new key, see Create an API key.

3. Choose Add API key.

Test a usage plan

To test the usage plan, you can use an AWS SDK, AWS CLI, or a REST API client like Postman. For an
example of using Postman to test the usage plan, see Test usage plans.

Maintain a usage plan

Maintaining a usage plan involves monitoring the used and remaining quotas over a given time
period and, if needed, extending the remaining quotas by a specified amount. The following
procedures describe how to monitor quotas.

To monitor used and remaining quotas

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the API Gateway main navigation pane, choose Usage plans.

3. Select a usage plan.

4. Choose the Associated API keys tab to see the number of request remaining for the time
period for each key.

5. (Optional) Choose Export usage data, and then choose a From date and a To date. Then
choose JSON or CSV for the exported data format, and then choose Export.

The following example shows an exported file.

{
 "thisPeriod": {
 "px1KW6...qBazOJH": [
 [
 0,
 5000
],
 [
 0,
 5000
],
 [

Usage plans 784

https://www.postman.com/
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

 0,
 10
]
]
 },
 "startDate": "2016-08-01",
 "endDate": "2016-08-03"
}

The usage data in the example shows the daily usage data for an API client, as identified by the
API key (px1KW6...qBazOJH), between August 1, 2016 and August 3, 2016. Each daily usage
data shows used and remaining quotas. In this example, the subscriber hasn't used any allotted
quotas yet, and the API owner or administrator has reduced the remaining quota from 5000 to
10 on the third day.

The following procedures describe how to modify quotas.

To extend the remaining quotas

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. In the API Gateway main navigation pane, choose Usage plans.

3. Select a usage plan.

4. Choose the Associated API keys tab to see the number of request remaining for the time
period for each key.

5. Select an API key, and then choose Grant usage extension.

6. Enter a number for the Remaining requests quota. You can increase the renaming requests or
decrease the remaining requests for the time period of your usage plan.

7. Choose Update quota.

Set up API keys using the API Gateway REST API

To set up API keys, do the following:

• Configure API methods to require an API key.

• Create or import an API key for the API in a region.

Usage plans 785

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Before setting up API keys, you must have created an API and deployed it to a stage. After you
create an API key value, it cannot be changed.

For the REST API calls to create and deploy an API, see restapi:create and
deployment:create, respectively.

Note

For best practices to consider, see the section called “Best practices for API keys and usage
plans”.

Topics

• Require an API key on a method

• Create or import API keys

Require an API key on a method

To require an API key on a method, do one of the following:

• Call method:put to create a method. Set apiKeyRequired to true in the request payload.

• Call method:update to set apiKeyRequired to true.

Create or import API keys

To create or import an API key, do one of the following:

• Call apikey:create to create an API key.

• Call apikey:import to import an API key from a file. For the file format, see API Gateway API
key file format.

You cannot change the value of the new API key. To learn how to configure a usage plan, see
Create, configure, and test usage plans using the API Gateway CLI and REST API.

Create, configure, and test usage plans using the API Gateway CLI and REST API

Before configuring a usage plan, you must have already done the following: set up methods of
a selected API to require API keys, deployed or redeployed the API to a stage, and created or

Usage plans 786

https://docs.aws.amazon.com/apigateway/api-reference/link-relation/restapi-create/
https://docs.aws.amazon.com/apigateway/api-reference/link-relation/deployment-create/
https://docs.aws.amazon.com/apigateway/api-reference/link-relation/method-put/
https://docs.aws.amazon.com/apigateway/api-reference/link-relation/method-update/
https://docs.aws.amazon.com/apigateway/api-reference/link-relation/apikey-create/
https://docs.aws.amazon.com/apigateway/api-reference/link-relation/apikey-import/

Amazon API Gateway Developer Guide

imported one or more API keys. For more information, see Set up API keys using the API Gateway
REST API.

To configure a usage plan by using the API Gateway REST API, use the following instructions,
assuming that you've already created the APIs to be added to the usage plan.

Topics

• Migrate to default usage plans

• Create a usage plan

• Manage a usage plan by using the AWS CLI

• Test usage plans

Migrate to default usage plans

When creating a usage plan the first time, you can migrate existing API stages that are associated
with selected API keys to a usage plan by calling account:update with the following body:

{
 "patchOperations" : [{
 "op" : "add",
 "path" : "/features",
 "value" : "UsagePlans"
 }]
}

For more information about migrating API stages associated with API keys, see Migrate to Default
Usage Plans in the API Gateway Console.

Create a usage plan

The following procedure describes how to create a usage plan.

To create a usage plan with the REST API

1. Call usageplan:create to create a usage plan. In the payload, specify the name and
description of the plan, associated API stages, rate limits, and quotas.

Make note of the resultant usage plan identifier. You need it in the next step.

2. Do one of the following:

Usage plans 787

https://docs.aws.amazon.com/apigateway/api-reference/link-relation/account-update/
https://docs.aws.amazon.com/apigateway/api-reference/link-relation/usageplan-create/

Amazon API Gateway Developer Guide

a. Call usageplankey:create to add an API key to the usage plan. Specify keyId and
keyType in the payload.

To add more API keys to the usage plan, repeat the previous call, one API key at a time.

b. Call apikey:import to add one or more API keys directly to the specified usage plan.
The request payload should contain API key values, the associated usage plan identifier,
the Boolean flags to indicate that the keys are enabled for the usage plan, and, possibly,
the API key names and descriptions.

The following example of the apikey:import request adds three API keys (as identified
by key, name, and description) to one usage plan (as identified by usageplanIds):

POST /apikeys?mode=import&format=csv&failonwarnings=fase HTTP/1.1
Host: apigateway.us-east-1.amazonaws.com
Content-Type: text/csv
Authorization: ...

key,name, description, enabled, usageplanIds
abcdef1234ghijklmnop8901234567, importedKey_1, firstone, tRuE, n371pt
abcdef1234ghijklmnop0123456789, importedKey_2, secondone, TRUE, n371pt
abcdef1234ghijklmnop9012345678, importedKey_3, , true, n371pt

As a result, three UsagePlanKey resources are created and added to the UsagePlan.

You can also add API keys to more than one usage plan this way. To do this, change each
usageplanIds column value to a comma-separated string that contains the selected
usage plan identifiers, and is enclosed within a pair of quotes ("n371pt,m282qs" or
'n371pt,m282qs').

Note

An API key can be associated with more than one usage plan. A usage plan can
be associated with more than one stage. However, a given API key can only be
associated with one usage plan for each stage of your API.

Usage plans 788

https://docs.aws.amazon.com/apigateway/api-reference/link-relation/usageplankey-create/
https://docs.aws.amazon.com/apigateway/api-reference/link-relation/apikey-import/

Amazon API Gateway Developer Guide

Manage a usage plan by using the AWS CLI

The following code examples show how to add, remove, or modify the method-level throttling
settings in a usage plan by calling the update-usage-plan command.

Note

Be sure to change us-east-1 to the appropriate Region value for your API.

To add or replace a rate limit for throttling an individual resource and method:

aws apigateway --region us-east-1 update-usage-plan --usage-plan-id <planId> --patch-
operations
 op="replace",path="/apiStages/<apiId>:<stage>/
throttle/<resourcePath>/<httpMethod>/rateLimit",value="0.1"

To add or replace a burst limit for throttling an individual resource and method:

aws apigateway --region us-east-1 update-usage-plan --usage-plan-id <planId>
 --patch-operations op="replace",path="/apiStages/<apiId>:<stage>/
throttle/<resourcePath>/<httpMethod>/burstLimit",value="1"

To remove the method-level throttling settings for an individual resource and method:

aws apigateway --region us-east-1 update-usage-plan --usage-plan-id <planId>
 --patch-operations op="remove",path="/apiStages/<apiId>:<stage>/
throttle/<resourcePath>/<httpMethod>",value=""

To remove all method-level throttling settings for an API:

aws apigateway --region us-east-1 update-usage-plan --usage-plan-id <planId> --patch-
operations op="remove",path="/apiStages/<apiId>:<stage>/throttle ",value=""

Here is an example using the Pet Store sample API:

aws apigateway --region us-east-1 update-usage-plan --usage-plan-id <planId> --patch-
operations

Usage plans 789

https://docs.aws.amazon.com/cli/latest/reference/apigateway/update-usage-plan.html

Amazon API Gateway Developer Guide

 op="replace",path="/apiStages/<apiId>:<stage>/throttle",value='"{\"/
pets/GET\":{\"rateLimit\":1.0,\"burstLimit\":1},\"//GET\":{\"rateLimit\":1.0,
\"burstLimit\":1}}"'

Test usage plans

As an example, let's use the PetStore API, which was created in Tutorial: Create a REST
API by importing an example. Assume that the API is configured to use an API key of
Hiorr45VR...c4GJc. The following steps describe how to test a usage plan.

To test your usage plan

• Make a GET request on the Pets resource (/pets), with the ?type=...&page=... query
parameters, of the API (for example, xbvxlpijch) in a usage plan:

GET /testStage/pets?type=dog&page=1 HTTP/1.1
x-api-key: Hiorr45VR...c4GJc
Content-Type: application/x-www-form-urlencoded
Host: xbvxlpijch.execute-api.ap-southeast-1.amazonaws.com
X-Amz-Date: 20160803T001845Z
Authorization: AWS4-HMAC-SHA256 Credential={access_key_ID}/20160803/ap-southeast-1/
execute-api/aws4_request, SignedHeaders=content-type;host;x-amz-date;x-api-key,
 Signature={sigv4_hash}

Note

You must submit this request to the execute-api component of API Gateway and
provide the required API key (for example, Hiorr45VR...c4GJc) in the required x-
api-key header.

The successful response returns a 200 OK status code and a payload that contains the
requested results from the backend. If you forget to set the x-api-key header or set it with
an incorrect key, you get a 403 Forbidden response. However, if you didn't configure the
method to require an API key, you will likely get a 200 OK response whether you set the x-
api-key header correctly or not, and the throttle and quota limits of the usage plan are
bypassed.

Occasionally, when an internal error occurs where API Gateway is unable to enforce usage plan
throttling limits or quotas for the request, API Gateway serves the request without applying

Usage plans 790

Amazon API Gateway Developer Guide

the throttling limits or quotas as specified in the usage plan. But, it logs an error message of
Usage Plan check failed due to an internal error in CloudWatch. You can ignore
such occasional errors.

Create and configure API keys and usage plans with AWS CloudFormation

You can use AWS CloudFormation to require API keys on API methods and create a usage plan for
an API. The example AWS CloudFormation template does the following:

• Creates an API Gateway API with GET and POST methods.

• Requires an API key for the GET and POST methods. This API receives keys from the X-API-KEY
header of each incoming request.

• Creates an API key.

• Creates a usage plan to specify a monthly quota of 1,000 request each month, a throttling rate
limit of 100 request each second, and a throttling burst limit of 200 request each second.

• Specifies a method-level throttling rate limit of 50 requests each second and a method-level
throttling burst limit of 100 requests per second for the GET method.

• Associates the API stage and API key with the usage plan.

AWSTemplateFormatVersion: 2010-09-09
Parameters:
 StageName:
 Type: String
 Default: v1
 Description: Name of API stage.
 KeyName:
 Type: String
 Default: MyKeyName
 Description: Name of an API key
Resources:
 Api:
 Type: 'AWS::ApiGateway::RestApi'
 Properties:
 Name: keys-api
 ApiKeySourceType: HEADER
 PetsResource:
 Type: 'AWS::ApiGateway::Resource'
 Properties:

Usage plans 791

Amazon API Gateway Developer Guide

 RestApiId: !Ref Api
 ParentId: !GetAtt Api.RootResourceId
 PathPart: 'pets'
 PetsMethodGet:
 Type: 'AWS::ApiGateway::Method'
 Properties:
 RestApiId: !Ref Api
 ResourceId: !Ref PetsResource
 HttpMethod: GET
 ApiKeyRequired: true
 AuthorizationType: NONE
 Integration:
 Type: HTTP_PROXY
 IntegrationHttpMethod: GET
 Uri: http://petstore-demo-endpoint.execute-api.com/petstore/pets/
 PetsMethodPost:
 Type: 'AWS::ApiGateway::Method'
 Properties:
 RestApiId: !Ref Api
 ResourceId: !Ref PetsResource
 HttpMethod: POST
 ApiKeyRequired: true
 AuthorizationType: NONE
 Integration:
 Type: HTTP_PROXY
 IntegrationHttpMethod: GET
 Uri: http://petstore-demo-endpoint.execute-api.com/petstore/pets/
 ApiDeployment:
 Type: 'AWS::ApiGateway::Deployment'
 DependsOn:
 - PetsMethodGet
 Properties:
 RestApiId: !Ref Api
 StageName: !Sub '${StageName}'
 UsagePlan:
 Type: AWS::ApiGateway::UsagePlan
 DependsOn:
 - ApiDeployment
 Properties:
 Description: Example usage plan with a monthly quota of 1000 calls and method-
level throttling for /pets GET
 ApiStages:
 - ApiId: !Ref Api
 Stage: !Sub '${StageName}'

Usage plans 792

Amazon API Gateway Developer Guide

 Throttle:
 "/pets/GET":
 RateLimit: 50.0
 BurstLimit: 100
 Quota:
 Limit: 1000
 Period: MONTH
 Throttle:
 RateLimit: 100.0
 BurstLimit: 200
 UsagePlanName: "My Usage Plan"
 ApiKey:
 Type: AWS::ApiGateway::ApiKey
 Properties:
 Description: API Key
 Name: !Sub '${KeyName}'
 Enabled: True
 UsagePlanKey:
 Type: AWS::ApiGateway::UsagePlanKey
 Properties:
 KeyId: !Ref ApiKey
 KeyType: API_KEY
 UsagePlanId: !Ref UsagePlan
Outputs:
 ApiRootUrl:
 Description: Root Url of the API
 Value: !Sub 'https://${Api}.execute-api.${AWS::Region}.amazonaws.com/${StageName}'

Configure a method to use API keys with an OpenAPI definition

You can use an OpenAPI definition to require API keys on a method.

For each method, create a security requirement object to require an API key to invoke that method.
Then, define api_key in the security definition. After you create your API, add the new API stage
to your usage plan.

The following example creates an API and requires an API key for the POST and GET methods:

OpenAPI 2.0

{
 "swagger" : "2.0",
 "info" : {

Usage plans 793

Amazon API Gateway Developer Guide

 "version" : "2024-03-14T20:20:12Z",
 "title" : "keys-api"
 },
 "basePath" : "/v1",
 "schemes" : ["https"],
 "paths" : {
 "/pets" : {
 "get" : {
 "responses" : { },
 "security" : [{
 "api_key" : []
 }],
 "x-amazon-apigateway-integration" : {
 "type" : "http_proxy",
 "httpMethod" : "GET",
 "uri" : "http://petstore-demo-endpoint.execute-api.com/petstore/pets/",
 "passthroughBehavior" : "when_no_match"
 }
 },
 "post" : {
 "responses" : { },
 "security" : [{
 "api_key" : []
 }],
 "x-amazon-apigateway-integration" : {
 "type" : "http_proxy",
 "httpMethod" : "GET",
 "uri" : "http://petstore-demo-endpoint.execute-api.com/petstore/pets/",
 "passthroughBehavior" : "when_no_match"
 }
 }
 }
 },
 "securityDefinitions" : {
 "api_key" : {
 "type" : "apiKey",
 "name" : "x-api-key",
 "in" : "header"
 }
 }
}

Usage plans 794

Amazon API Gateway Developer Guide

OpenAPI 3.0

{
 "openapi" : "3.0.1",
 "info" : {
 "title" : "keys-api",
 "version" : "2024-03-14T20:20:12Z"
 },
 "servers" : [{
 "url" : "{basePath}",
 "variables" : {
 "basePath" : {
 "default" : "v1"
 }
 }
 }],
 "paths" : {
 "/pets" : {
 "get" : {
 "security" : [{
 "api_key" : []
 }],
 "x-amazon-apigateway-integration" : {
 "httpMethod" : "GET",
 "uri" : "http://petstore-demo-endpoint.execute-api.com/petstore/pets/",
 "passthroughBehavior" : "when_no_match",
 "type" : "http_proxy"
 }
 },
 "post" : {
 "security" : [{
 "api_key" : []
 }],
 "x-amazon-apigateway-integration" : {
 "httpMethod" : "GET",
 "uri" : "http://petstore-demo-endpoint.execute-api.com/petstore/pets/",
 "passthroughBehavior" : "when_no_match",
 "type" : "http_proxy"
 }
 }
 }
 },
 "components" : {
 "securitySchemes" : {

Usage plans 795

Amazon API Gateway Developer Guide

 "api_key" : {
 "type" : "apiKey",
 "name" : "x-api-key",
 "in" : "header"
 }
 }
 }
}

API Gateway API key file format

API Gateway can import API keys from external files of a comma-separated value (CSV) format, and
then associate the imported keys with one or more usage plans. The imported file must contain the
Name and Key columns. The column header names aren't case sensitive, and columns can be in any
order, as shown in the following example:

Key,name
apikey1234abcdefghij0123456789,MyFirstApiKey

A Key value must be between 20 and 128 characters. A Name value cannot exceed 1024 characters.

An API key file can also have the Description, Enabled, or UsagePlanIds column, as shown in
the following example:

Name,key,description,Enabled,usageplanIds
MyFirstApiKey,apikey1234abcdefghij0123456789,An imported key,TRUE,c7y23b

When a key is associated with more than one usage plan, the UsagePlanIds value is a comma-
separated string of the usage plan IDs, enclosed with a pair of double or single quotes, as shown in
the following example:

Enabled,Name,key,UsageplanIds
true,MyFirstApiKey,apikey1234abcdefghij0123456789,"c7y23b,glvrsr"

Unrecognized columns are permitted, but are ignored. The default value is an empty string or a
true Boolean value.

The same API key can be imported multiple times, with the most recent version overwriting the
previous one. Two API keys are identical if they have the same key value.

Usage plans 796

Amazon API Gateway Developer Guide

Note

For best practices to consider, see the section called “Best practices for API keys and usage
plans”.

Documenting REST APIs

To help customers understand and use your API, you should document the API. To help you
document your API, API Gateway lets you add and update the help content for individual API
entities as an integral part of your API development process. API Gateway stores the source
content and enables you to archive different versions of the documentation. You can associate a
documentation version with an API stage, export a stage-specific documentation snapshot to an
external OpenAPI file, and distribute the file as a publication of the documentation.

To document your API, you can call the API Gateway REST API, use one of the AWS SDKs or AWS
CLIs for API Gateway, or use the API Gateway console. In addition, you can import or export the
documentation parts that are defined in an external OpenAPI file.

To share API documentation with developers, you can use a developer portal. For an example, see
Integrating ReadMe with API Gateway to Keep Your Developer Hub Up to Date on the AWS Partner
Network (APN) blog.

Topics

• Representation of API documentation in API Gateway

• Document an API using the API Gateway console

• Publish API documentation using the API Gateway console

• Document an API using the API Gateway REST API

• Publish API documentation using the API Gateway REST API

• Import API documentation

• Control access to API documentation

Representation of API documentation in API Gateway

API Gateway API documentation consists of individual documentation parts associated with
specific API entities that include API, resource, method, request, response, message parameters
(i.e., path, query, header), as well as authorizers and models.

API documentation 797

https://docs.aws.amazon.com/apigateway/latest/api/
https://aws.amazon.com/tools/
http://docs.aws.amazon.com/cli/latest/reference/apigateway/
http://docs.aws.amazon.com/cli/latest/reference/apigateway/
https://aws.amazon.com/blogs/apn/integrating-readme-with-amazon-api-gateway-to-keep-your-developer-hub-up-to-date/

Amazon API Gateway Developer Guide

In API Gateway, a documentation part is represented by a DocumentationPart resource. The API
documentation as a whole is represented by the DocumentationParts collection.

Documenting an API involves creating DocumentationPart instances, adding them to the
DocumentationParts collection, and maintaining versions of the documentation parts as your
API evolves.

Topics

• Documentation parts

• Documentation versions

Documentation parts

A DocumentationPart resource is a JSON object that stores the documentation content applicable
to an individual API entity. Its properties field contains the documentation content as a map of
key-value pairs. Its location property identifies the associated API entity.

The shape of a content map is determined by you, the API developer. The value of a key-value pair
can be a string, number, boolean, object, or array. The shape of the location object depends on
the targeted entity type.

The DocumentationPart resource supports content inheritance: the documentation content of
an API entity is applicable to children of that API entity. For more information about the definition
of child entities and content inheritance, see Inherit Content from an API Entity of More General
Specification.

Location of a documentation part

The location property of a DocumentationPart instance identifies an API entity to which the
associated content applies. The API entity can be an API Gateway REST API resource, such as
RestApi, Resource, Method, MethodResponse, Authorizer, or Model. The entity can also be a
message parameter, such as a URL path parameter, a query string parameter, a request or response
header parameter, a request or response body, or response status code.

To specify an API entity, set the type attribute of the location object to be one of
API, AUTHORIZER, MODEL, RESOURCE, METHOD, PATH_PARAMETER, QUERY_PARAMETER,
REQUEST_HEADER, REQUEST_BODY, RESPONSE, RESPONSE_HEADER, or RESPONSE_BODY.

Depending on the type of an API entity, you might specify other location attributes, including
method, name, path, and statusCode. Not all of these attributes are valid for a given API entity. For

API documentation 798

https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html
https://docs.aws.amazon.com/apigateway/latest/api/API_GetDocumentationParts.html
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html#location
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html
https://docs.aws.amazon.com/apigateway/latest/api/API_RestApi.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Resource.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Method.html
https://docs.aws.amazon.com/apigateway/latest/api/API_MethodResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Authorizer.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Model.html
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html#type
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html#method
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html#name
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html#path
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html#statusCode

Amazon API Gateway Developer Guide

example, type, path, name, and statusCode are valid attributes of the RESPONSE entity; only
type and path are valid location attributes of the RESOURCE entity. It is an error to include an
invalid field in the location of a DocumentationPart for a given API entity.

Not all valid location fields are required. For example, type is both the valid and required
location field of all API entities. However, method, path, and statusCode are valid but not
required attributes for the RESPONSE entity. When not explicitly specified, a valid location field
assumes its default value. The default path value is /, i.e., the root resource of an API. The default
value of method, or statusCode is *, meaning any method, or status code values, respectively.

Content of a documentation part

The properties value is encoded as a JSON string. The properties value contains any
information you choose to meet your documentation requirements. For example, the following is a
valid content map:

{
 "info": {
 "description": "My first API with Amazon API Gateway."
 },
 "x-custom-info" : "My custom info, recognized by OpenAPI.",
 "my-info" : "My custom info not recognized by OpenAPI."
}

Although API Gateway accepts any valid JSON string as the content map, the content attributes
are treated as two categories: those that can be recognized by OpenAPI and those that cannot. In
the preceding example, info, description, and x-custom-info are recognized by OpenAPI
as a standard OpenAPI object, property, or extension. In contrast, my-info is not compliant with
the OpenAPI specification. API Gateway propagates OpenAPI-compliant content attributes into the
API entity definitions from the associated DocumentationPart instances. API Gateway does not
propagate the non-compliant content attributes into the API entity definitions.

As another example, here is DocumentationPart targeted for a Resource entity:

{
 "location" : {
 "type" : "RESOURCE",
 "path": "/pets"
 },
 "properties" : {
 "summary" : "The /pets resource represents a collection of pets in PetStore.",

API documentation 799

Amazon API Gateway Developer Guide

 "description": "... a child resource under the root...",
 }
}

Here, both type and path are valid fields to identify the target of the RESOURCE type. For the root
resource (/), you can omit the path field.

{
 "location" : {
 "type" : "RESOURCE"
 },
 "properties" : {
 "description" : "The root resource with the default path specification."
 }
}

This is the same as the following DocumentationPart instance:

{
 "location" : {
 "type" : "RESOURCE",
 "path": "/"
 },
 "properties" : {
 "description" : "The root resource with an explicit path specification"
 }
}

Inherit content from an API entity of more general specifications

The default value of an optional location field provides a patterned description of an API
entity. Using the default value in the location object, you can add a general description
in the properties map to a DocumentationPart instance with this type of location
pattern. API Gateway extracts the applicable OpenAPI documentation attributes from the
DocumentationPart of the generic API entity and injects them into a specific API entity with the
location fields matching the general location pattern, or matching the exact value, unless the
specific entity already has a DocumentationPart instance associated with it. This behavior is also
known as content inheritance from an API entity of more general specifications.

Content inheritance does not apply to certain API entity types. See the table below for details.

API documentation 800

Amazon API Gateway Developer Guide

When an API entity matches more than one DocumentationPart's location pattern, the entity
will inherit the documentation part with the location fields of the highest precedence and
specificities. The order of precedence is path > statusCode. For matching with the path field, API
Gateway chooses the entity with the most specific path value. The following table shows this with
a few examples.

Case path statusCod
e

name Remarks

1 /pets * id Documenta
tion
associate
d
with
this
location
pattern
will
be
inherited
by
entities
matching
the
location
pattern.

2 /pets 200 id Documenta
tion
associate
d
with
this
location
pattern
will
be

API documentation 801

Amazon API Gateway Developer Guide

Case path statusCod
e

name Remarks

inherited
by
entities
matching
the
location
pattern
when
both
Case
1
and
Case
2
are
matched,
because
Case
2 is
more
specific
than
Case
1.

API documentation 802

Amazon API Gateway Developer Guide

Case path statusCod
e

name Remarks

3 /pets/
petId

* id Documenta
tion
associate
d
with
this
location
pattern
will
be
inherited
by
entities
matching
the
location
pattern
when
Cases
1, 2,
and
3
are
matched,
because
Case
3
has
a
higher
precedenc
e
than

API documentation 803

Amazon API Gateway Developer Guide

Case path statusCod
e

name Remarks

Case
2
and
is
more
specific
than
Case
1.

Here is another example to contrast a more generic DocumentationPart instance to a more
specific one. The following general error message of "Invalid request error" is injected into
the OpenAPI definitions of the 400 error responses, unless overridden.

{
 "location" : {
 "type" : "RESPONSE",
 "statusCode": "400"
 },
 "properties" : {
 "description" : "Invalid request error."
 }"
}

With the following overwrite, the 400 responses to any methods on the /pets resource has a
description of "Invalid petId specified" instead.

{
 "location" : {
 "type" : "RESPONSE",
 "path": "/pets",
 "statusCode": "400"
 },
 "properties" : "{
 "description" : "Invalid petId specified."
 }"

API documentation 804

Amazon API Gateway Developer Guide

}

Valid location fields of DocumentationPart

The following table shows the valid and required fields as well as applicable default values of a
DocumentationPart resource that is associated with a given type of API entities.

API
entity

Valid location fields Required
location
fields

Default field
values

Inheritable
content

API {
 "location": {
 "type": "API"
 },
 ...
}

type N/A No

Resource {
 "location": {
 "type": "RESOURCE
",
 "path":
 "resource_path "
 },
 ...
}

type The default value
of path is /.

No

Method {
 "location": {
 "type":
 "METHOD",
 "path":
 "resource_path ",
 "method":
 "http_verb "
 },
 ...
}

type The default
values of path
and method are
/ and *, respectiv
ely.

Yes,
matching
path by
prefix and
matching
method of
any values.

API documentation 805

https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html
https://docs.aws.amazon.com/apigateway/latest/api/API_RestApi.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Resource.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Method.html

Amazon API Gateway Developer Guide

API
entity

Valid location fields Required
location
fields

Default field
values

Inheritable
content

Query
parameter

{
 "location": {
 "type": "QUERY_PA
RAMETER",
 "path":
 "resource_path ",
 "method":
 "HTTP_verb ",
 "name":
 "query_parameter_na
me "
 },
 ...
}

type The default
values of path
and method are
/ and *, respectiv
ely.

Yes,
matching
path by
prefix and
matching
method by
exact values.

Request
body

{
 "location": {
 "type": "REQUEST_
BODY",
 "path":
 "resource_path ",
 "method":
 "http_verb "
 },
 ...
}

type The default
values of path,
and method are
/and *, respectiv
ely.

Yes,
matching
path by
prefix, and
matching
method by
exact values.

API documentation 806

Amazon API Gateway Developer Guide

API
entity

Valid location fields Required
location
fields

Default field
values

Inheritable
content

Request
header
parameter

{
 "location": {
 "type": "REQUEST_
HEADER",
 "path":
 "resource_path ",
 "method":
 "HTTP_verb ",
 "name":
 "header_name "
 },
 ...
}

type, name The default
values of path
and method are
/ and *, respectiv
ely.

Yes,
matching
path by
prefix and
matching
method by
exact values.

Request
path
parameter

{
 "location": {
 "type": "PATH_PAR
AMETER",
 "path":
 "resource/{path_para
meter_name }",
 "method":
 "HTTP_verb ",
 "name":
 "path_parameter_name "
 },
 ...
}

type, name The default
values of path
and method are
/ and *, respectiv
ely.

Yes,
matching
path by
prefix and
matching
method by
exact values.

API documentation 807

Amazon API Gateway Developer Guide

API
entity

Valid location fields Required
location
fields

Default field
values

Inheritable
content

Response {
 "location": {
 "type": "RESPONSE
",
 "path":
 "resource_path ",
 "method":
 "http_verb ",
 "statusCode":
 "status_code "
 },
 ...
}

type The default
values of path,
method, and
statusCode
are /, * and *,
respectively.

Yes,
matching
path by
prefix and
matching
method and
statusCod
e by exact
values.

Response
header

{
 "location": {
 "type": "RESPONSE
_HEADER",
 "path":
 "resource_path ",
 "method":
 "http_verb ",
 "statusCode":
 "status_code ",
 "name":
 "header_name "
 },
 ...
}

type, name The default
values of path,
method and
statusCode
are /, * and *,
respectively.

Yes,
matching
path by
prefix and
matching
method, and
statusCod
e by exact
values.

API documentation 808

Amazon API Gateway Developer Guide

API
entity

Valid location fields Required
location
fields

Default field
values

Inheritable
content

Response
body

{
 "location": {
 "type": "RESPONSE
_BODY",
 "path":
 "resource_path ",
 "method":
 "http_verb ",
 "statusCode":
 "status_code "
 },
 ...
}

type The default
values of path,
method and
statusCode
are /, * and *,
respectively.

Yes,
matching
path by
prefix and
matching
method, and
statusCod
e by exact
values.

Authorize
r

{
 "location": {
 "type": "AUTHORIZ
ER",
 "name":
 "authorizer_name "
 },
 ...
}

type N/A No

Model {
 "location": {
 "type": "MODEL",
 "name":
 "model_name "
 },
 ...
}

type N/A No

API documentation 809

https://docs.aws.amazon.com/apigateway/latest/api/API_Authorizer.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Authorizer.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Model.html

Amazon API Gateway Developer Guide

Documentation versions

A documentation version is a snapshot of the DocumentationParts collection of an API and is
tagged with a version identifier. Publishing the documentation of an API involves creating a
documentation version, associating it with an API stage, and exporting that stage-specific version
of the API documentation to an external OpenAPI file. In API Gateway, a documentation snapshot
is represented as a DocumentationVersion resource.

As you update an API, you create new versions of the API. In API Gateway, you maintain all the
documentation versions using the DocumentationVersions collection.

Document an API using the API Gateway console

In this section, we describe how to create and maintain documentation parts of an API using the
API Gateway console.

A prerequisite for creating and editing the documentation of an API is that you must have already
created the API. In this section, we use the PetStore API as an example. To create an API using
the API Gateway console, follow the instructions in Tutorial: Create a REST API by importing an
example.

Topics

• Document the API entity

• Document a RESOURCE entity

• Document a METHOD entity

• Document a QUERY_PARAMETER entity

• Document a PATH_PARAMETER entity

• Document a REQUEST_HEADER entity

• Document a REQUEST_BODY entity

• Document a RESPONSE entity

• Document a RESPONSE_HEADER entity

• Document a RESPONSE_BODY entity

• Document a MODEL entity

• Document an AUTHORIZER entity

API documentation 810

https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationVersion.html
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationVersion.html
http://petstore-demo-endpoint.execute-api.com/petstore/pets

Amazon API Gateway Developer Guide

Document the API entity

To add a new documentation part for the API entity, do the following:

1. In the main navigation pane, choose Documentation, and then choose Create documentation
part.

2. For Documentation type, select API.

If a documentation part was not created for the API, you get the documentation part's
properties map editor. Enter the following properties map in the text editor.

{
 "info": {
 "description": "Your first API Gateway API.",
 "contact": {
 "name": "John Doe",
 "email": "john.doe@api.com"
 }
 }
}

Note

You do not need to encode the properties map into a JSON string. The API Gateway
console stringifies the JSON object for you.

3. Choose Create documentation part.

To add a new documentation part for the API entity in the Resources pane, do the following:

1. In the main navigation pane, choose Resources.

2. Choose the API actions menu, and then choose Update API documentation.

API documentation 811

Amazon API Gateway Developer Guide

To edit an existing documentation part, do the following:

1. In the Documentation pane, choose the Resources and methods tab.

2. Select the name of your API, and then on the API card, choose Edit.

Document a RESOURCE entity

To add a new documentation part for a RESOURCE entity, do the following:

1. In the main navigation pane, choose Documentation, and then choose Create documentation
part.

2. For Documentation type, select Resource.

3. For Path, enter a path.

4. Enter a description in the text editor, for example:

{
 "description": "The PetStore's root resource."
}

5. Choose Create documentation part. You can create documentation for an unlisted resource.

6. If required, repeat these steps to add or edit another documentation part.

To add a new documentation part for a RESOURCE entity in the Resources pane, do the following:

1. In the main navigation pane, choose Resources.

2. Choose the resource, and then choose Update documentation.

API documentation 812

Amazon API Gateway Developer Guide

To edit an existing documentation part, do the following:

1. In the Documentation pane, choose the Resources and methods tab.

2. Select the resource containing your documentation part, and then choose Edit.

Document a METHOD entity

To add a new documentation part for a METHOD entity, do the following:

1. In the main navigation pane, choose Documentation, and then choose Create documentation
part.

2. For Documentation type, select Method.

3. For Path, enter a path.

4. For Method, select an HTTP verb.

5. Enter a description in the text editor, for example:

{
 "tags" : ["pets"],
 "summary" : "List all pets"
}

API documentation 813

Amazon API Gateway Developer Guide

6. Choose Create documentation part. You can create documentation for an unlisted method.

7. If required, repeat these steps to add or edit another documentation part.

To add a new documentation part for a METHOD entity in the Resources pane, do the following:

1. In the main navigation pane, choose Resources.

2. Choose the method, and then choose Update documentation.

To edit an existing documentation part, do the following:

1. In the Documentation pane, choose the Resources and methods tab.

2. You can select the method or select the resource containing the method, and then use the
search bar to find and select your documentation part.

3. Choose Edit.

Document a QUERY_PARAMETER entity

To add a new documentation part for a QUERY_PARAMETER entity, do the following:

1. In the main navigation pane, choose Documentation, and then choose Create documentation
part.

2. For Documentation type, select Query parameter.

API documentation 814

Amazon API Gateway Developer Guide

3. For Path, enter a path.

4. For Method, select an HTTP verb.

5. For Name, enter a name.

6. Enter a description in the text editor.

7. Choose Create documentation part. You can create documentation for an unlisted query
parameter.

8. If required, repeat these steps to add or edit another documentation part.

To edit an existing documentation part, do the following:

1. In the Documentation pane, choose the Resources and methods tab.

2. You can select the query parameter or select the resource containing the query parameter, and
then use the search bar to find and select your documentation part.

3. Choose Edit.

Document a PATH_PARAMETER entity

To add a new documentation part for a PATH_PARAMETER entity, do the following:

1. In the main navigation pane, choose Documentation, and then choose Create documentation
part.

2. For Documentation type, select Path parameter.

3. For Path, enter a path.

4. For Method, select an HTTP verb.

5. For Name, enter a name.

6. Enter a description in the text editor.

7. Choose Create documentation part. You can create documentation for an unlisted path
parameter.

8. If required, repeat these steps to add or edit another documentation part.

To edit an existing documentation part, do the following:

1. In the Documentation pane, choose the Resources and methods tab.

API documentation 815

Amazon API Gateway Developer Guide

2. You can select the path parameter or select the resource containing the path parameter, and
then use the search bar to find and select your documentation part.

3. Choose Edit.

Document a REQUEST_HEADER entity

To add a new documentation part for a REQUEST_HEADER entity, do the following:

1. In the main navigation pane, choose Documentation, and then choose Create documentation
part.

2. For Documentation type, select Request header.

3. For Path, enter a path for the request header.

4. For Method, select an HTTP verb.

5. For Name, enter a name.

6. Enter a description in the text editor.

7. Choose Create documentation part. You can create documentation for an unlisted request
header.

8. If required, repeat these steps to add or edit another documentation part.

To edit an existing documentation part, do the following:

1. In the Documentation pane, choose the Resources and methods tab.

2. You can select the request header or select the resource containing the request header, and
then use the search bar to find and select your documentation part.

3. Choose Edit.

Document a REQUEST_BODY entity

To add a new documentation part for a REQUEST_BODY entity, do the following:

1. In the main navigation pane, choose Documentation, and then choose Create documentation
part.

2. For Documentation type, select Request body.

3. For Path, enter a path for the request body.

API documentation 816

Amazon API Gateway Developer Guide

4. For Method, select an HTTP verb.

5. Enter a description in the text editor.

6. Choose Create documentation part. You can create documentation for an unlisted request
body.

7. If required, repeat these steps to add or edit another documentation part.

To edit an existing documentation part, do the following:

1. In the Documentation pane, choose the Resources and methods tab.

2. You can select the request body or select the resource containing the request body, and then
use the search bar to find and select your documentation part.

3. Choose Edit.

Document a RESPONSE entity

To add a new documentation part for a RESPONSE entity, do the following:

1. In the main navigation pane, choose Documentation, and then choose Create documentation
part.

2. For Documentation type, select Response (status code).

3. For Path, enter a path for the response.

4. For Method, select an HTTP verb.

5. For Status code, enter an HTTP status code.

6. Enter a description in the text editor.

7. Choose Create documentation part. You can create documentation for an unlisted response
status code.

8. If required, repeat these steps to add or edit another documentation part.

To edit an existing documentation part, do the following:

1. In the Documentation pane, choose the Resources and methods tab.

2. You can select the response status code or select the resource containing the response status
code, and then use the search bar to find and select your documentation part.

3. Choose Edit.

API documentation 817

Amazon API Gateway Developer Guide

Document a RESPONSE_HEADER entity

To add a new documentation part for a RESPONSE_HEADER entity, do the following:

1. In the main navigation pane, choose Documentation, and then choose Create documentation
part.

2. For Documentation type, select Response header.

3. For Path, enter a path for the response header.

4. For Method, select an HTTP verb.

5. For Status code, enter an HTTP status code.

6. Enter a description in the text editor.

7. Choose Create documentation part. You can create documentation for an unlisted response
header.

8. If required, repeat these steps to add or edit another documentation part.

To edit an existing documentation part, do the following:

1. In the Documentation pane, choose the Resources and methods tab.

2. You can select the response header or select the resource containing the response header, and
then use the search bar to find and select your documentation part.

3. Choose Edit.

Document a RESPONSE_BODY entity

To add a new documentation part for a RESPONSE_BODY entity, do the following:

1. In the main navigation pane, choose Documentation, and then choose Create documentation
part.

2. For Documentation type, select Response body.

3. For Path, enter a path for the response body.

4. For Method, select an HTTP verb.

5. For Status code, enter an HTTP status code.

6. Enter a description in the text editor.

7. Choose Create documentation part. You can create documentation for an unlisted response
body.

API documentation 818

Amazon API Gateway Developer Guide

8. If required, repeat these steps to add or edit another documentation part.

To edit an existing documentation part, do the following:

1. In the Documentation pane, choose the Resources and methods tab.

2. You can select the response body or select the resource containing the response body, and
then use the search bar to find and select your documentation part.

3. Choose Edit.

Document a MODEL entity

Documenting a MODEL entity involves creating and managing DocumentPart instances for the
model and each of the model's properties'. For example, for the Error model that comes with
every API by default has the following schema definition,

{
 "$schema" : "http://json-schema.org/draft-04/schema#",
 "title" : "Error Schema",
 "type" : "object",
 "properties" : {
 "message" : { "type" : "string" }
 }
}

and requires two DocumentationPart instances, one for the Model and the other for its
message property:

{
 "location": {
 "type": "MODEL",
 "name": "Error"
 },
 "properties": {
 "title": "Error Schema",
 "description": "A description of the Error model"
 }
}

and

API documentation 819

Amazon API Gateway Developer Guide

{
 "location": {
 "type": "MODEL",
 "name": "Error.message"
 },
 "properties": {
 "description": "An error message."
 }
}

When the API is exported, the DocumentationPart's properties will override the values in the
original schema.

To add a new documentation part for a MODEL entity, do the following:

1. In the main navigation pane, choose Documentation, and then choose Create documentation
part.

2. For Documentation type, select Model.

3. For Name, enter a name for the model.

4. Enter a description in the text editor.

5. Choose Create documentation part. You can create documentation for unlisted models.

6. If required, repeat these steps to add or edit a documentation part to other models.

To add a new documentation part for a MODEL entity in the Models pane, do the following:

1. In the main navigation pane, choose Models.

2. Choose the model, and then choose Update documentation.

API documentation 820

Amazon API Gateway Developer Guide

To edit an existing documentation part, do the following:

1. In the Documentation pane, choose the Models tab.

2. Use the search bar or select the model, and then choose Edit.

Document an AUTHORIZER entity

To add a new documentation part for an AUTHORIZER entity, do the following:

1. In the main navigation pane, choose Documentation, and then choose Create documentation
part.

2. For Documentation type, select Authorizer.

3. For Name, enter the name of your authorizer.

4. Enter a description in the text editor. Specify a value for the valid location field for the
authorizer.

5. Choose Create documentation part. You can create documentation for unlisted authorizers.

6. If required, repeat these steps to add or edit a documentation part to other authorizers.

To edit an existing documentation part, do the following:

1. In the Documentation pane, choose the Authorizers tab.

API documentation 821

Amazon API Gateway Developer Guide

2. Use the search bar or select the authorizer, and then choose Edit.

Publish API documentation using the API Gateway console

The following procedure describes how to publish a documentation version.

To publish a documentation version using the API Gateway console

1. In the main navigation pane, choose Documentation.

2. Choose Publish documentation.

3. Set up the publication:

a. For Stage, select a stage.

b. For Version, enter a version identifier, e.g., 1.0.0.

c. (Optional) For Description, enter a description.

4. Choose Publish.

You can now proceed to download the published documentation by exporting the documentation
to an external OpenAPI file. To learn more, see the section called “Export a REST API”.

Document an API using the API Gateway REST API

In this section, we describe how to create and maintain documentation parts of an API using the
API Gateway REST API.

Before creating and editing the documentation of an API, first create the API. In this section, we
use the PetStore API as an example. To create an API using the API Gateway console, follow the
instructions in Tutorial: Create a REST API by importing an example.

Topics

• Document the API entity

• Document a RESOURCE entity

• Document a METHOD entity

• Document a QUERY_PARAMETER entity

• Document a PATH_PARAMETER entity

• Document a REQUEST_BODY entity

API documentation 822

http://petstore-demo-endpoint.execute-api.com/petstore/pets

Amazon API Gateway Developer Guide

• Document a REQUEST_HEADER entity

• Document a RESPONSE entity

• Document a RESPONSE_HEADER entity

• Document an AUTHORIZER entity

• Document a MODEL entity

• Update documentation parts

• List documentation parts

Document the API entity

To add documentation for an API, add a DocumentationPart resource for the API entity:

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

{
 "location" : {
 "type" : "API"
 },
 "properties": "{\n\t\"info\": {\n\t\t\"description\" : \"Your first API with Amazon
 API Gateway.\"\n\t}\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 ...
 "id": "s2e5xf",
 "location": {
 "path": null,
 "method": null,
 "name": null,
 "statusCode": null,

API documentation 823

https://docs.aws.amazon.com/apigateway/latest/api/API_RestApi.html
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html

Amazon API Gateway Developer Guide

 "type": "API"
 },
 "properties": "{\n\t\"info\": {\n\t\t\"description\" : \"Your first API with Amazon
 API Gateway.\"\n\t}\n}"
}

If the documentation part has already been added, a 409 Conflict response returns, containing
the error message of Documentation part already exists for the specified
location: type 'API'." In this case, you must call the documentationpart:update operation.

PATCH /restapis/4wk1k4onj3/documentation/parts/part_id HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

{
 "patchOperations" : [{
 "op" : "replace",
 "path" : "/properties",
 "value" : "{\n\t\"info\": {\n\t\t\"description\" : \"Your first API with Amazon API
 Gateway.\"\n\t}\n}"
 }]
}

The successful response returns a 200 OK status code with the payload containing the updated
DocumentationPart instance in the payload.

Document a RESOURCE entity

To add documentation for the root resource of an API, add a DocumentationPart resource targeted
for the corresponding Resource resource:

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

API documentation 824

https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateDocumentationPart.html
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Resource.html

Amazon API Gateway Developer Guide

{
 "location" : {
 "type" : "RESOURCE",
 },
 "properties" : "{\n\t\"description\" : \"The PetStore root resource.\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/restapi-
documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/p76vqo"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/p76vqo"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/p76vqo"
 }
 },
 "id": "p76vqo",
 "location": {
 "path": "/",
 "method": null,
 "name": null,
 "statusCode": null,
 "type": "RESOURCE"
 },
 "properties": "{\n\t\"description\" : \"The PetStore root resource.\"\n}"
}

When the resource path is not specified, the resource is assumed to be the root resource. You can
add "path": "/" to properties to make the specification explicit.

API documentation 825

Amazon API Gateway Developer Guide

To create documentation for a child resource of an API, add a DocumentationPart resource
targeted for the corresponding Resource resource:

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

{
 "location" : {
 "type" : "RESOURCE",
 "path" : "/pets"
 },
 "properties": "{\n\t\"description\" : \"A child resource under the root of
 PetStore.\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/restapi-
documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/qcht86"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/qcht86"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/qcht86"
 }
 },
 "id": "qcht86",
 "location": {

API documentation 826

https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Resource.html

Amazon API Gateway Developer Guide

 "path": "/pets",
 "method": null,
 "name": null,
 "statusCode": null,
 "type": "RESOURCE"
 },
 "properties": "{\n\t\"description\" : \"A child resource under the root of PetStore.
\"\n}"
}

To add documentation for a child resource specified by a path parameter, add a
DocumentationPart resource targeted for the Resource resource:

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

{
 "location" : {
 "type" : "RESOURCE",
 "path" : "/pets/{petId}"
 },
 "properties": "{\n\t\"description\" : \"A child resource specified by the petId
 path parameter.\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/restapi-
documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {

API documentation 827

https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Resource.html

Amazon API Gateway Developer Guide

 "href": "/restapis/4wk1k4onj3/documentation/parts/k6fpwb"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/k6fpwb"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/k6fpwb"
 }
 },
 "id": "k6fpwb",
 "location": {
 "path": "/pets/{petId}",
 "method": null,
 "name": null,
 "statusCode": null,
 "type": "RESOURCE"
 },
 "properties": "{\n\t\"description\" : \"A child resource specified by the petId path
 parameter.\"\n}"
}

Note

The DocumentationPart instance of a RESOURCE entity cannot be inherited by any of its
child resources.

Document a METHOD entity

To add documentation for a method of an API, add a DocumentationPart resource targeted for the
corresponding Method resource:

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

{
 "location" : {

API documentation 828

https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Method.html

Amazon API Gateway Developer Guide

 "type" : "METHOD",
 "path" : "/pets",
 "method" : "GET"
 },
 "properties": "{\n\t\"summary\" : \"List all pets.\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/restapi-
documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/o64jbj"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/o64jbj"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/o64jbj"
 }
 },
 "id": "o64jbj",
 "location": {
 "path": "/pets",
 "method": "GET",
 "name": null,
 "statusCode": null,
 "type": "METHOD"
 },
 "properties": "{\n\t\"summary\" : \"List all pets.\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

API documentation 829

Amazon API Gateway Developer Guide

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/restapi-
documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/o64jbj"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/o64jbj"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/o64jbj"
 }
 },
 "id": "o64jbj",
 "location": {
 "path": "/pets",
 "method": "GET",
 "name": null,
 "statusCode": null,
 "type": "METHOD"
 },
 "properties": "{\n\t\"summary\" : \"List all pets.\"\n}"
}

If the location.method field is not specified in the preceding request, it is assumed to be ANY
method that is represented by a wild card * character.

To update the documentation content of a METHOD entity, call the documentationpart:update
operation, supplying a new properties map:

PATCH /restapis/4wk1k4onj3/documentation/parts/part_id HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

API documentation 830

https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateDocumentationPart.html

Amazon API Gateway Developer Guide

{
 "patchOperations" : [{
 "op" : "replace",
 "path" : "/properties",
 "value" : "{\n\t\"tags\" : [\"pets\"], \n\t\"summary\" : \"List all pets.\"\n}"
 }]
}

The successful response returns a 200 OK status code with the payload containing the updated
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/restapi-
documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/o64jbj"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/o64jbj"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/o64jbj"
 }
 },
 "id": "o64jbj",
 "location": {
 "path": "/pets",
 "method": "GET",
 "name": null,
 "statusCode": null,
 "type": "METHOD"
 },
 "properties": "{\n\t\"tags\" : [\"pets\"], \n\t\"summary\" : \"List all pets.\"\n}"
}

API documentation 831

Amazon API Gateway Developer Guide

Document a QUERY_PARAMETER entity

To add documentation for a request query parameter, add a DocumentationPart resource targeted
for the QUERY_PARAMETER type, with the valid fields of path and name.

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

{
 "location" : {
 "type" : "QUERY_PARAMETER",
 "path" : "/pets",
 "method" : "GET",
 "name" : "page"
 },
 "properties": "{\n\t\"description\" : \"Page number of results to return.\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/restapi-
documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/h9ht5w"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/h9ht5w"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/h9ht5w"
 }

API documentation 832

https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html

Amazon API Gateway Developer Guide

 },
 "id": "h9ht5w",
 "location": {
 "path": "/pets",
 "method": "GET",
 "name": "page",
 "statusCode": null,
 "type": "QUERY_PARAMETER"
 },
 "properties": "{\n\t\"description\" : \"Page number of results to return.\"\n}"
}

The documentation part's properties map of a QUERY_PARAMETER entity can be inherited by
one of its child QUERY_PARAMETER entities. For example, if you add a treats resource after /
pets/{petId}, enable the GET method on /pets/{petId}/treats, and expose the page
query parameter, this child query parameter inherits the DocumentationPart's properties
map from the like-named query parameter of the GET /pets method, unless you explicitly add
a DocumentationPart resource to the page query parameter of the GET /pets/{petId}/
treats method.

Document a PATH_PARAMETER entity

To add documentation for a path parameter, add a DocumentationPart resource for the
PATH_PARAMETER entity.

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

{
 "location" : {
 "type" : "PATH_PARAMETER",
 "path" : "/pets/{petId}",
 "method" : "*",
 "name" : "petId"
 },
 "properties": "{\n\t\"description\" : \"The id of the pet to retrieve.\"\n}"
}

API documentation 833

https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html

Amazon API Gateway Developer Guide

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/restapi-
documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/ckpgog"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/ckpgog"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/ckpgog"
 }
 },
 "id": "ckpgog",
 "location": {
 "path": "/pets/{petId}",
 "method": "*",
 "name": "petId",
 "statusCode": null,
 "type": "PATH_PARAMETER"
 },
 "properties": "{\n \"description\" : \"The id of the pet to retrieve\"\n}"
}

Document a REQUEST_BODY entity

To add documentation for a request body, add a DocumentationPart resource for the request body.

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

API documentation 834

https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html

Amazon API Gateway Developer Guide

{
 "location" : {
 "type" : "REQUEST_BODY",
 "path" : "/pets",
 "method" : "POST"
 },
 "properties": "{\n\t\"description\" : \"A Pet object to be added to PetStore.\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/restapi-
documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/kgmfr1"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/kgmfr1"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/kgmfr1"
 }
 },
 "id": "kgmfr1",
 "location": {
 "path": "/pets",
 "method": "POST",
 "name": null,
 "statusCode": null,
 "type": "REQUEST_BODY"
 },
 "properties": "{\n\t\"description\" : \"A Pet object to be added to PetStore.\"\n}"
}

API documentation 835

Amazon API Gateway Developer Guide

Document a REQUEST_HEADER entity

To add documentation for a request header, add a DocumentationPart resource for the request
header.

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

{
 "location" : {
 "type" : "REQUEST_HEADER",
 "path" : "/pets",
 "method" : "GET",
 "name" : "x-my-token"
 },
 "properties": "{\n\t\"description\" : \"A custom token used to authorization the
 method invocation.\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/restapi-
documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/h0m3uf"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/h0m3uf"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/h0m3uf"

API documentation 836

https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html

Amazon API Gateway Developer Guide

 }
 },
 "id": "h0m3uf",
 "location": {
 "path": "/pets",
 "method": "GET",
 "name": "x-my-token",
 "statusCode": null,
 "type": "REQUEST_HEADER"
 },
 "properties": "{\n\t\"description\" : \"A custom token used to authorization the
 method invocation.\"\n}"
}

Document a RESPONSE entity

To add documentation for a response of a status code, add a DocumentationPart resource targeted
for the corresponding MethodResponse resource.

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

{
 "location": {
 "path": "/",
 "method": "*",
 "name": null,
 "statusCode": "200",
 "type": "RESPONSE"
 },
 "properties": "{\n \"description\" : \"Successful operation.\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{

API documentation 837

https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html
https://docs.aws.amazon.com/apigateway/latest/api/API_MethodResponse.html

Amazon API Gateway Developer Guide

 "_links": {
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/lattew"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/lattew"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/lattew"
 }
 },
 "id": "lattew",
 "location": {
 "path": "/",
 "method": "*",
 "name": null,
 "statusCode": "200",
 "type": "RESPONSE"
 },
 "properties": "{\n \"description\" : \"Successful operation.\"\n}"
}

Document a RESPONSE_HEADER entity

To add documentation for a response header, add a DocumentationPart resource for the response
header.

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

 "location": {
 "path": "/",
 "method": "GET",
 "name": "Content-Type",
 "statusCode": "200",
 "type": "RESPONSE_HEADER"
 },
 "properties": "{\n \"description\" : \"Media type of request\"\n}"

API documentation 838

https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html

Amazon API Gateway Developer Guide

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/restapi-
documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/fev7j7"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/fev7j7"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/fev7j7"
 }
 },
 "id": "fev7j7",
 "location": {
 "path": "/",
 "method": "GET",
 "name": "Content-Type",
 "statusCode": "200",
 "type": "RESPONSE_HEADER"
 },
 "properties": "{\n \"description\" : \"Media type of request\"\n}"
}

The documentation of this Content-Type response header is the default documentation for the
Content-Type headers of any responses of the API.

Document an AUTHORIZER entity

To add documentation for an API authorizer, add a DocumentationPart resource targeted for the
specified authorizer.

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json

API documentation 839

https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html

Amazon API Gateway Developer Guide

X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

{
 "location" : {
 "type" : "AUTHORIZER",
 "name" : "myAuthorizer"
 },
 "properties": "{\n\t\"description\" : \"Authorizes invocations of configured
 methods.\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/restapi-
documentationpart-{rel}.html",
 "name": "documentationpart",
 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/pw3qw3"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/pw3qw3"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/pw3qw3"
 }
 },
 "id": "pw3qw3",
 "location": {
 "path": null,
 "method": null,
 "name": "myAuthorizer",
 "statusCode": null,
 "type": "AUTHORIZER"
 },

API documentation 840

Amazon API Gateway Developer Guide

 "properties": "{\n\t\"description\" : \"Authorizes invocations of configured methods.
\"\n}"
}

Note

The DocumentationPart instance of an AUTHORIZER entity cannot be inherited by any of
its child resources.

Document a MODEL entity

Documenting a MODEL entity involves creating and managing DocumentPart instances for the
model and each of the model's properties'. For example, for the Error model that comes with
every API by default has the following schema definition,

{
 "$schema" : "http://json-schema.org/draft-04/schema#",
 "title" : "Error Schema",
 "type" : "object",
 "properties" : {
 "message" : { "type" : "string" }
 }
}

and requires two DocumentationPart instances, one for the Model and the other for its
message property:

{
 "location": {
 "type": "MODEL",
 "name": "Error"
 },
 "properties": {
 "title": "Error Schema",
 "description": "A description of the Error model"
 }
}

and

API documentation 841

https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html

Amazon API Gateway Developer Guide

{
 "location": {
 "type": "MODEL",
 "name": "Error.message"
 },
 "properties": {
 "description": "An error message."
 }
}

When the API is exported, the DocumentationPart's properties will override the values in the
original schema.

To add documentation for an API model, add a DocumentationPart resource targeted for the
specified model.

POST /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

{
 "location" : {
 "type" : "MODEL",
 "name" : "Pet"
 },
 "properties": "{\n\t\"description\" : \"Data structure of a Pet object.\"\n}"
}

If successful, the operation returns a 201 Created response containing the newly created
DocumentationPart instance in the payload. For example:

{
 "_links": {
 "curies": {
 "href": "http://docs.aws.amazon.com/apigateway/latest/developerguide/restapi-
documentationpart-{rel}.html",
 "name": "documentationpart",

API documentation 842

https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html

Amazon API Gateway Developer Guide

 "templated": true
 },
 "self": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/lkn4uq"
 },
 "documentationpart:delete": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/lkn4uq"
 },
 "documentationpart:update": {
 "href": "/restapis/4wk1k4onj3/documentation/parts/lkn4uq"
 }
 },
 "id": "lkn4uq",
 "location": {
 "path": null,
 "method": null,
 "name": "Pet",
 "statusCode": null,
 "type": "MODEL"
 },
 "properties": "{\n\t\"description\" : \"Data structure of a Pet object.\"\n}"
}

Repeat the same step to create a DocumentationPart instance for any of the model's properties.

Note

The DocumentationPart instance of a MODEL entity cannot be inherited by any of its child
resources.

Update documentation parts

To update the documentation parts of any type of API entities, submit a PATCH request on a
DocumentationPart instance of a specified part identifier to replace the existing properties map
with a new one.

PATCH /restapis/4wk1k4onj3/documentation/parts/part_id HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ

API documentation 843

https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html

Amazon API Gateway Developer Guide

Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

{
 "patchOperations" : [{
 "op" : "replace",
 "path" : "RESOURCE_PATH",
 "value" : "NEW_properties_VALUE_AS_JSON_STRING"
 }]
}

The successful response returns a 200 OK status code with the payload containing the updated
DocumentationPart instance in the payload.

You can update multiple documentation parts in a single PATCH request.

List documentation parts

To list the documentation parts of any type of API entities, submit a GET request on a
DocumentationParts collection.

GET /restapis/restapi_id/documentation/parts HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

The successful response returns a 200 OK status code with the payload containing the available
DocumentationPart instances in the payload.

Publish API documentation using the API Gateway REST API

To publish the documentation for an API, create, update, or get a documentation snapshot, and
then associate the documentation snapshot with an API stage. When creating a documentation
snapshot, you can also associate it with an API stage at the same time.

Topics

• Create a documentation snapshot and associate it with an API stage

API documentation 844

https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html

Amazon API Gateway Developer Guide

• Create a documentation snapshot

• Update a documentation snapshot

• Get a documentation snapshot

• Associate a documentation snapshot with an API stage

• Download a documentation snapshot associated with a stage

Create a documentation snapshot and associate it with an API stage

To create a snapshot of an API's documentation parts and associate it with an API stage at the
same time, submit the following POST request:

POST /restapis/restapi_id/documentation/versions HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

{
 "documentationVersion" : "1.0.0",
 "stageName": "prod",
 "description" : "My API Documentation v1.0.0"
}

If successful, the operation returns a 200 OK response, containing the newly created
DocumentationVersion instance as the payload.

Alternatively, you can create a documentation snapshot without associating it with an API stage
first and then call restapi:update to associate the snapshot with a specified API stage. You can also
update or query an existing documentation snapshot and then update its stage association. We
show the steps in the next four sections.

Create a documentation snapshot

To create a snapshot of an API's documentation parts, create a new DocumentationVersion
resource and add it to the DocumentationVersions collection of the API:

POST /restapis/restapi_id/documentation/versions HTTP/1.1

API documentation 845

https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateRestApi.html
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationVersion.html
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationVersion.html

Amazon API Gateway Developer Guide

Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

{
 "documentationVersion" : "1.0.0",
 "description" : "My API Documentation v1.0.0"
}

If successful, the operation returns a 200 OK response, containing the newly created
DocumentationVersion instance as the payload.

Update a documentation snapshot

You can only update a documentation snapshot by modifying the description property of the
corresponding DocumentationVersion resource. The following example shows how to update the
description of the documentation snapshot as identified by its version identifier, version, e.g.,
1.0.0.

PATCH /restapis/restapi_id/documentation/versions/version HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

{
 "patchOperations": [{
 "op": "replace",
 "path": "/description",
 "value": "My API for testing purposes."
 }]
}

If successful, the operation returns a 200 OK response, containing the updated
DocumentationVersion instance as the payload.

API documentation 846

https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationVersion.html

Amazon API Gateway Developer Guide

Get a documentation snapshot

To get a documentation snapshot, submit a GET request against the specified
DocumentationVersion resource. The following example shows how to get a documentation
snapshot of a given version identifier, 1.0.0.

GET /restapis/<restapi_id>/documentation/versions/1.0.0 HTTP/1.1
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

Associate a documentation snapshot with an API stage

To publish the API documentation, associate a documentation snapshot with an API stage. You
must have already created an API stage before associating the documentation version with the
stage.

To associate a documentation snapshot with an API stage using the API Gateway REST
API, call the stage:update operation to set the desired documentation version on the
stage.documentationVersion property:

PATCH /restapis/RESTAPI_ID/stages/STAGE_NAME
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

{
 "patchOperations": [{
 "op": "replace",
 "path": "/documentationVersion",
 "value": "VERSION_IDENTIFIER"
 }]
}

API documentation 847

https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationVersion.html
https://docs.aws.amazon.com/apigateway/latest/api/
https://docs.aws.amazon.com/apigateway/latest/api/
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateStage.html

Amazon API Gateway Developer Guide

Download a documentation snapshot associated with a stage

After a version of the documentation parts is associated with a stage, you can export the
documentation parts together with the API entity definitions, to an external file, using the API
Gateway console, the API Gateway REST API, one of its SDKs, or the AWS CLI for API Gateway. The
process is the same as for exporting the API. The exported file format can be JSON or YAML.

Using the API Gateway REST API, you can also explicitly set the
extension=documentation,integrations,authorizers query parameter to include the API
documentation parts, API integrations and authorizers in an API export. By default, documentation
parts are included, but integrations and authorizers are excluded, when you export an API. The
default output from an API export is suited for distribution of the documentation.

To export the API documentation in an external JSON OpenAPI file using the API Gateway REST
API, submit the following GET request:

GET /restapis/restapi_id/stages/stage_name/exports/swagger?extensions=documentation
 HTTP/1.1
Accept: application/json
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

Here, the x-amazon-apigateway-documentation object contains the documentation
parts and the API entity definitions contains the documentation properties
supported by OpenAPI. The output does not include details of integration or Lambda
authorizers (formerly known as custom authorizers). To include both details, set
extensions=integrations,authorizers,documentation. To include details of integrations
but not of authorizers, set extensions=integrations,documentation.

You must set the Accept:application/json header in the request to output the result in a
JSON file. To produce the YAML output, change the request header to Accept:application/
yaml.

As an example, we will look at an API that exposes a simple GET method on the root resource
(/). This API has four API entities defined in an OpenAPI definition file, one for each of the API,

API documentation 848

Amazon API Gateway Developer Guide

MODEL, METHOD, and RESPONSE types. A documentation part has been added to each of the API,
METHOD, and RESPONSE entities. Calling the preceding documentation-exporting command, we get
the following output, with the documentation parts listed within the x-amazon-apigateway-
documentation object as an extension to a standard OpenAPI file.

OpenAPI 3.0

{
 "openapi": "3.0.0",
 "info": {
 "description": "API info description",
 "version": "2016-11-22T22:39:14Z",
 "title": "doc",
 "x-bar": "API info x-bar"
 },
 "paths": {
 "/": {
 "get": {
 "description": "Method description.",
 "responses": {
 "200": {
 "description": "200 response",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Empty"
 }
 }
 }
 }
 },
 "x-example": "x- Method example"
 },
 "x-bar": "resource x-bar"
 }
 },
 "x-amazon-apigateway-documentation": {
 "version": "1.0.0",
 "createdDate": "2016-11-22T22:41:40Z",
 "documentationParts": [
 {
 "location": {
 "type": "API"

API documentation 849

Amazon API Gateway Developer Guide

 },
 "properties": {
 "description": "API description",
 "foo": "API foo",
 "x-bar": "API x-bar",
 "info": {
 "description": "API info description",
 "version": "API info version",
 "foo": "API info foo",
 "x-bar": "API info x-bar"
 }
 }
 },
 {
 "location": {
 "type": "METHOD",
 "method": "GET"
 },
 "properties": {
 "description": "Method description.",
 "x-example": "x- Method example",
 "foo": "Method foo",
 "info": {
 "version": "method info version",
 "description": "method info description",
 "foo": "method info foo"
 }
 }
 },
 {
 "location": {
 "type": "RESOURCE"
 },
 "properties": {
 "description": "resource description",
 "foo": "resource foo",
 "x-bar": "resource x-bar",
 "info": {
 "description": "resource info description",
 "version": "resource info version",
 "foo": "resource info foo",
 "x-bar": "resource info x-bar"
 }
 }

API documentation 850

Amazon API Gateway Developer Guide

 }
]
 },
 "x-bar": "API x-bar",
 "servers": [
 {
 "url": "https://rznaap68yi.execute-api.ap-southeast-1.amazonaws.com/
{basePath}",
 "variables": {
 "basePath": {
 "default": "/test"
 }
 }
 }
],
 "components": {
 "schemas": {
 "Empty": {
 "type": "object",
 "title": "Empty Schema"
 }
 }
 }
}

OpenAPI 2.0

{
 "swagger" : "2.0",
 "info" : {
 "description" : "API info description",
 "version" : "2016-11-22T22:39:14Z",
 "title" : "doc",
 "x-bar" : "API info x-bar"
 },
 "host" : "rznaap68yi.execute-api.ap-southeast-1.amazonaws.com",
 "basePath" : "/test",
 "schemes" : ["https"],
 "paths" : {
 "/" : {
 "get" : {
 "description" : "Method description.",
 "produces" : ["application/json"],

API documentation 851

Amazon API Gateway Developer Guide

 "responses" : {
 "200" : {
 "description" : "200 response",
 "schema" : {
 "$ref" : "#/definitions/Empty"
 }
 }
 },
 "x-example" : "x- Method example"
 },
 "x-bar" : "resource x-bar"
 }
 },
 "definitions" : {
 "Empty" : {
 "type" : "object",
 "title" : "Empty Schema"
 }
 },
 "x-amazon-apigateway-documentation" : {
 "version" : "1.0.0",
 "createdDate" : "2016-11-22T22:41:40Z",
 "documentationParts" : [{
 "location" : {
 "type" : "API"
 },
 "properties" : {
 "description" : "API description",
 "foo" : "API foo",
 "x-bar" : "API x-bar",
 "info" : {
 "description" : "API info description",
 "version" : "API info version",
 "foo" : "API info foo",
 "x-bar" : "API info x-bar"
 }
 }
 }, {
 "location" : {
 "type" : "METHOD",
 "method" : "GET"
 },
 "properties" : {
 "description" : "Method description.",

API documentation 852

Amazon API Gateway Developer Guide

 "x-example" : "x- Method example",
 "foo" : "Method foo",
 "info" : {
 "version" : "method info version",
 "description" : "method info description",
 "foo" : "method info foo"
 }
 }
 }, {
 "location" : {
 "type" : "RESOURCE"
 },
 "properties" : {
 "description" : "resource description",
 "foo" : "resource foo",
 "x-bar" : "resource x-bar",
 "info" : {
 "description" : "resource info description",
 "version" : "resource info version",
 "foo" : "resource info foo",
 "x-bar" : "resource info x-bar"
 }
 }
 }]
 },
 "x-bar" : "API x-bar"
}

For an OpenAPI-compliant attribute defined in the properties map of a documentation
part, API Gateway inserts the attribute into the associated API entity definition. An attribute of
x-something is a standard OpenAPI extension. This extension gets propagated into the API entity
definition. For example, see the x-example attribute for the GET method. An attribute like foo is
not part of the OpenAPI specification and is not injected into its associated API entity definitions.

If a documentation-rendering tool (e.g., OpenAPI UI) parses the API entity definitions to
extract documentation attributes, any non OpenAPI-compliant properties attributes of a
DocumentationPart' instance are not available for the tool. However, if a documentation-
rendering tool parses the x-amazon-apigateway-documentation object to get content, or if
the tool calls restapi:documentation-parts and documenationpart:by-id to retrieve documentation
parts from API Gateway, all the documentation attributes are available for the tool to display.

API documentation 853

http://swagger.io/swagger-ui/
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html
https://docs.aws.amazon.com/apigateway/latest/api/API_GetDocumentationPart.html

Amazon API Gateway Developer Guide

To export the documentation with API entity definitions containing integration details to a JSON
OpenAPI file, submit the following GET request:

GET /restapis/restapi_id/stages/stage_name/exports/swagger?
extensions=integrations,documentation HTTP/1.1
Accept: application/json
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

To export the documentation with API entity definitions containing details of integrations and
authorizers to a YAML OpenAPI file, submit the following GET request:

GET /restapis/restapi_id/stages/stage_name/exports/swagger?
extensions=integrations,authorizers,documentation HTTP/1.1
Accept: application/yaml
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

To use the API Gateway console to export and download the published documentation of an API,
follow the instructions in Export REST API using the API Gateway console.

Import API documentation

As with importing API entity definitions, you can import documentation parts from an external
OpenAPI file into an API in API Gateway. You specify the to-be-imported documentation parts
within the x-amazon-apigateway-documentation object extension in a valid OpenAPI definition
file. Importing documentation does not alter the existing API entity definitions.

You have an option to merge the newly specified documentation parts into existing documentation
parts in API Gateway or to overwrite the existing documentation parts. In the MERGE mode, a new
documentation part defined in the OpenAPI file is added to the DocumentationParts collection
of the API. If an imported DocumentationPart already exists, an imported attribute replaces the

API documentation 854

Amazon API Gateway Developer Guide

existing one if the two are different. Other existing documentation attributes remain unaffected.
In the OVERWRITE mode, the entire DocumentationParts collection is replaced according to the
imported OpenAPI definition file.

Importing documentation parts using the API Gateway REST API

To import API documentation using the API Gateway REST API, call the documentationpart:import
operation. The following example shows how to overwrite existing documentation parts of an API
with a single GET / method, returning a 200 OK response when successful.

OpenAPI 3.0

PUT /restapis/<restapi_id>/documentation/parts&mode=overwrite&failonwarnings=true
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

{
 "openapi": "3.0.0",
 "info": {
 "description": "description",
 "version": "1",
 "title": "doc"
 },
 "paths": {
 "/": {
 "get": {
 "description": "Method description.",
 "responses": {
 "200": {
 "description": "200 response",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Empty"
 }
 }
 }
 }
 }

API documentation 855

https://docs.aws.amazon.com/apigateway/latest/api/API_ImportDocumentationParts.html

Amazon API Gateway Developer Guide

 }
 }
 },
 "x-amazon-apigateway-documentation": {
 "version": "1.0.3",
 "documentationParts": [
 {
 "location": {
 "type": "API"
 },
 "properties": {
 "description": "API description",
 "info": {
 "description": "API info description 4",
 "version": "API info version 3"
 }
 }
 },
 {
 "location": {
 "type": "METHOD",
 "method": "GET"
 },
 "properties": {
 "description": "Method description."
 }
 },
 {
 "location": {
 "type": "MODEL",
 "name": "Empty"
 },
 "properties": {
 "title": "Empty Schema"
 }
 },
 {
 "location": {
 "type": "RESPONSE",
 "method": "GET",
 "statusCode": "200"
 },
 "properties": {
 "description": "200 response"

API documentation 856

Amazon API Gateway Developer Guide

 }
 }
]
 },
 "servers": [
 {
 "url": "/"
 }
],
 "components": {
 "schemas": {
 "Empty": {
 "type": "object",
 "title": "Empty Schema"
 }
 }
 }
}

OpenAPI 2.0

PUT /restapis/<restapi_id>/documentation/parts&mode=overwrite&failonwarnings=true
Host: apigateway.region.amazonaws.com
Content-Type: application/json
X-Amz-Date: YYYYMMDDTttttttZ
Authorization: AWS4-HMAC-SHA256 Credential=access_key_id/YYYYMMDD/region/
apigateway/aws4_request, SignedHeaders=content-length;content-type;host;x-amz-date,
 Signature=sigv4_secret

{
 "swagger": "2.0",
 "info": {
 "description": "description",
 "version": "1",
 "title": "doc"
 },
 "host": "",
 "basePath": "/",
 "schemes": [
 "https"
],
 "paths": {
 "/": {

API documentation 857

Amazon API Gateway Developer Guide

 "get": {
 "description": "Method description.",
 "produces": [
 "application/json"
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Empty"
 }
 }
 }
 }
 }
 },
 "definitions": {
 "Empty": {
 "type": "object",
 "title": "Empty Schema"
 }
 },
 "x-amazon-apigateway-documentation": {
 "version": "1.0.3",
 "documentationParts": [
 {
 "location": {
 "type": "API"
 },
 "properties": {
 "description": "API description",
 "info": {
 "description": "API info description 4",
 "version": "API info version 3"
 }
 }
 },
 {
 "location": {
 "type": "METHOD",
 "method": "GET"
 },
 "properties": {
 "description": "Method description."

API documentation 858

Amazon API Gateway Developer Guide

 }
 },
 {
 "location": {
 "type": "MODEL",
 "name": "Empty"
 },
 "properties": {
 "title": "Empty Schema"
 }
 },
 {
 "location": {
 "type": "RESPONSE",
 "method": "GET",
 "statusCode": "200"
 },
 "properties": {
 "description": "200 response"
 }
 }
]
 }
}

When successful, this request returns a 200 OK response containing the imported
DocumentationPartId in the payload.

{
 "ids": [
 "kg3mth",
 "796rtf",
 "zhek4p",
 "5ukm9s"
]
}

In addition, you can also call restapi:import or restapi:put, supplying the documentation parts in
the x-amazon-apigateway-documentation object as part of the input OpenAPI file of the API
definition. To exclude the documentation parts from the API import, set ignore=documentation
in the request query parameters.

API documentation 859

https://docs.aws.amazon.com/apigateway/latest/api/API_ImportRestApi.html
https://docs.aws.amazon.com/apigateway/latest/api/API_PutRestApi.html

Amazon API Gateway Developer Guide

Importing documentation parts using the API Gateway console

The following instructions describe how to import documentation parts.

To use the console to import documentation parts of an API from an external file

1. In the main navigation pane, choose Documentation.

2. Choose Import.

3. If you have existing documentation, select to either Overwrite or Merge your new
documentation.

4. Choose Choose file to load a file from a drive, or enter file contents into the file view. For an
example, see the payload of the example request in Importing documentation parts using the
API Gateway REST API.

5. Choose how to handle warnings on import. Select either Fail on warnings or Ignore warnings.
For more information, see the section called “Errors and warnings during import”.

6. Choose Import.

Control access to API documentation

If you have a dedicated documentation team to write and edit your API documentation, you can
configure separate access permissions for your developers (for API development) and for your
writers or editors (for content development). This is especially appropriate when a third-party
vendor is involved in creating the documentation for you.

To grant your documentation team the access to create, update, and publish your API
documentation, you can assign the documentation team an IAM role with the following IAM policy,
where account_id is the AWS account ID of your documentation team.

{
 "Version": "2012-10-17",
 "Statement": [

 {
 "Sid": "StmtDocPartsAddEditViewDelete",
 "Effect": "Allow",
 "Action": [
 "apigateway:GET",
 "apigateway:PUT",

API documentation 860

Amazon API Gateway Developer Guide

 "apigateway:POST",
 "apigateway:PATCH",
 "apigateway:DELETE"
],
 "Resource": [
 "arn:aws:apigateway::account_id:/restapis/*/documentation/*"
]
 }
]
}

For information on setting permissions to access API Gateway resources, see the section called
“How Amazon API Gateway works with IAM”.

Generating an SDK for a REST API in API Gateway

To call your REST API in a platform- or language-specific way, you must generate the platform- or
language-specific SDK of the API. Currently, API Gateway supports generating an SDK for an API in
Java, JavaScript, Java for Android, Objective-C or Swift for iOS, and Ruby.

This section explains how to generate an SDK of an API Gateway API. It also demonstrates how to
use the generated SDK in a Java app, a Java for Android app, Objective-C and Swift for iOS apps,
and a JavaScript app.

To facilitate the discussion, we use this API Gateway API, which exposes this Simple Calculator
Lambda function.

Before proceeding, create or import the API and deploy it at least once in API Gateway. For
instructions, see Deploying a REST API in Amazon API Gateway.

Topics

• Generate SDKs for an API using the API Gateway console

• Generate SDKs for an API using AWS CLI commands

• Simple calculator Lambda function

• Simple calculator API in API Gateway

• Simple calculator API OpenAPI definition

SDK generation 861

Amazon API Gateway Developer Guide

Generate SDKs for an API using the API Gateway console

To generate a platform- or language-specific SDK for an API in API Gateway, you must first create,
test, and deploy the API in a stage. For illustration purposes, we use the Simple Calculator API as
an example to generate language-specific or platform-specific SDKs throughout this section. For
instructions on how to create, test, and deploy this API, see Create the Simple Calculator API.

Topics

• Generate the Java SDK of an API

• Generate the Android SDK of an API

• Generate the iOS SDK of an API

• Generate the JavaScript SDK of a REST API

• Generate the Ruby SDK of an API

Generate the Java SDK of an API

To generate the Java SDK of an API in API Gateway

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose a REST API.

3. Choose Stages.

4. In the Stages pane, select the name of the stage.

5. Open the Stage actions menu, and then choose Generate SDK.

6. For Platform, choose the Java platform and do the following:

a. For Service Name, specify the name of your SDK. For example, SimpleCalcSdk. This
becomes the name of your SDK client class. The name corresponds to the <name> tag
under <project> in the pom.xml file, which is in the SDK's project folder. Do not include
hyphens.

b. For Java Package Name, specify a package name for your SDK. For example,
examples.aws.apig.simpleCalc.sdk. This package name is used as the namespace
of your SDK library. Do not include hyphens.

c. For Java Build System, enter maven or gradle to specify the build system.

SDK generation 862

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

d. For Java Group Id, enter a group identifier for your SDK project. For example, enter
my-apig-api-examples. This identifier corresponds to the <groupId> tag under
<project> in the pom.xml file, which is in the SDK's project folder.

e. For Java Artifact Id, enter an artifact identifier for your SDK project. For example,
enter simple-calc-sdk. This identifier corresponds to the <artifactId> tag under
<project> in the pom.xml file, which is in the SDK's project folder.

f. For Java Artifact Version, enter a version identifier string. For example, 1.0.0. This
version identifier corresponds to the <version> tag under <project> in the pom.xml
file, which is in the SDK's project folder.

g. For Source Code License Text, enter the license text of your source code, if any.

7. Choose Generate SDK, and then follow the on-screen directions to download the SDK
generated by API Gateway.

Follow the instructions in Use a Java SDK generated by API Gateway for a REST API to use the
generated SDK.

Every time you update an API, you must redeploy the API and regenerate the SDK to have the
updates included.

Generate the Android SDK of an API

To generate the Android SDK of an API in API Gateway

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose a REST API.

3. Choose Stages.

4. In the Stages pane, select the name of the stage.

5. Open the Stage actions menu, and then choose Generate SDK.

6. For Platform, choose the Android platform and do the following:

a. For Group ID, enter the unique identifier for the corresponding project. This is used in the
pom.xml file (for example, com.mycompany).

b. For Invoker package, enter the namespace for the generated client classes (for example,
com.mycompany.clientsdk).

c. For Artifact ID, enter the name of the compiled .jar file without the version. This is used in
the pom.xml file (for example, aws-apigateway-api-sdk).

SDK generation 863

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

d. For Artifact version, enter the artifact version number for the generated client. This is
used in the pom.xml file and should follow a major.minor.patch pattern (for example,
1.0.0).

7. Choose Generate SDK, and then follow the on-screen directions to download the SDK
generated by API Gateway.

Follow the instructions in Use an Android SDK generated by API Gateway for a REST API to use the
generated SDK.

Every time you update an API, you must redeploy the API and regenerate the SDK to have the
updates included.

Generate the iOS SDK of an API

To generate the iOS SDK of an API in API Gateway

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose a REST API.

3. Choose Stages.

4. In the Stages pane, select the name of the stage.

5. Open the Stage actions menu, and then choose Generate SDK.

6. For Platform, choose the iOS (Objective-C) or iOS (Swift) platform and do the following:

• Type a unique prefix in the Prefix box.

The effect of prefix is as follows: if you assign, for example, SIMPLE_CALC as the prefix for
the SDK of the SimpleCalc API with input, output, and result models, the generated
SDK will contain the SIMPLE_CALCSimpleCalcClient class that encapsulates the API,
including the method requests/responses. In addition, the generated SDK will contain
the SIMPLE_CALCinput, SIMPLE_CALCoutput, and SIMPLE_CALCresult classes to
represent the input, output, and results, respectively, to represent the request input and
response output. For more information, see Use iOS SDK generated by API Gateway for a
REST API in Objective-C or Swift.

7. Choose Generate SDK, and then follow the on-screen directions to download the SDK
generated by API Gateway.

SDK generation 864

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Follow the instructions in Use iOS SDK generated by API Gateway for a REST API in Objective-C or
Swift to use the generated SDK.

Every time you update an API, you must redeploy the API and regenerate the SDK to have the
updates included.

Generate the JavaScript SDK of a REST API

To generate the JavaScript SDK of an API in API Gateway

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose a REST API.

3. Choose Stages.

4. In the Stages pane, select the name of the stage.

5. Open the Stage actions menu, and then choose Generate SDK.

6. For Platform, choose the JavaScript platform.

7. Choose Generate SDK, and then follow the on-screen directions to download the SDK
generated by API Gateway.

Follow the instructions in Use a JavaScript SDK generated by API Gateway for a REST API to use the
generated SDK.

Every time you update an API, you must redeploy the API and regenerate the SDK to have the
updates included.

Generate the Ruby SDK of an API

To generate the Ruby SDK of an API in API Gateway

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose a REST API.

3. Choose Stages.

4. In the Stages pane, select the name of the stage.

5. Open the Stage actions menu, and then choose Generate SDK.

6. For Platform, choose the Ruby platform and do the following:

SDK generation 865

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

a. For Service Name, specify the name of your SDK. For example, SimpleCalc. This is used
to generate the Ruby Gem namespace of your API. The name must be all letters, (a-zA-
Z), without any other special characters or numbers.

b. For Ruby Gem Name, specify the name of the Ruby Gem to contain the generated SDK
source code for your API. By default, it is the lower-cased service name plus the -sdk
suffix—for example, simplecalc-sdk.

c. For Ruby Gem Version, specify a version number for the generated Ruby Gem. By default,
it is set to 1.0.0.

7. Choose Generate SDK, and then follow the on-screen directions to download the SDK
generated by API Gateway.

Follow the instructions in Use a Ruby SDK generated by API Gateway for a REST API to use the
generated SDK.

Every time you update an API, you must redeploy the API and regenerate the SDK to have the
updates included.

Generate SDKs for an API using AWS CLI commands

You can use AWS CLI to generate and download an SDK of an API for a supported platform by
calling the get-sdk command. We demonstrate this for some of the supported platforms in the
following.

Topics

• Generate and download the Java for Android SDK using the AWS CLI

• Generate and download the JavaScript SDK using the AWS CLI

• Generate and download the Ruby SDK using the AWS CLI

Generate and download the Java for Android SDK using the AWS CLI

To generate and download a Java for Android SDK generated by API Gateway of an API
(udpuvvzbkc) at a given stage (test), call the command as follows:

aws apigateway get-sdk \
 --rest-api-id udpuvvzbkc \

SDK generation 866

https://docs.aws.amazon.com/cli/latest/reference/apigateway/get-sdk.html

Amazon API Gateway Developer Guide

 --stage-name test \
 --sdk-type android \
 --parameters groupId='com.mycompany',\
 invokerPackage='com.mycompany.myApiSdk',\
 artifactId='myApiSdk',\
 artifactVersion='0.0.1' \
 ~/apps/myApi/myApi-android-sdk.zip

The last input of ~/apps/myApi/myApi-android-sdk.zip is the path to the downloaded SDK
file named myApi-android-sdk.zip.

Generate and download the JavaScript SDK using the AWS CLI

To generate and download a JavaScript SDK generated by API Gateway of an API (udpuvvzbkc) at
a given stage (test), call the command as follows:

aws apigateway get-sdk \
 --rest-api-id udpuvvzbkc \
 --stage-name test \
 --sdk-type javascript \
 ~/apps/myApi/myApi-js-sdk.zip

The last input of ~/apps/myApi/myApi-js-sdk.zip is the path to the downloaded SDK file
named myApi-js-sdk.zip.

Generate and download the Ruby SDK using the AWS CLI

To generate and download a Ruby SDK of an API (udpuvvzbkc) at a given stage (test), call the
command as follows:

aws apigateway get-sdk \
 --rest-api-id udpuvvzbkc \
 --stage-name test \
 --sdk-type ruby \
 --parameters service.name=myApiRubySdk,ruby.gem-name=myApi,ruby.gem-
version=0.01 \
 ~/apps/myApi/myApi-ruby-sdk.zip

The last input of ~/apps/myApi/myApi-ruby-sdk.zip is the path to the downloaded SDK file
named myApi-ruby-sdk.zip.

SDK generation 867

Amazon API Gateway Developer Guide

Next, we show how to use the generated SDK to call the underlying API. For more information, see
Call REST API through generated SDKs.

Simple calculator Lambda function

As an illustration, we will use a Node.js Lambda function that performs the binary operations of
addition, subtraction, multiplication and division.

Topics

• Simple calculator Lambda function input format

• Simple calculator Lambda function output format

• Simple calculator Lambda function implementation

Simple calculator Lambda function input format

This function takes an input of the following format:

{ "a": "Number", "b": "Number", "op": "string"}

where op can be any of (+, -, *, /, add, sub, mul, div).

Simple calculator Lambda function output format

When an operation succeeds, it returns the result of the following format:

{ "a": "Number", "b": "Number", "op": "string", "c": "Number"}

where c holds the result of the calculation.

Simple calculator Lambda function implementation

The implementation of the Lambda function is as follows:

export const handler = async function (event, context) {
 console.log("Received event:", JSON.stringify(event));

 if (
 event.a === undefined ||
 event.b === undefined ||
 event.op === undefined

SDK generation 868

Amazon API Gateway Developer Guide

) {
 return "400 Invalid Input";
 }

 const res = {};
 res.a = Number(event.a);
 res.b = Number(event.b);
 res.op = event.op;
 if (isNaN(event.a) || isNaN(event.b)) {
 return "400 Invalid Operand";
 }
 switch (event.op) {
 case "+":
 case "add":
 res.c = res.a + res.b;
 break;
 case "-":
 case "sub":
 res.c = res.a - res.b;
 break;
 case "*":
 case "mul":
 res.c = res.a * res.b;
 break;
 case "/":
 case "div":
 if (res.b == 0) {
 return "400 Divide by Zero";
 } else {
 res.c = res.a / res.b;
 }
 break;
 default:
 return "400 Invalid Operator";
 }

 return res;
};

Simple calculator API in API Gateway

Our simple calculator API exposes three methods (GET, POST, GET) to invoke the the section called
“Simple calculator Lambda function”. A graphical representation of this API is shown as follows:

SDK generation 869

Amazon API Gateway Developer Guide

SDK generation 870

Amazon API Gateway Developer Guide

These three methods show different ways to supply the input for the backend Lambda function to
perform the same operation:

• The GET /?a=...&b=...&op=... method uses the query parameters to specify the input.

• The POST / method uses a JSON payload of {"a":"Number", "b":"Number",
"op":"string"} to specify the input.

• The GET /{a}/{b}/{op} method uses the path parameters to specify the input.

If not defined, API Gateway generates the corresponding SDK method name by combining the
HTTP method and path parts. The root path part (/) is referred to as Api Root. For example, the
default Java SDK method name for the API method of GET /?a=...&b=...&op=... is getABOp,
the default SDK method name for POST / is postApiRoot, and the default SDK method name
for GET /{a}/{b}/{op} is getABOp. Individual SDKs may customize the convention. Consult the
documentation in the generated SDK source for SDK specific method names.

You can, and should, override the default SDK method names by specifying the operationName
property on each API method. You can do so when creating the API method or updating the
API method using the API Gateway REST API. In the API Swagger definition, you can set the
operationId to achieve the same result.

Before showing how to call these methods using an SDK generated by API Gateway for this API,
let's recall briefly how to set them up. For detailed instructions, see Creating a REST API in Amazon
API Gateway. If you're new to API Gateway, see Build an API Gateway REST API with Lambda
integration first.

Create models for input and output

To specify strongly typed input in the SDK, we create an Input model for the API. To describe the
response body data type, we create an Output model and a Result model.

To create models for the input, output, and result

1. In the main navigation pane, choose Models.

2. Choose Create model.

3. For Name, enter input.

4. For Content type, enter application/json.

SDK generation 871

https://docs.aws.amazon.com/apigateway/latest/api/API_Method.html#operationName
https://docs.aws.amazon.com/apigateway/latest/api/API_PutMethod.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateMethod.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateMethod.html

Amazon API Gateway Developer Guide

If no matching content type is found, request validation is not performed. To use the same
model regardless of the content type, enter $default.

5. For Model schema, enter the following model:

{
 "$schema" : "$schema": "http://json-schema.org/draft-04/schema#",
 "type":"object",
 "properties":{
 "a":{"type":"number"},
 "b":{"type":"number"},
 "op":{"type":"string"}
 },
 "title":"Input"
}

6. Choose Create model.

7. Repeat the following steps to create an Output model and a Result model.

For the Output model, enter the following for the Model schema:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "c": {"type":"number"}
 },
 "title": "Output"
}

For the Result model, enter the following for the Model schema. Replace the API ID abc123
with your API ID.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type":"object",
 "properties":{
 "input":{
 "$ref":"https://apigateway.amazonaws.com/restapis/abc123/models/Input"
 },
 "output":{

SDK generation 872

Amazon API Gateway Developer Guide

 "$ref":"https://apigateway.amazonaws.com/restapis/abc123/models/Output"
 }
 },
 "title":"Result"
}

Set up GET / method query parameters

For the GET /?a=..&b=..&op=.. method, the query parameters are declared in Method
Request:

To set up GET / URL query string parameters

1. In the Method request section for the GET method on the root (/) resource, choose Edit.

2. Choose URL query string parameters and do the following:

a. Choose Add query string.

b. For Name, enter a.

c. Keep Required and Caching turned off.

d. Keep Caching turned off.

Repeat the same steps and create a query string named b and a query string named op.

3. Choose Save.

Set up data model for the payload as input to the backend

For the POST / method, we create the Input model and add it to the method request to define
the shape of input data.

To set up the data model for the payload as input to the backend

1. In the Method request section, for the POST method on the root (/) resource choose Edit.

2. Choose Request body.

3. Choose Add model.

4. For Content type, enter application/json.

5. For Model, select Input.

SDK generation 873

Amazon API Gateway Developer Guide

6. Choose Save.

With this model, your API customers can call the SDK to specify the input by instantiating an
Input object. Without this model, your customers would be required to create dictionary object to
represent the JSON input to the Lambda function.

Set up data model for the result output from the backend

For all three methods, we create the Result model and add it to the method's Method Response
to define the shape of output returned by the Lambda function.

To set up the data model for the result output from the backend

1. Select the /{a}/{b}/{op} resource, and then choose the GET method.

2. On the Method response tab, under Response 200, choose Edit.

3. Under Response body, choose Add model.

4. For Content type, enter application/json.

5. For Model, select Result.

6. Choose Save.

With this model, your API customers can parse a successful output by reading properties of a
Result object. Without this model, customers would be required to create dictionary object to
represent the JSON output.

Simple calculator API OpenAPI definition

The following is the OpenAPI definition of the simple calculator API. You can import it into your
account. However, you need to reset the resource-based permissions on the Lambda function after
the import. To do so, re-select the Lambda function that you created in your account from the
Integration Request in the API Gateway console. This will cause the API Gateway console to reset
the required permissions. Alternatively, you can use AWS Command Line Interface for Lambda
command of add-permission.

OpenAPI 2.0

{
 "swagger": "2.0",
 "info": {

SDK generation 874

https://docs.aws.amazon.com/cli/latest/reference/lambda/add-permission.html

Amazon API Gateway Developer Guide

 "version": "2016-09-29T20:27:30Z",
 "title": "SimpleCalc"
 },
 "host": "t6dve4zn25.execute-api.us-west-2.amazonaws.com",
 "basePath": "/demo",
 "schemes": [
 "https"
],
 "paths": {
 "/": {
 "get": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "op",
 "in": "query",
 "required": false,
 "type": "string"
 },
 {
 "name": "a",
 "in": "query",
 "required": false,
 "type": "string"
 },
 {
 "name": "b",
 "in": "query",
 "required": false,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Result"
 }
 }

SDK generation 875

Amazon API Gateway Developer Guide

 },
 "x-amazon-apigateway-integration": {
 "requestTemplates": {
 "application/json": "#set($inputRoot = $input.path('$'))\n{\n
 \"a\" : $input.params('a'),\n \"b\" : $input.params('b'),\n \"op\" :
 \"$input.params('op')\"\n}"
 },
 "uri": "arn:aws:apigateway:us-west-2:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-west-2:123456789012:function:Calc/invocations",
 "passthroughBehavior": "when_no_templates",
 "httpMethod": "POST",
 "responses": {
 "default": {
 "statusCode": "200",
 "responseTemplates": {
 "application/json": "#set($inputRoot = $input.path('$'))\n{\n
 \"input\" : {\n \"a\" : $inputRoot.a,\n \"b\" : $inputRoot.b,\n \"op\" :
 \"$inputRoot.op\"\n },\n \"output\" : {\n \"c\" : $inputRoot.c\n }\n}"
 }
 }
 },
 "type": "aws"
 }
 },
 "post": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "in": "body",
 "name": "Input",
 "required": true,
 "schema": {
 "$ref": "#/definitions/Input"
 }
 }
],
 "responses": {
 "200": {
 "description": "200 response",

SDK generation 876

Amazon API Gateway Developer Guide

 "schema": {
 "$ref": "#/definitions/Result"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "uri": "arn:aws:apigateway:us-west-2:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-west-2:123456789012:function:Calc/invocations",
 "passthroughBehavior": "when_no_match",
 "httpMethod": "POST",
 "responses": {
 "default": {
 "statusCode": "200",
 "responseTemplates": {
 "application/json": "#set($inputRoot = $input.path('$'))\n{\n
 \"input\" : {\n \"a\" : $inputRoot.a,\n \"b\" : $inputRoot.b,\n \"op\" :
 \"$inputRoot.op\"\n },\n \"output\" : {\n \"c\" : $inputRoot.c\n }\n}"
 }
 }
 },
 "type": "aws"
 }
 }
 },
 "/{a}": {
 "x-amazon-apigateway-any-method": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "a",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "404": {
 "description": "404 response"
 }

SDK generation 877

Amazon API Gateway Developer Guide

 },
 "x-amazon-apigateway-integration": {
 "requestTemplates": {
 "application/json": "{\"statusCode\": 200}"
 },
 "passthroughBehavior": "when_no_match",
 "responses": {
 "default": {
 "statusCode": "404",
 "responseTemplates": {
 "application/json": "{ \"Message\" : \"Can't $context.httpMethod
 $context.resourcePath\" }"
 }
 }
 },
 "type": "mock"
 }
 }
 },
 "/{a}/{b}": {
 "x-amazon-apigateway-any-method": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "a",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "b",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "404": {
 "description": "404 response"

SDK generation 878

Amazon API Gateway Developer Guide

 }
 },
 "x-amazon-apigateway-integration": {
 "requestTemplates": {
 "application/json": "{\"statusCode\": 200}"
 },
 "passthroughBehavior": "when_no_match",
 "responses": {
 "default": {
 "statusCode": "404",
 "responseTemplates": {
 "application/json": "{ \"Message\" : \"Can't $context.httpMethod
 $context.resourcePath\" }"
 }
 }
 },
 "type": "mock"
 }
 }
 },
 "/{a}/{b}/{op}": {
 "get": {
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "a",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "b",
 "in": "path",
 "required": true,
 "type": "string"
 },
 {
 "name": "op",
 "in": "path",

SDK generation 879

Amazon API Gateway Developer Guide

 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "schema": {
 "$ref": "#/definitions/Result"
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "requestTemplates": {
 "application/json": "#set($inputRoot = $input.path('$'))\n{\n
 \"a\" : $input.params('a'),\n \"b\" : $input.params('b'),\n \"op\" :
 \"$input.params('op')\"\n}"
 },
 "uri": "arn:aws:apigateway:us-west-2:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-west-2:123456789012:function:Calc/invocations",
 "passthroughBehavior": "when_no_templates",
 "httpMethod": "POST",
 "responses": {
 "default": {
 "statusCode": "200",
 "responseTemplates": {
 "application/json": "#set($inputRoot = $input.path('$'))\n{\n
 \"input\" : {\n \"a\" : $inputRoot.a,\n \"b\" : $inputRoot.b,\n \"op\" :
 \"$inputRoot.op\"\n },\n \"output\" : {\n \"c\" : $inputRoot.c\n }\n}"
 }
 }
 },
 "type": "aws"
 }
 }
 }
 },
 "definitions": {
 "Input": {
 "type": "object",
 "properties": {
 "a": {
 "type": "number"
 },

SDK generation 880

Amazon API Gateway Developer Guide

 "b": {
 "type": "number"
 },
 "op": {
 "type": "string"
 }
 },
 "title": "Input"
 },
 "Output": {
 "type": "object",
 "properties": {
 "c": {
 "type": "number"
 }
 },
 "title": "Output"
 },
 "Result": {
 "type": "object",
 "properties": {
 "input": {
 "$ref": "#/definitions/Input"
 },
 "output": {
 "$ref": "#/definitions/Output"
 }
 },
 "title": "Result"
 }
 }
}

OpenAPI 3.0

{
 "openapi" : "3.0.1",
 "info" : {
 "title" : "SimpleCalc",
 "version" : "2016-09-29T20:27:30Z"
 },
 "servers" : [{
 "url" : "https://t6dve4zn25.execute-api.us-west-2.amazonaws.com/{basePath}",

SDK generation 881

Amazon API Gateway Developer Guide

 "variables" : {
 "basePath" : {
 "default" : "demo"
 }
 }
 }],
 "paths" : {
 "/{a}/{b}" : {
 "x-amazon-apigateway-any-method" : {
 "parameters" : [{
 "name" : "a",
 "in" : "path",
 "required" : true,
 "schema" : {
 "type" : "string"
 }
 }, {
 "name" : "b",
 "in" : "path",
 "required" : true,
 "schema" : {
 "type" : "string"
 }
 }],
 "responses" : {
 "404" : {
 "description" : "404 response",
 "content" : { }
 }
 },
 "x-amazon-apigateway-integration" : {
 "type" : "mock",
 "responses" : {
 "default" : {
 "statusCode" : "404",
 "responseTemplates" : {
 "application/json" : "{ \"Message\" : \"Can't $context.httpMethod
 $context.resourcePath\" }"
 }
 }
 },
 "requestTemplates" : {
 "application/json" : "{\"statusCode\": 200}"
 },

SDK generation 882

Amazon API Gateway Developer Guide

 "passthroughBehavior" : "when_no_match"
 }
 }
 },
 "/{a}/{b}/{op}" : {
 "get" : {
 "parameters" : [{
 "name" : "a",
 "in" : "path",
 "required" : true,
 "schema" : {
 "type" : "string"
 }
 }, {
 "name" : "b",
 "in" : "path",
 "required" : true,
 "schema" : {
 "type" : "string"
 }
 }, {
 "name" : "op",
 "in" : "path",
 "required" : true,
 "schema" : {
 "type" : "string"
 }
 }],
 "responses" : {
 "200" : {
 "description" : "200 response",
 "content" : {
 "application/json" : {
 "schema" : {
 "$ref" : "#/components/schemas/Result"
 }
 }
 }
 }
 },
 "x-amazon-apigateway-integration" : {
 "type" : "aws",
 "httpMethod" : "POST",

SDK generation 883

Amazon API Gateway Developer Guide

 "uri" : "arn:aws:apigateway:us-west-2:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-west-2:111122223333:function:Calc/invocations",
 "responses" : {
 "default" : {
 "statusCode" : "200",
 "responseTemplates" : {
 "application/json" : "#set($inputRoot = $input.path('$'))\n{\n
 \"input\" : {\n \"a\" : $inputRoot.a,\n \"b\" : $inputRoot.b,\n \"op\" :
 \"$inputRoot.op\"\n },\n \"output\" : {\n \"c\" : $inputRoot.c\n }\n}"
 }
 }
 },
 "requestTemplates" : {
 "application/json" : "#set($inputRoot = $input.path('$'))\n{\n
 \"a\" : $input.params('a'),\n \"b\" : $input.params('b'),\n \"op\" :
 \"$input.params('op')\"\n}"
 },
 "passthroughBehavior" : "when_no_templates"
 }
 }
 },
 "/" : {
 "get" : {
 "parameters" : [{
 "name" : "op",
 "in" : "query",
 "schema" : {
 "type" : "string"
 }
 }, {
 "name" : "a",
 "in" : "query",
 "schema" : {
 "type" : "string"
 }
 }, {
 "name" : "b",
 "in" : "query",
 "schema" : {
 "type" : "string"
 }
 }],
 "responses" : {
 "200" : {

SDK generation 884

Amazon API Gateway Developer Guide

 "description" : "200 response",
 "content" : {
 "application/json" : {
 "schema" : {
 "$ref" : "#/components/schemas/Result"
 }
 }
 }
 }
 },
 "x-amazon-apigateway-integration" : {
 "type" : "aws",
 "httpMethod" : "POST",
 "uri" : "arn:aws:apigateway:us-west-2:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-west-2:111122223333:function:Calc/invocations",
 "responses" : {
 "default" : {
 "statusCode" : "200",
 "responseTemplates" : {
 "application/json" : "#set($inputRoot = $input.path('$'))\n{\n
 \"input\" : {\n \"a\" : $inputRoot.a,\n \"b\" : $inputRoot.b,\n \"op\" :
 \"$inputRoot.op\"\n },\n \"output\" : {\n \"c\" : $inputRoot.c\n }\n}"
 }
 }
 },
 "requestTemplates" : {
 "application/json" : "#set($inputRoot = $input.path('$'))\n{\n
 \"a\" : $input.params('a'),\n \"b\" : $input.params('b'),\n \"op\" :
 \"$input.params('op')\"\n}"
 },
 "passthroughBehavior" : "when_no_templates"
 }
 },
 "post" : {
 "requestBody" : {
 "content" : {
 "application/json" : {
 "schema" : {
 "$ref" : "#/components/schemas/Input"
 }
 }
 },
 "required" : true
 },

SDK generation 885

Amazon API Gateway Developer Guide

 "responses" : {
 "200" : {
 "description" : "200 response",
 "content" : {
 "application/json" : {
 "schema" : {
 "$ref" : "#/components/schemas/Result"
 }
 }
 }
 }
 },
 "x-amazon-apigateway-integration" : {
 "type" : "aws",
 "httpMethod" : "POST",
 "uri" : "arn:aws:apigateway:us-west-2:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-west-2:111122223333:function:Calc/invocations",
 "responses" : {
 "default" : {
 "statusCode" : "200",
 "responseTemplates" : {
 "application/json" : "#set($inputRoot = $input.path('$'))\n{\n
 \"input\" : {\n \"a\" : $inputRoot.a,\n \"b\" : $inputRoot.b,\n \"op\" :
 \"$inputRoot.op\"\n },\n \"output\" : {\n \"c\" : $inputRoot.c\n }\n}"
 }
 }
 },
 "passthroughBehavior" : "when_no_match"
 }
 }
 },
 "/{a}" : {
 "x-amazon-apigateway-any-method" : {
 "parameters" : [{
 "name" : "a",
 "in" : "path",
 "required" : true,
 "schema" : {
 "type" : "string"
 }
 }],
 "responses" : {
 "404" : {
 "description" : "404 response",

SDK generation 886

Amazon API Gateway Developer Guide

 "content" : { }
 }
 },
 "x-amazon-apigateway-integration" : {
 "type" : "mock",
 "responses" : {
 "default" : {
 "statusCode" : "404",
 "responseTemplates" : {
 "application/json" : "{ \"Message\" : \"Can't $context.httpMethod
 $context.resourcePath\" }"
 }
 }
 },
 "requestTemplates" : {
 "application/json" : "{\"statusCode\": 200}"
 },
 "passthroughBehavior" : "when_no_match"
 }
 }
 }
 },
 "components" : {
 "schemas" : {
 "Input" : {
 "title" : "Input",
 "type" : "object",
 "properties" : {
 "a" : {
 "type" : "number"
 },
 "b" : {
 "type" : "number"
 },
 "op" : {
 "type" : "string"
 }
 }
 },
 "Output" : {
 "title" : "Output",
 "type" : "object",
 "properties" : {
 "c" : {

SDK generation 887

Amazon API Gateway Developer Guide

 "type" : "number"
 }
 }
 },
 "Result" : {
 "title" : "Result",
 "type" : "object",
 "properties" : {
 "input" : {
 "$ref" : "#/components/schemas/Input"
 },
 "output" : {
 "$ref" : "#/components/schemas/Output"
 }
 }
 }
 }
 }
}

Sell your API Gateway APIs through AWS Marketplace

After you build, test, and deploy your APIs, you can package them in an API Gateway usage plan
and sell the plan as a Software as a Service (SaaS) product through AWS Marketplace. API buyers
subscribing to your product offering are billed by AWS Marketplace based on the number of
requests made to the usage plan.

To sell your APIs on AWS Marketplace, you must set up the sales channel to integrate AWS
Marketplace with API Gateway. Generally speaking, this involves listing your product on AWS
Marketplace, setting up an IAM role with appropriate policies to allow API Gateway to send usage
metrics to AWS Marketplace, associating an AWS Marketplace product with an API Gateway usage
plan, and associating an AWS Marketplace buyer with an API Gateway API key. Details are discussed
in the following sections.

For more information about selling your API as a SaaS product on AWS Marketplace, see the AWS
Marketplace User Guide.

Topics

• Initialize AWS Marketplace integration with API Gateway

• Handle customer subscription to usage plans

Sell your APIs as SaaS 888

https://docs.aws.amazon.com/marketplace/latest/userguide/
https://docs.aws.amazon.com/marketplace/latest/userguide/

Amazon API Gateway Developer Guide

Initialize AWS Marketplace integration with API Gateway

The following tasks are for one-time initialization of AWS Marketplace integration with API
Gateway, which enables you to sell your APIs as a SaaS product.

List a product on AWS Marketplace

To list your usage plan as a SaaS product, submit a product load form through AWS Marketplace.
The product must contain a dimension named apigateway of the requests type. This dimension
defines the price-per-request and is used by API Gateway to meter requests to your APIs.

Create the metering role

Create an IAM role named ApiGatewayMarketplaceMeteringRole with the following
execution policy and trust policy. This role allows API Gateway to send usage metrics to AWS
Marketplace on your behalf.

Execution policy of the metering role

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "aws-marketplace:BatchMeterUsage",
 "aws-marketplace:ResolveCustomer"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

Trusted relationship policy of the metering role

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"

Sell your APIs as SaaS 889

https://aws.amazon.com/marketplace/management/tour/

Amazon API Gateway Developer Guide

 },
 "Action": "sts:AssumeRole"
 }
]
}

Associate usage plan with AWS Marketplace product

When you list a product on AWS Marketplace, you receive an AWS Marketplace product code. To
integrate API Gateway with AWS Marketplace, associate your usage plan with the AWS Marketplace
product code. You enable the association by setting the API Gateway UsagePlan's productCode
field to your AWS Marketplace product code, using the API Gateway console, the API Gateway REST
API, the AWS CLI for API Gateway, or AWS SDK for API Gateway. The following code example uses
the API Gateway REST API:

PATCH /usageplans/USAGE_PLAN_ID
Host: apigateway.region.amazonaws.com
Authorization: ...

{
 "patchOperations" : [{
 "path" : "/productCode",
 "value" : "MARKETPLACE_PRODUCT_CODE",
 "op" : "replace"
 }]
}

Handle customer subscription to usage plans

The following tasks are handled by your developer portal application.

When a customer subscribes to your product through AWS Marketplace, AWS Marketplace forwards
a POST request to the SaaS subscriptions URL that you registered when listing your product on
AWS Marketplace. The POST request comes with an x-amzn-marketplace-token parameter
containing buyer information. Follow the instructions in SaaS customer onboarding to handle this
redirect in your developer portal application.

Responding to a customer's subscribing request, AWS Marketplace sends a subscribe-success
notification to an Amazon SNS topic that you can subscribe to. (See SaaS customer onboarding).
To accept the customer subscription request, you handle the subscribe-success notification
by creating or retrieving an API Gateway API key for the customer, associating the customer's AWS

Sell your APIs as SaaS 890

https://docs.aws.amazon.com/apigateway/latest/api/API_UsagePlan.html#productCode
https://docs.aws.amazon.com/marketplace/latest/userguide/saas-product-customer-setup.html#in-your-application
https://docs.aws.amazon.com/marketplace/latest/userguide/saas-product-customer-setup.html#in-your-application

Amazon API Gateway Developer Guide

Marketplace-provisioned customerId with the API keys, and then adding the API key to your
usage plan.

When the customer's subscription request completes, the developer portal application should
present the customer with the associated API key and inform the customer that the API key must
be included in the x-api-key header in requests to the APIs.

When a customer cancels a subscription to a usage plan, AWS Marketplace sends an
unsubscribe-success notification to the SNS topic. To complete the process of unsubscribing
the customer, you handle the unsubscribe-success notification by removing the customer's API
keys from the usage plan.

Authorize a customer to access a usage plan

To authorize access to your usage plan for a given customer, use the API Gateway API to fetch or
create an API key for the customer and add the API key to the usage plan.

The following example shows how to call the API Gateway REST API to create a new API key with a
specific AWS Marketplace customerId value (MARKETPLACE_CUSTOMER_ID).

POST apikeys HTTP/1.1
Host: apigateway.region.amazonaws.com
Authorization: ...

{
 "name" : "my_api_key",
 "description" : "My API key",
 "enabled" : "false",
 "stageKeys" : [{
 "restApiId" : "uycll6xg9a",
 "stageName" : "prod"
 }],
 "customerId" : "MARKETPLACE_CUSTOMER_ID"
}

The following example shows how to get an API key with a specific AWS Marketplace customerId
value (MARKETPLACE_CUSTOMER_ID).

GET apikeys?customerId=MARKETPLACE_CUSTOMER_ID HTTP/1.1
Host: apigateway.region.amazonaws.com
Authorization: ...

Sell your APIs as SaaS 891

Amazon API Gateway Developer Guide

To add an API key to a usage plan, create a UsagePlanKey with the API key for the relevant
usage plan. The following example shows how to accomplish this using the API Gateway REST API,
where n371pt is the usage plan ID and q5ugs7qjjh is an example API keyId returned from the
preceding examples.

POST /usageplans/n371pt/keys HTTP/1.1
Host: apigateway.region.amazonaws.com
Authorization: ...

{
 "keyId": "q5ugs7qjjh",
 "keyType": "API_KEY"
}

Associate a customer with an API key

You must update the ApiKey's customerId field to the AWS Marketplace customer ID of the
customer. This associates the API key with the AWS Marketplace customer, which enables metering
and billing for the buyer. The following code example calls the API Gateway REST API to do that.

PATCH /apikeys/q5ugs7qjjh
Host: apigateway.region.amazonaws.com
Authorization: ...

{
 "patchOperations" : [{
 "path" : "/customerId",
 "value" : "MARKETPLACE_CUSTOMER_ID",
 "op" : "replace"
 }]
}

Protecting your REST API

API Gateway provides a number of ways to protect your API from certain threats, like malicious
users or spikes in traffic. You can protect your API using strategies like generating SSL certificates,
configuring a web application firewall, setting throttling targets, and only allowing access to
your API from a Virtual Private Cloud (VPC). In this section you can learn how to enable these
capabilities using API Gateway.

Protect 892

https://docs.aws.amazon.com/apigateway/latest/api/API_UsagePlanKey.html
https://docs.aws.amazon.com/apigateway/latest/api/API_ApiKey.html

Amazon API Gateway Developer Guide

Topics

• Configuring mutual TLS authentication for a REST API

• Generate and configure an SSL certificate for backend authentication

• Using AWS WAF to protect your APIs

• Throttle API requests for better throughput

• Creating a private API in Amazon API Gateway

Configuring mutual TLS authentication for a REST API

Mutual TLS authentication requires two-way authentication between the client and the server.
With mutual TLS, clients must present X.509 certificates to verify their identity to access your
API. Mutual TLS is a common requirement for Internet of Things (IoT) and business-to-business
applications.

You can use mutual TLS along with other authorization and authentication operations that
API Gateway supports. API Gateway forwards the certificates that clients provide to Lambda
authorizers and to backend integrations.

Important

By default, clients can invoke your API by using the execute-api endpoint that API
Gateway generates for your API. To ensure that clients can access your API only by using
a custom domain name with mutual TLS, disable the default execute-api endpoint. To
learn more, see the section called “Disable the default endpoint”.

Topics

• Prerequisites for mutual TLS

• Configuring mutual TLS for a custom domain name

• Invoke an API by using a custom domain name that requires mutual TLS

• Updating your truststore

• Disable mutual TLS

• Troubleshooting certificate warnings

• Troubleshooting domain name conflicts

Mutual TLS 893

Amazon API Gateway Developer Guide

• Troubleshooting domain name status messages

Prerequisites for mutual TLS

To configure mutual TLS you need:

• A custom domain name

• At least one certificate configured in AWS Certificate Manager for your custom domain name

• A truststore configured and uploaded to Amazon S3

Custom domain names

To enable mutual TLS for a REST API, you must configure a custom domain name for your API. You
can enable mutual TLS for a custom domain name, and then provide the custom domain name to
clients. To access an API by using a custom domain name that has mutual TLS enabled, clients must
present certificates that you trust in API requests. You can find more information at the section
called “Custom domain names”.

Using AWS Certificate Manager issued certificates

You can request a publicly trusted certificate directly from ACM or import public or self-signed
certificates. To setup a certificate in ACM, go to ACM. If you would like to import a certificate,
continue reading in the following section.

Using an imported or AWS Private Certificate Authority certificate

To use a certificate imported into ACM or a certificate from AWS Private Certificate Authority
with mutual TLS, API Gateway needs an ownershipVerificationCertificate issued
by ACM. This ownership certificate is only used to verify that you have permissions to
use the domain name. It is not used for the TLS handshake. If you don't already have a
ownershipVerificationCertificate, go to https://console.aws.amazon.com/acm/ to set one
up.

You will need to keep this certificate valid for the lifetime of your domain name. If a
certificate expires and auto-renew fails, all updates to the domain name will be locked.
You will need to update the ownershipVerificationCertificateArn with a valid
ownershipVerificationCertificate before you can make any other changes. The
ownershipVerificationCertificate cannot be used as a server certificate for another

Mutual TLS 894

https://console.aws.amazon.com/acm/
https://console.aws.amazon.com/acm/

Amazon API Gateway Developer Guide

mutual TLS domain in API Gateway. If a certificate is directly re-imported into ACM, the issuer must
stay the same.

Configuring your truststore

Truststores are text files with a .pem file extension. They are a trusted list of certificates from
Certificate Authorities. To use mutual TLS, create a truststore of X.509 certificates that you trust to
access your API.

You must include the complete chain of trust, starting from the issuing CA certificate, up to the
root CA certificate, in your truststore. API Gateway accepts client certificates issued by any CA
present in the chain of trust. The certificates can be from public or private certificate authorities.
Certificates can have a maximum chain length of four. You can also provide self-signed certificates.
The following algorithms are supported in the truststore:

• SHA-256 or stronger

• RSA-2048 or stronger

• ECDSA-256 or stronger

API Gateway validates a number of certificate properties. You can use Lambda authorizers to
perform additional checks when a client invokes an API, including checking whether a certificate
has been revoked. API Gateway validates the following properties:

Validation Description

X.509 syntax The certificate must meet X.509 syntax
requirements.

Integrity The certificate's content must not have been
altered from that signed by the certificate
authority from the truststore.

Validity The certificate's validity period must be
current.

Name chaining / key chaining The names and subjects of certificates must
form an unbroken chain. Certificates can have
a maximum chain length of four.

Mutual TLS 895

Amazon API Gateway Developer Guide

Upload the truststore to an Amazon S3 bucket in a single file

The following is an example of what a .pem file might look like.

Example certificates.pem

-----BEGIN CERTIFICATE-----
<Certificate contents>
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
<Certificate contents>
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
<Certificate contents>
-----END CERTIFICATE-----
...

The following AWS CLI command uploads certificates.pem to your Amazon S3 bucket.

aws s3 cp certificates.pem s3://bucket-name

Your Amazon S3 bucket must have read permission for API Gateway to allow API Gateway to access
your truststore.

Configuring mutual TLS for a custom domain name

To configure mutual TLS for a REST API, you must use a Regional custom domain name for your
API, with a TLS_1_2 security policy. For more information about choosing a security policy, see the
section called “Choosing a security policy”.

Note

Mutual TLS isn't supported for private APIs.

After you've uploaded your truststore to Amazon S3, you can configure your custom domain name
to use mutual TLS. Paste the following (slashes included) into a terminal:

aws apigateway create-domain-name --region us-east-2 \
 --domain-name api.example.com \

Mutual TLS 896

Amazon API Gateway Developer Guide

 --regional-certificate-arn arn:aws:acm:us-
east-2:123456789012:certificate/123456789012-1234-1234-1234-12345678 \
 --endpoint-configuration types=REGIONAL \
 --security-policy TLS_1_2 \
 --mutual-tls-authentication truststoreUri=s3://bucket-name/key-name

After you create the domain name, you must configure DNS records and basepath mappings for
API operations. To learn more, see Setting up a regional custom domain name in API Gateway.

Invoke an API by using a custom domain name that requires mutual TLS

To invoke an API with mutual TLS enabled, clients must present a trusted certificate in the API
request. When a client attempts to invoke your API, API Gateway looks for the client certificate's
issuer in your truststore. For API Gateway to proceed with the request, the certificate's issuer and
the complete chain of trust up to the root CA certificate must be in your truststore.

The following example curl command sends a request to api.example.com, that includes my-
cert.pem in the request. my-key.key is the private key for the certificate.

curl -v --key ./my-key.key --cert ./my-cert.pem api.example.com

Your API is invoked only if your truststore trusts the certificate. The following conditions will
cause API Gateway to fail the TLS handshake and deny the request with a 403 status code. If your
certificate:

• isn't trusted

• is expired

• doesn't use a supported algorithm

Note

API Gateway doesn't verify if a certificate has been revoked.

Updating your truststore

To update the certificates in your truststore, upload a new certificate bundle to Amazon S3. Then,
you can update your custom domain name to use the updated certificate.

Mutual TLS 897

Amazon API Gateway Developer Guide

Use Amazon S3 versioning to maintain multiple versions of your truststore. When you update your
custom domain name to use a new truststore version, API Gateway returns warnings if certificates
are invalid.

API Gateway produces certificate warnings only when you update your domain name. API Gateway
doesn’t notify you if a previously uploaded certificate expires.

The following AWS CLI command updates a custom domain name to use a new truststore version.

aws apigateway update-domain-name \
 --domain-name api.example.com \
 --patch-operations op='replace',path='/mutualTlsAuthentication/
truststoreVersion',value='abcdef123'

Disable mutual TLS

To disable mutual TLS for a custom domain name, remove the truststore from your custom domain
name, as shown in the following command.

aws apigateway update-domain-name \
 --domain-name api.example.com \
 --patch-operations op='replace',path='/mutualTlsAuthentication/
truststoreUri',value=''

Troubleshooting certificate warnings

When creating a custom domain name with mutual TLS, API Gateway returns warnings if
certificates in the truststore are not valid. This can also occur when updating a custom domain
name to use a new truststore. The warnings indicate the issue with the certificate and the subject
of the certificate that produced the warning. Mutual TLS is still enabled for your API, but some
clients might not be able to access your API.

You'll need to decode the certificates in your truststore in order to identify which certificate
produced the warning. You can use tools such as openssl to decode the certificates and identify
their subjects.

The following command displays the contents of a certificate, including its subject:

openssl x509 -in certificate.crt -text -noout

Mutual TLS 898

https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html

Amazon API Gateway Developer Guide

Update or remove the certificates that produced warnings, and then upload a new truststore to
Amazon S3. After uploading the new truststore, update your custom domain name to use the new
truststore.

Troubleshooting domain name conflicts

The error "The certificate subject <certSubject> conflicts with an existing
certificate from a different issuer." means multiple Certificate Authorities have
issued a certificate for this domain. For each subject in the certificate, there can only be one issuer
in API Gateway for mutual TLS domains. You will need to get all of your certificates for that subject
through a single issuer. If the problem is with a certificate you don't have control of but you can
prove ownership of the domain name, contact AWS Support to open a ticket.

Troubleshooting domain name status messages

PENDING_CERTIFICATE_REIMPORT: This means you reimported a certificate to ACM and it failed
validation because the new certificate has a SAN (subject alternative name) that is not covered
by the ownershipVerificationCertificate or the subject or SANs in the certificate don't
cover the domain name. Something might be configured incorrectly or an invalid certificate was
imported. You need to reimport a valid certificate into ACM. For more information about validation
see Validating domain ownership.

PENDING_OWNERSHIP_VERIFICATION: This means your previously verified certificate has expired
and ACM was unable to auto-renew it. You will need to renew the certificate or request a new
certificate. More information about certificate renewal can be found at ACM's troubleshooting
managed certificate renewal guide.

Generate and configure an SSL certificate for backend authentication

You can use API Gateway to generate an SSL certificate and then use its public key in the backend
to verify that HTTP requests to your backend system are from API Gateway. This allows your HTTP
backend to control and accept only requests that originate from Amazon API Gateway, even if the
backend is publicly accessible.

Note

Some backend servers might not support SSL client authentication as API Gateway does
and could return an SSL certificate error. For a list of incompatible backend servers, see the
section called “Important notes”.

Client certificates 899

https://console.aws.amazon.com/support/cases#/create
https://docs.aws.amazon.com/acm/latest/userguide/domain-ownership-validation.html
https://docs.aws.amazon.com/acm/latest/userguide/troubleshooting-renewal.html
https://docs.aws.amazon.com/acm/latest/userguide/troubleshooting-renewal.html

Amazon API Gateway Developer Guide

The SSL certificates that are generated by API Gateway are self-signed, and only the public key of a
certificate is visible in the API Gateway console or through the APIs.

Topics

• Generate a client certificate using the API Gateway console

• Configure an API to use SSL certificates

• Test invoke to verify the client certificate configuration

• Configure a backend HTTPS server to verify the client certificate

• Rotate an expiring client certificate

• API Gateway-supported certificate authorities for HTTP and HTTP proxy integrations

Generate a client certificate using the API Gateway console

1. Open the API Gateway console at https://console.aws.amazon.com/apigateway/.

2. Choose a REST API.

3. In the main navigation pane, choose Client certificates.

4. From the Client certificates page, choose Generate certificate.

5. (Optional) For Description, enter a description.

6. Choose Generate certificate to generate the certificate. API Gateway generates a new
certificate and returns the new certificate GUID, along with the PEM-encoded public key.

You're now ready to configure an API to use the certificate.

Configure an API to use SSL certificates

These instructions assume that you already completed Generate a client certificate using the API
Gateway console.

1. In the API Gateway console, create or open an API for which you want to use the client
certificate. Make sure that the API has been deployed to a stage.

2. In the main navigation pane, choose Stages.

3. In the Stage details section, choose Edit.

4. For Client certificate, select a certificate.

Client certificates 900

https://console.aws.amazon.com/apigateway/

Amazon API Gateway Developer Guide

5. Choose Save changes.

If the API has been deployed previously in the API Gateway console, you'll need to redeploy it
for the changes to take effect. For more information, see the section called “Redeploy a REST
API to a stage”.

After a certificate is selected for the API and saved, API Gateway uses the certificate for all calls to
HTTP integrations in your API.

Test invoke to verify the client certificate configuration

1. Choose an API method. Choose the Test tab. You might need to choose the right arrow button
to show the Test tab.

2. For Client certificate, select a certificate.

3. Choose Test.

API Gateway presents the chosen SSL certificate for the HTTP backend to authenticate the API.

Configure a backend HTTPS server to verify the client certificate

These instructions assume that you already completed Generate a client certificate using the
API Gateway console and downloaded a copy of the client certificate. You can download a client
certificate by calling clientcertificate:by-id of the API Gateway REST API or get-client-
certificate of AWS CLI.

Before configuring a backend HTTPS server to verify the client SSL certificate of API Gateway, you
must have obtained the PEM-encoded private key and a server-side certificate that is provided by a
trusted certificate authority.

If the server domain name is myserver.mydomain.com, the server certificate's CNAME value
must be myserver.mydomain.com or *.mydomain.com.

Supported certificate authorities include Let's Encrypt or one of the section called “Supported
certificate authorities for HTTP and HTTP proxy integration”.

As an example, suppose that the client certificate file is apig-cert.pem and the server private
key and certificate files are server-key.pem and server-cert.pem, respectively. For a Node.js
server in the backend, you can configure the server similar to the following:

Client certificates 901

https://docs.aws.amazon.com/apigateway/latest/api/API_GetClientCertificate.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/get-client-certificate.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/get-client-certificate.html
https://letsencrypt.org/

Amazon API Gateway Developer Guide

var fs = require('fs');
var https = require('https');
var options = {
 key: fs.readFileSync('server-key.pem'),
 cert: fs.readFileSync('server-cert.pem'),
 ca: fs.readFileSync('apig-cert.pem'),
 requestCert: true,
 rejectUnauthorized: true
};
https.createServer(options, function (req, res) {
 res.writeHead(200);
 res.end("hello world\n");
}).listen(443);

For a node-express app, you can use the client-certificate-auth modules to authenticate client
requests with PEM-encoded certificates.

For other HTTPS server, see the documentation for the server.

Rotate an expiring client certificate

The client certificate generated by API Gateway is valid for 365 days. You must rotate the
certificate before a client certificate on an API stage expires to avoid any downtime for the
API. You can check the expiration date of certificate by calling clientCertificate:by-id of the API
Gateway REST API or the AWS CLI command of get-client-certificate and inspecting the returned
expirationDate property.

To rotate a client certificate, do the following:

1. Generate a new client certificate by calling clientcertificate:generate of the API Gateway REST
API or the AWS CLI command of generate-client-certificate. In this tutorial, we assume that the
new client certificate ID is ndiqef.

2. Update the backend server to include the new client certificate. Don't remove the existing
client certificate yet.

Some servers might require a restart to finish the update. Consult the server documentation to
see if you must restart the server during the update.

3. Update the API stage to use the new client certificate by calling stage:update of the API
Gateway REST API, with the new client certificate ID (ndiqef):

Client certificates 902

http://expressjs.com/
https://www.npmjs.com/package/client-certificate-auth
https://docs.aws.amazon.com/apigateway/latest/api/API_GetClientCertificate.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/get-client-certificate.html
https://docs.aws.amazon.com/apigateway/latest/api/API_ClientCertificate.html#expirationDate
https://docs.aws.amazon.com/apigateway/latest/api/API_GenerateClientCertificate.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/generate-client-certificate.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateStage.html

Amazon API Gateway Developer Guide

PATCH /restapis/{restapi-id}/stages/stage1 HTTP/1.1
Content-Type: application/json
Host: apigateway.us-east-1.amazonaws.com
X-Amz-Date: 20170603T200400Z
Authorization: AWS4-HMAC-SHA256 Credential=...

{
 "patchOperations" : [
 {
 "op" : "replace",
 "path" : "/clientCertificateId",
 "value" : "ndiqef"
 }
]
}

or by calling the CLI command of update-stage.

4. Update the backend server to remove the old certificate.

5. Delete the old certificate from API Gateway by calling the clientcertificate:delete of the API
Gateway REST API, specifying the clientCertificateId (a1b2c3) of the old certificate:

DELETE /clientcertificates/a1b2c3

or by calling the CLI command of delete-client-certificate:

aws apigateway delete-client-certificate --client-certificate-id a1b2c3

To rotate a client certificate in the console for a previously deployed API, do the following:

1. In the main navigation pane, choose Client certificates.

2. From the Client certificates pane, choose Generate certificate.

3. Open the API for which you want to use the client certificate.

4. Choose Stages under the selected API and then choose a stage.

5. In the Stage details section, choose Edit.

6. For Client certificate, select the new certificate.

7. To save the settings, choose Save changes.

Client certificates 903

https://docs.aws.amazon.com/cli/latest/reference/apigateway/update-stage.html
https://docs.aws.amazon.com/apigateway/latest/api/API_DeleteClientCertificate.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/delete-client-certificate.html

Amazon API Gateway Developer Guide

You need to redeploy the API for the changes to take effect. For more information, see the
section called “Redeploy a REST API to a stage”.

API Gateway-supported certificate authorities for HTTP and HTTP proxy
integrations

The following list shows the certificate authorities supported by API Gateway for HTTP, HTTP
proxy, and private integrations.

Alias name: accvraiz1
 SHA1: 93:05:7A:88:15:C6:4F:CE:88:2F:FA:91:16:52:28:78:BC:53:64:17
 SHA256:
 9A:6E:C0:12:E1:A7:DA:9D:BE:34:19:4D:47:8A:D7:C0:DB:18:22:FB:07:1D:F1:29:81:49:6E:D1:04:38:41:13
Alias name: acraizfnmtrcm
 SHA1: EC:50:35:07:B2:15:C4:95:62:19:E2:A8:9A:5B:42:99:2C:4C:2C:20
 SHA256:
 EB:C5:57:0C:29:01:8C:4D:67:B1:AA:12:7B:AF:12:F7:03:B4:61:1E:BC:17:B7:DA:B5:57:38:94:17:9B:93:FA
Alias name: actalis
 SHA1: F3:73:B3:87:06:5A:28:84:8A:F2:F3:4A:CE:19:2B:DD:C7:8E:9C:AC
 SHA256:
 55:92:60:84:EC:96:3A:64:B9:6E:2A:BE:01:CE:0B:A8:6A:64:FB:FE:BC:C7:AA:B5:AF:C1:55:B3:7F:D7:60:66
Alias name: actalisauthenticationrootca
 SHA1: F3:73:B3:87:06:5A:28:84:8A:F2:F3:4A:CE:19:2B:DD:C7:8E:9C:AC
 SHA256:
 55:92:60:84:EC:96:3A:64:B9:6E:2A:BE:01:CE:0B:A8:6A:64:FB:FE:BC:C7:AA:B5:AF:C1:55:B3:7F:D7:60:66
Alias name: addtrustclass1ca
 SHA1: CC:AB:0E:A0:4C:23:01:D6:69:7B:DD:37:9F:CD:12:EB:24:E3:94:9D
 SHA256:
 8C:72:09:27:9A:C0:4E:27:5E:16:D0:7F:D3:B7:75:E8:01:54:B5:96:80:46:E3:1F:52:DD:25:76:63:24:E9:A7
Alias name: addtrustexternalca
 SHA1: 02:FA:F3:E2:91:43:54:68:60:78:57:69:4D:F5:E4:5B:68:85:18:68
 SHA256:
 68:7F:A4:51:38:22:78:FF:F0:C8:B1:1F:8D:43:D5:76:67:1C:6E:B2:BC:EA:B4:13:FB:83:D9:65:D0:6D:2F:F2
Alias name: addtrustqualifiedca
 SHA1: 4D:23:78:EC:91:95:39:B5:00:7F:75:8F:03:3B:21:1E:C5:4D:8B:CF
 SHA256:
 80:95:21:08:05:DB:4B:BC:35:5E:44:28:D8:FD:6E:C2:CD:E3:AB:5F:B9:7A:99:42:98:8E:B8:F4:DC:D0:60:16
Alias name: affirmtrustcommercial
 SHA1: F9:B5:B6:32:45:5F:9C:BE:EC:57:5F:80:DC:E9:6E:2C:C7:B2:78:B7
 SHA256:
 03:76:AB:1D:54:C5:F9:80:3C:E4:B2:E2:01:A0:EE:7E:EF:7B:57:B6:36:E8:A9:3C:9B:8D:48:60:C9:6F:5F:A7

Client certificates 904

Amazon API Gateway Developer Guide

Alias name: affirmtrustcommercialca
 SHA1: F9:B5:B6:32:45:5F:9C:BE:EC:57:5F:80:DC:E9:6E:2C:C7:B2:78:B7
 SHA256:
 03:76:AB:1D:54:C5:F9:80:3C:E4:B2:E2:01:A0:EE:7E:EF:7B:57:B6:36:E8:A9:3C:9B:8D:48:60:C9:6F:5F:A7
Alias name: affirmtrustnetworking
 SHA1: 29:36:21:02:8B:20:ED:02:F5:66:C5:32:D1:D6:ED:90:9F:45:00:2F
 SHA256:
 0A:81:EC:5A:92:97:77:F1:45:90:4A:F3:8D:5D:50:9F:66:B5:E2:C5:8F:CD:B5:31:05:8B:0E:17:F3:F0:B4:1B
Alias name: affirmtrustnetworkingca
 SHA1: 29:36:21:02:8B:20:ED:02:F5:66:C5:32:D1:D6:ED:90:9F:45:00:2F
 SHA256:
 0A:81:EC:5A:92:97:77:F1:45:90:4A:F3:8D:5D:50:9F:66:B5:E2:C5:8F:CD:B5:31:05:8B:0E:17:F3:F0:B4:1B
Alias name: affirmtrustpremium
 SHA1: D8:A6:33:2C:E0:03:6F:B1:85:F6:63:4F:7D:6A:06:65:26:32:28:27
 SHA256:
 70:A7:3F:7F:37:6B:60:07:42:48:90:45:34:B1:14:82:D5:BF:0E:69:8E:CC:49:8D:F5:25:77:EB:F2:E9:3B:9A
Alias name: affirmtrustpremiumca
 SHA1: D8:A6:33:2C:E0:03:6F:B1:85:F6:63:4F:7D:6A:06:65:26:32:28:27
 SHA256:
 70:A7:3F:7F:37:6B:60:07:42:48:90:45:34:B1:14:82:D5:BF:0E:69:8E:CC:49:8D:F5:25:77:EB:F2:E9:3B:9A
Alias name: affirmtrustpremiumecc
 SHA1: B8:23:6B:00:2F:1D:16:86:53:01:55:6C:11:A4:37:CA:EB:FF:C3:BB
 SHA256:
 BD:71:FD:F6:DA:97:E4:CF:62:D1:64:7A:DD:25:81:B0:7D:79:AD:F8:39:7E:B4:EC:BA:9C:5E:84:88:82:14:23
Alias name: affirmtrustpremiumeccca
 SHA1: B8:23:6B:00:2F:1D:16:86:53:01:55:6C:11:A4:37:CA:EB:FF:C3:BB
 SHA256:
 BD:71:FD:F6:DA:97:E4:CF:62:D1:64:7A:DD:25:81:B0:7D:79:AD:F8:39:7E:B4:EC:BA:9C:5E:84:88:82:14:23
Alias name: amazon-ca-g4-acm1
 SHA1: F2:0D:28:B6:29:C2:2C:5E:84:05:E6:02:4D:97:FE:8F:A0:84:93:A0
 SHA256:
 B0:11:A4:F7:29:6C:74:D8:2B:F5:62:DF:87:D7:28:C7:1F:B5:8C:F4:E6:73:F2:78:FC:DA:F3:FF:83:A6:8C:87
Alias name: amazon-ca-g4-acm2
 SHA1: A7:E6:45:32:1F:7A:B7:AD:C0:70:EA:73:5F:AB:ED:C3:DA:B4:D0:C8
 SHA256:
 D7:A8:7C:69:95:D0:E2:04:2A:32:70:A7:E2:87:FE:A7:E8:F4:C1:70:62:F7:90:C3:EB:BB:53:F2:AC:39:26:BE
Alias name: amazon-ca-g4-acm3
 SHA1: 7A:DB:56:57:5F:D6:EE:67:85:0A:64:BB:1C:E9:E4:B0:9A:DB:9D:07
 SHA256:
 6B:EB:9D:20:2E:C2:00:70:BD:D2:5E:D3:C0:C8:33:2C:B4:78:07:C5:82:94:4E:7E:23:28:22:71:A4:8E:0E:C2
Alias name: amazon-ca-g4-legacy
 SHA1: EA:E7:DE:F9:0A:BE:9F:0B:68:CE:B7:24:0D:80:74:03:BF:6E:B1:6E
 SHA256:
 CD:72:C4:7F:B4:AD:28:A4:67:2B:E1:86:47:D4:40:E9:3B:16:2D:95:DB:3C:2F:94:BB:81:D9:09:F7:91:24:5E

Client certificates 905

Amazon API Gateway Developer Guide

Alias name: amazon-root-ca-ecc-384-1
 SHA1: F9:5E:4A:AB:9C:2D:57:61:63:3D:B2:57:B4:0F:24:9E:7B:E2:23:7D
 SHA256:
 C6:BD:E5:66:C2:72:2A:0E:96:E9:C1:2C:BF:38:92:D9:55:4D:29:03:57:30:72:40:7F:4E:70:17:3B:3C:9B:63
Alias name: amazon-root-ca-rsa-2k-1
 SHA1: 8A:9A:AC:27:FC:86:D4:50:23:AD:D5:63:F9:1E:AE:2C:AF:63:08:6C
 SHA256:
 0F:8F:33:83:FB:70:02:89:49:24:E1:AA:B0:D7:FB:5A:BF:98:DF:75:8E:0F:FE:61:86:92:BC:F0:75:35:CC:80
Alias name: amazon-root-ca-rsa-4k-1
 SHA1: EC:BD:09:61:F5:7A:B6:A8:76:BB:20:8F:14:05:ED:7E:70:ED:39:45
 SHA256:
 36:AE:AD:C2:6A:60:07:90:6B:83:A3:73:2D:D1:2B:D4:00:5E:C7:F2:76:11:99:A9:D4:DA:63:2F:59:B2:8B:CF
Alias name: amazon1
 SHA1: 8D:A7:F9:65:EC:5E:FC:37:91:0F:1C:6E:59:FD:C1:CC:6A:6E:DE:16
 SHA256:
 8E:CD:E6:88:4F:3D:87:B1:12:5B:A3:1A:C3:FC:B1:3D:70:16:DE:7F:57:CC:90:4F:E1:CB:97:C6:AE:98:19:6E
Alias name: amazon2
 SHA1: 5A:8C:EF:45:D7:A6:98:59:76:7A:8C:8B:44:96:B5:78:CF:47:4B:1A
 SHA256:
 1B:A5:B2:AA:8C:65:40:1A:82:96:01:18:F8:0B:EC:4F:62:30:4D:83:CE:C4:71:3A:19:C3:9C:01:1E:A4:6D:B4
Alias name: amazon3
 SHA1: 0D:44:DD:8C:3C:8C:1A:1A:58:75:64:81:E9:0F:2E:2A:FF:B3:D2:6E
 SHA256:
 18:CE:6C:FE:7B:F1:4E:60:B2:E3:47:B8:DF:E8:68:CB:31:D0:2E:BB:3A:DA:27:15:69:F5:03:43:B4:6D:B3:A4
Alias name: amazon4
 SHA1: F6:10:84:07:D6:F8:BB:67:98:0C:C2:E2:44:C2:EB:AE:1C:EF:63:BE
 SHA256:
 E3:5D:28:41:9E:D0:20:25:CF:A6:90:38:CD:62:39:62:45:8D:A5:C6:95:FB:DE:A3:C2:2B:0B:FB:25:89:70:92
Alias name: amazonrootca1
 SHA1: 8D:A7:F9:65:EC:5E:FC:37:91:0F:1C:6E:59:FD:C1:CC:6A:6E:DE:16
 SHA256:
 8E:CD:E6:88:4F:3D:87:B1:12:5B:A3:1A:C3:FC:B1:3D:70:16:DE:7F:57:CC:90:4F:E1:CB:97:C6:AE:98:19:6E
Alias name: amazonrootca2
 SHA1: 5A:8C:EF:45:D7:A6:98:59:76:7A:8C:8B:44:96:B5:78:CF:47:4B:1A
 SHA256:
 1B:A5:B2:AA:8C:65:40:1A:82:96:01:18:F8:0B:EC:4F:62:30:4D:83:CE:C4:71:3A:19:C3:9C:01:1E:A4:6D:B4
Alias name: amazonrootca3
 SHA1: 0D:44:DD:8C:3C:8C:1A:1A:58:75:64:81:E9:0F:2E:2A:FF:B3:D2:6E
 SHA256:
 18:CE:6C:FE:7B:F1:4E:60:B2:E3:47:B8:DF:E8:68:CB:31:D0:2E:BB:3A:DA:27:15:69:F5:03:43:B4:6D:B3:A4
Alias name: amazonrootca4
 SHA1: F6:10:84:07:D6:F8:BB:67:98:0C:C2:E2:44:C2:EB:AE:1C:EF:63:BE
 SHA256:
 E3:5D:28:41:9E:D0:20:25:CF:A6:90:38:CD:62:39:62:45:8D:A5:C6:95:FB:DE:A3:C2:2B:0B:FB:25:89:70:92

Client certificates 906

Amazon API Gateway Developer Guide

Alias name: amzninternalinfoseccag3
 SHA1: B9:B1:CA:38:F7:BF:9C:D2:D4:95:E7:B6:5E:75:32:9B:A8:78:2E:F6
 SHA256:
 81:03:0B:C7:E2:54:DA:7B:F8:B7:45:DB:DD:41:15:89:B5:A3:81:86:FB:4B:29:77:1F:84:0A:18:D9:67:6D:68
Alias name: amzninternalrootca
 SHA1: A7:B7:F6:15:8A:FF:1E:C8:85:13:38:BC:93:EB:A2:AB:A4:09:EF:06
 SHA256:
 0E:DE:63:C1:DC:7A:8E:11:F1:AB:BC:05:4F:59:EE:49:9D:62:9A:2F:DE:9C:A7:16:32:A2:64:29:3E:8B:66:AA
Alias name: aolrootca1
 SHA1: 39:21:C1:15:C1:5D:0E:CA:5C:CB:5B:C4:F0:7D:21:D8:05:0B:56:6A
 SHA256:
 77:40:73:12:C6:3A:15:3D:5B:C0:0B:4E:51:75:9C:DF:DA:C2:37:DC:2A:33:B6:79:46:E9:8E:9B:FA:68:0A:E3
Alias name: aolrootca2
 SHA1: 85:B5:FF:67:9B:0C:79:96:1F:C8:6E:44:22:00:46:13:DB:17:92:84
 SHA256:
 7D:3B:46:5A:60:14:E5:26:C0:AF:FC:EE:21:27:D2:31:17:27:AD:81:1C:26:84:2D:00:6A:F3:73:06:CC:80:BD
Alias name: atostrustedroot2011
 SHA1: 2B:B1:F5:3E:55:0C:1D:C5:F1:D4:E6:B7:6A:46:4B:55:06:02:AC:21
 SHA256:
 F3:56:BE:A2:44:B7:A9:1E:B3:5D:53:CA:9A:D7:86:4A:CE:01:8E:2D:35:D5:F8:F9:6D:DF:68:A6:F4:1A:A4:74
Alias name: autoridaddecertificacionfirmaprofesionalcifa62634068
 SHA1: AE:C5:FB:3F:C8:E1:BF:C4:E5:4F:03:07:5A:9A:E8:00:B7:F7:B6:FA
 SHA256:
 04:04:80:28:BF:1F:28:64:D4:8F:9A:D4:D8:32:94:36:6A:82:88:56:55:3F:3B:14:30:3F:90:14:7F:5D:40:EF
Alias name: baltimorecodesigningca
 SHA1: 30:46:D8:C8:88:FF:69:30:C3:4A:FC:CD:49:27:08:7C:60:56:7B:0D
 SHA256:
 A9:15:45:DB:D2:E1:9C:4C:CD:F9:09:AA:71:90:0D:18:C7:35:1C:89:B3:15:F0:F1:3D:05:C1:3A:8F:FB:46:87
Alias name: baltimorecybertrustca
 SHA1: D4:DE:20:D0:5E:66:FC:53:FE:1A:50:88:2C:78:DB:28:52:CA:E4:74
 SHA256:
 16:AF:57:A9:F6:76:B0:AB:12:60:95:AA:5E:BA:DE:F2:2A:B3:11:19:D6:44:AC:95:CD:4B:93:DB:F3:F2:6A:EB
Alias name: baltimorecybertrustroot
 SHA1: D4:DE:20:D0:5E:66:FC:53:FE:1A:50:88:2C:78:DB:28:52:CA:E4:74
 SHA256:
 16:AF:57:A9:F6:76:B0:AB:12:60:95:AA:5E:BA:DE:F2:2A:B3:11:19:D6:44:AC:95:CD:4B:93:DB:F3:F2:6A:EB
Alias name: buypassclass2ca
 SHA1: 49:0A:75:74:DE:87:0A:47:FE:58:EE:F6:C7:6B:EB:C6:0B:12:40:99
 SHA256:
 9A:11:40:25:19:7C:5B:B9:5D:94:E6:3D:55:CD:43:79:08:47:B6:46:B2:3C:DF:11:AD:A4:A0:0E:FF:15:FB:48
Alias name: buypassclass2rootca
 SHA1: 49:0A:75:74:DE:87:0A:47:FE:58:EE:F6:C7:6B:EB:C6:0B:12:40:99
 SHA256:
 9A:11:40:25:19:7C:5B:B9:5D:94:E6:3D:55:CD:43:79:08:47:B6:46:B2:3C:DF:11:AD:A4:A0:0E:FF:15:FB:48

Client certificates 907

Amazon API Gateway Developer Guide

Alias name: buypassclass3ca
 SHA1: DA:FA:F7:FA:66:84:EC:06:8F:14:50:BD:C7:C2:81:A5:BC:A9:64:57
 SHA256:
 ED:F7:EB:BC:A2:7A:2A:38:4D:38:7B:7D:40:10:C6:66:E2:ED:B4:84:3E:4C:29:B4:AE:1D:5B:93:32:E6:B2:4D
Alias name: buypassclass3rootca
 SHA1: DA:FA:F7:FA:66:84:EC:06:8F:14:50:BD:C7:C2:81:A5:BC:A9:64:57
 SHA256:
 ED:F7:EB:BC:A2:7A:2A:38:4D:38:7B:7D:40:10:C6:66:E2:ED:B4:84:3E:4C:29:B4:AE:1D:5B:93:32:E6:B2:4D
Alias name: cadisigrootr2
 SHA1: B5:61:EB:EA:A4:DE:E4:25:4B:69:1A:98:A5:57:47:C2:34:C7:D9:71
 SHA256:
 E2:3D:4A:03:6D:7B:70:E9:F5:95:B1:42:20:79:D2:B9:1E:DF:BB:1F:B6:51:A0:63:3E:AA:8A:9D:C5:F8:07:03
Alias name: camerfirmachambersca
 SHA1: 78:6A:74:AC:76:AB:14:7F:9C:6A:30:50:BA:9E:A8:7E:FE:9A:CE:3C
 SHA256:
 06:3E:4A:FA:C4:91:DF:D3:32:F3:08:9B:85:42:E9:46:17:D8:93:D7:FE:94:4E:10:A7:93:7E:E2:9D:96:93:C0
Alias name: camerfirmachamberscommerceca
 SHA1: 6E:3A:55:A4:19:0C:19:5C:93:84:3C:C0:DB:72:2E:31:30:61:F0:B1
 SHA256:
 0C:25:8A:12:A5:67:4A:EF:25:F2:8B:A7:DC:FA:EC:EE:A3:48:E5:41:E6:F5:CC:4E:E6:3B:71:B3:61:60:6A:C3
Alias name: camerfirmachambersignca
 SHA1: 4A:BD:EE:EC:95:0D:35:9C:89:AE:C7:52:A1:2C:5B:29:F6:D6:AA:0C
 SHA256:
 13:63:35:43:93:34:A7:69:80:16:A0:D3:24:DE:72:28:4E:07:9D:7B:52:20:BB:8F:BD:74:78:16:EE:BE:BA:CA
Alias name: certigna
 SHA1: B1:2E:13:63:45:86:A4:6F:1A:B2:60:68:37:58:2D:C4:AC:FD:94:97
 SHA256:
 E3:B6:A2:DB:2E:D7:CE:48:84:2F:7A:C5:32:41:C7:B7:1D:54:14:4B:FB:40:C1:1F:3F:1D:0B:42:F5:EE:A1:2D
Alias name: certignarootca
 SHA1: 2D:0D:52:14:FF:9E:AD:99:24:01:74:20:47:6E:6C:85:27:27:F5:43
 SHA256:
 D4:8D:3D:23:EE:DB:50:A4:59:E5:51:97:60:1C:27:77:4B:9D:7B:18:C9:4D:5A:05:95:11:A1:02:50:B9:31:68
Alias name: certplusclass2primaryca
 SHA1: 74:20:74:41:72:9C:DD:92:EC:79:31:D8:23:10:8D:C2:81:92:E2:BB
 SHA256:
 0F:99:3C:8A:EF:97:BA:AF:56:87:14:0E:D5:9A:D1:82:1B:B4:AF:AC:F0:AA:9A:58:B5:D5:7A:33:8A:3A:FB:CB
Alias name: certplusclass3pprimaryca
 SHA1: 21:6B:2A:29:E6:2A:00:CE:82:01:46:D8:24:41:41:B9:25:11:B2:79
 SHA256:
 CC:C8:94:89:37:1B:AD:11:1C:90:61:9B:EA:24:0A:2E:6D:AD:D9:9F:9F:6E:1D:4D:41:E5:8E:D6:DE:3D:02:85
Alias name: certsignrootca
 SHA1: FA:B7:EE:36:97:26:62:FB:2D:B0:2A:F6:BF:03:FD:E8:7C:4B:2F:9B
 SHA256:
 EA:A9:62:C4:FA:4A:6B:AF:EB:E4:15:19:6D:35:1C:CD:88:8D:4F:53:F3:FA:8A:E6:D7:C4:66:A9:4E:60:42:BB

Client certificates 908

Amazon API Gateway Developer Guide

Alias name: certsignrootcag2
 SHA1: 26:F9:93:B4:ED:3D:28:27:B0:B9:4B:A7:E9:15:1D:A3:8D:92:E5:32
 SHA256:
 65:7C:FE:2F:A7:3F:AA:38:46:25:71:F3:32:A2:36:3A:46:FC:E7:02:09:51:71:07:02:CD:FB:B6:EE:DA:33:05
Alias name: certum2
 SHA1: D3:DD:48:3E:2B:BF:4C:05:E8:AF:10:F5:FA:76:26:CF:D3:DC:30:92
 SHA256:
 B6:76:F2:ED:DA:E8:77:5C:D3:6C:B0:F6:3C:D1:D4:60:39:61:F4:9E:62:65:BA:01:3A:2F:03:07:B6:D0:B8:04
Alias name: certumca
 SHA1: 62:52:DC:40:F7:11:43:A2:2F:DE:9E:F7:34:8E:06:42:51:B1:81:18
 SHA256:
 D8:E0:FE:BC:1D:B2:E3:8D:00:94:0F:37:D2:7D:41:34:4D:99:3E:73:4B:99:D5:65:6D:97:78:D4:D8:14:36:24
Alias name: certumtrustednetworkca
 SHA1: 07:E0:32:E0:20:B7:2C:3F:19:2F:06:28:A2:59:3A:19:A7:0F:06:9E
 SHA256:
 5C:58:46:8D:55:F5:8E:49:7E:74:39:82:D2:B5:00:10:B6:D1:65:37:4A:CF:83:A7:D4:A3:2D:B7:68:C4:40:8E
Alias name: certumtrustednetworkca2
 SHA1: D3:DD:48:3E:2B:BF:4C:05:E8:AF:10:F5:FA:76:26:CF:D3:DC:30:92
 SHA256:
 B6:76:F2:ED:DA:E8:77:5C:D3:6C:B0:F6:3C:D1:D4:60:39:61:F4:9E:62:65:BA:01:3A:2F:03:07:B6:D0:B8:04
Alias name: cfcaevroot
 SHA1: E2:B8:29:4B:55:84:AB:6B:58:C2:90:46:6C:AC:3F:B8:39:8F:84:83
 SHA256:
 5C:C3:D7:8E:4E:1D:5E:45:54:7A:04:E6:87:3E:64:F9:0C:F9:53:6D:1C:CC:2E:F8:00:F3:55:C4:C5:FD:70:FD
Alias name: chambersofcommerceroot2008
 SHA1: 78:6A:74:AC:76:AB:14:7F:9C:6A:30:50:BA:9E:A8:7E:FE:9A:CE:3C
 SHA256:
 06:3E:4A:FA:C4:91:DF:D3:32:F3:08:9B:85:42:E9:46:17:D8:93:D7:FE:94:4E:10:A7:93:7E:E2:9D:96:93:C0
Alias name: chunghwaepkirootca
 SHA1: 67:65:0D:F1:7E:8E:7E:5B:82:40:A4:F4:56:4B:CF:E2:3D:69:C6:F0
 SHA256:
 C0:A6:F4:DC:63:A2:4B:FD:CF:54:EF:2A:6A:08:2A:0A:72:DE:35:80:3E:2F:F5:FF:52:7A:E5:D8:72:06:DF:D5
Alias name: cia-crt-g3-01-ca
 SHA1: 2B:EE:2C:BA:A3:1D:B5:FE:60:40:41:95:08:ED:46:82:39:4D:ED:E2
 SHA256:
 20:48:AD:4C:EC:90:7F:FA:4A:15:D4:CE:45:E3:C8:E4:2C:EA:78:33:DC:C7:D3:40:48:FC:60:47:27:42:99:EC
Alias name: cia-crt-g3-02-ca
 SHA1: 96:4A:BB:A7:BD:DA:FC:97:34:C0:0A:2D:F0:05:98:F7:E6:C6:6F:09
 SHA256:
 93:F1:72:FB:BA:43:31:5C:06:EE:0F:9F:04:89:B8:F6:88:BC:75:15:3C:BE:B4:80:AC:A7:14:3A:F6:FC:4A:C1
Alias name: comodo-ca
 SHA1: AF:E5:D2:44:A8:D1:19:42:30:FF:47:9F:E2:F8:97:BB:CD:7A:8C:B4
 SHA256:
 52:F0:E1:C4:E5:8E:C6:29:29:1B:60:31:7F:07:46:71:B8:5D:7E:A8:0D:5B:07:27:34:63:53:4B:32:B4:02:34

Client certificates 909

Amazon API Gateway Developer Guide

Alias name: comodoaaaca
 SHA1: D1:EB:23:A4:6D:17:D6:8F:D9:25:64:C2:F1:F1:60:17:64:D8:E3:49
 SHA256:
 D7:A7:A0:FB:5D:7E:27:31:D7:71:E9:48:4E:BC:DE:F7:1D:5F:0C:3E:0A:29:48:78:2B:C8:3E:E0:EA:69:9E:F4
Alias name: comodoaaaservicesroot
 SHA1: D1:EB:23:A4:6D:17:D6:8F:D9:25:64:C2:F1:F1:60:17:64:D8:E3:49
 SHA256:
 D7:A7:A0:FB:5D:7E:27:31:D7:71:E9:48:4E:BC:DE:F7:1D:5F:0C:3E:0A:29:48:78:2B:C8:3E:E0:EA:69:9E:F4
Alias name: comodocertificationauthority
 SHA1: 66:31:BF:9E:F7:4F:9E:B6:C9:D5:A6:0C:BA:6A:BE:D1:F7:BD:EF:7B
 SHA256:
 0C:2C:D6:3D:F7:80:6F:A3:99:ED:E8:09:11:6B:57:5B:F8:79:89:F0:65:18:F9:80:8C:86:05:03:17:8B:AF:66
Alias name: comodoecccertificationauthority
 SHA1: 9F:74:4E:9F:2B:4D:BA:EC:0F:31:2C:50:B6:56:3B:8E:2D:93:C3:11
 SHA256:
 17:93:92:7A:06:14:54:97:89:AD:CE:2F:8F:34:F7:F0:B6:6D:0F:3A:E3:A3:B8:4D:21:EC:15:DB:BA:4F:AD:C7
Alias name: comodorsacertificationauthority
 SHA1: AF:E5:D2:44:A8:D1:19:42:30:FF:47:9F:E2:F8:97:BB:CD:7A:8C:B4
 SHA256:
 52:F0:E1:C4:E5:8E:C6:29:29:1B:60:31:7F:07:46:71:B8:5D:7E:A8:0D:5B:07:27:34:63:53:4B:32:B4:02:34
Alias name: cybertrustglobalroot
 SHA1: 5F:43:E5:B1:BF:F8:78:8C:AC:1C:C7:CA:4A:9A:C6:22:2B:CC:34:C6
 SHA256:
 96:0A:DF:00:63:E9:63:56:75:0C:29:65:DD:0A:08:67:DA:0B:9C:BD:6E:77:71:4A:EA:FB:23:49:AB:39:3D:A3
Alias name: deprecateditsecca
 SHA1: 12:12:0B:03:0E:15:14:54:F4:DD:B3:F5:DE:13:6E:83:5A:29:72:9D
 SHA256:
 9A:59:DA:86:24:1A:FD:BA:A3:39:FA:9C:FD:21:6A:0B:06:69:4D:E3:7E:37:52:6B:BE:63:C8:BC:83:74:2E:CB
Alias name: deutschetelekomrootca2
 SHA1: 85:A4:08:C0:9C:19:3E:5D:51:58:7D:CD:D6:13:30:FD:8C:DE:37:BF
 SHA256:
 B6:19:1A:50:D0:C3:97:7F:7D:A9:9B:CD:AA:C8:6A:22:7D:AE:B9:67:9E:C7:0B:A3:B0:C9:D9:22:71:C1:70:D3
Alias name: digicertassuredidrootca
 SHA1: 05:63:B8:63:0D:62:D7:5A:BB:C8:AB:1E:4B:DF:B5:A8:99:B2:4D:43
 SHA256:
 3E:90:99:B5:01:5E:8F:48:6C:00:BC:EA:9D:11:1E:E7:21:FA:BA:35:5A:89:BC:F1:DF:69:56:1E:3D:C6:32:5C
Alias name: digicertassuredidrootg2
 SHA1: A1:4B:48:D9:43:EE:0A:0E:40:90:4F:3C:E0:A4:C0:91:93:51:5D:3F
 SHA256:
 7D:05:EB:B6:82:33:9F:8C:94:51:EE:09:4E:EB:FE:FA:79:53:A1:14:ED:B2:F4:49:49:45:2F:AB:7D:2F:C1:85
Alias name: digicertassuredidrootg3
 SHA1: F5:17:A2:4F:9A:48:C6:C9:F8:A2:00:26:9F:DC:0F:48:2C:AB:30:89
 SHA256:
 7E:37:CB:8B:4C:47:09:0C:AB:36:55:1B:A6:F4:5D:B8:40:68:0F:BA:16:6A:95:2D:B1:00:71:7F:43:05:3F:C2

Client certificates 910

Amazon API Gateway Developer Guide

Alias name: digicertglobalrootca
 SHA1: A8:98:5D:3A:65:E5:E5:C4:B2:D7:D6:6D:40:C6:DD:2F:B1:9C:54:36
 SHA256:
 43:48:A0:E9:44:4C:78:CB:26:5E:05:8D:5E:89:44:B4:D8:4F:96:62:BD:26:DB:25:7F:89:34:A4:43:C7:01:61
Alias name: digicertglobalrootg2
 SHA1: DF:3C:24:F9:BF:D6:66:76:1B:26:80:73:FE:06:D1:CC:8D:4F:82:A4
 SHA256:
 CB:3C:CB:B7:60:31:E5:E0:13:8F:8D:D3:9A:23:F9:DE:47:FF:C3:5E:43:C1:14:4C:EA:27:D4:6A:5A:B1:CB:5F
Alias name: digicertglobalrootg3
 SHA1: 7E:04:DE:89:6A:3E:66:6D:00:E6:87:D3:3F:FA:D9:3B:E8:3D:34:9E
 SHA256:
 31:AD:66:48:F8:10:41:38:C7:38:F3:9E:A4:32:01:33:39:3E:3A:18:CC:02:29:6E:F9:7C:2A:C9:EF:67:31:D0
Alias name: digicerthighassuranceevrootca
 SHA1: 5F:B7:EE:06:33:E2:59:DB:AD:0C:4C:9A:E6:D3:8F:1A:61:C7:DC:25
 SHA256:
 74:31:E5:F4:C3:C1:CE:46:90:77:4F:0B:61:E0:54:40:88:3B:A9:A0:1E:D0:0B:A6:AB:D7:80:6E:D3:B1:18:CF
Alias name: digicerttrustedrootg4
 SHA1: DD:FB:16:CD:49:31:C9:73:A2:03:7D:3F:C8:3A:4D:7D:77:5D:05:E4
 SHA256:
 55:2F:7B:DC:F1:A7:AF:9E:6C:E6:72:01:7F:4F:12:AB:F7:72:40:C7:8E:76:1A:C2:03:D1:D9:D2:0A:C8:99:88
Alias name: dstrootcax3
 SHA1: DA:C9:02:4F:54:D8:F6:DF:94:93:5F:B1:73:26:38:CA:6A:D7:7C:13
 SHA256:
 06:87:26:03:31:A7:24:03:D9:09:F1:05:E6:9B:CF:0D:32:E1:BD:24:93:FF:C6:D9:20:6D:11:BC:D6:77:07:39
Alias name: dtrustrootclass3ca22009
 SHA1: 58:E8:AB:B0:36:15:33:FB:80:F7:9B:1B:6D:29:D3:FF:8D:5F:00:F0
 SHA256:
 49:E7:A4:42:AC:F0:EA:62:87:05:00:54:B5:25:64:B6:50:E4:F4:9E:42:E3:48:D6:AA:38:E0:39:E9:57:B1:C1
Alias name: dtrustrootclass3ca2ev2009
 SHA1: 96:C9:1B:0B:95:B4:10:98:42:FA:D0:D8:22:79:FE:60:FA:B9:16:83
 SHA256:
 EE:C5:49:6B:98:8C:E9:86:25:B9:34:09:2E:EC:29:08:BE:D0:B0:F3:16:C2:D4:73:0C:84:EA:F1:F3:D3:48:81
Alias name: ecacc
 SHA1: 28:90:3A:63:5B:52:80:FA:E6:77:4C:0B:6D:A7:D6:BA:A6:4A:F2:E8
 SHA256:
 88:49:7F:01:60:2F:31:54:24:6A:E2:8C:4D:5A:EF:10:F1:D8:7E:BB:76:62:6F:4A:E0:B7:F9:5B:A7:96:87:99
Alias name: emsigneccrootcac3
 SHA1: B6:AF:43:C2:9B:81:53:7D:F6:EF:6B:C3:1F:1F:60:15:0C:EE:48:66
 SHA256:
 BC:4D:80:9B:15:18:9D:78:DB:3E:1D:8C:F4:F9:72:6A:79:5D:A1:64:3C:A5:F1:35:8E:1D:DB:0E:DC:0D:7E:B3
Alias name: emsigneccrootcag3
 SHA1: 30:43:FA:4F:F2:57:DC:A0:C3:80:EE:2E:58:EA:78:B2:3F:E6:BB:C1
 SHA256:
 86:A1:EC:BA:08:9C:4A:8D:3B:BE:27:34:C6:12:BA:34:1D:81:3E:04:3C:F9:E8:A8:62:CD:5C:57:A3:6B:BE:6B

Client certificates 911

Amazon API Gateway Developer Guide

Alias name: emsignrootcac1
 SHA1: E7:2E:F1:DF:FC:B2:09:28:CF:5D:D4:D5:67:37:B1:51:CB:86:4F:01
 SHA256:
 12:56:09:AA:30:1D:A0:A2:49:B9:7A:82:39:CB:6A:34:21:6F:44:DC:AC:9F:39:54:B1:42:92:F2:E8:C8:60:8F
Alias name: emsignrootcag1
 SHA1: 8A:C7:AD:8F:73:AC:4E:C1:B5:75:4D:A5:40:F4:FC:CF:7C:B5:8E:8C
 SHA256:
 40:F6:AF:03:46:A9:9A:A1:CD:1D:55:5A:4E:9C:CE:62:C7:F9:63:46:03:EE:40:66:15:83:3D:C8:C8:D0:03:67
Alias name: entrust2048ca
 SHA1: 50:30:06:09:1D:97:D4:F5:AE:39:F7:CB:E7:92:7D:7D:65:2D:34:31
 SHA256:
 6D:C4:71:72:E0:1C:BC:B0:BF:62:58:0D:89:5F:E2:B8:AC:9A:D4:F8:73:80:1E:0C:10:B9:C8:37:D2:1E:B1:77
Alias name: entrustevca
 SHA1: B3:1E:B1:B7:40:E3:6C:84:02:DA:DC:37:D4:4D:F5:D4:67:49:52:F9
 SHA256:
 73:C1:76:43:4F:1B:C6:D5:AD:F4:5B:0E:76:E7:27:28:7C:8D:E5:76:16:C1:E6:E6:14:1A:2B:2C:BC:7D:8E:4C
Alias name: entrustnetpremium2048secureserverca
 SHA1: 50:30:06:09:1D:97:D4:F5:AE:39:F7:CB:E7:92:7D:7D:65:2D:34:31
 SHA256:
 6D:C4:71:72:E0:1C:BC:B0:BF:62:58:0D:89:5F:E2:B8:AC:9A:D4:F8:73:80:1E:0C:10:B9:C8:37:D2:1E:B1:77
Alias name: entrustrootcag2
 SHA1: 8C:F4:27:FD:79:0C:3A:D1:66:06:8D:E8:1E:57:EF:BB:93:22:72:D4
 SHA256:
 43:DF:57:74:B0:3E:7F:EF:5F:E4:0D:93:1A:7B:ED:F1:BB:2E:6B:42:73:8C:4E:6D:38:41:10:3D:3A:A7:F3:39
Alias name: entrustrootcertificationauthority
 SHA1: B3:1E:B1:B7:40:E3:6C:84:02:DA:DC:37:D4:4D:F5:D4:67:49:52:F9
 SHA256:
 73:C1:76:43:4F:1B:C6:D5:AD:F4:5B:0E:76:E7:27:28:7C:8D:E5:76:16:C1:E6:E6:14:1A:2B:2C:BC:7D:8E:4C
Alias name: entrustrootcertificationauthorityec1
 SHA1: 20:D8:06:40:DF:9B:25:F5:12:25:3A:11:EA:F7:59:8A:EB:14:B5:47
 SHA256:
 02:ED:0E:B2:8C:14:DA:45:16:5C:56:67:91:70:0D:64:51:D7:FB:56:F0:B2:AB:1D:3B:8E:B0:70:E5:6E:DF:F5
Alias name: entrustrootcertificationauthorityg2
 SHA1: 8C:F4:27:FD:79:0C:3A:D1:66:06:8D:E8:1E:57:EF:BB:93:22:72:D4
 SHA256:
 43:DF:57:74:B0:3E:7F:EF:5F:E4:0D:93:1A:7B:ED:F1:BB:2E:6B:42:73:8C:4E:6D:38:41:10:3D:3A:A7:F3:39
Alias name: entrustrootcertificationauthorityg4
 SHA1: 14:88:4E:86:26:37:B0:26:AF:59:62:5C:40:77:EC:35:29:BA:96:01
 SHA256:
 DB:35:17:D1:F6:73:2A:2D:5A:B9:7C:53:3E:C7:07:79:EE:32:70:A6:2F:B4:AC:42:38:37:24:60:E6:F0:1E:88
Alias name: epkirootcertificationauthority
 SHA1: 67:65:0D:F1:7E:8E:7E:5B:82:40:A4:F4:56:4B:CF:E2:3D:69:C6:F0
 SHA256:
 C0:A6:F4:DC:63:A2:4B:FD:CF:54:EF:2A:6A:08:2A:0A:72:DE:35:80:3E:2F:F5:FF:52:7A:E5:D8:72:06:DF:D5

Client certificates 912

Amazon API Gateway Developer Guide

Alias name: equifaxsecureebusinessca1
 SHA1: AE:E6:3D:70:E3:76:FB:C7:3A:EB:B0:A1:C1:D4:C4:7A:A7:40:B3:F4
 SHA256:
 2E:3A:2B:B5:11:25:05:83:6C:A8:96:8B:E2:CB:37:27:CE:9B:56:84:5C:6E:E9:8E:91:85:10:4A:FB:9A:F5:96
Alias name: equifaxsecureglobalebusinessca1
 SHA1: 3A:74:CB:7A:47:DB:70:DE:89:1F:24:35:98:64:B8:2D:82:BD:1A:36
 SHA256:
 86:AB:5A:65:71:D3:32:9A:BC:D2:E4:E6:37:66:8B:A8:9C:73:1E:C2:93:B6:CB:A6:0F:71:63:40:A0:91:CE:AE
Alias name: eszignorootca2017
 SHA1: 89:D4:83:03:4F:9E:9A:48:80:5F:72:37:D4:A9:A6:EF:CB:7C:1F:D1
 SHA256:
 BE:B0:0B:30:83:9B:9B:C3:2C:32:E4:44:79:05:95:06:41:F2:64:21:B1:5E:D0:89:19:8B:51:8A:E2:EA:1B:99
Alias name: etugracertificationauthority
 SHA1: 51:C6:E7:08:49:06:6E:F3:92:D4:5C:A0:0D:6D:A3:62:8F:C3:52:39
 SHA256:
 B0:BF:D5:2B:B0:D7:D9:BD:92:BF:5D:4D:C1:3D:A2:55:C0:2C:54:2F:37:83:65:EA:89:39:11:F5:5E:55:F2:3C
Alias name: gd-class2-root.pem
 SHA1: 27:96:BA:E6:3F:18:01:E2:77:26:1B:A0:D7:77:70:02:8F:20:EE:E4
 SHA256:
 C3:84:6B:F2:4B:9E:93:CA:64:27:4C:0E:C6:7C:1E:CC:5E:02:4F:FC:AC:D2:D7:40:19:35:0E:81:FE:54:6A:E4
Alias name: gd_bundle-g2.pem
 SHA1: 27:AC:93:69:FA:F2:52:07:BB:26:27:CE:FA:CC:BE:4E:F9:C3:19:B8
 SHA256:
 97:3A:41:27:6F:FD:01:E0:27:A2:AA:D4:9E:34:C3:78:46:D3:E9:76:FF:6A:62:0B:67:12:E3:38:32:04:1A:A6
Alias name: gdcatrustauthr5root
 SHA1: 0F:36:38:5B:81:1A:25:C3:9B:31:4E:83:CA:E9:34:66:70:CC:74:B4
 SHA256:
 BF:FF:8F:D0:44:33:48:7D:6A:8A:A6:0C:1A:29:76:7A:9F:C2:BB:B0:5E:42:0F:71:3A:13:B9:92:89:1D:38:93
Alias name: gdroot-g2.pem
 SHA1: 47:BE:AB:C9:22:EA:E8:0E:78:78:34:62:A7:9F:45:C2:54:FD:E6:8B
 SHA256:
 45:14:0B:32:47:EB:9C:C8:C5:B4:F0:D7:B5:30:91:F7:32:92:08:9E:6E:5A:63:E2:74:9D:D3:AC:A9:19:8E:DA
Alias name: geotrustglobalca
 SHA1: DE:28:F4:A4:FF:E5:B9:2F:A3:C5:03:D1:A3:49:A7:F9:96:2A:82:12
 SHA256:
 FF:85:6A:2D:25:1D:CD:88:D3:66:56:F4:50:12:67:98:CF:AB:AA:DE:40:79:9C:72:2D:E4:D2:B5:DB:36:A7:3A
Alias name: geotrustprimaryca
 SHA1: 32:3C:11:8E:1B:F7:B8:B6:52:54:E2:E2:10:0D:D6:02:90:37:F0:96
 SHA256:
 37:D5:10:06:C5:12:EA:AB:62:64:21:F1:EC:8C:92:01:3F:C5:F8:2A:E9:8E:E5:33:EB:46:19:B8:DE:B4:D0:6C
Alias name: geotrustprimarycag2
 SHA1: 8D:17:84:D5:37:F3:03:7D:EC:70:FE:57:8B:51:9A:99:E6:10:D7:B0
 SHA256:
 5E:DB:7A:C4:3B:82:A0:6A:87:61:E8:D7:BE:49:79:EB:F2:61:1F:7D:D7:9B:F9:1C:1C:6B:56:6A:21:9E:D7:66

Client certificates 913

Amazon API Gateway Developer Guide

Alias name: geotrustprimarycag3
 SHA1: 03:9E:ED:B8:0B:E7:A0:3C:69:53:89:3B:20:D2:D9:32:3A:4C:2A:FD
 SHA256:
 B4:78:B8:12:25:0D:F8:78:63:5C:2A:A7:EC:7D:15:5E:AA:62:5E:E8:29:16:E2:CD:29:43:61:88:6C:D1:FB:D4
Alias name: geotrustprimarycertificationauthority
 SHA1: 32:3C:11:8E:1B:F7:B8:B6:52:54:E2:E2:10:0D:D6:02:90:37:F0:96
 SHA256:
 37:D5:10:06:C5:12:EA:AB:62:64:21:F1:EC:8C:92:01:3F:C5:F8:2A:E9:8E:E5:33:EB:46:19:B8:DE:B4:D0:6C
Alias name: geotrustprimarycertificationauthorityg2
 SHA1: 8D:17:84:D5:37:F3:03:7D:EC:70:FE:57:8B:51:9A:99:E6:10:D7:B0
 SHA256:
 5E:DB:7A:C4:3B:82:A0:6A:87:61:E8:D7:BE:49:79:EB:F2:61:1F:7D:D7:9B:F9:1C:1C:6B:56:6A:21:9E:D7:66
Alias name: geotrustprimarycertificationauthorityg3
 SHA1: 03:9E:ED:B8:0B:E7:A0:3C:69:53:89:3B:20:D2:D9:32:3A:4C:2A:FD
 SHA256:
 B4:78:B8:12:25:0D:F8:78:63:5C:2A:A7:EC:7D:15:5E:AA:62:5E:E8:29:16:E2:CD:29:43:61:88:6C:D1:FB:D4
Alias name: geotrustuniversalca
 SHA1: E6:21:F3:35:43:79:05:9A:4B:68:30:9D:8A:2F:74:22:15:87:EC:79
 SHA256:
 A0:45:9B:9F:63:B2:25:59:F5:FA:5D:4C:6D:B3:F9:F7:2F:F1:93:42:03:35:78:F0:73:BF:1D:1B:46:CB:B9:12
Alias name: geotrustuniversalca2
 SHA1: 37:9A:19:7B:41:85:45:35:0C:A6:03:69:F3:3C:2E:AF:47:4F:20:79
 SHA256:
 A0:23:4F:3B:C8:52:7C:A5:62:8E:EC:81:AD:5D:69:89:5D:A5:68:0D:C9:1D:1C:B8:47:7F:33:F8:78:B9:5B:0B
Alias name: globalchambersignroot2008
 SHA1: 4A:BD:EE:EC:95:0D:35:9C:89:AE:C7:52:A1:2C:5B:29:F6:D6:AA:0C
 SHA256:
 13:63:35:43:93:34:A7:69:80:16:A0:D3:24:DE:72:28:4E:07:9D:7B:52:20:BB:8F:BD:74:78:16:EE:BE:BA:CA
Alias name: globalsignca
 SHA1: B1:BC:96:8B:D4:F4:9D:62:2A:A8:9A:81:F2:15:01:52:A4:1D:82:9C
 SHA256:
 EB:D4:10:40:E4:BB:3E:C7:42:C9:E3:81:D3:1E:F2:A4:1A:48:B6:68:5C:96:E7:CE:F3:C1:DF:6C:D4:33:1C:99
Alias name: globalsigneccrootcar4
 SHA1: 69:69:56:2E:40:80:F4:24:A1:E7:19:9F:14:BA:F3:EE:58:AB:6A:BB
 SHA256:
 BE:C9:49:11:C2:95:56:76:DB:6C:0A:55:09:86:D7:6E:3B:A0:05:66:7C:44:2C:97:62:B4:FB:B7:73:DE:22:8C
Alias name: globalsigneccrootcar5
 SHA1: 1F:24:C6:30:CD:A4:18:EF:20:69:FF:AD:4F:DD:5F:46:3A:1B:69:AA
 SHA256:
 17:9F:BC:14:8A:3D:D0:0F:D2:4E:A1:34:58:CC:43:BF:A7:F5:9C:81:82:D7:83:A5:13:F6:EB:EC:10:0C:89:24
Alias name: globalsignr2ca
 SHA1: 75:E0:AB:B6:13:85:12:27:1C:04:F8:5F:DD:DE:38:E4:B7:24:2E:FE
 SHA256:
 CA:42:DD:41:74:5F:D0:B8:1E:B9:02:36:2C:F9:D8:BF:71:9D:A1:BD:1B:1E:FC:94:6F:5B:4C:99:F4:2C:1B:9E

Client certificates 914

Amazon API Gateway Developer Guide

Alias name: globalsignr3ca
 SHA1: D6:9B:56:11:48:F0:1C:77:C5:45:78:C1:09:26:DF:5B:85:69:76:AD
 SHA256:
 CB:B5:22:D7:B7:F1:27:AD:6A:01:13:86:5B:DF:1C:D4:10:2E:7D:07:59:AF:63:5A:7C:F4:72:0D:C9:63:C5:3B
Alias name: globalsignrootca
 SHA1: B1:BC:96:8B:D4:F4:9D:62:2A:A8:9A:81:F2:15:01:52:A4:1D:82:9C
 SHA256:
 EB:D4:10:40:E4:BB:3E:C7:42:C9:E3:81:D3:1E:F2:A4:1A:48:B6:68:5C:96:E7:CE:F3:C1:DF:6C:D4:33:1C:99
Alias name: globalsignrootcar2
 SHA1: 75:E0:AB:B6:13:85:12:27:1C:04:F8:5F:DD:DE:38:E4:B7:24:2E:FE
 SHA256:
 CA:42:DD:41:74:5F:D0:B8:1E:B9:02:36:2C:F9:D8:BF:71:9D:A1:BD:1B:1E:FC:94:6F:5B:4C:99:F4:2C:1B:9E
Alias name: globalsignrootcar3
 SHA1: D6:9B:56:11:48:F0:1C:77:C5:45:78:C1:09:26:DF:5B:85:69:76:AD
 SHA256:
 CB:B5:22:D7:B7:F1:27:AD:6A:01:13:86:5B:DF:1C:D4:10:2E:7D:07:59:AF:63:5A:7C:F4:72:0D:C9:63:C5:3B
Alias name: globalsignrootcar6
 SHA1: 80:94:64:0E:B5:A7:A1:CA:11:9C:1F:DD:D5:9F:81:02:63:A7:FB:D1
 SHA256:
 2C:AB:EA:FE:37:D0:6C:A2:2A:BA:73:91:C0:03:3D:25:98:29:52:C4:53:64:73:49:76:3A:3A:B5:AD:6C:CF:69
Alias name: godaddyclass2ca
 SHA1: 27:96:BA:E6:3F:18:01:E2:77:26:1B:A0:D7:77:70:02:8F:20:EE:E4
 SHA256:
 C3:84:6B:F2:4B:9E:93:CA:64:27:4C:0E:C6:7C:1E:CC:5E:02:4F:FC:AC:D2:D7:40:19:35:0E:81:FE:54:6A:E4
Alias name: godaddyrootcertificateauthorityg2
 SHA1: 47:BE:AB:C9:22:EA:E8:0E:78:78:34:62:A7:9F:45:C2:54:FD:E6:8B
 SHA256:
 45:14:0B:32:47:EB:9C:C8:C5:B4:F0:D7:B5:30:91:F7:32:92:08:9E:6E:5A:63:E2:74:9D:D3:AC:A9:19:8E:DA
Alias name: godaddyrootg2ca
 SHA1: 47:BE:AB:C9:22:EA:E8:0E:78:78:34:62:A7:9F:45:C2:54:FD:E6:8B
 SHA256:
 45:14:0B:32:47:EB:9C:C8:C5:B4:F0:D7:B5:30:91:F7:32:92:08:9E:6E:5A:63:E2:74:9D:D3:AC:A9:19:8E:DA
Alias name: gtsrootr1
 SHA1: E1:C9:50:E6:EF:22:F8:4C:56:45:72:8B:92:20:60:D7:D5:A7:A3:E8
 SHA256:
 2A:57:54:71:E3:13:40:BC:21:58:1C:BD:2C:F1:3E:15:84:63:20:3E:CE:94:BC:F9:D3:CC:19:6B:F0:9A:54:72
Alias name: gtsrootr2
 SHA1: D2:73:96:2A:2A:5E:39:9F:73:3F:E1:C7:1E:64:3F:03:38:34:FC:4D
 SHA256:
 C4:5D:7B:B0:8E:6D:67:E6:2E:42:35:11:0B:56:4E:5F:78:FD:92:EF:05:8C:84:0A:EA:4E:64:55:D7:58:5C:60
Alias name: gtsrootr3
 SHA1: 30:D4:24:6F:07:FF:DB:91:89:8A:0B:E9:49:66:11:EB:8C:5E:46:E5
 SHA256:
 15:D5:B8:77:46:19:EA:7D:54:CE:1C:A6:D0:B0:C4:03:E0:37:A9:17:F1:31:E8:A0:4E:1E:6B:7A:71:BA:BC:E5

Client certificates 915

Amazon API Gateway Developer Guide

Alias name: gtsrootr4
 SHA1: 2A:1D:60:27:D9:4A:B1:0A:1C:4D:91:5C:CD:33:A0:CB:3E:2D:54:CB
 SHA256:
 71:CC:A5:39:1F:9E:79:4B:04:80:25:30:B3:63:E1:21:DA:8A:30:43:BB:26:66:2F:EA:4D:CA:7F:C9:51:A4:BD
Alias name: hellenicacademicandresearchinstitutionseccrootca2015
 SHA1: 9F:F1:71:8D:92:D5:9A:F3:7D:74:97:B4:BC:6F:84:68:0B:BA:B6:66
 SHA256:
 44:B5:45:AA:8A:25:E6:5A:73:CA:15:DC:27:FC:36:D2:4C:1C:B9:95:3A:06:65:39:B1:15:82:DC:48:7B:48:33
Alias name: hellenicacademicandresearchinstitutionsrootca2011
 SHA1: FE:45:65:9B:79:03:5B:98:A1:61:B5:51:2E:AC:DA:58:09:48:22:4D
 SHA256:
 BC:10:4F:15:A4:8B:E7:09:DC:A5:42:A7:E1:D4:B9:DF:6F:05:45:27:E8:02:EA:A9:2D:59:54:44:25:8A:FE:71
Alias name: hellenicacademicandresearchinstitutionsrootca2015
 SHA1: 01:0C:06:95:A6:98:19:14:FF:BF:5F:C6:B0:B6:95:EA:29:E9:12:A6
 SHA256:
 A0:40:92:9A:02:CE:53:B4:AC:F4:F2:FF:C6:98:1C:E4:49:6F:75:5E:6D:45:FE:0B:2A:69:2B:CD:52:52:3F:36
Alias name: hongkongpostrootca1
 SHA1: D6:DA:A8:20:8D:09:D2:15:4D:24:B5:2F:CB:34:6E:B2:58:B2:8A:58
 SHA256:
 F9:E6:7D:33:6C:51:00:2A:C0:54:C6:32:02:2D:66:DD:A2:E7:E3:FF:F1:0A:D0:61:ED:31:D8:BB:B4:10:CF:B2
Alias name: hongkongpostrootca3
 SHA1: 58:A2:D0:EC:20:52:81:5B:C1:F3:F8:64:02:24:4E:C2:8E:02:4B:02
 SHA256:
 5A:2F:C0:3F:0C:83:B0:90:BB:FA:40:60:4B:09:88:44:6C:76:36:18:3D:F9:84:6E:17:10:1A:44:7F:B8:EF:D6
Alias name: identrustcommercialrootca1
 SHA1: DF:71:7E:AA:4A:D9:4E:C9:55:84:99:60:2D:48:DE:5F:BC:F0:3A:25
 SHA256:
 5D:56:49:9B:E4:D2:E0:8B:CF:CA:D0:8A:3E:38:72:3D:50:50:3B:DE:70:69:48:E4:2F:55:60:30:19:E5:28:AE
Alias name: identrustpublicsectorrootca1
 SHA1: BA:29:41:60:77:98:3F:F4:F3:EF:F2:31:05:3B:2E:EA:6D:4D:45:FD
 SHA256:
 30:D0:89:5A:9A:44:8A:26:20:91:63:55:22:D1:F5:20:10:B5:86:7A:CA:E1:2C:78:EF:95:8F:D4:F4:38:9F:2F
Alias name: isrgrootx1
 SHA1: CA:BD:2A:79:A1:07:6A:31:F2:1D:25:36:35:CB:03:9D:43:29:A5:E8
 SHA256:
 96:BC:EC:06:26:49:76:F3:74:60:77:9A:CF:28:C5:A7:CF:E8:A3:C0:AA:E1:1A:8F:FC:EE:05:C0:BD:DF:08:C6
Alias name: izenpecom
 SHA1: 2F:78:3D:25:52:18:A7:4A:65:39:71:B5:2C:A2:9C:45:15:6F:E9:19
 SHA256:
 25:30:CC:8E:98:32:15:02:BA:D9:6F:9B:1F:BA:1B:09:9E:2D:29:9E:0F:45:48:BB:91:4F:36:3B:C0:D4:53:1F
Alias name: keynectisrootca
 SHA1: 9C:61:5C:4D:4D:85:10:3A:53:26:C2:4D:BA:EA:E4:A2:D2:D5:CC:97
 SHA256:
 42:10:F1:99:49:9A:9A:C3:3C:8D:E0:2B:A6:DB:AA:14:40:8B:DD:8A:6E:32:46:89:C1:92:2D:06:97:15:A3:32

Client certificates 916

Amazon API Gateway Developer Guide

Alias name: microseceszignorootca2009
 SHA1: 89:DF:74:FE:5C:F4:0F:4A:80:F9:E3:37:7D:54:DA:91:E1:01:31:8E
 SHA256:
 3C:5F:81:FE:A5:FA:B8:2C:64:BF:A2:EA:EC:AF:CD:E8:E0:77:FC:86:20:A7:CA:E5:37:16:3D:F3:6E:DB:F3:78
Alias name: mozillacert0.pem
 SHA1: 97:81:79:50:D8:1C:96:70:CC:34:D8:09:CF:79:44:31:36:7E:F4:74
 SHA256:
 A5:31:25:18:8D:21:10:AA:96:4B:02:C7:B7:C6:DA:32:03:17:08:94:E5:FB:71:FF:FB:66:67:D5:E6:81:0A:36
Alias name: mozillacert1.pem
 SHA1: 23:E5:94:94:51:95:F2:41:48:03:B4:D5:64:D2:A3:A3:F5:D8:8B:8C
 SHA256:
 B4:41:0B:73:E2:E6:EA:CA:47:FB:C4:2F:8F:A4:01:8A:F4:38:1D:C5:4C:FA:A8:44:50:46:1E:ED:09:45:4D:E9
Alias name: mozillacert10.pem
 SHA1: 5F:3A:FC:0A:8B:64:F6:86:67:34:74:DF:7E:A9:A2:FE:F9:FA:7A:51
 SHA256:
 21:DB:20:12:36:60:BB:2E:D4:18:20:5D:A1:1E:E7:A8:5A:65:E2:BC:6E:55:B5:AF:7E:78:99:C8:A2:66:D9:2E
Alias name: mozillacert100.pem
 SHA1: 58:E8:AB:B0:36:15:33:FB:80:F7:9B:1B:6D:29:D3:FF:8D:5F:00:F0
 SHA256:
 49:E7:A4:42:AC:F0:EA:62:87:05:00:54:B5:25:64:B6:50:E4:F4:9E:42:E3:48:D6:AA:38:E0:39:E9:57:B1:C1
Alias name: mozillacert101.pem
 SHA1: 99:A6:9B:E6:1A:FE:88:6B:4D:2B:82:00:7C:B8:54:FC:31:7E:15:39
 SHA256:
 62:F2:40:27:8C:56:4C:4D:D8:BF:7D:9D:4F:6F:36:6E:A8:94:D2:2F:5F:34:D9:89:A9:83:AC:EC:2F:FF:ED:50
Alias name: mozillacert102.pem
 SHA1: 96:C9:1B:0B:95:B4:10:98:42:FA:D0:D8:22:79:FE:60:FA:B9:16:83
 SHA256:
 EE:C5:49:6B:98:8C:E9:86:25:B9:34:09:2E:EC:29:08:BE:D0:B0:F3:16:C2:D4:73:0C:84:EA:F1:F3:D3:48:81
Alias name: mozillacert103.pem
 SHA1: 70:C1:8D:74:B4:28:81:0A:E4:FD:A5:75:D7:01:9F:99:B0:3D:50:74
 SHA256:
 3C:FC:3C:14:D1:F6:84:FF:17:E3:8C:43:CA:44:0C:00:B9:67:EC:93:3E:8B:FE:06:4C:A1:D7:2C:90:F2:AD:B0
Alias name: mozillacert104.pem
 SHA1: 4F:99:AA:93:FB:2B:D1:37:26:A1:99:4A:CE:7F:F0:05:F2:93:5D:1E
 SHA256:
 1C:01:C6:F4:DB:B2:FE:FC:22:55:8B:2B:CA:32:56:3F:49:84:4A:CF:C3:2B:7B:E4:B0:FF:59:9F:9E:8C:7A:F7
Alias name: mozillacert105.pem
 SHA1: 77:47:4F:C6:30:E4:0F:4C:47:64:3F:84:BA:B8:C6:95:4A:8A:41:EC
 SHA256:
 F0:9B:12:2C:71:14:F4:A0:9B:D4:EA:4F:4A:99:D5:58:B4:6E:4C:25:CD:81:14:0D:29:C0:56:13:91:4C:38:41
Alias name: mozillacert106.pem
 SHA1: E7:A1:90:29:D3:D5:52:DC:0D:0F:C6:92:D3:EA:88:0D:15:2E:1A:6B
 SHA256:
 D9:5F:EA:3C:A4:EE:DC:E7:4C:D7:6E:75:FC:6D:1F:F6:2C:44:1F:0F:A8:BC:77:F0:34:B1:9E:5D:B2:58:01:5D

Client certificates 917

Amazon API Gateway Developer Guide

Alias name: mozillacert107.pem
 SHA1: 8E:1C:74:F8:A6:20:B9:E5:8A:F4:61:FA:EC:2B:47:56:51:1A:52:C6
 SHA256:
 F9:6F:23:F4:C3:E7:9C:07:7A:46:98:8D:5A:F5:90:06:76:A0:F0:39:CB:64:5D:D1:75:49:B2:16:C8:24:40:CE
Alias name: mozillacert108.pem
 SHA1: B1:BC:96:8B:D4:F4:9D:62:2A:A8:9A:81:F2:15:01:52:A4:1D:82:9C
 SHA256:
 EB:D4:10:40:E4:BB:3E:C7:42:C9:E3:81:D3:1E:F2:A4:1A:48:B6:68:5C:96:E7:CE:F3:C1:DF:6C:D4:33:1C:99
Alias name: mozillacert109.pem
 SHA1: B5:61:EB:EA:A4:DE:E4:25:4B:69:1A:98:A5:57:47:C2:34:C7:D9:71
 SHA256:
 E2:3D:4A:03:6D:7B:70:E9:F5:95:B1:42:20:79:D2:B9:1E:DF:BB:1F:B6:51:A0:63:3E:AA:8A:9D:C5:F8:07:03
Alias name: mozillacert11.pem
 SHA1: 05:63:B8:63:0D:62:D7:5A:BB:C8:AB:1E:4B:DF:B5:A8:99:B2:4D:43
 SHA256:
 3E:90:99:B5:01:5E:8F:48:6C:00:BC:EA:9D:11:1E:E7:21:FA:BA:35:5A:89:BC:F1:DF:69:56:1E:3D:C6:32:5C
Alias name: mozillacert110.pem
 SHA1: 93:05:7A:88:15:C6:4F:CE:88:2F:FA:91:16:52:28:78:BC:53:64:17
 SHA256:
 9A:6E:C0:12:E1:A7:DA:9D:BE:34:19:4D:47:8A:D7:C0:DB:18:22:FB:07:1D:F1:29:81:49:6E:D1:04:38:41:13
Alias name: mozillacert111.pem
 SHA1: 9C:BB:48:53:F6:A4:F6:D3:52:A4:E8:32:52:55:60:13:F5:AD:AF:65
 SHA256:
 59:76:90:07:F7:68:5D:0F:CD:50:87:2F:9F:95:D5:75:5A:5B:2B:45:7D:81:F3:69:2B:61:0A:98:67:2F:0E:1B
Alias name: mozillacert112.pem
 SHA1: 43:13:BB:96:F1:D5:86:9B:C1:4E:6A:92:F6:CF:F6:34:69:87:82:37
 SHA256:
 DD:69:36:FE:21:F8:F0:77:C1:23:A1:A5:21:C1:22:24:F7:22:55:B7:3E:03:A7:26:06:93:E8:A2:4B:0F:A3:89
Alias name: mozillacert113.pem
 SHA1: 50:30:06:09:1D:97:D4:F5:AE:39:F7:CB:E7:92:7D:7D:65:2D:34:31
 SHA256:
 6D:C4:71:72:E0:1C:BC:B0:BF:62:58:0D:89:5F:E2:B8:AC:9A:D4:F8:73:80:1E:0C:10:B9:C8:37:D2:1E:B1:77
Alias name: mozillacert114.pem
 SHA1: 51:C6:E7:08:49:06:6E:F3:92:D4:5C:A0:0D:6D:A3:62:8F:C3:52:39
 SHA256:
 B0:BF:D5:2B:B0:D7:D9:BD:92:BF:5D:4D:C1:3D:A2:55:C0:2C:54:2F:37:83:65:EA:89:39:11:F5:5E:55:F2:3C
Alias name: mozillacert115.pem
 SHA1: 59:0D:2D:7D:88:4F:40:2E:61:7E:A5:62:32:17:65:CF:17:D8:94:E9
 SHA256:
 91:E2:F5:78:8D:58:10:EB:A7:BA:58:73:7D:E1:54:8A:8E:CA:CD:01:45:98:BC:0B:14:3E:04:1B:17:05:25:52
Alias name: mozillacert116.pem
 SHA1: 2B:B1:F5:3E:55:0C:1D:C5:F1:D4:E6:B7:6A:46:4B:55:06:02:AC:21
 SHA256:
 F3:56:BE:A2:44:B7:A9:1E:B3:5D:53:CA:9A:D7:86:4A:CE:01:8E:2D:35:D5:F8:F9:6D:DF:68:A6:F4:1A:A4:74

Client certificates 918

Amazon API Gateway Developer Guide

Alias name: mozillacert117.pem
 SHA1: D4:DE:20:D0:5E:66:FC:53:FE:1A:50:88:2C:78:DB:28:52:CA:E4:74
 SHA256:
 16:AF:57:A9:F6:76:B0:AB:12:60:95:AA:5E:BA:DE:F2:2A:B3:11:19:D6:44:AC:95:CD:4B:93:DB:F3:F2:6A:EB
Alias name: mozillacert118.pem
 SHA1: 7E:78:4A:10:1C:82:65:CC:2D:E1:F1:6D:47:B4:40:CA:D9:0A:19:45
 SHA256:
 5F:0B:62:EA:B5:E3:53:EA:65:21:65:16:58:FB:B6:53:59:F4:43:28:0A:4A:FB:D1:04:D7:7D:10:F9:F0:4C:07
Alias name: mozillacert119.pem
 SHA1: 75:E0:AB:B6:13:85:12:27:1C:04:F8:5F:DD:DE:38:E4:B7:24:2E:FE
 SHA256:
 CA:42:DD:41:74:5F:D0:B8:1E:B9:02:36:2C:F9:D8:BF:71:9D:A1:BD:1B:1E:FC:94:6F:5B:4C:99:F4:2C:1B:9E
Alias name: mozillacert12.pem
 SHA1: A8:98:5D:3A:65:E5:E5:C4:B2:D7:D6:6D:40:C6:DD:2F:B1:9C:54:36
 SHA256:
 43:48:A0:E9:44:4C:78:CB:26:5E:05:8D:5E:89:44:B4:D8:4F:96:62:BD:26:DB:25:7F:89:34:A4:43:C7:01:61
Alias name: mozillacert120.pem
 SHA1: DA:40:18:8B:91:89:A3:ED:EE:AE:DA:97:FE:2F:9D:F5:B7:D1:8A:41
 SHA256:
 CF:56:FF:46:A4:A1:86:10:9D:D9:65:84:B5:EE:B5:8A:51:0C:42:75:B0:E5:F9:4F:40:BB:AE:86:5E:19:F6:73
Alias name: mozillacert121.pem
 SHA1: CC:AB:0E:A0:4C:23:01:D6:69:7B:DD:37:9F:CD:12:EB:24:E3:94:9D
 SHA256:
 8C:72:09:27:9A:C0:4E:27:5E:16:D0:7F:D3:B7:75:E8:01:54:B5:96:80:46:E3:1F:52:DD:25:76:63:24:E9:A7
Alias name: mozillacert122.pem
 SHA1: 02:FA:F3:E2:91:43:54:68:60:78:57:69:4D:F5:E4:5B:68:85:18:68
 SHA256:
 68:7F:A4:51:38:22:78:FF:F0:C8:B1:1F:8D:43:D5:76:67:1C:6E:B2:BC:EA:B4:13:FB:83:D9:65:D0:6D:2F:F2
Alias name: mozillacert123.pem
 SHA1: 2A:B6:28:48:5E:78:FB:F3:AD:9E:79:10:DD:6B:DF:99:72:2C:96:E5
 SHA256:
 07:91:CA:07:49:B2:07:82:AA:D3:C7:D7:BD:0C:DF:C9:48:58:35:84:3E:B2:D7:99:60:09:CE:43:AB:6C:69:27
Alias name: mozillacert124.pem
 SHA1: 4D:23:78:EC:91:95:39:B5:00:7F:75:8F:03:3B:21:1E:C5:4D:8B:CF
 SHA256:
 80:95:21:08:05:DB:4B:BC:35:5E:44:28:D8:FD:6E:C2:CD:E3:AB:5F:B9:7A:99:42:98:8E:B8:F4:DC:D0:60:16
Alias name: mozillacert125.pem
 SHA1: B3:1E:B1:B7:40:E3:6C:84:02:DA:DC:37:D4:4D:F5:D4:67:49:52:F9
 SHA256:
 73:C1:76:43:4F:1B:C6:D5:AD:F4:5B:0E:76:E7:27:28:7C:8D:E5:76:16:C1:E6:E6:14:1A:2B:2C:BC:7D:8E:4C
Alias name: mozillacert126.pem
 SHA1: 25:01:90:19:CF:FB:D9:99:1C:B7:68:25:74:8D:94:5F:30:93:95:42
 SHA256:
 AF:8B:67:62:A1:E5:28:22:81:61:A9:5D:5C:55:9E:E2:66:27:8F:75:D7:9E:83:01:89:A5:03:50:6A:BD:6B:4C

Client certificates 919

Amazon API Gateway Developer Guide

Alias name: mozillacert127.pem
 SHA1: DE:28:F4:A4:FF:E5:B9:2F:A3:C5:03:D1:A3:49:A7:F9:96:2A:82:12
 SHA256:
 FF:85:6A:2D:25:1D:CD:88:D3:66:56:F4:50:12:67:98:CF:AB:AA:DE:40:79:9C:72:2D:E4:D2:B5:DB:36:A7:3A
Alias name: mozillacert128.pem
 SHA1: A9:E9:78:08:14:37:58:88:F2:05:19:B0:6D:2B:0D:2B:60:16:90:7D
 SHA256:
 CA:2D:82:A0:86:77:07:2F:8A:B6:76:4F:F0:35:67:6C:FE:3E:5E:32:5E:01:21:72:DF:3F:92:09:6D:B7:9B:85
Alias name: mozillacert129.pem
 SHA1: E6:21:F3:35:43:79:05:9A:4B:68:30:9D:8A:2F:74:22:15:87:EC:79
 SHA256:
 A0:45:9B:9F:63:B2:25:59:F5:FA:5D:4C:6D:B3:F9:F7:2F:F1:93:42:03:35:78:F0:73:BF:1D:1B:46:CB:B9:12
Alias name: mozillacert13.pem
 SHA1: 06:08:3F:59:3F:15:A1:04:A0:69:A4:6B:A9:03:D0:06:B7:97:09:91
 SHA256:
 6C:61:DA:C3:A2:DE:F0:31:50:6B:E0:36:D2:A6:FE:40:19:94:FB:D1:3D:F9:C8:D4:66:59:92:74:C4:46:EC:98
Alias name: mozillacert130.pem
 SHA1: E5:DF:74:3C:B6:01:C4:9B:98:43:DC:AB:8C:E8:6A:81:10:9F:E4:8E
 SHA256:
 F4:C1:49:55:1A:30:13:A3:5B:C7:BF:FE:17:A7:F3:44:9B:C1:AB:5B:5A:0A:E7:4B:06:C2:3B:90:00:4C:01:04
Alias name: mozillacert131.pem
 SHA1: 37:9A:19:7B:41:85:45:35:0C:A6:03:69:F3:3C:2E:AF:47:4F:20:79
 SHA256:
 A0:23:4F:3B:C8:52:7C:A5:62:8E:EC:81:AD:5D:69:89:5D:A5:68:0D:C9:1D:1C:B8:47:7F:33:F8:78:B9:5B:0B
Alias name: mozillacert132.pem
 SHA1: 39:21:C1:15:C1:5D:0E:CA:5C:CB:5B:C4:F0:7D:21:D8:05:0B:56:6A
 SHA256:
 77:40:73:12:C6:3A:15:3D:5B:C0:0B:4E:51:75:9C:DF:DA:C2:37:DC:2A:33:B6:79:46:E9:8E:9B:FA:68:0A:E3
Alias name: mozillacert133.pem
 SHA1: 85:B5:FF:67:9B:0C:79:96:1F:C8:6E:44:22:00:46:13:DB:17:92:84
 SHA256:
 7D:3B:46:5A:60:14:E5:26:C0:AF:FC:EE:21:27:D2:31:17:27:AD:81:1C:26:84:2D:00:6A:F3:73:06:CC:80:BD
Alias name: mozillacert134.pem
 SHA1: 70:17:9B:86:8C:00:A4:FA:60:91:52:22:3F:9F:3E:32:BD:E0:05:62
 SHA256:
 69:FA:C9:BD:55:FB:0A:C7:8D:53:BB:EE:5C:F1:D5:97:98:9F:D0:AA:AB:20:A2:51:51:BD:F1:73:3E:E7:D1:22
Alias name: mozillacert135.pem
 SHA1: 62:52:DC:40:F7:11:43:A2:2F:DE:9E:F7:34:8E:06:42:51:B1:81:18
 SHA256:
 D8:E0:FE:BC:1D:B2:E3:8D:00:94:0F:37:D2:7D:41:34:4D:99:3E:73:4B:99:D5:65:6D:97:78:D4:D8:14:36:24
Alias name: mozillacert136.pem
 SHA1: D1:EB:23:A4:6D:17:D6:8F:D9:25:64:C2:F1:F1:60:17:64:D8:E3:49
 SHA256:
 D7:A7:A0:FB:5D:7E:27:31:D7:71:E9:48:4E:BC:DE:F7:1D:5F:0C:3E:0A:29:48:78:2B:C8:3E:E0:EA:69:9E:F4

Client certificates 920

Amazon API Gateway Developer Guide

Alias name: mozillacert137.pem
 SHA1: 4A:65:D5:F4:1D:EF:39:B8:B8:90:4A:4A:D3:64:81:33:CF:C7:A1:D1
 SHA256:
 BD:81:CE:3B:4F:65:91:D1:1A:67:B5:FC:7A:47:FD:EF:25:52:1B:F9:AA:4E:18:B9:E3:DF:2E:34:A7:80:3B:E8
Alias name: mozillacert138.pem
 SHA1: E1:9F:E3:0E:8B:84:60:9E:80:9B:17:0D:72:A8:C5:BA:6E:14:09:BD
 SHA256:
 3F:06:E5:56:81:D4:96:F5:BE:16:9E:B5:38:9F:9F:2B:8F:F6:1E:17:08:DF:68:81:72:48:49:CD:5D:27:CB:69
Alias name: mozillacert139.pem
 SHA1: DE:3F:40:BD:50:93:D3:9B:6C:60:F6:DA:BC:07:62:01:00:89:76:C9
 SHA256:
 A4:5E:DE:3B:BB:F0:9C:8A:E1:5C:72:EF:C0:72:68:D6:93:A2:1C:99:6F:D5:1E:67:CA:07:94:60:FD:6D:88:73
Alias name: mozillacert14.pem
 SHA1: 5F:B7:EE:06:33:E2:59:DB:AD:0C:4C:9A:E6:D3:8F:1A:61:C7:DC:25
 SHA256:
 74:31:E5:F4:C3:C1:CE:46:90:77:4F:0B:61:E0:54:40:88:3B:A9:A0:1E:D0:0B:A6:AB:D7:80:6E:D3:B1:18:CF
Alias name: mozillacert140.pem
 SHA1: CA:3A:FB:CF:12:40:36:4B:44:B2:16:20:88:80:48:39:19:93:7C:F7
 SHA256:
 85:A0:DD:7D:D7:20:AD:B7:FF:05:F8:3D:54:2B:20:9D:C7:FF:45:28:F7:D6:77:B1:83:89:FE:A5:E5:C4:9E:86
Alias name: mozillacert141.pem
 SHA1: 31:7A:2A:D0:7F:2B:33:5E:F5:A1:C3:4E:4B:57:E8:B7:D8:F1:FC:A6
 SHA256:
 58:D0:17:27:9C:D4:DC:63:AB:DD:B1:96:A6:C9:90:6C:30:C4:E0:87:83:EA:E8:C1:60:99:54:D6:93:55:59:6B
Alias name: mozillacert142.pem
 SHA1: 1F:49:14:F7:D8:74:95:1D:DD:AE:02:C0:BE:FD:3A:2D:82:75:51:85
 SHA256:
 18:F1:FC:7F:20:5D:F8:AD:DD:EB:7F:E0:07:DD:57:E3:AF:37:5A:9C:4D:8D:73:54:6B:F4:F1:FE:D1:E1:8D:35
Alias name: mozillacert143.pem
 SHA1: 36:B1:2B:49:F9:81:9E:D7:4C:9E:BC:38:0F:C6:56:8F:5D:AC:B2:F7
 SHA256:
 E7:5E:72:ED:9F:56:0E:EC:6E:B4:80:00:73:A4:3F:C3:AD:19:19:5A:39:22:82:01:78:95:97:4A:99:02:6B:6C
Alias name: mozillacert144.pem
 SHA1: 37:F7:6D:E6:07:7C:90:C5:B1:3E:93:1A:B7:41:10:B4:F2:E4:9A:27
 SHA256:
 79:08:B4:03:14:C1:38:10:0B:51:8D:07:35:80:7F:FB:FC:F8:51:8A:00:95:33:71:05:BA:38:6B:15:3D:D9:27
Alias name: mozillacert145.pem
 SHA1: 10:1D:FA:3F:D5:0B:CB:BB:9B:B5:60:0C:19:55:A4:1A:F4:73:3A:04
 SHA256:
 D4:1D:82:9E:8C:16:59:82:2A:F9:3F:CE:62:BF:FC:DE:26:4F:C8:4E:8B:95:0C:5F:F2:75:D0:52:35:46:95:A3
Alias name: mozillacert146.pem
 SHA1: 21:FC:BD:8E:7F:6C:AF:05:1B:D1:B3:43:EC:A8:E7:61:47:F2:0F:8A
 SHA256:
 48:98:C6:88:8C:0C:FF:B0:D3:E3:1A:CA:8A:37:D4:E3:51:5F:F7:46:D0:26:35:D8:66:46:CF:A0:A3:18:5A:E7

Client certificates 921

Amazon API Gateway Developer Guide

Alias name: mozillacert147.pem
 SHA1: 58:11:9F:0E:12:82:87:EA:50:FD:D9:87:45:6F:4F:78:DC:FA:D6:D4
 SHA256:
 85:FB:2F:91:DD:12:27:5A:01:45:B6:36:53:4F:84:02:4A:D6:8B:69:B8:EE:88:68:4F:F7:11:37:58:05:B3:48
Alias name: mozillacert148.pem
 SHA1: 04:83:ED:33:99:AC:36:08:05:87:22:ED:BC:5E:46:00:E3:BE:F9:D7
 SHA256:
 6E:A5:47:41:D0:04:66:7E:ED:1B:48:16:63:4A:A3:A7:9E:6E:4B:96:95:0F:82:79:DA:FC:8D:9B:D8:81:21:37
Alias name: mozillacert149.pem
 SHA1: 6E:3A:55:A4:19:0C:19:5C:93:84:3C:C0:DB:72:2E:31:30:61:F0:B1
 SHA256:
 0C:25:8A:12:A5:67:4A:EF:25:F2:8B:A7:DC:FA:EC:EE:A3:48:E5:41:E6:F5:CC:4E:E6:3B:71:B3:61:60:6A:C3
Alias name: mozillacert15.pem
 SHA1: 74:20:74:41:72:9C:DD:92:EC:79:31:D8:23:10:8D:C2:81:92:E2:BB
 SHA256:
 0F:99:3C:8A:EF:97:BA:AF:56:87:14:0E:D5:9A:D1:82:1B:B4:AF:AC:F0:AA:9A:58:B5:D5:7A:33:8A:3A:FB:CB
Alias name: mozillacert150.pem
 SHA1: 33:9B:6B:14:50:24:9B:55:7A:01:87:72:84:D9:E0:2F:C3:D2:D8:E9
 SHA256:
 EF:3C:B4:17:FC:8E:BF:6F:97:87:6C:9E:4E:CE:39:DE:1E:A5:FE:64:91:41:D1:02:8B:7D:11:C0:B2:29:8C:ED
Alias name: mozillacert151.pem
 SHA1: AC:ED:5F:65:53:FD:25:CE:01:5F:1F:7A:48:3B:6A:74:9F:61:78:C6
 SHA256:
 7F:12:CD:5F:7E:5E:29:0E:C7:D8:51:79:D5:B7:2C:20:A5:BE:75:08:FF:DB:5B:F8:1A:B9:68:4A:7F:C9:F6:67
Alias name: mozillacert16.pem
 SHA1: DA:C9:02:4F:54:D8:F6:DF:94:93:5F:B1:73:26:38:CA:6A:D7:7C:13
 SHA256:
 06:87:26:03:31:A7:24:03:D9:09:F1:05:E6:9B:CF:0D:32:E1:BD:24:93:FF:C6:D9:20:6D:11:BC:D6:77:07:39
Alias name: mozillacert17.pem
 SHA1: 40:54:DA:6F:1C:3F:40:74:AC:ED:0F:EC:CD:DB:79:D1:53:FB:90:1D
 SHA256:
 76:7C:95:5A:76:41:2C:89:AF:68:8E:90:A1:C7:0F:55:6C:FD:6B:60:25:DB:EA:10:41:6D:7E:B6:83:1F:8C:40
Alias name: mozillacert18.pem
 SHA1: 79:98:A3:08:E1:4D:65:85:E6:C2:1E:15:3A:71:9F:BA:5A:D3:4A:D9
 SHA256:
 44:04:E3:3B:5E:14:0D:CF:99:80:51:FD:FC:80:28:C7:C8:16:15:C5:EE:73:7B:11:1B:58:82:33:A9:B5:35:A0
Alias name: mozillacert19.pem
 SHA1: B4:35:D4:E1:11:9D:1C:66:90:A7:49:EB:B3:94:BD:63:7B:A7:82:B7
 SHA256:
 C4:70:CF:54:7E:23:02:B9:77:FB:29:DD:71:A8:9A:7B:6C:1F:60:77:7B:03:29:F5:60:17:F3:28:BF:4F:6B:E6
Alias name: mozillacert2.pem
 SHA1: 22:D5:D8:DF:8F:02:31:D1:8D:F7:9D:B7:CF:8A:2D:64:C9:3F:6C:3A
 SHA256:
 69:DD:D7:EA:90:BB:57:C9:3E:13:5D:C8:5E:A6:FC:D5:48:0B:60:32:39:BD:C4:54:FC:75:8B:2A:26:CF:7F:79

Client certificates 922

Amazon API Gateway Developer Guide

Alias name: mozillacert20.pem
 SHA1: D8:C5:38:8A:B7:30:1B:1B:6E:D4:7A:E6:45:25:3A:6F:9F:1A:27:61
 SHA256:
 62:DD:0B:E9:B9:F5:0A:16:3E:A0:F8:E7:5C:05:3B:1E:CA:57:EA:55:C8:68:8F:64:7C:68:81:F2:C8:35:7B:95
Alias name: mozillacert21.pem
 SHA1: 9B:AA:E5:9F:56:EE:21:CB:43:5A:BE:25:93:DF:A7:F0:40:D1:1D:CB
 SHA256:
 BE:6C:4D:A2:BB:B9:BA:59:B6:F3:93:97:68:37:42:46:C3:C0:05:99:3F:A9:8F:02:0D:1D:ED:BE:D4:8A:81:D5
Alias name: mozillacert22.pem
 SHA1: 32:3C:11:8E:1B:F7:B8:B6:52:54:E2:E2:10:0D:D6:02:90:37:F0:96
 SHA256:
 37:D5:10:06:C5:12:EA:AB:62:64:21:F1:EC:8C:92:01:3F:C5:F8:2A:E9:8E:E5:33:EB:46:19:B8:DE:B4:D0:6C
Alias name: mozillacert23.pem
 SHA1: 91:C6:D6:EE:3E:8A:C8:63:84:E5:48:C2:99:29:5C:75:6C:81:7B:81
 SHA256:
 8D:72:2F:81:A9:C1:13:C0:79:1D:F1:36:A2:96:6D:B2:6C:95:0A:97:1D:B4:6B:41:99:F4:EA:54:B7:8B:FB:9F
Alias name: mozillacert24.pem
 SHA1: 59:AF:82:79:91:86:C7:B4:75:07:CB:CF:03:57:46:EB:04:DD:B7:16
 SHA256:
 66:8C:83:94:7D:A6:3B:72:4B:EC:E1:74:3C:31:A0:E6:AE:D0:DB:8E:C5:B3:1B:E3:77:BB:78:4F:91:B6:71:6F
Alias name: mozillacert25.pem
 SHA1: 4E:B6:D5:78:49:9B:1C:CF:5F:58:1E:AD:56:BE:3D:9B:67:44:A5:E5
 SHA256:
 9A:CF:AB:7E:43:C8:D8:80:D0:6B:26:2A:94:DE:EE:E4:B4:65:99:89:C3:D0:CA:F1:9B:AF:64:05:E4:1A:B7:DF
Alias name: mozillacert26.pem
 SHA1: 87:82:C6:C3:04:35:3B:CF:D2:96:92:D2:59:3E:7D:44:D9:34:FF:11
 SHA256:
 F1:C1:B5:0A:E5:A2:0D:D8:03:0E:C9:F6:BC:24:82:3D:D3:67:B5:25:57:59:B4:E7:1B:61:FC:E9:F7:37:5D:73
Alias name: mozillacert27.pem
 SHA1: 3A:44:73:5A:E5:81:90:1F:24:86:61:46:1E:3B:9C:C4:5F:F5:3A:1B
 SHA256:
 42:00:F5:04:3A:C8:59:0E:BB:52:7D:20:9E:D1:50:30:29:FB:CB:D4:1C:A1:B5:06:EC:27:F1:5A:DE:7D:AC:69
Alias name: mozillacert28.pem
 SHA1: 66:31:BF:9E:F7:4F:9E:B6:C9:D5:A6:0C:BA:6A:BE:D1:F7:BD:EF:7B
 SHA256:
 0C:2C:D6:3D:F7:80:6F:A3:99:ED:E8:09:11:6B:57:5B:F8:79:89:F0:65:18:F9:80:8C:86:05:03:17:8B:AF:66
Alias name: mozillacert29.pem
 SHA1: 74:F8:A3:C3:EF:E7:B3:90:06:4B:83:90:3C:21:64:60:20:E5:DF:CE
 SHA256:
 15:F0:BA:00:A3:AC:7A:F3:AC:88:4C:07:2B:10:11:A0:77:BD:77:C0:97:F4:01:64:B2:F8:59:8A:BD:83:86:0C
Alias name: mozillacert3.pem
 SHA1: 87:9F:4B:EE:05:DF:98:58:3B:E3:60:D6:33:E7:0D:3F:FE:98:71:AF
 SHA256:
 39:DF:7B:68:2B:7B:93:8F:84:71:54:81:CC:DE:8D:60:D8:F2:2E:C5:98:87:7D:0A:AA:C1:2B:59:18:2B:03:12

Client certificates 923

Amazon API Gateway Developer Guide

Alias name: mozillacert30.pem
 SHA1: E7:B4:F6:9D:61:EC:90:69:DB:7E:90:A7:40:1A:3C:F4:7D:4F:E8:EE
 SHA256:
 A7:12:72:AE:AA:A3:CF:E8:72:7F:7F:B3:9F:0F:B3:D1:E5:42:6E:90:60:B0:6E:E6:F1:3E:9A:3C:58:33:CD:43
Alias name: mozillacert31.pem
 SHA1: 9F:74:4E:9F:2B:4D:BA:EC:0F:31:2C:50:B6:56:3B:8E:2D:93:C3:11
 SHA256:
 17:93:92:7A:06:14:54:97:89:AD:CE:2F:8F:34:F7:F0:B6:6D:0F:3A:E3:A3:B8:4D:21:EC:15:DB:BA:4F:AD:C7
Alias name: mozillacert32.pem
 SHA1: 60:D6:89:74:B5:C2:65:9E:8A:0F:C1:88:7C:88:D2:46:69:1B:18:2C
 SHA256:
 B9:BE:A7:86:0A:96:2E:A3:61:1D:AB:97:AB:6D:A3:E2:1C:10:68:B9:7D:55:57:5E:D0:E1:12:79:C1:1C:89:32
Alias name: mozillacert33.pem
 SHA1: FE:B8:C4:32:DC:F9:76:9A:CE:AE:3D:D8:90:8F:FD:28:86:65:64:7D
 SHA256:
 A2:2D:BA:68:1E:97:37:6E:2D:39:7D:72:8A:AE:3A:9B:62:96:B9:FD:BA:60:BC:2E:11:F6:47:F2:C6:75:FB:37
Alias name: mozillacert34.pem
 SHA1: 59:22:A1:E1:5A:EA:16:35:21:F8:98:39:6A:46:46:B0:44:1B:0F:A9
 SHA256:
 41:C9:23:86:6A:B4:CA:D6:B7:AD:57:80:81:58:2E:02:07:97:A6:CB:DF:4F:FF:78:CE:83:96:B3:89:37:D7:F5
Alias name: mozillacert35.pem
 SHA1: 2A:C8:D5:8B:57:CE:BF:2F:49:AF:F2:FC:76:8F:51:14:62:90:7A:41
 SHA256:
 92:BF:51:19:AB:EC:CA:D0:B1:33:2D:C4:E1:D0:5F:BA:75:B5:67:90:44:EE:0C:A2:6E:93:1F:74:4F:2F:33:CF
Alias name: mozillacert36.pem
 SHA1: 23:88:C9:D3:71:CC:9E:96:3D:FF:7D:3C:A7:CE:FC:D6:25:EC:19:0D
 SHA256:
 32:7A:3D:76:1A:BA:DE:A0:34:EB:99:84:06:27:5C:B1:A4:77:6E:FD:AE:2F:DF:6D:01:68:EA:1C:4F:55:67:D0
Alias name: mozillacert37.pem
 SHA1: B1:2E:13:63:45:86:A4:6F:1A:B2:60:68:37:58:2D:C4:AC:FD:94:97
 SHA256:
 E3:B6:A2:DB:2E:D7:CE:48:84:2F:7A:C5:32:41:C7:B7:1D:54:14:4B:FB:40:C1:1F:3F:1D:0B:42:F5:EE:A1:2D
Alias name: mozillacert38.pem
 SHA1: CB:A1:C5:F8:B0:E3:5E:B8:B9:45:12:D3:F9:34:A2:E9:06:10:D3:36
 SHA256:
 A6:C5:1E:0D:A5:CA:0A:93:09:D2:E4:C0:E4:0C:2A:F9:10:7A:AE:82:03:85:7F:E1:98:E3:E7:69:E3:43:08:5C
Alias name: mozillacert39.pem
 SHA1: AE:50:83:ED:7C:F4:5C:BC:8F:61:C6:21:FE:68:5D:79:42:21:15:6E
 SHA256:
 E6:B8:F8:76:64:85:F8:07:AE:7F:8D:AC:16:70:46:1F:07:C0:A1:3E:EF:3A:1F:F7:17:53:8D:7A:BA:D3:91:B4
Alias name: mozillacert4.pem
 SHA1: E3:92:51:2F:0A:CF:F5:05:DF:F6:DE:06:7F:75:37:E1:65:EA:57:4B
 SHA256:
 0B:5E:ED:4E:84:64:03:CF:55:E0:65:84:84:40:ED:2A:82:75:8B:F5:B9:AA:1F:25:3D:46:13:CF:A0:80:FF:3F

Client certificates 924

Amazon API Gateway Developer Guide

Alias name: mozillacert40.pem
 SHA1: 80:25:EF:F4:6E:70:C8:D4:72:24:65:84:FE:40:3B:8A:8D:6A:DB:F5
 SHA256:
 8D:A0:84:FC:F9:9C:E0:77:22:F8:9B:32:05:93:98:06:FA:5C:B8:11:E1:C8:13:F6:A1:08:C7:D3:36:B3:40:8E
Alias name: mozillacert41.pem
 SHA1: 6B:2F:34:AD:89:58:BE:62:FD:B0:6B:5C:CE:BB:9D:D9:4F:4E:39:F3
 SHA256:
 EB:F3:C0:2A:87:89:B1:FB:7D:51:19:95:D6:63:B7:29:06:D9:13:CE:0D:5E:10:56:8A:8A:77:E2:58:61:67:E7
Alias name: mozillacert42.pem
 SHA1: 85:A4:08:C0:9C:19:3E:5D:51:58:7D:CD:D6:13:30:FD:8C:DE:37:BF
 SHA256:
 B6:19:1A:50:D0:C3:97:7F:7D:A9:9B:CD:AA:C8:6A:22:7D:AE:B9:67:9E:C7:0B:A3:B0:C9:D9:22:71:C1:70:D3
Alias name: mozillacert43.pem
 SHA1: F9:CD:0E:2C:DA:76:24:C1:8F:BD:F0:F0:AB:B6:45:B8:F7:FE:D5:7A
 SHA256:
 50:79:41:C7:44:60:A0:B4:70:86:22:0D:4E:99:32:57:2A:B5:D1:B5:BB:CB:89:80:AB:1C:B1:76:51:A8:44:D2
Alias name: mozillacert44.pem
 SHA1: 5F:43:E5:B1:BF:F8:78:8C:AC:1C:C7:CA:4A:9A:C6:22:2B:CC:34:C6
 SHA256:
 96:0A:DF:00:63:E9:63:56:75:0C:29:65:DD:0A:08:67:DA:0B:9C:BD:6E:77:71:4A:EA:FB:23:49:AB:39:3D:A3
Alias name: mozillacert45.pem
 SHA1: 67:65:0D:F1:7E:8E:7E:5B:82:40:A4:F4:56:4B:CF:E2:3D:69:C6:F0
 SHA256:
 C0:A6:F4:DC:63:A2:4B:FD:CF:54:EF:2A:6A:08:2A:0A:72:DE:35:80:3E:2F:F5:FF:52:7A:E5:D8:72:06:DF:D5
Alias name: mozillacert46.pem
 SHA1: 40:9D:4B:D9:17:B5:5C:27:B6:9B:64:CB:98:22:44:0D:CD:09:B8:89
 SHA256:
 EC:C3:E9:C3:40:75:03:BE:E0:91:AA:95:2F:41:34:8F:F8:8B:AA:86:3B:22:64:BE:FA:C8:07:90:15:74:E9:39
Alias name: mozillacert47.pem
 SHA1: 1B:4B:39:61:26:27:6B:64:91:A2:68:6D:D7:02:43:21:2D:1F:1D:96
 SHA256:
 E4:C7:34:30:D7:A5:B5:09:25:DF:43:37:0A:0D:21:6E:9A:79:B9:D6:DB:83:73:A0:C6:9E:B1:CC:31:C7:C5:2A
Alias name: mozillacert48.pem
 SHA1: A0:A1:AB:90:C9:FC:84:7B:3B:12:61:E8:97:7D:5F:D3:22:61:D3:CC
 SHA256:
 0F:4E:9C:DD:26:4B:02:55:50:D1:70:80:63:40:21:4F:E9:44:34:C9:B0:2F:69:7E:C7:10:FC:5F:EA:FB:5E:38
Alias name: mozillacert49.pem
 SHA1: 61:57:3A:11:DF:0E:D8:7E:D5:92:65:22:EA:D0:56:D7:44:B3:23:71
 SHA256:
 B7:B1:2B:17:1F:82:1D:AA:99:0C:D0:FE:50:87:B1:28:44:8B:A8:E5:18:4F:84:C5:1E:02:B5:C8:FB:96:2B:24
Alias name: mozillacert5.pem
 SHA1: B8:01:86:D1:EB:9C:86:A5:41:04:CF:30:54:F3:4C:52:B7:E5:58:C6
 SHA256:
 CE:CD:DC:90:50:99:D8:DA:DF:C5:B1:D2:09:B7:37:CB:E2:C1:8C:FB:2C:10:C0:FF:0B:CF:0D:32:86:FC:1A:A2

Client certificates 925

Amazon API Gateway Developer Guide

Alias name: mozillacert50.pem
 SHA1: 8C:96:BA:EB:DD:2B:07:07:48:EE:30:32:66:A0:F3:98:6E:7C:AE:58
 SHA256:
 35:AE:5B:DD:D8:F7:AE:63:5C:FF:BA:56:82:A8:F0:0B:95:F4:84:62:C7:10:8E:E9:A0:E5:29:2B:07:4A:AF:B2
Alias name: mozillacert51.pem
 SHA1: FA:B7:EE:36:97:26:62:FB:2D:B0:2A:F6:BF:03:FD:E8:7C:4B:2F:9B
 SHA256:
 EA:A9:62:C4:FA:4A:6B:AF:EB:E4:15:19:6D:35:1C:CD:88:8D:4F:53:F3:FA:8A:E6:D7:C4:66:A9:4E:60:42:BB
Alias name: mozillacert52.pem
 SHA1: 8B:AF:4C:9B:1D:F0:2A:92:F7:DA:12:8E:B9:1B:AC:F4:98:60:4B:6F
 SHA256:
 E2:83:93:77:3D:A8:45:A6:79:F2:08:0C:C7:FB:44:A3:B7:A1:C3:79:2C:B7:EB:77:29:FD:CB:6A:8D:99:AE:A7
Alias name: mozillacert53.pem
 SHA1: 7F:8A:B0:CF:D0:51:87:6A:66:F3:36:0F:47:C8:8D:8C:D3:35:FC:74
 SHA256:
 2D:47:43:7D:E1:79:51:21:5A:12:F3:C5:8E:51:C7:29:A5:80:26:EF:1F:CC:0A:5F:B3:D9:DC:01:2F:60:0D:19
Alias name: mozillacert54.pem
 SHA1: 03:9E:ED:B8:0B:E7:A0:3C:69:53:89:3B:20:D2:D9:32:3A:4C:2A:FD
 SHA256:
 B4:78:B8:12:25:0D:F8:78:63:5C:2A:A7:EC:7D:15:5E:AA:62:5E:E8:29:16:E2:CD:29:43:61:88:6C:D1:FB:D4
Alias name: mozillacert55.pem
 SHA1: AA:DB:BC:22:23:8F:C4:01:A1:27:BB:38:DD:F4:1D:DB:08:9E:F0:12
 SHA256:
 A4:31:0D:50:AF:18:A6:44:71:90:37:2A:86:AF:AF:8B:95:1F:FB:43:1D:83:7F:1E:56:88:B4:59:71:ED:15:57
Alias name: mozillacert56.pem
 SHA1: F1:8B:53:8D:1B:E9:03:B6:A6:F0:56:43:5B:17:15:89:CA:F3:6B:F2
 SHA256:
 4B:03:F4:58:07:AD:70:F2:1B:FC:2C:AE:71:C9:FD:E4:60:4C:06:4C:F5:FF:B6:86:BA:E5:DB:AA:D7:FD:D3:4C
Alias name: mozillacert57.pem
 SHA1: D6:DA:A8:20:8D:09:D2:15:4D:24:B5:2F:CB:34:6E:B2:58:B2:8A:58
 SHA256:
 F9:E6:7D:33:6C:51:00:2A:C0:54:C6:32:02:2D:66:DD:A2:E7:E3:FF:F1:0A:D0:61:ED:31:D8:BB:B4:10:CF:B2
Alias name: mozillacert58.pem
 SHA1: 8D:17:84:D5:37:F3:03:7D:EC:70:FE:57:8B:51:9A:99:E6:10:D7:B0
 SHA256:
 5E:DB:7A:C4:3B:82:A0:6A:87:61:E8:D7:BE:49:79:EB:F2:61:1F:7D:D7:9B:F9:1C:1C:6B:56:6A:21:9E:D7:66
Alias name: mozillacert59.pem
 SHA1: 36:79:CA:35:66:87:72:30:4D:30:A5:FB:87:3B:0F:A7:7B:B7:0D:54
 SHA256:
 23:99:56:11:27:A5:71:25:DE:8C:EF:EA:61:0D:DF:2F:A0:78:B5:C8:06:7F:4E:82:82:90:BF:B8:60:E8:4B:3C
Alias name: mozillacert6.pem
 SHA1: 27:96:BA:E6:3F:18:01:E2:77:26:1B:A0:D7:77:70:02:8F:20:EE:E4
 SHA256:
 C3:84:6B:F2:4B:9E:93:CA:64:27:4C:0E:C6:7C:1E:CC:5E:02:4F:FC:AC:D2:D7:40:19:35:0E:81:FE:54:6A:E4

Client certificates 926

Amazon API Gateway Developer Guide

Alias name: mozillacert60.pem
 SHA1: 3B:C4:9F:48:F8:F3:73:A0:9C:1E:BD:F8:5B:B1:C3:65:C7:D8:11:B3
 SHA256:
 BF:0F:EE:FB:9E:3A:58:1A:D5:F9:E9:DB:75:89:98:57:43:D2:61:08:5C:4D:31:4F:6F:5D:72:59:AA:42:16:12
Alias name: mozillacert61.pem
 SHA1: E0:B4:32:2E:B2:F6:A5:68:B6:54:53:84:48:18:4A:50:36:87:43:84
 SHA256:
 03:95:0F:B4:9A:53:1F:3E:19:91:94:23:98:DF:A9:E0:EA:32:D7:BA:1C:DD:9B:C8:5D:B5:7E:D9:40:0B:43:4A
Alias name: mozillacert62.pem
 SHA1: A1:DB:63:93:91:6F:17:E4:18:55:09:40:04:15:C7:02:40:B0:AE:6B
 SHA256:
 A4:B6:B3:99:6F:C2:F3:06:B3:FD:86:81:BD:63:41:3D:8C:50:09:CC:4F:A3:29:C2:CC:F0:E2:FA:1B:14:03:05
Alias name: mozillacert63.pem
 SHA1: 89:DF:74:FE:5C:F4:0F:4A:80:F9:E3:37:7D:54:DA:91:E1:01:31:8E
 SHA256:
 3C:5F:81:FE:A5:FA:B8:2C:64:BF:A2:EA:EC:AF:CD:E8:E0:77:FC:86:20:A7:CA:E5:37:16:3D:F3:6E:DB:F3:78
Alias name: mozillacert64.pem
 SHA1: 62:7F:8D:78:27:65:63:99:D2:7D:7F:90:44:C9:FE:B3:F3:3E:FA:9A
 SHA256:
 AB:70:36:36:5C:71:54:AA:29:C2:C2:9F:5D:41:91:16:3B:16:2A:22:25:01:13:57:D5:6D:07:FF:A7:BC:1F:72
Alias name: mozillacert65.pem
 SHA1: 69:BD:8C:F4:9C:D3:00:FB:59:2E:17:93:CA:55:6A:F3:EC:AA:35:FB
 SHA256:
 BC:23:F9:8A:31:3C:B9:2D:E3:BB:FC:3A:5A:9F:44:61:AC:39:49:4C:4A:E1:5A:9E:9D:F1:31:E9:9B:73:01:9A
Alias name: mozillacert66.pem
 SHA1: DD:E1:D2:A9:01:80:2E:1D:87:5E:84:B3:80:7E:4B:B1:FD:99:41:34
 SHA256:
 E6:09:07:84:65:A4:19:78:0C:B6:AC:4C:1C:0B:FB:46:53:D9:D9:CC:6E:B3:94:6E:B7:F3:D6:99:97:BA:D5:98
Alias name: mozillacert67.pem
 SHA1: D6:9B:56:11:48:F0:1C:77:C5:45:78:C1:09:26:DF:5B:85:69:76:AD
 SHA256:
 CB:B5:22:D7:B7:F1:27:AD:6A:01:13:86:5B:DF:1C:D4:10:2E:7D:07:59:AF:63:5A:7C:F4:72:0D:C9:63:C5:3B
Alias name: mozillacert68.pem
 SHA1: AE:C5:FB:3F:C8:E1:BF:C4:E5:4F:03:07:5A:9A:E8:00:B7:F7:B6:FA
 SHA256:
 04:04:80:28:BF:1F:28:64:D4:8F:9A:D4:D8:32:94:36:6A:82:88:56:55:3F:3B:14:30:3F:90:14:7F:5D:40:EF
Alias name: mozillacert69.pem
 SHA1: 2F:78:3D:25:52:18:A7:4A:65:39:71:B5:2C:A2:9C:45:15:6F:E9:19
 SHA256:
 25:30:CC:8E:98:32:15:02:BA:D9:6F:9B:1F:BA:1B:09:9E:2D:29:9E:0F:45:48:BB:91:4F:36:3B:C0:D4:53:1F
Alias name: mozillacert7.pem
 SHA1: AD:7E:1C:28:B0:64:EF:8F:60:03:40:20:14:C3:D0:E3:37:0E:B5:8A
 SHA256:
 14:65:FA:20:53:97:B8:76:FA:A6:F0:A9:95:8E:55:90:E4:0F:CC:7F:AA:4F:B7:C2:C8:67:75:21:FB:5F:B6:58

Client certificates 927

Amazon API Gateway Developer Guide

Alias name: mozillacert70.pem
 SHA1: 78:6A:74:AC:76:AB:14:7F:9C:6A:30:50:BA:9E:A8:7E:FE:9A:CE:3C
 SHA256:
 06:3E:4A:FA:C4:91:DF:D3:32:F3:08:9B:85:42:E9:46:17:D8:93:D7:FE:94:4E:10:A7:93:7E:E2:9D:96:93:C0
Alias name: mozillacert71.pem
 SHA1: 4A:BD:EE:EC:95:0D:35:9C:89:AE:C7:52:A1:2C:5B:29:F6:D6:AA:0C
 SHA256:
 13:63:35:43:93:34:A7:69:80:16:A0:D3:24:DE:72:28:4E:07:9D:7B:52:20:BB:8F:BD:74:78:16:EE:BE:BA:CA
Alias name: mozillacert72.pem
 SHA1: 47:BE:AB:C9:22:EA:E8:0E:78:78:34:62:A7:9F:45:C2:54:FD:E6:8B
 SHA256:
 45:14:0B:32:47:EB:9C:C8:C5:B4:F0:D7:B5:30:91:F7:32:92:08:9E:6E:5A:63:E2:74:9D:D3:AC:A9:19:8E:DA
Alias name: mozillacert73.pem
 SHA1: B5:1C:06:7C:EE:2B:0C:3D:F8:55:AB:2D:92:F4:FE:39:D4:E7:0F:0E
 SHA256:
 2C:E1:CB:0B:F9:D2:F9:E1:02:99:3F:BE:21:51:52:C3:B2:DD:0C:AB:DE:1C:68:E5:31:9B:83:91:54:DB:B7:F5
Alias name: mozillacert74.pem
 SHA1: 92:5A:8F:8D:2C:6D:04:E0:66:5F:59:6A:FF:22:D8:63:E8:25:6F:3F
 SHA256:
 56:8D:69:05:A2:C8:87:08:A4:B3:02:51:90:ED:CF:ED:B1:97:4A:60:6A:13:C6:E5:29:0F:CB:2A:E6:3E:DA:B5
Alias name: mozillacert75.pem
 SHA1: D2:32:09:AD:23:D3:14:23:21:74:E4:0D:7F:9D:62:13:97:86:63:3A
 SHA256:
 08:29:7A:40:47:DB:A2:36:80:C7:31:DB:6E:31:76:53:CA:78:48:E1:BE:BD:3A:0B:01:79:A7:07:F9:2C:F1:78
Alias name: mozillacert76.pem
 SHA1: F9:B5:B6:32:45:5F:9C:BE:EC:57:5F:80:DC:E9:6E:2C:C7:B2:78:B7
 SHA256:
 03:76:AB:1D:54:C5:F9:80:3C:E4:B2:E2:01:A0:EE:7E:EF:7B:57:B6:36:E8:A9:3C:9B:8D:48:60:C9:6F:5F:A7
Alias name: mozillacert77.pem
 SHA1: 13:2D:0D:45:53:4B:69:97:CD:B2:D5:C3:39:E2:55:76:60:9B:5C:C6
 SHA256:
 EB:04:CF:5E:B1:F3:9A:FA:76:2F:2B:B1:20:F2:96:CB:A5:20:C1:B9:7D:B1:58:95:65:B8:1C:B9:A1:7B:72:44
Alias name: mozillacert78.pem
 SHA1: 29:36:21:02:8B:20:ED:02:F5:66:C5:32:D1:D6:ED:90:9F:45:00:2F
 SHA256:
 0A:81:EC:5A:92:97:77:F1:45:90:4A:F3:8D:5D:50:9F:66:B5:E2:C5:8F:CD:B5:31:05:8B:0E:17:F3:F0:B4:1B
Alias name: mozillacert79.pem
 SHA1: D8:A6:33:2C:E0:03:6F:B1:85:F6:63:4F:7D:6A:06:65:26:32:28:27
 SHA256:
 70:A7:3F:7F:37:6B:60:07:42:48:90:45:34:B1:14:82:D5:BF:0E:69:8E:CC:49:8D:F5:25:77:EB:F2:E9:3B:9A
Alias name: mozillacert8.pem
 SHA1: 3E:2B:F7:F2:03:1B:96:F3:8C:E6:C4:D8:A8:5D:3E:2D:58:47:6A:0F
 SHA256:
 C7:66:A9:BE:F2:D4:07:1C:86:3A:31:AA:49:20:E8:13:B2:D1:98:60:8C:B7:B7:CF:E2:11:43:B8:36:DF:09:EA

Client certificates 928

Amazon API Gateway Developer Guide

Alias name: mozillacert80.pem
 SHA1: B8:23:6B:00:2F:1D:16:86:53:01:55:6C:11:A4:37:CA:EB:FF:C3:BB
 SHA256:
 BD:71:FD:F6:DA:97:E4:CF:62:D1:64:7A:DD:25:81:B0:7D:79:AD:F8:39:7E:B4:EC:BA:9C:5E:84:88:82:14:23
Alias name: mozillacert81.pem
 SHA1: 07:E0:32:E0:20:B7:2C:3F:19:2F:06:28:A2:59:3A:19:A7:0F:06:9E
 SHA256:
 5C:58:46:8D:55:F5:8E:49:7E:74:39:82:D2:B5:00:10:B6:D1:65:37:4A:CF:83:A7:D4:A3:2D:B7:68:C4:40:8E
Alias name: mozillacert82.pem
 SHA1: 2E:14:DA:EC:28:F0:FA:1E:8E:38:9A:4E:AB:EB:26:C0:0A:D3:83:C3
 SHA256:
 FC:BF:E2:88:62:06:F7:2B:27:59:3C:8B:07:02:97:E1:2D:76:9E:D1:0E:D7:93:07:05:A8:09:8E:FF:C1:4D:17
Alias name: mozillacert83.pem
 SHA1: A0:73:E5:C5:BD:43:61:0D:86:4C:21:13:0A:85:58:57:CC:9C:EA:46
 SHA256:
 8C:4E:DF:D0:43:48:F3:22:96:9E:7E:29:A4:CD:4D:CA:00:46:55:06:1C:16:E1:B0:76:42:2E:F3:42:AD:63:0E
Alias name: mozillacert84.pem
 SHA1: D3:C0:63:F2:19:ED:07:3E:34:AD:5D:75:0B:32:76:29:FF:D5:9A:F2
 SHA256:
 79:3C:BF:45:59:B9:FD:E3:8A:B2:2D:F1:68:69:F6:98:81:AE:14:C4:B0:13:9A:C7:88:A7:8A:1A:FC:CA:02:FB
Alias name: mozillacert85.pem
 SHA1: CF:9E:87:6D:D3:EB:FC:42:26:97:A3:B5:A3:7A:A0:76:A9:06:23:48
 SHA256:
 BF:D8:8F:E1:10:1C:41:AE:3E:80:1B:F8:BE:56:35:0E:E9:BA:D1:A6:B9:BD:51:5E:DC:5C:6D:5B:87:11:AC:44
Alias name: mozillacert86.pem
 SHA1: 74:2C:31:92:E6:07:E4:24:EB:45:49:54:2B:E1:BB:C5:3E:61:74:E2
 SHA256:
 E7:68:56:34:EF:AC:F6:9A:CE:93:9A:6B:25:5B:7B:4F:AB:EF:42:93:5B:50:A2:65:AC:B5:CB:60:27:E4:4E:70
Alias name: mozillacert87.pem
 SHA1: 5F:3B:8C:F2:F8:10:B3:7D:78:B4:CE:EC:19:19:C3:73:34:B9:C7:74
 SHA256:
 51:3B:2C:EC:B8:10:D4:CD:E5:DD:85:39:1A:DF:C6:C2:DD:60:D8:7B:B7:36:D2:B5:21:48:4A:A4:7A:0E:BE:F6
Alias name: mozillacert88.pem
 SHA1: FE:45:65:9B:79:03:5B:98:A1:61:B5:51:2E:AC:DA:58:09:48:22:4D
 SHA256:
 BC:10:4F:15:A4:8B:E7:09:DC:A5:42:A7:E1:D4:B9:DF:6F:05:45:27:E8:02:EA:A9:2D:59:54:44:25:8A:FE:71
Alias name: mozillacert89.pem
 SHA1: C8:EC:8C:87:92:69:CB:4B:AB:39:E9:8D:7E:57:67:F3:14:95:73:9D
 SHA256:
 E3:89:36:0D:0F:DB:AE:B3:D2:50:58:4B:47:30:31:4E:22:2F:39:C1:56:A0:20:14:4E:8D:96:05:61:79:15:06
Alias name: mozillacert9.pem
 SHA1: F4:8B:11:BF:DE:AB:BE:94:54:20:71:E6:41:DE:6B:BE:88:2B:40:B9
 SHA256:
 76:00:29:5E:EF:E8:5B:9E:1F:D6:24:DB:76:06:2A:AA:AE:59:81:8A:54:D2:77:4C:D4:C0:B2:C0:11:31:E1:B3

Client certificates 929

Amazon API Gateway Developer Guide

Alias name: mozillacert90.pem
 SHA1: F3:73:B3:87:06:5A:28:84:8A:F2:F3:4A:CE:19:2B:DD:C7:8E:9C:AC
 SHA256:
 55:92:60:84:EC:96:3A:64:B9:6E:2A:BE:01:CE:0B:A8:6A:64:FB:FE:BC:C7:AA:B5:AF:C1:55:B3:7F:D7:60:66
Alias name: mozillacert91.pem
 SHA1: 3B:C0:38:0B:33:C3:F6:A6:0C:86:15:22:93:D9:DF:F5:4B:81:C0:04
 SHA256:
 C1:B4:82:99:AB:A5:20:8F:E9:63:0A:CE:55:CA:68:A0:3E:DA:5A:51:9C:88:02:A0:D3:A6:73:BE:8F:8E:55:7D
Alias name: mozillacert92.pem
 SHA1: A3:F1:33:3F:E2:42:BF:CF:C5:D1:4E:8F:39:42:98:40:68:10:D1:A0
 SHA256:
 E1:78:90:EE:09:A3:FB:F4:F4:8B:9C:41:4A:17:D6:37:B7:A5:06:47:E9:BC:75:23:22:72:7F:CC:17:42:A9:11
Alias name: mozillacert93.pem
 SHA1: 31:F1:FD:68:22:63:20:EE:C6:3B:3F:9D:EA:4A:3E:53:7C:7C:39:17
 SHA256:
 C7:BA:65:67:DE:93:A7:98:AE:1F:AA:79:1E:71:2D:37:8F:AE:1F:93:C4:39:7F:EA:44:1B:B7:CB:E6:FD:59:95
Alias name: mozillacert94.pem
 SHA1: 49:0A:75:74:DE:87:0A:47:FE:58:EE:F6:C7:6B:EB:C6:0B:12:40:99
 SHA256:
 9A:11:40:25:19:7C:5B:B9:5D:94:E6:3D:55:CD:43:79:08:47:B6:46:B2:3C:DF:11:AD:A4:A0:0E:FF:15:FB:48
Alias name: mozillacert95.pem
 SHA1: DA:FA:F7:FA:66:84:EC:06:8F:14:50:BD:C7:C2:81:A5:BC:A9:64:57
 SHA256:
 ED:F7:EB:BC:A2:7A:2A:38:4D:38:7B:7D:40:10:C6:66:E2:ED:B4:84:3E:4C:29:B4:AE:1D:5B:93:32:E6:B2:4D
Alias name: mozillacert96.pem
 SHA1: 55:A6:72:3E:CB:F2:EC:CD:C3:23:74:70:19:9D:2A:BE:11:E3:81:D1
 SHA256:
 FD:73:DA:D3:1C:64:4F:F1:B4:3B:EF:0C:CD:DA:96:71:0B:9C:D9:87:5E:CA:7E:31:70:7A:F3:E9:6D:52:2B:BD
Alias name: mozillacert97.pem
 SHA1: 85:37:1C:A6:E5:50:14:3D:CE:28:03:47:1B:DE:3A:09:E8:F8:77:0F
 SHA256:
 83:CE:3C:12:29:68:8A:59:3D:48:5F:81:97:3C:0F:91:95:43:1E:DA:37:CC:5E:36:43:0E:79:C7:A8:88:63:8B
Alias name: mozillacert98.pem
 SHA1: C9:A8:B9:E7:55:80:5E:58:E3:53:77:A7:25:EB:AF:C3:7B:27:CC:D7
 SHA256:
 3E:84:BA:43:42:90:85:16:E7:75:73:C0:99:2F:09:79:CA:08:4E:46:85:68:1F:F1:95:CC:BA:8A:22:9B:8A:76
Alias name: mozillacert99.pem
 SHA1: F1:7F:6F:B6:31:DC:99:E3:A3:C8:7F:FE:1C:F1:81:10:88:D9:60:33
 SHA256:
 97:8C:D9:66:F2:FA:A0:7B:A7:AA:95:00:D9:C0:2E:9D:77:F2:CD:AD:A6:AD:6B:A7:4A:F4:B9:1C:66:59:3C:50
Alias name: netlockaranyclassgoldfotanusitvany
 SHA1: 06:08:3F:59:3F:15:A1:04:A0:69:A4:6B:A9:03:D0:06:B7:97:09:91
 SHA256:
 6C:61:DA:C3:A2:DE:F0:31:50:6B:E0:36:D2:A6:FE:40:19:94:FB:D1:3D:F9:C8:D4:66:59:92:74:C4:46:EC:98

Client certificates 930

Amazon API Gateway Developer Guide

Alias name: networksolutionscertificateauthority
 SHA1: 74:F8:A3:C3:EF:E7:B3:90:06:4B:83:90:3C:21:64:60:20:E5:DF:CE
 SHA256:
 15:F0:BA:00:A3:AC:7A:F3:AC:88:4C:07:2B:10:11:A0:77:BD:77:C0:97:F4:01:64:B2:F8:59:8A:BD:83:86:0C
Alias name: oistewisekeyglobalrootgaca
 SHA1: 59:22:A1:E1:5A:EA:16:35:21:F8:98:39:6A:46:46:B0:44:1B:0F:A9
 SHA256:
 41:C9:23:86:6A:B4:CA:D6:B7:AD:57:80:81:58:2E:02:07:97:A6:CB:DF:4F:FF:78:CE:83:96:B3:89:37:D7:F5
Alias name: oistewisekeyglobalrootgbca
 SHA1: 0F:F9:40:76:18:D3:D7:6A:4B:98:F0:A8:35:9E:0C:FD:27:AC:CC:ED
 SHA256:
 6B:9C:08:E8:6E:B0:F7:67:CF:AD:65:CD:98:B6:21:49:E5:49:4A:67:F5:84:5E:7B:D1:ED:01:9F:27:B8:6B:D6
Alias name: oistewisekeyglobalrootgcca
 SHA1: E0:11:84:5E:34:DE:BE:88:81:B9:9C:F6:16:26:D1:96:1F:C3:B9:31
 SHA256:
 85:60:F9:1C:36:24:DA:BA:95:70:B5:FE:A0:DB:E3:6F:F1:1A:83:23:BE:94:86:85:4F:B3:F3:4A:55:71:19:8D
Alias name: quovadisrootca
 SHA1: DE:3F:40:BD:50:93:D3:9B:6C:60:F6:DA:BC:07:62:01:00:89:76:C9
 SHA256:
 A4:5E:DE:3B:BB:F0:9C:8A:E1:5C:72:EF:C0:72:68:D6:93:A2:1C:99:6F:D5:1E:67:CA:07:94:60:FD:6D:88:73
Alias name: quovadisrootca1g3
 SHA1: 1B:8E:EA:57:96:29:1A:C9:39:EA:B8:0A:81:1A:73:73:C0:93:79:67
 SHA256:
 8A:86:6F:D1:B2:76:B5:7E:57:8E:92:1C:65:82:8A:2B:ED:58:E9:F2:F2:88:05:41:34:B7:F1:F4:BF:C9:CC:74
Alias name: quovadisrootca2
 SHA1: CA:3A:FB:CF:12:40:36:4B:44:B2:16:20:88:80:48:39:19:93:7C:F7
 SHA256:
 85:A0:DD:7D:D7:20:AD:B7:FF:05:F8:3D:54:2B:20:9D:C7:FF:45:28:F7:D6:77:B1:83:89:FE:A5:E5:C4:9E:86
Alias name: quovadisrootca2g3
 SHA1: 09:3C:61:F3:8B:8B:DC:7D:55:DF:75:38:02:05:00:E1:25:F5:C8:36
 SHA256:
 8F:E4:FB:0A:F9:3A:4D:0D:67:DB:0B:EB:B2:3E:37:C7:1B:F3:25:DC:BC:DD:24:0E:A0:4D:AF:58:B4:7E:18:40
Alias name: quovadisrootca3
 SHA1: 1F:49:14:F7:D8:74:95:1D:DD:AE:02:C0:BE:FD:3A:2D:82:75:51:85
 SHA256:
 18:F1:FC:7F:20:5D:F8:AD:DD:EB:7F:E0:07:DD:57:E3:AF:37:5A:9C:4D:8D:73:54:6B:F4:F1:FE:D1:E1:8D:35
Alias name: quovadisrootca3g3
 SHA1: 48:12:BD:92:3C:A8:C4:39:06:E7:30:6D:27:96:E6:A4:CF:22:2E:7D
 SHA256:
 88:EF:81:DE:20:2E:B0:18:45:2E:43:F8:64:72:5C:EA:5F:BD:1F:C2:D9:D2:05:73:07:09:C5:D8:B8:69:0F:46
Alias name: secomevrootca1
 SHA1: FE:B8:C4:32:DC:F9:76:9A:CE:AE:3D:D8:90:8F:FD:28:86:65:64:7D
 SHA256:
 A2:2D:BA:68:1E:97:37:6E:2D:39:7D:72:8A:AE:3A:9B:62:96:B9:FD:BA:60:BC:2E:11:F6:47:F2:C6:75:FB:37

Client certificates 931

Amazon API Gateway Developer Guide

Alias name: secomscrootca1
 SHA1: 36:B1:2B:49:F9:81:9E:D7:4C:9E:BC:38:0F:C6:56:8F:5D:AC:B2:F7
 SHA256:
 E7:5E:72:ED:9F:56:0E:EC:6E:B4:80:00:73:A4:3F:C3:AD:19:19:5A:39:22:82:01:78:95:97:4A:99:02:6B:6C
Alias name: secomscrootca2
 SHA1: 5F:3B:8C:F2:F8:10:B3:7D:78:B4:CE:EC:19:19:C3:73:34:B9:C7:74
 SHA256:
 51:3B:2C:EC:B8:10:D4:CD:E5:DD:85:39:1A:DF:C6:C2:DD:60:D8:7B:B7:36:D2:B5:21:48:4A:A4:7A:0E:BE:F6
Alias name: secomvalicertclass1ca
 SHA1: E5:DF:74:3C:B6:01:C4:9B:98:43:DC:AB:8C:E8:6A:81:10:9F:E4:8E
 SHA256:
 F4:C1:49:55:1A:30:13:A3:5B:C7:BF:FE:17:A7:F3:44:9B:C1:AB:5B:5A:0A:E7:4B:06:C2:3B:90:00:4C:01:04
Alias name: secureglobalca
 SHA1: 3A:44:73:5A:E5:81:90:1F:24:86:61:46:1E:3B:9C:C4:5F:F5:3A:1B
 SHA256:
 42:00:F5:04:3A:C8:59:0E:BB:52:7D:20:9E:D1:50:30:29:FB:CB:D4:1C:A1:B5:06:EC:27:F1:5A:DE:7D:AC:69
Alias name: securesignrootca11
 SHA1: 3B:C4:9F:48:F8:F3:73:A0:9C:1E:BD:F8:5B:B1:C3:65:C7:D8:11:B3
 SHA256:
 BF:0F:EE:FB:9E:3A:58:1A:D5:F9:E9:DB:75:89:98:57:43:D2:61:08:5C:4D:31:4F:6F:5D:72:59:AA:42:16:12
Alias name: securetrustca
 SHA1: 87:82:C6:C3:04:35:3B:CF:D2:96:92:D2:59:3E:7D:44:D9:34:FF:11
 SHA256:
 F1:C1:B5:0A:E5:A2:0D:D8:03:0E:C9:F6:BC:24:82:3D:D3:67:B5:25:57:59:B4:E7:1B:61:FC:E9:F7:37:5D:73
Alias name: securitycommunicationrootca
 SHA1: 36:B1:2B:49:F9:81:9E:D7:4C:9E:BC:38:0F:C6:56:8F:5D:AC:B2:F7
 SHA256:
 E7:5E:72:ED:9F:56:0E:EC:6E:B4:80:00:73:A4:3F:C3:AD:19:19:5A:39:22:82:01:78:95:97:4A:99:02:6B:6C
Alias name: securitycommunicationrootca2
 SHA1: 5F:3B:8C:F2:F8:10:B3:7D:78:B4:CE:EC:19:19:C3:73:34:B9:C7:74
 SHA256:
 51:3B:2C:EC:B8:10:D4:CD:E5:DD:85:39:1A:DF:C6:C2:DD:60:D8:7B:B7:36:D2:B5:21:48:4A:A4:7A:0E:BE:F6
Alias name: soneraclass1ca
 SHA1: 07:47:22:01:99:CE:74:B9:7C:B0:3D:79:B2:64:A2:C8:55:E9:33:FF
 SHA256:
 CD:80:82:84:CF:74:6F:F2:FD:6E:B5:8A:A1:D5:9C:4A:D4:B3:CA:56:FD:C6:27:4A:89:26:A7:83:5F:32:31:3D
Alias name: soneraclass2ca
 SHA1: 37:F7:6D:E6:07:7C:90:C5:B1:3E:93:1A:B7:41:10:B4:F2:E4:9A:27
 SHA256:
 79:08:B4:03:14:C1:38:10:0B:51:8D:07:35:80:7F:FB:FC:F8:51:8A:00:95:33:71:05:BA:38:6B:15:3D:D9:27
Alias name: soneraclass2rootca
 SHA1: 37:F7:6D:E6:07:7C:90:C5:B1:3E:93:1A:B7:41:10:B4:F2:E4:9A:27
 SHA256:
 79:08:B4:03:14:C1:38:10:0B:51:8D:07:35:80:7F:FB:FC:F8:51:8A:00:95:33:71:05:BA:38:6B:15:3D:D9:27

Client certificates 932

Amazon API Gateway Developer Guide

Alias name: sslcomevrootcertificationauthorityecc
 SHA1: 4C:DD:51:A3:D1:F5:20:32:14:B0:C6:C5:32:23:03:91:C7:46:42:6D
 SHA256:
 22:A2:C1:F7:BD:ED:70:4C:C1:E7:01:B5:F4:08:C3:10:88:0F:E9:56:B5:DE:2A:4A:44:F9:9C:87:3A:25:A7:C8
Alias name: sslcomevrootcertificationauthorityrsar2
 SHA1: 74:3A:F0:52:9B:D0:32:A0:F4:4A:83:CD:D4:BA:A9:7B:7C:2E:C4:9A
 SHA256:
 2E:7B:F1:6C:C2:24:85:A7:BB:E2:AA:86:96:75:07:61:B0:AE:39:BE:3B:2F:E9:D0:CC:6D:4E:F7:34:91:42:5C
Alias name: sslcomrootcertificationauthorityecc
 SHA1: C3:19:7C:39:24:E6:54:AF:1B:C4:AB:20:95:7A:E2:C3:0E:13:02:6A
 SHA256:
 34:17:BB:06:CC:60:07:DA:1B:96:1C:92:0B:8A:B4:CE:3F:AD:82:0E:4A:A3:0B:9A:CB:C4:A7:4E:BD:CE:BC:65
Alias name: sslcomrootcertificationauthorityrsa
 SHA1: B7:AB:33:08:D1:EA:44:77:BA:14:80:12:5A:6F:BD:A9:36:49:0C:BB
 SHA256:
 85:66:6A:56:2E:E0:BE:5C:E9:25:C1:D8:89:0A:6F:76:A8:7E:C1:6D:4D:7D:5F:29:EA:74:19:CF:20:12:3B:69
Alias name: staatdernederlandenevrootca
 SHA1: 76:E2:7E:C1:4F:DB:82:C1:C0:A6:75:B5:05:BE:3D:29:B4:ED:DB:BB
 SHA256:
 4D:24:91:41:4C:FE:95:67:46:EC:4C:EF:A6:CF:6F:72:E2:8A:13:29:43:2F:9D:8A:90:7A:C4:CB:5D:AD:C1:5A
Alias name: staatdernederlandenrootcag3
 SHA1: D8:EB:6B:41:51:92:59:E0:F3:E7:85:00:C0:3D:B6:88:97:C9:EE:FC
 SHA256:
 3C:4F:B0:B9:5A:B8:B3:00:32:F4:32:B8:6F:53:5F:E1:72:C1:85:D0:FD:39:86:58:37:CF:36:18:7F:A6:F4:28
Alias name: starfieldclass2ca
 SHA1: AD:7E:1C:28:B0:64:EF:8F:60:03:40:20:14:C3:D0:E3:37:0E:B5:8A
 SHA256:
 14:65:FA:20:53:97:B8:76:FA:A6:F0:A9:95:8E:55:90:E4:0F:CC:7F:AA:4F:B7:C2:C8:67:75:21:FB:5F:B6:58
Alias name: starfieldrootcertificateauthorityg2
 SHA1: B5:1C:06:7C:EE:2B:0C:3D:F8:55:AB:2D:92:F4:FE:39:D4:E7:0F:0E
 SHA256:
 2C:E1:CB:0B:F9:D2:F9:E1:02:99:3F:BE:21:51:52:C3:B2:DD:0C:AB:DE:1C:68:E5:31:9B:83:91:54:DB:B7:F5
Alias name: starfieldrootg2ca
 SHA1: B5:1C:06:7C:EE:2B:0C:3D:F8:55:AB:2D:92:F4:FE:39:D4:E7:0F:0E
 SHA256:
 2C:E1:CB:0B:F9:D2:F9:E1:02:99:3F:BE:21:51:52:C3:B2:DD:0C:AB:DE:1C:68:E5:31:9B:83:91:54:DB:B7:F5
Alias name: starfieldservicesrootcertificateauthorityg2
 SHA1: 92:5A:8F:8D:2C:6D:04:E0:66:5F:59:6A:FF:22:D8:63:E8:25:6F:3F
 SHA256:
 56:8D:69:05:A2:C8:87:08:A4:B3:02:51:90:ED:CF:ED:B1:97:4A:60:6A:13:C6:E5:29:0F:CB:2A:E6:3E:DA:B5
Alias name: starfieldservicesrootg2ca
 SHA1: 92:5A:8F:8D:2C:6D:04:E0:66:5F:59:6A:FF:22:D8:63:E8:25:6F:3F
 SHA256:
 56:8D:69:05:A2:C8:87:08:A4:B3:02:51:90:ED:CF:ED:B1:97:4A:60:6A:13:C6:E5:29:0F:CB:2A:E6:3E:DA:B5

Client certificates 933

Amazon API Gateway Developer Guide

Alias name: swisssigngoldcag2
 SHA1: D8:C5:38:8A:B7:30:1B:1B:6E:D4:7A:E6:45:25:3A:6F:9F:1A:27:61
 SHA256:
 62:DD:0B:E9:B9:F5:0A:16:3E:A0:F8:E7:5C:05:3B:1E:CA:57:EA:55:C8:68:8F:64:7C:68:81:F2:C8:35:7B:95
Alias name: swisssigngoldg2ca
 SHA1: D8:C5:38:8A:B7:30:1B:1B:6E:D4:7A:E6:45:25:3A:6F:9F:1A:27:61
 SHA256:
 62:DD:0B:E9:B9:F5:0A:16:3E:A0:F8:E7:5C:05:3B:1E:CA:57:EA:55:C8:68:8F:64:7C:68:81:F2:C8:35:7B:95
Alias name: swisssignplatinumg2ca
 SHA1: 56:E0:FA:C0:3B:8F:18:23:55:18:E5:D3:11:CA:E8:C2:43:31:AB:66
 SHA256:
 3B:22:2E:56:67:11:E9:92:30:0D:C0:B1:5A:B9:47:3D:AF:DE:F8:C8:4D:0C:EF:7D:33:17:B4:C1:82:1D:14:36
Alias name: swisssignsilvercag2
 SHA1: 9B:AA:E5:9F:56:EE:21:CB:43:5A:BE:25:93:DF:A7:F0:40:D1:1D:CB
 SHA256:
 BE:6C:4D:A2:BB:B9:BA:59:B6:F3:93:97:68:37:42:46:C3:C0:05:99:3F:A9:8F:02:0D:1D:ED:BE:D4:8A:81:D5
Alias name: swisssignsilverg2ca
 SHA1: 9B:AA:E5:9F:56:EE:21:CB:43:5A:BE:25:93:DF:A7:F0:40:D1:1D:CB
 SHA256:
 BE:6C:4D:A2:BB:B9:BA:59:B6:F3:93:97:68:37:42:46:C3:C0:05:99:3F:A9:8F:02:0D:1D:ED:BE:D4:8A:81:D5
Alias name: szafirrootca2
 SHA1: E2:52:FA:95:3F:ED:DB:24:60:BD:6E:28:F3:9C:CC:CF:5E:B3:3F:DE
 SHA256:
 A1:33:9D:33:28:1A:0B:56:E5:57:D3:D3:2B:1C:E7:F9:36:7E:B0:94:BD:5F:A7:2A:7E:50:04:C8:DE:D7:CA:FE
Alias name: teliasonerarootcav1
 SHA1: 43:13:BB:96:F1:D5:86:9B:C1:4E:6A:92:F6:CF:F6:34:69:87:82:37
 SHA256:
 DD:69:36:FE:21:F8:F0:77:C1:23:A1:A5:21:C1:22:24:F7:22:55:B7:3E:03:A7:26:06:93:E8:A2:4B:0F:A3:89
Alias name: thawtepersonalfreemailca
 SHA1: E6:18:83:AE:84:CA:C1:C1:CD:52:AD:E8:E9:25:2B:45:A6:4F:B7:E2
 SHA256:
 5B:38:BD:12:9E:83:D5:A0:CA:D2:39:21:08:94:90:D5:0D:4A:AE:37:04:28:F8:DD:FF:FF:FA:4C:15:64:E1:84
Alias name: thawtepremiumserverca
 SHA1: E0:AB:05:94:20:72:54:93:05:60:62:02:36:70:F7:CD:2E:FC:66:66
 SHA256:
 3F:9F:27:D5:83:20:4B:9E:09:C8:A3:D2:06:6C:4B:57:D3:A2:47:9C:36:93:65:08:80:50:56:98:10:5D:BC:E9
Alias name: thawteprimaryrootca
 SHA1: 91:C6:D6:EE:3E:8A:C8:63:84:E5:48:C2:99:29:5C:75:6C:81:7B:81
 SHA256:
 8D:72:2F:81:A9:C1:13:C0:79:1D:F1:36:A2:96:6D:B2:6C:95:0A:97:1D:B4:6B:41:99:F4:EA:54:B7:8B:FB:9F
Alias name: thawteprimaryrootcag2
 SHA1: AA:DB:BC:22:23:8F:C4:01:A1:27:BB:38:DD:F4:1D:DB:08:9E:F0:12
 SHA256:
 A4:31:0D:50:AF:18:A6:44:71:90:37:2A:86:AF:AF:8B:95:1F:FB:43:1D:83:7F:1E:56:88:B4:59:71:ED:15:57

Client certificates 934

Amazon API Gateway Developer Guide

Alias name: thawteprimaryrootcag3
 SHA1: F1:8B:53:8D:1B:E9:03:B6:A6:F0:56:43:5B:17:15:89:CA:F3:6B:F2
 SHA256:
 4B:03:F4:58:07:AD:70:F2:1B:FC:2C:AE:71:C9:FD:E4:60:4C:06:4C:F5:FF:B6:86:BA:E5:DB:AA:D7:FD:D3:4C
Alias name: thawteserverca
 SHA1: 9F:AD:91:A6:CE:6A:C6:C5:00:47:C4:4E:C9:D4:A5:0D:92:D8:49:79
 SHA256:
 87:C6:78:BF:B8:B2:5F:38:F7:E9:7B:33:69:56:BB:CF:14:4B:BA:CA:A5:36:47:E6:1A:23:25:BC:10:55:31:6B
Alias name: trustcenterclass2caii
 SHA1: AE:50:83:ED:7C:F4:5C:BC:8F:61:C6:21:FE:68:5D:79:42:21:15:6E
 SHA256:
 E6:B8:F8:76:64:85:F8:07:AE:7F:8D:AC:16:70:46:1F:07:C0:A1:3E:EF:3A:1F:F7:17:53:8D:7A:BA:D3:91:B4
Alias name: trustcenterclass4caii
 SHA1: A6:9A:91:FD:05:7F:13:6A:42:63:0B:B1:76:0D:2D:51:12:0C:16:50
 SHA256:
 32:66:96:7E:59:CD:68:00:8D:9D:D3:20:81:11:85:C7:04:20:5E:8D:95:FD:D8:4F:1C:7B:31:1E:67:04:FC:32
Alias name: trustcenteruniversalcai
 SHA1: 6B:2F:34:AD:89:58:BE:62:FD:B0:6B:5C:CE:BB:9D:D9:4F:4E:39:F3
 SHA256:
 EB:F3:C0:2A:87:89:B1:FB:7D:51:19:95:D6:63:B7:29:06:D9:13:CE:0D:5E:10:56:8A:8A:77:E2:58:61:67:E7
Alias name: trustcoreca1
 SHA1: 58:D1:DF:95:95:67:6B:63:C0:F0:5B:1C:17:4D:8B:84:0B:C8:78:BD
 SHA256:
 5A:88:5D:B1:9C:01:D9:12:C5:75:93:88:93:8C:AF:BB:DF:03:1A:B2:D4:8E:91:EE:15:58:9B:42:97:1D:03:9C
Alias name: trustcorrootcertca1
 SHA1: FF:BD:CD:E7:82:C8:43:5E:3C:6F:26:86:5C:CA:A8:3A:45:5B:C3:0A
 SHA256:
 D4:0E:9C:86:CD:8F:E4:68:C1:77:69:59:F4:9E:A7:74:FA:54:86:84:B6:C4:06:F3:90:92:61:F4:DC:E2:57:5C
Alias name: trustcorrootcertca2
 SHA1: B8:BE:6D:CB:56:F1:55:B9:63:D4:12:CA:4E:06:34:C7:94:B2:1C:C0
 SHA256:
 07:53:E9:40:37:8C:1B:D5:E3:83:6E:39:5D:AE:A5:CB:83:9E:50:46:F1:BD:0E:AE:19:51:CF:10:FE:C7:C9:65
Alias name: trustisfpsrootca
 SHA1: 3B:C0:38:0B:33:C3:F6:A6:0C:86:15:22:93:D9:DF:F5:4B:81:C0:04
 SHA256:
 C1:B4:82:99:AB:A5:20:8F:E9:63:0A:CE:55:CA:68:A0:3E:DA:5A:51:9C:88:02:A0:D3:A6:73:BE:8F:8E:55:7D
Alias name: ttelesecglobalrootclass2
 SHA1: 59:0D:2D:7D:88:4F:40:2E:61:7E:A5:62:32:17:65:CF:17:D8:94:E9
 SHA256:
 91:E2:F5:78:8D:58:10:EB:A7:BA:58:73:7D:E1:54:8A:8E:CA:CD:01:45:98:BC:0B:14:3E:04:1B:17:05:25:52
Alias name: ttelesecglobalrootclass2ca
 SHA1: 59:0D:2D:7D:88:4F:40:2E:61:7E:A5:62:32:17:65:CF:17:D8:94:E9
 SHA256:
 91:E2:F5:78:8D:58:10:EB:A7:BA:58:73:7D:E1:54:8A:8E:CA:CD:01:45:98:BC:0B:14:3E:04:1B:17:05:25:52

Client certificates 935

Amazon API Gateway Developer Guide

Alias name: ttelesecglobalrootclass3
 SHA1: 55:A6:72:3E:CB:F2:EC:CD:C3:23:74:70:19:9D:2A:BE:11:E3:81:D1
 SHA256:
 FD:73:DA:D3:1C:64:4F:F1:B4:3B:EF:0C:CD:DA:96:71:0B:9C:D9:87:5E:CA:7E:31:70:7A:F3:E9:6D:52:2B:BD
Alias name: ttelesecglobalrootclass3ca
 SHA1: 55:A6:72:3E:CB:F2:EC:CD:C3:23:74:70:19:9D:2A:BE:11:E3:81:D1
 SHA256:
 FD:73:DA:D3:1C:64:4F:F1:B4:3B:EF:0C:CD:DA:96:71:0B:9C:D9:87:5E:CA:7E:31:70:7A:F3:E9:6D:52:2B:BD
Alias name: tubitakkamusmsslkoksertifikasisurum1
 SHA1: 31:43:64:9B:EC:CE:27:EC:ED:3A:3F:0B:8F:0D:E4:E8:91:DD:EE:CA
 SHA256:
 46:ED:C3:68:90:46:D5:3A:45:3F:B3:10:4A:B8:0D:CA:EC:65:8B:26:60:EA:16:29:DD:7E:86:79:90:64:87:16
Alias name: twcaglobalrootca
 SHA1: 9C:BB:48:53:F6:A4:F6:D3:52:A4:E8:32:52:55:60:13:F5:AD:AF:65
 SHA256:
 59:76:90:07:F7:68:5D:0F:CD:50:87:2F:9F:95:D5:75:5A:5B:2B:45:7D:81:F3:69:2B:61:0A:98:67:2F:0E:1B
Alias name: twcarootcertificationauthority
 SHA1: CF:9E:87:6D:D3:EB:FC:42:26:97:A3:B5:A3:7A:A0:76:A9:06:23:48
 SHA256:
 BF:D8:8F:E1:10:1C:41:AE:3E:80:1B:F8:BE:56:35:0E:E9:BA:D1:A6:B9:BD:51:5E:DC:5C:6D:5B:87:11:AC:44
Alias name: ucaextendedvalidationroot
 SHA1: A3:A1:B0:6F:24:61:23:4A:E3:36:A5:C2:37:FC:A6:FF:DD:F0:D7:3A
 SHA256:
 D4:3A:F9:B3:54:73:75:5C:96:84:FC:06:D7:D8:CB:70:EE:5C:28:E7:73:FB:29:4E:B4:1E:E7:17:22:92:4D:24
Alias name: ucaglobalg2root
 SHA1: 28:F9:78:16:19:7A:FF:18:25:18:AA:44:FE:C1:A0:CE:5C:B6:4C:8A
 SHA256:
 9B:EA:11:C9:76:FE:01:47:64:C1:BE:56:A6:F9:14:B5:A5:60:31:7A:BD:99:88:39:33:82:E5:16:1A:A0:49:3C
Alias name: usertrustecc
 SHA1: D1:CB:CA:5D:B2:D5:2A:7F:69:3B:67:4D:E5:F0:5A:1D:0C:95:7D:F0
 SHA256:
 4F:F4:60:D5:4B:9C:86:DA:BF:BC:FC:57:12:E0:40:0D:2B:ED:3F:BC:4D:4F:BD:AA:86:E0:6A:DC:D2:A9:AD:7A
Alias name: usertrustecccertificationauthority
 SHA1: D1:CB:CA:5D:B2:D5:2A:7F:69:3B:67:4D:E5:F0:5A:1D:0C:95:7D:F0
 SHA256:
 4F:F4:60:D5:4B:9C:86:DA:BF:BC:FC:57:12:E0:40:0D:2B:ED:3F:BC:4D:4F:BD:AA:86:E0:6A:DC:D2:A9:AD:7A
Alias name: usertrustrsa
 SHA1: 2B:8F:1B:57:33:0D:BB:A2:D0:7A:6C:51:F7:0E:E9:0D:DA:B9:AD:8E
 SHA256:
 E7:93:C9:B0:2F:D8:AA:13:E2:1C:31:22:8A:CC:B0:81:19:64:3B:74:9C:89:89:64:B1:74:6D:46:C3:D4:CB:D2
Alias name: usertrustrsacertificationauthority
 SHA1: 2B:8F:1B:57:33:0D:BB:A2:D0:7A:6C:51:F7:0E:E9:0D:DA:B9:AD:8E
 SHA256:
 E7:93:C9:B0:2F:D8:AA:13:E2:1C:31:22:8A:CC:B0:81:19:64:3B:74:9C:89:89:64:B1:74:6D:46:C3:D4:CB:D2

Client certificates 936

Amazon API Gateway Developer Guide

Alias name: utndatacorpsgcca
 SHA1: 58:11:9F:0E:12:82:87:EA:50:FD:D9:87:45:6F:4F:78:DC:FA:D6:D4
 SHA256:
 85:FB:2F:91:DD:12:27:5A:01:45:B6:36:53:4F:84:02:4A:D6:8B:69:B8:EE:88:68:4F:F7:11:37:58:05:B3:48
Alias name: utnuserfirstclientauthemailca
 SHA1: B1:72:B1:A5:6D:95:F9:1F:E5:02:87:E1:4D:37:EA:6A:44:63:76:8A
 SHA256:
 43:F2:57:41:2D:44:0D:62:74:76:97:4F:87:7D:A8:F1:FC:24:44:56:5A:36:7A:E6:0E:DD:C2:7A:41:25:31:AE
Alias name: utnuserfirsthardwareca
 SHA1: 04:83:ED:33:99:AC:36:08:05:87:22:ED:BC:5E:46:00:E3:BE:F9:D7
 SHA256:
 6E:A5:47:41:D0:04:66:7E:ED:1B:48:16:63:4A:A3:A7:9E:6E:4B:96:95:0F:82:79:DA:FC:8D:9B:D8:81:21:37
Alias name: utnuserfirstobjectca
 SHA1: E1:2D:FB:4B:41:D7:D9:C3:2B:30:51:4B:AC:1D:81:D8:38:5E:2D:46
 SHA256:
 6F:FF:78:E4:00:A7:0C:11:01:1C:D8:59:77:C4:59:FB:5A:F9:6A:3D:F0:54:08:20:D0:F4:B8:60:78:75:E5:8F
Alias name: valicertclass2ca
 SHA1: 31:7A:2A:D0:7F:2B:33:5E:F5:A1:C3:4E:4B:57:E8:B7:D8:F1:FC:A6
 SHA256:
 58:D0:17:27:9C:D4:DC:63:AB:DD:B1:96:A6:C9:90:6C:30:C4:E0:87:83:EA:E8:C1:60:99:54:D6:93:55:59:6B
Alias name: verisignc1g1.pem
 SHA1: 90:AE:A2:69:85:FF:14:80:4C:43:49:52:EC:E9:60:84:77:AF:55:6F
 SHA256:
 D1:7C:D8:EC:D5:86:B7:12:23:8A:48:2C:E4:6F:A5:29:39:70:74:2F:27:6D:8A:B6:A9:E4:6E:E0:28:8F:33:55
Alias name: verisignc1g2.pem
 SHA1: 27:3E:E1:24:57:FD:C4:F9:0C:55:E8:2B:56:16:7F:62:F5:32:E5:47
 SHA256:
 34:1D:E9:8B:13:92:AB:F7:F4:AB:90:A9:60:CF:25:D4:BD:6E:C6:5B:9A:51:CE:6E:D0:67:D0:0E:C7:CE:9B:7F
Alias name: verisignc1g3.pem
 SHA1: 20:42:85:DC:F7:EB:76:41:95:57:8E:13:6B:D4:B7:D1:E9:8E:46:A5
 SHA256:
 CB:B5:AF:18:5E:94:2A:24:02:F9:EA:CB:C0:ED:5B:B8:76:EE:A3:C1:22:36:23:D0:04:47:E4:F3:BA:55:4B:65
Alias name: verisignc1g6.pem
 SHA1: 51:7F:61:1E:29:91:6B:53:82:FB:72:E7:44:D9:8D:C3:CC:53:6D:64
 SHA256:
 9D:19:0B:2E:31:45:66:68:5B:E8:A8:89:E2:7A:A8:C7:D7:AE:1D:8A:AD:DB:A3:C1:EC:F9:D2:48:63:CD:34:B9
Alias name: verisignc2g1.pem
 SHA1: 67:82:AA:E0:ED:EE:E2:1A:58:39:D3:C0:CD:14:68:0A:4F:60:14:2A
 SHA256:
 BD:46:9F:F4:5F:AA:E7:C5:4C:CB:D6:9D:3F:3B:00:22:55:D9:B0:6B:10:B1:D0:FA:38:8B:F9:6B:91:8B:2C:E9
Alias name: verisignc2g2.pem
 SHA1: B3:EA:C4:47:76:C9:C8:1C:EA:F2:9D:95:B6:CC:A0:08:1B:67:EC:9D
 SHA256:
 3A:43:E2:20:FE:7F:3E:A9:65:3D:1E:21:74:2E:AC:2B:75:C2:0F:D8:98:03:05:BC:50:2C:AF:8C:2D:9B:41:A1

Client certificates 937

Amazon API Gateway Developer Guide

Alias name: verisignc2g3.pem
 SHA1: 61:EF:43:D7:7F:CA:D4:61:51:BC:98:E0:C3:59:12:AF:9F:EB:63:11
 SHA256:
 92:A9:D9:83:3F:E1:94:4D:B3:66:E8:BF:AE:7A:95:B6:48:0C:2D:6C:6C:2A:1B:E6:5D:42:36:B6:08:FC:A1:BB
Alias name: verisignc2g6.pem
 SHA1: 40:B3:31:A0:E9:BF:E8:55:BC:39:93:CA:70:4F:4E:C2:51:D4:1D:8F
 SHA256:
 CB:62:7D:18:B5:8A:D5:6D:DE:33:1A:30:45:6B:C6:5C:60:1A:4E:9B:18:DE:DC:EA:08:E7:DA:AA:07:81:5F:F0
Alias name: verisignc3g1.pem
 SHA1: A1:DB:63:93:91:6F:17:E4:18:55:09:40:04:15:C7:02:40:B0:AE:6B
 SHA256:
 A4:B6:B3:99:6F:C2:F3:06:B3:FD:86:81:BD:63:41:3D:8C:50:09:CC:4F:A3:29:C2:CC:F0:E2:FA:1B:14:03:05
Alias name: verisignc3g2.pem
 SHA1: 85:37:1C:A6:E5:50:14:3D:CE:28:03:47:1B:DE:3A:09:E8:F8:77:0F
 SHA256:
 83:CE:3C:12:29:68:8A:59:3D:48:5F:81:97:3C:0F:91:95:43:1E:DA:37:CC:5E:36:43:0E:79:C7:A8:88:63:8B
Alias name: verisignc3g3.pem
 SHA1: 13:2D:0D:45:53:4B:69:97:CD:B2:D5:C3:39:E2:55:76:60:9B:5C:C6
 SHA256:
 EB:04:CF:5E:B1:F3:9A:FA:76:2F:2B:B1:20:F2:96:CB:A5:20:C1:B9:7D:B1:58:95:65:B8:1C:B9:A1:7B:72:44
Alias name: verisignc3g4.pem
 SHA1: 22:D5:D8:DF:8F:02:31:D1:8D:F7:9D:B7:CF:8A:2D:64:C9:3F:6C:3A
 SHA256:
 69:DD:D7:EA:90:BB:57:C9:3E:13:5D:C8:5E:A6:FC:D5:48:0B:60:32:39:BD:C4:54:FC:75:8B:2A:26:CF:7F:79
Alias name: verisignc3g5.pem
 SHA1: 4E:B6:D5:78:49:9B:1C:CF:5F:58:1E:AD:56:BE:3D:9B:67:44:A5:E5
 SHA256:
 9A:CF:AB:7E:43:C8:D8:80:D0:6B:26:2A:94:DE:EE:E4:B4:65:99:89:C3:D0:CA:F1:9B:AF:64:05:E4:1A:B7:DF
Alias name: verisignc4g2.pem
 SHA1: 0B:77:BE:BB:CB:7A:A2:47:05:DE:CC:0F:BD:6A:02:FC:7A:BD:9B:52
 SHA256:
 44:64:0A:0A:0E:4D:00:0F:BD:57:4D:2B:8A:07:BD:B4:D1:DF:ED:3B:45:BA:AB:A7:6F:78:57:78:C7:01:19:61
Alias name: verisignc4g3.pem
 SHA1: C8:EC:8C:87:92:69:CB:4B:AB:39:E9:8D:7E:57:67:F3:14:95:73:9D
 SHA256:
 E3:89:36:0D:0F:DB:AE:B3:D2:50:58:4B:47:30:31:4E:22:2F:39:C1:56:A0:20:14:4E:8D:96:05:61:79:15:06
Alias name: verisignclass1ca
 SHA1: CE:6A:64:A3:09:E4:2F:BB:D9:85:1C:45:3E:64:09:EA:E8:7D:60:F1
 SHA256:
 51:84:7C:8C:BD:2E:9A:72:C9:1E:29:2D:2A:E2:47:D7:DE:1E:3F:D2:70:54:7A:20:EF:7D:61:0F:38:B8:84:2C
Alias name: verisignclass1g2ca
 SHA1: 27:3E:E1:24:57:FD:C4:F9:0C:55:E8:2B:56:16:7F:62:F5:32:E5:47
 SHA256:
 34:1D:E9:8B:13:92:AB:F7:F4:AB:90:A9:60:CF:25:D4:BD:6E:C6:5B:9A:51:CE:6E:D0:67:D0:0E:C7:CE:9B:7F

Client certificates 938

Amazon API Gateway Developer Guide

Alias name: verisignclass1g3ca
 SHA1: 20:42:85:DC:F7:EB:76:41:95:57:8E:13:6B:D4:B7:D1:E9:8E:46:A5
 SHA256:
 CB:B5:AF:18:5E:94:2A:24:02:F9:EA:CB:C0:ED:5B:B8:76:EE:A3:C1:22:36:23:D0:04:47:E4:F3:BA:55:4B:65
Alias name: verisignclass2g2ca
 SHA1: B3:EA:C4:47:76:C9:C8:1C:EA:F2:9D:95:B6:CC:A0:08:1B:67:EC:9D
 SHA256:
 3A:43:E2:20:FE:7F:3E:A9:65:3D:1E:21:74:2E:AC:2B:75:C2:0F:D8:98:03:05:BC:50:2C:AF:8C:2D:9B:41:A1
Alias name: verisignclass2g3ca
 SHA1: 61:EF:43:D7:7F:CA:D4:61:51:BC:98:E0:C3:59:12:AF:9F:EB:63:11
 SHA256:
 92:A9:D9:83:3F:E1:94:4D:B3:66:E8:BF:AE:7A:95:B6:48:0C:2D:6C:6C:2A:1B:E6:5D:42:36:B6:08:FC:A1:BB
Alias name: verisignclass3ca
 SHA1: A1:DB:63:93:91:6F:17:E4:18:55:09:40:04:15:C7:02:40:B0:AE:6B
 SHA256:
 A4:B6:B3:99:6F:C2:F3:06:B3:FD:86:81:BD:63:41:3D:8C:50:09:CC:4F:A3:29:C2:CC:F0:E2:FA:1B:14:03:05
Alias name: verisignclass3g2ca
 SHA1: 85:37:1C:A6:E5:50:14:3D:CE:28:03:47:1B:DE:3A:09:E8:F8:77:0F
 SHA256:
 83:CE:3C:12:29:68:8A:59:3D:48:5F:81:97:3C:0F:91:95:43:1E:DA:37:CC:5E:36:43:0E:79:C7:A8:88:63:8B
Alias name: verisignclass3g3ca
 SHA1: 13:2D:0D:45:53:4B:69:97:CD:B2:D5:C3:39:E2:55:76:60:9B:5C:C6
 SHA256:
 EB:04:CF:5E:B1:F3:9A:FA:76:2F:2B:B1:20:F2:96:CB:A5:20:C1:B9:7D:B1:58:95:65:B8:1C:B9:A1:7B:72:44
Alias name: verisignclass3g4ca
 SHA1: 22:D5:D8:DF:8F:02:31:D1:8D:F7:9D:B7:CF:8A:2D:64:C9:3F:6C:3A
 SHA256:
 69:DD:D7:EA:90:BB:57:C9:3E:13:5D:C8:5E:A6:FC:D5:48:0B:60:32:39:BD:C4:54:FC:75:8B:2A:26:CF:7F:79
Alias name: verisignclass3g5ca
 SHA1: 4E:B6:D5:78:49:9B:1C:CF:5F:58:1E:AD:56:BE:3D:9B:67:44:A5:E5
 SHA256:
 9A:CF:AB:7E:43:C8:D8:80:D0:6B:26:2A:94:DE:EE:E4:B4:65:99:89:C3:D0:CA:F1:9B:AF:64:05:E4:1A:B7:DF
Alias name: verisignclass3publicprimarycertificationauthorityg4
 SHA1: 22:D5:D8:DF:8F:02:31:D1:8D:F7:9D:B7:CF:8A:2D:64:C9:3F:6C:3A
 SHA256:
 69:DD:D7:EA:90:BB:57:C9:3E:13:5D:C8:5E:A6:FC:D5:48:0B:60:32:39:BD:C4:54:FC:75:8B:2A:26:CF:7F:79
Alias name: verisignclass3publicprimarycertificationauthorityg5
 SHA1: 4E:B6:D5:78:49:9B:1C:CF:5F:58:1E:AD:56:BE:3D:9B:67:44:A5:E5
 SHA256:
 9A:CF:AB:7E:43:C8:D8:80:D0:6B:26:2A:94:DE:EE:E4:B4:65:99:89:C3:D0:CA:F1:9B:AF:64:05:E4:1A:B7:DF
Alias name: verisignroot.pem
 SHA1: 36:79:CA:35:66:87:72:30:4D:30:A5:FB:87:3B:0F:A7:7B:B7:0D:54
 SHA256:
 23:99:56:11:27:A5:71:25:DE:8C:EF:EA:61:0D:DF:2F:A0:78:B5:C8:06:7F:4E:82:82:90:BF:B8:60:E8:4B:3C

Client certificates 939

Amazon API Gateway Developer Guide

Alias name: verisigntsaca
 SHA1: 20:CE:B1:F0:F5:1C:0E:19:A9:F3:8D:B1:AA:8E:03:8C:AA:7A:C7:01
 SHA256:
 CB:6B:05:D9:E8:E5:7C:D8:82:B1:0B:4D:B7:0D:E4:BB:1D:E4:2B:A4:8A:7B:D0:31:8B:63:5B:F6:E7:78:1A:9D
Alias name: verisignuniversalrootca
 SHA1: 36:79:CA:35:66:87:72:30:4D:30:A5:FB:87:3B:0F:A7:7B:B7:0D:54
 SHA256:
 23:99:56:11:27:A5:71:25:DE:8C:EF:EA:61:0D:DF:2F:A0:78:B5:C8:06:7F:4E:82:82:90:BF:B8:60:E8:4B:3C
Alias name: verisignuniversalrootcertificationauthority
 SHA1: 36:79:CA:35:66:87:72:30:4D:30:A5:FB:87:3B:0F:A7:7B:B7:0D:54
 SHA256:
 23:99:56:11:27:A5:71:25:DE:8C:EF:EA:61:0D:DF:2F:A0:78:B5:C8:06:7F:4E:82:82:90:BF:B8:60:E8:4B:3C
Alias name: xrampglobalca
 SHA1: B8:01:86:D1:EB:9C:86:A5:41:04:CF:30:54:F3:4C:52:B7:E5:58:C6
 SHA256:
 CE:CD:DC:90:50:99:D8:DA:DF:C5:B1:D2:09:B7:37:CB:E2:C1:8C:FB:2C:10:C0:FF:0B:CF:0D:32:86:FC:1A:A2
Alias name: xrampglobalcaroot
 SHA1: B8:01:86:D1:EB:9C:86:A5:41:04:CF:30:54:F3:4C:52:B7:E5:58:C6
 SHA256:
 CE:CD:DC:90:50:99:D8:DA:DF:C5:B1:D2:09:B7:37:CB:E2:C1:8C:FB:2C:10:C0:FF:0B:CF:0D:32:86:FC:1A:A2

Using AWS WAF to protect your APIs

AWS WAF is a web application firewall that helps protect web applications and APIs from attacks. It
enables you to configure a set of rules called a web access control list (web ACL) that allow, block,
or count web requests based on customizable web security rules and conditions that you define.
For more information, see How AWS WAF Works.

You can use AWS WAF to protect your API Gateway REST API from common web exploits, such
as SQL injection and cross-site scripting (XSS) attacks. These could affect API availability and
performance, compromise security, or consume excessive resources. For example, you can create
rules to allow or block requests from specified IP address ranges, requests from CIDR blocks,
requests that originate from a specific country or region, requests that contain malicious SQL code,
or requests that contain malicious script.

You can also create rules that match a specified string or a regular expression pattern in HTTP
headers, method, query string, URI, and the request body (limited to the first 8 KB). Additionally,
you can create rules to block attacks from specific user agents, bad bots, and content scrapers. For
example, you can use rate-based rules to specify the number of web requests that are allowed by
each client IP in a trailing, continuously updated, 5-minute period.

AWS WAF 940

https://docs.aws.amazon.com/waf/latest/developerguide/how-aws-waf-works.html

Amazon API Gateway Developer Guide

Important

AWS WAF is your first line of defense against web exploits. When AWS WAF is enabled on
an API, AWS WAF rules are evaluated before other access control features, such as resource
policies, IAM policies, Lambda authorizers, and Amazon Cognito authorizers. For example,
if AWS WAF blocks access from a CIDR block that a resource policy allows, AWS WAF takes
precedence and the resource policy isn't evaluated.

To enable AWS WAF for your API, you need to do the following:

1. Use the AWS WAF console, AWS SDK, or CLI to create a web ACL that contains the desired
combination of AWS WAF managed rules and your own custom rules. For more information,
see Getting Started with AWS WAF and Web access control lists (web ACLs).

Important

API Gateway requires an AWS WAFV2 web ACL for a Regional application or an AWS
WAF Classic Regional web ACL.

2. Associate the AWS WAF web ACL with an API stage. You can do this by using the AWS WAF
console, AWS SDK, CLI, or by using the API Gateway console.

To associate an AWS WAF web ACL with an API Gateway API stage using the API
Gateway console

To use the API Gateway console to associate an AWS WAF web ACL with an existing API Gateway
API stage, use the following steps:

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose an existing API or create a new one.

3. In the main navigation pane, choose Stages, and then choose a stage.

4. In the Stage details section, choose Edit.

5. Under Web application firewall (AWS WAF), select your web ACL.

AWS WAF 941

https://docs.aws.amazon.com/waf/latest/developerguide/getting-started.html
https://docs.aws.amazon.com/waf/latest/developerguide/web-acl.html
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

If you are using AWS WAFV2, select an AWS WAFV2 web ACL for a Regional application. The
web ACL and any other AWS WAFV2 resources that it uses must be located in the same Region
as your API.

If you are using AWS WAF Classic Regional, select a Regional web ACL.

6. Choose Save changes.

Associate an AWS WAF web ACL with an API Gateway API stage using the AWS CLI

To use the AWS CLI to associate an AWS WAFV2 web ACL for a Regional application with an
existing API Gateway API stage, call the associate-web-acl command, as in the following example:

aws wafv2 associate-web-acl \
--web-acl-arn arn:aws:wafv2:{region}:111122223333:regional/webacl/test-cli/
a1b2c3d4-5678-90ab-cdef-EXAMPLE11111 \
--resource-arn arn:aws:apigateway:{region}::/restapis/4wk1k4onj3/stages/prod

To use the AWS CLI to associate an AWS WAF Classic Regional web ACL with an existing API
Gateway API stage, call the associate-web-acl command, as in the following example:

aws waf-regional associate-web-acl \
--web-acl-id 'aabc123a-fb4f-4fc6-becb-2b00831cadcf' \
--resource-arn 'arn:aws:apigateway:{region}::/restapis/4wk1k4onj3/stages/prod'

Associate an AWS WAF web ACL with an API stage using the AWS WAF REST API

To use the AWS WAFV2 REST API to associate an AWS WAFV2 web ACL for a Regional application
with an existing API Gateway API stage, use the AssociateWebACL command, as in the following
example:

import boto3

wafv2 = boto3.client('wafv2')

wafv2.associate_web_acl(
 WebACLArn='arn:aws:wafv2:{region}:111122223333:regional/webacl/test/abc6aa3b-
fc33-4841-b3db-0ef3d3825b25',
 ResourceArn='arn:aws:apigateway:{region}::/restapis/4wk1k4onj3/stages/prod'
)

AWS WAF 942

https://docs.aws.amazon.com/cli/latest/reference/wafv2/associate-web-acl.html
https://docs.aws.amazon.com/cli/latest/reference/waf-regional/associate-web-acl.html
https://docs.aws.amazon.com/waf/latest/APIReference/API_AssociateWebACL.html

Amazon API Gateway Developer Guide

To use the AWS WAF REST API to associate an AWS WAF Classic Regional web ACL with an existing
API Gateway API stage, use the AssociateWebACL command, as in the following example:

import boto3

waf = boto3.client('waf-regional')

waf.associate_web_acl(
 WebACLId='aabc123a-fb4f-4fc6-becb-2b00831cadcf',
 ResourceArn='arn:aws:apigateway:{region}::/restapis/4wk1k4onj3/stages/prod'
)

Throttle API requests for better throughput

You can configure throttling and quotas for your APIs to help protect them from being
overwhelmed by too many requests. Both throttles and quotas are applied on a best-effort basis
and should be thought of as targets rather than guaranteed request ceilings.

API Gateway throttles requests to your API using the token bucket algorithm, where a token counts
for a request. Specifically, API Gateway examines the rate and a burst of request submissions
against all APIs in your account, per Region. In the token bucket algorithm, a burst can allow pre-
defined overrun of those limits, but other factors can also cause limits to be overrun in some cases.

When request submissions exceed the steady-state request rate and burst limits, API Gateway
begins to throttle requests. Clients may receive 429 Too Many Requests error responses at this
point. Upon catching such exceptions, the client can resubmit the failed requests in a way that is
rate limiting.

As an API developer, you can set the target limits for individual API stages or methods to improve
overall performance across all APIs in your account. Alternatively, you can enable usage plans to set
throttles on client request submissions based on specified requests rates and quotas.

Topics

• How throttling limit settings are applied in API Gateway

• Account-level throttling per Region

• Configuring API-level and stage-level throttling targets in a usage plan

• Configuring stage-level throttling targets

• Configuring method-level throttling targets in a usage plan

Throttling 943

https://docs.aws.amazon.com/waf/latest/APIReference/API_wafRegional_AssociateWebACL.html

Amazon API Gateway Developer Guide

How throttling limit settings are applied in API Gateway

Before you configure throttle and quota settings for your API, it's useful to understand how they
are applied by Amazon API Gateway.

Amazon API Gateway provides four basic types of throttling-related settings:

• AWS throttling limits are applied across all accounts and clients in a region. These limit settings
exist to prevent your API—and your account—from being overwhelmed by too many requests.
These limits are set by AWS and can't be changed by a customer.

• Per-account limits are applied to all APIs in an account in a specified Region. The account-level
rate limit can be increased upon request - higher limits are possible with APIs that have shorter
timeouts and smaller payloads. To request an increase of account-level throttling limits per
Region, contact the AWS Support Center. For more information, see Quotas and important notes.
Note that these limits can't be higher than the AWS throttling limits.

• Per-API, per-stage throttling limits are applied at the API method level for a stage. You can
configure the same settings for all methods, or configure different throttle settings for each
method. Note that these limits can't be higher than the AWS throttling limits.

• Per-client throttling limits are applied to clients that use API keys associated with your usage plan
as client identifier. Note that these limits can't be higher than the per-account limits.

API Gateway throttling-related settings are applied in the following order:

1. Per-client or per-method throttling limits that you set for an API stage in a usage plan

2. Per-method throttling limits that you set for an API stage

3. Account-level throttling per Region

4. AWS Regional throttling

Account-level throttling per Region

By default, API Gateway limits the steady-state requests per second (RPS) across all APIs within an
AWS account, per Region. It also limits the burst (that is, the maximum bucket size) across all APIs
within an AWS account, per Region. In API Gateway, the burst limit represents the target maximum
number of concurrent request submissions that API Gateway will fulfill before returning 429 Too
Many Requests error responses. For more information on throttling quotas, see Quotas and
important notes.

Throttling 944

https://console.aws.amazon.com/support/home#/

Amazon API Gateway Developer Guide

Configuring API-level and stage-level throttling targets in a usage plan

In a usage plan, you can set a per-method throttling target for all methods at the API or stage
level. You can specify a throttling rate, which is the rate, in requests per second, that tokens are
added to the token bucket. You can also specify a throttling burst, which is the capacity of the
token bucket.

You can use the AWS CLI, SDKs, and the AWS Management Console to create a usage plan. For
more information about how to create a usage plan, see ???.

Configuring stage-level throttling targets

You can use the AWS CLI, SDKs, and the AWS Management Console to create stage-level throttling
targets.

For more information about how to use the AWS Management Console to create stage-level
throttling targets, see ???. For more information about how to use the AWS CLI to create stage-
level throttling targets, see create-stage.

Configuring method-level throttling targets in a usage plan

You can set additional throttling targets at the method level in Usage Plans as shown in Create
a usage plan. In the API Gateway console, these are set by specifying Resource=<resource>,
Method=<method> in the Configure Method Throttling setting. For example, for the PetStore
example, you might specify Resource=/pets, Method=GET.

Creating a private API in Amazon API Gateway

Using Amazon API Gateway, you can create private REST APIs that can only be accessed from
your virtual private cloud in Amazon VPC by using an interface VPC endpoint. This is an endpoint
network interface that you create in your VPC.

Using resource policies, you can allow or deny access to your API from selected VPCs and VPC
endpoints, including across AWS accounts. Each endpoint can be used to access multiple private
APIs. You can also use AWS Direct Connect to establish a connection from an on-premises network
to Amazon VPC and access your private API over that connection.

Important

To restrict access to your private API to specific VPCs or VPC endpoints, add
aws:SourceVpc or aws:SourceVpce conditions to your API's resource policy. For

Private APIs 945

https://docs.aws.amazon.com/cli/latest/reference/apigateway/create-stage.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html

Amazon API Gateway Developer Guide

example policies, see the section called “Example: Allow private API traffic based on source
VPC or VPC endpoint”.

In all cases, traffic to your private API uses secure connections and does not leave the Amazon
network—it is isolated from the public internet.

You can access your private APIs through interface VPC endpoints for API Gateway as shown in the
following diagram. If you have private DNS enabled, you can use private or public DNS names to
access your APIs. If you have private DNS disabled, you can only use public DNS names.

Note

API Gateway private APIs only support TLS 1.2. Earlier TLS versions are not supported.

At a high level, the steps for creating a private API are as follows:

1. First, create an interface VPC endpoint for the API Gateway component service for API
execution, known as execute-api, in your VPC.

Private APIs 946

Amazon API Gateway Developer Guide

2. Create and test your private API.

a. Use one of the following procedures to create your API:

• API Gateway console

• API Gateway CLI

• AWS SDK for JavaScript

b. To grant access to your VPC endpoint, create a resource policy and attach it to your API.

c. Test your API.

Note

The procedures below assume you already have a fully configured VPC. For more
information, and to get started with creating a VPC, see Getting Started With Amazon VPC
in the Amazon VPC User Guide.

Private API development considerations

• You can convert an existing public API (Regional or edge-optimized) to a private API, and you can
convert a private API to a Regional API. You cannot convert a private API to an edge-optimized
API. For more information, see ???.

• To grant access to your private API to VPCs and VPC endpoints, you need to create a resource
policy and attach it to the newly created (or converted) API. Until you do so, all calls to the API
will fail. For more information, see ???.

• Custom domain names are not supported for private APIs.

• You can use a single VPC endpoint to access multiple private APIs.

• You can associate or disassociate a VPC endpoint to a REST API, which gives a Route 53 alias
DNS record and simplifies invoking your private API. For more information, see Associate or
Disassociate a VPC Endpoint with a Private REST API.

Note

VPC endpoints for private APIs are subject to the same limitations as other interface VPC
endpoints. For more information, see Interface Endpoint Properties and Limitations in the

Private APIs 947

https://docs.aws.amazon.com/vpc/latest/userguide/GetStarted.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations

Amazon API Gateway Developer Guide

AWS PrivateLink Guide. For more information about using API Gateway with shared VPCs
and shared subnets, see Shared subnets in the AWS PrivateLink Guide.

Topics

• Create an interface VPC endpoint for API Gateway execute-api

• Create a private API using the API Gateway console

• Create a private API using the AWS CLI

• Create a private API using the AWS SDK for JavaScript

• Set up a resource policy for a private API

• Deploy a private API using the API Gateway console

• Associate or disassociate a VPC endpoint with a private REST API

Create an interface VPC endpoint for API Gateway execute-api

The API Gateway component service for API execution is called execute-api. To access your
private API once it's deployed, you need to create an interface VPC endpoint for it in your VPC.

After you've created your VPC endpoint, you can use it to access multiple private APIs.

To create an interface VPC endpoint for API Gateway execute-api

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Endpoints, Create Endpoint.

3. For Service category, ensure that AWS services is selected.

4. For Service Name, choose the API Gateway service endpoint, including the AWS Region that
you want to connect to. This is in the form com.amazonaws.region.execute-api—for
example, com.amazonaws.us-east-1.execute-api.

For Type, ensure that it indicates Interface.

5. Complete the following information:

• For VPC, choose the VPC that you want to create the endpoint in.

• For Subnets, choose the subnets (Availability Zones) in which to create the endpoint
network interfaces. To improve the availability of your API, choose multiple subnets.

Private APIs 948

https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#interface-endpoint-shared-subnets
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

Amazon API Gateway Developer Guide

Note

Not all Availability Zones may be supported for all AWS services.

• For Enable Private DNS Name, leave the check box selected. Private DNS is enabled by
default.

When private DNS is enabled, you're able to access your API via private or public DNS. (This
setting doesn't affect who can access your API, only which DNS addresses they can use.)
However, you cannot access public APIs from a VPC by using an API Gateway VPC endpoint
with private DNS enabled. Note that these DNS settings don't affect the ability to call these
public APIs from the VPC if you're using an edge-optimized custom domain name to access
the public API. Using an edge-optimized custom domain name to access your public API
(while using private DNS to access your private API) is one way to access both public and
private APIs from a VPC where the endpoint has been created with private DNS enabled.

Note

Leaving private DNS enabled is the recommended choice. If you choose not to
enable private DNS, you're only able to access your API via public DNS. To learn
more, see How to invoke a private API.

To use the private DNS option, the enableDnsSupport and enableDnsHostnames
attributes of your VPC must be set to true. For more information, see DNS Support in Your
VPC and Updating DNS Support for Your VPC in the Amazon VPC User Guide.

• For Security group, select the security group to associate with the VPC endpoint network
interfaces.

The security group you choose must be set to allow TCP Port 443 inbound HTTPS traffic
from either an IP range in your VPC or another security group in your VPC.

6. Choose Create endpoint.

Private APIs 949

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-support
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-support
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-dns.html#vpc-dns-updating

Amazon API Gateway Developer Guide

Create a private API using the API Gateway console

To create a private API using the API Gateway console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose Create API.

3. Under REST API, choose Build.

4. For Name, enter a name.

5. (Optional) For Description, enter a description.

6. For API endpoint type, select Private.

7. Choose Create API.

From here on, you can set up API methods and their associated integrations as described in steps
1-6 of ???.

Note

Until your API has a resource policy that grants access to your VPC or VPC endpoint, all API
calls will fail. Before you test and deploy your API, you need to create a resource policy and
attach it to the API as described in ???.

Create a private API using the AWS CLI

To create a private API using the AWS CLI, call the create-rest-api command:

aws apigateway create-rest-api \
 --name 'Simple PetStore (AWS CLI, Private)' \
 --description 'Simple private PetStore API' \
 --region us-west-2 \
 --endpoint-configuration '{ "types": ["PRIVATE"] }'

A successful call returns output similar to the following:

{
 "createdDate": "2017-10-13T18:41:39Z",
 "description": "Simple private PetStore API",
 "endpointConfiguration": {

Private APIs 950

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

 "types": "PRIVATE"
 },
 "id": "0qzs2sy7bh",
 "name": "Simple PetStore (AWS CLI, Private)"
}

From here on, you can follow the same instructions given in the section called “Set up an edge-
optimized API using AWS CLI commands” to set up methods and integrations for this API.

When you are ready to test your API, be sure to create a resource policy and attach it to the API as
described in ???.

Create a private API using the AWS SDK for JavaScript

To create a private API by using the AWS SDK for JavaScript:

apig.createRestApi({
 name: "Simple PetStore (node.js SDK, private)",
 endpointConfiguration: {
 types: ['PRIVATE']
 },
 description: "Demo private API created using the AWS SDK for node.js",
 version: "0.00.001"
}, function(err, data){
 if (!err) {
 console.log('Create API succeeded:\n', data);
 restApiId = data.id;
 } else {
 console.log('Create API failed:\n', err);
 }
});

A successful call returns output similar to the following:

{
 "createdDate": "2017-10-13T18:41:39Z",
 "description": "Demo private API created using the AWS SDK for node.js",
 "endpointConfiguration": {
 "types": "PRIVATE"
 },
 "id": "0qzs2sy7bh",
 "name": "Simple PetStore (node.js SDK, private)"

Private APIs 951

Amazon API Gateway Developer Guide

}

After completing the preceding steps, you can follow the instructions in the section called “Set up
an edge-optimized API using the AWS SDK for Node.js” to set up methods and integrations for this
API.

When you are ready to test your API, be sure to create a resource policy and attach it to the API as
described in ???.

Set up a resource policy for a private API

Before your private API can be accessed, you need to create a resource policy and attach it to
the API. This grants access to the API from your VPCs and VPC endpoints or from VPCs and VPC
endpoints in other AWS accounts that you explicitly grant access.

To do this, follow the instructions in the section called “Create and attach an API Gateway resource
policy to an API”. In step 5, choose the Source VPC example. Replace {{vpceID}} (including the
curly braces) with your VPC endpoint ID, and then choose Save to save your resource policy.

You should also consider attaching an endpoint policy to the VPC endpoint to specify the access
that's being granted. For more information, see the section called “Use VPC endpoint policies for
private APIs”.

Deploy a private API using the API Gateway console

To deploy your private API, do the following in the API Gateway console:

1. Choose your API.

2. Choose Deploy API.

3. For Stage, select New stage.

4. For Stage name, enter a stage name.

5. (Optional) For Description, enter a description.

6. Choose Deploy.

Associate or disassociate a VPC endpoint with a private REST API

When you associate a VPC endpoint with your private API, API Gateway generates a new Route 53
ALIAS DNS record. You can use this record to invoke your private APIs just as you do your edge-

Private APIs 952

Amazon API Gateway Developer Guide

optimized or Regional APIs without overriding a Host header or passing an x-apigw-api-id
header.

The generated base URL is in the following format:

https://{rest-api-id}-{vpce-id}.execute-api.{region}.amazonaws.com/{stage}

Associating or disassociating a VPC endpoint with a private REST API requires you to update the
API's configuration. You can perform this change using the API Gateway console, the AWS CLI, or
an AWS SDK for API Gateway. The update operation may take few minutes to complete due to DNS
propagation. During this time, your API is available, but DNS propagation for the newly generated
DNS URLs may still be in progress. You may try creating a new deployment for your API, if even
after several minutes your new URLs are not resolving in DNS.

Use the API Gateway console to associate a VPC endpoint with a private REST API

To associate an additional VPC endpoint with a private API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your private API.

3. In the main navigation pane, choose Resource policy.

4. Edit your resource policy to allow calls from your additional VPC endpoint.

5. In the main navigation pane, choose API settings.

6. In the API details section, choose Edit.

7. For VPC endpoint IDs, select additional VPC endpoint IDs.

8. Choose Save.

9. Redeploy your API for the changes to take effect.

Use the AWS CLI to associate a VPC endpoint with a private REST API

To associate VPC endpoints at the time of API creation, use the following command:

aws apigateway create-rest-api \
 --name Petstore \
 --endpoint-configuration '{ "types": ["PRIVATE"], "vpcEndpointIds" :
 ["vpce-0212a4ababd5b8c3e", "vpce-0393a628149c867ee"] }' \
 --region us-west-2

Private APIs 953

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

The output will look like the following:

{
 "apiKeySource": "HEADER",
 "endpointConfiguration": {
 "types": [
 "PRIVATE"
],
 "vpcEndpointIds": [
 "vpce-0212a4ababd5b8c3e",
 "vpce-0393a628149c867ee"
]
 },
 "id": "u67n3ov968",
 "createdDate": 1565718256,
 "name": "Petstore"
}

To associate VPC endpoints to an already created private API, use the following CLI command:

aws apigateway update-rest-api \
 --rest-api-id u67n3ov968 \
 --patch-operations "op='add',path='/endpointConfiguration/
vpcEndpointIds',value='vpce-01d622316a7df47f9'" \
 --region us-west-2

The output will look like the following:

{
 "name": "Petstore",
 "apiKeySource": "1565718256",
 "tags": {},
 "createdDate": 1565718256,
 "endpointConfiguration": {
 "vpcEndpointIds": [
 "vpce-0212a4ababd5b8c3e",
 "vpce-0393a628149c867ee",
 "vpce-01d622316a7df47f9"
],
 "types": [
 "PRIVATE"

Private APIs 954

Amazon API Gateway Developer Guide

]
 },
 "id": "u67n3ov968"
}

Use the API Gateway console to disassociate a VPC endpoint from a private REST API

To disassociate a VPC endpoint from a private REST API

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your private API.

3. In the main navigation pane, choose Resource policy.

4. Edit your resource policy to remove mentions of the VPC endpoint you want to dissociate from
your private API.

5. In the main navigation pane, choose API settings.

6. In the API details section, choose Edit.

7. For VPC endpoint IDs, choose the X to dissociate the VPC endpoint.

8. Choose Save.

9. Redeploy your API for the changes to take effect.

Use the AWS CLI to disassociate a VPC endpoint from a private REST API

To disassociate a VPC endpoint from a private API, use the following CLI command:

aws apigateway update-rest-api \
 --rest-api-id u67n3ov968 \
 --patch-operations "op='remove',path='/endpointConfiguration/
vpcEndpointIds',value='vpce-0393a628149c867ee'" \
 --region us-west-2

The output will look like the following:

{
 "name": "Petstore",
 "apiKeySource": "1565718256",
 "tags": {},
 "createdDate": 1565718256,
 "endpointConfiguration": {

Private APIs 955

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

 "vpcEndpointIds": [
 "vpce-0212a4ababd5b8c3e",
 "vpce-01d622316a7df47f9"
],
 "types": [
 "PRIVATE"
]
 },
 "id": "u67n3ov968"
}

Monitoring REST APIs

In this section, you can learn how to monitor your API by using CloudWatch metrics, CloudWatch
Logs, Firehose, and AWS X-Ray. By combining CloudWatch execution logs and CloudWatch metrics,
you can log errors and execution traces, and monitor your API's performance. You might also want
to log API calls to Firehose. You can also use AWS X-Ray to trace calls through the downstream
services that make up your API.

Note

API Gateway might not generate logs and metrics in the following cases:

• 413 Request Entity Too Large errors

• Excessive 429 Too Many Requests errors

• 400 series errors from requests sent to a custom domain that has no API mapping

• 500 series errors caused by internal failures

API Gateway will not generate logs and metrics when testing a REST API method. The
CloudWatch entries are simulated. For more information, see the section called “Use the
console to test a REST API method”.

Topics

• Monitoring REST API execution with Amazon CloudWatch metrics

• Setting up CloudWatch logging for a REST API in API Gateway

• Logging API calls to Amazon Data Firehose

Monitor 956

Amazon API Gateway Developer Guide

• Tracing user requests to REST APIs using X-Ray

Monitoring REST API execution with Amazon CloudWatch metrics

You can monitor API execution by using CloudWatch, which collects and processes raw data from
API Gateway into readable, near-real-time metrics. These statistics are recorded for a period of 15
months so you can access historical information and gain a better perspective on how your web
application or service is performing. By default, API Gateway metric data is automatically sent to
CloudWatch in one-minute periods. For more information, see What Is Amazon CloudWatch? in the
Amazon CloudWatch User Guide.

The metrics reported by API Gateway provide information that you can analyze in different ways.
The following list shows some common uses for the metrics that are suggestions to get you
started:

• Monitor the IntegrationLatency metrics to measure the responsiveness of the backend.

• Monitor the Latency metrics to measure the overall responsiveness of your API calls.

• Monitor the CacheHitCount and CacheMissCount metrics to optimize cache capacities to achieve
a desired performance.

Topics

• Amazon API Gateway dimensions and metrics

• View CloudWatch metrics with the API dashboard in API Gateway

• View API Gateway metrics in the CloudWatch console

• View API Gateway log events in the CloudWatch console

• Monitoring tools in AWS

Amazon API Gateway dimensions and metrics

The metrics and dimensions that API Gateway sends to Amazon CloudWatch are listed below. For
more information, see Monitoring REST API execution with Amazon CloudWatch metrics.

API Gateway metrics

Amazon API Gateway sends metric data to CloudWatch every minute.

The AWS/ApiGateway namespace includes the following metrics.

CloudWatch metrics 957

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html

Amazon API Gateway Developer Guide

Metric Description

4XXError The number of client-side errors captured in a
given period.

API Gateway counts modified gateway response
status codes as 4XXError errors.

The Sum statistic represents this metric, namely, the
 total count of the 4XXError errors in the given peri
od. The Average statistic represents the 4XXError
error rate, namely, the total count of the 4XXError
errors divided by the total number of requests
during the period. The denominator corresponds to
the Count metric (below).

Unit: Count

5XXError The number of server-side errors captured in a
given period.

The Sum statistic represents this metric, namely, the
 total count of the 5XXError errors in the given peri
od. The Average statistic represents the 5XXError
error rate, namely, the total count of the 5XXError
errors divided by the total number of requests
during the period. The denominator corresponds to
the Count metric (below).

Unit: Count

CacheHitCount The number of requests served from the API cache
in a given period.

The Sum statistic represents this metric, namely, the
 total count of the cache hits in the given period.
The Average statistic represents the cache hit
rate, namely, the total count of the cache hits
divided by the total number of requests during the

CloudWatch metrics 958

Amazon API Gateway Developer Guide

Metric Description

period. The denominator corresponds to the Count
metric (below).

Unit: Count

CacheMissCount The number of requests served from the backend in
a given period, when API caching is enabled.

The Sum statistic represents this metric, namely, the
 total count of the cache misses in the given period.
The Average statistic represents the cache miss
rate, namely, the total count of the cache misses
divided by the total number of requests during the
period. The denominator corresponds to the Count
metric (below).

Unit: Count

Count The total number API requests in a given period.

The SampleCount statistic represents this metric.

Unit: Count

IntegrationLatency The time between when API Gateway relays a
request to the backend and when it receives a
response from the backend.

Unit: Millisecond

Latency The time between when API Gateway receives
a request from a client and when it returns
a response to the client. The latency includes
the integration latency and other API Gateway
overhead.

Unit: Millisecond

CloudWatch metrics 959

Amazon API Gateway Developer Guide

Dimensions for metrics

You can use the dimensions in the following table to filter API Gateway metrics.

Note

API Gateway removes non-ASCII characters from the ApiName dimension before sending
metrics to CloudWatch. If the APIName contains no ASCII characters, the API ID is used as
the ApiName.

Dimension Description

ApiName Filters API Gateway metrics for the REST API with
the specified API name.

ApiName, Method, Resource, Stage Filters API Gateway metrics for the API method
with the specified API name, stage, resource, and
method.

API Gateway will not send these metrics unless
you have explicitly enabled detailed CloudWatc
h metrics. In the console, choose a stage, and
then for Logs and tracing, select Edit. Select
Detailed metrics, and then choose Save changes.
Alternatively, you can call the update-stage AWS
CLI command to update the metricsEnabled
property to true.

Enabling these metrics will incur additional charges
to your account. For pricing information, see
Amazon CloudWatch Pricing.

ApiName, Stage Filters API Gateway metrics for the API stage
resource with the specified API name and stage.

CloudWatch metrics 960

https://docs.aws.amazon.com/cli/latest/reference/apigateway/update-stage.html
https://aws.amazon.com/cloudwatch/pricing/

Amazon API Gateway Developer Guide

View CloudWatch metrics with the API dashboard in API Gateway

You can use the API dashboard in the API Gateway Console to display the CloudWatch metrics of
your deployed API in API Gateway. These are shown as a summary of API activity over time.

Topics

• Prerequisites

• Examine API activities in the dashboard

Prerequisites

1. You must have an API created in API Gateway. Follow the instructions in Creating a REST API in
Amazon API Gateway.

2. You must have the API deployed at least once. Follow the instructions in Deploying a REST API
in Amazon API Gateway.

Examine API activities in the dashboard

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose an API.

3. In the main navigation pane, choose Dashboard.

4. For Stage, choose the desired stage.

5. Choose Date range to specify a range of dates.

6. Refresh, if needed, and view individual metrics displayed in separate graphs titled API calls,
Latency, Integration latency, Latency, 4xx error and 5xx error.

Tip

To examine method-level CloudWatch metrics, make sure that you have enabled
CloudWatch Logs on a method level. For more information about how to set up
method-level logging, see Update stage settings using the API Gateway console.

CloudWatch metrics 961

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

View API Gateway metrics in the CloudWatch console

Metrics are grouped first by the service namespace, and then by the various dimension
combinations within each namespace.

To view API Gateway metrics using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. If necessary, change the AWS Region. From the navigation bar, select the Region where your
AWS resources reside. For more information, see Regions and Endpoints.

3. In the navigation pane, choose Metrics.

4. In the All metrics tab, choose API Gateway.

5. To view metrics by stage, choose the By Stage panel. And then select desired APIs and metric
names.

6. To view metrics by specific API, choose the By Api Name panel. And then select desired APIs
and metric names.

To view metrics using the AWS CLI

1. At a command prompt, use the following command to list metrics:

aws cloudwatch list-metrics --namespace "AWS/ApiGateway"

2. To view a specific statistics (for example, Average) over a period of time of a 5 minutes
intervals, call the following command:

aws cloudwatch get-metric-statistics --namespace AWS/ApiGateway --metric-name Count
 --start-time 2011-10-03T23:00:00Z --end-time 2017-10-05T23:00:00Z --period 300 --
statistics Average

View API Gateway log events in the CloudWatch console

Prerequisites

1. You must have an API created in API Gateway. Follow the instructions in Creating a REST API in
Amazon API Gateway.

CloudWatch metrics 962

https://console.aws.amazon.com/cloudwatch/
http://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon API Gateway Developer Guide

2. You must have the API deployed and invoked at least once. Follow the instructions in
Deploying a REST API in Amazon API Gateway and Invoking a REST API in Amazon API
Gateway.

3. You must have CloudWatch Logs enabled for a stage. Follow the instructions in Setting up
CloudWatch logging for a REST API in API Gateway.

To view logged API requests and responses using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. If necessary, change the AWS Region. From the navigation bar, select the Region where your
AWS resources reside. For more information, see Regions and Endpoints.

3. In the navigation pane, choose Logs, Log groups.

4. Under the Log Groups table, choose a log group of the API-Gateway-Execution-Logs_{rest-
api-id}/{stage-name} name.

5. Under the Log Streams table, choose a log stream. You can use the timestamp to help locate
the log stream of your interest.

6. Choose Text to view raw text or choose Row to view the event row by row.

Important

CloudWatch lets you delete log groups or streams. Do not manually delete API Gateway
API log groups or streams; let API Gateway manage these resources. Manually deleting log
groups or streams may cause API requests and responses not to be logged. If that happens,
you can delete the entire log group for the API and redeploy the API. This is because API
Gateway creates log groups or log streams for an API stage at the time when it is deployed.

Monitoring tools in AWS

AWS provides various tools that you can use to monitor API Gateway. You can configure some
of these tools to do the monitoring for you automatically, while other tools require manual
intervention. We recommend that you automate monitoring tasks as much as possible.

CloudWatch metrics 963

https://console.aws.amazon.com/cloudwatch/
http://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon API Gateway Developer Guide

Automated monitoring tools in AWS

You can use the following automated monitoring tools to watch API Gateway and report when
something is wrong:

• Amazon CloudWatch Alarms – Watch a single metric over a time period that you specify, and
perform one or more actions based on the value of the metric relative to a given threshold over
a number of time periods. The action is a notification sent to an Amazon Simple Notification
Service (Amazon SNS) topic or Amazon EC2 Auto Scaling policy. CloudWatch alarms do not
invoke actions simply because they are in a particular state; the state must have changed and
been maintained for a specified number of periods. For more information, see Monitoring REST
API execution with Amazon CloudWatch metrics.

• Amazon CloudWatch Logs – Monitor, store, and access your log files from AWS CloudTrail or
other sources. For more information, see Monitoring Log Files in the Amazon CloudWatch User
Guide.

• Amazon CloudWatch Events – Match events and route them to one or more target functions
or streams to make changes, capture state information, and take corrective action. For more
information, see What is Amazon CloudWatch Events in the Amazon CloudWatch User Guide.

• AWS CloudTrail Log Monitoring – Share log files between accounts, monitor CloudTrail log files
in real time by sending them to CloudWatch Logs, write log processing applications in Java, and
validate that your log files have not changed after delivery by CloudTrail. For more information,
see Working with CloudTrail Log Files in the AWS CloudTrail User Guide.

Manual monitoring tools

Another important part of monitoring API Gateway involves manually monitoring those items
that the CloudWatch alarms don't cover. The API Gateway, CloudWatch, and other AWS console
dashboards provide an at-a-glance view of the state of your AWS environment. We recommend
that you also check the log files on API execution.

• API Gateway dashboard shows the following statistics for a given API stage during a specified
period of time:

• API Calls

• Cache Hit, only when API caching is enabled.

• Cache Miss, only when API caching is enabled.

• Latency

CloudWatch metrics 964

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchEvents.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html

Amazon API Gateway Developer Guide

• Integration Latency

• 4XX Error

• 5XX Error

• The CloudWatch home page shows:

• Current alarms and status

• Graphs of alarms and resources

• Service health status

In addition, you can use CloudWatch to do the following:

• Create customized dashboards to monitor the services you care about

• Graph metric data to troubleshoot issues and discover trends

• Search and browse all your AWS resource metrics

• Create and edit alarms to be notified of problems

Creating CloudWatch alarms to monitor API Gateway

You can create a CloudWatch alarm that sends an Amazon SNS message when the alarm changes
state. An alarm watches a single metric over a time period you specify, and performs one or more
actions based on the value of the metric relative to a given threshold over a number of time
periods. The action is a notification sent to an Amazon SNS topic or Auto Scaling policy. Alarms
invoke actions for sustained state changes only. CloudWatch alarms do not invoke actions simply
because they are in a particular state; the state must have changed and been maintained for a
specified number of periods.

Setting up CloudWatch logging for a REST API in API Gateway

To help debug issues related to request execution or client access to your API, you can enable
Amazon CloudWatch Logs to log API calls. For more information about CloudWatch, see the
section called “CloudWatch metrics”.

CloudWatch log formats for API Gateway

There are two types of API logging in CloudWatch: execution logging and access logging. In
execution logging, API Gateway manages the CloudWatch Logs. The process includes creating log
groups and log streams, and reporting to the log streams any caller's requests and responses.
CloudWatch logs 965

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CloudWatch_Dashboards.html

Amazon API Gateway Developer Guide

The logged data includes errors or execution traces (such as request or response parameter values
or payloads), data used by Lambda authorizers (formerly known as custom authorizers), whether
API keys are required, whether usage plans are enabled, and so on.

When you deploy an API, API Gateway creates a log group and log streams under the log group.
The log group is named following the API-Gateway-Execution-Logs_{rest-api-id}/
{stage_name} format. Within each log group, the logs are further divided into log streams, which
are ordered by Last Event Time as logged data is reported.

In access logging, you, as an API developer, want to log who has accessed your API and how the
caller accessed the API. You can create your own log group or choose an existing log group that
could be managed by API Gateway. To specify the access details, you select $context variables, a
log format, and a log group destination.

The access log format must include at least $context.requestId or
$context.extendedRequestId. As a best practice, include $context.requestId and
$context.extendedRequestId in your log format.

$context.requestId

This logs the value in the x-amzn-RequestId header. Clients can override the value in the
x-amzn-RequestId header with a value in the format of a universally unique identifier
(UUID). API Gateway returns this request ID in the x-amzn-RequestId response header.
API Gateway replaces overridden request IDs that aren't in the format of a UUID with
UUID_REPLACED_INVALID_REQUEST_ID in your access logs.

$context.extendedRequestId

The extendedRequestID is a unique ID that API Gateway generates. API Gateway returns this
request ID in the x-amz-apigw-id response header. An API caller can't provide or override this
request ID. You might need to provide this value to AWS Support to help troubleshoot your API.
For more information, see the section called “$context Variables for data models, authorizers,
mapping templates, and CloudWatch access logging”.

Note

Only $context variables are supported.

CloudWatch logs 966

Amazon API Gateway Developer Guide

Choose a log format that is also adopted by your analytic backend, such as Common Log
Format (CLF), JSON, XML, or CSV. You can then feed the access logs to it directly to have
your metrics computed and rendered. To define the log format, set the log group ARN on
the accessLogSettings/destinationArn property on the stage. You can obtain a log group
ARN in the CloudWatch console. To define the access log format, set a chosen format on the
accessLogSetting/format property on the stage.

Examples of some commonly used access log formats are shown in the API Gateway console and
are listed as follows.

• CLF (Common Log Format):

$context.identity.sourceIp $context.identity.caller $context.identity.user
 [$context.requestTime]"$context.httpMethod $context.resourcePath
 $context.protocol" $context.status $context.responseLength $context.requestId
 $context.extendedRequestId

• JSON:

{ "requestId":"$context.requestId",
 "extendedRequestId":"$context.extendedRequestId","ip": "$context.identity.sourceIp",
 "caller":"$context.identity.caller", "user":"$context.identity.user",
 "requestTime":"$context.requestTime", "httpMethod":"$context.httpMethod",
 "resourcePath":"$context.resourcePath", "status":"$context.status",
 "protocol":"$context.protocol", "responseLength":"$context.responseLength" }

• XML:

<request id="$context.requestId"> <extendedRequestId>$context.extendedRequestId</
extendedRequestId> <ip>$context.identity.sourceIp</ip> <caller>
$context.identity.caller</caller> <user>$context.identity.user</user> <requestTime>
$context.requestTime</requestTime> <httpMethod>$context.httpMethod</httpMethod>
 <resourcePath>$context.resourcePath</resourcePath> <status>$context.status</status>
 <protocol>$context.protocol</protocol> <responseLength>$context.responseLength</
responseLength> </request>

• CSV (comma-separated values):

$context.identity.sourceIp,$context.identity.caller,$context.identity.user,
$context.requestTime,$context.httpMethod,$context.resourcePath,$context.protocol,
$context.status,$context.responseLength,$context.requestId,$context.extendedRequestId

CloudWatch logs 967

https://httpd.apache.org/docs/current/logs.html#common
https://httpd.apache.org/docs/current/logs.html#common
https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html#destinationArn
https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html#format
https://docs.aws.amazon.com/apigateway/latest/api/API_Stage.html
https://httpd.apache.org/docs/current/logs.html#common

Amazon API Gateway Developer Guide

Permissions for CloudWatch logging

To enable CloudWatch Logs, you must grant API Gateway permission to read and write
logs to CloudWatch for your account. The AmazonAPIGatewayPushToCloudWatchLogs
managed policy (with an ARN of arn:aws:iam::aws:policy/service-role/
AmazonAPIGatewayPushToCloudWatchLogs) has all the required permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents",
 "logs:GetLogEvents",
 "logs:FilterLogEvents"
],
 "Resource": "*"
 }
]
}

Note

API Gateway calls AWS Security Token Service in order to assume the IAM role, so make
sure that AWS STS is enabled for the Region. For more information, see Managing AWS STS
in an AWS Region.

To grant these permissions to your account, create an IAM role with
apigateway.amazonaws.com as its trusted entity, attach the preceding policy to the IAM role,
and set the IAM role ARN on the cloudWatchRoleArn property on your Account. You must set
the cloudWatchRoleArn property separately for each AWS Region in which you want to enable
CloudWatch Logs.

CloudWatch logs 968

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateAccount.html#cloudWatchRoleArn
https://docs.aws.amazon.com/apigateway/latest/api/API_GetAccount.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateAccount.html#cloudWatchRoleArn

Amazon API Gateway Developer Guide

If you receive an error when setting the IAM role ARN, check your AWS Security Token Service
account settings to make sure that AWS STS is enabled in the Region that you're using. For more
information about enabling AWS STS, see Managing AWS STS in an AWS Region in the IAM User
Guide.

Set up CloudWatch API logging using the API Gateway console

To set up CloudWatch API logging, you must have deployed the API to a stage. You must also have
configured an appropriate CloudWatch Logs role ARN for your account.

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. On the main navigation pane, choose Settings, and then under Logging, choose Edit.

3. For CloudWatch log role ARN, enter an ARN of an IAM role with appropriate permissions. You
need to do this once for each AWS account that creates APIs using API Gateway.

4. In the main navigation pane, choose APIs, and then do one of the following:

a. Choose an existing API, and then choose a stage.

b. Create an API, and then deploy it to a stage.

5. In the main navigation pane, choose Stages.

6. In the Logs and tracing section, choose Edit.

7. To enable execution logging:

a. Select a logging level from the CloudWatch Logs dropdown menu. The logging levels are
the following:

• Off – Logging is not turned on for this stage.

• Errors only – Logging is enabled for errors only.

• Errors and info logs – Logging is enabled for all events.

• Full request and response logs – Detailed logging is enabled for all events. This can be
useful to troubleshoot APIs, but can result in logging sensitive data.

Note

We recommend that you don't use Full request and response logs for
production APIs.

b. If desired, select Detailed metrics to turn on detailed CloudWatch metrics.

CloudWatch logs 969

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html#sts-regions-activate-deactivate
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

For more information about CloudWatch metrics, see the section called “CloudWatch metrics”.

8. To enable access logging:

a. Turn on Custom access logging.

b. For Access log destination ARN, enter the ARN of a log group. The ARN format is
arn:aws:logs:{region}:{account-id}:log-group:log-group-name.

c. For Log Format, enter a log format. You can choose CLF, JSON, XML, or CSV. To learn
more about example log formats, see the section called “CloudWatch log formats for API
Gateway”.

9. Choose Save changes.

Note

You can enable execution logging and access logging independently of each other.

API Gateway is now ready to log requests to your API. You don't need to redeploy the API when you
update the stage settings, logs, or stage variables.

Set up CloudWatch API logging using AWS CloudFormation

Use the following example AWS CloudFormation template to create an Amazon CloudWatch Logs
log group and configure execution and access logging for a stage. To enable CloudWatch Logs,
you must grant API Gateway permission to read and write logs to CloudWatch for your account. To
learn more, see Associate account with IAM role in the AWS CloudFormation User Guide.

 TestStage:
 Type: AWS::ApiGateway::Stage
 Properties:
 StageName: test
 RestApiId: !Ref MyAPI
 DeploymentId: !Ref Deployment
 Description: "test stage description"
 MethodSettings:
 - ResourcePath: "/*"
 HttpMethod: "*"
 LoggingLevel: INFO

CloudWatch logs 970

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-apigateway-account.html#aws-resource-apigateway-account--examples

Amazon API Gateway Developer Guide

 AccessLogSetting:
 DestinationArn: !GetAtt MyLogGroup.Arn
 Format: $context.extendedRequestId $context.identity.sourceIp
 $context.identity.caller $context.identity.user [$context.requestTime]
 "$context.httpMethod $context.resourcePath $context.protocol" $context.status
 $context.responseLength $context.requestId
 MyLogGroup:
 Type: AWS::Logs::LogGroup
 Properties:
 LogGroupName: !Join
 - '-'
 - - !Ref MyAPI
 - access-logs

Logging API calls to Amazon Data Firehose

To help debug issues related to client access to your API, you can log API calls to Amazon Data
Firehose. For more information about Firehose, see What Is Amazon Data Firehose?.

For access logging, you can only enable CloudWatch or Firehose—you can't enable both. However,
you can enable CloudWatch for execution logging and Firehose for access logging.

Topics

• Firehose log formats for API Gateway

• Permissions for Firehose logging

• Set up Firehose access logging by using the API Gateway console

Firehose log formats for API Gateway

Firehose logging uses the same format as CloudWatch logging.

Permissions for Firehose logging

When Firehose access logging is enabled on a stage, API Gateway creates a service-linked role in
your account if the role doesn't exist already. The role is named AWSServiceRoleForAPIGateway
and has the APIGatewayServiceRolePolicy managed policy attached to it. For more
information about service-linked roles, see Using Service-Linked Roles.

Firehose 971

https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-logging.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html

Amazon API Gateway Developer Guide

Note

The name of your Firehose stream must be amazon-apigateway-{your-stream-name}.

Set up Firehose access logging by using the API Gateway console

To set up API logging, you must have deployed the API to a stage. You must also have created a
Firehose stream.

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Do one of the following:

a. Choose an existing API, and then choose a stage.

b. Create an API and deploy it to a stage.

3. In the main navigation pane, choose Stages.

4. In the Logs and tracing section, choose Edit.

5. To enable access logging to a Firehose stream:

a. Turn on Custom access logging.

b. For Access log destination ARN, enter the ARN of a Firehose stream. The ARN format
is arn:aws:firehose:{region}:{account-id}:deliverystream/amazon-
apigateway-{your-stream-name}.

Note

The name of your Firehose stream must be amazon-apigateway-{your-
stream-name}.

c. For Log format, enter a log format. You can choose CLF, JSON, XML, or CSV. To learn
more about example log formats, see the section called “CloudWatch log formats for API
Gateway”.

6. Choose Save changes.

API Gateway is now ready to log requests to your API to Firehose. You don't need to redeploy the
API when you update the stage settings, logs, or stage variables.

Firehose 972

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Tracing user requests to REST APIs using X-Ray

You can use AWS X-Ray to trace and analyze user requests as they travel through your Amazon
API Gateway REST APIs to the underlying services. API Gateway supports X-Ray tracing for all API
Gateway REST API endpoint types: Regional, edge-optimized, and private. You can use X-Ray with
Amazon API Gateway in all AWS Regions where X-Ray is available.

Because X-Ray gives you an end-to-end view of an entire request, you can analyze latencies in your
APIs and their backend services. You can use an X-Ray service map to view the latency of an entire
request and that of the downstream services that are integrated with X-Ray. You can also configure
sampling rules to tell X-Ray which requests to record and at what sampling rates, according to
criteria that you specify.

If you call an API Gateway API from a service that's already being traced, API Gateway passes the
trace through, even if X-Ray tracing isn't enabled on the API.

You can enable X-Ray for an API stage by using the API Gateway console, or by using the API
Gateway API or CLI.

Topics

• Setting up AWS X-Ray with API Gateway REST APIs

• Using AWS X-Ray service maps and trace views with API Gateway

• Configuring AWS X-Ray sampling rules for API Gateway APIs

• Understanding AWS X-Ray traces for Amazon API Gateway APIs

Setting up AWS X-Ray with API Gateway REST APIs

In this section you can find detailed information on how to set up AWS X-Ray with API Gateway
REST APIs.

Topics

• X-Ray tracing modes for API Gateway

• Permissions for X-Ray tracing

• Enabling X-Ray tracing in the API Gateway console

• Enabling AWS X-Ray tracing using the API Gateway CLI

X-Ray 973

https://docs.aws.amazon.com/xray/latest/devguide/xray-services-apigateway.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-apigateway.html

Amazon API Gateway Developer Guide

X-Ray tracing modes for API Gateway

The path of a request through your application is tracked with a trace ID. A trace collects all of the
segments generated by a single request, typically an HTTP GET or POST request.

There are two modes of tracing for an API Gateway API:

• Passive: This is the default setting if you have not enabled X-Ray tracing on an API stage.
This approach means that the API Gateway API is only traced if X-Ray has been enabled on an
upstream service.

• Active: When an API Gateway API stage has this setting, API Gateway automatically samples API
invocation requests, based on the sampling algorithm specified by X-Ray.

When active tracing is enabled on a stage, API Gateway creates a service-linked role in your
account, if the role does not exist already. The role is named AWSServiceRoleForAPIGateway
and will have the APIGatewayServiceRolePolicy managed policy attached to it. For more
information about service-linked roles, see Using Service-Linked Roles.

Note

X-Ray applies a sampling algorithm to ensure that tracing is efficient, while still providing
a representative sample of the requests that your API receives. The default sampling
algorithm is 1 request per second, with 5 percent of requests sampled past that limit.

You can change the tracing mode for your API by using the API Gateway management console, the
API Gateway CLI, or an AWS SDK.

Permissions for X-Ray tracing

When you enable X-Ray tracing on a stage, API Gateway creates a service-linked role in your
account, if the role does not exist already. The role is named AWSServiceRoleForAPIGateway
and will have the APIGatewayServiceRolePolicy managed policy attached to it. For more
information about service-linked roles, see Using Service-Linked Roles.

Enabling X-Ray tracing in the API Gateway console

You can use the Amazon API Gateway console to enable active tracing on an API stage.

These steps assume that you have already deployed the API to a stage.

X-Ray 974

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html

Amazon API Gateway Developer Guide

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your API, and then in the main navigation pane, choose Stages.

3. In the Stages pane, choose a stage.

4. In the Logs and tracing section, choose Edit.

5. To enable active X-Ray tracing, select X-Ray tracing to turn on X-Ray tracing.

6. Choose Save changes.

Once you've enabled X-Ray for your API stage, you can use the X-Ray management console to view
the traces and service maps.

Enabling AWS X-Ray tracing using the API Gateway CLI

To use the AWS CLI to enable active X-Ray tracing for an API stage when you create the stage, call
the create-stage command as in the following example:

aws apigateway create-stage \
 --rest-api-id {rest-api-id} \
 --stage-name {stage-name} \
 --deployment-id {deployment-id} \
 --region {region} \
 --tracing-enabled=true

Following is example output for a successful invocation:

{
 "tracingEnabled": true,
 "stageName": {stage-name},
 "cacheClusterEnabled": false,
 "cacheClusterStatus": "NOT_AVAILABLE",
 "deploymentId": {deployment-id},
 "lastUpdatedDate": 1533849811,
 "createdDate": 1533849811,
 "methodSettings": {}
}

To use the AWS CLI to disable active X-Ray tracing for an API stage when you create the stage, call
the create-stage command as in the following example:

aws apigateway create-stage \

X-Ray 975

https://console.aws.amazon.com/apigateway
https://docs.aws.amazon.com/cli/latest/reference/apigateway/create-stage.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/create-stage.html

Amazon API Gateway Developer Guide

 --rest-api-id {rest-api-id} \
 --stage-name {stage-name} \
 --deployment-id {deployment-id} \
 --region {region} \
 --tracing-enabled=false

Following is example output for a successful invocation:

{
 "tracingEnabled": false,
 "stageName": {stage-name},
 "cacheClusterEnabled": false,
 "cacheClusterStatus": "NOT_AVAILABLE",
 "deploymentId": {deployment-id},
 "lastUpdatedDate": 1533849811,
 "createdDate": 1533849811,
 "methodSettings": {}
}

To use the AWS CLI to enable active X-Ray tracing for an API that's already been deployed, call the
update-stage command as follows:

aws apigateway update-stage \
 --rest-api-id {rest-api-id} \
 --stage-name {stage-name} \
 --patch-operations op=replace,path=/tracingEnabled,value=true

To use the AWS CLI to disable active X-Ray tracing for an API that's already been deployed, call the
update-stage command as in the following example:

aws apigateway update-stage \
 --rest-api-id {rest-api-id} \
 --stage-name {stage-name} \
 --region {region} \
 --patch-operations op=replace,path=/tracingEnabled,value=false

Following is example output for a successful invocation:

{
 "tracingEnabled": false,

X-Ray 976

https://docs.aws.amazon.com/cli/latest/reference/apigateway/update-stage.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/update-stage.html

Amazon API Gateway Developer Guide

 "stageName": {stage-name},
 "cacheClusterEnabled": false,
 "cacheClusterStatus": "NOT_AVAILABLE",
 "deploymentId": {deployment-id},
 "lastUpdatedDate": 1533850033,
 "createdDate": 1533849811,
 "methodSettings": {}
}

Once you've enabled X-Ray for your API stage, use the X-Ray CLI to retrieve trace information. For
more information, see Using the AWS X-Ray API with the AWS CLI.

Using AWS X-Ray service maps and trace views with API Gateway

In this section you can find detailed information on how to use AWS X-Ray service maps and trace
views with API Gateway.

For detailed information about service maps and trace views, and how to interpret them, see AWS
X-Ray Console.

Topics

• Example X-Ray service map

• Example X-Ray trace view

Example X-Ray service map

AWS X-Ray service maps show information about your API and all of its downstream services.
When X-Ray is enabled for an API stage in API Gateway, you'll see a node in the service map
containing information about the overall time spent in the API Gateway service. You can get
detailed information about the response status and a histogram of the API response time for the
selected timeframe. For APIs integrating with AWS services such as AWS Lambda and Amazon
DynamoDB, you will see more nodes providing performance metrics related to those services.
There will be a service map for each API stage.

The following example shows a service map for the test stage of an API called xray. This API has
a Lambda integration with a Lambda authorizer function and a Lambda backend function. The
nodes represent the API Gateway service, the Lambda service, and the two Lambda functions.

For a detailed explanation of service map structure, see Viewing the Service Map.

X-Ray 977

https://docs.aws.amazon.com/xray/latest/devguide/xray-api-tutorial.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-apigateway.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console.html#xray-console-servicemap

Amazon API Gateway Developer Guide

From the service map, you can zoom in to see a trace view of your API stage. The trace will display
in-depth information regarding your API, represented as segments and subsegments. For example,
the trace for the service map shown above would include segments for the Lambda service and
Lambda function. For more information, see Lambda as an AWS X-Ray Trace.

If you choose a node or edge on an X-Ray service map, the X-Ray console shows a latency
distribution histogram. You can use a latency histogram to see how long it takes for a service to
complete its requests. Following is a histogram of the API Gateway stage named xray/test in
the previous service map. For a detailed explanation of latency distribution histograms, see Using
Latency Histograms in the AWS X-Ray Console.

X-Ray 978

https://docs.aws.amazon.com/xray/latest/devguide/using-x-ray.html#lambda-request
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-histograms.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-histograms.html

Amazon API Gateway Developer Guide

X-Ray 979

Amazon API Gateway Developer Guide

Example X-Ray trace view

The following diagram shows a trace view generated for the example API described above, with a
Lambda backend function and a Lambda authorizer function. A successful API method request is
shown with a response code of 200.

For a detailed explanation of trace views, see Viewing Traces.

Configuring AWS X-Ray sampling rules for API Gateway APIs

You can use AWS X-Ray console or SDK to configure sampling rules for your Amazon API Gateway
API. A sampling rule specifies which requests X-Ray should record for your API. By customizing
sampling rules, you can control the amount of data that you record, and modify sampling behavior
on the fly without modifying or redeploying your code.

Before you specify your X-Ray sampling rules, read the following topics in the X-Ray Developer
Guide:

• Configuring Sampling Rules in the AWS X-Ray Console

• Using Sampling Rules with the X-Ray API

Topics

• X-Ray sampling rule option values for API Gateway APIs

• X-Ray sampling rule examples

X-Ray 980

https://docs.aws.amazon.com/xray/latest/devguide/xray-console.html#xray-console-traces
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-sampling.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-api-sampling.html

Amazon API Gateway Developer Guide

X-Ray sampling rule option values for API Gateway APIs

The following X-Ray sampling options are relevant for API Gateway. String values can use wildcards
to match a single character (?) or zero or more characters (*). For more details, including a detailed
explanation of how the Reservoir and Rate settings are used, Configuring Sampling Rules in the
AWS X-Ray Console.

• Rule name (string) — A unique name for the rule.

• Priority (integer between 1 and 9999) — The priority of the sampling rule. Services evaluate
rules in ascending order of priority, and make a sampling decision with the first rule that
matches.

• Reservoir (nonnegative integer) — A fixed number of matching requests to instrument per
second, before applying the fixed rate. The reservoir is not used directly by services, but applies
to all services using the rule collectively.

• Rate (number between 0 and 100) — The percentage of matching requests to instrument, after
the reservoir is exhausted.

• Service name (string) — API stage name, in the form {api-name}/{stage-name}. For
example, if you were to deploy the PetStore sample API to a stage named test, the Service
name value to specify in your sampling rule would be pets/test.

• Service type (string) — For an API Gateway API, either AWS::ApiGateway::Stage or
AWS::ApiGateway::* can be specified.

• Host (string) — The hostname from the HTTP host header. Set this to * to match against
all hostnames. Or you can specify a full or partial hostname to match, for example,
api.example.com or *.example.com.

• Resource ARN (string) — The ARN of the API stage, for example,
arn:aws:apigateway:region::/restapis/api-id/stages/stage-name.

The stage name can be obtained from the console or the API Gateway CLI or API. For more
information about ARN formats, see the Amazon Web Services General Reference.

• HTTP method (string) — The method to be sampled, for example, GET.

• URL path (string) — The URL path of the request.

• (optional) Attributes (key and value) — Headers from the original HTTP request, for example,
Connection, Content-Length, or Content-Type. Each attribute value can be up to 32
characters long.

X-Ray 981

https://docs.aws.amazon.com/xray/latest/devguide/xray-console-sampling.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-sampling.html
https://docs.aws.amazon.com/general/latest/gr/

Amazon API Gateway Developer Guide

X-Ray sampling rule examples

Sampling rule example #1

This rule samples all GET requests for the testxray API at the test stage.

• Rule name — test-sampling

• Priority — 17

• Reservoir size — 10

• Fixed rate — 10

• Service name — testxray/test

• Service type — AWS::ApiGateway::Stage

• HTTP method — GET

• Resource ARN — *

• Host — *

Sampling rule example #2

This rule samples all requests for the testxray API at the prod stage.

• Rule name — prod-sampling

• Priority — 478

• Reservoir size — 1

• Fixed rate — 60

• Service name — testxray/prod

• Service type — AWS::ApiGateway::Stage

• HTTP method — *

• Resource ARN — *

• Host — *

• Attributes — {}

Understanding AWS X-Ray traces for Amazon API Gateway APIs

This section discusses AWS X-Ray trace segments, subsegments, and other trace fields for Amazon
API Gateway APIs.

X-Ray 982

Amazon API Gateway Developer Guide

Before you read this section, review the following topics in the X-Ray Developer Guide:

• AWS X-Ray Console

• AWS X-Ray Segment Documents

• X-Ray Concepts

Topics

• Examples of trace objects for an API Gateway API

• Understanding the trace

Examples of trace objects for an API Gateway API

This section discusses some of the objects you may see in a trace for an API Gateway API.

Annotations

Annotations can appear in segments and subsegments. They are used as filtering expressions in
sampling rules to filter traces. For more information, see Configuring Sampling Rules in the AWS X-
Ray Console.

Following is an example of an annotations object, in which an API stage is identified by the API
ID and the API stage name:

"annotations": {
 "aws:api_id": "a1b2c3d4e5",
 "aws:api_stage": "dev"
}

AWS resource data

The aws object appears only in segments. Following is an example of an aws object that matches
the Default sampling rule. For an in-depth explanation of sampling rules, see Configuring Sampling
Rules in the AWS X-Ray Console.

"aws": {
 "xray": {
 "sampling_rule_name": "Default"
 },
 "api_gateway": {
 "account_id": "123412341234",

X-Ray 983

https://docs.aws.amazon.com/xray/latest/devguide/xray-console.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-api-segmentdocuments.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-concepts.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-sampling.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-sampling.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-api-segmentdocuments.html#api-segmentdocuments-annotations
https://docs.aws.amazon.com/xray/latest/devguide/xray-api-segmentdocuments.html#api-segmentdocuments-aws
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-sampling.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-sampling.html

Amazon API Gateway Developer Guide

 "rest_api_id": "a1b2c3d4e5",
 "stage": "dev",
 "request_id": "a1b2c3d4-a1b2-a1b2-a1b2-a1b2c3d4e5f6"
 }
}

Understanding the trace

Following is a trace segment for an API Gateway stage. For a detailed explanation of the fields
that make up the trace segment, see AWS X-Ray Segment Documents in the AWS X-Ray Developer
Guide.

 {
 "Document": {
 "id": "a1b2c3d4a1b2c3d4",
 "name": "testxray/dev",
 "start_time": 1533928226.229,
 "end_time": 1533928226.614,
 "metadata": {
 "default": {
 "extended_request_id": "abcde12345abcde=",
 "request_id": "a1b2c3d4-a1b2-a1b2-a1b2-a1b2c3d4e5f6"
 }
 },
 "http": {
 "request": {
 "url": "https://example.com/dev?
username=demo&message=hellofromdemo/",
 "method": "GET",
 "client_ip": "192.0.2.0",
 "x_forwarded_for": true
 },
 "response": {
 "status": 200,
 "content_length": 0
 }
 },
 "aws": {
 "xray": {
 "sampling_rule_name": "Default"
 },
 "api_gateway": {
 "account_id": "123412341234",

X-Ray 984

https://docs.aws.amazon.com/xray/latest/devguide/xray-api-segmentdocuments.html

Amazon API Gateway Developer Guide

 "rest_api_id": "a1b2c3d4e5",
 "stage": "dev",
 "request_id": "a1b2c3d4-a1b2-a1b2-a1b2-a1b2c3d4e5f6"
 }
 },
 "annotations": {
 "aws:api_id": "a1b2c3d4e5",
 "aws:api_stage": "dev"
 },
 "trace_id": "1-a1b2c3d4-a1b2c3d4a1b2c3d4a1b2c3d4",
 "origin": "AWS::ApiGateway::Stage",
 "resource_arn": "arn:aws:apigateway:us-east-1::/restapis/a1b2c3d4e5/
stages/dev",
 "subsegments": [
 {
 "id": "abcdefgh12345678",
 "name": "Lambda",
 "start_time": 1533928226.233,
 "end_time": 1533928226.6130002,
 "http": {
 "request": {
 "url": "https://example.com/2015-03-31/functions/
arn:aws:lambda:us-east-1:123412341234:function:xray123/invocations",
 "method": "GET"
 },
 "response": {
 "status": 200,
 "content_length": 62
 }
 },
 "aws": {
 "function_name": "xray123",
 "region": "us-east-1",
 "operation": "Invoke",
 "resource_names": [
 "xray123"
]
 },
 "namespace": "aws"
 }
]
 },
 "Id": "a1b2c3d4a1b2c3d4"

X-Ray 985

Amazon API Gateway Developer Guide

 }

X-Ray 986

Amazon API Gateway Developer Guide

Working with HTTP APIs

REST APIs and HTTP APIs are both RESTful API products. REST APIs support more features than
HTTP APIs, while HTTP APIs are designed with minimal features so that they can be offered at a
lower price. For more information, see the section called “Choosing between REST APIs and HTTP
APIs ”.

You can use HTTP APIs to send requests to AWS Lambda functions or to any routable HTTP
endpoint. For example, you can create an HTTP API that integrates with a Lambda function on the
backend. When a client calls your API, API Gateway sends the request to the Lambda function and
returns the function's response to the client.

HTTP APIs support OpenID Connect and OAuth 2.0 authorization. They come with built-in support
for cross-origin resource sharing (CORS) and automatic deployments.

You can create HTTP APIs by using the AWS Management Console, the AWS CLI, APIs, AWS
CloudFormation, or SDKs.

Topics

• Developing an HTTP API in API Gateway

• Publishing HTTP APIs for customers to invoke

• Protecting your HTTP API

• Monitoring your HTTP API

• Troubleshooting issues with HTTP APIs

Developing an HTTP API in API Gateway

This section provides details about API Gateway capabilities that you need while you're developing
your API Gateway APIs.

As you're developing your API Gateway API, you decide on a number of characteristics of your API.
These characteristics depend on the use case of your API. For example, you might want to only
allow certain clients to call your API, or you might want it to be available to everyone. You might
want an API call to execute a Lambda function, make a database query, or call an application.

Topics

• Creating an HTTP API

Develop 987

https://openid.net/connect/
https://oauth.net/2/

Amazon API Gateway Developer Guide

• Working with routes for HTTP APIs

• Controlling and managing access to an HTTP API in API Gateway

• Configuring integrations for HTTP APIs

• Configuring CORS for an HTTP API

• Transforming API requests and responses

• Working with OpenAPI definitions for HTTP APIs

Creating an HTTP API

To create a functional API, you must have at least one route, integration, stage, and deployment.

The following examples show how to create an API with an AWS Lambda or HTTP integration, a
route, and a default stage that is configured to automatically deploy changes.

This guide assumes that you're already familiar with API Gateway and Lambda. For a more detailed
guide, see Getting started.

Topics

• Create an HTTP API by using the AWS Management Console

• Create an HTTP API by using the AWS CLI

Create an HTTP API by using the AWS Management Console

1. Open the API Gateway console.

2. Choose Create API.

3. Under HTTP API, choose Build.

4. Choose Add integration, and then choose an AWS Lambda function or enter an HTTP
endpoint.

5. For Name, enter a name for your API.

6. Choose Review and create.

7. Choose Create.

Now your API is ready to invoke. You can test your API by entering its invoke URL in a browser, or
by using Curl.

Creating an HTTP API 988

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

curl https://api-id.execute-api.us-east-2.amazonaws.com

Create an HTTP API by using the AWS CLI

You can use quick create to create an API with a Lambda or HTTP integration, a default catch-
all route, and a default stage that is configured to automatically deploy changes. The following
command uses quick create to create an API that integrates with a Lambda function on the
backend.

Note

To invoke a Lambda integration, API Gateway must have the required permissions. You
can use a resource-based policy or an IAM role to grant API Gateway permissions to invoke
a Lambda function. To learn more, see AWS Lambda Permissions in the AWS Lambda
Developer Guide.

Example

aws apigatewayv2 create-api --name my-api --protocol-type HTTP --target
 arn:aws:lambda:us-east-2:123456789012:function:function-name

Now your API is ready to invoke. You can test your API by entering its invoke URL in a browser, or
by using Curl.

curl https://api-id.execute-api.us-east-2.amazonaws.com

Working with routes for HTTP APIs

Routes direct incoming API requests to backend resources. Routes consist of two parts: an HTTP
method and a resource path—for example, GET /pets. You can define specific HTTP methods for
your route. Or, you can use the ANY method to match all methods that you haven't defined for a
resource. You can create a $default route that acts as a catch-all for requests that don’t match
any other routes.

Routes 989

https://docs.aws.amazon.com/lambda/latest/dg/lambda-permissions

Amazon API Gateway Developer Guide

Note

API Gateway decodes URL-encoded request parameters before passing them to your
backend integration.

Working with path variables

You can use path variables in HTTP API routes.

For example, the GET /pets/{petID} route catches a GET request that a client submits to
https://api-id.execute-api.us-east-2.amazonaws.com/pets/6.

A greedy path variable catches all child resources of a route. To create a greedy path variable, add +
to the variable name—for example, {proxy+}. The greedy path variable must be at the end of the
resource path.

Working with query string parameters

By default, API Gateway sends query string parameters to your backend integration if they are
included in a request to an HTTP API.

For example, when a client sends a request to https://api-id.execute-api.us-
east-2.amazonaws.com/pets?id=4&type=dog, the query string parameters ?
id=4&type=dog are sent to your integration.

Working with the $default route

The $default route catches requests that don't explicitly match other routes in your API.

When the $default route receives a request, API Gateway sends the full request path
to the integration. For example, you can create an API with only a $default route and
integrate it on the ANY method with the https://petstore-demo-endpoint.execute-
api.com HTTP endpoint. When you send a request to https://api-id.execute-api.us-
east-2.amazonaws.com/store/checkout, API Gateway sends a request to https://
petstore-demo-endpoint.execute-api.com/store/checkout.

To learn more about HTTP integrations, see Working with HTTP proxy integrations for HTTP APIs.

Routes 990

Amazon API Gateway Developer Guide

Routing API requests

When a client sends an API request, API Gateway first determines which stage to route the request
to. If the request explicitly matches a stage, API Gateway sends the request to that stage. If no
stage fully matches the request, API Gateway sends the request to the $default stage. If there's
no $default stage, then the API returns {"message":"Not Found"} and does not generate
CloudWatch logs.

After selecting a stage, API Gateway selects a route. API Gateway selects the route with the most-
specific match, using the following priorities:

1. Full match for a route and method.

2. Match for a route and method with a greedy path variable ({proxy+}).

3. The $default route.

If no routes match a request, API Gateway returns {"message":"Not Found"} to the client.

For example, consider an API with a $default stage and the following example routes:

1. GET /pets/dog/1

2. GET /pets/dog/{id}

3. GET /pets/{proxy+}

4. ANY /{proxy+}

5. $default

The following table summarizes how API Gateway routes requests to the example routes.

Request Selected route Explanation

GET https://api-
id.execute-
api. region.amazonaw
s.com/pets/dog/1

GET /pets/dog/1 The request fully matches this
static route.

GET https://api-
id.execute-

GET /pets/dog/{id} The request fully matches this
route.

Routes 991

https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-stages.html

Amazon API Gateway Developer Guide

Request Selected route Explanation

api. region.amazonaw
s.com/pets/dog/2

GET https://api-
id.execute-
api. region.amazonaw
s.com/pets/cat/1

GET /pets/{proxy+} The request doesn't fully
match a route. The route with
a GET method and a greedy
path variable catches this
request.

POST https://api-
id.execute-
api. region.amazonaw
s.com/test/5

ANY /{proxy+} The ANY method matches
all methods that you haven't
defined for a route. Routes
with greedy path variables
have higher priority than the
$default route.

Controlling and managing access to an HTTP API in API Gateway

API Gateway supports multiple mechanisms for controlling and managing access to your HTTP API:

• Lambda authorizers use Lambda functions to control access to APIs. For more information, see
Working with AWS Lambda authorizers for HTTP APIs.

• JWT authorizers use JSON web tokens to control access to APIs. For more information, see
Controlling access to HTTP APIs with JWT authorizers.

• Standard AWS IAM roles and policies offer flexible and robust access controls. You can use IAM
roles and policies to control who can create and manage your APIs, as well as who can invoke
them. For more information, see Using IAM authorization.

Working with AWS Lambda authorizers for HTTP APIs

You use a Lambda authorizer to use a Lambda function to control access to your HTTP API. Then,
when a client calls your API, API Gateway invokes your Lambda function. API Gateway uses the
response from your Lambda function to determine whether the client can access your API.

Access control 992

Amazon API Gateway Developer Guide

Payload format version

The authorizer payload format version specifies the format of the data that API Gateway sends
to a Lambda authorizer, and how API Gateway interprets the response from Lambda. If you don't
specify a payload format version, the AWS Management Console uses the latest version by default.
If you create a Lambda authorizer by using the AWS CLI, AWS CloudFormation, or an SDK, you must
specify an authorizerPayloadFormatVersion. The supported values are 1.0 and 2.0.

If you need compatibility with REST APIs, use version 1.0.

The following examples show the structure of each payload format version.

2.0

{
 "version": "2.0",
 "type": "REQUEST",
 "routeArn": "arn:aws:execute-api:us-east-1:123456789012:abcdef123/test/GET/
request",
 "identitySource": ["user1", "123"],
 "routeKey": "$default",
 "rawPath": "/my/path",
 "rawQueryString": "parameter1=value1¶meter1=value2¶meter2=value",
 "cookies": ["cookie1", "cookie2"],
 "headers": {
 "header1": "value1",
 "header2": "value2"
 },
 "queryStringParameters": {
 "parameter1": "value1,value2",
 "parameter2": "value"
 },
 "requestContext": {
 "accountId": "123456789012",
 "apiId": "api-id",
 "authentication": {
 "clientCert": {
 "clientCertPem": "CERT_CONTENT",
 "subjectDN": "www.example.com",
 "issuerDN": "Example issuer",
 "serialNumber": "1",
 "validity": {
 "notBefore": "May 28 12:30:02 2019 GMT",

Access control 993

Amazon API Gateway Developer Guide

 "notAfter": "Aug 5 09:36:04 2021 GMT"
 }
 }
 },
 "domainName": "id.execute-api.us-east-1.amazonaws.com",
 "domainPrefix": "id",
 "http": {
 "method": "POST",
 "path": "/my/path",
 "protocol": "HTTP/1.1",
 "sourceIp": "IP",
 "userAgent": "agent"
 },
 "requestId": "id",
 "routeKey": "$default",
 "stage": "$default",
 "time": "12/Mar/2020:19:03:58 +0000",
 "timeEpoch": 1583348638390
 },
 "pathParameters": { "parameter1": "value1" },
 "stageVariables": { "stageVariable1": "value1", "stageVariable2": "value2" }
}

1.0

{
 "version": "1.0",
 "type": "REQUEST",
 "methodArn": "arn:aws:execute-api:us-east-1:123456789012:abcdef123/test/GET/
request",
 "identitySource": "user1,123",
 "authorizationToken": "user1,123",
 "resource": "/request",
 "path": "/request",
 "httpMethod": "GET",
 "headers": {
 "X-AMZ-Date": "20170718T062915Z",
 "Accept": "*/*",
 "HeaderAuth1": "headerValue1",
 "CloudFront-Viewer-Country": "US",
 "CloudFront-Forwarded-Proto": "https",
 "CloudFront-Is-Tablet-Viewer": "false",
 "CloudFront-Is-Mobile-Viewer": "false",

Access control 994

Amazon API Gateway Developer Guide

 "User-Agent": "..."
 },
 "queryStringParameters": {
 "QueryString1": "queryValue1"
 },
 "pathParameters": {},
 "stageVariables": {
 "StageVar1": "stageValue1"
 },
 "requestContext": {
 "path": "/request",
 "accountId": "123456789012",
 "resourceId": "05c7jb",
 "stage": "test",
 "requestId": "...",
 "identity": {
 "apiKey": "...",
 "sourceIp": "...",
 "clientCert": {
 "clientCertPem": "CERT_CONTENT",
 "subjectDN": "www.example.com",
 "issuerDN": "Example issuer",
 "serialNumber": "a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1",
 "validity": {
 "notBefore": "May 28 12:30:02 2019 GMT",
 "notAfter": "Aug 5 09:36:04 2021 GMT"
 }
 }
 },
 "resourcePath": "/request",
 "httpMethod": "GET",
 "apiId": "abcdef123"
 }
}

Lambda authorizer response format

The payload format version also determines the structure of the response that you must return
from your Lambda function.

Access control 995

Amazon API Gateway Developer Guide

Lambda function response for format 1.0

If you choose the 1.0 format version, Lambda authorizers must return an IAM policy that allows or
denies access to your API route. You can use standard IAM policy syntax in the policy. For examples
of IAM policies, see the section called “ Control access for invoking an API”. You can pass context
properties to Lambda integrations or access logs by using $context.authorizer.property.
The context object is optional and claims is a reserved placeholder and cannot be used as the
context object. To learn more, see the section called “Logging variables”.

Example

{
 "principalId": "abcdef", // The principal user identification associated with the
 token sent by the client.
 "policyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "execute-api:Invoke",
 "Effect": "Allow|Deny",
 "Resource": "arn:aws:execute-api:{regionId}:{accountId}:{apiId}/{stage}/
{httpVerb}/[{resource}/[{child-resources}]]"
 }
]
 },
 "context": {
 "exampleKey": "exampleValue"
 }
}

Lambda function response for format 2.0

If you choose the 2.0 format version, you can return a Boolean value or an IAM policy that uses
standard IAM policy syntax from your Lambda function. To return a Boolean value, enable simple
responses for the authorizer. The following examples demonstrate the format that you must code
your Lambda function to return. The context object is optional. You can pass context properties
to Lambda integrations or access logs by using $context.authorizer.property. To learn
more, see the section called “Logging variables”.

Access control 996

Amazon API Gateway Developer Guide

Simple response

{
 "isAuthorized": true/false,
 "context": {
 "exampleKey": "exampleValue"
 }
}

IAM policy

{
 "principalId": "abcdef", // The principal user identification associated with the
 token sent by the client.
 "policyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "execute-api:Invoke",
 "Effect": "Allow|Deny",
 "Resource": "arn:aws:execute-api:{regionId}:{accountId}:{apiId}/{stage}/
{httpVerb}/[{resource}/[{child-resources}]]"
 }
]
 },
 "context": {
 "exampleKey": "exampleValue"
 }
}

Example Lambda authorizer functions

The following example Node.js Lambda functions demonstrate the required response formats you
need to return from your Lambda function for the 2.0 payload format version.

Simple response - Node.js

export const handler = async(event) => {
 let response = {
 "isAuthorized": false,
 "context": {
 "stringKey": "value",

Access control 997

Amazon API Gateway Developer Guide

 "numberKey": 1,
 "booleanKey": true,
 "arrayKey": ["value1", "value2"],
 "mapKey": {"value1": "value2"}
 }
 };

 if (event.headers.authorization === "secretToken") {
 console.log("allowed");
 response = {
 "isAuthorized": true,
 "context": {
 "stringKey": "value",
 "numberKey": 1,
 "booleanKey": true,
 "arrayKey": ["value1", "value2"],
 "mapKey": {"value1": "value2"}
 }
 };
 }

 return response;

};

Simple response - Python

import json

def lambda_handler(event, context):
 response = {
 "isAuthorized": False,
 "context": {
 "stringKey": "value",
 "numberKey": 1,
 "booleanKey": True,
 "arrayKey": ["value1", "value2"],
 "mapKey": {"value1": "value2"}
 }
 }

 try:

Access control 998

Amazon API Gateway Developer Guide

 if (event["headers"]["authorization"] == "secretToken"):
 response = {
 "isAuthorized": True,
 "context": {
 "stringKey": "value",
 "numberKey": 1,
 "booleanKey": True,
 "arrayKey": ["value1", "value2"],
 "mapKey": {"value1": "value2"}
 }
 }
 print('allowed')
 return response
 else:
 print('denied')
 return response
 except BaseException:
 print('denied')
 return response

IAM policy - Node.js

export const handler = async(event) => {
 if (event.headers.authorization == "secretToken") {
 console.log("allowed");
 return {
 "principalId": "abcdef", // The principal user identification associated with
 the token sent by the client.
 "policyDocument": {
 "Version": "2012-10-17",
 "Statement": [{
 "Action": "execute-api:Invoke",
 "Effect": "Allow",
 "Resource": event.routeArn
 }]
 },
 "context": {
 "stringKey": "value",
 "numberKey": 1,
 "booleanKey": true,
 "arrayKey": ["value1", "value2"],
 "mapKey": { "value1": "value2" }
 }

Access control 999

Amazon API Gateway Developer Guide

 };
 }
 else {
 console.log("denied");
 return {
 "principalId": "abcdef", // The principal user identification associated with
 the token sent by the client.
 "policyDocument": {
 "Version": "2012-10-17",
 "Statement": [{
 "Action": "execute-api:Invoke",
 "Effect": "Deny",
 "Resource": event.routeArn
 }]
 },
 "context": {
 "stringKey": "value",
 "numberKey": 1,
 "booleanKey": true,
 "arrayKey": ["value1", "value2"],
 "mapKey": { "value1": "value2" }
 }
 };
 }
};

IAM policy - Python

import json

def lambda_handler(event, context):
 response = {
 # The principal user identification associated with the token sent by
 # the client.
 "principalId": "abcdef",
 "policyDocument": {
 "Version": "2012-10-17",
 "Statement": [{
 "Action": "execute-api:Invoke",
 "Effect": "Deny",
 "Resource": event["routeArn"]
 }]

Access control 1000

Amazon API Gateway Developer Guide

 },
 "context": {
 "stringKey": "value",
 "numberKey": 1,
 "booleanKey": True,
 "arrayKey": ["value1", "value2"],
 "mapKey": {"value1": "value2"}
 }
 }

 try:
 if (event["headers"]["authorization"] == "secretToken"):
 response = {
 # The principal user identification associated with the token
 # sent by the client.
 "principalId": "abcdef",
 "policyDocument": {
 "Version": "2012-10-17",
 "Statement": [{
 "Action": "execute-api:Invoke",
 "Effect": "Allow",
 "Resource": event["routeArn"]
 }]
 },
 "context": {
 "stringKey": "value",
 "numberKey": 1,
 "booleanKey": True,
 "arrayKey": ["value1", "value2"],
 "mapKey": {"value1": "value2"}
 }
 }
 print('allowed')
 return response
 else:
 print('denied')
 return response
 except BaseException:
 print('denied')
 return response

Access control 1001

Amazon API Gateway Developer Guide

Identity sources

You can optionally specify identity sources for a Lambda authorizer. Identity sources specify the
location of data that's required to authorize a request. For example, you can specify header or
query string values as identity sources. If you specify identity sources, clients must include them in
the request. If the client's request doesn't include the identity sources, API Gateway doesn't invoke
your Lambda authorizer, and the client receives a 401 error. The following identity sources are
supported:

Selection expressions

Type Example Notes

Header value $request.header.name Header names are case-inse
nsitive.

Query string value $request.querystring.name Query string names are case-
sensitive.

Context variable $context.variableName The value of a supported
context variable.

Stage variable $stageVariables.variableN
ame

The value of a stage variable.

Caching authorizer responses

You can enable caching for a Lambda authorizer by specifying an authorizerResultTtlInSeconds.
When caching is enabled for an authorizer, API Gateway uses the authorizer's identity sources as
the cache key. If a client specifies the same parameters in identity sources within the configured
TTL, API Gateway uses the cached authorizer result, rather than invoking your Lambda function.

To enable caching, your authorizer must have at least one identity source.

If you enable simple responses for an authorizer, the authorizer's response fully allows or denies all
API requests that match the cached identity source values. For more granular permissions, disable
simple responses and return an IAM policy.

Access control 1002

https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/apis-apiid-authorizers.html#apis-apiid-authorizers-prop-createauthorizerinput-authorizerresultttlinseconds

Amazon API Gateway Developer Guide

By default, API Gateway uses the cached authorizer response for all routes of an API that use the
authorizer. To cache responses per route, add $context.routeKey to your authorizer's identity
sources.

Create a Lambda authorizer

When you create a Lambda authorizer, you specify the Lambda function for API Gateway to
use. You must grant API Gateway permission to invoke the Lambda function by using either the
function's resource policy or an IAM role. For this example, we update the resource policy for the
function so that it grants API Gateway permission to invoke our Lambda function.

aws apigatewayv2 create-authorizer \
 --api-id abcdef123 \
 --authorizer-type REQUEST \
 --identity-source '$request.header.Authorization' \
 --name lambda-authorizer \
 --authorizer-uri 'arn:aws:apigateway:us-west-2:lambda:path/2015-03-31/
functions/arn:aws:lambda:us-west-2:123456789012:function:my-function/invocations' \
 --authorizer-payload-format-version '2.0' \
 --enable-simple-responses

The following command grants API Gateway permission to invoke your Lambda function. If
API Gateway doesn't have permission to invoke your function, clients receive a 500 Internal
Server Error.

aws lambda add-permission \
 --function-name my-authorizer-function \
 --statement-id apigateway-invoke-permissions-abc123 \
 --action lambda:InvokeFunction \
 --principal apigateway.amazonaws.com \
 --source-arn "arn:aws:execute-api:us-west-2:123456789012:api-
id/authorizers/authorizer-id"

After you've created an authorizer and granted API Gateway permission to invoke it, update your
route to use the authorizer.

aws apigatewayv2 update-route \
 --api-id abcdef123 \
 --route-id acd123 \
 --authorization-type CUSTOM \
 --authorizer-id def123

Access control 1003

Amazon API Gateway Developer Guide

Troubleshooting Lambda authorizers

If API Gateway can't invoke your Lambda authorizer, or your Lambda authorizer returns a response
in an invalid format, clients receive a 500 Internal Server Error.

To troubleshoot errors, enable access logging for your API stage. Include the
$context.authorizer.error logging variable in your log format.

If the logs indicate that API Gateway doesn't have permission to invoke your function, update your
function's resource policy or provide an IAM role to grant API Gateway permission to invoke your
authorizer.

If the logs indicate that your Lambda function returns an invalid response, verify that your Lambda
function returns a response in the required format.

Controlling access to HTTP APIs with JWT authorizers

You can use JSON Web Tokens (JWTs) as a part of OpenID Connect (OIDC) and OAuth 2.0
frameworks to restrict client access to your APIs.

If you configure a JWT authorizer for a route of your API, API Gateway validates the JWTs that
clients submit with API requests. API Gateway allows or denies requests based on token validation,
and optionally, scopes in the token. If you configure scopes for a route, the token must include at
least one of the route's scopes.

You can configure distinct authorizers for each route of an API, or use the same authorizer for
multiple routes.

Note

There is no standard mechanism to differentiate JWT access tokens from other types
of JWTs, such as OpenID Connect ID tokens. Unless you require ID tokens for API
authorization, we recommend that you configure your routes to require authorization
scopes. You can also configure your JWT authorizers to require issuers or audiences that
your identity provider uses only when issuing JWT access tokens.

Authorizing API requests with a JWT authorizer

API Gateway uses the following general workflow to authorize requests to routes that are
configured to use a JWT authorizer.

Access control 1004

https://openid.net/specs/openid-connect-core-1_0.html
https://oauth.net/2/

Amazon API Gateway Developer Guide

1. Check the identitySource for a token. The identitySource can include only the token, or
the token prefixed with Bearer.

2. Decode the token.

3. Check the token's algorithm and signature by using the public key that is fetched from the
issuer's jwks_uri. Currently, only RSA-based algorithms are supported. API Gateway can cache
the public key for two hours. As a best practice, when you rotate keys, allow a grace period
during which both the old and new keys are valid.

4. Validate claims. API Gateway evaluates the following token claims:

• kid – The token must have a header claim that matches the key in the jwks_uri that signed
the token.

• iss – Must match the issuer that is configured for the authorizer.

• aud or client_id – Must match one of the audience entries that is configured for the
authorizer. API Gateway validates client_id only if aud is not present. When both aud and
client_id are present, API Gateway evaluates aud.

• exp – Must be after the current time in UTC.

• nbf – Must be before the current time in UTC.

• iat – Must be before the current time in UTC.

• scope or scp – The token must include at least one of the scopes in the route's
authorizationScopes.

If any of these steps fail, API Gateway denies the API request.

After validating the JWT, API Gateway passes the claims in the token to the API route’s
integration. Backend resources, such as Lambda functions, can access the JWT claims. For
example, if the JWT includes an identity claim emailID, it's available to a Lambda integration in
$event.requestContext.authorizer.jwt.claims.emailID. For more information about
the payload that API Gateway sends to Lambda integrations, see the section called “AWS Lambda
integrations”.

Create a JWT authorizer

Before you create a JWT authorizer, you must register a client application with an identity provider.
You must also have created an HTTP API. For examples of creating an HTTP API, see Creating an
HTTP API.

Access control 1005

https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/apis-apiid-authorizers-authorizerid.html#apis-apiid-authorizers-authorizerid-prop-authorizer-identitysource
https://tools.ietf.org/html/rfc7517#section-4.5
https://tools.ietf.org/html/rfc7519#section-4.1.1
https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/apis-apiid-authorizers-authorizerid.html#apis-apiid-authorizers-authorizerid-model-jwtconfiguration
https://tools.ietf.org/html/rfc7519#section-4.1.3
https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/apis-apiid-authorizers-authorizerid.html#apis-apiid-authorizers-authorizerid-model-jwtconfiguration
https://tools.ietf.org/html/rfc7519#section-4.1.4
https://tools.ietf.org/html/rfc7519#section-4.1.5
https://tools.ietf.org/html/rfc7519#section-4.1.6
https://tools.ietf.org/html/rfc6749#section-3.3
https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/apis-apiid-routes-routeid.html#apis-apiid-routes-routeid-prop-updaterouteinput-authorizationscopes

Amazon API Gateway Developer Guide

Create a JWT authorizer using the console

The following steps show how to create JWT authorizer using the console.

To create a JWT authorizer using the console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose an HTTP API.

3. In the main navigation pane, choose Authorization.

4. Choose the Manage authorizers tab.

5. Choose Create.

6. For Authorizer type, choose JWT.

7. Configure your JWT authorizer, and specify an Identity source that defines the source of the
token.

8. Choose Create.

Create a JWT authorizer using the AWS CLI

The following AWS CLI command creates a JWT authorizer. For jwt-configuration,
specify the Audience and Issuer for your identity provider. If you use Amazon
Cognito as an identity provider, the IssuerUrl is https://cognito-idp.us-
east-2.amazonaws.com/userPoolID.

aws apigatewayv2 create-authorizer \
 --name authorizer-name \
 --api-id api-id \
 --authorizer-type JWT \
 --identity-source '$request.header.Authorization' \
 --jwt-configuration Audience=audience,Issuer=IssuerUrl

Create a JWT authorizer using AWS CloudFormation

The following AWS CloudFormation template creates an HTTP API with a JWT authorizer that uses
Amazon Cognito as an identity provider.

The output of the AWS CloudFormation template is a URL for an Amazon Cognito hosted UI where
clients can sign up and sign in to receive a JWT. After a client signs in, the client is redirected to

Access control 1006

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

your HTTP API with an access token in the URL. To invoke the API with the access token, change the
in the URL to a ? to use the token as a query string parameter.

Example AWS CloudFormation template

AWSTemplateFormatVersion: '2010-09-09'
Description: |
 Example HTTP API with a JWT authorizer. This template includes an Amazon Cognito user
 pool as the issuer for the JWT authorizer
 and an Amazon Cognito app client as the audience for the authorizer. The outputs
 include a URL for an Amazon Cognito hosted UI where clients can
 sign up and sign in to receive a JWT. After a client signs in, the client is
 redirected to your HTTP API with an access token
 in the URL. To invoke the API with the access token, change the '#' in the URL to a
 '?' to use the token as a query string parameter.

Resources:
 MyAPI:
 Type: AWS::ApiGatewayV2::Api
 Properties:
 Description: Example HTTP API
 Name: api-with-auth
 ProtocolType: HTTP
 Target: !GetAtt MyLambdaFunction.Arn
 DefaultRouteOverrides:
 Type: AWS::ApiGatewayV2::ApiGatewayManagedOverrides
 Properties:
 ApiId: !Ref MyAPI
 Route:
 AuthorizationType: JWT
 AuthorizerId: !Ref JWTAuthorizer
 JWTAuthorizer:
 Type: AWS::ApiGatewayV2::Authorizer
 Properties:
 ApiId: !Ref MyAPI
 AuthorizerType: JWT
 IdentitySource:
 - '$request.querystring.access_token'
 JwtConfiguration:
 Audience:
 - !Ref AppClient
 Issuer: !Sub https://cognito-idp.${AWS::Region}.amazonaws.com/${UserPool}
 Name: test-jwt-authorizer
 MyLambdaFunction:

Access control 1007

Amazon API Gateway Developer Guide

 Type: AWS::Lambda::Function
 Properties:
 Runtime: nodejs18.x
 Role: !GetAtt FunctionExecutionRole.Arn
 Handler: index.handler
 Code:
 ZipFile: |
 exports.handler = async (event) => {
 const response = {
 statusCode: 200,
 body: JSON.stringify('Hello from the ' + event.routeKey + ' route!'),
 };
 return response;
 };
 APIInvokeLambdaPermission:
 Type: AWS::Lambda::Permission
 Properties:
 FunctionName: !Ref MyLambdaFunction
 Action: lambda:InvokeFunction
 Principal: apigateway.amazonaws.com
 SourceArn: !Sub arn:${AWS::Partition}:execute-api:${AWS::Region}:
${AWS::AccountId}:${MyAPI}/$default/$default
 FunctionExecutionRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Principal:
 Service:
 - lambda.amazonaws.com
 Action:
 - 'sts:AssumeRole'
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
 UserPool:
 Type: AWS::Cognito::UserPool
 Properties:
 UserPoolName: http-api-user-pool
 AutoVerifiedAttributes:
 - email
 Schema:
 - Name: name

Access control 1008

Amazon API Gateway Developer Guide

 AttributeDataType: String
 Mutable: true
 Required: true
 - Name: email
 AttributeDataType: String
 Mutable: false
 Required: true
 AppClient:
 Type: AWS::Cognito::UserPoolClient
 Properties:
 AllowedOAuthFlows:
 - implicit
 AllowedOAuthScopes:
 - aws.cognito.signin.user.admin
 - email
 - openid
 - profile
 AllowedOAuthFlowsUserPoolClient: true
 ClientName: api-app-client
 CallbackURLs:
 - !Sub https://${MyAPI}.execute-api.${AWS::Region}.amazonaws.com
 ExplicitAuthFlows:
 - ALLOW_USER_PASSWORD_AUTH
 - ALLOW_REFRESH_TOKEN_AUTH
 UserPoolId: !Ref UserPool
 SupportedIdentityProviders:
 - COGNITO
 HostedUI:
 Type: AWS::Cognito::UserPoolDomain
 Properties:
 Domain: !Join
 - '-'
 - - !Ref MyAPI
 - !Ref AppClient
 UserPoolId: !Ref UserPool
Outputs:
 SignupURL:
 Value: !Sub https://${HostedUI}.auth.${AWS::Region}.amazoncognito.com/login?
client_id=${AppClient}&response_type=token&scope=email+profile&redirect_uri=https://
${MyAPI}.execute-api.${AWS::Region}.amazonaws.com

Update a route to use a JWT authorizer

You can use the console, the AWS CLI, or an AWS SDK to update a route to use a JWT authorizer.

Access control 1009

Amazon API Gateway Developer Guide

Update a route to use a JWT authorizer by using the console

The following steps show how to update a route to use JWT authorizer using the console.

To create a JWT authorizer using the console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose an HTTP API.

3. In the main navigation pane, choose Authorization.

4. Choose a method, and then select your authorizer from the dropdown menu, and choose
Attach authorizer.

Update a route to use a JWT authorizer by using the AWS CLI

The following command updates a route to use a JWT authorizer using the AWS CLI.

aws apigatewayv2 update-route \
 --api-id api-id \
 --route-id route-id \
 --authorization-type JWT \
 --authorizer-id authorizer-id \
 --authorization-scopes user.email

Using IAM authorization

You can enable IAM authorization for HTTP API routes. When IAM authorization is enabled, clients
must use Signature Version 4 to sign their requests with AWS credentials. API Gateway invokes your
API route only if the client has execute-api permission for the route.

IAM authorization for HTTP APIs is similar to that for REST APIs.

Note

Resource policies aren't currently supported for HTTP APIs.

For examples of IAM policies that grant clients the permission to invoke APIs, see the section called
“ Control access for invoking an API”.

Access control 1010

https://console.aws.amazon.com/apigateway
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon API Gateway Developer Guide

Enable IAM authorization for a route

The following AWS CLI command enables IAM authorization for an HTTP API route.

aws apigatewayv2 update-route \
 --api-id abc123 \
 --route-id abcdef \
 --authorization-type AWS_IAM

Configuring integrations for HTTP APIs

Integrations connect a route to backend resources. HTTP APIs support Lambda proxy, AWS service,
and HTTP proxy integrations. For example, you can configure a POST request to the /signup route
of your API to integrate with a Lambda function that handles signing up customers.

Topics

• Working with AWS Lambda proxy integrations for HTTP APIs

• Working with HTTP proxy integrations for HTTP APIs

• Working with AWS service integrations for HTTP APIs

• Working with private integrations for HTTP APIs

Working with AWS Lambda proxy integrations for HTTP APIs

A Lambda proxy integration enables you to integrate an API route with a Lambda function. When
a client calls your API, API Gateway sends the request to the Lambda function and returns the
function's response to the client. For examples of creating an HTTP API, see Creating an HTTP API.

Payload format version

The payload format version specifies the format of the event that API Gateway sends to a Lambda
integration, and how API Gateway interprets the response from Lambda. If you don't specify a
payload format version, the AWS Management Console uses the latest version by default. If you
create a Lambda integration by using the AWS CLI, AWS CloudFormation, or an SDK, you must
specify a payloadFormatVersion. The supported values are 1.0 and 2.0.

For more information about how to set the payloadFormatVersion, see create-integration.
For more information about how to determine the payloadFormatVersion of an existing
integration, see get-integration.

Integrations 1011

https://docs.aws.amazon.com/cli/latest/reference/apigatewayv2/create-integration.html
https://docs.aws.amazon.com/cli/latest/reference/apigatewayv2/get-integration.html

Amazon API Gateway Developer Guide

The following examples show the structure of each payload format version.

Note

Header names are lowercased.
Format 2.0 doesn't have multiValueHeaders or
multiValueQueryStringParameters fields. Duplicate headers are combined with
commas and included in the headers field. Duplicate query strings are combined with
commas and included in the queryStringParameters field.
Format 2.0 includes a new cookies field. All cookie headers in the request are combined
with commas and added to the cookies field. In the response to the client, each cookie
becomes a set-cookie header.

2.0

{
 "version": "2.0",
 "routeKey": "$default",
 "rawPath": "/my/path",
 "rawQueryString": "parameter1=value1¶meter1=value2¶meter2=value",
 "cookies": [
 "cookie1",
 "cookie2"
],
 "headers": {
 "header1": "value1",
 "header2": "value1,value2"
 },
 "queryStringParameters": {
 "parameter1": "value1,value2",
 "parameter2": "value"
 },
 "requestContext": {
 "accountId": "123456789012",
 "apiId": "api-id",
 "authentication": {
 "clientCert": {
 "clientCertPem": "CERT_CONTENT",
 "subjectDN": "www.example.com",
 "issuerDN": "Example issuer",

Integrations 1012

Amazon API Gateway Developer Guide

 "serialNumber": "a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1",
 "validity": {
 "notBefore": "May 28 12:30:02 2019 GMT",
 "notAfter": "Aug 5 09:36:04 2021 GMT"
 }
 }
 },
 "authorizer": {
 "jwt": {
 "claims": {
 "claim1": "value1",
 "claim2": "value2"
 },
 "scopes": [
 "scope1",
 "scope2"
]
 }
 },
 "domainName": "id.execute-api.us-east-1.amazonaws.com",
 "domainPrefix": "id",
 "http": {
 "method": "POST",
 "path": "/my/path",
 "protocol": "HTTP/1.1",
 "sourceIp": "192.0.2.1",
 "userAgent": "agent"
 },
 "requestId": "id",
 "routeKey": "$default",
 "stage": "$default",
 "time": "12/Mar/2020:19:03:58 +0000",
 "timeEpoch": 1583348638390
 },
 "body": "Hello from Lambda",
 "pathParameters": {
 "parameter1": "value1"
 },
 "isBase64Encoded": false,
 "stageVariables": {
 "stageVariable1": "value1",
 "stageVariable2": "value2"
 }

Integrations 1013

Amazon API Gateway Developer Guide

}

1.0

{
 "version": "1.0",
 "resource": "/my/path",
 "path": "/my/path",
 "httpMethod": "GET",
 "headers": {
 "header1": "value1",
 "header2": "value2"
 },
 "multiValueHeaders": {
 "header1": [
 "value1"
],
 "header2": [
 "value1",
 "value2"
]
 },
 "queryStringParameters": {
 "parameter1": "value1",
 "parameter2": "value"
 },
 "multiValueQueryStringParameters": {
 "parameter1": [
 "value1",
 "value2"
],
 "parameter2": [
 "value"
]
 },
 "requestContext": {
 "accountId": "123456789012",
 "apiId": "id",
 "authorizer": {
 "claims": null,
 "scopes": null
 },
 "domainName": "id.execute-api.us-east-1.amazonaws.com",

Integrations 1014

Amazon API Gateway Developer Guide

 "domainPrefix": "id",
 "extendedRequestId": "request-id",
 "httpMethod": "GET",
 "identity": {
 "accessKey": null,
 "accountId": null,
 "caller": null,
 "cognitoAuthenticationProvider": null,
 "cognitoAuthenticationType": null,
 "cognitoIdentityId": null,
 "cognitoIdentityPoolId": null,
 "principalOrgId": null,
 "sourceIp": "192.0.2.1",
 "user": null,
 "userAgent": "user-agent",
 "userArn": null,
 "clientCert": {
 "clientCertPem": "CERT_CONTENT",
 "subjectDN": "www.example.com",
 "issuerDN": "Example issuer",
 "serialNumber": "a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1:a1",
 "validity": {
 "notBefore": "May 28 12:30:02 2019 GMT",
 "notAfter": "Aug 5 09:36:04 2021 GMT"
 }
 }
 },
 "path": "/my/path",
 "protocol": "HTTP/1.1",
 "requestId": "id=",
 "requestTime": "04/Mar/2020:19:15:17 +0000",
 "requestTimeEpoch": 1583349317135,
 "resourceId": null,
 "resourcePath": "/my/path",
 "stage": "$default"
 },
 "pathParameters": null,
 "stageVariables": null,
 "body": "Hello from Lambda!",
 "isBase64Encoded": false
}

Integrations 1015

Amazon API Gateway Developer Guide

Lambda function response format

The payload format version determines the structure of the response that your Lambda function
must return.

Lambda function response for format 1.0

With the 1.0 format version, Lambda integrations must return a response in the following JSON
format:

Example

{
 "isBase64Encoded": true|false,
 "statusCode": httpStatusCode,
 "headers": { "headername": "headervalue", ... },
 "multiValueHeaders": { "headername": ["headervalue", "headervalue2", ...], ... },
 "body": "..."
}

Lambda function response for format 2.0

With the 2.0 format version, API Gateway can infer the response format for you. API Gateway
makes the following assumptions if your Lambda function returns valid JSON and doesn't return a
statusCode:

• isBase64Encoded is false.

• statusCode is 200.

• content-type is application/json.

• body is the function's response.

The following examples show the output of a Lambda function and API Gateway's interpretation.

Lambda function output API Gateway interpretation

"Hello from Lambda!" {
 "isBase64Encoded": false,
 "statusCode": 200,
 "body": "Hello from Lambda!",
 "headers": {

Integrations 1016

Amazon API Gateway Developer Guide

Lambda function output API Gateway interpretation

 "content-type": "application/
json"
 }
}

{ "message": "Hello from Lambda!" } {
 "isBase64Encoded": false,
 "statusCode": 200,
 "body": "{ \"message\": \"Hello from
 Lambda!\" }",
 "headers": {
 "content-type": "application/
json"
 }
}

To customize the response, your Lambda function should return a response with the following
format.

{
 "cookies" : ["cookie1", "cookie2"],
 "isBase64Encoded": true|false,
 "statusCode": httpStatusCode,
 "headers": { "headername": "headervalue", ... },
 "body": "Hello from Lambda!"
}

Working with HTTP proxy integrations for HTTP APIs

An HTTP proxy integration enables you to connect an API route to a publicly routable HTTP
endpoint. With this integration type, API Gateway passes the entire request and response between
the frontend and the backend.

To create an HTTP proxy integration, provide the URL of a publicly routable HTTP endpoint.

HTTP proxy integration with path variables

You can use path variables in HTTP API routes.

Integrations 1017

Amazon API Gateway Developer Guide

For example, the route /pets/{petID} catches requests to /pets/6. You can reference path
variables in the integration URI to send the variable's contents to an integration. An example is /
pets/extendedpath/{petID}.

You can use greedy path variables to catch all child resources of a route. To create a greedy path
variable, add + to the variable name—for example, {proxy+}.

To set up a route with an HTTP proxy integration that catches all requests, create an API route
with a greedy path variable (for example, /parent/{proxy+}). Integrate the route with an HTTP
endpoint (for example, https://petstore-demo-endpoint.execute-api.com/petstore/
{proxy}) on the ANY method. The greedy path variable must be at the end of the resource path.

Working with AWS service integrations for HTTP APIs

You can integrate your HTTP API with AWS services by using first-class integrations. A first-class
integration connects an HTTP API route to an AWS service API. When a client invokes a route that's
backed by a first-class integration, API Gateway invokes an AWS service API for you. For example,
you can use first-class integrations to send a message to an Amazon Simple Queue Service queue,
or to start an AWS Step Functions state machine. For supported service actions, see the section
called “AWS service integrations reference”.

Mapping request parameters

First-class integrations have required and optional parameters. You must configure all required
parameters to create an integration. You can use static values or map parameters that are
dynamically evaluated at runtime. For a full list of supported integrations and parameters, see the
section called “AWS service integrations reference”.

Parameter mapping

Type Example Notes

Header value $request.header.name Header names are case-
insensitive. API Gateway
combines multiple header
values with commas, for
example "header1":
"value1,value2" .

Integrations 1018

Amazon API Gateway Developer Guide

Type Example Notes

Query string value $request.querystring.name Query string names are
case-sensitive. API Gateway
combines multiple values
with commas, for example
"querystring1":
"Value1,Value2" .

Path parameter $request.path.name The value of a path
parameter in the request.
For example if the route is
/pets/{petId} , you can
map the petId parameter
from the request with
$request.path.petId .

Request body passthrough $request.body API Gateway passes the entire
request body through.

Integrations 1019

Amazon API Gateway Developer Guide

Type Example Notes

Request body $request.body.name A JSON path expressio
n. Recursive descent
($request.body.. name)
and filter expressions (?
(expression)) aren't
supported.

Note

When you specify
a JSON path, API
Gateway truncates
the request body
at 100 KB and then
applies the selection
expression. To send
payloads larger
than 100 KB, specify
$request.body .

Context variable $context.variableName The value of a supported
context variable.

Stage variable $stageVariables.variableN
ame

The value of a stage variable.

Static value string A constant value.

Create a first-class integration

Before you create a first-class integration, you must create an IAM role that grants API Gateway
permissions to invoke the AWS service action that you're integrating with. To learn more, see
Creating a role for an AWS service.

Integrations 1020

https://goessner.net/articles/JsonPath/index.html#e2
https://goessner.net/articles/JsonPath/index.html#e2
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon API Gateway Developer Guide

To create a first-class integration, choose a supported AWS service action, such as SQS-
SendMessage, configure the request parameters, and provide a role that grants API Gateway
permissions to invoke the integrated AWS service API. Depending on the integration subtype,
different request parameters are required. To learn more, see the section called “AWS service
integrations reference”.

The following AWS CLI command creates an integration that sends an Amazon SQS message.

aws apigatewayv2 create-integration \
 --api-id abcdef123 \
 --integration-subtype SQS-SendMessage \
 --integration-type AWS_PROXY \
 --payload-format-version 1.0 \
 --credentials-arn arn:aws:iam::123456789012:role/apigateway-sqs \
 --request-parameters '{"QueueUrl": "$request.header.queueUrl", "MessageBody":
 "$request.body.message"}'

Create a first-class integration using AWS CloudFormation

The following example shows an AWS CloudFormation snippet that creates a /{source}/
{detailType} route with a first-class integration with Amazon EventBridge.

The Source parameter is mapped to the {source} path parameter, the DetailType is mapped
to the {DetailType} path parameter, and the Detail parameter is mapped to the request body.

The snippet does not show the event bus or the IAM role that grants API Gateway permissions to
invoke the PutEvents action.

Route:
 Type: AWS::ApiGatewayV2::Route
 Properties:
 ApiId: !Ref HttpApi
 AuthorizationType: None
 RouteKey: 'POST /{source}/{detailType}'
 Target: !Join
 - /
 - - integrations
 - !Ref Integration
 Integration:
 Type: AWS::ApiGatewayV2::Integration
 Properties:
 ApiId: !Ref HttpApi

Integrations 1021

Amazon API Gateway Developer Guide

 IntegrationType: AWS_PROXY
 IntegrationSubtype: EventBridge-PutEvents
 CredentialsArn: !GetAtt EventBridgeRole.Arn
 RequestParameters:
 Source: $request.path.source
 DetailType: $request.path.detailType
 Detail: $request.body
 EventBusName: !GetAtt EventBus.Arn
 PayloadFormatVersion: "1.0"

Integration subtype reference

The following integration subtypes are supported for HTTP APIs.

Integration subtypes

• EventBridge-PutEvents

• SQS-SendMessage

• SQS-ReceiveMessage

• SQS-DeleteMessage

• SQS-PurgeQueue

• AppConfig-GetConfiguration

• Kinesis-PutRecord

• StepFunctions-StartExecution

• StepFunctions-StartSyncExecution

• StepFunctions-StopExecution

EventBridge-PutEvents

Sends custom events to Amazon EventBridge so that they can be matched to rules.

EventBridge-PutEvents 1.0

Parameter Required

Detail True

DetailType True

Integrations 1022

https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/apis-apiid-integrations-integrationid.html#apis-apiid-integrations-integrationid-prop-integration-integrationsubtype

Amazon API Gateway Developer Guide

Parameter Required

Source True

Time False

EventBusName False

Resources False

Region False

TraceHeader False

To learn more, see PutEvents in the Amazon EventBridge API Reference.

SQS-SendMessage

Delivers a message to the specified queue.

SQS-SendMessage 1.0

Parameter Required

QueueUrl True

MessageBody True

DelaySeconds False

MessageAttributes False

MessageDeduplicationId False

MessageGroupId False

MessageSystemAttributes False

Region False

To learn more, see SendMessage in the Amazon Simple Queue Service API Reference.

Integrations 1023

https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

Amazon API Gateway Developer Guide

SQS-ReceiveMessage

Retrieves one or more messages (up to 10), from the specified queue.

SQS-ReceiveMessage 1.0

Parameter Required

QueueUrl True

AttributeNames False

MaxNumberOfMessages False

MessageAttributeNames False

ReceiveRequestAttemptId False

VisibilityTimeout False

WaitTimeSeconds False

Region False

To learn more, see ReceiveMessage in the Amazon Simple Queue Service API Reference.

SQS-DeleteMessage

Deletes the specified message from the specified queue.

SQS-DeleteMessage 1.0

Parameter Required

ReceiptHandle True

QueueUrl True

Region False

To learn more, see DeleteMessage in the Amazon Simple Queue Service API Reference.

Integrations 1024

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html

Amazon API Gateway Developer Guide

SQS-PurgeQueue

Deletes all messages in the specified queue.

SQS-PurgeQueue 1.0

Parameter Required

QueueUrl True

Region False

To learn more, see PurgeQueue in the Amazon Simple Queue Service API Reference.

AppConfig-GetConfiguration

Receive information about a configuration.

AppConfig-GetConfiguration 1.0

Parameter Required

Application True

Environment True

Configuration True

ClientId True

ClientConfigurationVersion False

Region False

To learn more, see GetConfiguration in the AWS AppConfig API Reference.

Kinesis-PutRecord

Writes a single data record into an Amazon Kinesis data stream.

Integrations 1025

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_PurgeQueue.html
https://docs.aws.amazon.com/appconfig/2019-10-09/APIReference/API_GetConfiguration.html

Amazon API Gateway Developer Guide

Kinesis-PutRecord 1.0

Parameter Required

StreamName True

Data True

PartitionKey True

SequenceNumberForOrdering False

ExplicitHashKey False

Region False

To learn more, see PutRecord in the Amazon Kinesis Data Streams API Reference.

StepFunctions-StartExecution

Starts a state machine execution.

StepFunctions-StartExecution 1.0

Parameter Required

StateMachineArn True

Name False

Input False

Region False

To learn more, see StartExecution in the AWS Step Functions API Reference.

StepFunctions-StartSyncExecution

Starts a synchronous state machine execution.

Integrations 1026

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

Amazon API Gateway Developer Guide

StepFunctions-StartSyncExecution 1.0

Parameter Required

StateMachineArn True

Name False

Input False

Region False

TraceHeader False

To learn more, see StartSyncExecution in the AWS Step Functions API Reference.

StepFunctions-StopExecution

Stops an execution.

StepFunctions-StopExecution 1.0

Parameter Required

ExecutionArn True

Cause False

Error False

Region False

To learn more, see StopExecution in the AWS Step Functions API Reference.

Working with private integrations for HTTP APIs

Private integrations enable you to create API integrations with private resources in a VPC, such as
Application Load Balancers or Amazon ECS container-based applications.

Integrations 1027

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartSyncExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StopExecution.html

Amazon API Gateway Developer Guide

You can expose your resources in a VPC for access by clients outside of the VPC by using private
integrations. You can control access to your API by using any of the authorization methods that
API Gateway supports.

To create a private integration, you must first create a VPC link. To learn more about VPC links, see
Working with VPC links for HTTP APIs.

After you’ve created a VPC link, you can set up private integrations that connect to an Application
Load Balancer, Network Load Balancer, or resources registered with an AWS Cloud Map service.

To create a private integration, all resources must be owned by the same AWS account (including
the load balancer or AWS Cloud Map service, VPC link and HTTP API).

By default, private integration traffic uses the HTTP protocol. You can specify a tlsConfig if you
require private integration traffic to use HTTPS.

Note

For private integrations, API Gateway includes the stage portion of the API endpoint in
the request to your backend resources. For example, a request to the test stage of an API
includes test/route-path in the request to your private integration. To remove the stage
name from the request to your backend resources, use parameter mapping to overwrite the
request path to $request.path.

Create a private integration using an Application Load Balancer or Network Load Balancer

Before you create a private integration, you must create a VPC link. To learn more about VPC links,
see Working with VPC links for HTTP APIs.

To create a private integration with an Application Load Balancer or Network Load Balancer, create
an HTTP proxy integration, specify the VPC link to use, and provide the listener ARN of the load
balancer.

Use the following command to create a private integration that connects to a load balancer by
using a VPC link.

aws apigatewayv2 create-integration --api-id api-id --integration-type HTTP_PROXY \
 --integration-method GET --connection-type VPC_LINK \
 --connection-id VPC-link-ID \

Integrations 1028

https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/apis-apiid-integrations-integrationid.html

Amazon API Gateway Developer Guide

 --integration-uri arn:aws:elasticloadbalancing:us-east-2:123456789012:listener/app/
my-load-balancer/50dc6c495c0c9188/0467ef3c8400ae65
 --payload-format-version 1.0

Create a private integration using AWS Cloud Map service discovery

Before you create a private integration, you must create a VPC link. To learn more about VPC links,
see Working with VPC links for HTTP APIs.

For integrations with AWS Cloud Map, API Gateway uses DiscoverInstances to identify
resources. You can use query parameters to target specific resources. The registered resources'
attributes must include IP addresses and ports. API Gateway distributes requests across healthy
resources that are returned from DiscoverInstances. To learn more, see DiscoverInstances in
the AWS Cloud Map API Reference.

Note

If you use Amazon ECS to populate entries in AWS Cloud Map, you must configure your
Amazon ECS task to use SRV records with Amazon ECS Service Discovery or turn on
Amazon ECS Service Connect. For more information, see Interconnecting services in the
Amazon Elastic Container Service Developer Guide.

To create a private integration with AWS Cloud Map, create an HTTP proxy integration, specify the
VPC link to use, and provide the ARN of the AWS Cloud Map service.

Use the following command to create a private integration that uses AWS Cloud Map service
discovery to identify resources.

aws apigatewayv2 create-integration --api-id api-id --integration-type HTTP_PROXY \
 --integration-method GET --connection-type VPC_LINK \
 --connection-id VPC-link-ID \
 --integration-uri arn:aws:servicediscovery:us-east-2:123456789012:service/srv-id?
stage=prod&deployment=green_deployment
 --payload-format-version 1.0

Working with VPC links for HTTP APIs

VPC links enable you to create private integrations that connect your HTTP API routes to
private resources in a VPC, such as Application Load Balancers or Amazon ECS container-based

Integrations 1029

https://docs.aws.amazon.com/cloud-map/latest/api/API_DiscoverInstances.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/interconnecting-services.html

Amazon API Gateway Developer Guide

applications. To learn more about creating private integrations, see Working with private
integrations for HTTP APIs.

A private integration uses a VPC link to encapsulate connections between API Gateway and
targeted VPC resources. You can reuse VPC links across different routes and APIs.

When you create a VPC link, API Gateway creates and manages elastic network interfaces for the
VPC link in your account. This process can take a few minutes. When a VPC link is ready to use, its
state transitions from PENDING to AVAILABLE.

Note

If no traffic is sent over the VPC link for 60 days, it becomes INACTIVE. When a VPC link
is in an INACTIVE state, API Gateway deletes all of the VPC link’s network interfaces.
This causes API requests that depend on the VPC link to fail. If API requests resume, API
Gateway reprovisions network interfaces. It can take a few minutes to create the network
interfaces and reactivate the VPC link. You can use the VPC link status to monitor the state
of your VPC link.

Create a VPC link by using the AWS CLI

Use the following command to create a VPC link. To create a VPC link, all resources involved must
be owned by the same AWS account.

aws apigatewayv2 create-vpc-link --name MyVpcLink \
 --subnet-ids subnet-aaaa subnet-bbbb \
 --security-group-ids sg1234 sg5678

Note

VPC links are immutable. After you create a VPC link, you can’t change its subnets or
security groups.

Delete a VPC link by using the AWS CLI

Use the following command to delete a VPC link.

Integrations 1030

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_ElasticNetworkInterfaces.html

Amazon API Gateway Developer Guide

aws apigatewayv2 delete-vpc-link --vpc-link-id abcd123

Availability by Region

VPC links for HTTP APIs are supported in the following Regions and Availability Zones:

Region name Region Supported Availability Zones

US East
(Ohio)

us-east-2 use2-az1, use2-az2, use2-az3

US East (N.
Virginia)

us-east-1 use1-az1, use1-az2, use1-az4, use1-az5, use1-az6

US West (N.
California)

us-west-1 usw1-az1, usw1-az3

US West
(Oregon)

us-west-2 usw2-az1, usw2-az2, usw2-az3, usw2-az4

Asia Pacific
(Hong Kong)

ap-east-1 ape1-az2, ape1-az3

Asia Pacific
(Mumbai)

ap-south-1 aps1-az1, aps1-az2, aps1-az3

Asia Pacific
(Seoul)

ap-northe
ast-2

apne2-az1, apne2-az2, apne2-az3

Asia Pacific
(Singapore)

ap-southe
ast-1

apse1-az1, apse1-az2, apse1-az3

Asia Pacific
(Sydney)

ap-southe
ast-2

apse2-az1, apse2-az2, apse2-az3

Asia Pacific
(Tokyo)

ap-northe
ast-1

apne1-az1, apne1-az2, apne1-az4

Canada
(Central)

ca-central-1 cac1-az1, cac1-az2

Integrations 1031

Amazon API Gateway Developer Guide

Region name Region Supported Availability Zones

Europe
(Frankfurt)

eu-central-1 euc1-az1, euc1-az2, euc1-az3

Europe
(Ireland)

eu-west-1 euw1-az1, euw1-az2, euw1-az3

Europe
(London)

eu-west-2 euw2-az1, euw2-az2, euw2-az3

Europe
(Paris)

eu-west-3 euw3-az1, euw3-az3

Europe
(Stockholm)

eu-north-1 eun1-az1, eun1-az2, eun1-az3

Middle East
(Bahrain)

me-south-1 mes1-az1, mes1-az2, mes1-az3

South
America (São
Paulo)

sa-east-1 sae1-az1, sae1-az2, sae1-az3

AWS
GovCloud
(US-West)

us-gov-we
st-1

usgw1-az1, usgw1-az2, usgw1-az3

Configuring CORS for an HTTP API

Cross-origin resource sharing (CORS) is a browser security feature that restricts HTTP requests that
are initiated from scripts running in the browser. If you cannot access your API and receive an error
message that contains Cross-Origin Request Blocked, you might need to enable CORS.

CORS is typically required to build web applications that access APIs hosted on a different domain
or origin. You can enable CORS to allow requests to your API from a web application hosted on
a different domain. For example, if your API is hosted on https://{api_id}.execute-api.

CORS 1032

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Amazon API Gateway Developer Guide

{region}.amazonaws.com/ and you want to call your API from a web application hosted on
example.com, your API must support CORS.

If you configure CORS for an API, API Gateway automatically sends a response to preflight
OPTIONS requests, even if there isn't an OPTIONS route configured for your API. For a CORS
request, API Gateway adds the configured CORS headers to the response from an integration.

Note

If you configure CORS for an API, API Gateway ignores CORS headers returned from your
backend integration.

You can specify the following parameters in a CORS configuration. To add these parameters using
the API Gateway HTTP API console, choose Add after you enter your value.

CORS headers CORS configuration property Example values

Access-Control-Allow-Origin allowOrigins • https://www.exampl
e.com

• * (allow all origins)

• https://* (allow any
origin that begins with
https://)

• http://* (allow any origin
that begins with http://)

Access-Control-Allow-Creden
tials

allowCredentials true

Access-Control-Expose-Heade
rs

exposeHeaders Date, x-api-id

Access-Control-Max-Age maxAge 300

Access-Control-Allow-Method
s

allowMethods GET, POST, DELETE, *

CORS 1033

Amazon API Gateway Developer Guide

CORS headers CORS configuration property Example values

Access-Control-Allow-Header
s

allowHeaders Authorization, *

To return CORS headers, your request must contain an origin header.

Your CORS configuration might look similar to the following:

Configuring CORS for an HTTP API with a $default route and JWT authorizer

You can enable CORS and configure authorization for any route of an HTTP API. When you enable
CORS and authorization for the $default route, there are some special considerations. The
$default route catches requests for all methods and routes that you haven't explicitly defined,
including OPTIONS requests. To support unauthorized OPTIONS requests, add an OPTIONS /
{proxy+} route to your API that doesn't require authorization and attach an integration to
the route. The OPTIONS /{proxy+} route has higher priority than the $default route. As a
result, it enables clients to submit OPTIONS requests to your API without authorization. For more
information about routing priorities, see Routing API requests.

Configure CORS for an HTTP API by using the AWS CLI

You can use the following command to enable CORS requests from https://www.example.com.

CORS 1034

https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-develop-routes.html#http-api-develop-routes.default

Amazon API Gateway Developer Guide

Example

aws apigatewayv2 update-api --api-id api-id --cors-configuration AllowOrigins="https://
www.example.com"

For more information, see CORS in the Amazon API Gateway Version 2 API Reference.

Transforming API requests and responses

You can modify API requests from clients before they reach your backend integrations. You can
also change the response from integrations before API Gateway returns the response to clients.
You use parameter mapping to modify API requests and responses for HTTP APIs. To use parameter
mapping, you specify API request or response parameters to modify, and specify how to modify
those parameters.

Transforming API requests

You use request parameters to change requests before they reach your backend integrations. You
can modify headers, query strings, or the request path.

Request parameters are a key-value map. The key identifies the location of the request parameter
to change, and how to change it. The value specifies the new data for the parameter.

The following table shows supported keys.

Parameter mapping keys

Type Syntax

Header append|overwrite|remove:hea
der. headername

Query string append|overwrite|remove:que
rystring. querystring-name

Path overwrite:path

The following table shows supported values that you can map to parameters.

Parameter mapping 1035

https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/apis-apiid.html#apis-apiid-model-cors

Amazon API Gateway Developer Guide

Request parameter mapping values

Type Syntax Notes

Header value $request.header.name or
${request.header.name}

Header names are case-
insensitive. API Gateway
combines multiple header
values with commas, for
example "header1":
"value1,value2" . Some
headers are reserved. To learn
more, see the section called
“Reserved headers”.

Query string value $request.querystring.name or
${request.querystring.name}

Query string names are
case-sensitive. API Gateway
combines multiple values
with commas, for example
"querystring1"
"Value1,Value2" .

Request body $request.body.name or
${request.body.name}

A JSON path expressio
n. Recursive descent
($request.body..nam
e) and filter expressions
(?(expression)) aren't
supported.

Note

When you specify
a JSON path, API
Gateway truncates
the request body
at 100 KB and then
applies the selection
expression. To send
payloads larger

Parameter mapping 1036

Amazon API Gateway Developer Guide

Type Syntax Notes

than 100 KB, specify
$request.body .

Request path $request.path or ${request
.path}

The request path, without the
stage name.

Path parameter $request.path.name or
${request.path.name}

The value of a path
parameter in the request.
For example if the route is
/pets/{petId} , you can
map the petId parameter
from the request with
$request.path.petId .

Context variable $context.variableName or
${context.variableName }

The value of a context
variable.

Note

Only the special
characters . and _ are
supported.

Stage variable $stageVariables.variableN
ame or ${stageVa
riables.variableName }

The value of a stage variable.

Static value string A constant value.

Note

To use multiple variables in a selection expression, enclose the variable in brackets. For
example, ${request.path.name} ${request.path.id}.

Parameter mapping 1037

Amazon API Gateway Developer Guide

Transforming API responses

You use response parameters to transform the HTTP response from a backend integration before
returning the response to clients. You can modify headers or the status code of a response before
API Gateway returns the response to clients.

You configure response parameters for each status code that your integration returns. Response
parameters are a key-value map. The key identifies the location of the request parameter to
change, and how to change it. The value specifies the new data for the parameter.

The following table shows supported keys.

Response parameter mapping keys

Type Syntax

Header append|overwrite|remove:hea
der. headername

Status code overwrite:statuscode

The following table shows supported values that you can map to parameters.

Response parameter mapping values

Type Syntax Notes

Header value $response.header.name or
${response.header.name}

Header names are case-
insensitive. API Gateway
combines multiple header
values with commas, for
example "header1":
"value1,value2" . Some
headers are reserved. To learn
more, see the section called
“Reserved headers”.

Response body $response.body.name or
${response.body.name}

A JSON path expressio
n. Recursive descent
($response.body..na

Parameter mapping 1038

Amazon API Gateway Developer Guide

Type Syntax Notes

me) and filter expressions
(?(expression)) aren't
supported.

Note

When you specify
a JSON path, API
Gateway truncates
the response body
at 100 KB and then
applies the selection
expression. To send
payloads larger
than 100 KB, specify
$response.body .

Context variable $context.variableName or
${context.variableName }

The value of a supported
context variable.

Stage variable $stageVariables.variableN
ame or ${stageVa
riables.variableName }

The value of a stage variable.

Static value string A constant value.

Note

To use multiple variables in a selection expression, enclose the variable in brackets. For
example, ${request.path.name} ${request.path.id}.

Parameter mapping 1039

Amazon API Gateway Developer Guide

Reserved headers

The following headers are reserved. You can't configure request or response mappings for these
headers.

• access-control-*

• apigw-*

• Authorization

• Connection

• Content-Encoding

• Content-Length

• Content-Location

• Forwarded

• Keep-Alive

• Origin

• Proxy-Authenticate

• Proxy-Authorization

• TE

• Trailers

• Transfer-Encoding

• Upgrade

• x-amz-*

• x-amzn-*

• X-Forwarded-For

• X-Forwarded-Host

• X-Forwarded-Proto

• Via

Examples

The following AWS CLI examples configure parameter mappings. For example AWS
CloudFormation templates, see GitHub.

Parameter mapping 1040

https://github.com/awsdocs/amazon-api-gateway-developer-guide/tree/main/cloudformation-templates

Amazon API Gateway Developer Guide

Add a header to an API request

The following example adds a header named header1 to an API request before it reaches your
backend integration. API Gateway populates the header with the request ID.

aws apigatewayv2 create-integration \
 --api-id abcdef123 \
 --integration-type HTTP_PROXY \
 --payload-format-version 1.0 \
 --integration-uri 'https://api.example.com' \
 --integration-method ANY \
 --request-parameters '{ "append:header.header1": "$context.requestId" }'

Rename a request header

The following example renames a request header from header1 to header2.

aws apigatewayv2 create-integration \
 --api-id abcdef123 \
 --integration-type HTTP_PROXY \
 --payload-format-version 1.0 \
 --integration-uri 'https://api.example.com' \
 --integration-method ANY \
 --request-parameters '{ "append:header.header2": "$request.header.header1",
 "remove:header.header1": "''"}'

Change the response from an integration

The following example configures response parameters for an integration. When the integrations
returns a 500 status code, API Gateway changes the status code to 403, and adds header11 to the
response. When the integration returns a 404 status code, API Gateway adds an error header to
the response.

aws apigatewayv2 create-integration \
 --api-id abcdef123 \
 --integration-type HTTP_PROXY \
 --payload-format-version 1.0 \
 --integration-uri 'https://api.example.com' \
 --integration-method ANY \
 --response-parameters '{"500" : {"append:header.header1": "$context.requestId",
 "overwrite:statuscode" : "403"}, "404" : {"append:header.error" :
 "$stageVariables.environmentId"} }'

Parameter mapping 1041

Amazon API Gateway Developer Guide

Remove configured parameter mappings

The following example command removes previously configured request parameters for
append:header.header1. It also removes previously configured response parameters for a 200
status code.

aws apigatewayv2 update-integration \
 --api-id abcdef123 \
 --integration-id hijk456 \
 --request-parameters '{"append:header.header1" : ""}' \
 --response-parameters '{"200" : {}}'

Working with OpenAPI definitions for HTTP APIs

You can define your HTTP API by using an OpenAPI 3.0 definition file. Then you can import the
definition into API Gateway to create an API. To learn more about API Gateway extensions to
OpenAPI, see OpenAPI extensions.

Importing an HTTP API

You can create an HTTP API by importing an OpenAPI 3.0 definition file.

To migrate from a REST API to an HTTP API, you can export your REST API as an OpenAPI 3.0
definition file. Then import the API definition as an HTTP API. To learn more about exporting a
REST API, see Export a REST API from API Gateway.

Note

HTTP APIs support the same AWS variables as REST APIs. To learn more, see AWS variables
for OpenAPI import.

Import validation information

As you import an API, API Gateway provides three categories of validation information.

Info

A property is valid according to the OpenAPI specification, but that property isn’t supported for
HTTP APIs.

OpenAPI 1042

Amazon API Gateway Developer Guide

For example, the following OpenAPI 3.0 snippet produces info on import because HTTP APIs
don't support request validation. API Gateway ignores the requestBody and schema fields.

"paths": {
 "/": {
 "get": {
 "x-amazon-apigateway-integration": {
 "type": "AWS_PROXY",
 "httpMethod": "POST",
 "uri": "arn:aws:lambda:us-east-2:123456789012:function:HelloWorld",
 "payloadFormatVersion": "1.0"
 },
 "requestBody": {
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Body"
 }
 }
 }
 }
 }
 }
 ...
},
"components": {
 "schemas": {
 "Body": {
 "type": "object",
 "properties": {
 "key": {
 "type": "string"
 }
 }
 }
 ...
 }
 ...
}

OpenAPI 1043

Amazon API Gateway Developer Guide

Warning

A property or structure is invalid according to the OpenAPI specification, but it doesn’t block
API creation. You can specify whether API Gateway should ignore these warnings and continue
creating the API, or stop creating the API on warnings.

The following OpenAPI 3.0 document produces warnings on import because HTTP APIs support
only Lambda proxy and HTTP proxy integrations.

"x-amazon-apigateway-integration": {
 "type": "AWS",
 "httpMethod": "POST",
 "uri": "arn:aws:lambda:us-east-2:123456789012:function:HelloWorld",
 "payloadFormatVersion": "1.0"
}

Error

The OpenAPI specification is invalid or malformed. API Gateway can’t create any resources from
the malformed document. You must fix the errors, and then try again.

The following API definition produces errors on import because HTTP APIs support only the
OpenAPI 3.0 specification.

{
 "swagger": "2.0.0",
 "info": {
 "title": "My API",
 "description": "An Example OpenAPI definition for Errors/Warnings/ImportInfo",
 "version": "1.0"
 }
 ...
}

As another example, while OpenAPI allows users to define an API with multiple security
requirements attached to a particular operation, API Gateway does not support this. Each
operation can have only one of IAM authorization, a Lambda authorizer, or a JWT authorizer.
Attempting to model multiple security requirements results in an error.

OpenAPI 1044

Amazon API Gateway Developer Guide

Import an API by using the AWS CLI

The following command imports the OpenAPI 3.0 definition file api-definition.json as an
HTTP API.

Example

aws apigatewayv2 import-api --body file://api-definition.json

Example

You can import the following example OpenAPI 3.0 definition to create an HTTP API.

{
 "openapi": "3.0.1",
 "info": {
 "title": "Example Pet Store",
 "description": "A Pet Store API.",
 "version": "1.0"
 },
 "paths": {
 "/pets": {
 "get": {
 "operationId": "GET HTTP",
 "parameters": [
 {
 "name": "type",
 "in": "query",
 "schema": {
 "type": "string"
 }
 },
 {
 "name": "page",
 "in": "query",
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {
 "200": {
 "description": "200 response",

OpenAPI 1045

Amazon API Gateway Developer Guide

 "headers": {
 "Access-Control-Allow-Origin": {
 "schema": {
 "type": "string"
 }
 }
 },
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Pets"
 }
 }
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "type": "HTTP_PROXY",
 "httpMethod": "GET",
 "uri": "http://petstore.execute-api.us-west-1.amazonaws.com/petstore/pets",
 "payloadFormatVersion": 1.0
 }
 },
 "post": {
 "operationId": "Create Pet",
 "requestBody": {
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/NewPet"
 }
 }
 },
 "required": true
 },
 "responses": {
 "200": {
 "description": "200 response",
 "headers": {
 "Access-Control-Allow-Origin": {
 "schema": {
 "type": "string"
 }
 }

OpenAPI 1046

Amazon API Gateway Developer Guide

 },
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/NewPetResponse"
 }
 }
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "type": "HTTP_PROXY",
 "httpMethod": "POST",
 "uri": "http://petstore.execute-api.us-west-1.amazonaws.com/petstore/pets",
 "payloadFormatVersion": 1.0
 }
 }
 },
 "/pets/{petId}": {
 "get": {
 "operationId": "Get Pet",
 "parameters": [
 {
 "name": "petId",
 "in": "path",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {
 "200": {
 "description": "200 response",
 "headers": {
 "Access-Control-Allow-Origin": {
 "schema": {
 "type": "string"
 }
 }
 },
 "content": {
 "application/json": {
 "schema": {

OpenAPI 1047

Amazon API Gateway Developer Guide

 "$ref": "#/components/schemas/Pet"
 }
 }
 }
 }
 },
 "x-amazon-apigateway-integration": {
 "type": "HTTP_PROXY",
 "httpMethod": "GET",
 "uri": "http://petstore.execute-api.us-west-1.amazonaws.com/petstore/pets/
{petId}",
 "payloadFormatVersion": 1.0
 }
 }
 }
 },
 "x-amazon-apigateway-cors": {
 "allowOrigins": [
 "*"
],
 "allowMethods": [
 "GET",
 "OPTIONS",
 "POST"
],
 "allowHeaders": [
 "x-amzm-header",
 "x-apigateway-header",
 "x-api-key",
 "authorization",
 "x-amz-date",
 "content-type"
]
 },
 "components": {
 "schemas": {
 "Pets": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/Pet"
 }
 },
 "Empty": {
 "type": "object"

OpenAPI 1048

Amazon API Gateway Developer Guide

 },
 "NewPetResponse": {
 "type": "object",
 "properties": {
 "pet": {
 "$ref": "#/components/schemas/Pet"
 },
 "message": {
 "type": "string"
 }
 }
 },
 "Pet": {
 "type": "object",
 "properties": {
 "id": {
 "type": "string"
 },
 "type": {
 "type": "string"
 },
 "price": {
 "type": "number"
 }
 }
 },
 "NewPet": {
 "type": "object",
 "properties": {
 "type": {
 "$ref": "#/components/schemas/PetType"
 },
 "price": {
 "type": "number"
 }
 }
 },
 "PetType": {
 "type": "string",
 "enum": [
 "dog",
 "cat",
 "fish",
 "bird",

OpenAPI 1049

Amazon API Gateway Developer Guide

 "gecko"
]
 }
 }
 }
}

Exporting an HTTP API from API Gateway

After you've created an HTTP API, you can export an OpenAPI 3.0 definition of your API from API
Gateway. You can either choose a stage to export, or export the latest configuration of your API.
You can also import an exported API definition into API Gateway to create another, identical API.
To learn more about importing API definitions, see Importing an HTTP API.

Export an OpenAPI 3.0 definition of a stage by using the AWS CLI

The following command exports an OpenAPI definition of an API stage named prod to a YAML file
named stage-definition.yaml. The exported definition file includes API Gateway extensions
by default.

aws apigatewayv2 export-api \
 --api-id api-id \
 --output-type YAML \
 --specification OAS30 \
 --stage-name prod \
 stage-definition.yaml

Export an OpenAPI 3.0 definition of your API's latest changes by using the AWS CLI

The following command exports an OpenAPI definition of an HTTP API to a JSON file named
latest-api-definition.json. Because the command doesn't specify a stage, API Gateway
exports the latest configuration of your API, whether it has been deployed to a stage or not. The
exported definition file doesn't include API Gateway extensions.

aws apigatewayv2 export-api \
 --api-id api-id \
 --output-type JSON \
 --specification OAS30 \
 --no-include-extensions \
 latest-api-definition.json

OpenAPI 1050

Amazon API Gateway Developer Guide

For more information, see ExportAPI in the Amazon API Gateway Version 2 API Reference.

Export an OpenAPI 3.0 definition by using the API Gateway console

The following procedure shows how to export an OpenAPI definition of an HTTP API.

To export an OpenAPI 3.0 definition using the API Gateway console

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose an HTTP API.

3. On the main navigation pane, under Develop, choose Export.

4. Select from the following options to export your API:

a. For Source, select a source for the OpenAPI 3.0 definition. You can choose a stage to
export, or export the latest configuration of your API.

b. Turn on Include API Gateway extensions to include API Gateway extensions.

c. For Output format, select an output format.

5. Choose Download.

OpenAPI 1051

https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/apis-apiid-exports-specification.html#apis-apiid-exports-specification-http-methods
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Publishing HTTP APIs for customers to invoke

You can use stages and custom domain names to publish your API for clients to invoke.

An API stage is a logical reference to a lifecycle state of your API (for example, dev, prod, beta, or
v2). Each stage is a named reference to a deployment of the API and is made available for client
applications to call. You can configure different integrations and settings for each stage of an API.

You can use custom domain names to provide a simpler, more intuitive URL for
clients to invoke your API than the default URL, https://api-id.execute-
api.region.amazonaws.com/stage.

Note

To augment the security of your API Gateway APIs, the execute-api.
{region}.amazonaws.com domain is registered in the Public Suffix List (PSL). For further
security, we recommend that you use cookies with a __Host- prefix if you ever need to set
sensitive cookies in the default domain name for your API Gateway APIs. This practice will
help to defend your domain against cross-site request forgery attempts (CSRF). For more
information see the Set-Cookie page in the Mozilla Developer Network.

Topics

• Working with stages for HTTP APIs

• Security policy for HTTP APIs

• Setting up custom domain names for HTTP APIs

Working with stages for HTTP APIs

An API stage is a logical reference to a lifecycle state of your API (for example, dev, prod, beta,
or v2). API stages are identified by their API ID and stage name, and they're included in the URL
you use to invoke the API. Each stage is a named reference to a deployment of the API and is made
available for client applications to call.

You can create a $default stage that is served from the base of your API's URL—for example,
https://{api_id}.execute-api.{region}.amazonaws.com/. You use this URL to invoke
an API stage.

Publish 1052

https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

Amazon API Gateway Developer Guide

A deployment is a snapshot of your API configuration. After you deploy an API to a stage, it’s
available for clients to invoke. You must deploy an API for changes to take effect. If you enable
automatic deployments, changes to an API are automatically released for you.

Stage variables

Stage variables are key-value pairs that you can define for a stage of an HTTP API. They act like
environment variables and can be used in your API setup.

For example, you can define a stage variable, and then set its value as an HTTP endpoint for
an HTTP proxy integration. Later, you can reference the endpoint by using the associated stage
variable name. By doing this, you can use the same API setup with a different endpoint at each
stage. Similarly, you can use stage variables to specify a different AWS Lambda function integration
for each stage of your API.

Note

Stage variables are not intended to be used for sensitive data, such as credentials. To pass
sensitive data to integrations, use an AWS Lambda authorizer. You can pass sensitive data
to integrations in the output of the Lambda authorizer. To learn more, see the section
called “Lambda authorizer response format”.

Examples

To use a stage variable to customize the HTTP integration endpoint, you must first set the name
and value of the stage variable (for example, url) with a value of example.com. Next, set up an
HTTP proxy integration. Instead of entering the endpoint's URL, you can tell API Gateway to use
the stage variable value, http://${stageVariables.url}. This value tells API Gateway to
substitute your stage variable ${} at runtime, depending on the stage of your API.

You can reference stage variables in a similar way to specify a Lambda function name or an AWS
role ARN.

When specifying a Lambda function name as a stage variable value, you must configure the
permissions on the Lambda function manually. You can use the AWS Command Line Interface (AWS
CLI) to do this.

aws lambda add-permission --function-name arn:aws:lambda:XXXXXX:your-lambda-function-
name --source-arn arn:aws:execute-api:us-east-1:YOUR_ACCOUNT_ID:api_id/*/HTTP_METHOD/

Stages 1053

Amazon API Gateway Developer Guide

resource --principal apigateway.amazonaws.com --statement-id apigateway-access --action
 lambda:InvokeFunction

API Gateway stage variables reference

HTTP integration URIs

You can use a stage variable as part of an HTTP integration URI, as shown in the following
examples.

• A full URI without protocol – http://${stageVariables.<variable_name>}

• A full domain – http://${stageVariables.<variable_name>}/resource/operation

• A subdomain – http://${stageVariables.<variable_name>}.example.com/
resource/operation

• A path – http://example.com/${stageVariables.<variable_name>}/bar

• A query string – http://example.com/foo?q=${stageVariables.<variable_name>}

Lambda functions

You can use a stage variable in place of a Lambda function integration name or alias, as shown in
the following examples.

• arn:aws:apigateway:<region>:lambda:path/2015-03-31/
functions/arn:aws:lambda:<region>:<account_id>:function:
${stageVariables.<function_variable_name>}/invocations

• arn:aws:apigateway:<region>:lambda:path/2015-03-31/functions/
arn:aws:lambda:<region>:<account_id>:function:<function_name>:
${stageVariables.<version_variable_name>}/invocations

Note

To use a stage variable for a Lambda function, the function must be in the same account as
the API. Stage variables don't support cross-account Lambda functions.

Stages 1054

Amazon API Gateway Developer Guide

AWS integration credentials

You can use a stage variable as part of an AWS user or role credential ARN, as shown in the
following example.

• arn:aws:iam::<account_id>:${stageVariables.<variable_name>}

Security policy for HTTP APIs

API Gateway enforces a security policy of TLS_1_2 for all HTTP API endpoints.

A security policy is a predefined combination of minimum TLS version and cipher suites offered by
Amazon API Gateway. The TLS protocol addresses network security problems such as tampering
and eavesdropping between a client and server. When your clients establish a TLS handshake to
your API through the custom domain, the security policy enforces the TLS version and cipher suite
options your clients can choose to use. This security policy accepts TLS 1.2 and TLS 1.3 traffic and
rejects TLS 1.0 traffic.

Supported TLS protocols and ciphers for HTTP APIs

The following table describes the supported TLS protocols and ciphers for HTTP APIs.

Security policy TLS_1_2

TLS protocols

TLSv1.3 ♦

TLSv1.2 ♦

TLS ciphers

TLS-AES-128-GCM-SHA256 ♦

TLS-AES-256-GCM-SHA384 ♦

TLS-CHACHA20-POLY1305-SHA256 ♦

ECDHE-ECDSA-AES128-GCM-SHA256 ♦

ECDHE-RSA-AES128-GCM-SHA256 ♦

Security policy for HTTP APIs 1055

Amazon API Gateway Developer Guide

Security policy TLS_1_2

ECDHE-ECDSA-AES128-SHA256 ♦

ECDHE-RSA-AES128-SHA256 ♦

ECDHE-ECDSA-AES256-GCM-SHA384 ♦

ECDHE-RSA-AES256-GCM-SHA384 ♦

ECDHE-ECDSA-AES256-SHA384 ♦

ECDHE-RSA-AES256-SHA384 ♦

AES128-GCM-SHA256 ♦

AES128-SHA256 ♦

AES256-GCM-SHA384 ♦

AES256-SHA256 ♦

OpenSSL and RFC cipher names

OpenSSL and IETF RFC 5246 use different names for the same ciphers. For a list of the cipher
names, see the section called “OpenSSL and RFC cipher names”.

Information about REST APIs and WebSocket APIs

For more information about REST APIs and WebSocket APIs, see the section called “Choosing a
security policy” and the section called “Security policy for WebSocket APIs”.

Setting up custom domain names for HTTP APIs

Custom domain names are simpler and more intuitive URLs that you can provide to your API users.

After deploying your API, you (and your customers) can invoke the API using the default base URL
of the following format:

https://api-id.execute-api.region.amazonaws.com/stage

Custom domain names 1056

Amazon API Gateway Developer Guide

where api-id is generated by API Gateway, region (AWS Region) is specified by you when
creating the API, and stage is specified by you when deploying the API.

The hostname portion of the URL (that is, api-id.execute-api.region.amazonaws.com)
refers to an API endpoint. The default API endpoint can be difficult to recall and not user-friendly.

With custom domain names, you can set up your API's hostname, and choose a base path (for
example, myservice) to map the alternative URL to your API. For example, a more user-friendly
API base URL can become:

https://api.example.com/myservice

Note

A custom domain can be associated with REST APIs and HTTP APIs. You can use API
Gateway Version 2 APIs to create and manage Regional custom domain names for REST
APIs and HTTP APIs.
For HTTP APIs, TLS 1.2 is the only supported TLS version.

Register a domain name

You must have a registered internet domain name in order to set up custom domain names for
your APIs. If needed, you can register an internet domain using Amazon Route 53 or using a
third-party domain registrar of your choice. An API's custom domain name can be the name of a
subdomain or the root domain (also known as "zone apex") of a registered internet domain.

After a custom domain name is created in API Gateway, you must create or update your DNS
provider's resource record to map to your API endpoint. Without such a mapping, API requests
bound for the custom domain name cannot reach API Gateway.

Regional custom domain names

When you create a custom domain name for a Regional API, API Gateway creates a Regional
domain name for the API. You must set up a DNS record to map the custom domain name to the
Regional domain name. You must also provide a certificate for the custom domain name.

Custom domain names 1057

https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/operations.html
https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/operations.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/

Amazon API Gateway Developer Guide

Wildcard custom domain names

With wildcard custom domain names, you can support an almost infinite number of domain names
without exceeding the default quota. For example, you could give each of your customers their own
domain name, customername.api.example.com.

To create a wildcard custom domain name, specify a wildcard (*) as the first subdomain of a
custom domain that represents all possible subdomains of a root domain.

For example, the wildcard custom domain name *.example.com results in subdomains such as
a.example.com, b.example.com, and c.example.com, which all route to the same domain.

Wildcard custom domain names support distinct configurations from API Gateway's standard
custom domain names. For example, in a single AWS account, you can configure *.example.com
and a.example.com to behave differently.

To create a wildcard custom domain name, you must provide a certificate issued by ACM that has
been validated using either the DNS or the email validation method.

Note

You can't create a wildcard custom domain name if a different AWS account has created a
custom domain name that conflicts with the wildcard custom domain name. For example,
if account A has created a.example.com, then account B can't create the wildcard custom
domain name *.example.com.
If account A and account B share an owner, you can contact the AWS Support Center to
request an exception.

Certificates for custom domain names

Important

You specify the certificate for your custom domain name. If your application uses certificate
pinning, sometimes known as SSL pinning, to pin an ACM certificate, the application
might not be able to connect to your domain after AWS renews the certificate. For more
information, see Certificate pinning problems in the AWS Certificate Manager User Guide.

Custom domain names 1058

https://console.aws.amazon.com/support/home#/
https://docs.aws.amazon.com/acm/latest/userguide/troubleshooting-pinning.html

Amazon API Gateway Developer Guide

To provide a certificate for a custom domain name in a Region where ACM is supported, you must
request a certificate from ACM. To provide a certificate for a Regional custom domain name in a
Region where ACM is not supported, you must import a certificate to API Gateway in that Region.

To import an SSL/TLS certificate, you must provide the PEM-formatted SSL/TLS certificate body,
its private key, and the certificate chain for the custom domain name. Each certificate stored in
ACM is identified by its ARN. To use an AWS managed certificate for a domain name, you simply
reference its ARN.

ACM makes it straightforward to set up and use a custom domain name for an API. You create
a certificate for the given domain name (or import a certificate), set up the domain name in API
Gateway with the ARN of the certificate provided by ACM, and map a base path under the custom
domain name to a deployed stage of the API. With certificates issued by ACM, you do not have to
worry about exposing any sensitive certificate details, such as the private key.

For details on setting up a custom domain name, see Getting certificates ready in AWS Certificate
Manager and Setting up a regional custom domain name in API Gateway.

Working with API mappings for HTTP APIs

You use API mappings to connect API stages to a custom domain name. After you create a domain
name and configure DNS records, you use API mappings to send traffic to your APIs through your
custom domain name.

An API mapping specifies an API, a stage, and optionally a path to use for the mapping. For
example, you can map the production stage of an API to https://api.example.com/orders.

You can map HTTP and REST API stages to the same custom domain name.

Before you create an API mapping, you must have an API, a stage, and a custom domain name. To
learn more about creating a custom domain name, see the section called “Setting up a regional
custom domain name”.

Routing API requests

You can configure API mappings with multiple levels, for example orders/v1/items and
orders/v2/items.

For API mappings with multiple levels, API Gateway routes requests to the API mapping that has
the longest matching path. API Gateway considers only the paths configured for API mappings, and

Custom domain names 1059

Amazon API Gateway Developer Guide

not API routes, to select the API to invoke. If no path matches the request, API Gateway sends the
request to the API that you've mapped to the empty path (none).

For custom domain names that use API mappings with multiple levels, API Gateway routes requests
to the API mapping that has the longest matching prefix.

For example, consider a custom domain name https://api.example.com with the following
API mappings:

1. (none) mapped to API 1.

2. orders mapped to API 2.

3. orders/v1/items mapped to API 3.

4. orders/v2/items mapped to API 4.

5. orders/v2/items/categories mapped to API 5.

Request Selected API Explanation

https://api.exampl
e.com/orders

API 2 The request exactly matches
this API mapping.

https://api.exampl
e.com/orders/v1/it
ems

API 3 The request exactly matches
this API mapping.

https://api.exampl
e.com/orders/v2/it
ems

API 4 The request exactly matches
this API mapping.

https://api.exampl
e.com/orders/v1/it
ems/123

API 3 API Gateway chooses the
mapping that has the longest
matching path. The 123 at
the end of the request doesn't
affect the selection.

https://api.exampl
e.com/orders/v2/it
ems/categories/5

API 5 API Gateway chooses the
mapping that has the longest
matching path.

Custom domain names 1060

Amazon API Gateway Developer Guide

Request Selected API Explanation

https://api.exampl
e.com/customers

API 1 API Gateway uses the empty
mapping as a catch-all.

https://api.exampl
e.com/ordersandmore

API 2 API Gateway chooses the
mapping that has the longest
matching prefix. For a custom
domain name configured
with single-level mappings,
such as only https://
api.example.com/
orders and https://a
pi.example.com/ , API
Gateway would choose API
1, as there is no matching
path with ordersandmore .

Restrictions

• In an API mapping, the custom domain name and mapped APIs must be in the same AWS
account.

• API mappings must contain only letters, numbers, and the following characters: $-_.+!*'()/.

• The maximum length for the path in an API mapping is 300 characters.

• You can have 200 API mappings with multiple levels for each domain name.

• You can only map HTTP APIs to a regional custom domain name with the TLS 1.2 security policy.

• You can't map WebSocket APIs to the same custom domain name as an HTTP API or REST API.

Create an API mapping

To create an API mapping, you must first create a custom domain name, API, and stage. For
information about creating a custom domain name, see the section called “Setting up a regional
custom domain name”.

For example AWS Serverless Application Model templates that create all resources, see Sessions
With SAM on GitHub.

Custom domain names 1061

https://github.com/aws-samples/sessions-with-aws-sam/tree/master/custom-domains
https://github.com/aws-samples/sessions-with-aws-sam/tree/master/custom-domains

Amazon API Gateway Developer Guide

AWS Management Console

To create an API mapping

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose Custom domain names.

3. Select a custom domain name that you've already created.

4. Choose API mappings.

5. Choose Configure API mappings.

6. Choose Add new mapping.

7. Enter an API, a Stage, and optionally a Path.

8. Choose Save.

AWS CLI

The following AWS CLI command creates an API mapping. In this example, API Gateway sends
requests to api.example.com/v1/orders to the specified API and stage.

aws apigatewayv2 create-api-mapping \
 --domain-name api.example.com \
 --api-mapping-key v1/orders \
 --api-id a1b2c3d4 \
 --stage test

AWS CloudFormation

The following AWS CloudFormation example creates an API mapping.

MyApiMapping:
 Type: 'AWS::ApiGatewayV2::ApiMapping'
 Properties:
 DomainName: api.example.com
 ApiMappingKey: 'orders/v2/items'
 ApiId: !Ref MyApi
 Stage: !Ref MyStage

Custom domain names 1062

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Disabling the default endpoint for an HTTP API

By default, clients can invoke your API by using the execute-api endpoint that API Gateway
generates for your API. To ensure that clients can access your API only by using a custom domain
name, disable the default execute-api endpoint.

Note

When you disable the default endpoint, it affects all stages of an API.

The following AWS CLI command disables the default endpoint for an HTTP API.

aws apigatewayv2 update-api \
 --api-id abcdef123 \
 --disable-execute-api-endpoint

After you disable the default endpoint, you must deploy your API for the change to take effect,
unless automatic deployments are enabled.

The following AWS CLI command creates a deployment.

aws apigatewayv2 create-deployment \
 --api-id abcdef123 \
 --stage-name dev

Protecting your HTTP API

API Gateway provides a number of ways to protect your API from certain threats, like malicious
users or spikes in traffic. You can protect your API using strategies like setting throttling targets,
and enabling mutual TLS. In this section you can learn how to enable these capabilities using API
Gateway.

Topics

• Throttling requests to your HTTP API

• Configuring mutual TLS authentication for an HTTP API

Throttling requests to your HTTP API

Protect 1063

Amazon API Gateway Developer Guide

You can configure throttling for your APIs to help protect them from being overwhelmed by too
many requests. Throttles are applied on a best-effort basis and should be thought of as targets
rather than guaranteed request ceilings.

API Gateway throttles requests to your API using the token bucket algorithm, where a token counts
for a request. Specifically, API Gateway examines the rate and a burst of request submissions
against all APIs in your account, per Region. In the token bucket algorithm, a burst can allow pre-
defined overrun of those limits, but other factors can also cause limits to be overrun in some cases.

When request submissions exceed the steady-state request rate and burst limits, API Gateway
begins to throttle requests. Clients may receive 429 Too Many Requests error responses at this
point. Upon catching such exceptions, the client can resubmit the failed requests in a way that is
rate limiting.

As an API developer, you can set the target limits for individual API stages or routes to improve
overall performance across all APIs in your account.

Account-level throttling per Region

By default, API Gateway limits the steady-state requests per second (RPS) across all APIs within an
AWS account, per Region. It also limits the burst (that is, the maximum bucket size) across all APIs
within an AWS account, per Region. In API Gateway, the burst limit represents the target maximum
number of concurrent request submissions that API Gateway will fulfill before returning 429 Too
Many Requests error responses. For more information on throttling quotas, see Quotas and
important notes.

Per-account limits are applied to all APIs in an account in a specified Region. The account-level
rate limit can be increased upon request - higher limits are possible with APIs that have shorter
timeouts and smaller payloads. To request an increase of account-level throttling limits per Region,
contact the AWS Support Center. For more information, see Quotas and important notes. Note that
these limits can't be higher than the AWS throttling limits.

Route-level throttling

You can set route-level throttling to override the account-level request throttling limits for a
specific stage or for individual routes in your API. The default route throttling limits can't exceed
account-level rate limits.

You can configure route-level throttling by using the AWS CLI. The following command configures
custom throttling for the specified stage and route of an API.

Throttling 1064

https://console.aws.amazon.com/support/home#/

Amazon API Gateway Developer Guide

aws apigatewayv2 update-stage \
 --api-id a1b2c3d4 \
 --stage-name dev \
 --route-settings '{"GET /pets":
{"ThrottlingBurstLimit":100,"ThrottlingRateLimit":2000}}'

Configuring mutual TLS authentication for an HTTP API

Mutual TLS authentication requires two-way authentication between the client and the server.
With mutual TLS, clients must present X.509 certificates to verify their identity to access your
API. Mutual TLS is a common requirement for Internet of Things (IoT) and business-to-business
applications.

You can use mutual TLS along with other authorization and authentication operations that
API Gateway supports. API Gateway forwards the certificates that clients provide to Lambda
authorizers and to backend integrations.

Important

By default, clients can invoke your API by using the execute-api endpoint that API
Gateway generates for your API. To ensure that clients can access your API only by using
a custom domain name with mutual TLS, disable the default execute-api endpoint. To
learn more, see the section called “Disable the default endpoint”.

Prerequisites for mutual TLS

To configure mutual TLS you need:

• A custom domain name

• At least one certificate configured in AWS Certificate Manager for your custom domain name

• A truststore configured and uploaded to Amazon S3

Custom domain names

To enable mutual TLS for a HTTP API, you must configure a custom domain name for your API. You
can enable mutual TLS for a custom domain name, and then provide the custom domain name to
clients. To access an API by using a custom domain name that has mutual TLS enabled, clients must

Mutual TLS 1065

Amazon API Gateway Developer Guide

present certificates that you trust in API requests. You can find more information at the section
called “Custom domain names”.

Using AWS Certificate Manager issued certificates

You can request a publicly trusted certificate directly from ACM or import public or self-signed
certificates. To setup a certificate in ACM, go to ACM. If you would like to import a certificate,
continue reading in the following section.

Using an imported or AWS Private Certificate Authority certificate

To use a certificate imported into ACM or a certificate from AWS Private Certificate Authority
with mutual TLS, API Gateway needs an ownershipVerificationCertificate issued
by ACM. This ownership certificate is only used to verify that you have permissions to
use the domain name. It is not used for the TLS handshake. If you don't already have a
ownershipVerificationCertificate, go to https://console.aws.amazon.com/acm/ to set one
up.

You will need to keep this certificate valid for the lifetime of your domain name. If a
certificate expires and auto-renew fails, all updates to the domain name will be locked.
You will need to update the ownershipVerificationCertificateArn with a valid
ownershipVerificationCertificate before you can make any other changes. The
ownershipVerificationCertificate cannot be used as a server certificate for another
mutual TLS domain in API Gateway. If a certificate is directly re-imported into ACM, the issuer must
stay the same.

Configuring your truststore

Truststores are text files with a .pem file extension. They are a trusted list of certificates from
Certificate Authorities. To use mutual TLS, create a truststore of X.509 certificates that you trust to
access your API.

You must include the complete chain of trust, starting from the issuing CA certificate, up to the
root CA certificate, in your truststore. API Gateway accepts client certificates issued by any CA
present in the chain of trust. The certificates can be from public or private certificate authorities.
Certificates can have a maximum chain length of four. You can also provide self-signed certificates.
The following hashing algorithms are supported in the truststore:

• SHA-256 or stronger

• RSA-2048 or stronger

Mutual TLS 1066

https://console.aws.amazon.com/acm/
https://console.aws.amazon.com/acm/

Amazon API Gateway Developer Guide

• ECDSA-256 or stronger

API Gateway validates a number of certificate properties. You can use Lambda authorizers to
perform additional checks when a client invokes an API, including checking whether a certificate
has been revoked. API Gateway validates the following properties:

Validation Description

X.509 syntax The certificate must meet X.509 syntax
requirements.

Integrity The certificate's content must not have been
altered from that signed by the certificate
authority from the truststore.

Validity The certificate's validity period must be
current.

Name chaining / key chaining The names and subjects of certificates must
form an unbroken chain. Certificates can have
a maximum chain length of four.

Upload the truststore to an Amazon S3 bucket in a single file

Example certificates.pem

-----BEGIN CERTIFICATE-----
<Certificate contents>
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
<Certificate contents>
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
<Certificate contents>
-----END CERTIFICATE-----
...

The following AWS CLI command uploads certificates.pem to your Amazon S3 bucket.

Mutual TLS 1067

Amazon API Gateway Developer Guide

aws s3 cp certificates.pem s3://bucket-name

Configuring mutual TLS for a custom domain name

To configure mutual TLS for a HTTP API, you must use a Regional custom domain name for your
API, with a minimum TLS version of 1.2. To learn more about creating and configuring a custom
domain name, see the section called “Setting up a regional custom domain name”.

Note

Mutual TLS isn't supported for private APIs.

After you've uploaded your truststore to Amazon S3, you can configure your custom domain name
to use mutual TLS. Paste the following (slashes included) into a terminal:

aws apigatewayv2 create-domain-name \
 --domain-name api.example.com \
 --domain-name-configurations CertificateArn=arn:aws:acm:us-
west-2:123456789012:certificate/123456789012-1234-1234-1234-12345678 \
 --mutual-tls-authentication TruststoreUri=s3://bucket-name/key-name

After you create the domain name, you must configure DNS records and basepath mappings for
API operations. To learn more, see Setting up a regional custom domain name in API Gateway.

Invoke an API by using a custom domain name that requires mutual TLS

To invoke an API with mutual TLS enabled, clients must present a trusted certificate in the API
request. When a client attempts to invoke your API, API Gateway looks for the client certificate's
issuer in your truststore. For API Gateway to proceed with the request, the certificate's issuer and
the complete chain of trust up to the root CA certificate must be in your truststore.

The following example curl command sends a request to api.example.com, that includes my-
cert.pem in the request. my-key.key is the private key for the certificate.

curl -v --key ./my-key.key --cert ./my-cert.pem api.example.com

Mutual TLS 1068

Amazon API Gateway Developer Guide

Your API is invoked only if your truststore trusts the certificate. The following conditions will
cause API Gateway to fail the TLS handshake and deny the request with a 403 status code. If your
certificate:

• isn't trusted

• is expired

• doesn't use a supported algorithm

Note

API Gateway doesn't verify if a certificate has been revoked.

Updating your truststore

To update the certificates in your truststore, upload a new certificate bundle to Amazon S3. Then,
you can update your custom domain name to use the updated certificate.

Use Amazon S3 versioning to maintain multiple versions of your truststore. When you update your
custom domain name to use a new truststore version, API Gateway returns warnings if certificates
are invalid.

API Gateway produces certificate warnings only when you update your domain name. API Gateway
doesn’t notify you if a previously uploaded certificate expires.

The following AWS CLI command updates a custom domain name to use a new truststore version.

aws apigatewayv2 update-domain-name \
 --domain-name api.example.com \
 --domain-name-configurations CertificateArn=arn:aws:acm:us-
west-2:123456789012:certificate/123456789012-1234-1234-1234-12345678 \
 --mutual-tls-authentication TruststoreVersion='abcdef123'

Disable mutual TLS

To disable mutual TLS for a custom domain name, remove the truststore from your custom domain
name, as shown in the following command.

aws apigatewayv2 update-domain-name \

Mutual TLS 1069

https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html

Amazon API Gateway Developer Guide

 --domain-name api.example.com \
 --domain-name-configurations CertificateArn=arn:aws:acm:us-
west-2:123456789012:certificate/123456789012-1234-1234-1234-12345678 \
 --mutual-tls-authentication TruststoreUri=''

Troubleshooting certificate warnings

When creating a custom domain name with mutual TLS, API Gateway returns warnings if
certificates in the truststore are not valid. This can also occur when updating a custom domain
name to use a new truststore. The warnings indicate the issue with the certificate and the subject
of the certificate that produced the warning. Mutual TLS is still enabled for your API, but some
clients might not be able to access your API.

You'll need to decode the certificates in your truststore in order to identify which certificate
produced the warning. You can use tools such as openssl to decode the certificates and identify
their subjects.

The following command displays the contents of a certificate, including its subject:

openssl x509 -in certificate.crt -text -noout

Update or remove the certificates that produced warnings, and then upload a new truststore to
Amazon S3. After uploading the new truststore, update your custom domain name to use the new
truststore.

Troubleshooting domain name conflicts

The error "The certificate subject <certSubject> conflicts with an existing
certificate from a different issuer." means multiple Certificate Authorities have
issued a certificate for this domain. For each subject in the certificate, there can only be one issuer
in API Gateway for mutual TLS domains. You will need to get all of your certificates for that subject
through a single issuer. If the problem is with a certificate you don't have control of but you can
prove ownership of the domain name, contact AWS Support to open a ticket.

Troubleshooting domain name status messages

PENDING_CERTIFICATE_REIMPORT: This means you reimported a certificate to ACM and it failed
validation because the new certificate has a SAN (subject alternative name) that is not covered
by the ownershipVerificationCertificate or the subject or SANs in the certificate don't

Mutual TLS 1070

https://console.aws.amazon.com/support/cases#/create

Amazon API Gateway Developer Guide

cover the domain name. Something might be configured incorrectly or an invalid certificate was
imported. You need to reimport a valid certificate into ACM. For more information about validation
see Validating domain ownership.

PENDING_OWNERSHIP_VERIFICATION: This means your previously verified certificate has expired
and ACM was unable to auto-renew it. You will need to renew the certificate or request a new
certificate. More information about certificate renewal can be found at ACM's troubleshooting
managed certificate renewal guide.

Monitoring your HTTP API

You can use CloudWatch metrics and CloudWatch Logs to monitor HTTP APIs. By combining logs
and metrics, you can log errors and monitor your API's performance.

Note

API Gateway might not generate logs and metrics in the following cases:

• 413 Request Entity Too Large errors

• Excessive 429 Too Many Requests errors

• 400 series errors from requests sent to a custom domain that has no API mapping

• 500 series errors caused by internal failures

Topics

• Working with metrics for HTTP APIs

• Configuring logging for an HTTP API

Working with metrics for HTTP APIs

You can monitor API execution by using CloudWatch, which collects and processes raw data from
API Gateway into readable, near-real-time metrics. These statistics are recorded for a period of 15
months so you can access historical information and gain a better perspective on how your web
application or service is performing. By default, API Gateway metric data is automatically sent
to CloudWatch in one-minute periods. To monitor your metrics, create a CloudWatch dashboard
for your API. For more information about how to create a CloudWatch dashboard, see Creating a

Monitor 1071

https://docs.aws.amazon.com/acm/latest/userguide/domain-ownership-validation.html
https://docs.aws.amazon.com/acm/latest/userguide/troubleshooting-renewal.html
https://docs.aws.amazon.com/acm/latest/userguide/troubleshooting-renewal.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create_dashboard.html

Amazon API Gateway Developer Guide

CloudWatch dashboard in the Amazon CloudWatch User Guide. For more information, see What Is
Amazon CloudWatch? in the Amazon CloudWatch User Guide.

The following metrics are supported for HTTP APIs. You can also enable detailed metrics to write
route-level metrics to Amazon CloudWatch.

Metric Description

4xx The number of client-side
errors captured in a given
period.

5xx The number of server-side
errors captured in a given
period.

Count The total number API
requests in a given period.

IntegrationLatency The time between when API
Gateway relays a request
to the backend and when it
receives a response from the
backend.

Latency The time between when API
Gateway receives a request
from a client and when it
returns a response to the
client. The latency includes
the integration latency and
other API Gateway overhead.

DataProcessed The amount of data
processed in bytes.

You can use the dimensions in the following table to filter API Gateway metrics.

Metrics 1072

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create_dashboard.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html

Amazon API Gateway Developer Guide

Dimension Description

ApiId Filters API Gateway metrics
for an API with the specified
API ID.

ApiId, Stage Filters API Gateway metrics
for an API stage with the
specified API ID and stage ID.

ApiId, Method, Resource, Stage Filters API Gateway metrics
for an API method with the
specified API ID, stage ID,
resource path, and route ID.

API Gateway will not send
these metrics unless you have
explicitly enabled detailed
CloudWatch metrics. You
can do this by calling the
UpdateStage action of the
API Gateway V2 REST API
to update the detailedM
etricsEnabled property
to true. Alternatively, you
can call the update-stage
AWS CLI command to update
the DetailedMetricsEna
bled property to true.
Enabling such metrics will
incur additional charges to
your account. For pricing
information, see Amazon
CloudWatch Pricing.

Configuring logging for an HTTP API

Logging 1073

https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/apis-apiid-stages-stagename.html
https://docs.aws.amazon.com/cli/latest/reference/apigatewayv2/update-stage.html
https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/

Amazon API Gateway Developer Guide

You can turn on logging to write logs to CloudWatch Logs. You can use logging variables to
customize the content of your logs.

To turn on logging for an HTTP API, you must do the following.

1. Ensure that your user has the required permissions to activate logging.

2. Create a CloudWatch Logs log group.

3. Provide the ARN of the CloudWatch Logs log group for a stage of your API.

Permissions to activate logging

To turn on logging for an API, your user must have the following permissions.

Example

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams",
 "logs:GetLogEvents",
 "logs:FilterLogEvents"
],
 "Resource": "arn:aws:logs:us-east-2:123456789012:log-group:*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogDelivery",
 "logs:PutResourcePolicy",
 "logs:UpdateLogDelivery",
 "logs:DeleteLogDelivery",
 "logs:CreateLogGroup",
 "logs:DescribeResourcePolicies",
 "logs:GetLogDelivery",
 "logs:ListLogDeliveries"
],
 "Resource": "*"
 }

Logging 1074

Amazon API Gateway Developer Guide

]
}

Create a log group and activate logging for HTTP APIs

You can create a log group and activate access logging using the AWS Management Console or the
AWS CLI.

AWS Management Console

1. Create a log group.

To learn how to create a log group using the console, see Create a Log Group in Amazon
CloudWatch Logs User Guide.

2. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

3. Choose an HTTP API.

4. Under the Monitor tab in the primary navigation panel, choose Logging.

5. Select a stage to activate logging and choose Select.

6. Choose Edit to activate access logging.

7. Turn on Access logging, enter a CloudWatch Logs, and select a log format.

8. Choose Save.

AWS CLI

The following AWS CLI command creates a log group.

aws logs create-log-group --log-group-name my-log-group

You need the Amazon Resource Name (ARN) for your log group to turn on logging. The ARN
format is arn:aws:logs:region:account-id:log-group:log-group-name.

The following AWS CLI command turns on logging for the $default stage of an HTTP API.

aws apigatewayv2 update-stage --api-id abcdef \
 --stage-name '$default' \

Logging 1075

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

 --access-log-settings '{"DestinationArn": "arn:aws:logs:region:account-
id:log-group:log-group-name", "Format": "$context.identity.sourceIp - -
 [$context.requestTime] \"$context.httpMethod $context.routeKey $context.protocol\"
 $context.status $context.responseLength $context.requestId"}'

Example log formats

Examples of some common access log formats are available in the API Gateway console and are
listed as follows.

• CLF (Common Log Format):

$context.identity.sourceIp - - [$context.requestTime] "$context.httpMethod
 $context.routeKey $context.protocol" $context.status $context.responseLength
 $context.requestId $context.extendedRequestId

• JSON:

{ "requestId":"$context.requestId", "ip": "$context.identity.sourceIp",
 "requestTime":"$context.requestTime",
 "httpMethod":"$context.httpMethod","routeKey":"$context.routeKey",
 "status":"$context.status","protocol":"$context.protocol",
 "responseLength":"$context.responseLength", "extendedRequestId":
 "$context.extendedRequestId" }

• XML:

<request id="$context.requestId"> <ip>$context.identity.sourceIp</ip> <requestTime>
$context.requestTime</requestTime> <httpMethod>$context.httpMethod</httpMethod>
 <routeKey>$context.routeKey</routeKey> <status>$context.status</status> <protocol>
$context.protocol</protocol> <responseLength>$context.responseLength</responseLength>
 <extendedRequestId>$context.extendedRequestId</extendedRequestId> </request>

• CSV (comma-separated values):

$context.identity.sourceIp,$context.requestTime,$context.httpMethod,
$context.routeKey,$context.protocol,$context.status,$context.responseLength,
$context.requestId,$context.extendedRequestId

Customizing HTTP API access logs

Logging 1076

https://httpd.apache.org/docs/current/logs.html#common

Amazon API Gateway Developer Guide

You can use the following variables to customize HTTP API access logs. To learn more about access
logs for HTTP APIs, see Configuring logging for an HTTP API.

Parameter Description

$context.accountId The API owner's AWS account ID.

$context.apiId The identifier API Gateway assigns to your API.

$context.authorizer.claims.
property

A property of the claims returned from the
JSON Web Token (JWT) after the method
caller is successfully authenticated, such
as $context.authorizer.claims.
username . For more information, see
Controlling access to HTTP APIs with JWT
authorizers.

Note

Calling $context.authorize
r.claims returns null.

$context.authorizer.error The error message returned from an authorize
r.

$context.authorizer.principalId The principal user identification that a Lambda
authorizer returns.

$context.authorizer. property The value of the specified key-value pair
of the context map returned from an
API Gateway Lambda authorizer function.
For example, if the authorizer returns the
following context map:

"context" : {
 "key": "value",
 "numKey": 1,
 "boolKey": true

Logging 1077

Amazon API Gateway Developer Guide

Parameter Description

}

calling $context.authorizer.key
returns the "value" string, calling
$context.authorizer.numKey returns
the 1, and calling $context.authorize
r.boolKey returns true.

$context.awsEndpointRequestId The AWS endpoint's request ID from the x-
amz-request-id or x-amzn-requestId
header.

$context.awsEndpointRequestId2 The AWS endpoint's request ID from the x-
amz-id-2 header.

$context.customDomain.baseP
athMatched

The path for an API mapping that an incoming
request matched. Applicable when a client
uses a custom domain name to access an
API. For example if a client sends a request
to https://api.example.com/v1/
orders/1234 , and the request matches
the API mapping with the path v1/orders ,
the value is v1/orders . To learn more, see
the section called “API mappings”.

$context.dataProcessed The amount of data processed in bytes.

$context.domainName The full domain name used to invoke the API.
This should be the same as the incoming Host
header.

$context.domainPrefix The first label of the $context.domainNam
e .

$context.error.message A string that contains an API Gateway error
message.

Logging 1078

Amazon API Gateway Developer Guide

Parameter Description

$context.error.messageString The quoted value of $context.error.mes
sage , namely "$context.error.me
ssage" .

$context.error.responseType A type of GatewayResponse . For more
information, see the section called “Metrics”
 and the section called “Setting up gateway
responses to customize error responses”.

$context.extendedRequestId Equivalent to $context.requestId .

$context.httpMethod The HTTP method used. Valid values include:
DELETE, GET, HEAD, OPTIONS, PATCH, POST,
and PUT.

$context.identity.accountId The AWS account ID associated with the
request. Supported for routes that use IAM
authorization.

$context.identity.caller The principal identifier of the caller that
signed the request. Supported for routes that
use IAM authorization.

Logging 1079

Amazon API Gateway Developer Guide

Parameter Description

$context.identity.cognitoAu
thenticationProvider

A comma-separated list of the Amazon
Cognito authentication providers used by the
caller making the request. Available only if
the request was signed with Amazon Cognito
credentials.

For example, for an identity from an
Amazon Cognito user pool, cognito-idp.
region.amazonaws.com/ user_pool
_id ,cognito-idp. region.amazonaw
s.com/ user_pool_id :CognitoS
ignIn: token subject claim

For information, see Using Federated Identitie
s in the Amazon Cognito Developer Guide.

$context.identity.cognitoAu
thenticationType

The Amazon Cognito authentication type
of the caller making the request. Available
only if the request was signed with Amazon
Cognito credentials. Possible values include
authenticated for authenticated identities
and unauthenticated for unauthenticated
identities.

$context.identity.cognitoId
entityId

The Amazon Cognito identity ID of the caller
making the request. Available only if the
request was signed with Amazon Cognito
credentials.

$context.identity.cognitoId
entityPoolId

The Amazon Cognito identity pool ID of the
caller making the request. Available only if
the request was signed with Amazon Cognito
credentials.

$context.identity.principalOrgId The AWS organization ID. Supported for
routes that use IAM authorization.

Logging 1080

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_org_details.html

Amazon API Gateway Developer Guide

Parameter Description

$context.identity.clientCer
t.clientCertPem

The PEM-encoded client certificate that the
client presented during mutual TLS authentic
ation. Present when a client accesses an API by
using a custom domain name that has mutual
TLS enabled.

$context.identity.clientCer
t.subjectDN

The distinguished name of the subject of the
certificate that a client presents. Present when
a client accesses an API by using a custom
domain name that has mutual TLS enabled.

$context.identity.clientCer
t.issuerDN

The distinguished name of the issuer of the
certificate that a client presents. Present when
a client accesses an API by using a custom
domain name that has mutual TLS enabled.

$context.identity.clientCer
t.serialNumber

The serial number of the certificate. Present
when a client accesses an API by using a
custom domain name that has mutual TLS
enabled.

$context.identity.clientCer
t.validity.notBefore

The date before which the certificate is invalid.
Present when a client accesses an API by using
a custom domain name that has mutual TLS
enabled.

$context.identity.clientCer
t.validity.notAfter

The date after which the certificate is invalid.
Present when a client accesses an API by using
a custom domain name that has mutual TLS
enabled.

$context.identity.sourceIp The source IP address of the immediate
TCP connection making the request to API
Gateway endpoint.

Logging 1081

Amazon API Gateway Developer Guide

Parameter Description

$context.identity.user The principal identifier of the user that will be
authorized against resource access. Supported
for routes that use IAM authorization.

$context.identity.userAgent The User-Agent header of the API caller.

$context.identity.userArn The Amazon Resource Name (ARN) of the
effective user identified after authentication.
Supported for routes that use IAM authoriza
tion. For more information, see https://
docs.aws.amazon.com/IAM/latest/UserGuide/
id_users.html.

$context.integration.error The error message returned from an integrati
on. Equivalent to $context.integrati
onErrorMessage .

$context.integration.integr
ationStatus

For Lambda proxy integration, the status code
returned from AWS Lambda, not from the
backend Lambda function code.

$context.integration.latency The integration latency in ms. Equivalent to
$context.integrationLatency .

$context.integration.requestId The AWS endpoint's request ID. Equivalent to
$context.awsEndpointRequestId .

$context.integration.status The status code returned from an integrati
on. For Lambda proxy integrations, this is the
status code that your Lambda function code
returns.

$context.integrationErrorMessage A string that contains an integration error
message.

$context.integrationLatency The integration latency in ms.

Logging 1082

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html

Amazon API Gateway Developer Guide

Parameter Description

$context.integrationStatus For Lambda proxy integration, this parameter
represents the status code returned from
AWS Lambda, not from the backend Lambda
function.

$context.path The request path. For example, /{stage}/
root/child .

$context.protocol The request protocol, for example, HTTP/1.1.

Note

API Gateway APIs can accept HTTP/2
requests, but API Gateway sends
requests to backend integrations using
HTTP/1.1. As a result, the request
protocol is logged as HTTP/1.1 even
if a client sends a request that uses
HTTP/2.

$context.requestId The ID that API Gateway assigns to the API
request.

$context.requestTime The CLF-formatted request time (dd/MMM/yy
yy:HH:mm:ss +-hhmm).

$context.requestTimeEpoch The Epoch-formatted request time.

$context.responseLatency The response latency in ms.

$context.responseLength The response payload length in bytes.

$context.routeKey The route key of the API request, for example
/pets.

Logging 1083

https://httpd.apache.org/docs/current/logs.html#common
https://en.wikipedia.org/wiki/Unix_time

Amazon API Gateway Developer Guide

Parameter Description

$context.stage The deployment stage of the API request (for
example, beta or prod).

$context.status The method response status.

Troubleshooting issues with HTTP APIs

The following topics provide troubleshooting advice for errors and issues that you might encounter
when using HTTP APIs.

Topics

• Troubleshooting issues with HTTP API Lambda integrations

• Troubleshooting issues with HTTP API JWT authorizers

Troubleshooting issues with HTTP API Lambda integrations

The following provides troubleshooting advice for errors and issues that you might encounter
when using AWS Lambda integrations with HTTP APIs.

Issue: My API with a Lambda integration returns {"message":"Internal
Server Error"}

To troubleshoot the internal server error, add the $context.integrationErrorMessage
logging variable to your log format, and view your HTTP API's logs. To achieve this, do the
following:

To create a log group by using the AWS Management Console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Choose Log groups.

3. Choose Create log group.

4. Enter a log group name, and then choose Create.

Troubleshooting 1084

https://console.aws.amazon.com/cloudwatch/

Amazon API Gateway Developer Guide

5. Note the Amazon Resource Name (ARN) for your log group. The ARN format is
arn:aws:logs:region: account-id:log-group:log-group-name. You need the log group ARN
to enable access logging for your HTTP API.

To add the $context.integrationErrorMessage logging variable

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your HTTP API.

3. Under Monitor, choose Logging.

4. Select a stage of your API.

5. Choose Edit, and then enable access logging.

6. For Log destination, enter the ARN of the log group that you created in the previous step.

7. For Log format, choose CLF. API Gateway creates an example log format.

8. Add $context.integrationErrorMessage to the end of the log format.

9. Choose Save.

To view your API's logs

1. Generate logs. Use a browser or curl to invoke your API.

$curl https://api-id.execute-api.us-west-2.amazonaws.com/route

2. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

3. Choose your HTTP API.

4. Under Monitor, choose Logging.

5. Select the stage of your API for which you enabled logging.

6. Choose View logs in CloudWatch.

7. Choose the latest log stream to view your HTTP API's logs.

8. Your log entry should look similar to the following:

Lambda integrations 1085

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

Because we added $context.integrationErrorMessage to the log format, we see an error
message in our logs that summarizes the problem.

Your logs might include a different error message that indicates that there's a problem with
your Lambda function code. In that case, check your Lambda function code, and verify that your
Lambda function returns a response in the required format. If your logs don't include an error
message, add $context.error.message and $context.error.responseType to your log
format for more information to help troubleshoot.

In this case, the logs show that API Gateway didn't have the required permissions to invoke the
Lambda function.

When you create a Lambda integration in the API Gateway console, API Gateway automatically
configures permissions to invoke the Lambda function. When you create a Lambda integration by
using the AWS CLI, AWS CloudFormation, or an SDK, you must grant permissions for API Gateway
to invoke the function. The following example AWS CLI commands grant permission for different
HTTP API routes to invoke a Lambda function.

Example Example – For the $default stage and $default route of an HTTP API

aws lambda add-permission \
 --function-name my-function \
 --statement-id apigateway-invoke-permissions \
 --action lambda:InvokeFunction \
 --principal apigateway.amazonaws.com \

Lambda integrations 1086

Amazon API Gateway Developer Guide

 --source-arn "arn:aws:execute-api:us-west-2:123456789012:api-id/\$default/\
$default"

Example Example – For the prod stage and test route of an HTTP API

aws lambda add-permission \
 --function-name my-function \
 --statement-id apigateway-invoke-permissions \
 --action lambda:InvokeFunction \
 --principal apigateway.amazonaws.com \
 --source-arn "arn:aws:execute-api:us-west-2:123456789012:api-id/prod/*/test"

Confirm the function policy in the Permissions tab of the Lambda console.

Try invoking your API again. You should see your Lambda function's response.

Troubleshooting issues with HTTP API JWT authorizers

The following provides troubleshooting advice for errors and issues that you might encounter
when using JSON Web Token (JWT) authorizers with HTTP APIs.

Issue: My API returns 401 {"message":"Unauthorized"}

Check the www-authenticate header in the response from the API.

The following command uses curl to send a request to an API with a JWT authorizer that uses
$request.header.Authorization as its identity source.

$curl -v -H "Authorization: token" https://api-id.execute-api.us-
west-2.amazonaws.com/route

The response from the API includes a www-authenticate header.

...
< HTTP/1.1 401 Unauthorized
< Date: Wed, 13 May 2020 04:07:30 GMT
< Content-Length: 26
< Connection: keep-alive
< www-authenticate: Bearer scope="" error="invalid_token" error_description="the token
 does not have a valid audience"
< apigw-requestid: Mc7UVioPPHcEKPA=

JWT authorizers 1087

https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html

Amazon API Gateway Developer Guide

<
* Connection #0 to host api-id.execute-api.us-west-2.amazonaws.com left intact
{"message":"Unauthorized"}}

In this case, the www-authenticate header shows that the token wasn't issued for a valid
audience. For API Gateway to authorize a request, the JWT's aud or client_id claim must match
one of the audience entries that's configured for the authorizer. API Gateway validates client_id
only if aud is not present. When both aud and client_id are present, API Gateway evaluates
aud.

You can also decode a JWT and verify that it matches the issuer, audience, and scopes that your API
requires. The website jwt.io can debug JWTs in the browser. The OpenID Foundation maintains a
list of libraries for working with JWTs.

To learn more about JWT authorizers, see Controlling access to HTTP APIs with JWT authorizers.

JWT authorizers 1088

https://jwt.io/
https://openid.net/developers/jwt/

Amazon API Gateway Developer Guide

Working with WebSocket APIs

A WebSocket API in API Gateway is a collection of WebSocket routes that are integrated with
backend HTTP endpoints, Lambda functions, or other AWS services. You can use API Gateway
features to help you with all aspects of the API lifecycle, from creation through monitoring your
production APIs.

API Gateway WebSocket APIs are bidirectional. A client can send messages to a service, and
services can independently send messages to clients. This bidirectional behavior enables richer
client/service interactions because services can push data to clients without requiring clients to
make an explicit request. WebSocket APIs are often used in real-time applications such as chat
applications, collaboration platforms, multiplayer games, and financial trading platforms.

For an example app to get started with, see Tutorial: Building a serverless chat app with a
WebSocket API, Lambda and DynamoDB.

In this section, you can learn how to develop, publish, protect, and monitor your WebSocket APIs
using API Gateway.

Topics

• About WebSocket APIs in API Gateway

• Developing a WebSocket API in API Gateway

• Publishing WebSocket APIs for customers to invoke

• Protecting your WebSocket API

• Monitoring WebSocket APIs

About WebSocket APIs in API Gateway

In API Gateway you can create a WebSocket API as a stateful frontend for an AWS service (such as
Lambda or DynamoDB) or for an HTTP endpoint. The WebSocket API invokes your backend based
on the content of the messages it receives from client apps.

Unlike a REST API, which receives and responds to requests, a WebSocket API supports two-way
communication between client apps and your backend. The backend can send callback messages to
connected clients.

About WebSocket APIs 1089

Amazon API Gateway Developer Guide

In your WebSocket API, incoming JSON messages are directed to backend integrations based
on routes that you configure. (Non-JSON messages are directed to a $default route that you
configure.)

A route includes a route key, which is the value that is expected once a route selection expression is
evaluated. The routeSelectionExpression is an attribute defined at the API level. It specifies a
JSON property that is expected to be present in the message payload. For more information about
route selection expressions, see the section called “”.

For example, if your JSON messages contain an action property, and you want to
perform different actions based on this property, your route selection expression might be
${request.body.action}. Your routing table would specify which action to perform by
matching the value of the action property against the custom route key values that you have
defined in the table.

There are three predefined routes that can be used: $connect, $disconnect, and $default. In
addition, you can create custom routes.

• API Gateway calls the $connect route when a persistent connection between the client and a
WebSocket API is being initiated.

• API Gateway calls the $disconnect route when the client or the server disconnects from the
API.

• API Gateway calls a custom route after the route selection expression is evaluated against the
message if a matching route is found; the match determines which integration is invoked.

• API Gateway calls the $default route if the route selection expression cannot be evaluated
against the message or if no matching route is found.

For more information about the $connect and $disconnect routes, see the section called
“Managing connected users and client apps”.

For more information about the $default route and custom routes, see the section called
“Invoking your backend integration”.

Backend services can send data to connected client apps. For more information, see the section
called “Sending data from backend services to connected clients”.

About WebSocket APIs 1090

Amazon API Gateway Developer Guide

Managing connected users and client apps: $connect and
$disconnect routes

Topics

• The $connect route

• Passing connection information from the $connect route

• The $disconnect route

The $connect route

Client apps connect to your WebSocket API by sending a WebSocket upgrade request. If the
request succeeds, the $connect route is executed while the connection is being established.

Because the WebSocket connection is a stateful connection, you can configure authorization on the
$connect route only. AuthN/AuthZ will be performed only at connection time.

Until execution of the integration associated with the $connect route is completed, the upgrade
request is pending and the actual connection will not be established. If the $connect request fails
(e.g., due to AuthN/AuthZ failure or an integration failure), the connection will not be made.

Note

If authorization fails on $connect, the connection will not be established, and the client
will receive a 401 or 403 response.

Setting up an integration for $connect is optional. You should consider setting up a $connect
integration if:

• You want to enable clients to specify subprotocols by using the Sec-WebSocket-Protocol
field. For example code, see Setting up a $connect route that requires a WebSocket
subprotocol.

• You want to be notified when clients connect.

• You want to throttle connections or control who connects.

• You want your backend to send messages back to clients using a callback URL.

Managing connected users and client apps 1091

Amazon API Gateway Developer Guide

• You want to store each connection ID and other information into a database (for example,
Amazon DynamoDB).

Passing connection information from the $connect route

You can use both proxy and non-proxy integrations to pass information from the $connect route
to a database or other AWS service.

To pass connection information using a proxy integration

You can access the connection information from a Lambda proxy integration in the event. Use
another AWS service or AWS Lambda function to post to the connection.

The following Lambda function shows how to use the requestContext object to log the
connection ID, domain name, stage name, and query strings.

Node.js

 export const handler = async(event, context) => {
 const connectId = event["requestContext"]["connectionId"]
 const domainName = event["requestContext"]["domainName"]
 const stageName = event["requestContext"]["stage"]
 const qs = event['queryStringParameters']
 console.log('Connection ID: ', connectId, 'Domain Name: ', domainName, 'Stage
 Name: ', stageName, 'Query Strings: ', qs)
 return {"statusCode" : 200}
};

Python

import json
import logging
logger = logging.getLogger()
logger.setLevel("INFO")

def lambda_handler(event, context):
 connectId = event["requestContext"]["connectionId"]
 domainName = event["requestContext"]["domainName"]
 stageName = event["requestContext"]["stage"]
 qs = event['queryStringParameters']
 connectionInfo = {

Managing connected users and client apps 1092

Amazon API Gateway Developer Guide

 'Connection ID': connectId,
 'Domain Name': domainName,
 'Stage Name': stageName,
 'Query Strings': qs}
 logging.info(connectionInfo)
 return {"statusCode": 200}

To pass connection information using a non-proxy integration

• You can access the connection information with a non-proxy integration. Set up the
integration request and provide a WebSocket API request template. The following Velocity
Template Language (VTL) mapping template provides an integration request. This request
sends the following details to a non-proxy integration:

• Connection ID

• Domain name

• Stage name

• Path

• Headers

• Query strings

This request sends the connection ID, domain name, stage name, paths, headers, and query
strings to a non-proxy integration.

{
 "connectionId": "$context.connectionId",
 "domain": "$context.domainName",
 "stage": "$context.stage",
 "params": "$input.params()"
}

For more information about setting up data transformations, see the section called “Data
transformations”.

To complete the integration request, set StatusCode: 200 for the integration response. To
learn more about setting up an integration response, see Set up an integration response using
the API Gateway console.

Managing connected users and client apps 1093

https://velocity.apache.org/engine/devel/vtl-reference.html
https://velocity.apache.org/engine/devel/vtl-reference.html

Amazon API Gateway Developer Guide

The $disconnect route

The $disconnect route is executed after the connection is closed.

The connection can be closed by the server or by the client. As the connection is already closed
when it is executed, $disconnect is a best-effort event. API Gateway will try its best to deliver the
$disconnect event to your integration, but it cannot guarantee delivery.

The backend can initiate disconnection by using the @connections API. For more information, see
the section called “Use @connections commands in your backend service”.

Invoking your backend integration: $default Route and custom routes

Topics

• Using routes to process messages

• The $default route

• Custom routes

• Using API Gateway WebSocket API integrations to connect to your business logic

• Important differences between WebSocket APIs and REST APIs

Using routes to process messages

In API Gateway WebSocket APIs, messages can be sent from the client to your backend service and
vice versa. Unlike HTTP's request/response model, in WebSocket the backend can send messages to
the client without the client taking any action.

Messages can be JSON or non-JSON. However, only JSON messages can be routed to specific
integrations based on message content. Non-JSON messages are passed through to the backend
by the $default route.

Note

API Gateway supports message payloads up to 128 KB with a maximum frame size of
32 KB. If a message exceeds 32 KB, you must split it into multiple frames, each 32 KB or
smaller. If a larger message (or frame) is received, the connection is closed with code 1009.

Invoking your backend integration 1094

Amazon API Gateway Developer Guide

Currently binary payloads are not supported. If a binary frame is received, the connection
is closed with code 1003. However, it is possible to convert binary payloads to text. See the
section called “Binary media types”.

With WebSocket APIs in API Gateway, JSON messages can be routed to execute a specific backend
service based on message content. When a client sends a message over its WebSocket connection,
this results in a route request to the WebSocket API. The request will be matched to the route with
the corresponding route key in API Gateway. You can set up a route request for a WebSocket API in
the API Gateway console, by using the AWS CLI, or by using an AWS SDK.

Note

In the AWS CLI and AWS SDKs, you can create routes before or after you create
integrations. Currently the console does not support reuse of integrations, so you must
create the route first and then create the integration for that route.

You can configure API Gateway to perform validation on a route request before proceeding with
the integration request. If the validation fails, API Gateway fails the request without calling your
backend, sends a "Bad request body" gateway response similar to the following to the client,
and publishes the validation results in CloudWatch Logs:

{"message" : "Bad request body", "connectionId": "{connectionId}", "messageId":
 "{messageId}"}

This reduces unnecessary calls to your backend and lets you focus on the other requirements of
your API.

You can also define a route response for your API's routes to enable two-way communication. A
route response describes what data will be sent to your client upon completion of a particular
route's integration. It is not necessary to define a response for a route if, for example, you want a
client to send messages to your backend without receiving a response (one-way communication).
However, if you don't provide a route response, API Gateway won't send any information about the
result of your integration to your clients.

Invoking your backend integration 1095

Amazon API Gateway Developer Guide

The $default route

Every API Gateway WebSocket API can have a $default route. This is a special routing value that
can be used in the following ways:

• You can use it together with defined route keys, to specify a "fallback" route (for example, a
generic mock integration that returns a particular error message) for incoming messages that
don't match any of the defined route keys.

• You can use it without any defined route keys, to specify a proxy model that delegates routing to
a backend component.

• You can use it to specify a route for non-JSON payloads.

Custom routes

If you want to invoke a specific integration based on message content, you can do so by creating a
custom route.

A custom route uses a route key and integration that you specify. When an incoming message
contains a JSON property, and that property evaluates to a value that matches the route key
value, API Gateway invokes the integration. (For more information, see the section called “About
WebSocket APIs”.)

For example, suppose you wanted to create a chat room application. You might start by creating
a WebSocket API whose route selection expression is $request.body.action. You could then
define two routes: joinroom and sendmessage. A client app might invoke the joinroom route
by sending a message such as the following:

{"action":"joinroom","roomname":"developers"}

And it might invoke the sendmessage route by sending a message such as the following:

{"action":"sendmessage","message":"Hello everyone"}

Using API Gateway WebSocket API integrations to connect to your business logic

After setting up a route for an API Gateway WebSocket API, you must specify the integration you'd
like to use. As with a route, which can have a route request and a route response, an integration

Invoking your backend integration 1096

Amazon API Gateway Developer Guide

can have an integration request and an integration response. An integration request contains the
information expected by your backend in order to process the request that came from your client.
An integration response contains the data that your backend returns to API Gateway, and that may
be used to construct a message to send to the client (if a route response is defined).

For more information about setting up integrations, see the section called “Integrations”.

Important differences between WebSocket APIs and REST APIs

Integrations for WebSocket APIs are similar to integrations for REST APIs, except for the following
differences:

• Currently, in the API Gateway console you must create a route first and then create an
integration as that route's target. However, in the API and CLI, you can create routes and
integrations independently, in any order.

• You can use a single integration for multiple routes. For example, if you have a set of actions
that closely relate to each other, you might want all of those routes to go to a single Lambda
function. Rather than defining the details of the integration multiple times, you can specify it
once and assign it to each of the related routes.

Note

Currently the console does not support reuse of integrations, so you must create the
route first and then create the integration for that route.
In the AWS CLI and AWS SDKs, you can reuse an integration by setting the route's target
to a value of "integrations/{integration-id}", where {integration-id}" is
the unique ID of the integration to be associated with the route.

• API Gateway provides multiple selection expressions you can use in your routes and integrations.
You don't need to rely on the content type to select an input template or output mapping.
As with route selection expressions, you can define a selection expression to be evaluated by
API Gateway to choose the right item. All of them will fall back to the $default template if a
matching template is not found.

• In integration requests, the template selection expression supports
$request.body.<json_path_expression> and static values.

• In integration responses, the template selection expression supports
$request.body.<json_path_expression>, $integration.response.statuscode,
$integration.response.header.<headerName>, and static values.

Invoking your backend integration 1097

Amazon API Gateway Developer Guide

In the HTTP protocol, in which requests and responses are sent synchronously; communication
is essentially one-way. In the WebSocket protocol, communication is two-way. Responses are
asynchronous and are not necessarily received by the client in the same order as the client's
messages were sent. In addition, the backend can send messages to the client.

Note

For a route that is configured to use AWS_PROXY or LAMBDA_PROXY integration,
communication is one-way, and API Gateway will not pass the backend response through to
the route response automatically. For example, in the case of LAMBDA_PROXY integration,
the body that the Lambda function returns will not be returned to the client. If you want
the client to receive integration responses, you must define a route response to make two-
way communication possible.

Sending data from backend services to connected clients

API Gateway WebSocket APIs offer the following ways for you to send data from backend services
to connected clients:

• An integration can send a response, which is returned to the client by a route response that you
have defined.

• You can use the @connections API to send a POST request. For more information, see the
section called “Use @connections commands in your backend service”.

WebSocket selection expressions in API Gateway

Topics

• Route response selection expressions

• API key selection expressions

• API mapping selection expressions

• WebSocket selection expression summary

API Gateway uses selection expressions as a way to evaluate request and response context and
produce a key. The key is then used to select from a set of possible values, typically provided by

Sending data from backend services to connected clients 1098

Amazon API Gateway Developer Guide

you, the API developer. The exact set of supported variables will vary depending on the particular
expression. Each expression is discussed in more detail below.

For all of the expressions, the language follows the same set of rules:

• A variable is prefixed with "$".

• Curly braces can be used to explicitly define variable boundaries, e.g.,
"${request.body.version}-beta".

• Multiple variables are supported, but evaluation occurs only once (no recursive evaluation).

• A dollar sign ($) can be escaped with "\". This is most useful when defining an expression that
maps to the reserved $default key, e.g., "\$default".

• In some cases, a pattern format is required. In this case, the expression should be wrapped with
forward slashes ("/"), e.g. "/2\d\d/" to match 2XX status codes.

Route response selection expressions

A route response is used for modeling a response from the backend to the client. For WebSocket
APIs, a route response is optional. When defined, it signals to API Gateway that it should return a
response to a client upon receiving a WebSocket message.

Evaluation of the route response selection expression produces a route response key. Eventually, this
key will be used to choose from one of the RouteResponses associated with the API. However,
currently only the $default key is supported.

API key selection expressions

This expression is evaluated when the service determines the given request should proceed only if
the client provides a valid API key.

Currently the only two supported values are $request.header.x-api-key and
$context.authorizer.usageIdentifierKey.

API mapping selection expressions

This expression is evaluated to determine which API stage is selected when a request is made using
a custom domain.

Currently, the only supported value is $request.basepath.

WebSocket selection expressions 1099

https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/apis-apiid-routes-routeid-routeresponses.html

Amazon API Gateway Developer Guide

WebSocket selection expression summary

The following table summarizes the use cases for selection expressions in WebSocket APIs:

Selection
expression

Evaluates to key for Notes Example
use
case

Api.Route
Selection
Expression

Route.RouteKey $default
is
supported
as a
catch-
all
route.

Route
WebSocket
messages
based
on the
context
of a
client
request.

Route.Mod
elSelecti
onExpress
ion

Key for Route.RequestModels Optional.

If
provided
for
non-
proxy
integrati
on,
model
validatio
n
occurs.

$default
is
supported
as a
catch-
all.

Perform
request
validatio
n
dynamical
ly
within
the
same
route.

WebSocket selection expressions 1100

Amazon API Gateway Developer Guide

Selection
expression

Evaluates to key for Notes Example
use
case

Integrati
on.Templa
teSelecti
onExpress
ion

Key for Integration.RequestTemplates Optional.

May
be
provided
for
non-
proxy
integrati
on to
manipulat
e
incoming
payloads.

${request
.body.jso
nPath}
and
static
values
are
supported
.

$default
is
supported
as a
catch-
all.

Manipulat
e the
caller's
request
based
on
dynamic
propertie
s of
the
request.

WebSocket selection expressions 1101

Amazon API Gateway Developer Guide

Selection
expression

Evaluates to key for Notes Example
use
case

Integrati
on.Integr
ationResp
onseSelec
tionExpre
ssion

IntegrationResponse.IntegrationRespo
nseKey

Optional.
May
be
provided
for
non-
proxy
integrati
on.

Acts
as a
pattern
match
for
error
messages
(from
Lambda)
or
status
codes
(from
HTTP
integrati
ons).

$default
is
required
for
non-
proxy

Manipulat
e the
response
from
the
backend.

Choose
the
action
to
occur
based
on the
dynamic
response
of the
backend
(e.g.,
handling
certain
errors
distinctl
y).

WebSocket selection expressions 1102

Amazon API Gateway Developer Guide

Selection
expression

Evaluates to key for Notes Example
use
case

integrati
ons
to act
as the
catch-
all for
successfu
l
responses
.

WebSocket selection expressions 1103

Amazon API Gateway Developer Guide

Selection
expression

Evaluates to key for Notes Example
use
case

Integrati
onRespons
e.Templat
eSelectio
nExpressi
on

Key for IntegrationResponse.Respons
eTemplates

Optional.
May
be
provided
for
non-
proxy
integrati
on.

$default
is
supported
.

In
some
cases,
a
dynamic
property
of the
response
may
dictate
different
transform
ations
within
the
same
route
and
associate
d
integrati
on.

${request
.body.jso
nPath} ,
${integra
tion.resp
onse.stat
uscode} ,
${integra
tion.resp
onse.head

WebSocket selection expressions 1104

Amazon API Gateway Developer Guide

Selection
expression

Evaluates to key for Notes Example
use
case

er.header
Name} ,
${integra
tion.resp
onse.mult
ivaluehea
der.heade
rName} ,
and
static
values
are
supported
.

$default
is
supported
as a
catch-
all.

WebSocket selection expressions 1105

Amazon API Gateway Developer Guide

Selection
expression

Evaluates to key for Notes Example
use
case

Route.Rou
teRespons
eSelectio
nExpressi
on

RouteResponse.RouteResponseKey Should
be
provided
to
initiate
two-
way
communica
tion
for a
WebSocket
route.

Currently
, this
value
is
restricte
d to
$default
only.

RouteResp
onse.Mode
lSelectio
nExpressi
on

Key for RouteResponse.RequestModels Currently
unsupport
ed.

Developing a WebSocket API in API Gateway

This section provides details about API Gateway capabilities that you need while you're developing
your API Gateway APIs.

Develop 1106

Amazon API Gateway Developer Guide

As you're developing your API Gateway API, you decide on a number of characteristics of your API.
These characteristics depend on the use case of your API. For example, you might want to only
allow certain clients to call your API, or you might want it to be available to everyone. You might
want an API call to execute a Lambda function, make a database query, or call an application.

Topics

• Create a WebSocket API in API Gateway

• Working with routes for WebSocket APIs

• Controlling and managing access to a WebSocket API in API Gateway

• Setting up WebSocket API integrations

• Request validation

• Setting up data transformations for WebSocket APIs

• Working with binary media types for WebSocket APIs

• Invoking a WebSocket API

Create a WebSocket API in API Gateway

You can create a WebSocket API in the API Gateway console, by using the AWS CLI create-api
command, or by using the CreateApi command in an AWS SDK. The following procedures show
how to create a new WebSocket API.

Note

WebSocket APIs only support TLS 1.2. Earlier TLS versions are not supported.

Create a WebSocket API using AWS CLI commands

Creating a WebSocket API using the AWS CLI requires calling the create-api command as shown
in the following example, which creates an API with the $request.body.action route selection
expression:

aws apigatewayv2 --region us-east-1 create-api --name "myWebSocketApi3" --protocol-type
 WEBSOCKET --route-selection-expression '$request.body.action'

Example output:

Create and configure 1107

https://docs.aws.amazon.com/goto/aws-cli/apigatewayv2-2018-11-29/CreateApi
https://docs.aws.amazon.com/goto/aws-cli/apigatewayv2-2018-11-29/CreateApi

Amazon API Gateway Developer Guide

{
 "ApiKeySelectionExpression": "$request.header.x-api-key",
 "Name": "myWebSocketApi3",
 "CreatedDate": "2018-11-15T06:23:51Z",
 "ProtocolType": "WEBSOCKET",
 "RouteSelectionExpression": "'$request.body.action'",
 "ApiId": "aabbccddee"
}

Create a WebSocket API using the API Gateway console

You can create a WebSocket API in the console by choosing the WebSocket protocol and giving the
API a name.

Important

Once you have created the API, you cannot change the protocol you have chosen for it.
There is no way to convert a WebSocket API into a REST API or vice versa.

To create a WebSocket API using the API Gateway console

1. Sign in to the API Gateway console and choose Create API.

2. Under WebSocket API, choose Build. Only Regional endpoints are supported.

3. For API name, enter the name of your API.

4. For Route selection expression, enter a value. For example, $request.body.action.

For more information about route selection expressions, see the section called “”.

5. Do one of the following:

• Choose Create blank API to create an API with no routes.

• Choose Next to attach routes to your API.

You can attach routes after you create your API.

Create and configure 1108

Amazon API Gateway Developer Guide

Working with routes for WebSocket APIs

In your WebSocket API, incoming JSON messages are directed to backend integrations based
on routes that you configure. (Non-JSON messages are directed to a $default route that you
configure.)

A route includes a route key, which is the value that is expected once a route selection expression is
evaluated. The routeSelectionExpression is an attribute defined at the API level. It specifies a
JSON property that is expected to be present in the message payload. For more information about
route selection expressions, see the section called “”.

For example, if your JSON messages contain an action property and you want to
perform different actions based on this property, your route selection expression might be
${request.body.action}. Your routing table would specify which action to perform by
matching the value of the action property against the custom route key values that you have
defined in the table.

There are three predefined routes that can be used: $connect, $disconnect, and $default. In
addition, you can create custom routes.

• API Gateway calls the $connect route when a persistent connection between the client and a
WebSocket API is being initiated.

• API Gateway calls the $disconnect route when the client or the server disconnects from the
API.

• API Gateway calls a custom route after the route selection expression is evaluated against the
message if a matching route is found; the match determines which integration is invoked.

• API Gateway calls the $default route if the route selection expression cannot be evaluated
against the message or if no matching route is found.

Route selection expressions

A route selection expression is evaluated when the service is selecting the route to follow
for an incoming message. The service uses the route whose routeKey exactly matches the
evaluated value. If none match and a route with the $default route key exists, that route
is selected. If no routes match the evaluated value and there is no $default route, the
service returns an error. For WebSocket-based APIs, the expression should be of the form
$request.body.{path_to_body_element}.

Routes 1109

Amazon API Gateway Developer Guide

For example, suppose you are sending the following JSON message:

{
 "service" : "chat",
 "action" : "join",
 "data" : {
 "room" : "room1234"
 }
}

You might want to select your API's behavior based on the action property. In that case, you
might define the following route selection expression:

$request.body.action

In this example, request.body refers to your message's JSON payload, and .action is a
JSONPath expression. You can use any JSON path expression after request.body, but keep in
mind that the result will be stringified. For example, if your JSONPath expression returns an array
of two elements, that will be presented as the string "[item1, item2]". For this reason, it's a
good practice to have your expression evaluate to a value and not an array or an object.

You can simply use a static value, or you can use multiple variables. The following table shows
examples and their evaluated results against the preceding payload.

Expression Evaluated result Descripti
on

$request.
body.action

join An
unwrapped
variable

${request
.body.act
ion}

join A
wrapped
variable

${request
.body.ser
vice}/${r

chat/join Multiple
variables
with

Routes 1110

https://goessner.net/articles/JsonPath/

Amazon API Gateway Developer Guide

Expression Evaluated result Descripti
on

equest.bo
dy.action}

static
values

${request
.body.act
ion}-${re
quest.bod
y.invalid
Path}

join- If the
JSONPath
is not
found,
the
variable
is
resolved
as "".

action action Static
value

\$default $default Static
value

The evaluated result is used to find a route. If there is a route with a matching route key, the route
is selected to process the message. If no matching route is found, then API Gateway tries to find
the $default route if available. If the $default route is not defined, then API Gateway returns
an error.

Set up routes for a WebSocket API in API Gateway

When you first create a new WebSocket API, there are three predefined routes: $connect,
$disconnect, and $default. You can create them by using the console, API, or AWS CLI.
If desired, you can create custom routes. For more information, see the section called “About
WebSocket APIs”.

Note

In the CLI, you can create routes before or after you create integrations, and you can reuse
the same integration for multiple routes.

Routes 1111

Amazon API Gateway Developer Guide

Create a route using the API Gateway console

To create a route using the API Gateway console

1. Sign in to the API Gateway console, choose the API, and choose Routes.

2. Choose Create route

3. For Route key, enter the route key name. You can create the predefined routes ($connect,
$disconnect, and $default), or a custom route.

Note

When you create a custom route, do not use the $ prefix in the route key name. This
prefix is reserved for predefined routes.

4. Select and configure the integration type for the route. For more information, see the section
called “Set up a WebSocket API integration request using the API Gateway console”.

Create a route using the AWS CLI

To create a route using the AWS CLI, call create-route as shown in the following example:

aws apigatewayv2 --region us-east-1 create-route --api-id aabbccddee --route-key
 $default

Example output:

{
 "ApiKeyRequired": false,
 "AuthorizationType": "NONE",
 "RouteKey": "$default",
 "RouteId": "1122334"
}

Specify route request settings for $connect

When you set up the $connect route for your API, the following optional settings are available
to enable authorization for your API. For more information, see the section called “The $connect
route”.

Routes 1112

https://docs.aws.amazon.com/goto/aws-cli/apigatewayv2-2018-11-29/CreateRoute

Amazon API Gateway Developer Guide

• Authorization: If no authorization is needed, you can specify NONE. Otherwise, you can specify:

• AWS_IAM to use standard AWS IAM policies to control access to your API.

• CUSTOM to implement authorization for an API by specifying a Lambda authorizer function
that you have previously created. The authorizer can reside in your own AWS account or a
different AWS account. For more information about Lambda authorizers, see Use API Gateway
Lambda authorizers.

Note

In the API Gateway console, the CUSTOM setting is visible only after you have set up an
authorizer function as described in the section called “Configure a Lambda authorizer
using the console”.

Important

The Authorization setting is applied to the entire API, not just the $connect route. The
$connect route protects the other routes, because it is called on every connection.

• API Key Required: You can optionally require an API key for an API's $connect route. You
can use API keys together with usage plans to control and track access to your APIs. For more
information, see the section called “Usage plans”.

Set up the $connect route request using the API Gateway console

To set up the $connect route request for a WebSocket API using the API Gateway console:

1. Sign in to the API Gateway console, choose the API, and choose Routes.

2. Under Routes, choose $connect, or create a $connect route by following the section called
“Create a route using the API Gateway console”.

3. In the Route request settings section, choose Edit.

4. For Authorization, select an authorization type.

5. To require an API for the $connect route, select Require API key.

6. Choose Save changes.

Routes 1113

Amazon API Gateway Developer Guide

Set up route responses for a WebSocket API in API Gateway

WebSocket routes can be configured for two-way or one-way communication. API Gateway will not
pass the backend response through to the route response, unless you set up a route response.

Note

You can only define the $default route response for WebSocket APIs. You can use
an integration response to manipulate the response from a backend service. For more
information, see the section called “Overview of integration responses”.

You can configure route responses and response selection expressions by using the API Gateway
console or the AWS CLI or an AWS SDK.

For more information about route response selection expressions, see the section called “”.

Topics

• Set up a route response using the API Gateway console

• Set up a route response using the AWS CLI

Set up a route response using the API Gateway console

After you have created a WebSocket API and attached a proxy Lambda function to the default
route, you can set up route response using the API Gateway console:

1. Sign in to the API Gateway console, choose a WebSocket API with a proxy Lambda function
integration on the $default route.

2. Under Routes, choose the $default route.

3. Choose Enable two-way communication.

4. Choose Deploy API.

5. Deploy your API to a stage.

Use the following wscat command to connect to your API. For more information about wscat, see
the section called “Use wscat to connect to a WebSocket API and send messages to it”.

wscat -c wss://api-id.execute-api.us-east-2.amazonaws.com/test

Routes 1114

https://www.npmjs.com/package/wscat

Amazon API Gateway Developer Guide

Press the enter button to call the default route. The body of your Lambda function should return.

Set up a route response using the AWS CLI

To set up a route response for a WebSocket API using the AWS CLI, call the create-route-
response command as shown in the following example. You can identify the API ID and route ID
by calling get-apis and get-routes.

aws apigatewayv2 create-route-response \
 --api-id aabbccddee \
 --route-id 1122334 \
 --route-response-key '$default'

Example output:

{
 "RouteResponseId": "abcdef",
 "RouteResponseKey": "$default"
}

Setting up a $connect route that requires a WebSocket subprotocol

Clients can use the Sec-WebSocket-Protocol field to request a WebSocket subprotocol during
the connection to your WebSocket API. You can set up an integration for the $connect route to
allow connections only if a client requests a subprotocol that your API supports.

The following example Lambda function returns the Sec-WebSocket-Protocol header
to clients. The function establishes a connection to your API only if the client specifies the
myprotocol subprotocol.

For an AWS CloudFormation template that creates this example API and Lambda proxy integration,
see ws-subprotocol.yaml.

export const handler = async (event) => {
 if (event.headers != undefined) {
 const headers = toLowerCaseProperties(event.headers);

 if (headers['sec-websocket-protocol'] != undefined) {
 const subprotocolHeader = headers['sec-websocket-protocol'];
 const subprotocols = subprotocolHeader.split(',');

Routes 1115

https://docs.aws.amazon.com/goto/aws-cli/apigatewayv2-2018-11-29/CreateRouteResponse
https://docs.aws.amazon.com/goto/aws-cli/apigatewayv2-2018-11-29/CreateRouteResponse
https://docs.aws.amazon.com/goto/aws-cli/apigatewayv2-2018-11-29/GetApis
https://docs.aws.amazon.com/goto/aws-cli/apigatewayv2-2018-11-29/GetRoutes
https://tools.ietf.org/html/rfc6455#page-12
samples/ws-subprotocol.zip

Amazon API Gateway Developer Guide

 if (subprotocols.indexOf('myprotocol') >= 0) {
 const response = {
 statusCode: 200,
 headers: {
 "Sec-WebSocket-Protocol" : "myprotocol"
 }
 };
 return response;
 }
 }
 }

 const response = {
 statusCode: 400
 };

 return response;
};

function toLowerCaseProperties(obj) {
 var wrapper = {};
 for (var key in obj) {
 wrapper[key.toLowerCase()] = obj[key];
 }
 return wrapper;
}

You can use wscat to test that your API allows connections only if a client requests a subprotocol
that your API supports. The following commands use the -s flag to specify subprotocols during the
connection.

The following command attempts a connection with an unsupported subprotocol. Because the
client specified the chat1 subprotocol, the Lambda integration returns a 400 error, and the
connection is unsuccessful.

wscat -c wss://api-id.execute-api.region.amazonaws.com/beta -s chat1
error: Unexpected server response: 400

The following command includes a supported subprotocol in the connection request. The Lambda
integration allows the connection.

Routes 1116

https://www.npmjs.com/package/wscat

Amazon API Gateway Developer Guide

wscat -c wss://api-id.execute-api.region.amazonaws.com/beta -s chat1,myprotocol
connected (press CTRL+C to quit)

To learn more about invoking WebSocket APIs, see Invoking a WebSocket API.

Controlling and managing access to a WebSocket API in API Gateway

API Gateway supports multiple mechanisms for controlling and managing access to your
WebSocket API.

You can use the following mechanisms for authentication and authorization:

• Standard AWS IAM roles and policies offer flexible and robust access controls. You can use
IAM roles and policies for controlling who can create and manage your APIs, as well as who can
invoke them. For more information, see Using IAM authorization.

• IAM tags can be used together with IAM policies to control access. For more information, see
Using tags to control access to API Gateway REST API resources.

• Lambda authorizers are Lambda functions that control access to APIs. For more information, see
Creating a Lambda REQUEST authorizer function.

Topics

• Using IAM authorization

• Creating a Lambda REQUEST authorizer function

Using IAM authorization

IAM authorization in WebSocket APIs is similar to that for REST APIs, with the following exceptions:

• The execute-api action supports ManageConnections in addition to existing actions
(Invoke, InvalidateCache). ManageConnections controls access to the @connections API.

• WebSocket routes use a different ARN format:

arn:aws:execute-api:region:account-id:api-id/stage-name/route-key

• The @connections API uses the same ARN format as REST APIs:

arn:aws:execute-api:region:account-id:api-id/stage-name/POST/@connections

Access control 1117

Amazon API Gateway Developer Guide

Important

When you use IAM authorization, you must sign requests with Signature Version 4 (SigV4).

For example, you could set up the following policy to the client. This example allows everyone to
send a message (Invoke) for all routes except for a secret route in the prod stage and prevents
everyone from sending a message back to connected clients (ManageConnections) for all stages.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:Invoke"
],
 "Resource": [
 "arn:aws:execute-api:us-east-1:account-id:api-id/prod/*"
]
 },
 {
 "Effect": "Deny",
 "Action": [
 "execute-api:Invoke"
],
 "Resource": [
 "arn:aws:execute-api:us-east-1:account-id:api-id/prod/secret"
]
 },
 {
 "Effect": "Deny",
 "Action": [
 "execute-api:ManageConnections"
],
 "Resource": [
 "arn:aws:execute-api:us-east-1:account-id:api-id/*"
]
 }
]
}

Access control 1118

https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

Amazon API Gateway Developer Guide

Creating a Lambda REQUEST authorizer function

A Lambda authorizer function in WebSocket APIs is similar to that for REST APIs, with the following
exceptions:

• You can only use a Lambda authorizer function for the $connect route.

• You cannot use path variables (event.pathParameters), because the path is fixed.

• event.methodArn is different from its REST API equivalent, because it has no HTTP method. In
the case of $connect, methodArn ends with "$connect":

arn:aws:execute-api:region:account-id:api-id/stage-name/$connect

• The context variables in event.requestContext are different from those for REST APIs.

The following example shows an input to a REQUEST authorizer for a WebSocket API:

{
 "type": "REQUEST",
 "methodArn": "arn:aws:execute-api:us-east-1:123456789012:abcdef123/default/
$connect",
 "headers": {
 "Connection": "upgrade",
 "content-length": "0",
 "HeaderAuth1": "headerValue1",
 "Host": "abcdef123.execute-api.us-east-1.amazonaws.com",
 "Sec-WebSocket-Extensions": "permessage-deflate; client_max_window_bits",
 "Sec-WebSocket-Key": "...",
 "Sec-WebSocket-Version": "13",
 "Upgrade": "websocket",
 "X-Amzn-Trace-Id": "...",
 "X-Forwarded-For": "...",
 "X-Forwarded-Port": "443",
 "X-Forwarded-Proto": "https"
 },
 "multiValueHeaders": {
 "Connection": [
 "upgrade"
],
 "content-length": [
 "0"
],

Access control 1119

Amazon API Gateway Developer Guide

 "HeaderAuth1": [
 "headerValue1"
],
 "Host": [
 "abcdef123.execute-api.us-east-1.amazonaws.com"
],
 "Sec-WebSocket-Extensions": [
 "permessage-deflate; client_max_window_bits"
],
 "Sec-WebSocket-Key": [
 "..."
],
 "Sec-WebSocket-Version": [
 "13"
],
 "Upgrade": [
 "websocket"
],
 "X-Amzn-Trace-Id": [
 "..."
],
 "X-Forwarded-For": [
 "..."
],
 "X-Forwarded-Port": [
 "443"
],
 "X-Forwarded-Proto": [
 "https"
]
 },
 "queryStringParameters": {
 "QueryString1": "queryValue1"
 },
 "multiValueQueryStringParameters": {
 "QueryString1": [
 "queryValue1"
]
 },
 "stageVariables": {},
 "requestContext": {
 "routeKey": "$connect",
 "eventType": "CONNECT",
 "extendedRequestId": "...",

Access control 1120

Amazon API Gateway Developer Guide

 "requestTime": "19/Jan/2023:21:13:26 +0000",
 "messageDirection": "IN",
 "stage": "default",
 "connectedAt": 1674162806344,
 "requestTimeEpoch": 1674162806345,
 "identity": {
 "sourceIp": "..."
 },
 "requestId": "...",
 "domainName": "abcdef123.execute-api.us-east-1.amazonaws.com",
 "connectionId": "...",
 "apiId": "abcdef123"
 }
}

The following example Lambda authorizer function is a WebSocket version of the Lambda
authorizer function for REST APIs in the section called “Create a Lambda authorizer function in the
Lambda console”:

Node.js

 // A simple REQUEST authorizer example to demonstrate how to use request
 // parameters to allow or deny a request. In this example, a request is
 // authorized if the client-supplied HeaderAuth1 header and QueryString1 query
 parameter
 // in the request context match the specified values of
 // of 'headerValue1' and 'queryValue1' respectively.
 export const handler = function(event, context, callback) {
 console.log('Received event:', JSON.stringify(event, null, 2));

 // Retrieve request parameters from the Lambda function input:
 var headers = event.headers;
 var queryStringParameters = event.queryStringParameters;
 var stageVariables = event.stageVariables;
 var requestContext = event.requestContext;

 // Parse the input for the parameter values
 var tmp = event.methodArn.split(':');
 var apiGatewayArnTmp = tmp[5].split('/');
 var awsAccountId = tmp[4];
 var region = tmp[3];
 var ApiId = apiGatewayArnTmp[0];
 var stage = apiGatewayArnTmp[1];

Access control 1121

Amazon API Gateway Developer Guide

 var route = apiGatewayArnTmp[2];

 // Perform authorization to return the Allow policy for correct parameters and
 // the 'Unauthorized' error, otherwise.
 var authResponse = {};
 var condition = {};
 condition.IpAddress = {};

 if (headers.HeaderAuth1 === "headerValue1"
 && queryStringParameters.QueryString1 === "queryValue1") {
 callback(null, generateAllow('me', event.methodArn));
 } else {
 callback("Unauthorized");
 }
}

// Helper function to generate an IAM policy
var generatePolicy = function(principalId, effect, resource) {
 // Required output:
 var authResponse = {};
 authResponse.principalId = principalId;
 if (effect && resource) {
 var policyDocument = {};
 policyDocument.Version = '2012-10-17'; // default version
 policyDocument.Statement = [];
 var statementOne = {};
 statementOne.Action = 'execute-api:Invoke'; // default action
 statementOne.Effect = effect;
 statementOne.Resource = resource;
 policyDocument.Statement[0] = statementOne;
 authResponse.policyDocument = policyDocument;
 }
 // Optional output with custom properties of the String, Number or Boolean type.
 authResponse.context = {
 "stringKey": "stringval",
 "numberKey": 123,
 "booleanKey": true
 };
 return authResponse;
}

var generateAllow = function(principalId, resource) {
 return generatePolicy(principalId, 'Allow', resource);
}

Access control 1122

Amazon API Gateway Developer Guide

var generateDeny = function(principalId, resource) {
 return generatePolicy(principalId, 'Deny', resource);
}

Python

A simple REQUEST authorizer example to demonstrate how to use request
parameters to allow or deny a request. In this example, a request is
authorized if the client-supplied HeaderAuth1 header and QueryString1 query
 parameter
in the request context match the specified values of
of 'headerValue1' and 'queryValue1' respectively.

import json

def lambda_handler(event, context):
 print(event)

 # Retrieve request parameters from the Lambda function input:
 headers = event['headers']
 queryStringParameters = event['queryStringParameters']
 stageVariables = event['stageVariables']
 requestContext = event['requestContext']

 # Parse the input for the parameter values
 tmp = event['methodArn'].split(':')
 apiGatewayArnTmp = tmp[5].split('/')
 awsAccountId = tmp[4]
 region = tmp[3]
 ApiId = apiGatewayArnTmp[0]
 stage = apiGatewayArnTmp[1]
 route = apiGatewayArnTmp[2]

 # Perform authorization to return the Allow policy for correct parameters
 # and the 'Unauthorized' error, otherwise.

 authResponse = {}
 condition = {}
 condition['IpAddress'] = {}

 if (headers['HeaderAuth1'] ==

Access control 1123

Amazon API Gateway Developer Guide

 "headerValue1" and queryStringParameters["QueryString1"] ==
 "queryValue1"):
 response = generateAllow('me', event['methodArn'])
 print('authorized')
 return json.loads(response)
 else:
 print('unauthorized')
 return 'unauthorized'

 # Help function to generate IAM policy

def generatePolicy(principalId, effect, resource):
 authResponse = {}
 authResponse['principalId'] = principalId
 if (effect and resource):
 policyDocument = {}
 policyDocument['Version'] = '2012-10-17'
 policyDocument['Statement'] = []
 statementOne = {}
 statementOne['Action'] = 'execute-api:Invoke'
 statementOne['Effect'] = effect
 statementOne['Resource'] = resource
 policyDocument['Statement'] = [statementOne]
 authResponse['policyDocument'] = policyDocument

 authResponse['context'] = {
 "stringKey": "stringval",
 "numberKey": 123,
 "booleanKey": True
 }

 authResponse_JSON = json.dumps(authResponse)

 return authResponse_JSON

def generateAllow(principalId, resource):
 return generatePolicy(principalId, 'Allow', resource)

def generateDeny(principalId, resource):
 return generatePolicy(principalId, 'Deny', resource)

Access control 1124

Amazon API Gateway Developer Guide

To configure the preceding Lambda function as a REQUEST authorizer function for a WebSocket
API, follow the same procedure as for REST APIs.

To configure the $connect route to use this Lambda authorizer in the console, select or create the
$connect route. In the Route request settings section, choose Edit. Select your authorizer in the
Authorization dropdown menu, and then choose Save changes.

To test the authorizer, you need to create a new connection. Changing authorizer in $connect
doesn't affect the already connected client. When you connect to your WebSocket API, you need to
provide values for any configured identity sources. For example, you can connect by sending a valid
query string and header using wscat as in the following example:

wscat -c 'wss://myapi.execute-api.us-east-1.amazonaws.com/beta?
QueryString1=queryValue1' -H HeaderAuth1:headerValue1

If you attempt to connect without a valid identity value, you'll receive a 401 response:

wscat -c wss://myapi.execute-api.us-east-1.amazonaws.com/beta
error: Unexpected server response: 401

Setting up WebSocket API integrations

After setting up an API route, you must integrate it with an endpoint in the backend. A backend
endpoint is also referred to as an integration endpoint and can be a Lambda function, an HTTP
endpoint, or an AWS service action. The API integration has an integration request and an
integration response.

In this section, you can learn how to set up integration requests and integration responses for your
WebSocket API.

Topics

• Setting up a WebSocket API integration request in API Gateway

• Setting up a WebSocket API integration responses in API Gateway

Setting up a WebSocket API integration request in API Gateway

Setting up an integration request involves the following:

Integrations 1125

Amazon API Gateway Developer Guide

• Choosing a route key to integrate to the backend.

• Specifying the backend endpoint to invoke. WebSocket APIs support the following integration
types:

• AWS_PROXY

• AWS

• HTTP_PROXY

• HTTP

• MOCK

For more information about integration types, see IntegrationType in the API Gateway V2 REST
API.

• Configuring how to transform the route request data, if necessary, into integration request data
by specifying one or more request templates.

Set up a WebSocket API integration request using the API Gateway console

To add an integration request to a route in a WebSocket API using the API Gateway console

1. Sign in to the API Gateway console, choose the API, and choose Routes.

2. Under Routes, choose the route.

3. Choose the Integration request tab, and then in the Integration request settings section,
choose Edit.

4. For Integration type, select one of the following:

• Choose Lambda function only if your API will be integrated with an AWS Lambda function
that you have already created in this account or in another account.

To create a new Lambda function in AWS Lambda, to set a resource permission on the
Lambda function, or to perform any other Lambda service actions, choose AWS Service
instead.

• Choose HTTP if your API will be integrated with an existing HTTP endpoint. For more
information, see Set up HTTP integrations in API Gateway.

• Choose Mock if you want to generate API responses from API Gateway directly, without the
need for an integration backend. For more information, see Set up mock integrations in API
Gateway.

Integrations 1126

https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/apis-apiid-integrations-integrationid.html#apis-apiid-integrations-integrationid-prop-integration-integrationtype

Amazon API Gateway Developer Guide

• Choose AWS service if your API will be integrated with an AWS service.

• Choose VPC link if your API will use a VpcLink as a private integration endpoint. For more
information, see Set up API Gateway private integrations.

5. If you chose Lambda function, do the following:

a. For Use Lambda proxy integration, choose the check box if you intend to use Lambda
proxy integration or cross-account Lambda proxy integration.

b. For Lambda function, specify the function in one of the following ways:

• If your Lambda function is in the same account, enter the function name and then select
the function from the dropdown list.

Note

The function name can optionally include its alias or version specification, as in
HelloWorld, HelloWorld:1, or HelloWorld:alpha.

• If the function is in a different account, enter the ARN for the function.

c. To use the default timeout value of 29 seconds, keep Default timeout turned on. To set
a custom timeout, choose Default timeout and enter a timeout value between 50 and
29000 milliseconds.

6. If you chose HTTP, follow the instructions in step 4 of the section called “ Set up integration
request using the console”.

7. If you chose Mock, proceed to the Request Templates step.

8. If you chose AWS service, follow the instructions in step 6 of the section called “ Set up
integration request using the console”.

9. If you chose VPC link, do the following:

a. For VPC proxy integration, choose the check box if you want your requests to be proxied
to your VPCLink's endpoint.

b. For HTTP method, choose the HTTP method type that most closely matches the method
in the HTTP backend.

c. From the VPC link dropdown list, select a VPC link. You can select [Use Stage
Variables] and enter ${stageVariables.vpcLinkId} in the text box below the list.

Integrations 1127

Amazon API Gateway Developer Guide

You can define the vpcLinkId stage variable after deploying the API to a stage and set
its value to the ID of the VpcLink.

d. For Endpoint URL, enter the URL of the HTTP backend you want this integration to use.

e. To use the default timeout value of 29 seconds, keep Default timeout turned on. To set
a custom timeout, choose Default timeout and enter a timeout value between 50 and
29000 milliseconds.

10. Choose Save changes.

11. Under Request templates, do the following:

a. To enter a Template selection expression, under Request templates, choose Edit.

b. Enter a Template selection expression. Use an expression that API Gateway looks for in
the message payload. If it is found, it is evaluated, and the result is a template key value
that is used to select the data mapping template to be applied to the data in the message
payload. You create the data mapping template in the next step. Choose Edit to save your
changes.

c. Choose Create template to create the data mapping template. For Template key, enter a
template key value that is used to select the data mapping template to be applied to the
data in the message payload. Then, enter a mapping template. Choose Create template.

For information about template selection expressions, see the section called “Template
selection expressions”.

Set up an integration request using the AWS CLI

You can set up an integration request for a route in a WebSocket API by using the AWS CLI as in the
following example, which creates a mock integration:

1. Create a file named integration-params.json, with the following contents:

{"PassthroughBehavior": "WHEN_NO_MATCH", "TimeoutInMillis": 29000,
 "ConnectionType": "INTERNET", "RequestTemplates": {"application/json":
 "{\"statusCode\":200}"}, "IntegrationType": "MOCK"}

2. Run the create-integration command as shown in the following example:

Integrations 1128

https://docs.aws.amazon.com/goto/aws-cli/apigatewayv2-2018-11-29/CreateIntegration

Amazon API Gateway Developer Guide

aws apigatewayv2 --region us-east-1 create-integration --api-id aabbccddee --cli-
input-json file://integration-params.json

Following is sample output for this example:

{
 "PassthroughBehavior": "WHEN_NO_MATCH",
 "TimeoutInMillis": 29000,
 "ConnectionType": "INTERNET",
 "IntegrationResponseSelectionExpression": "${response.statuscode}",
 "RequestTemplates": {
 "application/json": "{\"statusCode\":200}"
 },
 "IntegrationId": "0abcdef",
 "IntegrationType": "MOCK"
}

Alternatively, you can set up an integration request for a proxy integration by using the AWS CLI as
in the following example:

1. Create a Lambda function in the Lambda console and give it a basic Lambda execution role.

2. Execute the create-integration command as in the following example:

aws apigatewayv2 create-integration --api-id aabbccddee --integration-type
 AWS_PROXY --integration-method POST --integration-uri arn:aws:apigateway:us-
east-1:lambda:path/2015-03-31/functions/arn:aws:lambda:us-
east-1:123412341234:function:simpleproxy-echo-e2e/invocations

Following is sample output for this example:

{
 "PassthroughBehavior": "WHEN_NO_MATCH",
 "IntegrationMethod": "POST",
 "TimeoutInMillis": 29000,
 "ConnectionType": "INTERNET",
 "IntegrationUri": "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-east-1:123412341234:function:simpleproxy-echo-e2e/invocations",
 "IntegrationId": "abcdefg",
 "IntegrationType": "AWS_PROXY"

Integrations 1129

https://docs.aws.amazon.com/goto/aws-cli/apigatewayv2-2018-11-29/CreateIntegration

Amazon API Gateway Developer Guide

}

Input format of a Lambda function for proxy integration for WebSocket APIs

In Lambda proxy integration, API Gateway maps the entire client request to the input event
parameter of the backend Lambda function. The following example shows the structure of the
input event from the $connect route and the input event from the $disconnect route that API
Gateway sends to a Lambda proxy integration.

Input from the $connect route

{
 headers: {
 Host: 'abcd123.execute-api.us-east-1.amazonaws.com',
 'Sec-WebSocket-Extensions': 'permessage-deflate; client_max_window_bits',
 'Sec-WebSocket-Key': '...',
 'Sec-WebSocket-Version': '13',
 'X-Amzn-Trace-Id': '...',
 'X-Forwarded-For': '192.0.2.1',
 'X-Forwarded-Port': '443',
 'X-Forwarded-Proto': 'https'
 },
 multiValueHeaders: {
 Host: ['abcd123.execute-api.us-east-1.amazonaws.com'],
 'Sec-WebSocket-Extensions': ['permessage-deflate; client_max_window_bits'],
 'Sec-WebSocket-Key': ['...'],
 'Sec-WebSocket-Version': ['13'],
 'X-Amzn-Trace-Id': ['...'],
 'X-Forwarded-For': ['192.0.2.1'],
 'X-Forwarded-Port': ['443'],
 'X-Forwarded-Proto': ['https']
 },
 requestContext: {
 routeKey: '$connect',
 eventType: 'CONNECT',
 extendedRequestId: 'ABCD1234=',
 requestTime: '09/Feb/2024:18:11:43 +0000',
 messageDirection: 'IN',
 stage: 'prod',
 connectedAt: 1707502303419,
 requestTimeEpoch: 1707502303420,
 identity: { sourceIp: '192.0.2.1' },
 requestId: 'ABCD1234=',

Integrations 1130

Amazon API Gateway Developer Guide

 domainName: 'abcd1234.execute-api.us-east-1.amazonaws.com',
 connectionId: 'AAAA1234=',
 apiId: 'abcd1234'
 },
 isBase64Encoded: false
 }

Input from the $disconnect route

{
 headers: {
 Host: 'abcd1234.execute-api.us-east-1.amazonaws.com',
 'x-api-key': '',
 'X-Forwarded-For': '',
 'x-restapi': ''
 },
 multiValueHeaders: {
 Host: ['abcd1234.execute-api.us-east-1.amazonaws.com'],
 'x-api-key': [''],
 'X-Forwarded-For': [''],
 'x-restapi': ['']
 },
 requestContext: {
 routeKey: '$disconnect',
 disconnectStatusCode: 1005,
 eventType: 'DISCONNECT',
 extendedRequestId: 'ABCD1234=',
 requestTime: '09/Feb/2024:18:23:28 +0000',
 messageDirection: 'IN',
 disconnectReason: 'Client-side close frame status not set',
 stage: 'prod',
 connectedAt: 1707503007396,
 requestTimeEpoch: 1707503008941,
 identity: { sourceIp: '192.0.2.1' },
 requestId: 'ABCD1234=',
 domainName: 'abcd1234.execute-api.us-east-1.amazonaws.com',
 connectionId: 'AAAA1234=',
 apiId: 'abcd1234'
 },
 isBase64Encoded: false
 }

Integrations 1131

Amazon API Gateway Developer Guide

Setting up a WebSocket API integration responses in API Gateway

Topics

• Overview of integration responses

• Integration responses for two-way communication

• Set up an integration response using the API Gateway console

• Set up an integration response using the AWS CLI

Overview of integration responses

API Gateway's integration response is a way of modeling and manipulating the response from
a backend service. There are some differences in setup of a REST API versus a WebSocket API
integration response, but conceptually the behavior is the same.

WebSocket routes can be configured for two-way or one-way communication.

• When a route is configured for two-way communication, an integration response allows you to
configure transformations on the returned message payload, similar to integration responses for
REST APIs.

• If a route is configured for one-way communication, then regardless of any integration response
configuration, no response will be returned over the WebSocket channel after the message is
processed.

API Gateway will not pass the backend response through to the route response, unless you set
up a route response. To learn about setting up a route response, see the section called “Set up
WebSocket API route responses”.

Integration responses for two-way communication

Integrations can be divided into proxy integrations and non-proxy integrations.

Important

For proxy integrations, API Gateway automatically passes the backend output to the caller
as the complete payload. There is no integration response.

For non-proxy integrations, you must set up at least one integration response:

Integrations 1132

Amazon API Gateway Developer Guide

• Ideally, one of your integration responses should act as a catch-all when no explicit choice can be
made. This default case is represented by setting an integration response key of $default.

• In all other cases, the integration response key functions as a regular expression. It should follow
a format of "/expression/".

For non-proxy HTTP integrations:

• API Gateway will attempt to match the HTTP status code of the backend response. The
integration response key will function as a regular expression in this case. If a match cannot be
found, then $default is chosen as the integration response.

• The template selection expression, as described above, functions identically. For example:

• /2\d\d/: Receive and transform successful responses

• /4\d\d/: Receive and transform bad request errors

• $default: Receive and transform all unexpected responses

For more information about template selection expressions, see the section called “Template
selection expressions”.

Set up an integration response using the API Gateway console

To set up a route integration response for a WebSocket API using the API Gateway console:

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose your WebSocket API and choose your route.

3. Choose the Integration request tab, and then in the Integration response settings section,
choose Create integration response.

4. For Response key, enter a value that will be found in the response key in the outgoing
message after evaluating the response selection expression. For instance, you can enter /4\d
\d/ to receive and transform bad request errors or enter $default to receive and transform
all responses that match the template selection expression.

5. For Template selection expression, enter a selection expression to evaluate the outgoing
message.

6. Choose Create response.

7. You can also define a mapping template to configure transformations of your returned
message payload. Choose Create template.

Integrations 1133

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

8. Enter a key name. If you are choosing the default template selection expression, enter \
$default.

9. For Response template, enter your mapping template in the code editor.

10. Choose Create template.

11. Choose Deploy API to deploy your API.

Use the following wscat command to connect to your API. For more information about wscat, see
the section called “Use wscat to connect to a WebSocket API and send messages to it”.

wscat -c wss://api-id.execute-api.us-east-2.amazonaws.com/test

When you call your route, the returned message payload should return.

Set up an integration response using the AWS CLI

To set up an integration response for a WebSocket API using the AWS CLI call the create-
integration-response command. The following CLI command shows an example of creating a
$default integration response:

aws apigatewayv2 create-integration-response \
 --api-id vaz7da96z6 \
 --integration-id a1b2c3 \
 --integration-response-key '$default'

Request validation

You can configure API Gateway to perform validation on a route request before proceeding with
the integration request. If the validation fails, API Gateway fails the request without calling your
backend, sends a "Bad request body" gateway response to the client, and publishes the validation
results in CloudWatch Logs. Using validation this way reduces unnecessary calls to your API
backend.

Model selection expressions

You can use a model selection expression to dynamically validate requests within the same route.
Model validation occurs if you provide a model selection expression for either proxy or non-proxy
integrations. You might need to define the $default model as a fallback when no matching

Request validation 1134

https://www.npmjs.com/package/wscat
https://docs.aws.amazon.com/goto/aws-cli/apigatewayv2-2018-11-29/CreateIntegrationResponse
https://docs.aws.amazon.com/goto/aws-cli/apigatewayv2-2018-11-29/CreateIntegrationResponse

Amazon API Gateway Developer Guide

model is found. If there is no matching model and $default isn't defined, the validation fails. The
selection expression looks like Route.ModelSelectionExpression and evaluates to the key for
Route.RequestModels.

When you define a route for a WebSocket API, you can optionally specify a model selection
expression. This expression is evaluated to select the model to be used for body validation when a
request is received. The expression evaluates to one of the entries in a route's requestmodels.

A model is expressed as a JSON schema and describes the data structure of the request body.
The nature of this selection expression enables you to dynamically choose the model to validate
against at runtime for a particular route. For information about how to create a model, see the
section called “Understanding data models”.

Set up request validation using the API Gateway console

The following example shows you how to set up request validation on a route.

First, you create a model, and then you create a route. Next, you configure request validation on
the route you just created. Lastly, you deploy and test your API. To complete this tutorial, you
need a WebSocket API with $request.body.action as the route selection expression and an
integration endpoint for your new route.

You also need wscat to connect to your API. For more information, see the section called “Use
wscat to connect to a WebSocket API and send messages to it”.

To create a model

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose a WebSocket API.

3. In the main navigation pane, choose Models.

4. Choose Create model.

5. For Name, enter emailModel.

6. For Content type, enter application/json.

7. For Model schema, enter the following model:

{
 "$schema": "http://json-schema.org/draft-04/schema#",

Request validation 1135

https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/apis-apiid-routes.html#apis-apiid-routes-prop-route-requestmodels
https://tools.ietf.org/html/draft-zyp-json-schema-04
https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

 "type" : "object",
 "required" : ["address"],
 "properties" : {
 "address": {
 "type": "string"
 }
 }
}

This model requires that the request contains an email address.

8. Choose Save.

In this step, you create a route for your WebSocket API.

To create a route

1. In the main navigation pane, choose Routes.

2. Choose Create route.

3. For Route key, enter sendMessage.

4. Choose an integration type and specify an integration endpoint. For more information see the
section called “Integrations”.

5. Choose Create route.

In this step, you set up request validation for the sendMessage route.

To set up request validation

1. On the Route request tab, under Route request settings, choose Edit.

2. For Model selection expression, enter ${request.body.messageType}.

API Gateway uses the messageType property to validate the incoming request.

3. Choose Add request model.

4. For Model key, enter email.

5. For Model, choose emailModel.

API Gateway validates incoming messages with the messageType property set to email
against this model.

Request validation 1136

Amazon API Gateway Developer Guide

Note

If API Gateway can't match the model selection expression to a model key, then it
selects the $default model. If there is no $default model, then the validation fails.
For production APIs, we recommend that you create a $default model.

6. Choose Save changes.

In this step, you deploy and test your API.

To deploy and test your API

1. Choose Deploy API.

2. Choose the desired stage from the dropdown list or enter the name of a new stage.

3. Choose Deploy.

4. In the main navigation pane, choose Stages.

5. Copy your API's WebSocket URL. The URL should look like wss://abcdef123.execute-
api.us-east-2.amazonaws.com/production.

6. Open a new terminal and run the wscat command with the following parameters.

wscat -c wss://abcdef123.execute-api.us-west-2.amazonaws.com/production

Connected (press CTRL+C to quit)

7. Use the following command to test your API.

{"action": "sendMessage", "messageType": "email"}

{"message": "Invalid request body", "connectionId":"ABCD1=234",
 "requestId":"EFGH="}

API Gateway will fail the request.

Use the next command to send a valid request to your API.

Request validation 1137

Amazon API Gateway Developer Guide

{"action": "sendMessage", "messageType": "email", "address":
 "mary_major@example.com"}

Setting up data transformations for WebSocket APIs

In API Gateway, a WebSocket API's method request can take a payload in a different format from
the corresponding integration request payload, as required in the backend. Similarly, the backend
may return an integration response payload different from the method response payload, as
expected by the frontend.

API Gateway lets you use mapping templates to map the payload from a method request to the
corresponding integration request and from an integration response to the corresponding method
response. You specify a template selection expression to determine which template to use to
perform the necessary data transformations.

You can use data mappings to map data from a route request to a backend integration. To learn
more, see the section called “Data mapping”.

Mapping templates and models

A mapping template is a script expressed in Velocity Template Language (VTL) and applied to
the payload using JSONPath expressions. For more information about API Gateway mapping
templates, see Understanding mapping templates.

The payload can have a data model according to the JSON schema draft 4. You do not have to
define a model to create a mapping template. However, a model can help you create a template
because API Gateway generates a template blueprint based on a provided model. For more
information about API Gateway models, see Understanding data models.

Template selection expressions

To transform a payload with a mapping template, you specify a WebSocket API template selection
expression in an integration request or integration response. This expression is evaluated to
determine the input or output template (if any) to use to transform either the request body into
the integration request body (via an input template) or the integration response body to the route
response body (via an output template).

Integration.TemplateSelectionExpression supports ${request.body.jsonPath} and
static values.

Data transformations 1138

https://velocity.apache.org/engine/devel/vtl-reference.html
http://goessner.net/articles/JsonPath/
https://tools.ietf.org/html/draft-zyp-json-schema-04

Amazon API Gateway Developer Guide

IntegrationResponse.TemplateSelectionExpression supports
${request.body.jsonPath}, ${integration.response.statuscode},
${integration.response.header.headerName},
${integration.response.multivalueheader.headerName}, and static values.

Integration response selection expressions

When you set up an integration response for a WebSocket API, you can optionally
specify an integration response selection expression. This expression determines what
IntegrationResponse should be selected when an integration returns. The value of this
expression is currently restricted by API Gateway, as defined below. Realize that this expression is
only relevant for non-proxy integrations; a proxy integration simply passes the response payload
back to the caller without modeling or modification.

Unlike the other preceding selection expressions, this expression currently supports a pattern-
matching format. The expression should be wrapped with forward slashes.

Currently the value is fixed depending on the integrationType:

• For Lambda-based integrations, it is $integration.response.body.errorMessage.

• For HTTP and MOCK integrations, it is $integration.response.statuscode.

• For HTTP_PROXY and AWS_PROXY, the expression isn't utilized because you're requesting that
the payload pass through to the caller.

Setting up data mapping for WebSocket APIs

Data mapping enables you to map data from a route request to a backend integration.

Note

Data mapping for WebSocket APIs isn't supported in the AWS Management Console. You
must use the AWS CLI, AWS CloudFormation, or an SDK to configure data mapping.

Topics

• Map route request data to integration request parameters

• Examples

Data transformations 1139

https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/apis-apiid-integrations-integrationid-integrationresponses-integrationresponseid.html
https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/apis-apiid-integrations-integrationid.html#apis-apiid-integrations-integrationid-prop-integration-integrationtype

Amazon API Gateway Developer Guide

Map route request data to integration request parameters

Integration request parameters can be mapped from any defined route request parameters, the
request body, context or stage variables, and static values.

In the following table, PARAM_NAME is the name of a route request parameter of the
given parameter type. It must match the regular expression '^[a-zA-Z0-9._$-]+$]'.
JSONPath_EXPRESSION is a JSONPath expression for a JSON field of the request body.

Integration request data mapping expressions

Mapped data source Mapping expression

Request query string (supported only for the
$connect route)

route.request.quer
ystring. PARAM_NAME

Request header (supported only for the
$connect route)

route.request.header. PARAM_NAME

Multi-value request query string (supported
only for the $connect route)

route.request.multivalueque
rystring. PARAM_NAME

Multi-value request header (supported only
for the $connect route)

route.request.multivaluehea
der. PARAM_NAME

Request body route.request.body. JSONPath_
EXPRESSION

Stage variables stageVariables. VARIABLE_NAME

Context variables context.VARIABLE_NAME that must be
one of the supported context variables.

Static value 'STATIC_VALUE' . The STATIC_VALUE is
a string literal and must be enclosed in single
quotes.

Data transformations 1140

Amazon API Gateway Developer Guide

Examples

The following AWS CLI examples configure data mappings. For an example AWS CloudFormation
template, see websocket-data-mapping.yaml.

Map a client's connectionId to a header in an integration request

The following example command maps a client's connectionId to a connectionId header in
the request to a backend integration.

aws apigatewayv2 update-integration \
 --integration-id abc123 \
 --api-id a1b2c3d4 \
 --request-parameters
 'integration.request.header.connectionId'='context.connectionId'

Map a query string parameter to a header in an integration request

The following example commands map an authToken query string parameter to an authToken
header in the integration request.

First, add the authToken query string parameter to the route's request parameters.

aws apigatewayv2 update-route --route-id 0abcdef \
 --api-id a1b2c3d4 \
 --request-parameters '{"route.request.querystring.authToken": {"Required": false}}'

Next, map the query string parameter to the authToken header in the request to the backend
integration.

aws apigatewayv2 update-integration \
 --integration-id abc123 \
 --api-id a1b2c3d4 \
 --request-parameters
 'integration.request.header.authToken'='route.request.querystring.authToken'

If necessary, delete the authToken query string parameter from the route's request parameters.

aws apigatewayv2 delete-route-request-parameter \

Data transformations 1141

samples/websocket-data-mapping.zip

Amazon API Gateway Developer Guide

 --route-id 0abcdef \
 --api-id a1b2c3d4 \
 --request-parameter-key 'route.request.querystring.authToken'

API Gateway WebSocket API mapping template reference

This section summarizes the set of variables that are currently supported for WebSocket APIs in API
Gateway.

Parameter Description

$context.connectionId A unique ID for the connection that can be
used to make a callback to the client.

$context.connectedAt The Epoch-formatted connection time.

$context.domainName A domain name for the WebSocket API. This
can be used to make a callback to the client
(instead of a hard-coded value).

$context.eventType The event type: CONNECT, MESSAGE, or
DISCONNECT .

$context.messageId A unique server-side ID for a message.
Available only when the $context.
eventType is MESSAGE.

$context.routeKey The selected route key.

$context.requestId Same as $context.extendedRequestId .

$context.extendedRequestId An automatically generated ID for the API call,
which contains more useful information for
debugging/troubleshooting.

$context.apiId The identifier API Gateway assigns to your API.

$context.authorizer.principalId The principal user identification associated
with the token sent by the client and returned
from an API Gateway Lambda authorizer

Data transformations 1142

https://en.wikipedia.org/wiki/Unix_time

Amazon API Gateway Developer Guide

Parameter Description

(formerly known as a custom authorizer)
Lambda function.

$context.authorizer. property The stringified value of the specified key-value
pair of the context map returned from an
API Gateway Lambda authorizer function.
For example, if the authorizer returns the
following context map:

"context" : {
 "key": "value",
 "numKey": 1,
 "boolKey": true
}

calling $context.authorizer.key
returns the "value" string, calling
$context.authorizer.numKey returns
the "1" string, and calling $context.
authorizer.boolKey returns the
"true" string.

$context.error.messageString The quoted value of $context.error.mes
sage , namely "$context.error.me
ssage" .

$context.error.validationEr
rorString

A string containing a detailed validation error
message.

$context.identity.accountId The AWS account ID associated with the
request.

$context.identity.apiKey The API owner key associated with key-enabl
ed API request.

$context.identity.apiKeyId The API key ID associated with the key-enabl
ed API request

Data transformations 1143

Amazon API Gateway Developer Guide

Parameter Description

$context.identity.caller The principal identifier of the caller making
the request.

$context.identity.cognitoAu
thenticationProvider

A comma-separated list of the Amazon
Cognito authentication providers used by the
caller making the request. Available only if
the request was signed with Amazon Cognito
credentials.

For example, for an identity from an
Amazon Cognito user pool, cognito-idp.
region.amazonaws.com/ user_pool
_id ,cognito-idp. region.amazonaw
s.com/ user_pool_id :CognitoS
ignIn: token subject claim

For information, see Using Federated Identitie
s in the Amazon Cognito Developer Guide.

$context.identity.cognitoAu
thenticationType

The Amazon Cognito authentication type
of the caller making the request. Available
only if the request was signed with Amazon
Cognito credentials. Possible values include
authenticated for authenticated identities
and unauthenticated for unauthenticated
identities.

$context.identity.cognitoId
entityId

The Amazon Cognito identity ID of the caller
making the request. Available only if the
request was signed with Amazon Cognito
credentials.

$context.identity.cognitoId
entityPoolId

The Amazon Cognito identity pool ID of the
caller making the request. Available only if
the request was signed with Amazon Cognito
credentials.

Data transformations 1144

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html

Amazon API Gateway Developer Guide

Parameter Description

$context.identity.sourceIp The source IP address of the immediate
TCP connection making the request to API
Gateway endpoint.

$context.identity.user The principal identifier of the user making the
request.

$context.identity.userAgent The User Agent of the API caller.

$context.identity.userArn The Amazon Resource Name (ARN) of the
effective user identified after authentication.

$context.requestTime The CLF-formatted request time (dd/MMM/yy
yy:HH:mm:ss +-hhmm).

$context.requestTimeEpoch The Epoch-formatted request time, in
milliseconds.

$context.stage The deployment stage of the API call (for
example, Beta or Prod).

$context.status The response status.

$input.body Returns the raw payload as a string.

$input.json(x) This function evaluates a JSONPath expression
and returns the results as a JSON string.

For example, $input.json('$.pets')
will return a JSON string representing the pets
structure.

For more information about JSONPath, see
JSONPath or JSONPath for Java.

Data transformations 1145

https://httpd.apache.org/docs/current/logs.html#common
https://en.wikipedia.org/wiki/Unix_time
http://goessner.net/articles/JsonPath/
https://github.com/jayway/JsonPath

Amazon API Gateway Developer Guide

Parameter Description

$input.path(x) Takes a JSONPath expression string (x) and
returns a JSON object representation of the
result. This allows you to access and manipulat
e elements of the payload natively in Apache
Velocity Template Language (VTL).

For example, if the expression $input.pa
th('$.pets') returns an object like this:

[
 {
 "id": 1,
 "type": "dog",
 "price": 249.99
 },
 {
 "id": 2,
 "type": "cat",
 "price": 124.99
 },
 {
 "id": 3,
 "type": "fish",
 "price": 0.99
 }
]

$input.path('$.pets').count()
would return "3".

For more information about JSONPath, see
JSONPath or JSONPath for Java.

$stageVariables. <variable_name> <variable_name> represents a stage
variable name.

$stageVariables[' <variable
_name> ']

<variable_name> represents any stage
variable name.

Data transformations 1146

https://velocity.apache.org/engine/devel/vtl-reference.html
https://velocity.apache.org/engine/devel/vtl-reference.html
http://goessner.net/articles/JsonPath/
https://github.com/jayway/JsonPath

Amazon API Gateway Developer Guide

Parameter Description

${stageVariables[' <variable
_name> ']}

<variable_name> represents any stage
variable name.

$util.escapeJavaScript() Escapes the characters in a string using
JavaScript string rules.

Note

This function will turn any regular
single quotes (') into escaped ones
(\'). However, the escaped single
quotes are not valid in JSON. Thus,
when the output from this function
is used in a JSON property, you must
turn any escaped single quotes (\')
back to regular single quotes ('). This
is shown in the following example:

 $util.escapeJavaSc
ript(data).replaceAll("\\'"
,"'")

Data transformations 1147

Amazon API Gateway Developer Guide

Parameter Description

$util.parseJson() Takes "stringified" JSON and returns an object
representation of the result. You can use
the result from this function to access and
manipulate elements of the payload natively
in Apache Velocity Template Language
(VTL). For example, if you have the following
payload:

{"errorMessage":"{\"key1\":\"var1\",
\"key2\":{\"arr\":[1,2,3]}}"}

and use the following mapping template

#set ($errorMessageObj = $util.par
seJson($input.path('$.error
Message')))
{
 "errorMessageObjKey2ArrVal" :
 $errorMessageObj.key2.arr[0]
}

You will get the following output:

{
 "errorMessageObjKey2ArrVal" : 1
}

$util.urlEncode() Converts a string into "application/x-www-
form-urlencoded" format.

$util.urlDecode() Decodes an "application/x-www-form-url
encoded" string.

$util.base64Encode() Encodes the data into a base64-encoded
string.

Data transformations 1148

Amazon API Gateway Developer Guide

Parameter Description

$util.base64Decode() Decodes the data from a base64-encoded
string.

Working with binary media types for WebSocket APIs

API Gateway WebSocket APIs don't currently support binary frames in incoming message payloads.
If a client app sends a binary frame, API Gateway rejects it and disconnects the client with code
1003.

There is a workaround for this behavior. If the client sends a text-encoded binary data (e.g.,
base64) as a text frame, you can set the integration's contentHandlingStrategy property to
CONVERT_TO_BINARY to convert the payload from base64-encoded string to binary.

To return a route response for a binary payload in non-proxy integrations, you can set the
integration response's contentHandlingStrategy property to CONVERT_TO_TEXT to convert
the payload from binary to base64-encoded string.

Invoking a WebSocket API

After you've deployed your WebSocket API, client applications can connect to it and send messages
to it—and your backend service can send messages to connected client applications:

• You can use wscat to connect to your WebSocket API and send messages to it to simulate client
behavior. See the section called “Use wscat to connect to a WebSocket API and send messages
to it”.

• You can use the @connections API from your backend service to send a callback message to a
connected client, get connection information, or disconnect the client. See the section called
“Use @connections commands in your backend service”.

• A client application can use its own WebSocket library to invoke your WebSocket API.

Use wscat to connect to a WebSocket API and send messages to it

The wscat utility is a convenient tool for testing a WebSocket API that you have created and
deployed in API Gateway. You can install and use wscat as follows:

1. Download wscat from https://www.npmjs.com/package/wscat.

Binary media types 1149

https://www.npmjs.com/package/wscat
https://www.npmjs.com/package/wscat

Amazon API Gateway Developer Guide

2. Install wscat by running the following command:

npm install -g wscat

3. To connect to your API, run the wscat command as shown in the following example. Note that
this example assumes that the Authorization setting is NONE.

wscat -c wss://aabbccddee.execute-api.us-east-1.amazonaws.com/test/

You need to replace aabbccddee with the actual API ID, which is displayed in the API Gateway
console or returned by the AWS CLI create-api command.

In addition, if your API is in a Region other than us-east-1, you need to substitute the correct
Region.

4. To test your API, enter a message such as the following while connected:

{"{jsonpath-expression}":"{route-key}"}

where {jsonpath-expression} is a JSONPath expression and {route-key} is a route key
for the API. For example:

{"action":"action1"}
{"message":"test response body"}

For more information about JSONPath, see JSONPath or JSONPath for Java.

5. To disconnect from your API, enter ctrl-C.

Use @connections commands in your backend service

Your backend service can use the following WebSocket connection HTTP requests to send a
callback message to a connected client, get connection information, or disconnect the client.

Important

These requests use IAM authorization, so you must sign them with Signature Version 4
(SigV4). To do this, you can use the API Gateway Management API. For more information,
see ApiGatewayManagementApi.

Invoke 1150

https://docs.aws.amazon.com/goto/aws-cli/apigatewayv2-2018-11-29/CreateApi
http://goessner.net/articles/JsonPath/
https://github.com/jayway/JsonPath
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/apigatewaymanagementapi.html

Amazon API Gateway Developer Guide

In the following command, you need to replace {api-id} with the actual API ID, which is
displayed in the API Gateway console or returned by the AWS CLI create-api command. You
must establish the connection before using this command.

To send a callback message to the client, use:

POST https://{api-id}.execute-api.us-east-1.amazonaws.com/{stage}/
@connections/{connection_id}

You can test this request by using Postman or by calling awscurl as in the following example:

awscurl --service execute-api -X POST -d "hello world" https://{prefix}.execute-api.us-
east-1.amazonaws.com/{stage}/@connections/{connection_id}

You need to URL-encode the command as in the following example:

awscurl --service execute-api -X POST -d "hello world" https://aabbccddee.execute-
api.us-east-1.amazonaws.com/prod/%40connections/R0oXAdfD0kwCH6w%3D

To get the latest connection status of the client, use:

GET https://{api-id}.execute-api.us-east-1.amazonaws.com/{stage}/
@connections/{connection_id}

To disconnect the client, use:

DELETE https://{api-id}.execute-api.us-east-1.amazonaws.com/{stage}/
@connections/{connection_id}

You can dynamically build a callback URL by using the $context variables in your integration. For
example, if you use Lambda proxy integration with a Node.js Lambda function, you can build the
URL and send a message to a connected client as follows:

import {
 ApiGatewayManagementApiClient,
 PostToConnectionCommand,
} from "@aws-sdk/client-apigatewaymanagementapi";

export const handler = async (event) => {
 const domain = event.requestContext.domainName;

Invoke 1151

https://docs.aws.amazon.com/goto/aws-cli/apigatewayv2-2018-11-29/CreateApi
http://www.postman.com/
https://github.com/okigan/awscurl

Amazon API Gateway Developer Guide

 const stage = event.requestContext.stage;
 const connectionId = event.requestContext.connectionId;
 const callbackUrl = `https://${domain}/${stage}`;
 const client = new ApiGatewayManagementApiClient({ endpoint: callbackUrl });

 const requestParams = {
 ConnectionId: connectionId,
 Data: "Hello!",
 };

 const command = new PostToConnectionCommand(requestParams);

 try {
 await client.send(command);
 } catch (error) {
 console.log(error);
 }

 return {
 statusCode: 200,
 };
};

When sending a callback message, your Lambda function must have permission to call the API
Gateway Management API. You might receive an error that contains GoneException if you post a
message before the connection is established, or after the client has disconnected.

Publishing WebSocket APIs for customers to invoke

Simply creating and developing an API Gateway API doesn't automatically make it callable by
your users. To make it callable, you must deploy your API to a stage. In addition, you might want
to customize the URL that your users will use to access your API. You can give it a domain that is
consistent with your brand or is more memorable than the default URL for your API.

In this section, you can learn how to deploy your API and customize the URL that you provide to
users to access it.

Note

To augment the security of your API Gateway APIs, the execute-api.
{region}.amazonaws.com domain is registered in the Public Suffix List (PSL). For further

Publish 1152

https://publicsuffix.org/

Amazon API Gateway Developer Guide

security, we recommend that you use cookies with a __Host- prefix if you ever need to set
sensitive cookies in the default domain name for your API Gateway APIs. This practice will
help to defend your domain against cross-site request forgery attempts (CSRF). For more
information see the Set-Cookie page in the Mozilla Developer Network.

Topics

• Working with stages for WebSocket APIs

• Deploy a WebSocket API in API Gateway

• Security policy for WebSocket APIs

• Setting up custom domain names for WebSocket APIs

Working with stages for WebSocket APIs

An API stage is a logical reference to a lifecycle state of your API (for example, dev, prod, beta,
or v2). API stages are identified by their API ID and stage name, and they're included in the URL
you use to invoke the API. Each stage is a named reference to a deployment of the API and is made
available for client applications to call.

A deployment is a snapshot of your API configuration. After you deploy an API to a stage, it’s
available for clients to invoke. You must deploy an API for changes to take effect.

Stage variables

Stage variables are key-value pairs that you can define for a stage of a WebSocket API. They act
like environment variables and can be used in your API setup.

For example, you can define a stage variable, and then set its value as an HTTP endpoint for
an HTTP proxy integration. Later, you can reference the endpoint by using the associated stage
variable name. By doing this, you can use the same API setup with a different endpoint at each
stage. Similarly, you can use stage variables to specify a different AWS Lambda function integration
for each stage of your API.

Note

Stage variables are not intended to be used for sensitive data, such as credentials. To pass
sensitive data to integrations, use an AWS Lambda authorizer. You can pass sensitive data

Stages 1153

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

Amazon API Gateway Developer Guide

to integrations in the output of the Lambda authorizer. To learn more, see the section
called “Lambda authorizer response format”.

Examples

To use a stage variable to customize the HTTP integration endpoint, you must first set the name
and value of the stage variable (for example, url) with a value of example.com. Next, set up an
HTTP proxy integration. Instead of entering the endpoint's URL, you can tell API Gateway to use
the stage variable value, http://${stageVariables.url}. This value tells API Gateway to
substitute your stage variable ${} at runtime, depending on the stage of your API.

You can reference stage variables in a similar way to specify a Lambda function name or an AWS
role ARN.

When specifying a Lambda function name as a stage variable value, you must configure the
permissions on the Lambda function manually. You can use the AWS Command Line Interface (AWS
CLI) to do this.

aws lambda add-permission --function-name arn:aws:lambda:XXXXXX:your-lambda-function-
name --source-arn arn:aws:execute-api:us-east-1:YOUR_ACCOUNT_ID:api_id/*/HTTP_METHOD/
resource --principal apigateway.amazonaws.com --statement-id apigateway-access --action
 lambda:InvokeFunction

API Gateway stage variables reference

HTTP integration URIs

You can use a stage variable as part of an HTTP integration URI, as shown in the following
examples.

• A full URI without protocol – http://${stageVariables.<variable_name>}

• A full domain – http://${stageVariables.<variable_name>}/resource/operation

• A subdomain – http://${stageVariables.<variable_name>}.example.com/
resource/operation

• A path – http://example.com/${stageVariables.<variable_name>}/bar

• A query string – http://example.com/foo?q=${stageVariables.<variable_name>}

Stages 1154

Amazon API Gateway Developer Guide

Lambda functions

You can use a stage variable in place of a Lambda function name or alias, as shown in the following
examples.

• arn:aws:apigateway:<region>:lambda:path/2015-03-31/
functions/arn:aws:lambda:<region>:<account_id>:function:
${stageVariables.<function_variable_name>}/invocations

• arn:aws:apigateway:<region>:lambda:path/2015-03-31/functions/
arn:aws:lambda:<region>:<account_id>:function:<function_name>:
${stageVariables.<version_variable_name>}/invocations

Note

To use a stage variable for a Lambda function, the function must be in the same account as
the API. Stage variables don't support cross-account Lambda functions.

AWS integration credentials

You can use a stage variable as part of an AWS user or role credential ARN, as shown in the
following example.

• arn:aws:iam::<account_id>:${stageVariables.<variable_name>}

Deploy a WebSocket API in API Gateway

After creating your WebSocket API, you must deploy it to make it available for your users to invoke.

To deploy an API, you create an API deployment and associate it with a stage. Each stage is a
snapshot of the API and is made available for client apps to call.

Important

Every time you update an API, you must redeploy it. Changes to anything other than stage
settings require a redeployment, including modifications to the following resources:

• Routes

Deploy a WebSocket API 1155

Amazon API Gateway Developer Guide

• Integrations

• Authorizers

By default you are limited to 10 stages for each API. We recommend that you re-use stages
for your deployments.

To call a deployed WebSocket API, the client sends a message to the API's URL. The URL is
determined by the API's hostname and stage name.

Note

API Gateway will support payloads up to 128 KB with a maximum frame size of 32 KB. If a
message exceeds 32 KB, it must be split into multiple frames, each 32 KB or smaller.

Using the API's default domain name, the URL of (for example) a WebSocket API in a given stage
({stageName}) is in the following format:

wss://{api-id}.execute-api.{region}.amazonaws.com/{stageName}

To make the WebSocket API's URL more user-friendly, you can create a custom domain name (e.g.,
api.example.com) to replace the default host name of the API. The configuration process is the
same as for REST APIs. For more information, see the section called “Custom domain names”.

Stages enable robust version control of your API. For example, you can deploy an API to a test
stage and a prod stage, and use the test stage as a test build and use the prod stage as a stable
build. After the updates pass the test, you can promote the test stage to the prod stage. The
promotion can be done by redeploying the API to the prod stage. For more details about stages,
see the section called “Set up a stage”.

Topics

• Create a WebSocket API deployment using the AWS CLI

• Create a WebSocket API deployment using the API Gateway console

Deploy a WebSocket API 1156

Amazon API Gateway Developer Guide

Create a WebSocket API deployment using the AWS CLI

To use AWS CLI to create a deployment, use the create-deployment command as shown in the
following example:

aws apigatewayv2 --region us-east-1 create-deployment --api-id aabbccddee

Example output:

{
 "DeploymentId": "fedcba",
 "DeploymentStatus": "DEPLOYED",
 "CreatedDate": "2018-11-15T06:49:09Z"
}

The deployed API is not callable until you associate the deployment with a stage. You can create a
new stage or reuse a stage that you have previously created.

To create a new stage and associate it with the deployment, use the create-stage command as
shown in the following example:

aws apigatewayv2 --region us-east-1 create-stage --api-id aabbccddee --deployment-id
 fedcba --stage-name test

Example output:

{
 "StageName": "test",
 "CreatedDate": "2018-11-15T06:50:28Z",
 "DeploymentId": "fedcba",
 "DefaultRouteSettings": {
 "MetricsEnabled": false,
 "ThrottlingBurstLimit": 5000,
 "DataTraceEnabled": false,
 "ThrottlingRateLimit": 10000.0
 },
 "LastUpdatedDate": "2018-11-15T06:50:28Z",
 "StageVariables": {},
 "RouteSettings": {}
}

Deploy a WebSocket API 1157

https://docs.aws.amazon.com/goto/aws-cli/apigatewayv2-2018-11-29/CreateDeployment
https://docs.aws.amazon.com/goto/aws-cli/apigatewayv2-2018-11-29/CreateStage

Amazon API Gateway Developer Guide

To reuse an existing stage, update the stage's deploymentId property with the newly created
deployment ID ({deployment-id}) by using the update-stage command.

 aws apigatewayv2 update-stage --region {region} \
 --api-id {api-id} \
 --stage-name {stage-name} \
 --deployment-id {deployment-id}

Create a WebSocket API deployment using the API Gateway console

To use the API Gateway console to create a deployment for a WebSocket API:

1. Sign in to the API Gateway console and choose the API.

2. Choose Deploy API.

3. Choose the desired stage from the dropdown list or enter the name of a new stage.

Security policy for WebSocket APIs

API Gateway enforces a security policy of TLS_1_2 for all WebSocket API endpoints.

A security policy is a predefined combination of minimum TLS version and cipher suites offered by
Amazon API Gateway. The TLS protocol addresses network security problems such as tampering
and eavesdropping between a client and server. When your clients establish a TLS handshake to
your API through the custom domain, the security policy enforces the TLS version and cipher suite
options your clients can choose to use. This security policy accepts TLS 1.2 and TLS 1.3 traffic and
rejects TLS 1.0 traffic.

Supported TLS protocols and ciphers for WebSocket APIs

The following table describes the supported TLS protocols and ciphers for WebSocket APIs.

Security policy TLS_1_2

TLS protocols

TLSv1.3 ♦

TLSv1.2 ♦

Security policy for WebSocket APIs 1158

https://docs.aws.amazon.com/goto/aws-cli/apigatewayv2-2018-11-29/UpdateStage

Amazon API Gateway Developer Guide

Security policy TLS_1_2

TLS ciphers

TLS_AES_128_GCM_SHA256 ♦

TLS_AES_256_GCM_SHA384 ♦

TLS_CHACHA20_POLY1305_SHA256 ♦

ECDHE-ECDSA-AES128-GCM-SHA256 ♦

ECDHE-RSA-AES128-GCM-SHA256 ♦

ECDHE-ECDSA-AES128-SHA256 ♦

ECDHE-RSA-AES128-SHA256 ♦

ECDHE-ECDSA-AES256-GCM-SHA384 ♦

ECDHE-RSA-AES256-GCM-SHA384 ♦

ECDHE-ECDSA-AES256-SHA384 ♦

ECDHE-RSA-AES256-SHA384 ♦

AES128-GCM-SHA256 ♦

AES128-SHA256 ♦

AES256-GCM-SHA384 ♦

AES256-SHA256 ♦

OpenSSL and RFC cipher names

OpenSSL and IETF RFC 5246, use different names for the same ciphers. For a list of the cipher
names, see the section called “OpenSSL and RFC cipher names”.

Security policy for WebSocket APIs 1159

Amazon API Gateway Developer Guide

Information about REST APIs and HTTP APIs

For more information about REST APIs and HTTP APIs, see the section called “Choosing a security
policy” and the section called “Security policy for HTTP APIs”.

Setting up custom domain names for WebSocket APIs

Custom domain names are simpler and more intuitive URLs that you can provide to your API users.

After deploying your API, you (and your customers) can invoke the API using the default base URL
of the following format:

https://api-id.execute-api.region.amazonaws.com/stage

where api-id is generated by API Gateway, region (AWS Region) is specified by you when
creating the API, and stage is specified by you when deploying the API.

The hostname portion of the URL (that is, api-id.execute-api.region.amazonaws.com)
refers to an API endpoint. The default API endpoint can be difficult to recall and not user-friendly.

With custom domain names, you can set up your API's hostname, and choose a base path (for
example, myservice) to map the alternative URL to your API. For example, a more user-friendly
API base URL can become:

https://api.example.com/myservice

Note

A custom domain name for a WebSocket API can't be mapped to REST APIs or HTTP APIs.
For WebSocket APIs, Regional custom domain names are supported.
For WebSocket APIs, TLS 1.2 is the only supported TLS version.

Register a domain name

You must have a registered internet domain name in order to set up custom domain names for
your APIs. If needed, you can register an internet domain using Amazon Route 53 or using a
third-party domain registrar of your choice. An API's custom domain name can be the name of a
subdomain or the root domain (also known as "zone apex") of a registered internet domain.

Custom domain names 1160

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/

Amazon API Gateway Developer Guide

After a custom domain name is created in API Gateway, you must create or update your DNS
provider's resource record to map to your API endpoint. Without such a mapping, API requests
bound for the custom domain name cannot reach API Gateway.

Regional custom domain names

When you create a custom domain name for a Regional API, API Gateway creates a Regional
domain name for the API. You must set up a DNS record to map the custom domain name to the
Regional domain name. You must also provide a certificate for the custom domain name.

Wildcard custom domain names

With wildcard custom domain names, you can support an almost infinite number of domain names
without exceeding the default quota. For example, you could give each of your customers their own
domain name, customername.api.example.com.

To create a wildcard custom domain name, specify a wildcard (*) as the first subdomain of a
custom domain that represents all possible subdomains of a root domain.

For example, the wildcard custom domain name *.example.com results in subdomains such as
a.example.com, b.example.com, and c.example.com, which all route to the same domain.

Wildcard custom domain names support distinct configurations from API Gateway's standard
custom domain names. For example, in a single AWS account, you can configure *.example.com
and a.example.com to behave differently.

You can use the $context.domainName and $context.domainPrefix context variables
to determine the domain name that a client used to call your API. To learn more about context
variables, see API Gateway mapping template and access logging variable reference.

To create a wildcard custom domain name, you must provide a certificate issued by ACM that has
been validated using either the DNS or the email validation method.

Note

You can't create a wildcard custom domain name if a different AWS account has created a
custom domain name that conflicts with the wildcard custom domain name. For example,
if account A has created a.example.com, then account B can't create the wildcard custom
domain name *.example.com.

Custom domain names 1161

Amazon API Gateway Developer Guide

If account A and account B share an owner, you can contact the AWS Support Center to
request an exception.

Certificates for custom domain names

Important

You specify the certificate for your custom domain name. If your application uses certificate
pinning, sometimes known as SSL pinning, to pin an ACM certificate, the application
might not be able to connect to your domain after AWS renews the certificate. For more
information, see Certificate pinning problems in the AWS Certificate Manager User Guide.

To provide a certificate for a custom domain name in a Region where ACM is supported, you must
request a certificate from ACM. To provide a certificate for a Regional custom domain name in a
Region where ACM is not supported, you must import a certificate to API Gateway in that Region.

To import an SSL/TLS certificate, you must provide the PEM-formatted SSL/TLS certificate body,
its private key, and the certificate chain for the custom domain name. Each certificate stored in
ACM is identified by its ARN. To use an AWS managed certificate for a domain name, you simply
reference its ARN.

ACM makes it straightforward to set up and use a custom domain name for an API. You create
a certificate for the given domain name (or import a certificate), set up the domain name in API
Gateway with the ARN of the certificate provided by ACM, and map a base path under the custom
domain name to a deployed stage of the API. With certificates issued by ACM, you do not have to
worry about exposing any sensitive certificate details, such as the private key.

Set up a custom domain name

For details on setting up a custom domain name, see Getting certificates ready in AWS Certificate
Manager and Setting up a regional custom domain name in API Gateway.

Working with API mappings for WebSocket APIs

You use API mappings to connect API stages to a custom domain name. After you create a domain
name and configure DNS records, you use API mappings to send traffic to your APIs through your
custom domain name.

Custom domain names 1162

https://console.aws.amazon.com/support/home#/
https://docs.aws.amazon.com/acm/latest/userguide/troubleshooting-pinning.html

Amazon API Gateway Developer Guide

An API mapping specifies an API, a stage, and optionally a path to use for the mapping. For
example, you can map the production stage of an API to wss://api.example.com/orders.

Before you create an API mapping, you must have an API, a stage, and a custom domain name. To
learn more about creating a custom domain name, see the section called “Setting up a regional
custom domain name”.

Restrictions

• In an API mapping, the custom domain name and mapped APIs must be in the same AWS
account.

• API mappings must contain only letters, numbers, and the following characters: $-_.+!*'().

• The maximum length for the path in an API mapping is 300 characters.

• You can't map WebSocket APIs to the same custom domain name as an HTTP API or REST API.

Create an API mapping

To create an API mapping, you must first create a custom domain name, API, and stage. For
information about creating a custom domain name, see the section called “Setting up a regional
custom domain name”.

AWS Management Console

To create an API mapping

1. Sign in to the API Gateway console at https://console.aws.amazon.com/apigateway.

2. Choose Custom domain names.

3. Select a custom domain name that you've already created.

4. Choose API mappings.

5. Choose Configure API mappings.

6. Choose Add new mapping.

7. Enter an API, a Stage, and optionally a Path.

8. Choose Save.

Custom domain names 1163

https://console.aws.amazon.com/apigateway

Amazon API Gateway Developer Guide

AWS CLI

The following AWS CLI command creates an API mapping. In this example, API Gateway sends
requests to api.example.com/v1 to the specified API and stage.

aws apigatewayv2 create-api-mapping \
 --domain-name api.example.com \
 --api-mapping-key v1 \
 --api-id a1b2c3d4 \
 --stage test

AWS CloudFormation

The following AWS CloudFormation example creates an API mapping.

MyApiMapping:
 Type: 'AWS::ApiGatewayV2::ApiMapping'
 Properties:
 DomainName: api.example.com
 ApiMappingKey: 'v1'
 ApiId: !Ref MyApi
 Stage: !Ref MyStage

Disabling the default endpoint for a WebSocket API

By default, clients can invoke your API by using the execute-api endpoint that API Gateway
generates for your API. To ensure that clients can access your API only by using a custom domain
name, disable the default execute-api endpoint.

Note

When you disable the default endpoint, it affects all stages of an API.

The following AWS CLI command disables the default endpoint for an WebSocket API.

aws apigatewayv2 update-api \
 --api-id abcdef123 \
 --disable-execute-api-endpoint

Custom domain names 1164

Amazon API Gateway Developer Guide

After you disable the default endpoint, you must deploy your API for the change to take effect.

The following AWS CLI command creates a deployment.

aws apigatewayv2 create-deployment \
 --api-id abcdef123 \
 --stage-name dev

Protecting your WebSocket API

You can configure throttling for your APIs to help protect them from being overwhelmed by too
many requests. Throttles are applied on a best-effort basis and should be thought of as targets
rather than guaranteed request ceilings.

API Gateway throttles requests to your API using the token bucket algorithm, where a token counts
for a request. Specifically, API Gateway examines the rate and a burst of request submissions
against all APIs in your account, per Region. In the token bucket algorithm, a burst can allow pre-
defined overrun of those limits, but other factors can also cause limits to be overrun in some cases.

When request submissions exceed the steady-state request rate and burst limits, API Gateway
begins to throttle requests. Clients may receive 429 Too Many Requests error responses at this
point. Upon catching such exceptions, the client can resubmit the failed requests in a way that is
rate limiting.

As an API developer, you can set the target limits for individual API stages or routes to improve
overall performance across all APIs in your account.

Account-level throttling per Region

By default, API Gateway limits the steady-state requests per second (RPS) across all APIs within an
AWS account, per Region. It also limits the burst (that is, the maximum bucket size) across all APIs
within an AWS account, per Region. In API Gateway, the burst limit represents the target maximum
number of concurrent request submissions that API Gateway will fulfill before returning 429 Too
Many Requests error responses. For more information on throttling quotas, see Quotas and
important notes.

Per-account limits are applied to all APIs in an account in a specified Region. The account-level
rate limit can be increased upon request - higher limits are possible with APIs that have shorter
timeouts and smaller payloads. To request an increase of account-level throttling limits per Region,

Protect 1165

Amazon API Gateway Developer Guide

contact the AWS Support Center. For more information, see Quotas and important notes. Note that
these limits can't be higher than the AWS throttling limits.

Route-level throttling

You can set route-level throttling to override the account-level request throttling limits for a
specific stage or for individual routes in your API. The default route throttling limits can't exceed
account-level rate limits.

You can configure route-level throttling by using the AWS CLI. The following command configures
custom throttling for the specified stage and route of an API.

aws apigatewayv2 update-stage \
 --api-id a1b2c3d4 \
 --stage-name dev \
 --route-settings '{"messages":
{"ThrottlingBurstLimit":100,"ThrottlingRateLimit":2000}}'

Monitoring WebSocket APIs

You can use CloudWatch metrics and CloudWatch Logs to monitor WebSocket APIs. By combining
logs and metrics, you can log errors and monitor your API's performance.

Note

API Gateway might not generate logs and metrics in the following cases:

• 413 Request Entity Too Large errors

• Excessive 429 Too Many Requests errors

• 400 series errors from requests sent to a custom domain that has no API mapping

• 500 series errors caused by internal failures

Topics

• Monitoring WebSocket API execution with CloudWatch metrics

• Configuring logging for a WebSocket API

Route-level throttling 1166

https://console.aws.amazon.com/support/home#/

Amazon API Gateway Developer Guide

Monitoring WebSocket API execution with CloudWatch metrics

You can use Amazon CloudWatch metrics to monitor WebSocket APIs. The configuration is similar
to that used for REST APIs. For more information, see Monitoring REST API execution with Amazon
CloudWatch metrics.

The following metrics are supported for WebSocket APIs:

Metric Description

ConnectCount The number of messages
sent to the $connect route
integration.

MessageCount The number of messages sent
to the WebSocket API, either
from or to the client.

IntegrationError The number of requests that
return a 4XX/5XX response
from the integration.

ClientError The number of requests that
have a 4XX response returned
by API Gateway before the
integration is invoked.

ExecutionError Errors that occurred when
calling the integration.

IntegrationLatency The time difference between
API Gateway sending the
request to the integration and
API Gateway receiving the
response from the integrati
on. Suppressed for callbacks
and mock integrations.

Metrics 1167

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html

Amazon API Gateway Developer Guide

You can use the dimensions in the following table to filter API Gateway metrics.

Dimension Description

ApiId Filters API Gateway metrics
for an API with the specified
API ID.

ApiId, Stage Filters API Gateway metrics
for an API stage with the
specified API ID and stage ID.

ApiId, Method, Resource, Stage Filters API Gateway metrics
for an API method with the
specified API ID, stage ID,
resource path, and route ID.

API Gateway will not send
these metrics unless you have
explicitly enabled detailed
CloudWatch metrics. You
can do this by calling the
UpdateStage action of the
API Gateway V2 REST API
to update the detailedM
etricsEnabled property
to true. Alternatively, you
can call the update-stage
AWS CLI command to update
the DetailedMetricsEna
bled property to true.
Enabling such metrics will
incur additional charges to
your account. For pricing
information, see Amazon
CloudWatch Pricing.

Metrics 1168

https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/apis-apiid-stages-stagename.html
https://docs.aws.amazon.com/cli/latest/reference/apigatewayv2/update-stage.html
https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/

Amazon API Gateway Developer Guide

Configuring logging for a WebSocket API

You can enable logging to write logs to CloudWatch Logs. There are two types of API logging in
CloudWatch: execution logging and access logging. In execution logging, API Gateway manages the
CloudWatch Logs. The process includes creating log groups and log streams, and reporting to the
log streams any caller's requests and responses.

In access logging, you, as an API developer, want to log who has accessed your API and how the
caller accessed the API. You can create your own log group or choose an existing log group that
could be managed by API Gateway. To specify the access details, you select $context variables
(expressed in a format of your choosing) and choose a log group as the destination.

For instructions on how to set up CloudWatch logging, see the section called “Set up CloudWatch
API logging using the API Gateway console”.

When you specify the Log Format, you can choose which context variables to log. The following
variables are supported.

Parameter Description

$context.apiId The identifier API Gateway assigns to your API.

$context.authorize.error The authorization error message.

$context.authorize.latency The authorization latency in ms.

$context.authorize.status The status code returned from an authoriza
tion attempt.

$context.authorizer.error The error message returned from an authorize
r.

$context.authorizer.integra
tionLatency

The Lambda authorizer latency in ms.

$context.authorizer.integra
tionStatus

The status code returned from a Lambda
authorizer.

$context.authorizer.latency The authorizer latency in ms.

Logging 1169

Amazon API Gateway Developer Guide

Parameter Description

$context.authorizer.requestId The AWS endpoint's request ID.

$context.authorizer.status The status code returned from an authorizer.

$context.authorizer.principalId The principal user identification that is
associated with the token sent by the client
and returned from an API Gateway Lambda
authorizer Lambda function. (A Lambda
authorizer was formerly known as a custom
authorizer.)

$context.authorizer. property The stringified value of the specified key-value
pair of the context map returned from an
API Gateway Lambda authorizer function.
For example, if the authorizer returns the
following context map:

"context" : {
 "key":
 "value",
 "numKey":
 1,
 "boolKey":
 true
 }

calling $context.authorizer.key
returns the "value" string, calling
$context.authorizer.numKey returns
the "1" string, and calling $context.
authorizer.boolKey returns the
"true" string.

$context.authenticate.error The error message returned from an authentic
ation attempt.

$context.authenticate.latency The authentication latency in ms.

Logging 1170

Amazon API Gateway Developer Guide

Parameter Description

$context.authenticate.status The status code returned from an authentic
ation attempt.

$context.connectedAt The Epoch-formatted connection time.

$context.connectionId A unique ID for the connection that can be
used to make a callback to the client.

$context.domainName A domain name for the WebSocket API. This
can be used to make a callback to the client
(instead of a hardcoded value).

$context.error.message A string that contains an API Gateway error
message.

$context.error.messageString The quoted value of $context.error.mes
sage , namely "$context.error.me
ssage" .

$context.error.responseType The error response type.

$context.error.validationEr
rorString

A string that contains a detailed validation
error message.

$context.eventType The event type: CONNECT, MESSAGE, or
DISCONNECT .

$context.extendedRequestId Equivalent to $context.requestId .

$context.identity.accountId The AWS account ID associated with the
request.

$context.identity.apiKey The API owner key associated with key-enabl
ed API request.

$context.identity.apiKeyId The API key ID associated with the key-enabl
ed API request

Logging 1171

https://en.wikipedia.org/wiki/Unix_time

Amazon API Gateway Developer Guide

Parameter Description

$context.identity.caller The principal identifier of the caller that
signed the request. Supported for routes that
use IAM authorization.

$context.identity.cognitoAu
thenticationProvider

A comma-separated list of the Amazon
Cognito authentication providers used by the
caller making the request. Available only if
the request was signed with Amazon Cognito
credentials.

For example, for an identity from an
Amazon Cognito user pool, cognito-idp.
region.amazonaws.com/ user_pool
_id ,cognito-idp. region.amazonaw
s.com/ user_pool_id :CognitoS
ignIn: token subject claim

For information, see Using Federated Identitie
s in the Amazon Cognito Developer Guide.

$context.identity.cognitoAu
thenticationType

The Amazon Cognito authentication type
of the caller making the request. Available
only if the request was signed with Amazon
Cognito credentials. Possible values include
authenticated for authenticated identities
and unauthenticated for unauthenticated
identities.

$context.identity.cognitoId
entityId

The Amazon Cognito identity ID of the caller
making the request. Available only if the
request was signed with Amazon Cognito
credentials.

Logging 1172

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html

Amazon API Gateway Developer Guide

Parameter Description

$context.identity.cognitoId
entityPoolId

The Amazon Cognito identity pool ID of the
caller making the request. Available only if
the request was signed with Amazon Cognito
credentials.

$context.identity.principalOrgId The AWS organization ID. Supported for
routes that use IAM authorization.

$context.identity.sourceIp The source IP address of the TCP connection
making the request to API Gateway.

$context.identity.user The principal identifier of the user that will be
authorized against resource access. Supported
for routes that use IAM authorization.

$context.identity.userAgent The user agent of the API caller.

$context.identity.userArn The Amazon Resource Name (ARN) of the
effective user identified after authentication.

$context.integration.error The error message returned from an integrati
on.

$context.integration.integr
ationStatus

For Lambda proxy integration, the status code
returned from AWS Lambda, not from the
backend Lambda function code.

$context.integration.latency The integration latency in ms. Equivalent to
$context.integrationLatency .

$context.integration.requestId The AWS endpoint's request ID. Equivalent to
$context.awsEndpointRequestId .

Logging 1173

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_org_details.html

Amazon API Gateway Developer Guide

Parameter Description

$context.integration.status The status code returned from an integrati
on. For Lambda proxy integrations, this is
the status code that your Lambda function
code returns. Equivalent to $context.
integrationStatus .

$context.integrationLatency The integration latency in ms, available for
access logging only.

$context.messageId A unique server-side ID for a message.
Available only when the $context.
eventType is MESSAGE.

$context.requestId Same as $context.extendedRequestId .

$context.requestTime The CLF-formatted request time (dd/MMM/yy
yy:HH:mm:ss +-hhmm).

$context.requestTimeEpoch The Epoch-formatted request time, in
milliseconds.

$context.routeKey The selected route key.

$context.stage The deployment stage of the API call (for
example, beta or prod).

$context.status The response status.

$context.waf.error The error message returned from AWS WAF.

$context.waf.latency The AWS WAF latency in ms.

$context.waf.status The status code returned from AWS WAF.

Examples of some commonly used access log formats are shown in the API Gateway console and
are listed as follows.

Logging 1174

https://httpd.apache.org/docs/current/logs.html#common
https://en.wikipedia.org/wiki/Unix_time

Amazon API Gateway Developer Guide

• CLF (Common Log Format):

$context.identity.sourceIp $context.identity.caller \
$context.identity.user [$context.requestTime] "$context.eventType $context.routeKey
 $context.connectionId" \
$context.status $context.requestId

The continuation characters (\) are meant as a visual aid. The log format must be a single line.
You can add a newline character (\n) at the end of the log format to include a newline at the end
of each log entry.

• JSON:

{
"requestId":"$context.requestId", \
"ip": "$context.identity.sourceIp", \
"caller":"$context.identity.caller", \
"user":"$context.identity.user", \
"requestTime":"$context.requestTime", \
"eventType":"$context.eventType", \
"routeKey":"$context.routeKey", \
"status":"$context.status", \
"connectionId":"$context.connectionId"
}

The continuation characters (\) are meant as a visual aid. The log format must be a single line.
You can add a newline character (\n) at the end of the log format to include a newline at the end
of each log entry.

• XML:

<request id="$context.requestId"> \
 <ip>$context.identity.sourceIp</ip> \
 <caller>$context.identity.caller</caller> \
 <user>$context.identity.user</user> \
 <requestTime>$context.requestTime</requestTime> \
 <eventType>$context.eventType</eventType> \
 <routeKey>$context.routeKey</routeKey> \
 <status>$context.status</status> \
 <connectionId>$context.connectionId</connectionId> \
</request>

Logging 1175

https://httpd.apache.org/docs/current/logs.html#common

Amazon API Gateway Developer Guide

The continuation characters (\) are meant as a visual aid. The log format must be a single line.
You can add a newline character (\n) at the end of the log format to include a newline at the end
of each log entry.

• CSV (comma-separated values):

$context.identity.sourceIp,$context.identity.caller, \
$context.identity.user,$context.requestTime,$context.eventType, \
$context.routeKey,$context.connectionId,$context.status, \
$context.requestId

The continuation characters (\) are meant as a visual aid. The log format must be a single line.
You can add a newline character (\n) at the end of the log format to include a newline at the end
of each log entry.

Logging 1176

Amazon API Gateway Developer Guide

API Gateway Amazon Resource Name (ARN) reference

The following tables list the Amazon Resource Names (ARNs) for API Gateway resources. To learn
more about using ARNs in AWS Identity and Access Management policies, see How Amazon API
Gateway works with IAM and Control access to an API with IAM permissions.

HTTP API and WebSocket API resources

Resource ARN

AccessLogSettings arn:partition :apigatew
ay: region::/apis/api-id/
stages/stage-name /accesslo
gsettings

Api arn:partition :apigatew
ay: region::/apis/api-id

Apis arn:partition :apigatew
ay: region::/apis

ApiMapping arn:partition :apigatew
ay: region::/domainnames/ domain-na
me /apimappings/ id

ApiMappings arn:partition :apigatew
ay: region::/domainnames/ domain-na
me /apimappings

Authorizer arn:partition :apigatew
ay: region::/apis/api-id/authoriz
ers/ id

Authorizers arn:partition :apigatew
ay: region::/apis/api-id/authoriz
ers

HTTP API and WebSocket API resources 1177

Amazon API Gateway Developer Guide

Resource ARN

Cors arn:partition :apigatew
ay: region::/apis/api-id/cors

Deployment arn:partition :apigatew
ay: region::/apis/api-id/deployme
nts/ id

Deployments arn:partition :apigatew
ay: region::/apis/api-id/deployme
nts

DomainName arn:partition :apigatew
ay: region::/domainnames/ domain-na
me

DomainNames arn:partition :apigatew
ay: region::/domainnames

ExportedAPI arn:partition :apigatew
ay: region::/apis/api-id/exports/
specification

Integration arn:partition :apigatew
ay: region::/apis/api-id/integrat
ions/ integration-id

Integrations arn:partition :apigatew
ay: region::/apis/api-id/integrat
ions

IntegrationResponse arn:partition :apigatew
ay: region::/apis/api-id/integrat
ionresponses/ integration-respon
se

HTTP API and WebSocket API resources 1178

Amazon API Gateway Developer Guide

Resource ARN

IntegrationResponses arn:partition :apigatew
ay: region::/apis/api-id/integrat
ionresponses

Model arn:partition :apigatew
ay: region::/apis/api-id/models/id

Models arn:partition :apigatew
ay: region::/apis/api-id/models

ModelTemplate arn:partition :apigatew
ay: region::/apis/api-id/models/id/
template

Route arn:partition :apigatew
ay: region::/apis/api-id/routes/id

Routes arn:partition :apigatew
ay: region::/apis/api-id/routes

RouteRequestParameter arn:partition :apigatew
ay: region::/apis/api-id/routes/id/
requestparameters/ key

RouteResponse arn:partition :apigatew
ay: region::/apis/api-id/routes/id/
routeresponses/ id

RouteResponses arn:partition :apigatew
ay: region::/apis/api-id/routes/id/
routeresponses

RouteSettings arn:partition :apigatew
ay: region::/apis/api-id/
stages/stage-name /routeset
tings/ route-key

HTTP API and WebSocket API resources 1179

Amazon API Gateway Developer Guide

Resource ARN

Stage arn:partition :apigatew
ay: region::/apis/api-id/
stages/stage-name

Stages arn:partition :apigatew
ay: region::/apis/api-id/stages

VpcLink arn:partition :apigatew
ay: region::/vpclinks/ vpclink-id

VpcLinks arn:partition :apigatew
ay: region::/vpclinks

REST API resources

Resource ARN

Account arn:partition :apigatew
ay: region::/account

ApiKey arn:partition :apigatew
ay: region::/apikeys/ id

ApiKeys arn:partition :apigatew
ay: region::/apikeys

Authorizer arn:partition :apigatew
ay: region::/restapis/ api-id/
authorizers/ id

Authorizers arn:partition :apigatew
ay: region::/restapis/ api-id/
authorizers

REST API resources 1180

Amazon API Gateway Developer Guide

Resource ARN

BasePathMapping arn:partition :apigatew
ay: region::/domainnames/ domain-na
me /basepathmappings/ basepath

BasePathMappings arn:partition :apigatew
ay: region::/domainnames/ domain-na
me /basepathmappings

ClientCertificate arn:partition :apigatew
ay: region::/clientcertifica
tes/ id

ClientCertificates arn:partition :apigatew
ay: region::/clientcertificates

Deployment arn:partition :apigatew
ay: region::/restapis/ api-id/
deployments/ id

Deployments arn:partition :apigatew
ay: region::/restapis/ api-id/
deployments

DocumentationPart arn:partition :apigatew
ay: region::/restapis/ api-id/
documentation/parts/ id

DocumentationParts arn:partition :apigatew
ay: region::/restapis/ api-id/
documentation/parts

DocumentationVersion arn:partition :apigatew
ay: region::/restapis/ api-id/
documentation/versions/ version

REST API resources 1181

Amazon API Gateway Developer Guide

Resource ARN

DocumentationVersions arn:partition :apigatew
ay: region::/restapis/ api-id/
documentation/versions

DomainName arn:partition :apigatew
ay: region::/domainnames/ domain-na
me

DomainNames arn:partition :apigatew
ay: region::/domainnames

GatewayResponse arn:partition :apigatew
ay: region::/restapis/ api-id/
gatewayresponses/ response-type

GatewayResponses arn:partition :apigatew
ay: region::/restapis/ api-id/
gatewayresponses

Integration arn:partition :apigatew
ay: region::/restapis/ api-id/
resources/ resource-id /methods/
http-method /integration

IntegrationResponse arn:partition :apigatew
ay: region::/restapis/ api-id/
resources/ resource-id /methods/
http-method /integration/respo

nses/ status-code

Method arn:partition :apigatew
ay: region::/restapis/ api-id/
resources/ resource-id /methods/
http-method

REST API resources 1182

Amazon API Gateway Developer Guide

Resource ARN

MethodResponse arn:partition :apigatew
ay: region::/restapis/ api-id/
resources/ resource-id /methods/
http-method /responses/ status-co

de

Model arn:partition :apigatew
ay: region::/restapis/ api-id/
models/model-name

Models arn:partition :apigatew
ay: region::/restapis/ api-id/
models

RequestValidator arn:partition :apigatew
ay: region::/restapis/ api-id/
requestvalidators/ id

RequestValidators arn:partition :apigatew
ay: region::/restapis/ api-id/
requestvalidators

Resource arn:partition :apigatew
ay: region::/restapis/ api-id/
resources/ id

Resources arn:partition :apigatew
ay: region::/restapis/ api-id/
resources

RestApi arn:partition :apigatew
ay: region::/restapis/ api-id

RestApis arn:partition :apigatew
ay: region::/restapis

REST API resources 1183

Amazon API Gateway Developer Guide

Resource ARN

Stage arn:partition :apigatew
ay: region::/restapis/ api-id/
stages/stage-name

Stages arn:partition :apigatew
ay: region::/restapis/ api-id/
stages

Tags arn:partition :apigatew
ay: region::/tags/url-encoded-
resource-arn

Template arn:partition :apigatew
ay: region::/restapis/models
/ model-name /template

UsagePlan arn:partition :apigatew
ay: region::/usageplans/ usageplan
-id

UsagePlans arn:partition :apigatew
ay: region::/usageplans

UsagePlanKey arn:partition :apigatew
ay: region::/usageplans/ usageplan
-id /keys/id

UsagePlanKeys arn:partition :apigatew
ay: region::/usageplans/ usageplan
-id /keys

VpcLink arn:partition :apigatew
ay: region::/vpclinks/ vpclink-id

VpcLinks arn:partition :apigatew
ay: region::/vpclinks

REST API resources 1184

Amazon API Gateway Developer Guide

execute-api (HTTP APIs, WebSocket APIs, and REST APIs)

Resource ARN

WebSocket API endpoint arn:partition :execute-
api: region:account-id :api-
id/stage/route-key

HTTP API and REST API endpoint * arn:partition :execute-
api: region:account-id :api-
id/stage/http-method /resource-
path

Lambda authorizer ** arn:partition :execute-
api: region:account-id :api-id/
authorizers/ authorizer-id

* The ARN for the $default route endpoint for HTTP APIs is arn:partition:execute-
api:region:account-id:api-id/*/$default.

** This ARN is applicable only when setting the SourceArn condition in the resource policy for a
Lambda authorizer function. For an example, see the section called “Create a Lambda authorizer”.

execute-api (HTTP APIs, WebSocket APIs, and REST APIs) 1185

https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html

Amazon API Gateway Developer Guide

Working with API Gateway extensions to OpenAPI

The API Gateway extensions support the AWS-specific authorization and API Gateway-specific API
integrations for REST APIs and HTTP APIs. In this section, we describe the API Gateway extensions
to the OpenAPI specification.

Tip

To understand how the API Gateway extensions are used in an application, you can use
the API Gateway console to create a REST API or HTTP API and export it to an OpenAPI
definition file. For more information on how to export an API, see Export a REST API from
API Gateway and Exporting an HTTP API from API Gateway.

Topics

• x-amazon-apigateway-any-method object

• x-amazon-apigateway-cors object

• x-amazon-apigateway-api-key-source property

• x-amazon-apigateway-auth object

• x-amazon-apigateway-authorizer object

• x-amazon-apigateway-authtype property

• x-amazon-apigateway-binary-media-types property

• x-amazon-apigateway-documentation object

• x-amazon-apigateway-endpoint-configuration object

• x-amazon-apigateway-gateway-responses object

• x-amazon-apigateway-gateway-responses.gatewayResponse object

• x-amazon-apigateway-gateway-responses.responseParameters object

• x-amazon-apigateway-gateway-responses.responseTemplates object

• x-amazon-apigateway-importexport-version

• x-amazon-apigateway-integration object

• x-amazon-apigateway-integrations object

1186

Amazon API Gateway Developer Guide

• x-amazon-apigateway-integration.requestTemplates object

• x-amazon-apigateway-integration.requestParameters object

• x-amazon-apigateway-integration.responses object

• x-amazon-apigateway-integration.response object

• x-amazon-apigateway-integration.responseTemplates object

• x-amazon-apigateway-integration.responseParameters object

• x-amazon-apigateway-integration.tlsConfig object

• x-amazon-apigateway-minimum-compression-size

• x-amazon-apigateway-policy

• x-amazon-apigateway-request-validator property

• x-amazon-apigateway-request-validators object

• x-amazon-apigateway-request-validators.requestValidator object

• x-amazon-apigateway-tag-value property

x-amazon-apigateway-any-method object

Specifies the OpenAPI Operation Object for the API Gateway catch-all ANY method in an OpenAPI
Path Item Object. This object can exist alongside other Operation objects and will catch any HTTP
method that wasn't explicitly declared.

The following table lists the properties extended by API Gateway. For the other OpenAPI Operation
properties, see the OpenAPI specification.

Properties

Property name Type Description

isDefaultRoute Boolean Specifies whether a route
is the $default route.
Supported only for HTTP
APIs. To learn more, see
Working with routes for HTTP
APIs.

x-amazon-apigateway-any-method 1187

https://github.com/OAI/OpenAPI-Specification/blob/main/versions/2.0.md#operation-object
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/2.0.md#path-item-object
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/2.0.md#path-item-object

Amazon API Gateway Developer Guide

Property name Type Description

x-amazon-apigateway-
integration

x-amazon-apigateway-integra
tion object

Specifies the integration of
the method with the backend.
This is an extended property
of the OpenAPI Operation
 object. The integration can
be of type AWS, AWS_PROXY

, HTTP, HTTP_PROXY , or
MOCK.

x-amazon-apigateway-any-method examples

The following example integrates the ANY method on a proxy resource, {proxy+}, with a Lambda
function, TestSimpleProxy.

 "/{proxy+}": {
 "x-amazon-apigateway-any-method": {
 "produces": [
 "application/json"
],
 "parameters": [
 {
 "name": "proxy",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {},
 "x-amazon-apigateway-integration": {
 "uri": "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-east-1:123456789012:function:TestSimpleProxy/invocations",
 "httpMethod": "POST",
 "type": "aws_proxy"
 }

The following example creates a $default route for an HTTP API that integrates with a Lambda
function, HelloWorld.

x-amazon-apigateway-any-method examples 1188

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#operation-object
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#operation-object

Amazon API Gateway Developer Guide

"/$default": {
 "x-amazon-apigateway-any-method": {
 "isDefaultRoute": true,
 "x-amazon-apigateway-integration": {
 "type": "AWS_PROXY",
 "httpMethod": "POST",
 "uri": "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-east-1:123456789012:function:HelloWorld/invocations",
 "timeoutInMillis": 1000,
 "connectionType": "INTERNET",
 "payloadFormatVersion": 1.0
 }
 }
}

x-amazon-apigateway-cors object

Specifies the cross-origin resource sharing (CORS) configuration for an HTTP API. The extension
applies to the root-level OpenAPI structure. To learn more, see Configuring CORS for an HTTP API.

Properties

Property name Type Description

allowOrigins Array Specifies the allowed origins.

allowCredentials Boolean Specifies whether credentia
ls are included in the CORS
request.

exposeHeaders Array Specifies the headers that are
exposed.

maxAge Integer Specifies the number of
seconds that the browser
should cache preflight
request results.

allowMethods Array Specifies the allowed HTTP
methods.

x-amazon-apigateway-cors 1189

Amazon API Gateway Developer Guide

Property name Type Description

allowHeaders Array Specifies the allowed headers.

x-amazon-apigateway-cors example

The following is an example CORS configuration for an HTTP API.

"x-amazon-apigateway-cors": {
 "allowOrigins": [
 "https://www.example.com"
],
 "allowCredentials": true,
 "exposeHeaders": [
 "x-apigateway-header",
 "x-amz-date",
 "content-type"
],
 "maxAge": 3600,
 "allowMethods": [
 "GET",
 "OPTIONS",
 "POST"
],
 "allowHeaders": [
 "x-apigateway-header",
 "x-amz-date",
 "content-type"
]
}

x-amazon-apigateway-api-key-source property

Specify the source to receive an API key to throttle API methods that require a key. This API-level
property is a String type. For more information about configuring a method to require an API key,
see the section called “Configure a method to use API keys with an OpenAPI definition”.

Specify the source of the API key for requests. Valid values are:

• HEADER for receiving the API key from the X-API-Key header of a request.

x-amazon-apigateway-cors example 1190

Amazon API Gateway Developer Guide

• AUTHORIZER for receiving the API key from the UsageIdentifierKey from a Lambda
authorizer (formerly known as a custom authorizer).

x-amazon-apigateway-api-key-source example

The following example sets the X-API-Key header as the API key source.

OpenAPI 2.0

{
 "swagger" : "2.0",
 "info" : {
 "title" : "Test1"
 },
 "schemes" : ["https"],
 "basePath" : "/import",
 "x-amazon-apigateway-api-key-source" : "HEADER",
 .
 .
 .
}

OpenAPI 3.0.1

{
 "openapi" : "3.0.1",
 "info" : {
 "title" : "Test1"
 },
 "servers" : [{
 "url" : "/{basePath}",
 "variables" : {
 "basePath" : {
 "default" : "import"
 }
 }
 }],
 "x-amazon-apigateway-api-key-source" : "HEADER",
 .
 .

x-amazon-apigateway-api-key-source example 1191

Amazon API Gateway Developer Guide

 .
}

x-amazon-apigateway-auth object

Defines an authorization type to be applied for authorization of method invocations in API
Gateway.

Properties

Property name Type Description

type string Specifies the authoriza
tion type. Specify "NONE"
for open access. Specify
"AWS_IAM" to use IAM
permissions. Values are case
insensitive.

x-amazon-apigateway-auth example

The following example sets the authorization type for an API method.

OpenAPI 3.0.1

{
 "openapi": "3.0.1",
 "info": {
 "title": "openapi3",
 "version": "1.0"
 },
 "paths": {
 "/protected-by-iam": {
 "get": {
 "x-amazon-apigateway-auth": {
 "type": "AWS_IAM"
 }
 }
 }

x-amazon-apigateway-auth 1192

Amazon API Gateway Developer Guide

 }
}

x-amazon-apigateway-authorizer object

Defines a Lambda authorizer, Amazon Cognito user pool, or JWT authorizer to be applied for
authorization of method invocations in API Gateway. This extension applies to the security
definition in OpenAPI 2 and OpenAPI 3.

Properties

Property name Type Description

type string The type of the authorizer.
This is a required property.

For REST APIs, specify
token for an authorize
r with the caller identity
embedded in an authoriza
tion token. Specify request
for an authorizer with the
caller identity contained in
request parameters. Specify
cognito_user_pools
for an authorizer that uses an
Amazon Cognito user pool to
control access to your API.

For HTTP APIs, specify
request for a Lambda
authorizer with the caller
identity contained in request
parameters. Specify jwt for a
JWT authorizer.

authorizerUri string The Uniform Resource
Identifier (URI) of the

x-amazon-apigateway-authorizer 1193

https://github.com/OAI/OpenAPI-Specification/blob/main/versions/2.0.md#security-scheme-object
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.1.md#security-scheme-object

Amazon API Gateway Developer Guide

Property name Type Description

authorizer Lambda function.
The syntax is as follows:

"arn:aws:apigatewa
y:us-east-1:lambda
:path/2015-03-31/
functions/
arn:aws:lambda:us-
east-1: account-i
d :function: auth_func
tion_name /invocati
ons"

authorizerCredenti
als

string The credentials required
for invoking the authorize
r, if any, in the form
of an ARN of an IAM
execution role. For example,
"arn:aws:iam::account-i
d :IAM_role".

authorizerPayloadF
ormatVersion

string For HTTP APIs, specifies
the format of the data that
API Gateway sends to a
Lambda authorizer, and how
API Gateway interprets the
response from Lambda. To
learn more, see the section
called “Payload format
version”.

x-amazon-apigateway-authorizer 1194

Amazon API Gateway Developer Guide

Property name Type Description

enableSimpleRespon
ses

Boolean For HTTP APIs, specifies
whether a request authorize
r returns a Boolean value or
an IAM policy. Supported
 only for authorizers with
an authorizerPayloadF
ormatVersion of 2.0.
If enabled, the Lambda
authorizer function returns
a Boolean value. To learn
more, see the section called
“Lambda function response
for format 2.0”.

identitySource string A comma-separated list of
mapping expressions of the
request parameters as the
identity source. Applicabl
e for the authorizer of the
request and jwt type only.

jwtConfiguration Object Specifies the issuer and
audiences for a JWT authorize
r. To learn more, see
JWTConfiguration in the
API Gateway Version 2 API
Reference. Supported only for
HTTP APIs.

identityValidation
Expression

string A regular expression for
validating the token as
the incoming identity.
For example, "^x-[a-z]+".
Supported only for REST APIs.

x-amazon-apigateway-authorizer 1195

https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/apis-apiid-authorizers-authorizerid.html#apis-apiid-authorizers-authorizerid-model-jwtconfiguration

Amazon API Gateway Developer Guide

Property name Type Description

authorizerResultTt
lInSeconds

string The number of seconds
during which authorizer result
is cached.

providerARNs An array of string A list of the Amazon Cognito
user pool ARNs for the
COGNITO_USER_POOLS .

x-amazon-apigateway-authorizer examples for REST APIs

The following OpenAPI security definitions example specifies a Lambda authorizer of the "token"
type and named test-authorizer.

 "securityDefinitions" : {
 "test-authorizer" : {
 "type" : "apiKey", // Required and the value must be
 "apiKey" for an API Gateway API.
 "name" : "Authorization", // The name of the header containing
 the authorization token.
 "in" : "header", // Required and the value must be
 "header" for an API Gateway API.
 "x-amazon-apigateway-authtype" : "oauth2", // Specifies the authorization
 mechanism for the client.
 "x-amazon-apigateway-authorizer" : { // An API Gateway Lambda authorizer
 definition
 "type" : "token", // Required property and the value
 must "token"
 "authorizerUri" : "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/
functions/arn:aws:lambda:us-east-1:account-id:function:function-name/invocations",
 "authorizerCredentials" : "arn:aws:iam::account-id:role",
 "identityValidationExpression" : "^x-[a-z]+",
 "authorizerResultTtlInSeconds" : 60
 }
 }
 }

x-amazon-apigateway-authorizer examples for REST APIs 1196

Amazon API Gateway Developer Guide

The following OpenAPI operation object snippet sets the GET /http to use the preceding Lambda
authorizer.

 "/http" : {
 "get" : {
 "responses" : { },
 "security" : [{
 "test-authorizer" : []
 }],
 "x-amazon-apigateway-integration" : {
 "type" : "http",
 "responses" : {
 "default" : {
 "statusCode" : "200"
 }
 },
 "httpMethod" : "GET",
 "uri" : "http://api.example.com"
 }
 }
 }

The following OpenAPI security definitions example specifies a Lambda authorizer of the "request"
type, with a single header parameter (auth) as the identity source. The securityDefinitions is
named request_authorizer_single_header.

"securityDefinitions": {
 "request_authorizer_single_header" : {
 "type" : "apiKey",
 "name" : "auth", // The name of a single header or query parameter
 as the identity source.
 "in" : "header", // The location of the single identity source
 request parameter. The valid value is "header" or "query"
 "x-amazon-apigateway-authtype" : "custom",
 "x-amazon-apigateway-authorizer" : {
 "type" : "request",
 "identitySource" : "method.request.header.auth", // Request parameter mapping
 expression of the identity source. In this example, it is the 'auth' header.
 "authorizerCredentials" : "arn:aws:iam::123456789012:role/AWSepIntegTest-CS-
LambdaRole",

x-amazon-apigateway-authorizer examples for REST APIs 1197

Amazon API Gateway Developer Guide

 "authorizerUri" : "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/
functions/arn:aws:lambda:us-east-1:123456789012:function:APIGateway-Request-
Authorizer:vtwo/invocations",
 "authorizerResultTtlInSeconds" : 300
 }
 }
}

The following OpenAPI security definitions example specifies a Lambda authorizer of the "request"
type, with one header (HeaderAuth1) and one query string parameter QueryString1 as the
identity sources.

"securityDefinitions": {
 "request_authorizer_header_query" : {
 "type" : "apiKey",
 "name" : "Unused", // Must be "Unused" for multiple identity sources
 or non header or query type of request parameters.
 "in" : "header", // Must be "header" for multiple identity sources
 or non header or query type of request parameters.
 "x-amazon-apigateway-authtype" : "custom",
 "x-amazon-apigateway-authorizer" : {
 "type" : "request",
 "identitySource" : "method.request.header.HeaderAuth1,
 method.request.querystring.QueryString1", // Request parameter mapping expressions
 of the identity sources.
 "authorizerCredentials" : "arn:aws:iam::123456789012:role/AWSepIntegTest-CS-
LambdaRole",
 "authorizerUri" : "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/
functions/arn:aws:lambda:us-east-1:123456789012:function:APIGateway-Request-
Authorizer:vtwo/invocations",
 "authorizerResultTtlInSeconds" : 300
 }
 }
}

The following OpenAPI security definitions example specifies an API Gateway Lambda authorizer of
the "request" type, with a single stage variable (stage) as the identity source.

"securityDefinitions": {
 "request_authorizer_single_stagevar" : {
 "type" : "apiKey",

x-amazon-apigateway-authorizer examples for REST APIs 1198

Amazon API Gateway Developer Guide

 "name" : "Unused", // Must be "Unused", for multiple identity sources
 or non header or query type of request parameters.
 "in" : "header", // Must be "header", for multiple identity sources
 or non header or query type of request parameters.
 "x-amazon-apigateway-authtype" : "custom",
 "x-amazon-apigateway-authorizer" : {
 "type" : "request",
 "identitySource" : "stageVariables.stage", // Request parameter mapping
 expression of the identity source. In this example, it is the stage variable.
 "authorizerCredentials" : "arn:aws:iam::123456789012:role/AWSepIntegTest-CS-
LambdaRole",
 "authorizerUri" : "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/
functions/arn:aws:lambda:us-east-1:123456789012:function:APIGateway-Request-
Authorizer:vtwo/invocations",
 "authorizerResultTtlInSeconds" : 300
 }
 }
}

The following OpenAPI security definition example specifies an Amazon Cognito user pool as an
authorizer.

 "securityDefinitions": {
 "cognito-pool": {
 "type": "apiKey",
 "name": "Authorization",
 "in": "header",
 "x-amazon-apigateway-authtype": "cognito_user_pools",
 "x-amazon-apigateway-authorizer": {
 "type": "cognito_user_pools",
 "providerARNs": [
 "arn:aws:cognito-idp:us-east-1:123456789012:userpool/us-east-1_ABC123"
]
 }
 }

The following OpenAPI operation object snippet sets the GET /http to use the preceding Amazon
Cognito user pool as an authorizer, with no custom scopes.

 "/http" : {
 "get" : {

x-amazon-apigateway-authorizer examples for REST APIs 1199

Amazon API Gateway Developer Guide

 "responses" : { },
 "security" : [{
 "cognito-pool" : []
 }],
 "x-amazon-apigateway-integration" : {
 "type" : "http",
 "responses" : {
 "default" : {
 "statusCode" : "200"
 }
 },
 "httpMethod" : "GET",
 "uri" : "http://api.example.com"
 }
 }
 }

x-amazon-apigateway-authorizer examples for HTTP APIs

The following OpenAPI 3.0 example creates a JWT authorizer for an HTTP API that uses Amazon
Cognito as an identity provider, with the Authorization header as an identity source.

"securitySchemes": {
 "jwt-authorizer-oauth": {
 "type": "oauth2",
 "x-amazon-apigateway-authorizer": {
 "type": "jwt",
 "jwtConfiguration": {
 "issuer": "https://cognito-idp.region.amazonaws.com/userPoolId",
 "audience": [
 "audience1",
 "audience2"
]
 },
 "identitySource": "$request.header.Authorization"
 }
 }
}

The following OpenAPI 3.0 example produces the same JWT authorizer as the previous example.
However, this example uses the OpenAPI openIdConnectUrl property to automatically detect
the issuer. The openIdConnectUrl must be fully formed.

x-amazon-apigateway-authorizer examples for HTTP APIs 1200

Amazon API Gateway Developer Guide

"securitySchemes": {
 "jwt-authorizer-autofind": {
 "type": "openIdConnect",
 "openIdConnectUrl": "https://cognito-idp.region.amazonaws.com/userPoolId/.well-
known/openid-configuration",
 "x-amazon-apigateway-authorizer": {
 "type": "jwt",
 "jwtConfiguration": {
 "audience": [
 "audience1",
 "audience2"
]
 },
 "identitySource": "$request.header.Authorization"
 }
 }
}

The following example creates a Lambda authorizer for an HTTP API. This example authorizer uses
the Authorization header as its identity source. The authorizer uses the 2.0 payload format
version, and returns Boolean value, because enableSimpleResponses is set to true.

"securitySchemes" : {
 "lambda-authorizer" : {
 "type" : "apiKey",
 "name" : "Authorization",
 "in" : "header",
 "x-amazon-apigateway-authorizer" : {
 "type" : "request",
 "identitySource" : "$request.header.Authorization",
 "authorizerUri" : "arn:aws:apigateway:us-west-2:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-west-2:123456789012:function:function-name/invocations",
 "authorizerPayloadFormatVersion" : "2.0",
 "authorizerResultTtlInSeconds" : 300,
 "enableSimpleResponses" : true
 }
 }
}

x-amazon-apigateway-authorizer examples for HTTP APIs 1201

Amazon API Gateway Developer Guide

x-amazon-apigateway-authtype property

For REST APIs, this extension can be used to define a custom type of a Lambda authorizer. In this
case, the value is free-form. For example, an API may have multiple Lambda authorizers that use
different internal schemes. You can use this extension to identify the internal scheme of a Lambda
authorizer.

More commonly, in HTTP APIs and REST APIs, it can also be used as a way to define IAM
authorization across several operations that share the same security scheme. In this case, the term
awsSigv4 is a reserved term, along with any term prefixed by aws.

This extension applies to the apiKey type security scheme in OpenAPI 2 and OpenAPI 3.

x-amazon-apigateway-authtype example

The following OpenAPI 3 example defines IAM authorization across multiple resources in a REST
API or HTTP API:

{
 "openapi" : "3.0.1",
 "info" : {
 "title" : "openapi3",
 "version" : "1.0"
 },
 "paths" : {
 "/operation1" : {
 "get" : {
 "responses" : {
 "default" : {
 "description" : "Default response"
 }
 },
 "security" : [{
 "sigv4Reference" : []
 }]
 }
 },
 "/operation2" : {
 "get" : {
 "responses" : {
 "default" : {
 "description" : "Default response"

x-amazon-apigateway-authtype 1202

https://github.com/OAI/OpenAPI-Specification/blob/main/versions/2.0.md#security-scheme-object
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.1.md#security-scheme-object

Amazon API Gateway Developer Guide

 }
 },
 "security" : [{
 "sigv4Reference" : []
 }]
 }
 }
 },
 "components" : {
 "securitySchemes" : {
 "sigv4Reference" : {
 "type" : "apiKey",
 "name" : "Authorization",
 "in" : "header",
 "x-amazon-apigateway-authtype": "awsSigv4"
 }
 }
 }
}

The following OpenAPI 3 example defines a Lambda authorizer with a custom scheme for a REST
API:

{
 "openapi" : "3.0.1",
 "info" : {
 "title" : "openapi3 for REST API",
 "version" : "1.0"
 },
 "paths" : {
 "/protected-by-lambda-authorizer" : {
 "get" : {
 "responses" : {
 "200" : {
 "description" : "Default response"
 }
 },
 "security" : [{
 "myAuthorizer" : []
 }]
 }
 }
 },

x-amazon-apigateway-authtype example 1203

Amazon API Gateway Developer Guide

 "components" : {
 "securitySchemes" : {
 "myAuthorizer" : {
 "type" : "apiKey",
 "name" : "Authorization",
 "in" : "header",
 "x-amazon-apigateway-authorizer" : {
 "identitySource" : "method.request.header.Authorization",
 "authorizerUri" : "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/
functions/arn:aws:lambda:us-east-1:account-id:function:function-name/invocations",
 "authorizerResultTtlInSeconds" : 300,
 "type" : "request",
 "enableSimpleResponses" : false
 },
 "x-amazon-apigateway-authtype": "Custom scheme with corporate claims"
 }
 }
 },
 "x-amazon-apigateway-importexport-version" : "1.0"
}

See also

authorizer.authType

x-amazon-apigateway-binary-media-types property

Specifies the list of binary media types to be supported by API Gateway, such as application/
octet-stream and image/jpeg. This extension is a JSON array. It should be included as a top-
level vendor extension to the OpenAPI document.

x-amazon-apigateway-binary-media-types example

The following example shows the encoding lookup order of an API.

"x-amazon-apigateway-binary-media-types": ["application/octet", "image/jpeg"]

x-amazon-apigateway-documentation object

Defines the documentation parts to be imported into API Gateway. This object is a JSON object
containing an array of the DocumentationPart instances.

See also 1204

https://docs.aws.amazon.com/apigateway/latest/api/API_Authorizer.html#apigw-Type-Authorizer-authType

Amazon API Gateway Developer Guide

Properties

Property name Type Description

documentationParts Array An array of the exported
or imported Documenta
tionPart instances.

version String The version identifier of the
snapshot of the exported
documentation parts.

x-amazon-apigateway-documentation example

The following example of the API Gateway extension to OpenAPI defines DocumentationParts
instances to be imported to or exported from an API in API Gateway.

{ ...
 "x-amazon-apigateway-documentation": {
 "version": "1.0.3",
 "documentationParts": [
 {
 "location": {
 "type": "API"
 },
 "properties": {
 "description": "API description",
 "info": {
 "description": "API info description 4",
 "version": "API info version 3"
 }
 }
 },
 {
 … // Another DocumentationPart instance
 }
]
 }
}

x-amazon-apigateway-documentation example 1205

Amazon API Gateway Developer Guide

x-amazon-apigateway-endpoint-configuration object

Specifies details of the endpoint configuration for an API. This extension is an extended property
of the OpenAPI Operation object. This object should be present in top-level vendor extensions
for Swagger 2.0. For OpenAPI 3.0, it should be present under the vendor extensions of the Server
object.

Properties

Property name Type Description

disableExecuteApiE
ndpoint

Boolean Specifies whether clients
can invoke your API by using
the default execute-a
pi endpoint. By default,
clients can invoke your API
with the default https://
{api_id}.execute-ap
i.{region}.amazona
ws.com endpoint. To require
that clients use a custom
domain name to invoke your
API, specify true.

vpcEndpointIds An array of String A list of VpcEndpoint identifie
rs against which to create
Route 53 alias records for a
REST API. It is only supported
for REST APIs the PRIVATE
endpoint type.

x-amazon-apigateway-endpoint-configuration examples

The following example associates specified VPC endpoints to the REST API.

"x-amazon-apigateway-endpoint-configuration": {
 "vpcEndpointIds": ["vpce-0212a4ababd5b8c3e", "vpce-01d622316a7df47f9"]

x-amazon-apigateway-endpoint-configuration 1206

https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.0.md#operation-object
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/2.0.md#specification-extensions
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.0.md#server-object
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.0.md#server-object

Amazon API Gateway Developer Guide

}

The following example disables the default endpoint for an API.

"x-amazon-apigateway-endpoint-configuration": {
 "disableExecuteApiEndpoint": true
}

x-amazon-apigateway-gateway-responses object

Defines the gateway responses for an API as a string-to-GatewayResponse map of key-value pairs.
The extension applies to the root-level OpenAPI structure.

Properties

Property name Type Description

responseType x-amazon-apigateway-
gateway-responses.gateway
Response

A GatewayResponse for
the specified responseT
ype .

x-amazon-apigateway-gateway-responses example

The following API Gateway extension to OpenAPI example defines a GatewayResponses map that
contains two GatewayResponse instances—one for the DEFAULT_4XX type and another for the
INVALID_API_KEY type.

{
 "x-amazon-apigateway-gateway-responses": {
 "DEFAULT_4XX": {
 "responseParameters": {
 "gatewayresponse.header.Access-Control-Allow-Origin": "'domain.com'"
 },
 "responseTemplates": {
 "application/json": "{\"message\": test 4xx b }"
 }
 },
 "INVALID_API_KEY": {
 "statusCode": "429",
 "responseTemplates": {

x-amazon-apigateway-gateway-responses 1207

https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_GetGatewayResponses.html
https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html

Amazon API Gateway Developer Guide

 "application/json": "{\"message\": test forbidden }"
 }
 }
 }
}

x-amazon-apigateway-gateway-responses.gatewayResponse
object

Defines a gateway response of a given response type, including the status code, any applicable
response parameters, or response templates.

Properties

Property name Type Description

responseParameters x-amazon-apigateway-
gateway-responses.respons
eParameters

Specifies the GatewayRe
sponse parameters, namely
the header parameters.
The parameter values can
take any incoming request
parameter value or a static
custom value.

responseTemplates x-amazon-apigateway-
gateway-responses.respons
eTemplates

Specifies the mapping
templates of the gateway
response. The templates are
not processed by the VTL
engine.

statusCode string An HTTP status code for the
gateway response.

x-amazon-apigateway-gateway-responses.gatewayResponse example

The following example of the API Gateway extension to OpenAPI defines a GatewayResponse
to customize the INVALID_API_KEY response to return the status code of 456, the incoming
request's api-key header value, and a "Bad api-key" message.

x-amazon-apigateway-gateway-responses.gatewayResponse 1208

https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html

Amazon API Gateway Developer Guide

 "INVALID_API_KEY": {
 "statusCode": "456",
 "responseParameters": {
 "gatewayresponse.header.api-key": "method.request.header.api-key"
 },
 "responseTemplates": {
 "application/json": "{\"message\": \"Bad api-key\" }"
 }
 }

x-amazon-apigateway-gateway-responses.responseParameters
object

Defines a string-to-string map of key-value pairs to generate gateway response parameters from
the incoming request parameters or using literal strings. Supported only for REST APIs.

Properties

Property name Type Description

gatewayre
sponse. param-pos
ition .param-name

string param-position can be
header, path, or querystri
ng . For more information,
see Map method request
data to integration request
parameters.

x-amazon-apigateway-gateway-responses.responseParameters
example

The following OpenAPI extensions example shows a GatewayResponse response parameter
mapping expression to enable CORS support for resources on the *.example.domain domains.

 "responseParameters": {
 "gatewayresponse.header.Access-Control-Allow-Origin": '*.example.domain',
 "gatewayresponse.header.from-request-header" : method.request.header.Accept,

x-amazon-apigateway-gateway-responses.responseParameters 1209

https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html

Amazon API Gateway Developer Guide

 "gatewayresponse.header.from-request-path" : method.request.path.petId,
 "gatewayresponse.header.from-request-query" : method.request.querystring.qname
 }

x-amazon-apigateway-gateway-responses.responseTemplates
object

Defines GatewayResponse mapping templates, as a string-to-string map of key-value pairs, for
a given gateway response. For each key-value pair, the key is the content type. For example,
"application/json" and the value is a stringified mapping template for simple variable substitutions.
A GatewayResponse mapping template isn't processed by the Velocity Template Language (VTL)
engine.

Properties

Property name Type Description

content-type string A GatewayResponse body
mapping template supporting
only simple variable substitut
ion to customize a gateway
response body.

x-amazon-apigateway-gateway-responses.responseTemplates example

The following OpenAPI extensions example shows a GatewayResponse mapping template to
customize an API Gateway–generated error response into an app-specific format.

 "responseTemplates": {
 "application/json": "{ \"message\": $context.error.messageString, \"type\":
$context.error.responseType, \"statusCode\": '488' }"
 }

The following OpenAPI extensions example shows a GatewayResponse mapping template to
override an API Gateway–generated error response with a static error message.

x-amazon-apigateway-gateway-responses.responseTemplates 1210

https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html
https://velocity.apache.org/engine/devel/vtl-reference.html
https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_GatewayResponse.html

Amazon API Gateway Developer Guide

 "responseTemplates": {
 "application/json": "{ \"message\": 'API-specific errors' }"
 }

x-amazon-apigateway-importexport-version

Specifies the version of the API Gateway import and export algorithm for HTTP APIs. Currently,
the only supported value is 1.0. To learn more, see exportVersion in the API Gateway Version 2 API
Reference.

x-amazon-apigateway-importexport-version example

The following example sets the import and export version to 1.0.

{
 "openapi": "3.0.1",
 "x-amazon-apigateway-importexport-version": "1.0",
 "info": { ...

x-amazon-apigateway-integration object

Specifies details of the backend integration used for this method. This extension is an extended
property of the OpenAPI Operation object. The result is an API Gateway integration object.

Properties

Property name Type Description

cacheKeyParameters An array of string A list of request parameter
s whose values are to be
cached.

cacheNamespace string An API-specific tag group of
related cached parameters.

connectionId string The ID of a VpcLink for the
private integration.

x-amazon-apigateway-importexport-version 1211

https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/apis-apiid-exports-specification.html#w125aab9c10b3b1b4
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/2.0.md#operation-object
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html
https://docs.aws.amazon.com/apigateway/latest/api/API_VpcLink.html

Amazon API Gateway Developer Guide

Property name Type Description

connectionType string The integration connectio
n type. The valid value is
"VPC_LINK" for private
integration or "INTERNET" ,
otherwise.

credentials string For AWS IAM role-based
credentials, specify the ARN
of an appropriate IAM role.
If unspecified, credentials
default to resource-based
permissions that must be
added manually to allow the
API to access the resource.
For more information, see
Granting Permissions Using a
Resource Policy.

Note: When using IAM
credentials, make sure that
AWS STS Regional endpoints
 are enabled for the Region
where this API is deployed for
best performance.

x-amazon-apigateway-integration 1212

https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html

Amazon API Gateway Developer Guide

Property name Type Description

contentHandling string Request payload encoding
conversion types. Valid values
are 1) CONVERT_TO_TEXT ,
for converting a binary
payload into a base64-en
coded string or converting a
text payload into a utf-8-
encoded string or passing
through the text payload
natively without modificat
ion, and 2) CONVERT_T
O_BINARY , for converting a
text payload into a base64-
decoded blob or passing
through a binary payload
natively without modification.

httpMethod string The HTTP method used in
the integration request. For
Lambda function invocations,
the value must be POST.

integrationSubtype string Specifies the integration
subtype for an AWS service
integration. Supported only
for HTTP APIs. For supported
integration subtypes, see the
section called “AWS service
integrations reference”.

x-amazon-apigateway-integration 1213

Amazon API Gateway Developer Guide

Property name Type Description

passthroughBehavior string Specifies how a request
payload of unmapped
content type is passed
through the integration
request without modificat
ion. Supported values are
when_no_templates ,
when_no_match , and
never. For more informati
on, see Integration.passth
roughBehavior.

payloadFormatVersion string Specifies the format of the
payload sent to an integrati
on. Required for HTTP APIs.
For HTTP APIs, supported
values for Lambda proxy
integrations are 1.0 and 2.0.
For all other integrations, 1.0
is the only supported value.
To learn more, see the section
called “AWS Lambda integrati
ons” and the section called
“AWS service integrations
reference”.

x-amazon-apigateway-integration 1214

https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html#passthroughBehavior
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html#passthroughBehavior

Amazon API Gateway Developer Guide

Property name Type Description

requestParameters x-amazon-apigateway-integra
tion.requestParameters object

For REST APIs, specifies
mappings from method
request parameters to
integration request parameter
s. Supported request
parameters are querystri
ng , path, header, and
body.

For HTTP APIs, request
parameters are a key-
value map specifying
parameters that are passed
to AWS_PROXY integrations
with a specified integrati
onSubtype . You can
provide static values, or map
request data, stage variables
, or context variables that are
evaluated at runtime. To learn
more, see the section called
“AWS service integrations”.

requestTemplates x-amazon-apigateway-integra
tion.requestTemplates object

Mapping templates for a
request payload of specified
MIME types.

responses x-amazon-apigateway-integra
tion.responses object

Defines the method's
responses and specifies
desired parameter mappings
or payload mappings from
integration responses to
method responses.

x-amazon-apigateway-integration 1215

Amazon API Gateway Developer Guide

Property name Type Description

timeoutInMillis integer Integration timeouts between
50 ms and 29,000 ms.

type string The type of integration with
the specified backend. Valid
values are:

• http or http_proxy , for
integration with an HTTP
backend.

• aws_proxy , for integrati
on with AWS Lambda
functions.

• aws, for integration with
AWS Lambda functions or
other AWS services, such
as Amazon DynamoDB,
Amazon Simple Notification
Service, or Amazon Simple
Queue Service.

• mock, for integration
with API Gateway without
invoking any backend.

For more information about
the integration types, see
integration:type.

tlsConfig the section called “x-amazon
-apigateway-integration.tls
Config”

Specifies the TLS configura
tion for an integration.

x-amazon-apigateway-integration 1216

https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html#type

Amazon API Gateway Developer Guide

Property name Type Description

uri string The endpoint URI of the
backend. For integrations of
the aws type, this is an ARN
value. For the HTTP integrati
on, this is the URL of the
HTTP endpoint including the
https or http scheme.

x-amazon-apigateway-integration examples

For HTTP APIs, you can define integrations in the components section of your OpenAPI definition.
To learn more, see x-amazon-apigateway-integrations object.

"x-amazon-apigateway-integration": {
 "$ref": "#/components/x-amazon-apigateway-integrations/integration1"
}

The following example creates an integration with a Lambda function. For demonstration
purposes, the sample mapping templates shown in requestTemplates and
responseTemplates of the examples below are assumed to apply to the following
JSON-formatted payload: { "name":"value_1", "key":"value_2", "redirect":
{"url" :"..."} } to generate a JSON output of { "stage":"value_1", "user-
id":"value_2" } or an XML output of <stage>value_1</stage>.

"x-amazon-apigateway-integration" : {
 "type" : "aws",
 "uri" : "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-east-1:012345678901:function:HelloWorld/invocations",
 "httpMethod" : "POST",
 "credentials" : "arn:aws:iam::012345678901:role/apigateway-invoke-lambda-exec-
role",
 "requestTemplates" : {
 "application/json" : "#set ($root=$input.path('$')) { \"stage\":
 \"$root.name\", \"user-id\": \"$root.key\" }",
 "application/xml" : "#set ($root=$input.path('$')) <stage>$root.name</
stage> "

x-amazon-apigateway-integration examples 1217

Amazon API Gateway Developer Guide

 },
 "requestParameters" : {
 "integration.request.path.stage" : "method.request.querystring.version",
 "integration.request.querystring.provider" :
 "method.request.querystring.vendor"
 },
 "cacheNamespace" : "cache namespace",
 "cacheKeyParameters" : [],
 "responses" : {
 "2\\d{2}" : {
 "statusCode" : "200",
 "responseParameters" : {
 "method.response.header.requestId" : "integration.response.header.cid"
 },
 "responseTemplates" : {
 "application/json" : "#set ($root=$input.path('$')) { \"stage\":
 \"$root.name\", \"user-id\": \"$root.key\" }",
 "application/xml" : "#set ($root=$input.path('$')) <stage>$root.name</
stage> "
 }
 },
 "302" : {
 "statusCode" : "302",
 "responseParameters" : {
 "method.response.header.Location" :
 "integration.response.body.redirect.url"
 }
 },
 "default" : {
 "statusCode" : "400",
 "responseParameters" : {
 "method.response.header.test-method-response-header" : "'static value'"
 }
 }
 }
}

Note that double quotes (") for the JSON string in the mapping templates must be string-escaped
(\").

x-amazon-apigateway-integration examples 1218

Amazon API Gateway Developer Guide

x-amazon-apigateway-integrations object

Defines a collection of integrations. You can define integrations in the components section of your
OpenAPI definition, and reuse the integrations for multiple routes. Supported only for HTTP APIs.

Properties

Property name Type Description

integration x-amazon-apigateway-integra
tion object

A collection of integration
objects.

x-amazon-apigateway-integrations example

The following example creates an HTTP API that defines two integrations, and references
the integrations by using $ref": "#/components/x-amazon-apigateway-
integrations/integration-name.

{
 "openapi": "3.0.1",
 "info":
 {
 "title": "Integrations",
 "description": "An API that reuses integrations",
 "version": "1.0"
 },
 "servers": [
 {
 "url": "https://example.com/{basePath}",
 "description": "The production API server",
 "variables":
 {
 "basePath":
 {
 "default": "example/path"
 }
 }
 }],
 "paths":
 {
 "/":

x-amazon-apigateway-integrations 1219

Amazon API Gateway Developer Guide

 {
 "get":
 {
 "x-amazon-apigateway-integration":
 {
 "$ref": "#/components/x-amazon-apigateway-integrations/integration1"

 }
 }
 },
 "/pets":
 {
 "get":
 {
 "x-amazon-apigateway-integration":
 {
 "$ref": "#/components/x-amazon-apigateway-integrations/integration1"

 }
 }
 },
 "/checkout":
 {
 "get":
 {
 "x-amazon-apigateway-integration":
 {
 "$ref": "#/components/x-amazon-apigateway-integrations/integration2"
 }
 }
 }
 },
 "components": {
 "x-amazon-apigateway-integrations":
 {
 "integration1":
 {
 "type": "aws_proxy",
 "httpMethod": "POST",
 "uri": "arn:aws:apigateway:us-east-2:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-east-2:123456789012:function:my-function/invocations",
 "passthroughBehavior": "when_no_templates",
 "payloadFormatVersion": "1.0"
 },

x-amazon-apigateway-integrations example 1220

Amazon API Gateway Developer Guide

 "integration2":
 {
 "type": "aws_proxy",
 "httpMethod": "POST",
 "uri": "arn:aws:apigateway:us-east-2:lambda:path/2015-03-31/functions/
arn:aws:lambda:us-east-2:123456789012:function:example-function/invocations",
 "passthroughBehavior": "when_no_templates",
 "payloadFormatVersion" : "1.0"
 }
 }
 }
}

x-amazon-apigateway-integration.requestTemplates object

Specifies mapping templates for a request payload of the specified MIME types.

Properties

Property name Type Description

MIME type string An example of the MIME type
is application/json . For
information about creating
a mapping template, see
PetStore mapping template.

x-amazon-apigateway-integration.requestTemplates example

The following example sets mapping templates for a request payload of the application/json
and application/xml MIME types.

"requestTemplates" : {
 "application/json" : "#set ($root=$input.path('$')) { \"stage\": \"$root.name\",
 \"user-id\": \"$root.key\" }",
 "application/xml" : "#set ($root=$input.path('$')) <stage>$root.name</stage> "

x-amazon-apigateway-integration.requestTemplates 1221

Amazon API Gateway Developer Guide

}

x-amazon-apigateway-integration.requestParameters object

For REST APIs, specifies mappings from named method request parameters to integration request
parameters. The method request parameters must be defined before being referenced.

For HTTP APIs, specifies parameters that are passed to AWS_PROXY integrations with a specified
integrationSubtype.

Properties

Property name Type Description

integration.reques
t. <param-ty
pe> .<param-name>

string For REST APIs, the value
is typically a predefined
method request parameter
of the method.re
quest. <param-ty
pe> .<param-na
me> format, where
<param-type> can be
querystring , path,
header, or body. However,
$context. VARIABLE_
NAME , $stageVar
iables. VARIABLE_NAME ,
and STATIC_VALUE are also
valid. For the body parameter
, the <param-name> is a
JSON path expression without
the $. prefix.

parameter string For HTTP APIs, request
parameters are a key-
value map specifying

x-amazon-apigateway-integration.requestParameters 1222

Amazon API Gateway Developer Guide

Property name Type Description

parameters that are passed
to AWS_PROXY integrations
with a specified integrati
onSubtype . You can
provide static values, or map
request data, stage variables
, or context variables that are
evaluated at runtime. To learn
more, see the section called
“AWS service integrations”.

x-amazon-apigateway-integration.requestParameters example

The following request parameter mappings example translates a method request's query
(version), header (x-user-id), and path (service) parameters to the integration request's
query (stage), header (x-userid), and path parameters (op), respectively.

Note

If you're creating resources through OpenAPI or AWS CloudFormation, static values should
be enclosed in single quotes.
To add this value from the console, enter application/json in the box, without
quotation marks.

"requestParameters" : {
 "integration.request.querystring.stage" : "method.request.querystring.version",
 "integration.request.header.x-userid" : "method.request.header.x-user-id",
 "integration.request.path.op" : "method.request.path.service"
},

x-amazon-apigateway-integration.requestParameters example 1223

Amazon API Gateway Developer Guide

x-amazon-apigateway-integration.responses object

Defines the method's responses and specifies parameter mappings or payload mappings from
integration responses to method responses.

Properties

Property name Type Description

Response status
pattern

x-amazon-apigateway-integra
tion.response object

Either a regular expression
used to match the integrati
on response to the method
response, or default to
catch any response that you
haven't configured. For HTTP
integrations, the regex applies
to the integration response
status code. For Lambda
invocations, the regex applies
to the errorMessage
field of the error informati
on object returned by AWS
Lambda as a failure response
body when the Lambda
function execution throws an
exception.

Note

The Response
status pattern
property name refers
to a response status
code or regular
expression describin
g a group of response
status codes. It does
not correspond to

x-amazon-apigateway-integration.responses 1224

Amazon API Gateway Developer Guide

Property name Type Description

any identifier of an
IntegrationRespons
e resource in the API
Gateway REST API.

x-amazon-apigateway-integration.responses example

The following example shows a list of responses from 2xx and 302 responses. For the 2xx
response, the method response is mapped from the integration response's payload of the
application/json or application/xml MIME type. This response uses the supplied mapping
templates. For the 302 response, the method response returns a Location header whose value is
derived from the redirect.url property on the integration response's payload.

"responses" : {
 "2\\d{2}" : {
 "statusCode" : "200",
 "responseTemplates" : {
 "application/json" : "#set ($root=$input.path('$')) { \"stage\":
 \"$root.name\", \"user-id\": \"$root.key\" }",
 "application/xml" : "#set ($root=$input.path('$')) <stage>$root.name</
stage> "
 }
 },
 "302" : {
 "statusCode" : "302",
 "responseParameters" : {
 "method.response.header.Location": "integration.response.body.redirect.url"
 }
 }
}

x-amazon-apigateway-integration.responses example 1225

https://docs.aws.amazon.com/apigateway/api-reference/resource/integration-response/
https://docs.aws.amazon.com/apigateway/api-reference/resource/integration-response/

Amazon API Gateway Developer Guide

x-amazon-apigateway-integration.response object

Defines a response and specifies parameter mappings or payload mappings from the integration
response to the method response.

Properties

Property name Type Description

statusCode string HTTP status code for the
method response; for
example, "200". This must
correspond to a matching
response in the OpenAPI
Operation responses field.

responseTemplates x-amazon-apigateway-integra
tion.responseTemplates
object

Specifies MIME type-specific
mapping templates for the
response’s payload.

responseParameters x-amazon-apigateway-integra
tion.responseParameters
object

Specifies parameter mappings
for the response. Only the
header and body parameter
s of the integration response
can be mapped to the
header parameters of the
method.

contentHandling string Response payload encoding
conversion types. Valid values
are 1) CONVERT_TO_TEXT ,
for converting a binary
payload into a base64-en
coded string or converting a
text payload into a utf-8-
encoded string or passing
through the text payload
natively without modificat

x-amazon-apigateway-integration.response 1226

https://github.com/OAI/OpenAPI-Specification/blob/main/versions/2.0.md#operation-object
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/2.0.md#operation-object

Amazon API Gateway Developer Guide

Property name Type Description

ion, and 2) CONVERT_T
O_BINARY , for converting a
text payload into a base64-
decoded blob or passing
through a binary payload
natively without modification.

x-amazon-apigateway-integration.response example

The following example defines a 302 response for the method that derives a payload of the
application/json or application/xml MIME type from the backend. The response uses the
supplied mapping templates and returns the redirect URL from the integration response in the
method's Location header.

{
 "statusCode" : "302",
 "responseTemplates" : {
 "application/json" : "#set ($root=$input.path('$')) { \"stage\": \"$root.name
\", \"user-id\": \"$root.key\" }",
 "application/xml" : "#set ($root=$input.path('$')) <stage>$root.name</stage> "
 },
 "responseParameters" : {
 "method.response.header.Location": "integration.response.body.redirect.url"
 }
}

x-amazon-apigateway-integration.responseTemplates object

Specifies mapping templates for a response payload of the specified MIME types.

x-amazon-apigateway-integration.response example 1227

Amazon API Gateway Developer Guide

Properties

Property name Type Description

MIME type string Specifies a mapping template
to transform the integrati
on response body to the
method response body
for a given MIME type. For
information about creating
a mapping template, see
PetStore mapping template.
An example of the MIME
type is application/
json.

x-amazon-apigateway-integration.responseTemplate example

The following example sets mapping templates for a request payload of the application/json
and application/xml MIME types.

"responseTemplates" : {
 "application/json" : "#set ($root=$input.path('$')) { \"stage\": \"$root.name\",
 \"user-id\": \"$root.key\" }",
 "application/xml" : "#set ($root=$input.path('$')) <stage>$root.name</stage> "
}

x-amazon-apigateway-integration.responseParameters object

Specifies mappings from integration method response parameters to method response
parameters. You can map header, body, or static values to the header type of the method
response. Supported only for REST APIs.

x-amazon-apigateway-integration.responseTemplate example 1228

Amazon API Gateway Developer Guide

Properties

Property name Type Description

method.response.he
ader. <param-name>

string The named parameter value
can be derived from the
header and body types of
the integration response
parameters.

x-amazon-apigateway-integration.responseParameters
example

The following example maps body and header parameters of the integration response to two
header parameters of the method response.

"responseParameters" : {
 "method.response.header.Location" : "integration.response.body.redirect.url",
 "method.response.header.x-user-id" : "integration.response.header.x-userid"
}

x-amazon-apigateway-integration.tlsConfig object

Specifies the TLS configuration for an integration.

Properties

Property name Type Description

insecureSkipVerifi
cation

Boolean Supported only for REST
APIs. Specifies whether or not
API Gateway skips verificat
ion that the certificate for
an integration endpoint
is issued by a supported
certificate authority. This isn’t

x-amazon-apigateway-integration.responseParameters example 1229

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-supported-certificate-authorities-for-http-endpoints.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-supported-certificate-authorities-for-http-endpoints.html

Amazon API Gateway Developer Guide

Property name Type Description

recommended, but it enables
you to use certificates that
are signed by private certifica
te authorities, or certifica
tes that are self-signed. If
enabled, API Gateway still
performs basic certificate
validation, which includes
checking the certificate's
expiration date, hostname,
and presence of a root
certificate authority. The root
certificate belonging to the
private authority must satisfy
the following constraints:

• x509 extension keyUsage
must have keyCertSign .

• x509 extension basicCons
traints must have
CA:TRUE.

Supported only for HTTP and
HTTP_PROXY integrations.

Warning

Enabling insecureS
kipVerification
isn't recommended,
especially for integrati
ons with public HTTPS
endpoints. If you
enable insecureS
kipVerifi

x-amazon-apigateway-integration.tlsConfig 1230

Amazon API Gateway Developer Guide

Property name Type Description

cation , you
increase the risk of
man-in-the-middle
attacks.

serverNameToVerify string Supported only for HTTP API
private integrations. If you
specify a server name, API
Gateway uses it to verify the
hostname on the integrati
on's certificate. The server
name is also included in the
TLS handshake to support
Server Name Indication (SNI)
or virtual hosting.

x-amazon-apigateway-integration.tlsConfig examples

The following OpenAPI 3.0 example enables insecureSkipVerification for a REST API HTTP
proxy integration.

"x-amazon-apigateway-integration": {
 "uri": "http://petstore-demo-endpoint.execute-api.com/petstore/pets",
 "responses": {
 default": {
 "statusCode": "200"
 }
 },
 "passthroughBehavior": "when_no_match",
 "httpMethod": "ANY",
 "tlsConfig" : {
 "insecureSkipVerification" : true
 }
 "type": "http_proxy",
}

x-amazon-apigateway-integration.tlsConfig examples 1231

Amazon API Gateway Developer Guide

The following OpenAPI 3.0 example specifies a serverNameToVerify for an HTTP API private
integration.

"x-amazon-apigateway-integration" : {
 "payloadFormatVersion" : "1.0",
 "connectionId" : "abc123",
 "type" : "http_proxy",
 "httpMethod" : "ANY",
 "uri" : "arn:aws:elasticloadbalancing:us-west-2:123456789012:listener/app/my-load-
balancer/50dc6c495c0c9188/0467ef3c8400ae65",
 "connectionType" : "VPC_LINK",
 "tlsConfig" : {
 "serverNameToVerify" : "example.com"
 }
}

x-amazon-apigateway-minimum-compression-size

Specifies the minimum compression size for a REST API. To enable compression, specify an integer
between 0 and 10485760. To learn more, see Enabling payload compression for an API.

x-amazon-apigateway-minimum-compression-size example

The following example specifies a minimum compression size of 5242880 bytes for a REST API.

"x-amazon-apigateway-minimum-compression-size": 5242880

x-amazon-apigateway-policy

Specifies a resource policy for a REST API. To learn more about resource policies, see Controlling
access to an API with API Gateway resource policies. For resource policy examples, see API Gateway
resource policy examples.

x-amazon-apigateway-policy example

The following example specifies a resource policy for a REST API. The resource policy denies
(blocks) incoming traffic to an API from a specified source IP address block. On import, "execute-
api:/*" is converted to arn:aws:execute-api:region:account-id:api-id/*, using the
current Region, your AWS account ID, and the current REST API ID.

x-amazon-apigateway-minimum-compression-size 1232

Amazon API Gateway Developer Guide

"x-amazon-apigateway-policy": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "execute-api:Invoke",
 "Resource": [
 "execute-api:/*"
]
 },
 {
 "Effect": "Deny",
 "Principal": "*",
 "Action": "execute-api:Invoke",
 "Resource": [
 "execute-api:/*"
],
 "Condition" : {
 "IpAddress": {
 "aws:SourceIp": "192.0.2.0/24"
 }
 }
 }
]
}

x-amazon-apigateway-request-validator property

Specifies a request validator, by referencing a request_validator_name of the x-amazon-
apigateway-request-validators object map, to enable request validation on the containing API or a
method. The value of this extension is a JSON string.

This extension can be specified at the API level or at the method level. The API-level validator
applies to all of the methods unless it is overridden by the method-level validator.

x-amazon-apigateway-request-validator example

The following example applies the basic request validator at the API level while applying the
parameter-only request validator on the POST /validation request.

x-amazon-apigateway-request-validator 1233

Amazon API Gateway Developer Guide

OpenAPI 2.0

{
 "swagger": "2.0",
 "x-amazon-apigateway-request-validators" : {
 "basic" : {
 "validateRequestBody" : true,
 "validateRequestParameters" : true
 },
 "params-only" : {
 "validateRequestBody" : false,
 "validateRequestParameters" : true
 }
 },
 "x-amazon-apigateway-request-validator" : "basic",
 "paths": {
 "/validation": {
 "post": {
 "x-amazon-apigateway-request-validator" : "params-only",
 ...
 }
}

x-amazon-apigateway-request-validators object

Defines the supported request validators for the containing API as a map between a validator
name and the associated request validation rules. This extension applies to a REST API.

Properties

Property name Type Description

request_validator_
name

x-amazon-apigateway-
request-validators.reques
tValidator object

Specifies the validation rules
consisting of the named
validator. For example:

 "basic" : {
 "validate
RequestBody" : true,

x-amazon-apigateway-request-validators 1234

Amazon API Gateway Developer Guide

Property name Type Description

 "validate
RequestParameters" :
 true
 },

To apply this validator to a
specific method, reference
the validator name (basic)
as the value of the x-amazon-
apigateway-request-validator
property property.

x-amazon-apigateway-request-validators example

The following example shows a set of request validators for an API as a map between a validator
name and the associated request validation rules.

OpenAPI 2.0

{
 "swagger": "2.0",
 ...
 "x-amazon-apigateway-request-validators" : {
 "basic" : {
 "validateRequestBody" : true,
 "validateRequestParameters" : true
 },
 "params-only" : {
 "validateRequestBody" : false,
 "validateRequestParameters" : true
 }
 },
 ...
}

x-amazon-apigateway-request-validators example 1235

Amazon API Gateway Developer Guide

x-amazon-apigateway-request-validators.requestValidator
object

Specifies the validation rules of a request validator as part of the x-amazon-apigateway-request-
validators object map definition.

Properties

Property name Type Description

validateRequestBody Boolean Specifies whether to validate
the request body (true) or
not (false).

validateRequestPar
ameters

Boolean Specifies whether to
validate the required request
parameters (true) or not
(false).

x-amazon-apigateway-request-validators.requestValidator
example

The following example shows a parameter-only request validator:

"params-only": {
 "validateRequestBody" : false,
 "validateRequestParameters" : true
}

x-amazon-apigateway-tag-value property

Specifies the value of an AWS tag for an HTTP API. You can use the x-amazon-apigateway-tag-
value property as part of the root-level OpenAPI tag object to specify AWS tags for an HTTP API.
If you specify a tag name without the x-amazon-apigateway-tag-value property, API Gateway
creates a tag with an empty string for a value.

To learn more about tagging, see Tagging your API Gateway resources.

x-amazon-apigateway-request-validators.requestValidator 1236

https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.0.md#tag-object

Amazon API Gateway Developer Guide

Properties

Property name Type Description

name String Specifies the tag key.

x-amazon-apigateway-
tag-value

String Specifies the tag value.

x-amazon-apigateway-tag-value example

The following example specifies two tags for an HTTP API:

• "Owner": "Admin"

• "Prod": ""

"tags": [
 {
 "name": "Owner",
 "x-amazon-apigateway-tag-value": "Admin"
 },
 {
 "name": "Prod"
 }
]

x-amazon-apigateway-tag-value example 1237

Amazon API Gateway Developer Guide

Security in Amazon API Gateway

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Amazon API
Gateway, see AWS services in scope by compliance program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using API Gateway. The following topics show you how to configure API Gateway to meet your
security and compliance objectives. You also learn how to use other AWS services that help you to
monitor and secure your API Gateway resources.

For more information, see Security Overview of Amazon API Gateway.

Topics

• Data protection in Amazon API Gateway

• Identity and access management for Amazon API Gateway

• Logging and monitoring in Amazon API Gateway

• Compliance validation for Amazon API Gateway

• Resilience in Amazon API Gateway

• Infrastructure security in Amazon API Gateway

• Vulnerability analysis in Amazon API Gateway

• Security best practices in Amazon API Gateway

1238

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://d1.awsstatic.com/whitepapers/api-gateway-security.pdf

Amazon API Gateway Developer Guide

Data protection in Amazon API Gateway

The AWS shared responsibility model applies to data protection in Amazon API Gateway. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with API Gateway or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

Data encryption in Amazon API Gateway

Data protection refers to protecting data while in transit (as it travels to and from API Gateway)
and at rest (while it is stored in AWS).

Data protection 1239

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

Amazon API Gateway Developer Guide

Data encryption at rest in Amazon API Gateway

If you choose to enable caching for a REST API, you can enable cache encryption. To learn more,
see Enabling API caching to enhance responsiveness.

For more information about data protection, see the AWS Shared Responsibility Model and GDPR
blog post on the AWS Security Blog.

Data encryption in transit in Amazon API Gateway

The APIs created with Amazon API Gateway expose HTTPS endpoints only. API Gateway doesn't
support unencrypted (HTTP) endpoints.

API Gateway manages the certificates for default execute-api endpoints. If you configure a
custom domain name, you specify the certificate for the domain name. As a best practice, don't pin
certificates.

For greater security, you can choose a minimum Transport Layer Security (TLS) protocol version to
be enforced for your API Gateway custom domain. WebSocket APIs and HTTP APIs support only
TLS 1.2. To learn more, see Choosing a security policy for your custom domain in API Gateway.

You can also set up a Amazon CloudFront distribution with a custom SSL certificate in your account
and use it with Regional APIs. You can then configure the security policy for the CloudFront
distribution with TLS 1.1 or higher based on your security and compliance requirements.

For more information about data protection, see Protecting your REST API and the AWS Shared
Responsibility Model and GDPR blog post on the AWS Security Blog.

Internetwork traffic privacy

Using Amazon API Gateway, you can create private REST APIs that can be accessed only from
your Amazon Virtual Private Cloud (VPC). The VPC uses an interface VPC endpoint, which is an
endpoint network interface that you create in your VPC. Using resource policies, you can allow or
deny access to your API from selected VPCs and VPC endpoints, including across AWS accounts.
Each endpoint can be used to access multiple private APIs. You can also use AWS Direct Connect to
establish a connection from an on-premises network to Amazon VPC and access your private API
over that connection. In all cases, traffic to your private API uses secure connections and does not
leave the Amazon network; it is isolated from the public internet. To learn more, see the section
called “Private APIs”.

Internetwork traffic privacy 1240

https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/acm/latest/userguide/troubleshooting-pinning.html
https://docs.aws.amazon.com/acm/latest/userguide/troubleshooting-pinning.html
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html

Amazon API Gateway Developer Guide

Identity and access management for Amazon API Gateway

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use API Gateway resources. IAM is an AWS service that you
can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon API Gateway works with IAM

• Amazon API Gateway identity-based policy examples

• Amazon API Gateway resource-based policy examples

• Troubleshooting Amazon API Gateway identity and access

• Using service-linked roles for API Gateway

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in API Gateway.

Service user – If you use the API Gateway service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more API Gateway features to
do your work, you might need additional permissions. Understanding how access is managed can
help you request the right permissions from your administrator. If you cannot access a feature in
API Gateway, see Troubleshooting Amazon API Gateway identity and access.

Service administrator – If you're in charge of API Gateway resources at your company, you
probably have full access to API Gateway. It's your job to determine which API Gateway features
and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
API Gateway, see How Amazon API Gateway works with IAM.

Identity and access management 1241

Amazon API Gateway Developer Guide

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to API Gateway. To view example API Gateway identity-based
policies that you can use in IAM, see Amazon API Gateway identity-based policy examples.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For

Authenticating with identities 1242

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

Amazon API Gateway Developer Guide

the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

Authenticating with identities 1243

https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

Amazon API Gateway Developer Guide

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using

Authenticating with identities 1244

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

Amazon API Gateway Developer Guide

an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose

Managing access using policies 1245

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Amazon API Gateway Developer Guide

between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a

Managing access using policies 1246

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

Amazon API Gateway Developer Guide

service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon API Gateway works with IAM

Before you use IAM to manage access to API Gateway, you should understand what IAM features
are available to use with API Gateway. To get a high-level view of how API Gateway and other AWS
services work with IAM, see AWS Services That Work with IAM in the IAM User Guide.

Topics

• API Gateway identity-based policies

• API Gateway resource-based policies

• Authorization based on API Gateway tags

• API Gateway IAM roles

API Gateway identity-based policies

With IAM identity-based policies, you can specify which actions and resources are allowed or
denied as well as the conditions under which actions are allowed or denied. API Gateway supports
specific actions, resources, and condition keys. For more information about the API Gateway-
specific actions, resources, and condition keys, see Actions, resources, and condition keys for
Amazon API Gateway Management and Actions, resources, and condition keys for Amazon API

How Amazon API Gateway works with IAM 1247

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonapigatewaymanagement.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonapigatewaymanagement.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonapigatewaymanagementv2.html

Amazon API Gateway Developer Guide

Gateway Management V2. For information about all of the elements that you use in a JSON policy,
see IAM JSON Policy Elements Reference in the IAM User Guide.

The following example shows an identity-based policy that allows a user to create or update only
private REST APIs. For more examples, see the section called “Identity-based policy examples”.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ScopeToPrivateApis",
 "Effect": "Allow",
 "Action": [
 "apigateway:PATCH",
 "apigateway:POST",
 "apigateway:PUT"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/restapis",
 "arn:aws:apigateway:us-east-1::/restapis/??????????"
],
 "Condition": {
 "ForAllValues:StringEqualsIfExists": {
 "apigateway:Request/EndpointType": "PRIVATE",
 "apigateway:Resource/EndpointType": "PRIVATE"
 }
 }
 },
 {
 "Sid": "AllowResourcePolicyUpdates",
 "Effect": "Allow",
 "Action": [
 "apigateway:UpdateRestApiPolicy"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/restapis/*"
]
 }
]
}

How Amazon API Gateway works with IAM 1248

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonapigatewaymanagementv2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

Amazon API Gateway Developer Guide

Actions

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy.

Policy actions in API Gateway use the following prefix before the action: apigateway:. Policy
statements must include either an Action or NotAction element. API Gateway defines its own
set of actions that describe tasks that you can perform with this service.

The API-managing Action expression has the format apigateway:action, where action is one
of the following API Gateway actions: GET, POST, PUT, DELETE, PATCH (to update resources), or *,
which is all of the previous actions.

Some examples of the Action expression include:

• apigateway:* for all API Gateway actions.

• apigateway:GET for just the GET action in API Gateway.

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": [
 "apigateway:action1",
 "apigateway:action2"

For information about HTTP verbs to use for specific API Gateway operations, see Amazon API
Gateway Version 1 API Reference (REST APIs) and Amazon API Gateway Version 2 API Reference
(WebSocket and HTTP APIs).

For more information, see the section called “Identity-based policy examples”.

Resources

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

How Amazon API Gateway works with IAM 1249

https://docs.aws.amazon.com/apigateway/api-reference/
https://docs.aws.amazon.com/apigateway/api-reference/
https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/api-reference.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Amazon API Gateway Developer Guide

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

API Gateway resources have the following ARN format:

arn:aws:apigateway:region::resource-path-specifier

For example, to specify a REST API with the id api-id and its sub-resources, such as authorizers in
your statement, use the following ARN:

"Resource": "arn:aws:apigateway:us-east-2::/restapis/api-id/*"

To specify all REST APIs and sub-resources that belong to a specific account, use the wildcard (*):

"Resource": "arn:aws:apigateway:us-east-2::/restapis/*"

For a list of API Gateway resource types and their ARNs, see API Gateway Amazon Resource Name
(ARN) reference.

Condition keys

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

How Amazon API Gateway works with IAM 1250

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html

Amazon API Gateway Developer Guide

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

API Gateway defines its own set of condition keys and also supports using some global condition
keys. For a list of API Gateway condition keys, see Condition Keys for Amazon API Gateway in the
IAM User Guide. For information about which actions and resources you can use with a condition
key, see Actions Defined by Amazon API Gateway.

For information about tagging, including attribute-based access control, see Tagging.

Examples

For examples of API Gateway identity-based policies, see Amazon API Gateway identity-based
policy examples.

API Gateway resource-based policies

Resource-based policies are JSON policy documents that specify what actions a specified principal
can perform on the API Gateway resource and under what conditions. API Gateway supports
resource-based permissions policies for REST APIs. You use resource policies to control who
can invoke a REST API. For more information, see the section called “Use API Gateway resource
policies”.

Examples

For examples of API Gateway resource-based policies, see API Gateway resource policy examples.

Authorization based on API Gateway tags

You can attach tags to API Gateway resources or pass tags in a request to API Gateway. To control
access based on tags, you provide tag information in the condition element of a policy using
the apigateway:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys. For more information about tagging API Gateway resources, see the section called
“Attribute-based access control”.

For an examples of identity-based policies for limiting access to a resource based on the tags on
that resource, see Using tags to control access to API Gateway REST API resources.

API Gateway IAM roles

An IAM role is an entity within your AWS account that has specific permissions.

How Amazon API Gateway works with IAM 1251

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_manageamazonapigateway.html#manageamazonapigateway-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_manageamazonapigateway.html#amazonapigateway-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon API Gateway Developer Guide

Using temporary credentials with API Gateway

You can use temporary credentials to sign in with federation, assume an IAM role, or to assume a
cross-account role. You obtain temporary security credentials by calling AWS STS API operations
such as AssumeRole or GetFederationToken.

API Gateway supports using temporary credentials.

Service-linked roles

Service-linked roles allow AWS services to access resources in other services to complete an action
on your behalf. Service-linked roles appear in your IAM account and are owned by the service. An
IAM administrator can view but not edit the permissions for service-linked roles.

API Gateway supports service-linked roles. For information about creating or managing API
Gateway service-linked roles, see Using service-linked roles for API Gateway.

Service roles

A service can assume a service role on your behalf. A service role allows the service to access
resources in other services to complete an action on your behalf. Service roles appear in your IAM
account and are owned by the account, so an administrator can change the permissions for this
role. However, doing so might break the functionality of the service.

API Gateway supports service roles.

Amazon API Gateway identity-based policy examples

By default, IAM users and roles don't have permission to create or modify API Gateway resources.
They also can't perform tasks using the AWS Management Console, AWS CLI, or AWS SDKs. An IAM
administrator must create IAM policies that grant users and roles permission to perform specific
API operations on the specified resources they need. The administrator must then attach those
policies to the IAM users or groups that require those permissions.

For information about how to create IAM policies, see Creating Policies on the JSON Tab in the IAM
User Guide. For information about the actions, resources, and conditions specific to API Gateway,
see Actions, resources, and condition keys for Amazon API Gateway Management and Actions,
resources, and condition keys for Amazon API Gateway Management V2.

Topics

Identity-based policy examples 1252

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonapigatewaymanagement.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonapigatewaymanagementv2.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonapigatewaymanagementv2.html

Amazon API Gateway Developer Guide

• Policy best practices

• Allow users to view their own permissions

• Simple read permissions

• Create only REQUEST or JWT authorizers

• Require that the default execute-api endpoint is disabled

• Allow users to create or update only private REST APIs

• Require that API routes have authorization

• Prevent a user from creating or updating a VPC link

Policy best practices

Identity-based policies determine whether someone can create, access, or delete API Gateway
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and

Identity-based policy examples 1253

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon API Gateway Developer Guide

functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",

Identity-based policy examples 1254

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon API Gateway Developer Guide

 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Simple read permissions

This example policy gives a user permission to get information about all of the resources of an
HTTP or WebSocket API with the identifier of a123456789 in the AWS Region of us-east-1. The
resource arn:aws:apigateway:us-east-1::/apis/a123456789/* includes all sub-resources
of the API such as authorizers and deployments.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "apigateway:GET"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/apis/a123456789/*"
]
 }
]
}

Create only REQUEST or JWT authorizers

This example policy allows a user to create APIs with only REQUEST or JWT authorizers, including
through import. In the Resource section of the policy, arn:aws:apigateway:us-east-1::/
apis/?????????? requires that resources have a maximum of 10 characters, which excludes sub-
resources of an API. This example uses ForAllValues in the Condition section because users
can create multiple authorizers at once by importing an API.

{
 "Version": "2012-10-17",
 "Statement": [

Identity-based policy examples 1255

https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/apis.html#ImportApi

Amazon API Gateway Developer Guide

 {
 "Sid": "OnlyAllowSomeAuthorizerTypes",
 "Effect": "Allow",
 "Action": [
 "apigateway:PUT",
 "apigateway:POST",
 "apigateway:PATCH"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/apis",
 "arn:aws:apigateway:us-east-1::/apis/??????????",
 "arn:aws:apigateway:us-east-1::/apis/*/authorizers",
 "arn:aws:apigateway:us-east-1::/apis/*/authorizers/*"
],
 "Condition": {
 "ForAllValues:StringEqualsIfExists": {
 "apigateway:Request/AuthorizerType": [
 "REQUEST",
 "JWT"
]
 }
 }
 }
]
}

Require that the default execute-api endpoint is disabled

This example policy allows users to create, update or import an API, with the requirement that
DisableExecuteApiEndpoint is true. When DisableExecuteApiEndpoint is true, clients
can't use the default execute-api endpoint to invoke an API.

We use the BoolIfExists condition to handle a call to update an API that doesn't have the
DisableExecuteApiEndpoint condition key populated. When a user attempts to create or
import an API, the DisableExecuteApiEndpoint condition key is always populated.

Because the apis/* resource also captures sub resources such as authorizers or methods, we
explicitly scope it to just APIs with a Deny statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Identity-based policy examples 1256

Amazon API Gateway Developer Guide

 "Sid": "DisableExecuteApiEndpoint",
 "Effect": "Allow",
 "Action": [
 "apigateway:PATCH",
 "apigateway:POST",
 "apigateway:PUT"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/apis",
 "arn:aws:apigateway:us-east-1::/apis/*"
],
 "Condition": {
 "BoolIfExists": {
 "apigateway:Request/DisableExecuteApiEndpoint": true
 }
 }
 },
 {
 "Sid": "ScopeDownToJustApis",
 "Effect": "Deny",
 "Action": [
 "apigateway:PATCH",
 "apigateway:POST",
 "apigateway:PUT"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/apis/*/*"
]
 }
]
}

Allow users to create or update only private REST APIs

This example policy uses condition keys to require that a user creates only PRIVATE APIs, and to
prevent updates that might change an API from PRIVATE to another type, such as REGIONAL.

We use ForAllValues to require that every EndpointType added to an API is PRIVATE. We use
a resource condition key to allow any update to an API as long as it's PRIVATE. ForAllValues
applies only if a condition key is present.

We use the non-greedy matcher (?) to explicitly match against API IDs to prevent allowing non-API
resources such as authorizers.

Identity-based policy examples 1257

Amazon API Gateway Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ScopePutToPrivateApis",
 "Effect": "Allow",
 "Action": [
 "apigateway:PUT"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/restapis",
 "arn:aws:apigateway:us-east-1::/restapis/??????????"
],
 "Condition": {
 "ForAllValues:StringEquals": {
 "apigateway:Resource/EndpointType": "PRIVATE"
 }
 }
 },
 {
 "Sid": "ScopeToPrivateApis",
 "Effect": "Allow",
 "Action": [
 "apigateway:DELETE",
 "apigateway:PATCH",
 "apigateway:POST"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/restapis",
 "arn:aws:apigateway:us-east-1::/restapis/??????????"
],
 "Condition": {
 "ForAllValues:StringEquals": {
 "apigateway:Request/EndpointType": "PRIVATE",
 "apigateway:Resource/EndpointType": "PRIVATE"
 }
 }
 },
 {
 "Sid": "AllowResourcePolicyUpdates",
 "Effect": "Allow",
 "Action": [
 "apigateway:UpdateRestApiPolicy"

Identity-based policy examples 1258

Amazon API Gateway Developer Guide

],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/restapis/*"
]
 }
]
}

Require that API routes have authorization

This policy causes attempts to create or update a route (including through import) to fail if the
route has no authorization. ForAnyValue evaluates to false if the key is not present, such as when
a route is not being created or updated. We use ForAnyValue because multiple routes can be
created through import.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowUpdatesOnApisAndRoutes",
 "Effect": "Allow",
 "Action": [
 "apigateway:POST",
 "apigateway:PATCH",
 "apigateway:PUT"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/apis",
 "arn:aws:apigateway:us-east-1::/apis/??????????",
 "arn:aws:apigateway:us-east-1::/apis/*/routes",
 "arn:aws:apigateway:us-east-1::/apis/*/routes/*"
]
 },
 {
 "Sid": "DenyUnauthorizedRoutes",
 "Effect": "Deny",
 "Action": [
 "apigateway:POST",
 "apigateway:PATCH",
 "apigateway:PUT"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/apis",

Identity-based policy examples 1259

https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/apis.html#ImportApi

Amazon API Gateway Developer Guide

 "arn:aws:apigateway:us-east-1::/apis/*"
],
 "Condition": {
 "ForAnyValue:StringEqualsIgnoreCase": {
 "apigateway:Request/RouteAuthorizationType": "NONE"
 }
 }
 }
]
}

Prevent a user from creating or updating a VPC link

This policy prevents a user from creating or updating a VPC link. A VPC link enables you to expose
resources within an Amazon VPC to clients outside of the VPC.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyVPCLink",
 "Effect": "Deny",
 "Action": [
 "apigateway:POST",
 "apigateway:PUT",
 "apigateway:PATCH"
],
 "Resource": [
 "arn:aws:apigateway:us-east-1::/vpclinks",
 "arn:aws:apigateway:us-east-1::/vpclinks/*"
]
 }
]
}

Amazon API Gateway resource-based policy examples

For resource-based policy examples, see the section called “API Gateway resource policy examples”.

Resource-based policy examples 1260

Amazon API Gateway Developer Guide

Troubleshooting Amazon API Gateway identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with API Gateway and IAM.

Topics

• I am not authorized to perform an action in API Gateway

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my API Gateway resources

I am not authorized to perform an action in API Gateway

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
apigateway:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 apigateway:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the apigateway:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to API Gateway.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

Troubleshooting 1261

Amazon API Gateway Developer Guide

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in API Gateway. However, the action requires the service to have permissions
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my API Gateway
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether API Gateway supports these features, see How Amazon API Gateway works
with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

Using service-linked roles for API Gateway

Amazon API Gateway uses AWS Identity and Access Management (IAM) service-linked roles. A
service-linked role is a unique type of IAM role that is linked directly to API Gateway. Service-linked

Using service-linked roles 1262

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

Amazon API Gateway Developer Guide

roles are predefined by API Gateway and include all the permissions that the service requires to call
other AWS services on your behalf.

A service-linked role makes setting up API Gateway easier because you don't have to manually add
the necessary permissions. API Gateway defines the permissions of its service-linked roles, and
unless defined otherwise, only API Gateway can assume its roles. The defined permissions include
the trust policy and the permissions policy, and that permissions policy cannot be attached to any
other IAM entity.

You can delete a service-linked role only after first deleting the related resources. This protects
your API Gateway resources because you can't inadvertently remove permission to access the
resources.

For information about other services that support service-linked roles, see AWS Services That Work
with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for API Gateway

API Gateway uses the service-linked role named AWSServiceRoleForAPIGateway – Allows API
Gateway to access Elastic Load Balancing, Amazon Data Firehose, and other service resources on
your behalf.

The AWSServiceRoleForAPIGateway service-linked role trusts the following services to assume the
role:

• ops.apigateway.amazonaws.com

The role permissions policy allows API Gateway to complete the following actions on the specified
resources:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticloadbalancing:AddListenerCertificates",
 "elasticloadbalancing:RemoveListenerCertificates",
 "elasticloadbalancing:ModifyListener",
 "elasticloadbalancing:DescribeListeners",

Using service-linked roles 1263

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon API Gateway Developer Guide

 "elasticloadbalancing:DescribeLoadBalancers",
 "xray:PutTraceSegments",
 "xray:PutTelemetryRecords",
 "xray:GetSamplingTargets",
 "xray:GetSamplingRules",
 "logs:CreateLogDelivery",
 "logs:GetLogDelivery",
 "logs:UpdateLogDelivery",
 "logs:DeleteLogDelivery",
 "logs:ListLogDeliveries",
 "servicediscovery:DiscoverInstances"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "firehose:DescribeDeliveryStream",
 "firehose:PutRecord",
 "firehose:PutRecordBatch"
],
 "Resource": "arn:aws:firehose:*:*:deliverystream/amazon-apigateway-*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "acm:DescribeCertificate",
 "acm:GetCertificate"
],
 "Resource": "arn:aws:acm:*:*:certificate/*"
 },
 {
 "Effect": "Allow",
 "Action": "ec2:CreateNetworkInterfacePermission",
 "Resource": "arn:aws:ec2:*:*:network-interface/*"
 },
 {
 "Effect": "Allow",
 "Action": "ec2:CreateTags",
 "Resource": "arn:aws:ec2:*:*:network-interface/*",
 "Condition": {
 "ForAllValues:StringEquals": {

Using service-linked roles 1264

Amazon API Gateway Developer Guide

 "aws:TagKeys": [
 "Owner",
 "VpcLinkId"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:ModifyNetworkInterfaceAttribute",
 "ec2:DeleteNetworkInterface",
 "ec2:AssignPrivateIpAddresses",
 "ec2:CreateNetworkInterface",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeAvailabilityZones",
 "ec2:DescribeNetworkInterfaceAttribute",
 "ec2:DescribeVpcs",
 "ec2:DescribeNetworkInterfacePermissions",
 "ec2:UnassignPrivateIpAddresses",
 "ec2:DescribeSubnets",
 "ec2:DescribeRouteTables",
 "ec2:DescribeSecurityGroups"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "servicediscovery:GetNamespace",
 "Resource": "arn:aws:servicediscovery:*:*:namespace/*"
 },
 {
 "Effect": "Allow",
 "Action": "servicediscovery:GetService",
 "Resource": "arn:aws:servicediscovery:*:*:service/*"
 }
]
}

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-Linked Role Permissions in
the IAM User Guide.

Using service-linked roles 1265

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon API Gateway Developer Guide

Creating a service-linked role for API Gateway

You don't need to manually create a service-linked role. When you create an API, custom domain
name, or VPC link in the AWS Management Console, the AWS CLI, or the AWS API, API Gateway
creates the service-linked role for you.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you create an API, custom domain name, or VPC link,
API Gateway creates the service-linked role for you again.

Editing a service-linked role for API Gateway

API Gateway does not allow you to edit the AWSServiceRoleForAPIGateway service-linked role.
After you create a service-linked role, you can't change the name of the role because various
entities might reference the role. However, you can edit the description of the role using IAM. For
more information, see Editing a Service-Linked Role in the IAM User Guide.

Deleting a service-linked role for API Gateway

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don't have an unused entity that is not actively monitored
or maintained. However, you must clean up the resources for your service-linked role before you
can manually delete it.

Note

If the API Gateway service is using the role when you try to delete the resources, then the
deletion might fail. If that happens, wait for a few minutes and try the operation again.

To delete API Gateway resources used by the AWSServiceRoleForAPIGateway

1. Open the API Gateway console at https://console.aws.amazon.com/apigateway/.

2. Navigate to the API, custom domain name, or VPC link that uses the service-linked role.

3. Use the console to delete the resource.

4. Repeat the procedure to delete all APIs, custom domain names, or VPC links that use the
service-linked role.

To manually delete the service-linked role using IAM

Using service-linked roles 1266

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://console.aws.amazon.com/apigateway/

Amazon API Gateway Developer Guide

Use the IAM console, the AWS CLI, or the AWS API to delete the AWSServiceRoleForAPIGateway
service-linked role. For more information, see Deleting a Service-Linked Role in the IAM User Guide.

Supported Regions for API Gateway service-linked roles

API Gateway supports using service-linked roles in all of the Regions where the service is available.
For more information, see AWS Service Endpoints.

API Gateway updates to AWS managed policies

View details about updates to AWS managed policies for API Gateway since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the API Gateway Document history page.

Change Description Date

Added acm:GetCe
rtificate support to
the AWSServiceRoleForA
PIGateway policy.

The AWSServiceRoleForA
PIGateway policy now
includes permission to call
the ACM GetCertificate
API action.

July 12, 2021

API Gateway started tracking
changes

API Gateway started tracking
changes for its AWS managed
policies.

July 12, 2021

Logging and monitoring in Amazon API Gateway

Monitoring is an important part of maintaining the reliability, availability, and performance of API
Gateway and your AWS solutions. You should collect monitoring data from all of the parts of your
AWS solution so that you can more easily debug a multi-point failure if one occurs. AWS provides
several tools for monitoring your API Gateway resources and responding to potential incidents:

Amazon CloudWatch Logs

To help debug issues related to request execution or client access to your API, you can enable
CloudWatch Logs to log API calls. For more information, see the section called “CloudWatch
logs”.

Logging and monitoring 1267

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon API Gateway Developer Guide

Amazon CloudWatch Alarms

Using CloudWatch alarms, you watch a single metric over a time period that you specify. If
the metric exceeds a given threshold, a notification is sent to an Amazon Simple Notification
Service topic or AWS Auto Scaling policy. CloudWatch alarms do not invoke actions when a
metric is in a particular state. Rather the state must have changed and been maintained for
a specified number of periods. For more information, see the section called “CloudWatch
metrics”.

Access Logging to Firehose

To help debug issues related to client access to your API, you can enable Firehose to log API
calls. For more information, see the section called “Firehose”.

AWS CloudTrail

CloudTrail provides a record of actions taken by a user, role, or an AWS service in API Gateway.
Using the information collected by CloudTrail, you can determine the request that was made to
API Gateway, the IP address from which the request was made, who made the request, when it
was made, and additional details. For more information, see the section called “Working with
CloudTrail”.

AWS X-Ray

X-Ray is an AWS service that gathers data about the requests that your application serves, and
uses it to construct a service map that you can use to identify issues with your application and
opportunities for optimization. For more information, see the section called “Setting up AWS X-
Ray”.

AWS Config

AWS Config provides a detailed view of the configuration of AWS resources in your account.
You can see how resources are related, get a history of configuration changes, and see how
relationships and configurations change over time. You can use AWS Config to define rules
that evaluate resource configurations for data compliance. AWS Config rules represent the
ideal configuration settings for your API Gateway resources. If a resource violates a rule and
is flagged as noncompliant, AWS Config can alert you using an Amazon Simple Notification
Service (Amazon SNS) topic. For details, see the section called “Working with AWS Config”.

Logging and monitoring 1268

Amazon API Gateway Developer Guide

Logging Amazon API Gateway API calls using AWS CloudTrail

Amazon API Gateway is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service. CloudTrail captures all REST API calls for API Gateway
service as events. The calls captured include calls from the API Gateway console and code calls to
the API Gateway service APIs. Using the information collected by CloudTrail, you can determine the
request that was made to API Gateway, the IP address from which the request was made, when it
was made, and additional details.

Note

TestInvokeAuthorizer and TestInvokeMethod are not logged in CloudTrail.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root user or user credentials.

• Whether the request was made on behalf of an IAM Identity Center user.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

CloudTrail is active in your AWS account when you create the account and you automatically
have access to the CloudTrail Event history. The CloudTrail Event history provides a viewable,
searchable, downloadable, and immutable record of the past 90 days of recorded management
events in an AWS Region. For more information, see Working with CloudTrail Event history in the
AWS CloudTrail User Guide. There are no CloudTrail charges for viewing the Event history.

For an ongoing record of events in your AWS account past 90 days, create a trail or a CloudTrail
Lake event data store.

CloudTrail trails

A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. All trails created using the
AWS Management Console are multi-Region. You can create a single-Region or a multi-Region
trail by using the AWS CLI. Creating a multi-Region trail is recommended because you capture
activity in all AWS Regions in your account. If you create a single-Region trail, you can view only

Working with CloudTrail 1269

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/test-invoke-authorizer.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/test-invoke-method.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html

Amazon API Gateway Developer Guide

the events logged in the trail's AWS Region. For more information about trails, see Creating a
trail for your AWS account and Creating a trail for an organization in the AWS CloudTrail User
Guide.

You can deliver one copy of your ongoing management events to your Amazon S3 bucket at no
charge from CloudTrail by creating a trail, however, there are Amazon S3 storage charges. For
more information about CloudTrail pricing, see AWS CloudTrail Pricing. For information about
Amazon S3 pricing, see Amazon S3 Pricing.

CloudTrail Lake event data stores

CloudTrail Lake lets you run SQL-based queries on your events. CloudTrail Lake converts existing
events in row-based JSON format to Apache ORC format. ORC is a columnar storage format
that is optimized for fast retrieval of data. Events are aggregated into event data stores, which
are immutable collections of events based on criteria that you select by applying advanced
event selectors. The selectors that you apply to an event data store control which events persist
and are available for you to query. For more information about CloudTrail Lake, see Working
with AWS CloudTrail Lake in the AWS CloudTrail User Guide.

CloudTrail Lake event data stores and queries incur costs. When you create an event data
store, you choose the pricing option you want to use for the event data store. The pricing
option determines the cost for ingesting and storing events, and the default and maximum
retention period for the event data store. For more information about CloudTrail pricing, see
AWS CloudTrail Pricing.

API Gateway management events in CloudTrail

Management events provide information about management operations that are performed on
resources in your AWS account. These are also known as control plane operations. By default,
CloudTrail logs management events.

Amazon API Gateway logs all API Gateway actions as management events, except for
TestInvokeAuthorizer and TestInvokeMethod. For a list of the Amazon API Gateway actions that API
Gateway logs to CloudTrail, see the Amazon API Gateway API Reference.

API Gateway event example

An event represents a single request from any source and includes information about the requested
API operation, the date and time of the operation, request parameters, and so on. CloudTrail log

Working with CloudTrail 1270

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html
https://aws.amazon.com/cloudtrail/pricing/
https://aws.amazon.com/s3/pricing/
https://orc.apache.org/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake-concepts.html#adv-event-selectors
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake-concepts.html#adv-event-selectors
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake-manage-costs.html#cloudtrail-lake-manage-costs-pricing-option
https://aws.amazon.com/cloudtrail/pricing/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html#logging-management-events
https://docs.aws.amazon.com/cli/latest/reference/apigateway/test-invoke-authorizer.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/test-invoke-method.html
https://docs.aws.amazon.com/apigateway/api-reference/

Amazon API Gateway Developer Guide

files aren't an ordered stack trace of the public API calls, so events don't appear in any specific
order.

The following example shows a CloudTrail event that demonstrates the API Gateway
GetResource action:

{
 Records: [
 {
 eventVersion: "1.03",
 userIdentity: {
 type: "Root",
 principalId: "AKIAI44QH8DHBEXAMPLE",
 arn: "arn:aws:iam::123456789012:root",
 accountId: "123456789012",
 accessKeyId: "AKIAIOSFODNN7EXAMPLE",
 sessionContext: {
 attributes: {
 mfaAuthenticated: "false",
 creationDate: "2015-06-16T23:37:58Z"
 }
 }
 },
 eventTime: "2015-06-17T00:47:28Z",
 eventSource: "apigateway.amazonaws.com",
 eventName: "GetResource",
 awsRegion: "us-east-1",
 sourceIPAddress: "203.0.113.11",
 userAgent: "example-user-agent-string",
 requestParameters: {
 restApiId: "3rbEXAMPLE",
 resourceId: "5tfEXAMPLE",
 template: false
 },
 responseElements: null,
 requestID: "6d9c4bfc-148a-11e5-81b6-7577cEXAMPLE",
 eventID: "4d293154-a15b-4c33-9e0a-ff5eeEXAMPLE",
 readOnly: true,
 eventType: "AwsApiCall",
 recipientAccountId: "123456789012"
 },
 ... additional entries ...
]

Working with CloudTrail 1271

Amazon API Gateway Developer Guide

}

For information about CloudTrail record contents, see CloudTrail record contents in the AWS
CloudTrail User Guide.

Monitoring API Gateway API configuration with AWS Config

You can use AWS Config to record configuration changes made to your API Gateway API resources
and send notifications based on resource changes. Maintaining a configuration change history for
API Gateway resources is useful for operational troubleshooting, audit, and compliance use cases.

AWS Config can track changes to:

• API stage configuration, such as:

• cache cluster settings

• throttle settings

• access log settings

• the active deployment set on the stage

• API configuration, such as:

• endpoint configuration

• version

• protocol

• tags

In addition, the AWS Config Rules feature enables you to define configuration rules and
automatically detect, track, and alert violations to these rules. By tracking changes to these
resource configuration properties, you can also author change-triggered AWS Config rules for your
API Gateway resources, and test your resource configurations against best practices.

You can enable AWS Config in your account by using the AWS Config console or the AWS CLI.
Select the resource types for which you want to track changes. If you previously configured
AWS Config to record all resource types, then these API Gateway resources will be automatically
recorded in your account. Support for Amazon API Gateway in AWS Config is available in all AWS
public regions and AWS GovCloud (US). For the full list of supported Regions, see Amazon API
Gateway Endpoints and Quotas in the AWS General Reference.

Topics

Working with AWS Config 1272

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-record-contents.html
https://aws.amazon.com/config/
https://docs.aws.amazon.com/general/latest/gr/apigateway.html
https://docs.aws.amazon.com/general/latest/gr/apigateway.html

Amazon API Gateway Developer Guide

• Supported resource types

• Setting up AWS Config

• Configuring AWS Config to record API Gateway resources

• Viewing API Gateway configuration details in the AWS Config console

• Evaluating API Gateway resources using AWS Config rules

Supported resource types

The following API Gateway resource types are integrated with AWS Config and are documented in
AWS Config Supported AWS Resource Types and Resource Relationships:

• AWS::ApiGatewayV2::Api (WebSocket and HTTP API)

• AWS::ApiGateway::RestApi (REST API)

• AWS::ApiGatewayV2::Stage (WebSocket and HTTP API stage)

• AWS::ApiGateway::Stage (REST API stage)

For more information about AWS Config, see the AWS Config Developer Guide. For pricing
information, see the AWS Config pricing information page.

Important

If you change any of the following API properties after the API is deployed, you must
redeploy the API to propagate the changes. Otherwise, you'll see the attribute changes in
the AWS Config console, but the previous property settings will still be in effect; the API's
runtime behavior will be unchanged.

• AWS::ApiGateway::RestApi – binaryMediaTypes, minimumCompressionSize,
apiKeySource

• AWS::ApiGatewayV2::Api – apiKeySelectionExpression

Setting up AWS Config

To initially set up AWS Config, see the following topics in the AWS Config Developer Guide.

• Setting Up AWS Config with the Console

Working with AWS Config 1273

https://docs.aws.amazon.com/config/latest/developerguide/resource-config-reference.html
https://docs.aws.amazon.com/config/latest/developerguide/
https://aws.amazon.com/config/pricing/
https://docs.aws.amazon.com/config/latest/developerguide/
https://docs.aws.amazon.com/config/latest/developerguide/gs-console.html

Amazon API Gateway Developer Guide

• Setting Up AWS Config with the AWS CLI

Configuring AWS Config to record API Gateway resources

By default, AWS Config records configuration changes for all supported types of regional resources
that it discovers in the region in which your environment is running. You can customize AWS Config
to record changes only for specific resource types, or changes to global resources.

To learn about regional vs. global resources and learn how to customize your AWS Config
configuration, see Selecting which Resources AWS Config Records.

Viewing API Gateway configuration details in the AWS Config console

You can use the AWS Config console to look for API Gateway resources and get current and
historical details about their configurations. The following procedure shows how to find
information about an API Gateway API.

To find an API Gateway resource in the AWS config console

1. Open the AWS Config console.

2. Choose Resources.

3. On the Resource inventory page, choose Resources.

4. Open the Resource type menu, scroll to APIGateway or APIGatewayV2, and then choose one
or more of the API Gateway resource types.

5. Choose Look up.

6. Choose a resource ID in the list of resources that AWS Config displays. AWS Config displays
configuration details and other information about the resource you selected.

7. To see the full details of the recorded configuration, choose View Details.

To learn more ways to find a resource and view information on this page, see Viewing AWS
Resource Configurations and History in the AWS Config Developer Guide.

Evaluating API Gateway resources using AWS Config rules

You can create AWS Config rules, which represent the ideal configuration settings for your API
Gateway resources. You can use predefined AWS Config Managed Rules, or define custom rules.
AWS Config continuously tracks changes to the configuration of your resources to determine

Working with AWS Config 1274

https://docs.aws.amazon.com/config/latest/developerguide/gs-cli.html
https://docs.aws.amazon.com/config/latest/developerguide/select-resources.html
https://console.aws.amazon.com/config
https://docs.aws.amazon.com/config/latest/developerguide/view-manage-resource.html
https://docs.aws.amazon.com/config/latest/developerguide/view-manage-resource.html
https://docs.aws.amazon.com/config/latest/developerguide/managed-rules-by-aws-config.html

Amazon API Gateway Developer Guide

whether those changes violate any of the conditions in your rules. The AWS Config console shows
the compliance status of your rules and resources.

If a resource violates a rule and is flagged as noncompliant, AWS Config can alert you using an
Amazon Simple Notification Service Developer Guide (Amazon SNS) topic. To programmatically
consume the data in these AWS Config alerts, use an Amazon Simple Queue Service (Amazon SQS)
queue as the notification endpoint for the Amazon SNS topic.

To learn more about setting up and using rules, see Evaluating Resources with Rules in the AWS
Config Developer Guide.

Compliance validation for Amazon API Gateway

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map

Compliance validation 1275

https://docs.aws.amazon.com/sns/latest/dg/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/config/latest/developerguide/
https://docs.aws.amazon.com/config/latest/developerguide/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf

Amazon API Gateway Developer Guide

the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in Amazon API Gateway

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

To prevent your APIs from being overwhelmed by too many requests, API Gateway throttles
requests to your APIs. Specifically, API Gateway sets a limit on a steady-state rate and a burst of
request submissions against all APIs in your account. You can configure custom throttling for your
APIs. To learn more, see Throttle API requests for better throughput.

You can use Route 53 health checks to control DNS failover from an API Gateway API in a primary
region to an API Gateway API in a secondary region. For an example, see the section called “DNS
failover”.

Infrastructure security in Amazon API Gateway

As a managed service, Amazon API Gateway is protected by AWS global network security. For
information about AWS security services and how AWS protects infrastructure, see AWS Cloud

Resilience 1276

https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/security/

Amazon API Gateway Developer Guide

Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access API Gateway through the network. Clients must support
the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

You can call these API operations from any network location, but API Gateway does support
resource-based access policies, which can include restrictions based on the source IP address. You
can also use resource-based policies to control access from specific Amazon Virtual Private Cloud
(Amazon VPC) endpoints or specific VPCs. Effectively, this isolates network access to a given API
Gateway resource from only the specific VPC within the AWS network.

Vulnerability analysis in Amazon API Gateway

Configuration and IT controls are a shared responsibility between AWS and you, our customer. For
more information, see the AWS shared responsibility model.

Security best practices in Amazon API Gateway

API Gateway provides a number of security features to consider as you develop and implement
your own security policies. The following best practices are general guidelines and don’t represent
a complete security solution. Because these best practices might not be appropriate or sufficient
for your environment, treat them as helpful considerations rather than prescriptions.

Implement least privilege access

Use IAM policies to implement least privilege access for creating, reading, updating, or deleting
API Gateway APIs. To learn more, see Identity and access management for Amazon API
Gateway. API Gateway offers several options to control access to APIs that you create. To learn

Configuration and vulnerability analysis 1277

https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://aws.amazon.com/compliance/shared-responsibility-model/

Amazon API Gateway Developer Guide

more, see Controlling and managing access to a REST API in API Gateway, Controlling and
managing access to a WebSocket API in API Gateway, and Controlling access to HTTP APIs with
JWT authorizers.

Implement logging

Use CloudWatch Logs or Amazon Data Firehose to log requests to your APIs. To learn more, see
Monitoring REST APIs, Configuring logging for a WebSocket API, and Configuring logging for an
HTTP API.

Implement Amazon CloudWatch alarms

Using CloudWatch alarms, you watch a single metric over a time period that you specify. If
the metric exceeds a given threshold, a notification is sent to an Amazon Simple Notification
Service topic or AWS Auto Scaling policy. CloudWatch alarms do not invoke actions when
a metric is in a particular state. Rather, the state must have changed and been maintained
for a specified number of periods. For more information, see the section called “CloudWatch
metrics”.

Enable AWS CloudTrail

CloudTrail provides a record of actions taken by a user, role, or an AWS service in API Gateway.
Using the information collected by CloudTrail, you can determine the request that was made to
API Gateway, the IP address from which the request was made, who made the request, when it
was made, and additional details. For more information, see the section called “Working with
CloudTrail”.

Enable AWS Config

AWS Config provides a detailed view of the configuration of AWS resources in your account.
You can see how resources are related, get a history of configuration changes, and see how
relationships and configurations change over time. You can use AWS Config to define rules
that evaluate resource configurations for data compliance. AWS Config rules represent the
ideal configuration settings for your API Gateway resources. If a resource violates a rule and
is flagged as noncompliant, AWS Config can alert you using an Amazon Simple Notification
Service (Amazon SNS) topic. For details, see the section called “Working with AWS Config”.

Use AWS Security Hub

Monitor your usage of API Gateway as it relates to security best practices by using AWS Security
Hub. Security Hub uses security controls to evaluate resource configurations and security
standards to help you comply with various compliance frameworks. For more information about

Best practices 1278

https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

Amazon API Gateway Developer Guide

using Security Hub to evaluate API Gateway resources, see Amazon API Gateway controls in the
AWS Security Hub User Guide.

Best practices 1279

https://docs.aws.amazon.com/securityhub/latest/userguide/apigateway-controls.html

Amazon API Gateway Developer Guide

Tagging your API Gateway resources

A tag is a metadata label that you assign or that AWS assigns to an AWS resource. Each tag has two
parts:

• A tag key (for example, CostCenter, Environment, or Project). Tag keys are case sensitive.

• An optional field known as a tag value (for example, 111122223333 or Production). Omitting
the tag value is the same as using an empty string. Like tag keys, tag values are case-sensitive.

Tags help you do the following:

• Control access to your resources based on the tags that are assigned to them. You control access
by specifying tag keys and values in the conditions for an AWS Identity and Access Management
(IAM) policy. For more information about tag-based access control, see Controlling Access Using
Tags in the IAM User Guide.

• Track your AWS costs. You activate these tags on the AWS Billing and Cost Management
dashboard. AWS uses the tags to categorize your costs and deliver a monthly cost allocation
report to you. For more information, see Use Cost Allocation Tags in the AWS Billing User Guide.

• Identify and organize your AWS resources. Many AWS services support tagging, so you can
assign the same tag to resources from different services to indicate that the resources are
related. For example, you could assign the same tag to an API Gateway stage that you assign to a
CloudWatch Events rule.

For tips on using tags, see the AWS Tagging Strategies post on the AWS Answers blog.

The following sections provide more information about tags for Amazon API Gateway.

Topics

• API Gateway resources that can be tagged

• Using tags to control access to API Gateway REST API resources

API Gateway resources that can be tagged

Tags can be set on the following HTTP API or WebSocket API resources in the Amazon API Gateway
V2 API:

API Gateway resources that can be tagged 1280

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/
https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/
https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/

Amazon API Gateway Developer Guide

• Api

• DomainName

• Stage

• VpcLink

In addition, tags can be set on the following REST API resources in the Amazon API Gateway V1
API:

• ApiKey

• ClientCertificate

• DomainName

• RestApi

• Stage

• UsagePlan

• VpcLink

Tags cannot be set directly on other resources. However, in the Amazon API Gateway V1 API, child
resources inherit the tags that are set on parent resources. For example:

• If a tag is set on a RestApi resource, that tag is inherited by the following child resources of that
RestApi for Attribute-based access control:

• Authorizer

• Deployment

• Documentation

• GatewayResponse

• Integration

• Method

• Model

• Resource

• ResourcePolicy

• Setting

• Stage
API Gateway resources that can be tagged 1281

https://docs.aws.amazon.com/apigateway/api-reference/
https://docs.aws.amazon.com/apigateway/api-reference/
https://docs.aws.amazon.com/apigateway/api-reference/
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html

Amazon API Gateway Developer Guide

• If a tag is set on a DomainName, that tag is inherited by any BasePathMapping resources under
it.

• If a tag is set on a UsagePlan, that tag is inherited by any UsagePlanKey resources under it.

Note

Tag inheritance applies only to attribute-based access control. For example, you can't use
inherited tags to monitor costs in AWS Cost Explorer. API Gateway doesn't return inherited
tags when you call GetTags for a resource.

Tag inheritance in the Amazon API Gateway V1 API

Previously it was only possible to set tags on stages. Now that you can also set them on other
resources, a Stage can receive a tag two ways:

• The tag can be set directly on the Stage.

• The stage can inherit the tag from its parent RestApi.

If a stage receives a tag both ways, the tag that was set directly on the stage takes precedence. For
example, suppose a stage inherits the following tags from its parent REST API:

{
 'foo': 'bar',
 'x':'y'
}

Suppose it also has the following tags set on it directly:

{
 'foo': 'bar2',
 'hello': 'world'
}

The net effect would be for the stage to have the following tags, with the following values:

{
 'foo': 'bar2',

Tag inheritance in the Amazon API Gateway V1 API 1282

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/get-tags.html

Amazon API Gateway Developer Guide

 'hello': 'world'
 'x':'y'
}

Tag restrictions and usage conventions

The following restrictions and usage conventions apply to using tags with API Gateway resources:

• Each resource can have a maximum of 50 tags.

• For each resource, each tag key must be unique, and each tag key can have only one value.

• The maximum tag key length is 128 Unicode characters in UTF-8.

• The maximum tag value length is 256 Unicode characters in UTF-8.

• Allowed characters for keys and values are letters, numbers, spaces representable in UTF-8, and
the following characters: . : + = @ _ / - (hyphen). Amazon EC2 resources allow any characters.

• Tag keys and values are case-sensitive. As a best practice, decide on a strategy for capitalizing
tags, and consistently implement that strategy across all resource types. For example, decide
whether to use Costcenter, costcenter, or CostCenter, and use the same convention for all
tags. Avoid using similar tags with inconsistent case treatment.

• The aws: prefix is prohibited for tags; it's reserved for AWS use. You can't edit or delete tag keys
or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Using tags to control access to API Gateway REST API resources

Conditions in AWS Identity and Access Management policies are part of the syntax that you use
to specify permissions to API Gateway resources. For details about specifying IAM policies, see the
section called “Use IAM permissions”. In API Gateway, resources can have tags, and some actions
can include tags. When you create an IAM policy, you can use tag condition keys to control:

• Which users can perform actions on an API Gateway resource, based on tags that the resource
already has.

• Which tags can be passed in an action's request.

• Whether specific tag keys can be used in a request.

Using tags for attribute-based access control can allow for finer control than API-level control, as
well as more dynamic control than resource-based access control. IAM policies can be created that

Tag restrictions and usage conventions 1283

Amazon API Gateway Developer Guide

allow or disallow an operation based on tags provided in the request (request tags), or tags on the
resource that is being operated on (resource tags). In general, resource tags are for resources that
already exist. Request tags are for when you're creating new resources.

For the complete syntax and semantics of tag condition keys, see Controlling Access Using Tags in
the IAM User Guide.

The following examples demonstrate how to specify tag conditions in policies for API Gateway
users.

Limit actions based on resource tags

The following example policy grants users permission to perform all actions on all resources, as
long as those resources don't have the tag Environment with a value of prod.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "apigateway:*",
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": [
 "apigateway:*"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Environment": "prod"
 }
 }
 }
]
}

Limit actions based on resource tags 1284

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html

Amazon API Gateway Developer Guide

Allow actions based on resource tags

The following example policy allows users to perform all actions on API Gateway resources, as long
as the resources have the tag Environment with a value of Development. The Deny statement
prevents the user from changing the value of the Environment tag.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ConditionallyAllow",
 "Effect": "Allow",
 "Action": [
 "apigateway:*"
],
 "Resource": [
 "arn:aws:apigateway:*::*"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Environment": "Development"
 }
 }
 },
 {
 "Sid": "AllowTagging",
 "Effect": "Allow",
 "Action": [
 "apigateway:*"
],
 "Resource": [
 "arn:aws:apigateway:*::/tags/*"
]
 },
 {
 "Sid": "DenyChangingTag",
 "Effect": "Deny",
 "Action": [
 "apigateway:*"
],
 "Resource": [
 "arn:aws:apigateway:*::/tags/*"
],

Allow actions based on resource tags 1285

Amazon API Gateway Developer Guide

 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": "Environment"
 }
 }
 }
]
}

Deny tagging operations

The following example policy allows a user to perform all API Gateway actions, except for changing
tags.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "apigateway:*"
],
 "Resource": [
 "*"
],
 },
 {
 "Effect": "Deny",
 "Action": [
 "apigateway:*"
],
 "Resource": "arn:aws:apigateway:*::/tags*",
 }
]
}

Allow tagging operations

The following example policy allows a user to get all API Gateway resources, and change tags
for those resources. To get the tags for a resource, the user must have GET permissions for that
resource. To update the tags for a resource, the user must have PATCH permissions for that
resource.

Deny tagging operations 1286

Amazon API Gateway Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "apigateway:GET",
 "apigateway:PUT",
 "apigateway:POST",
 "apigateway:DELETE"
],
 "Resource": [
 "arn:aws:apigateway:*::/tags/*",
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "apigateway:GET",
 "apigateway:PATCH",
],
 "Resource": [
 "arn:aws:apigateway:*::*",
]
 }
]
}

Allow tagging operations 1287

Amazon API Gateway Developer Guide

API references

Amazon API Gateway provides APIs for creating and deploying your own HTTP and WebSocket
APIs. In addition, API Gateway APIs are available in standard AWS SDKs.

If you are using a language for which an AWS SDK exists, you may prefer to use the SDK rather
than using the API Gateway REST APIs directly. The SDKs make authentication simpler, integrate
easily with your development environment, and provide easy access to API Gateway commands.

Here's where to find the AWS SDKs and API Gateway REST API reference documentation:

• Tools for Amazon Web Services

• Amazon API Gateway REST API Reference

• Amazon API Gateway WebSocket and HTTP API Reference

1288

https://aws.amazon.com/tools/
https://docs.aws.amazon.com/apigateway/api-reference/
https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/api-reference.html

Amazon API Gateway Developer Guide

Amazon API Gateway quotas and important notes

Topics

• API Gateway account-level quotas, per Region

• HTTP API quotas

• API Gateway quotas for configuring and running a WebSocket API

• API Gateway quotas for configuring and running a REST API

• API Gateway quotas for creating, deploying and managing an API

• Amazon API Gateway important notes

Unless noted otherwise, the quotas can be increased upon request. To request a quota increase,
you can use Service Quotas or contact the AWS Support Center.

When authorization is enabled on a method, the maximum length of the method's ARN (for
example, arn:aws:execute-api:{region-id}:{account-id}:{api-id}/{stage-id}/
{method}/{resource}/{path}) is 1600 bytes. The path parameter values (whose size is
determined at runtime) can cause the ARN length to exceed the limit. When this happens, the API
client receives a 414 Request URI too long response.

Note

This limits URI length when resource policies are used. In the case of private APIs where a
resource policy is required, this limits the URI length of all private APIs.

API Gateway account-level quotas, per Region

The following quotas apply per account, per Region in Amazon API Gateway.

Resource or
operation

Default quota Can be
increased

Throttle quota
per account,
per Region

10,000 requests per second (RPS) with an additional burst
capacity provided by the token bucket algorithm, using a
maximum bucket capacity of 5,000 requests. *

Yes

API Gateway account-level quotas, per Region 1289

https://docs.aws.amazon.com/servicequotas/latest/userguide/
https://console.aws.amazon.com/support/home#/
https://en.wikipedia.org/wiki/Token_bucket

Amazon API Gateway Developer Guide

Resource or
operation

Default quota Can be
increased

across HTTP
APIs, REST APIs,
WebSocket APIs,
and WebSocket
callback APIs

Note

The burst quota is determined by the API Gateway
service team based on the overall RPS quota for the
account in the Region. It is not a quota that a customer
can control or request changes to.

Regional APIs 600 No

Edge-optimized
APIs

120 No

* For the Africa (Cape Town) and Europe (Milan) Regions, the default throttle quota is 2500 RPS
and the default burst quota is 1250 RPS.

HTTP API quotas

The following quotas apply to configuring and running an HTTP API in API Gateway.

Resource or
operation

Default quota Can be
increased

Routes per API 300 Yes

Integrations per
API

300 No

Maximum integrati
on timeout

30 seconds No

Stages per API 10 Yes

HTTP API quotas 1290

Amazon API Gateway Developer Guide

Resource or
operation

Default quota Can be
increased

Multi-level API
mappings per
domain

200 No

Tags per stage 50 No

Total combined
size of request line
and header values

10240 bytes No

Payload size 10 MB No

Custom domains
per account per
Region

120 Yes

Access log
template size

3 KB No

Amazon
CloudWatch Logs
log entry

1 MB No

Authorizers per
API

10 Yes

Audiences per
authorizer

50 No

Scopes per route 10 No

Timeout for JSON
Web Key Set
endpoint

1500 ms No

HTTP API quotas 1291

Amazon API Gateway Developer Guide

Resource or
operation

Default quota Can be
increased

Response size from
JSON Web Key Set
endpoint

150000 bytes No

Timeout for
OpenID Connect
discovery endpoint

1500 ms No

Timeout for
Lambda authorizer
response

10000 ms No

VPC links per
account per Region

10 Yes

Subnets per VPC
link

10 Yes

Stage variables per
stage

100 No

Length, in
characters, of the
key in a stage
variable

64 No

Length, in
characters, of the
value in a stage
variable

512 No

HTTP API quotas 1292

Amazon API Gateway Developer Guide

API Gateway quotas for configuring and running a WebSocket
API

The following quotas apply to configuring and running a WebSocket API in Amazon API Gateway.

Resource or
operation

Default quota Can be
increased

New connectio
ns per second per
account (across all
WebSocket APIs)
per Region

500 Yes

Concurrent
connections

Not applicable * Not
applicabl
e

AWS Lambda
authorizers per API

10 Yes

AWS Lambda
authorizer result
size

8 KB No

Routes per API 300 Yes

Integrations per
API

300 Yes

Integration
timeout

50 milliseconds - 29 seconds for all integration types, including
Lambda, Lambda proxy, HTTP, HTTP proxy, and AWS integrati
ons.

No

Stages per API 10 Yes

WebSocket frame
size

32 KB No

API Gateway quotas for configuring and running a WebSocket API 1293

Amazon API Gateway Developer Guide

Resource or
operation

Default quota Can be
increased

Message payload
size

128 KB ** No

Connection
duration for
WebSocket API

2 hours No

Idle Connection
Timeout

10 minutes No

Length, in
characters, of
the URL for a
WebSocket API

4096 No

* API Gateway doesn't enforce a quota on concurrent connections. The maximum number of
concurrent connections is determined by the rate of new connections per second and maximum
connection duration of two hours. For example, with the default quota of 500 new connections
per second, if clients connect at the maximum rate over two hours, API Gateway can serve up to
3,600,000 concurrent connections.

** Because of the WebSocket frame-size quota of 32 KB, a message larger than 32 KB must be split
into multiple frames, each 32 KB or smaller. This applies to @connections commands. If a larger
message (or larger frame size) is received, the connection is closed with code 1009.

API Gateway quotas for configuring and running a REST API

The following quotas apply to configuring and running a REST API in Amazon API Gateway.

API Gateway quotas for configuring and running a REST API 1294

Amazon API Gateway Developer Guide

Resource or
operation

Default quota Can be
increased

Custom domain
names per account
per Region

120 Yes

Multi-level API
mappings per
domain

200 No

Length, in
characters, of the
URL for an edge-
optimized API

8192 No

Length, in
characters, of the
URL for a regional
API

10240 No

Private APIs per
account per Region

600 No

Length, in
characters, of API
Gateway resource
policy

8192 Yes

API keys per
account per Region

10000 No

Client certificates
per account per
Region

60 Yes

Authorizers per
API (AWS Lambda

10 Yes

API Gateway quotas for configuring and running a REST API 1295

Amazon API Gateway Developer Guide

Resource or
operation

Default quota Can be
increased

and Amazon
Cognito)

Documentation
parts per API

2000 Yes

Resources per API 300 Yes

Stages per API 10 Yes

Stage variables per
stage

100 No

Length, in
characters, of the
key in a stage
variable

64 No

Length, in
characters, of the
value in a stage
variable

512 No

Usage plans per
account per Region

300 Yes

Usage plans per
API key

10 Yes

VPC links per
account per Region

20 Yes

API Gateway quotas for configuring and running a REST API 1296

Amazon API Gateway Developer Guide

Resource or
operation

Default quota Can be
increased

API caching TTL 300 seconds by default and configurable between 0 and 3600
by an API owner.

Not
for the
upper
bound
(3600)

Cached response
size

1048576 Bytes. Cache data encryption may increase the size of
the item that is being cached.

No

Integration
timeout

50 milliseconds - 29 seconds for all integration types, including
Lambda, Lambda proxy, HTTP, HTTP proxy, and AWS integrati
ons.

Not
for the
lower
or
upper
bounds.

Total combined
size of all header
values

10240 Bytes No

Total combined
size of all header
values for a private
API

8000 Bytes No

Payload size 10 MB No

Tags per stage 50 No

Number of
iterations in a
#foreach ...
#end loop
in mapping
templates

1000 No

API Gateway quotas for configuring and running a REST API 1297

Amazon API Gateway Developer Guide

Resource or
operation

Default quota Can be
increased

ARN length of
a method with
authorization

1600 bytes No

Method-level
throttling settings
for a stage in a
usage plan

20 Yes

Model size per API 400 KB No

Number of
certificates in a
truststore

1,000 certificates up to 1 MB total object size. No

For restapi:import or restapi:put, the maximum size of the API definition file is 6 MB.

All of the per-API quotas can only be increased on specific APIs.

API Gateway quotas for creating, deploying and managing an
API

The following fixed quotas apply to creating, deploying, and managing an API in API Gateway,
using the AWS CLI, the API Gateway console, or the API Gateway REST API and its SDKs. These
quotas can't be increased.

Action Default quota Can be increased

CreateApiKey 5 requests per second per
account

No

CreateDeployment 1 request every 5 seconds per
account

No

API Gateway quotas for creating, deploying and managing an API 1298

https://docs.aws.amazon.com/apigateway/latest/api/API_ImportRestApi.html
https://docs.aws.amazon.com/apigateway/latest/api/API_PutRestApi.html
https://docs.aws.amazon.com/apigateway/latest/api/API_CreateApiKey.html
https://docs.aws.amazon.com/apigateway/latest/api/API_CreateDeployment.html

Amazon API Gateway Developer Guide

Action Default quota Can be increased

CreateDocumentationVersion 1 request every 20 seconds
per account

No

CreateDomainName 1 request every 30 seconds
per account

No

CreateResource 5 requests per second per
account

No

CreateRestApi Regional or private API

•
1 request every 3 seconds
per account

Edge-optimized API

•
1 request every 30 seconds
per account

No

CreateVpcLink (V2) 1 request every 15 seconds
per account

No

DeleteApiKey 5 requests per second per
account

No

DeleteDomainName 1 request every 30 seconds
per account

No

DeleteResource 5 requests per second per
account

No

DeleteRestApi 1 request every 30 seconds
per account

No

GetResources 5 requests every 2 seconds
per account

No

API Gateway quotas for creating, deploying and managing an API 1299

https://docs.aws.amazon.com/apigateway/latest/api/API_CreateDocumentationVersion.html
https://docs.aws.amazon.com/apigateway/latest/api/API_CreateDomainName.html
https://docs.aws.amazon.com/apigateway/latest/api/API_CreateResource.html
https://docs.aws.amazon.com/apigateway/latest/api/API_CreateRestApi.html
https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/vpclinks.html#CreateVpcLink
https://docs.aws.amazon.com/apigateway/latest/api/API_DeleteApiKey.html
https://docs.aws.amazon.com/apigateway/latest/api/API_DeleteDomainName.html
https://docs.aws.amazon.com/apigateway/latest/api/API_DeleteResource.html
https://docs.aws.amazon.com/apigateway/latest/api/API_DeleteRestApi.html
https://docs.aws.amazon.com/apigateway/latest/api/API_GetResources.html

Amazon API Gateway Developer Guide

Action Default quota Can be increased

DeleteVpcLink (V2) 1 request every 30 seconds
per account

No

ImportDocumentationParts 1 request every 30 seconds
per account

No

ImportRestApi Regional or private API

• 1 request every 3 seconds
per account

Edge-optimized API

• 1 request every 30 seconds
per account

No

PutRestApi 1 request per second per
account

No

UpdateAccount 1 request every 20 seconds
per account

No

UpdateDomainName 1 request every 30 seconds
per account

No

UpdateUsagePlan 1 request every 20 seconds
per account

No

Other operations No quota up to the total
account quota.

No

Total operations 10 requests per second with
a burst quota of 40 requests
per second.

No

API Gateway quotas for creating, deploying and managing an API 1300

https://docs.aws.amazon.com/apigatewayv2/latest/api-reference/vpclinks.html#DeleteVpcLink
https://docs.aws.amazon.com/apigateway/latest/api/API_ImportDocumentationParts.html
https://docs.aws.amazon.com/apigateway/latest/api/API_ImportRestApi.html
https://docs.aws.amazon.com/apigateway/latest/api/API_PutRestApi.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateAccount.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateDomainName.html
https://docs.aws.amazon.com/apigateway/latest/api/API_UpdateUsagePlan.html

Amazon API Gateway Developer Guide

Amazon API Gateway important notes

Topics

• Amazon API Gateway important notes for REST APIs, HTTP APIs, and WebSocket APIs

• Amazon API Gateway important notes for REST and WebSocket APIs

• Amazon API Gateway important notes for WebSocket APIs

• Amazon API Gateway important notes for REST APIs

Amazon API Gateway important notes for REST APIs, HTTP APIs, and
WebSocket APIs

• Signature Version 4A is not officially supported by Amazon API Gateway.

Amazon API Gateway important notes for REST and WebSocket APIs

• API Gateway does not support sharing a custom domain name across REST and WebSocket APIs.

• Stage names can only contain alphanumeric characters, hyphens, and underscores. Maximum
length is 128 characters.

• The /ping and /sping paths are reserved for the service health check. Use of these for API
root-level resources with custom domains will fail to produce the expected result.

• API Gateway currently limits log events to 1024 bytes. Log events larger than 1024 bytes,
such as request and response bodies, will be truncated by API Gateway before submission to
CloudWatch Logs.

• CloudWatch Metrics currently limits dimension names and values to 255 valid XML characters.
(For more information, see the CloudWatch User Guide.) Dimension values are a function of user-
defined names, including API name, label (stage) name, and resource name. When choosing
these names, be careful not to exceed CloudWatch Metrics limits.

• The maximum size of a mapping template is 300 KB.

Important notes 1301

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Dimension

Amazon API Gateway Developer Guide

Amazon API Gateway important notes for WebSocket APIs

• API Gateway supports message payloads up to 128 KB with a maximum frame size of 32 KB. If a
message exceeds 32 KB, you must split it into multiple frames, each 32 KB or smaller. If a larger
message is received, the connection is closed with code 1009.

Amazon API Gateway important notes for REST APIs

• The plain text pipe character (|) is not supported for any request URL query string and must be
URL-encoded.

• The semicolon character (;) is not supported for any request URL query string and results in the
data being split. In general, REST APIs decode URL-encoded request parameters before passing
them to backend integrations.

• When using the API Gateway console to test an API, you may get an "unknown endpoint errors"
response if a self-signed certificate is presented to the backend, the intermediate certificate is
missing from the certificate chain, or any other unrecognizable certificate-related exceptions
thrown by the backend.

• For an API Resource or Method entity with a private integration, you should delete it after
removing any hard-coded reference of a VpcLink. Otherwise, you have a dangling integration
and receive an error stating that the VPC link is still in use even when the Resource or Method
entity is deleted. This behavior does not apply when the private integration references VpcLink
through a stage variable.

• The following backends may not support SSL client authentication in a way that's compatible
with API Gateway:

• NGINX

• Heroku

• API Gateway supports most of the OpenAPI 2.0 specification and the OpenAPI 3.0 specification,
with the following exceptions:

• Path segments can only contain alphanumeric characters, underscores, hyphens, periods,
commas, colons, and curly braces. Path parameters must be separate path segments. For
example, "resource/{path_parameter_name}" is valid; "resource{path_parameter_name}" is
not.

• Model names can only contain alphanumeric characters.

Important notes for WebSocket APIs 1302

https://docs.aws.amazon.com/apigateway/latest/api/API_Resource.html
https://docs.aws.amazon.com/apigateway/latest/api/API_Method.html
https://docs.aws.amazon.com/apigateway/latest/api/API_VpcLink.html
https://nginx.org/en/
https://www.heroku.com/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.1.md

Amazon API Gateway Developer Guide

• For input parameters, only the following attributes are supported: name, in, required, type,
description. Other attributes are ignored.

• The securitySchemes type, if used, must be apiKey. However, OAuth 2 and HTTP Basic
authentication are supported via Lambda authorizers; the OpenAPI configuration is achieved
via vendor extensions.

• The deprecated field is not supported and is dropped in exported APIs.

• API Gateway models are defined using JSON schema draft 4, instead of the JSON schema used
by OpenAPI.

• The discriminator parameter is not supported in any schema object.

• The example tag is not supported.

• exclusiveMinimum is not supported by API Gateway.

• The maxItems and minItems tags are not included in simple request validation. To work
around this, update the model after import before doing validation.

• oneOf is not supported for OpenAPI 2.0 or SDK generation.

• The readOnly field is not supported.

• $ref cannot be used to reference other files.

• Response definitions of the "500": {"$ref": "#/responses/UnexpectedError"} form
is not supported in the OpenAPI document root. To work around this, replace the reference by
the inline schema.

• Numbers of the Int32 or Int64 type are not supported. An example is shown as follows:

"elementId": {
 "description": "Working Element Id",
 "format": "int32",
 "type": "number"
}

• Decimal number format type ("format": "decimal") is not supported in a schema
definition.

• In method responses, schema definition must be of an object type and cannot be of primitive
types. For example, "schema": { "type": "string"} is not supported. However, you can
work around this using the following object type:

"schema": {
 "$ref": "#/definitions/StringResponse"

Important notes for REST APIs 1303

https://tools.ietf.org/html/draft-zyp-json-schema-04

Amazon API Gateway Developer Guide

 }

 "definitions": {
 "StringResponse": {
 "type": "string"
 }
 }

• API Gateway doesn't use root level security defined in the OpenAPI specification. Hence
security needs to be defined at an operation level to be appropriately applied.

• The default keyword is not supported.

• API Gateway enacts the following restrictions and limitations when handling methods with
either Lambda integration or HTTP integration.

• Header names and query parameters are processed in a case-sensitive way.

• The following table lists the headers that may be dropped, remapped, or otherwise modified
when sent to your integration endpoint or sent back by your integration endpoint. In this
table:

• Remapped means that the header name is changed from <string> to X-Amzn-
Remapped-<string>.

Remapped Overwritten means that the header name is changed from <string> to X-
Amzn-Remapped-<string> and the value is overwritten.

Header name Request (http/http_proxy /lambda) Response
(http/http_prox
y /lambda)

Age Passthrough Passthrou
gh

Accept Passthrough Dropped/
P
assthroug
h/
Passthr
ough

Important notes for REST APIs 1304

Amazon API Gateway Developer Guide

Header name Request (http/http_proxy /lambda) Response
(http/http_prox
y /lambda)

Accept-Ch
arset

Passthrough Passthrou
gh

Accept-En
coding

Passthrough Passthrou
gh

Authoriza
tion

Passthrough * Remapped

Connection Passthrough/Passthrough/Dropped Remapped

Content-E
ncoding

Passthrough/Dropped/Passthrough Passthrou
gh

Content-L
ength

Passthrough (generated based on body) Passthrou
gh

Content-MD5 Dropped Remapped

Content-Type Passthrough Passthrou
gh

Date Passthrough Remapped
Overwritt
en

Expect Dropped Dropped

Host Overwritten to the integration endpoint Dropped

Max-Forwards Dropped Remapped

Pragma Passthrough Passthrou
gh

Important notes for REST APIs 1305

Amazon API Gateway Developer Guide

Header name Request (http/http_proxy /lambda) Response
(http/http_prox
y /lambda)

Proxy-Aut
henticate

Dropped Dropped

Range Passthrough Passthrou
gh

Referer Passthrough Passthrou
gh

Server Dropped Remapped
Overwritt
en

TE Dropped Dropped

Transfer-
Encoding

Dropped/Dropped/Exception Dropped

Trailer Dropped Dropped

Upgrade Dropped Dropped

User-Agent Passthrough Remapped

Via Dropped/Dropped/Passthrough Passthrou
gh/
Droppe
d/
Dropped

Warn Passthrough Passthrou
gh

WWW-Authe
nticate

Dropped Remapped

Important notes for REST APIs 1306

Amazon API Gateway Developer Guide

* The Authorization header is dropped if it contains a Signature Version 4 signature or if
AWS_IAM authorization is used.

• The Android SDK of an API generated by API Gateway uses the
java.net.HttpURLConnection class. This class will throw an unhandled exception, on
devices running Android 4.4 and earlier, for a 401 response resulted from remapping of the WWW-
Authenticate header to X-Amzn-Remapped-WWW-Authenticate.

• Unlike API Gateway-generated Java, Android and iOS SDKs of an API, the JavaScript SDK of an
API generated by API Gateway does not support retries for 500-level errors.

• The test invocation of a method uses the default content type of application/json and
ignores specifications of any other content types.

• When sending requests to an API by passing the X-HTTP-Method-Override header, API
Gateway overrides the method. So in order to pass the header to the backend, the header needs
to be added to the integration request.

• When a request contains multiple media types in its Accept header, API Gateway only honors
the first Accept media type. In the situation where you cannot control the order of the Accept
media types and the media type of your binary content is not the first in the list, you can add
the first Accept media type in the binaryMediaTypes list of your API, API Gateway will return
your content as binary. For example, to send a JPEG file using an element in a browser,
the browser might send Accept:image/webp,image/*,*/*;q=0.8 in a request. By adding
image/webp to the binaryMediaTypes list, the endpoint will receive the JPEG file as binary.

• Customizing the default gateway response for 413 REQUEST_TOO_LARGE isn't currently
supported.

• API Gateway includes a Content-Type header for all integration responses. By default, the
content type is application/json.

Important notes for REST APIs 1307

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon API Gateway Developer Guide

Document history

The following table describes the important changes to the documentation since the last release of
Amazon API Gateway. For notification about updates to this documentation, you can subscribe to
an RSS feed by choosing the RSS button in the top menu panel.

• Latest documentation update: February 15, 2024

Change Description Date

Added support for TLS 1.3 API Gateway now supports
TLS 1.3 on Regional REST
APIs, HTTP APIs, and
WebSocket APIs. For more
information, see Choosing
a security policy for your
custom domain in API
Gateway.

February 15, 2024

REST API and WebSocket API
console updates

Updated console information
for REST APIs and WebSocket
APIs

December 10, 2023

Documentation update Updated conceptual informati
on and created new tutorials
for data transformations
and request validation topics
for API Gateway REST APIs.
For more information, see
Use request validation in API
Gateway and Setting up data
transformations for REST API.

June 22, 2023

Configure DNS failover for a
multi-Region API Gateway

Added support to use Amazon
Route 53 health checks to
control DNS failover from an
API Gateway REST API in a

October 31, 2022

1308

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-custom-domain-tls-version.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-custom-domain-tls-version.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-custom-domain-tls-version.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-custom-domain-tls-version.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-method-request-validation.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-method-request-validation.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/rest-api-data-transformations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/rest-api-data-transformations.html

Amazon API Gateway Developer Guide

primary AWS Region to one in
a secondary Region. For more
information, see Configure
custom health checks for DNS
failover.

Documentation update Updated core feature
summaries for REST API and
HTTP API APIs. For more
information, see Choosing
between REST API and HTTP
API APIs.

May 31, 2022

Managed policy update Added acm:GetCe
rtificate support to
the AWSServiceRoleForA
PIGateway policy. For
more information, see Using
service-linked roles for API
Gateway.

July 12, 2021

Parameter mapping for HTTP
APIs

Added support for parameter
mapping for HTTP APIs.
For more information, see
Transforming API requests
and responses.

January 7, 2021

Disable the default endpoint
for a REST API

Added support for disabling
the default endpoint for REST
APIs. For more information,
see Disabling the default
endpoint for a REST API.

October 29, 2020

1309

https://docs.aws.amazon.com/apigateway/latest/developerguide/dns-failover.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/dns-failover.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/dns-failover.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-vs-rest.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-vs-rest.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-vs-rest.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-parameter-mapping.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-parameter-mapping.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/rest-api-disable-default-endpoint.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/rest-api-disable-default-endpoint.html

Amazon API Gateway Developer Guide

Mutual TLS authentication Added support for mutual
TLS authentication for REST
APIs and HTTP APIs. For more
information, see Configuring
mutual TLS authentication for
a REST API and Configuring
mutual TLS authentication for
an HTTP API.

September 17, 2020

HTTP API AWS Lambda
authorizers

Added support for AWS
Lambda authorizers for HTTP
APIs. For more informati
on, see Working with AWS
Lambda authorizers for HTTP
APIs.

September 9, 2020

HTTP API AWS service
integrations

Added support for AWS
service integrations for HTTP
APIs. For more information,
see Working with AWS service
integrations for HTTP APIs.

August 20, 2020

HTTP API wildcard custom
domains

Added support for wildcard
custom domain names
for HTTP APIs. For more
information, see Wildcard
custom domain names.

August 10, 2020

Serverless developer portal
improvements

Added user management
to the administrator panel
and support for exporting
API definitions. For more
information, see Use the
serverless developer portal
to catalog your API Gateway
APIs.

June 25, 2020

1310

https://docs.aws.amazon.com/apigateway/latest/developerguide/rest-api-mutual-tls.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/rest-api-mutual-tls.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/rest-api-mutual-tls.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-mutual-tls.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-mutual-tls.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-mutual-tls.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-lambda-authorizer
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-lambda-authorizer
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-lambda-authorizer
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-develop-integrations-aws-services
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-develop-integrations-aws-services
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-custom-domain-names.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-custom-domain-names.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-developer-portal.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-developer-portal.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-developer-portal.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-developer-portal.html

Amazon API Gateway Developer Guide

WebSocket API Sec-WebSo
cket-Protocol support

Added support for the
Sec-WebSocket-Prot
ocol field. For more
information, see Setting up a
$connect route that requires a
WebSocket subprotocol.

June 16, 2020

HTTP API export Added support for exporting
OpenAPI 3.0 definitions
of HTTP APIs. For more
information, see Exporting an
HTTP API from API Gateway.

April 20, 2020

Security documentation Added security documenta
tion. For more information,
see Security in Amazon API
Gateway.

March 31, 2020

Reorganized documentation Reorganized the developer
guide.

March 12, 2020

HTTP API general availability Released HTTP APIs in
general availability. For more
information, see Working with
HTTP APIs.

March 12, 2020

HTTP API logging Added support for
$context.integrati
onErrorMessage in HTTP
API logs. For more informati
on, see HTTP API Logging
Variables.

February 26, 2020

AWS variables for OpenAPI
import

Added support for AWS
variables in OpenAPI definitio
ns. For more information, see
AWS Variables for OpenAPI
Import.

February 17, 2020

1311

https://docs.aws.amazon.com/apigateway/latest/developerguide/websocket-connect-route-subprotocol.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/websocket-connect-route-subprotocol.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/websocket-connect-route-subprotocol.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-export.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-export.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/security.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/security.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-logging-variables.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-logging-variables.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/import-api-aws-variables.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/import-api-aws-variables.html

Amazon API Gateway Developer Guide

HTTP APIs Released HTTP APIs in beta.
For more information, see
HTTP APIs.

December 4, 2019

Wildcard custom domain
names

Added support for wildcard
custom domain names.
For more information, see
Wildcard Custom Domain
Names.

October 21, 2019

Amazon Data Firehose
logging

Added support for Amazon
Data Firehose as a destination
for access logging data. For
more information, see Using
Amazon Data Firehose as a
Destination for API Gateway
Access Logging.

October 15, 2019

Route53 aliases for invoking
private APIs

Added support for additiona
l Route53 alias DNS records
for invoking private APIs.
For more information, see
Accessing Your Private API
Using Route53 Alias.

September 18, 2019

Tag-based access control for
WebSocket APIs

Added support for tag-based
access control for WebSocket
APIs. For more information,
see API Gateway Resources
That Can Be Tagged.

June 27, 2019

1312

https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-custom-domains.html#wildcard-custom-domain-names
https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-custom-domains.html#wildcard-custom-domain-names
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-logging-to-kinesis.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-logging-to-kinesis.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-logging-to-kinesis.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-logging-to-kinesis.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-private-api-test-invoke-url.html#apigateway-private-api-route53-alias
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-private-api-test-invoke-url.html#apigateway-private-api-route53-alias
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-tagging-supported-resources.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-tagging-supported-resources.html

Amazon API Gateway Developer Guide

TLS version selection for
custom domains

Added support for Transport
Layer Security (TLS) version
selection for APIs that are
deployed to custom domains.
See the note in Choose a
Minimum TLS Version for
a Custom Domain in API
Gateway.

June 20, 2019

VPC endpoint policies for
private APIs

Added support for improving
the security of private APIs by
attaching endpoint policies
to interface VPC endpoints
. For more information, see
Use VPC Endpoint Policies for
Private APIs in API Gateway.

June 4, 2019

Documentation updated Rewrote Getting Started
with Amazon API Gateway.
Moved tutorials to Amazon
API Gateway Tutorials.

May 29, 2019

Tag-based access control for
REST APIs

Added support for tag-based
access control for REST APIs.
For more information, see
Using Tags with IAM Policies
to Control Access to API
Gateway Resources.

May 23, 2019

1313

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-custom-domain-tls-version.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-custom-domain-tls-version.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-custom-domain-tls-version.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-custom-domain-tls-version.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-vpc-endpoint-policies.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-vpc-endpoint-policies.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-tutorials.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-tutorials.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-tagging-iam-policy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-tagging-iam-policy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-tagging-iam-policy.html

Amazon API Gateway Developer Guide

Documentation updated Rewrote 6 topics: What
Is Amazon API Gateway?,
Tutorial: Build an API with
HTTP Proxy Integration,
Tutorial: Create a Calc REST
API with Three Non-Proxy
Integrations, API Gateway
Mapping Template and Access
Logging Variable Reference
, Use API Gateway Lambda
Authorizers, and Enable CORS
for an API Gateway REST API
Resource.

April 5, 2019

Serverless developer portal
improvements

Added administrator panel
and other improvements
to make it easier to publish
APIs in the Amazon API
Gateway developer portal. For
more information, see Use a
Developer Portal to Catalog
Your APIs.

March 28, 2019

Support for AWS Config Added support for AWS
Config. For more information,
see Monitoring API Gateway
API Configuration with AWS
Config.

March 20, 2019

Support for AWS CloudForm
ation

Added API Gateway V2 API
to the AWS CloudFormation
template reference. For more
information, see Amazon API
Gateway V2 Resource Types
Reference.

February 7, 2019

1314

https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-http.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-http.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/integrating-api-with-aws-services-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/integrating-api-with-aws-services-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/integrating-api-with-aws-services-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-cors.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-cors.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-cors.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-developer-portal.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-developer-portal.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-developer-portal.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-config.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-config.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-config.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-reference-apigatewayv2.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-reference-apigatewayv2.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-reference-apigatewayv2.html

Amazon API Gateway Developer Guide

Support for WebSocket APIs Added support for WebSocket
APIs. For more information,
see Creating a WebSocket API
in Amazon API Gateway.

December 18, 2018

Serverless developer portal
available through AWS
Serverless Application
Repository

The Amazon API Gateway
developer portal serverless
application is now available
from the AWS Serverless
Application Repository (in
addition to GitHub). For
more information, see Use a
Developer Portal to Catalog
Your API Gateway APIs.

November 16, 2018

Support for AWS WAF Added support for AWS WAF
(Web Application Firewall)
. For more information, see
Control Access to an API
Using AWS WAF.

November 5, 2018

Serverless developer portal Amazon API Gateway now
provides a fully customiza
ble developer portal as a
serverless application that
you can deploy for publishin
g your API Gateway APIs. For
more information, see Use a
Developer Portal to Catalog
Your API Gateway APIs.

October 29, 2018

1315

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api.html
https://aws.amazon.com/serverless/serverlessrepo/
https://aws.amazon.com/serverless/serverlessrepo/
https://github.com/awslabs/aws-api-gateway-developer-portal
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-developer-portal.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-developer-portal.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-developer-portal.html
https://docs.aws.amazon.com/waf/latest/developerguide/waf-chapter.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-control-access-aws-waf.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-control-access-aws-waf.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-developer-portal.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-developer-portal.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-developer-portal.html

Amazon API Gateway Developer Guide

Support for multi-value
headers and query string
parameters

Amazon API Gateway now
supports multiple headers
and query string parameter
s that have the same name.
For more information, see
Support for Multi-Value
Headers and Query String
Parameters.

October 4, 2018

OpenAPI support Amazon API Gateway now
supports OpenAPI 3.0 as well
as OpenAPI (Swagger) 2.0.

September 27, 2018

Documentation updated Added a new topic: How
Amazon API Gateway
Resource Policies Affect
Authorization Workflow.

September 27, 2018

Active AWS X-Ray integration You can now use AWS X-Ray
to trace and analyze latencies
in user requests as they travel
through your APIs to the
underlying services. For more
information, see Trace API
Gateway API Execution with
AWS X-Ray.

September 6, 2018

1316

https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html#apigateway-multivalue-headers-and-parameters
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html#apigateway-multivalue-headers-and-parameters
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html#apigateway-multivalue-headers-and-parameters
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-authorization-flow.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-authorization-flow.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-authorization-flow.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-authorization-flow.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-xray.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-xray.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-xray.html

Amazon API Gateway Developer Guide

Caching improvements Only GET methods will have
caching enabled by default
when you enable caching for
an API stage. This helps to
ensure the safety of your API.
You can enable caching for
other methods by overridin
g method settings. For more
information, see Enable API
Caching to Enhance Responsiv
eness.

August 20, 2018

Service limits revised Several limits have been
revised: Increased number of
APIs per account. Increased
API rate limits for Create/Im
port/Deploy APIs. Corrected
some rates from per minute
to per second. For more
information, see Limits.

July 13, 2018

Overriding API request and
response parameters and
headers

Added support for overridin
g request headers, query
strings, and paths, as well as
response headers and status
codes. For more information,
see Use a Mapping Template
to Override an API's Request
and Response Parameters and
Headers.

July 12, 2018

1317

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-caching.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-caching.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-caching.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/limits.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-override-request-response-parameters.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-override-request-response-parameters.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-override-request-response-parameters.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-override-request-response-parameters.html

Amazon API Gateway Developer Guide

Method-level throttling for
usage plans

Added support for setting
default per-method throttlin
g limits, as well as setting
throttling limits for individua
l API methods in usage plan
settings. These settings are
in addition to the existing
account-level throttling
and default method-level
throttling limits that you
can set in stage settings.
For more information, see
Throttle API Requests for
Better Throughput.

July 11, 2018

API Gateway Developer Guide
update notifications now
available through RSS

The HTML version of the API
Gateway Developer Guide
now supports an RSS feed of
updates that are documente
d on this Document History
page. The RSS feed includes
updates made June 27,
2018, and later. Previously
announced updates are still
available on this page. Use
the RSS button in the top
menu panel to subscribe to
the feed.

June 27, 2018

Earlier updates

The following table describes important changes in each release of the API Gateway Developer
Guide before June 27, 2018.

Earlier updates 1318

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-request-throttling.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-request-throttling.html

Amazon API Gateway Developer Guide

Change Description Date
changed

Private APIs Added support for private APIs, which you expose via
interface VPC endpoints. Traffic to your private APIs does
not leave the Amazon network; it is isolated from the
public internet.

June 14,
2018

Cross-Account
Lambda Authorize
rs and Integrations
and Cross-Account
Amazon Cognito
User Pool Authorize
rs

Use an AWS Lambda function from a different AWS
account as a Lambda authorizer function or as an API
integration backend. Or use an Amazon Cognito user
pool as an authorizer. The other account can be in any
region where Amazon API Gateway is available. For more
information, see the section called “Configure a cross-
account Lambda authorizer”, the section called “Tutorial
: Build an API with cross-account Lambda proxy integrati
on”, and the section called “Configure cross-account
Amazon Cognito authorizer for a REST API”.

April 2,
2018

Resource Policies
for APIs

Use API Gateway resource policies to enable users from
a different AWS account to securely access your API or to
allow the API to be invoked only from specified source IP
address ranges or CIDR blocks. For more information, see
the section called “Use API Gateway resource policies”.

April 2,
2018

Tagging for API
Gateway resources

Tag an API stage with up to 50 tags for cost allocation
of API requests and caching in API Gateway. For more
information see the section called “Set up tags”.

December
19, 2017

Payload compressi
on and decompres
sion

Enable calling your API with compressed payloads using
one of the supported content codings. The compresse
d payloads are subject to mapping if a body-mapping
template is specified. For more information, see the
section called “Content encoding”.

December
19, 2017

API key sourced
from a custom
authorizer

Return an API key from a custom authorizer to API
Gateway to apply a usage plan for API methods that

December
19, 2017

Earlier updates 1319

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html

Amazon API Gateway Developer Guide

Change Description Date
changed

require the key. For more information, see the section
called “Choose an API key source”.

Authorization with
OAuth 2 scopes

Enable authorization of method invocation by using
OAuth 2 scopes with the COGNITO_USER_POOLS
authorizer. For more information, see the section called
“Use Amazon Cognito user pool as authorizer for a REST
API”.

December
14, 2017

Private Integration
and VPC Link

Create an API with the API Gateway private integration to
provide clients with access to HTTP/HTTPS resources in an
Amazon VPC from outside of the VPC through a VpcLink
resource. For more information, see the section called
“Tutorial: Build an API with private integration” and the
section called “Private integration”.

November
30, 2017

Deploy a Canary for
API testing

Add a canary release to an existing API deployment to
test a newer version of the API while keeping the current
version in operation on the same stage. You can set a
percentage of stage traffic for the canary release and
enable canary-specific execution and access logged in
separate CloudWatch Logs logs. For more information,
see the section called “Set up a canary release deploymen
t”.

November
28, 2017

Access Logging Log client access to your API with data derived from
$context variables in a format of your choosing. For more
information, see the section called “CloudWatch logs”.

November
21, 2017

Ruby SDK of an API Generate a Ruby SDK for your API and use it to invoke
your API methods. For more information, see the section
called “Generate the Ruby SDK of an API” and the section
called “Use a Ruby SDK generated by API Gateway for a
REST API”.

November
20, 2017

Earlier updates 1320

https://docs.aws.amazon.com/apigateway/latest/api/API_VpcLink.html

Amazon API Gateway Developer Guide

Change Description Date
changed

Regional API
endpoint

Specify a regional API endpoint to create an API for
non-mobile clients. A non-mobile client, such as an EC2
instance, runs in the same AWS Region where the API
is deployed. As with an edge-optimized API, you can
create a custom domain name for a regional API. For more
information, see the section called “Set up a Regional
API” and the section called “Setting up a regional custom
domain name”.

November
2, 2017

Custom request
authorizer

Use custom request authorizer to supply user-auth
enticating information in request parameters to authorize
API method calls. The request parameters include headers
and query string parameters as well as stage and context
variables. For more information, see Use API Gateway
Lambda authorizers.

September
15, 2017

Customizing
gateway responses

Customize API Gateway-generated gateway responses to
API requests that failed to reach the integration backend.
A customized gateway message can provide the caller
with API-specific custom error messages, including
returning needed CORS headers, or can transform
the gateway response data to a format of an external
exchange. For more information, see Setting up gateway
responses to customize error responses.

June 6,
2017

Mapping Lambda
custom error
properties to
method response
headers

Map individual custom error properties returned from
Lambda to the method response header parameters
using the integration.response.body parameter
, relying API Gateway to deserialize the stringified custom
error object at run time. For more information, see Handle
custom Lambda errors in API Gateway.

June 6,
2017

Earlier updates 1321

Amazon API Gateway Developer Guide

Change Description Date
changed

Throttling limits
increase

Increase the account-level steady-state request rate limit
to 10,000 requests per second (rps) and the bust limit
to 5000 concurrent requests. For more information, see
Throttle API requests for better throughput.

June 6,
2017

Validating method
requests

Configure basic request validators on the API level or
method levels so that API Gateway can validate incoming
requests. API Gateway verifies that required parameter
s are set and not blank, and verifies that the format of
applicable payloads conforms to the configured model.
For more information, see Use request validation in API
Gateway.

April 11,
2017

Integrating with
ACM

Use ACM Certificates for your API's custom domain
names. You can create a certificate in AWS Certificate
Manager or import an existing PEM-formatted certifica
te into ACM. You then refer to the certificate's ARN when
setting a custom domain name for your APIs. For more
information, see Setting up custom domain names for
REST APIs.

March 9,
2017

Generating and
calling a Java SDK
of an API

Let API Gateway generate the Java SDK for your API
and use the SDK to call the API in your Java client. For
more information, see Use a Java SDK generated by API
Gateway for a REST API.

January 13,
2017

Integrating with
AWS Marketplace

Sell your API in a usage plan as a SaaS product through
AWS Marketplace. Use AWS Marketplace to extend the
reach of your API. Rely on AWS Marketplace for customer
billing on your behalf. Let API Gateway handle user
authorization and usage metering. For more information,
see Sell your APIs as SaaS.

December
1, 2016

Earlier updates 1322

Amazon API Gateway Developer Guide

Change Description Date
changed

Enabling
Documentation
Support for your
API

Add documentation for API entities in DocumentationPart
resources in API Gateway. Associate a snapshot of the
collection DocumentationPart instances with an API
stage to create a DocumentationVersion. Publish API
documentation by exporting a documentation version to
an external file, such as a Swagger file. For more informati
on, see Documenting REST APIs.

December
1, 2016

Updated custom
authorizer

A customer authorizer Lambda function now returns the
caller's principal identifier. The function also can return
other information as key-value pairs of the context map
and an IAM policy. For more information, see Output from
an Amazon API Gateway Lambda authorizer.

December
1, 2016

Supporting binary
payloads

Set binaryMediaTypes on your API to support binary
payloads of a request or response. Set the contentHa
ndling property on an Integration or Integrati
onResponse to specify whether to handle a binary
payload as the native binary blob, as a Base64-enocded
string, or as a passthrough without modifications. For
more information, see Working with binary media types
for REST APIs.

November
17, 2016

Enabling a proxy
integration with an
HTTP or Lambda
backend through a
proxy resource of
an API.

Create a proxy resource with a greedy path parameter
of the form {proxy+} and the catch-all ANY method.
The proxy resource is integrated with an HTTP or Lambda
backend using the HTTP or Lambda proxy integration,
respectively. For more information, see Set up a proxy
integration with a proxy resource.

September
20, 2016

Earlier updates 1323

https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationPart.html
https://docs.aws.amazon.com/apigateway/latest/api/API_DocumentationVersion.html
https://docs.aws.amazon.com/apigateway/latest/api/API_RestApi.html#apigw-Type-RestApi-binaryMediaTypes
https://docs.aws.amazon.com/apigateway/latest/api/API_Integration.html
https://docs.aws.amazon.com/apigateway/latest/api/API_IntegrationResponse.html
https://docs.aws.amazon.com/apigateway/latest/api/API_IntegrationResponse.html

Amazon API Gateway Developer Guide

Change Description Date
changed

Extending selected
APIs in API Gateway
as product offerings
for your customers
by providing one or
more usage plans.

Create a usage plan in API Gateway to enable selected
API clients to access specified API stages at agreed-up
on request rates and quotas. For more information, see
Creating and using usage plans with API keys.

August 11,
2016

Enabling method-
level authorization
with a user pool in
Amazon Cognito

Create a user pool in Amazon Cognito and use it as your
own identity provider. You can configure the user pool as
a method-level authorizer to grant access for users who
are registered with the user pool. For more information,
see Control access to a REST API using Amazon Cognito
user pools as authorizer.

July 28,
2016

Enabling Amazon
CloudWatch metrics
and dimensions
under the AWS/
ApiGateway
namespace.

The API Gateway metrics are now standardized under
the CloudWatch namespace of AWS/ApiGateway . You
can view them in both the API Gateway console and the
Amazon CloudWatch console. For more information, see
Amazon API Gateway dimensions and metrics.

July 28,
2016

Enabling certifica
te rotation for a
custom domain
name

Certificate rotation allows you to upload and renew an
expiring certificate for a custom domain name. For more
information, see Rotate a certificate imported into ACM.

April 27,
2016

Documenting
changes for the
updated Amazon
API Gateway
console.

Learn how to create and set up an API using the updated
API Gateway console. For more information, see Tutorial:
Create a REST API by importing an example and Tutorial:
Build a REST API with HTTP non-proxy integration.

April 5,
2016

Earlier updates 1324

Amazon API Gateway Developer Guide

Change Description Date
changed

Enabling the
Import API feature
to create a new or
update an existing
API from external
API definitions.

With the Import API features, you can create a new API
or update an existing one by uploading an external API
definition expressed in Swagger 2.0 with the API Gateway
extensions. For more information about the Import API,
see Configuring a REST API using OpenAPI.

April 5,
2016

Exposing the
$input.body
variable to access
the raw payload
as string and
the $util.par
seJson()
function to turn a
JSON string into a
JSON object in a
mapping template.

For more information about $input.body and
$util.parseJson() , see API Gateway mapping
template and access logging variable reference.

April 5,
2016

Enabling client
requests with
method-level
cache invalidat
ion, and improving
request throttling
management.

Flush API stage-level cache and invalidate individua
l cache entry. For more information, see Flush the
API stage cache in API Gateway and Invalidate an API
Gateway cache entry. Improve the console experience for
managing API request throttling. For more information,
see Throttle API requests for better throughput.

March 25,
2016

Enabling and
calling API Gateway
API using custom
authorization

Create and configure an AWS Lambda function to
implement custom authorization. The function returns
an IAM policy document that grants the Allow or Deny
permissions to client requests of an API Gateway API. For
more information, see Use API Gateway Lambda authorize
rs.

February
11, 2016

Earlier updates 1325

Amazon API Gateway Developer Guide

Change Description Date
changed

Importing and
exporting API
Gateway API using
a Swagger definitio
n file and extension
s

Create and update your API Gateway API using the
Swagger specification with the API Gateway extensions.
Import the Swagger definitions using the API Gateway
Importer. Export an API Gateway API to a Swagger
definition file using the API Gateway console or API
Gateway Export API. For more information, see Configuri
ng a REST API using OpenAPI and Export a REST API from
API Gateway.

December
18, 2015

Mapping request
or response body
or body's JSON
fields to request or
response parameter
s.

Map method request body or its JSON fields into
integration request's path, query string, or headers. Map
integration response body or its JSON fields into request
response's headers. For more information, see Amazon
API Gateway API request and response data mapping
reference.

December
18, 2015

Working with
Stage Variables
in Amazon API
Gateway

Learn how to associate configuration attributes with a
deployment stage of an API in Amazon API Gateway. For
more information, see Setting up stage variables for a
REST API deployment.

November
5, 2015

How to: Enable
CORS for a Method

It is now easier to enable cross-origin resource sharing
(CORS) for methods in Amazon API Gateway. For more
information, see Enabling CORS for a REST API resource.

November
3, 2015

How to: Use Client
Side SSL Authentic
ation

Use Amazon API Gateway to generate SSL certificates
that you can use to authenticate calls to your HTTP
backend. For more information, see Generate and
configure an SSL certificate for backend authentication.

September
22, 2015

Mock integration of
methods

Learn how to mock-integrate an API with Amazon API
Gateway. This feature enables developers to generate API
responses from API Gateway directly without the need for
a final integration backend beforehand.

September
1, 2015

Earlier updates 1326

Amazon API Gateway Developer Guide

Change Description Date
changed

Amazon Cognito
Identity support

Amazon API Gateway has expanded the scope of the
$context variable so that it now returns informati
on about Amazon Cognito Identity when requests are
signed with Amazon Cognito credentials. In addition,
we have added a $util variable for escaping character
s in JavaScript and encoding URLs and strings. For more
information, see API Gateway mapping template and
access logging variable reference.

August 28,
2015

Swagger integrati
on

Use the Swagger import tool on GitHub to import
Swagger API definitions into Amazon API Gateway. Learn
more about Working with API Gateway extensions to
OpenAPI to create and deploy APIs and methods using
the import tool. With the Swagger importer tool you can
also update existing APIs.

July 21,
2015

Mapping Template
Reference

Read about the $input parameter and its functions in
the API Gateway mapping template and access logging
variable reference.

July 18,
2015

Initial public release This is the initial public release of the API Gateway
Developer Guide.

July 9, 2015

Earlier updates 1327

https://github.com/awslabs/aws-apigateway-swagger-importer

Amazon API Gateway Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

1328

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon API Gateway
	Table of Contents
	What is Amazon API Gateway?
	Architecture of API Gateway
	Features of API Gateway
	API Gateway use cases
	Use API Gateway to create REST APIs
	Use API Gateway to create HTTP APIs
	Use API Gateway to create WebSocket APIs
	Who uses API Gateway?
	Creating and managing an API Gateway API
	Calling an API Gateway API

	Accessing API Gateway
	Part of AWS serverless infrastructure
	How to get started with Amazon API Gateway
	Amazon API Gateway concepts
	Choosing between REST APIs and HTTP APIs
	
	Endpoint type
	Security
	Authorization
	API management
	Development
	Monitoring
	Integrations

	Getting started with the REST API console
	Step 1: Create a Lambda function
	Step 2: Create a REST API
	Step 3: Create a Lambda proxy integration
	Step 4: Deploy your API
	Step 5: Invoke your API
	(Optional) Step 6: Clean up

	Prerequisites for getting started with API Gateway
	Sign up for an AWS account
	Create an administrative user

	Getting started with API Gateway
	Step 1: Create a Lambda function
	Step 2: Create an HTTP API
	Step 3: Test your API
	(Optional) Step 4: Clean up
	Next steps

	Amazon API Gateway tutorials and workshops
	Amazon API Gateway REST API tutorials
	Build an API Gateway REST API with Lambda integration
	Tutorial: Build a Hello World REST API with Lambda proxy integration
	Create a "Hello, World!" Lambda function
	Create a "Hello, World!" API
	Deploy and test the API
	Use browser and cURL to test an API with Lambda proxy integration

	Tutorial: Build an API Gateway REST API with cross-account Lambda proxy integration
	Create API for API Gateway cross-account Lambda integration
	Create Lambda integration function in another account
	Configure cross-account Lambda integration

	Tutorial: Build an API Gateway REST API with Lambda non-proxy integration
	Create a Lambda function for Lambda non-proxy integration
	Create an API with Lambda non-proxy integration
	Test invoking the API method
	Deploy the API
	Test the API in a deployment stage
	Clean up

	Tutorial: Create a REST API by importing an example
	Build an API Gateway REST API with HTTP integration
	Tutorial: Build a REST API with HTTP proxy integration
	Create an API with HTTP proxy integration using the API Gateway console
	Test an API with HTTP proxy integration

	Tutorial: Build a REST API with HTTP non-proxy integration
	Create an API with HTTP custom integration
	(Optional) Map request parameters
	Map request parameters for an API Gateway API
	Step 1: Create resources
	Step 2: Create and test the methods
	Step 3: Deploy the API
	Step 4: Test the API
	Next steps

	Tutorial: Build a REST API with API Gateway private integration
	Tutorial: Build an API Gateway REST API with AWS integration
	Prerequisites
	Step 1: Create the AWS service proxy execution role
	Step 2: Create the resource
	Step 3: Create the GET method
	Step 4: Specify method settings and test the method
	Step 5: Deploy the API
	Step 6: Test the API
	Step 7: Clean up

	Tutorial: Create a Calc REST API with two AWS service integrations and one Lambda non-proxy integration
	Create an assumable IAM role
	Create a Calc Lambda function
	Test the Calc Lambda function
	Create a Calc API
	Integration 1: Create a GET method with query parameters to call the Lambda function
	Integration 2: Create a POST method with a JSON payload to call the Lambda function
	Integration 3: Create a GET method with path parameters to call the Lambda function
	OpenAPI definitions of sample API integrated with a Lambda function

	Tutorial: Create a REST API as an Amazon S3 proxy in API Gateway
	Set up IAM permissions for the API to invoke Amazon S3 actions
	Create API resources to represent Amazon S3 resources
	Expose an API method to list the caller's Amazon S3 buckets
	Expose API methods to access an Amazon S3 bucket
	Expose API methods to access an Amazon S3 object in a bucket
	OpenAPI definitions of the sample API as an Amazon S3 proxy
	Call the API using a REST API client

	Tutorial: Create a REST API as an Amazon Kinesis proxy in API Gateway
	Create an IAM role and policy for the API to access Kinesis
	Start to create an API as a Kinesis proxy
	List streams in Kinesis
	Create, describe, and delete a stream in Kinesis
	Get records from and add records to a stream in Kinesis
	OpenAPI definitions of a sample API as a Kinesis proxy

	Tutorial: Building a private REST API
	Step 1: Create dependencies
	Step 2: Create a private API
	Step 3: Create a method and integration
	Step 4: Attach a resource policy
	Step 5: Deploy your API
	Step 6: Verify that your API isn't publicly accessible
	Step 7: Connect to an instance in your VPC and invoke your API
	Step 8: Clean up
	Next steps: Automate with AWS CloudFormation

	Amazon API Gateway HTTP API tutorials
	Tutorial: Build a CRUD API with Lambda and DynamoDB
	Step 1: Create a DynamoDB table
	Step 2: Create a Lambda function
	Step 3: Create an HTTP API
	Step 4: Create routes
	Step 5: Create an integration
	Step 6: Attach your integration to routes
	Step 7: Test your API
	Step 8: Clean up
	Next steps: Automate with AWS SAM or AWS CloudFormation

	Tutorial: Building an HTTP API with a private integration to an Amazon ECS service
	Step 1: Create an Amazon ECS service
	Step 2: Create a VPC link
	Step 3: Create an HTTP API
	Step 4: Create a route
	Step 5: Create an integration
	Step 6: Test your API
	Step 7: Clean up
	Next steps: Automate with AWS CloudFormation

	Amazon API Gateway WebSocket API tutorials
	Tutorial: Building a serverless chat app with a WebSocket API, Lambda and DynamoDB
	Step 1: Create Lambda functions and a DynamoDB table
	Step 2: Create a WebSocket API
	Step 3: Test your API
	Step 4: Clean up
	Next steps: Automate with AWS CloudFormation

	Tutorial: Building a serverless application with three integration types
	Prerequisites
	Step 1: Create resources
	Step 2: Create a WebSocket API
	Step 3: Create a Lambda authorizer
	Step 4: Create a mock two-way integration
	Step 5: Create a non-proxy integration with Step Functions
	Step 6: Test your API
	Step 7: Clean up
	Next steps

	Working with REST APIs
	Developing a REST API in API Gateway
	Creating a REST API in Amazon API Gateway
	Choose an endpoint type to set up for an API Gateway API
	Edge-optimized API endpoints
	Regional API endpoints
	Private API endpoints
	Change a public or private API endpoint type in API Gateway
	Use the API Gateway console to change an API endpoint type
	Use the AWS CLI to change an API endpoint type

	Initialize REST API setup in API Gateway
	Set up an API using the API Gateway console
	Set up an edge-optimized API using AWS CLI commands
	Set up an edge-optimized API using the AWS SDK for Node.js
	Set up an edge-optimized API by importing OpenAPI definitions
	Set up a Regional API in API Gateway
	Create a Regional API using the API Gateway console
	Create a Regional API using the AWS CLI
	Create a Regional API using the AWS SDK for JavaScript
	Create a Regional API using an OpenAPI definition
	Test a Regional API

	Set up REST API methods in API Gateway
	Prerequisites
	Set up a method request in API Gateway
	Set up API resources
	Use a proxy resource to streamline API setup

	Set up an HTTP method
	Set up method request parameters
	Set up method request model
	Set up method request authorization
	Set up method request validation

	Set up method responses in API Gateway
	Set up method response status code
	Set up method response parameters
	Set up method response models

	Set up a method using the API Gateway console
	Edit an API Gateway method request in the API Gateway console
	Set up an API Gateway method response using the API Gateway console

	Controlling and managing access to a REST API in API Gateway
	Controlling access to an API with API Gateway resource policies
	Access policy language overview for Amazon API Gateway
	Common elements in an access policy

	How API Gateway resource policies affect authorization workflow
	API Gateway resource policy only
	Lambda authorizer and resource policy
	IAM authentication and resource policy
	Amazon Cognito authentication and resource policy
	Policy evaluation outcome tables

	API Gateway resource policy examples
	Example: Allow roles in another AWS account to use an API
	Example: Deny API traffic based on source IP address or range
	Example: Deny API traffic based on source IP address or range when using a private API
	Example: Allow private API traffic based on source VPC or VPC endpoint

	Create and attach an API Gateway resource policy to an API
	Attaching API Gateway resource policies (console)
	Attaching API Gateway resource policies (AWS CLI)
	Attaching API Gateway resource policies (AWS CloudFormation)
	Example AWS CloudFormation template

	AWS condition keys that can be used in API Gateway resource policies

	Control access to an API with IAM permissions
	API Gateway permissions model for creating and managing an API
	API Gateway permissions model for invoking an API
	Control access for invoking an API
	Control who can call an API Gateway API method with IAM policies
	Statement reference of IAM policies for executing API in API Gateway
	Action format of permissions for executing API in API Gateway
	Resource format of permissions for executing API in API Gateway

	IAM policy examples for API execution permissions
	Create and attach a policy to a user

	Use VPC endpoint policies for private APIs in API Gateway
	VPC endpoint policy considerations
	VPC endpoint policy examples
	Example 1: VPC endpoint policy granting access to two APIs
	Example 2: VPC endpoint policy granting access to GET methods
	Example 3: VPC endpoint policy granting a specific user access to a specific API

	Using tags to control access to a REST API in API Gateway
	Use API Gateway Lambda authorizers
	Lambda authorizer Auth workflow
	Steps to create an API Gateway Lambda authorizer
	Create an API Gateway Lambda authorizer function in the Lambda console
	EXAMPLE: Create a token-based Lambda authorizer function
	EXAMPLE: Create a request-based Lambda authorizer function

	Configure a Lambda authorizer using the API Gateway console
	Input to an Amazon API Gateway Lambda authorizer
	TOKEN input format
	REQUEST input format

	Output from an Amazon API Gateway Lambda authorizer
	Call an API with API Gateway Lambda authorizers
	Configure a cross-account Lambda authorizer
	Configure a cross-account Lambda authorizer using the API Gateway console

	Control access to a REST API using Amazon Cognito user pools as authorizer
	Obtain permissions to create Amazon Cognito user pool authorizers for a REST API
	Create an Amazon Cognito user pool for a REST API
	Integrate a REST API with an Amazon Cognito user pool
	Call a REST API integrated with an Amazon Cognito user pool
	Configure cross-account Amazon Cognito authorizer for a REST API using the API Gateway console
	Configure cross-account Amazon Cognito authorizer using the API Gateway console

	Create an Amazon Cognito authorizer for a REST API using AWS CloudFormation

	Setting up REST API integrations
	Set up an integration request in API Gateway
	Basic tasks of an API integration request
	Choose an API Gateway API integration type
	Set up a proxy integration with a proxy resource
	HTTP proxy integration with a proxy resource
	Lambda proxy integration with a proxy resource

	Set up an API integration request using the API Gateway console
	Set up a Lambda integration
	Set up an HTTP integration
	Set up an AWS service integration
	Set up a mock integration

	Set up an integration response in API Gateway
	Set up Lambda integrations in API Gateway
	Set up Lambda proxy integrations in API Gateway
	Understand API Gateway Lambda proxy integration
	Support for multi-value headers and query string parameters
	Set up a proxy resource with Lambda proxy integration
	Set up Lambda proxy integration using the AWS CLI
	Input format of a Lambda function for proxy integration
	Output format of a Lambda function for proxy integration

	Set up Lambda custom integrations in API Gateway
	Set up asynchronous invocation of the backend Lambda function
	Configure Lambda asynchronous invocation in the API Gateway console
	Configure Lambda asynchronous invocation using OpenAPI

	Handle Lambda errors in API Gateway
	Handle standard Lambda errors in API Gateway
	Handle custom Lambda errors in API Gateway

	Set up HTTP integrations in API Gateway
	Set up HTTP proxy integrations in API Gateway
	Set up HTTP custom integrations in API Gateway

	Set up API Gateway private integrations
	Set up a Network Load Balancer for API Gateway private integrations
	Grant permissions to create a VPC link
	Set up an API Gateway API with private integrations using the API Gateway console
	Set up an API Gateway API with private integrations using the AWS CLI
	Set up API with private integrations using OpenAPI
	API Gateway accounts used for private integrations

	Set up mock integrations in API Gateway
	Enable mock integration using the API Gateway console

	Use request validation in API Gateway
	Overview of basic request validation in API Gateway
	Understanding data models
	PetStore model
	Creating more complex models
	Using output data models
	Next steps

	Set up basic request validation in API Gateway
	Set up request validation using the API Gateway console
	Next steps

	Set up basic request validation using the AWS CLI
	Set up basic request validation using an OpenAPI definition

	OpenAPI definitions of a sample API with basic request validation
	AWS CloudFormation template of a sample API with basic request validation

	Setting up data transformations for REST APIs
	Understanding mapping templates
	PetStore mapping template
	Complex mapping templates

	Set up data transformations in API Gateway
	Set up data transformation using the API Gateway console
	Set up data transformation using the AWS CLI
	Completed data transformation AWS CloudFormation template
	Next steps

	Use a mapping template to override an API's request and response parameters and status codes
	Tutorial: Override an API's response status code with the API Gateway console
	Tutorial: Override an API's request parameters and headers with the API Gateway console
	Examples: Override an API's request parameters and headers with the API Gateway CLI
	Example: Override an API's request parameters and headers using the SDK for JavaScript

	Set up request and response data mappings using the API Gateway console
	Models and mapping template examples
	Photos example (API Gateway models and mapping templates)
	Example data transformation
	Input model for photo data
	Output model for photo data
	Input mapping template for photo data

	News article example (API Gateway models and mapping templates)
	Original data (news article example)
	Input model (news article example)
	Input mapping template (news article example)
	Transformed data (news article example)
	Output model (news article example)
	Output mapping template (news article example)

	Sales invoice example (API Gateway models and mapping templates)
	Original data (sales invoice example)
	Input model (sales invoice example)
	Input mapping template (sales invoice example)
	Transformed data (sales invoice example)
	Output model (sales invoice example)
	Output mapping template (sales invoice example)

	Employee record example (API Gateway models and mapping templates)
	Original data (employee record example)
	Input model (employee record example)
	Input mapping template (employee record example)
	Transformed data (employee record example)
	Output model (employee record example)
	Output mapping template (employee record example)

	Amazon API Gateway API request and response data mapping reference
	Map method request data to integration request parameters
	Map integration response data to method response headers
	Map request and response payloads between method and integration
	Select a VTL mapping template

	Integration passthrough behaviors

	API Gateway mapping template and access logging variable reference
	$context Variables for data models, authorizers, mapping templates, and CloudWatch access logging
	$context Variable template example
	$context Variables for access logging only
	$input Variables
	$input Variable template examples
	Parameter mapping template example
	JSON mapping template example
	JSONPath expression example
	Request and response example

	$stageVariables
	$util Variables

	Gateway responses in API Gateway
	Setting up gateway responses to customize error responses
	Set up a gateway response for a REST API using the API Gateway console
	Set up a gateway response using the API Gateway REST API
	Set up gateway response customization in OpenAPI
	Gateway response types

	Enabling CORS for a REST API resource
	Determining whether to enable CORS support
	Enabling CORS for a simple request
	Enabling CORS for a non-simple request
	Enabling CORS for non-proxy integrations
	Enabling CORS for non-proxy integrations using the AWS Management Console

	Enabling CORS support for proxy integrations
	Enable CORS on a resource using the API Gateway console
	Enable CORS on a resource using the API Gateway import API
	Example Options method
	Example API

	Testing CORS

	Working with binary media types for REST APIs
	AWS Lambda proxy integrations
	Non-proxy integrations
	Content type conversions in API Gateway
	Enabling binary support using the API Gateway console
	Enabling binary support using the API Gateway REST API
	Add and update supported binary media types to an API
	Configure request payload conversions
	Configure response payload conversions
	Convert binary data to text data
	Convert text data to a binary payload
	Pass through a binary payload

	Import and export content encodings
	Examples of binary support
	Return binary media from a Lambda proxy integration
	Access binary files in Amazon S3 through an API Gateway API
	OpenAPI file of a sample API to access images in Amazon S3
	Download an image from Amazon S3
	Upload an image to Amazon S3

	Access binary files in Lambda using an API Gateway API
	OpenAPI file of a sample API to access images in Lambda
	Download an image from Lambda
	Upload an image to Lambda

	Invoking a REST API in Amazon API Gateway
	Obtaining an API's invoke URL
	Obtaining an API's invoke URL using the console
	Obtaining an API's invoke URL using the AWS CLI
	Obtaining an API's invoke URL using the exported OpenAPI definition file of the API

	Invoking an API
	Invoking an API using a web browser
	Invoking an API using curl

	Use the API Gateway console to test a REST API method
	Prerequisites
	Test a method with the API Gateway console

	Call REST API through generated SDKs
	Use a Java SDK generated by API Gateway for a REST API
	Use an Android SDK generated by API Gateway for a REST API
	Use a JavaScript SDK generated by API Gateway for a REST API
	Use a Ruby SDK generated by API Gateway for a REST API
	Use iOS SDK generated by API Gateway for a REST API in Objective-C or Swift
	Use generated iOS SDK (Objective-C) to call API
	Install the AWS mobile SDK and an iOS SDK generated by API Gateway in an Objective-C project
	Call API methods using the iOS SDK generated by API Gateway in an Objective-C project

	Use generated iOS SDK (Swift) to call API
	Install AWS mobile SDK and API Gateway-generated SDK in a Swift project
	Call API methods through the iOS SDK generated by API Gateway in a Swift project

	How to invoke a private API
	Invoking your private API using private DNS names
	Accessing your private API using AWS Direct Connect
	Accessing your private API using a Route53 alias
	Invoking your private API using endpoint-specific public DNS hostnames

	Configuring a REST API using OpenAPI
	Import an edge-optimized API into API Gateway
	Import an edge-optimized API using the API Gateway console
	Import an edge-optimized API using the AWS CLI

	Import a regional API into API Gateway
	Import a regional API using the API Gateway console
	Import a regional API using the AWS CLI

	Import an OpenAPI file to update an existing API definition
	Set the OpenAPI basePath property
	Ignore
	Prepend
	Split

	AWS variables for OpenAPI import
	AWS variables example

	Errors and warnings during import
	Errors during import
	Warnings during import

	Export a REST API from API Gateway
	Request to export a REST API
	Download REST API OpenAPI definition in JSON
	Download REST API OpenAPI definition in YAML
	Download REST API OpenAPI definition with Postman extensions in JSON
	Download REST API OpenAPI definition with API Gateway integration in YAML
	Export REST API using the API Gateway console

	Publishing REST APIs for customers to invoke
	Deploying a REST API in Amazon API Gateway
	Deploy a REST API in API Gateway
	Create a deployment using the AWS CLI
	Deploying a REST API from the API Gateway console
	Deploy a REST API to a stage
	Redeploy a REST API to a stage
	Update the stage configuration of a REST API deployment
	Set stage variables for a REST API deployment
	Associate a stage with a different REST API deployment

	Setting up a stage for a REST API
	Setting up a stage using the API Gateway console
	Create a new stage
	Update stage settings
	Update stage settings using the API Gateway console

	Override stage-level settings
	Override stage-level settings using the API Gateway console

	Delete a stage
	Delete a stage using the API Gateway console

	Setting up tags for an API stage in API Gateway
	Set up tags for an API stage using the API Gateway console
	Set up tags for an API stage using the AWS CLI
	Set up tags for an API stage using the API Gateway REST API
	Tag an API stage
	Untag an API stage
	Describe tags for an API stage

	Setting up stage variables for a REST API deployment
	Use cases
	Examples
	Setting stage variables using the Amazon API Gateway console
	Using Amazon API Gateway stage variables
	Prerequisites
	Access an HTTP endpoint through an API with a stage variable
	Pass stage-specific metadata to an HTTP backend through a stage variable in a query parameter expression
	Call a Lambda function through an API with a stage variable
	Pass stage-specific metadata to a Lambda function through a stage variable

	Amazon API Gateway stage variables reference
	Parameter mapping expressions
	Mapping templates
	HTTP integration URIs
	AWS integration URIs
	AWS integration URIs (Lambda functions)
	AWS integration credentials

	Set up an API Gateway canary release deployment
	Canary release deployment in API Gateway
	Create a canary release deployment
	Create a canary deployment using the API Gateway console
	Create a canary deployment using the AWS CLI

	Update a canary release
	Update a canary release using the API Gateway console
	Update a canary release using the AWS CLI

	Promote a canary release
	Promote a canary release using the API Gateway console
	Promote a canary release using the AWS CLI

	Turn off a canary release
	Turn off a canary release using the API Gateway console
	Turn off a canary release using the AWS CLI

	Updates to a REST API that require redeployment

	Setting up custom domain names for REST APIs
	Register a domain name
	Edge-optimized custom domain names
	Regional custom domain names
	Wildcard custom domain names
	Certificates for custom domain names
	Getting certificates ready in AWS Certificate Manager
	Choosing a security policy for your custom domain in API Gateway
	How to specify a security policy for custom domains
	Supported security policies, TLS protocol versions, and ciphers for edge-optimized custom domains
	Supported security policies, TLS protocol versions, and ciphers for Regional custom domains
	Supported TLS protocol versions and ciphers for private APIs
	OpenSSL and RFC cipher names
	Information about HTTP APIs and WebSocket APIs

	Creating an edge-optimized custom domain name
	Set up an edge-optimized custom domain name for an API Gateway API
	Log custom domain name creation in CloudTrail
	Configure base path mapping of an API with a custom domain name as its hostname
	Rotate a certificate imported into ACM
	Call your API with custom domain names

	Setting up a regional custom domain name in API Gateway
	Set up a regional custom domain name with an ACM certificate using the API Gateway console
	Set up a regional custom domain name with an ACM certificate using AWS CLI

	Migrating a custom domain name to a different API endpoint
	Migrate custom domain names using the AWS CLI
	Migrate an edge-optimized custom domain name to regional
	Migrate a regional custom domain name to edge-optimized

	Working with API mappings for REST APIs
	Routing API requests
	Restrictions
	Create an API mapping

	Disabling the default endpoint for a REST API
	Configure custom health checks for DNS failover
	Prerequisites
	Step 1: Set up resources
	Step 2: Initiate failover to the secondary Region
	Step 3: Test the failover
	Step 4: Return to the primary region
	Next steps: Customize and test regularly

	Optimizing performance of REST APIs
	Enabling API caching to enhance responsiveness
	Enable Amazon API Gateway caching
	Override API Gateway stage-level caching for method-level caching
	Use method or integration parameters as cache keys to index cached responses
	Flush the API stage cache in API Gateway
	Invalidate an API Gateway cache entry

	Enabling payload compression for an API
	Enable payload compression for an API
	Enable payload compression for an API using the API Gateway console
	Enable payload compression for an API using AWS CLI
	Content codings supported by API Gateway

	Call an API method with a compressed payload
	Receive an API response with a compressed payload

	Distributing your REST API to clients
	Creating and using usage plans with API keys
	What are usage plans and API keys?
	Best practices for API keys and usage plans
	Steps to configure a usage plan
	Choose an API key source
	Set up API keys using the API Gateway console
	Require API key on a method
	Create an API key
	Import API keys

	Create, configure, and test usage plans with the API Gateway console
	Migrate your API to default usage plans (if needed)
	Create a usage plan
	Test a usage plan
	Maintain a usage plan

	Set up API keys using the API Gateway REST API
	Require an API key on a method
	Create or import API keys

	Create, configure, and test usage plans using the API Gateway CLI and REST API
	Migrate to default usage plans
	Create a usage plan
	Manage a usage plan by using the AWS CLI
	Test usage plans

	Create and configure API keys and usage plans with AWS CloudFormation
	Configure a method to use API keys with an OpenAPI definition
	API Gateway API key file format

	Documenting REST APIs
	Representation of API documentation in API Gateway
	Documentation parts
	Location of a documentation part
	Content of a documentation part
	Inherit content from an API entity of more general specifications
	Valid location fields of DocumentationPart

	Documentation versions

	Document an API using the API Gateway console
	Document the API entity
	Document a RESOURCE entity
	Document a METHOD entity
	Document a QUERY_PARAMETER entity
	Document a PATH_PARAMETER entity
	Document a REQUEST_HEADER entity
	Document a REQUEST_BODY entity
	Document a RESPONSE entity
	Document a RESPONSE_HEADER entity
	Document a RESPONSE_BODY entity
	Document a MODEL entity
	Document an AUTHORIZER entity

	Publish API documentation using the API Gateway console
	Document an API using the API Gateway REST API
	Document the API entity
	Document a RESOURCE entity
	Document a METHOD entity
	Document a QUERY_PARAMETER entity
	Document a PATH_PARAMETER entity
	Document a REQUEST_BODY entity
	Document a REQUEST_HEADER entity
	Document a RESPONSE entity
	Document a RESPONSE_HEADER entity
	Document an AUTHORIZER entity
	Document a MODEL entity
	Update documentation parts
	List documentation parts

	Publish API documentation using the API Gateway REST API
	Create a documentation snapshot and associate it with an API stage
	Create a documentation snapshot
	Update a documentation snapshot
	Get a documentation snapshot
	Associate a documentation snapshot with an API stage
	Download a documentation snapshot associated with a stage

	Import API documentation
	Importing documentation parts using the API Gateway REST API
	Importing documentation parts using the API Gateway console

	Control access to API documentation

	Generating an SDK for a REST API in API Gateway
	Generate SDKs for an API using the API Gateway console
	Generate the Java SDK of an API
	Generate the Android SDK of an API
	Generate the iOS SDK of an API
	Generate the JavaScript SDK of a REST API
	Generate the Ruby SDK of an API

	Generate SDKs for an API using AWS CLI commands
	Generate and download the Java for Android SDK using the AWS CLI
	Generate and download the JavaScript SDK using the AWS CLI
	Generate and download the Ruby SDK using the AWS CLI

	Simple calculator Lambda function
	Simple calculator Lambda function input format
	Simple calculator Lambda function output format
	Simple calculator Lambda function implementation

	Simple calculator API in API Gateway
	Create models for input and output
	Set up GET / method query parameters
	Set up data model for the payload as input to the backend
	Set up data model for the result output from the backend

	Simple calculator API OpenAPI definition

	Sell your API Gateway APIs through AWS Marketplace
	Initialize AWS Marketplace integration with API Gateway
	List a product on AWS Marketplace
	Create the metering role
	Execution policy of the metering role
	Trusted relationship policy of the metering role

	Associate usage plan with AWS Marketplace product

	Handle customer subscription to usage plans
	Authorize a customer to access a usage plan
	Associate a customer with an API key

	Protecting your REST API
	Configuring mutual TLS authentication for a REST API
	Prerequisites for mutual TLS
	Custom domain names
	
	Using AWS Certificate Manager issued certificates
	Using an imported or AWS Private Certificate Authority certificate

	Configuring your truststore
	Upload the truststore to an Amazon S3 bucket in a single file

	Configuring mutual TLS for a custom domain name
	Invoke an API by using a custom domain name that requires mutual TLS
	Updating your truststore
	Disable mutual TLS
	Troubleshooting certificate warnings
	Troubleshooting domain name conflicts
	Troubleshooting domain name status messages

	Generate and configure an SSL certificate for backend authentication
	Generate a client certificate using the API Gateway console
	Configure an API to use SSL certificates
	Test invoke to verify the client certificate configuration
	Configure a backend HTTPS server to verify the client certificate
	Rotate an expiring client certificate
	API Gateway-supported certificate authorities for HTTP and HTTP proxy integrations

	Using AWS WAF to protect your APIs
	To associate an AWS WAF web ACL with an API Gateway API stage using the API Gateway console
	Associate an AWS WAF web ACL with an API Gateway API stage using the AWS CLI
	Associate an AWS WAF web ACL with an API stage using the AWS WAF REST API

	Throttle API requests for better throughput
	How throttling limit settings are applied in API Gateway
	Account-level throttling per Region
	Configuring API-level and stage-level throttling targets in a usage plan
	Configuring stage-level throttling targets
	Configuring method-level throttling targets in a usage plan

	Creating a private API in Amazon API Gateway
	Private API development considerations
	Create an interface VPC endpoint for API Gateway execute-api
	Create a private API using the API Gateway console
	Create a private API using the AWS CLI
	Create a private API using the AWS SDK for JavaScript
	Set up a resource policy for a private API
	Deploy a private API using the API Gateway console
	Associate or disassociate a VPC endpoint with a private REST API
	Use the API Gateway console to associate a VPC endpoint with a private REST API
	Use the AWS CLI to associate a VPC endpoint with a private REST API
	Use the API Gateway console to disassociate a VPC endpoint from a private REST API
	Use the AWS CLI to disassociate a VPC endpoint from a private REST API

	Monitoring REST APIs
	Monitoring REST API execution with Amazon CloudWatch metrics
	Amazon API Gateway dimensions and metrics
	API Gateway metrics
	Dimensions for metrics

	View CloudWatch metrics with the API dashboard in API Gateway
	Prerequisites
	Examine API activities in the dashboard

	View API Gateway metrics in the CloudWatch console
	View API Gateway log events in the CloudWatch console
	Prerequisites
	To view logged API requests and responses using the CloudWatch console

	Monitoring tools in AWS
	Automated monitoring tools in AWS
	Manual monitoring tools
	Creating CloudWatch alarms to monitor API Gateway

	Setting up CloudWatch logging for a REST API in API Gateway
	CloudWatch log formats for API Gateway
	Permissions for CloudWatch logging
	Set up CloudWatch API logging using the API Gateway console
	Set up CloudWatch API logging using AWS CloudFormation

	Logging API calls to Amazon Data Firehose
	Firehose log formats for API Gateway
	Permissions for Firehose logging
	Set up Firehose access logging by using the API Gateway console

	Tracing user requests to REST APIs using X-Ray
	Setting up AWS X-Ray with API Gateway REST APIs
	X-Ray tracing modes for API Gateway
	Permissions for X-Ray tracing
	Enabling X-Ray tracing in the API Gateway console
	Enabling AWS X-Ray tracing using the API Gateway CLI

	Using AWS X-Ray service maps and trace views with API Gateway
	Example X-Ray service map
	Example X-Ray trace view

	Configuring AWS X-Ray sampling rules for API Gateway APIs
	X-Ray sampling rule option values for API Gateway APIs
	X-Ray sampling rule examples

	Understanding AWS X-Ray traces for Amazon API Gateway APIs
	Examples of trace objects for an API Gateway API
	Understanding the trace

	Working with HTTP APIs
	Developing an HTTP API in API Gateway
	Creating an HTTP API
	Create an HTTP API by using the AWS Management Console
	Create an HTTP API by using the AWS CLI

	Working with routes for HTTP APIs
	Working with path variables
	Working with query string parameters
	Working with the $default route
	Routing API requests

	Controlling and managing access to an HTTP API in API Gateway
	Working with AWS Lambda authorizers for HTTP APIs
	Payload format version
	Lambda authorizer response format
	Lambda function response for format 1.0
	Lambda function response for format 2.0

	Example Lambda authorizer functions
	Identity sources
	Caching authorizer responses
	Create a Lambda authorizer
	Troubleshooting Lambda authorizers

	Controlling access to HTTP APIs with JWT authorizers
	
	Authorizing API requests with a JWT authorizer
	Create a JWT authorizer
	Create a JWT authorizer using the console
	Create a JWT authorizer using the AWS CLI
	Create a JWT authorizer using AWS CloudFormation
	Example AWS CloudFormation template

	Update a route to use a JWT authorizer
	Update a route to use a JWT authorizer by using the console
	Update a route to use a JWT authorizer by using the AWS CLI

	Using IAM authorization
	Enable IAM authorization for a route

	Configuring integrations for HTTP APIs
	Working with AWS Lambda proxy integrations for HTTP APIs
	Payload format version
	Lambda function response format
	Lambda function response for format 1.0
	Lambda function response for format 2.0

	Working with HTTP proxy integrations for HTTP APIs
	HTTP proxy integration with path variables

	Working with AWS service integrations for HTTP APIs
	Mapping request parameters
	Create a first-class integration
	Create a first-class integration using AWS CloudFormation
	Integration subtype reference
	EventBridge-PutEvents
	SQS-SendMessage
	SQS-ReceiveMessage
	SQS-DeleteMessage
	SQS-PurgeQueue
	AppConfig-GetConfiguration
	Kinesis-PutRecord
	StepFunctions-StartExecution
	StepFunctions-StartSyncExecution
	StepFunctions-StopExecution

	Working with private integrations for HTTP APIs
	Create a private integration using an Application Load Balancer or Network Load Balancer
	Create a private integration using AWS Cloud Map service discovery
	Working with VPC links for HTTP APIs
	Create a VPC link by using the AWS CLI
	Delete a VPC link by using the AWS CLI
	Availability by Region

	Configuring CORS for an HTTP API
	Configuring CORS for an HTTP API with a $default route and JWT authorizer
	Configure CORS for an HTTP API by using the AWS CLI

	Transforming API requests and responses
	Transforming API requests
	Transforming API responses
	Reserved headers
	Examples
	Add a header to an API request
	Rename a request header
	Change the response from an integration
	Remove configured parameter mappings

	Working with OpenAPI definitions for HTTP APIs
	Importing an HTTP API
	
	Import validation information
	Import an API by using the AWS CLI

	Exporting an HTTP API from API Gateway
	Export an OpenAPI 3.0 definition of a stage by using the AWS CLI
	Export an OpenAPI 3.0 definition of your API's latest changes by using the AWS CLI
	Export an OpenAPI 3.0 definition by using the API Gateway console

	Publishing HTTP APIs for customers to invoke
	Working with stages for HTTP APIs
	Stage variables
	Examples

	API Gateway stage variables reference
	HTTP integration URIs
	Lambda functions
	AWS integration credentials

	Security policy for HTTP APIs
	Supported TLS protocols and ciphers for HTTP APIs
	OpenSSL and RFC cipher names
	Information about REST APIs and WebSocket APIs

	Setting up custom domain names for HTTP APIs
	Register a domain name
	Regional custom domain names
	Wildcard custom domain names
	Certificates for custom domain names
	Working with API mappings for HTTP APIs
	Routing API requests
	Restrictions
	Create an API mapping

	Disabling the default endpoint for an HTTP API

	Protecting your HTTP API
	Throttling requests to your HTTP API
	
	Account-level throttling per Region
	Route-level throttling

	Configuring mutual TLS authentication for an HTTP API
	Prerequisites for mutual TLS
	Custom domain names
	
	Using AWS Certificate Manager issued certificates
	Using an imported or AWS Private Certificate Authority certificate

	Configuring your truststore
	Upload the truststore to an Amazon S3 bucket in a single file

	Configuring mutual TLS for a custom domain name
	Invoke an API by using a custom domain name that requires mutual TLS
	Updating your truststore
	Disable mutual TLS
	Troubleshooting certificate warnings
	Troubleshooting domain name conflicts
	Troubleshooting domain name status messages

	Monitoring your HTTP API
	Working with metrics for HTTP APIs
	Configuring logging for an HTTP API
	
	Permissions to activate logging
	Create a log group and activate logging for HTTP APIs
	Example log formats
	Customizing HTTP API access logs
	

	Troubleshooting issues with HTTP APIs
	Troubleshooting issues with HTTP API Lambda integrations
	Issue: My API with a Lambda integration returns {"message":"Internal Server Error"}

	Troubleshooting issues with HTTP API JWT authorizers
	Issue: My API returns 401 {"message":"Unauthorized"}

	Working with WebSocket APIs
	About WebSocket APIs in API Gateway
	Managing connected users and client apps: $connect and $disconnect routes
	The $connect route
	Passing connection information from the $connect route
	To pass connection information using a proxy integration
	To pass connection information using a non-proxy integration

	The $disconnect route

	Invoking your backend integration: $default Route and custom routes
	Using routes to process messages
	The $default route
	Custom routes
	Using API Gateway WebSocket API integrations to connect to your business logic
	Important differences between WebSocket APIs and REST APIs

	Sending data from backend services to connected clients
	WebSocket selection expressions in API Gateway
	Route response selection expressions
	API key selection expressions
	API mapping selection expressions
	WebSocket selection expression summary

	Developing a WebSocket API in API Gateway
	Create a WebSocket API in API Gateway
	Create a WebSocket API using AWS CLI commands
	Create a WebSocket API using the API Gateway console

	Working with routes for WebSocket APIs
	Route selection expressions
	Set up routes for a WebSocket API in API Gateway
	
	Create a route using the API Gateway console
	Create a route using the AWS CLI

	
	Specify route request settings for $connect
	Set up the $connect route request using the API Gateway console

	Set up route responses for a WebSocket API in API Gateway
	Set up a route response using the API Gateway console
	Set up a route response using the AWS CLI

	Setting up a $connect route that requires a WebSocket subprotocol
	

	Controlling and managing access to a WebSocket API in API Gateway
	Using IAM authorization
	Creating a Lambda REQUEST authorizer function

	Setting up WebSocket API integrations
	Setting up a WebSocket API integration request in API Gateway
	Set up a WebSocket API integration request using the API Gateway console
	Set up an integration request using the AWS CLI
	Input format of a Lambda function for proxy integration for WebSocket APIs

	Setting up a WebSocket API integration responses in API Gateway
	Overview of integration responses
	Integration responses for two-way communication
	Set up an integration response using the API Gateway console
	Set up an integration response using the AWS CLI

	Request validation
	Model selection expressions
	Set up request validation using the API Gateway console

	Setting up data transformations for WebSocket APIs
	Mapping templates and models
	Template selection expressions
	Integration response selection expressions
	Setting up data mapping for WebSocket APIs
	Map route request data to integration request parameters
	Examples
	Map a client's connectionId to a header in an integration request
	Map a query string parameter to a header in an integration request

	API Gateway WebSocket API mapping template reference

	Working with binary media types for WebSocket APIs
	Invoking a WebSocket API
	Use wscat to connect to a WebSocket API and send messages to it
	Use @connections commands in your backend service

	Publishing WebSocket APIs for customers to invoke
	Working with stages for WebSocket APIs
	Stage variables
	Examples

	API Gateway stage variables reference
	HTTP integration URIs
	Lambda functions
	AWS integration credentials

	Deploy a WebSocket API in API Gateway
	Create a WebSocket API deployment using the AWS CLI
	Create a WebSocket API deployment using the API Gateway console

	Security policy for WebSocket APIs
	Supported TLS protocols and ciphers for WebSocket APIs
	OpenSSL and RFC cipher names
	Information about REST APIs and HTTP APIs

	Setting up custom domain names for WebSocket APIs
	Register a domain name
	Regional custom domain names
	Wildcard custom domain names
	Certificates for custom domain names
	Set up a custom domain name
	Working with API mappings for WebSocket APIs
	Restrictions
	Create an API mapping

	Disabling the default endpoint for a WebSocket API

	Protecting your WebSocket API
	Account-level throttling per Region
	Route-level throttling

	Monitoring WebSocket APIs
	Monitoring WebSocket API execution with CloudWatch metrics
	Configuring logging for a WebSocket API
	

	API Gateway Amazon Resource Name (ARN) reference
	HTTP API and WebSocket API resources
	REST API resources
	execute-api (HTTP APIs, WebSocket APIs, and REST APIs)

	Working with API Gateway extensions to OpenAPI
	x-amazon-apigateway-any-method object
	x-amazon-apigateway-any-method examples

	x-amazon-apigateway-cors object
	x-amazon-apigateway-cors example

	x-amazon-apigateway-api-key-source property
	x-amazon-apigateway-api-key-source example

	x-amazon-apigateway-auth object
	x-amazon-apigateway-auth example

	x-amazon-apigateway-authorizer object
	x-amazon-apigateway-authorizer examples for REST APIs
	x-amazon-apigateway-authorizer examples for HTTP APIs

	x-amazon-apigateway-authtype property
	x-amazon-apigateway-authtype example
	See also

	x-amazon-apigateway-binary-media-types property
	x-amazon-apigateway-binary-media-types example

	x-amazon-apigateway-documentation object
	x-amazon-apigateway-documentation example

	x-amazon-apigateway-endpoint-configuration object
	x-amazon-apigateway-endpoint-configuration examples

	x-amazon-apigateway-gateway-responses object
	x-amazon-apigateway-gateway-responses example

	x-amazon-apigateway-gateway-responses.gatewayResponse object
	x-amazon-apigateway-gateway-responses.gatewayResponse example

	x-amazon-apigateway-gateway-responses.responseParameters object
	x-amazon-apigateway-gateway-responses.responseParameters example

	x-amazon-apigateway-gateway-responses.responseTemplates object
	x-amazon-apigateway-gateway-responses.responseTemplates example

	x-amazon-apigateway-importexport-version
	x-amazon-apigateway-importexport-version example

	x-amazon-apigateway-integration object
	x-amazon-apigateway-integration examples

	x-amazon-apigateway-integrations object
	x-amazon-apigateway-integrations example

	x-amazon-apigateway-integration.requestTemplates object
	x-amazon-apigateway-integration.requestTemplates example

	x-amazon-apigateway-integration.requestParameters object
	x-amazon-apigateway-integration.requestParameters example

	x-amazon-apigateway-integration.responses object
	x-amazon-apigateway-integration.responses example

	x-amazon-apigateway-integration.response object
	x-amazon-apigateway-integration.response example

	x-amazon-apigateway-integration.responseTemplates object
	x-amazon-apigateway-integration.responseTemplate example

	x-amazon-apigateway-integration.responseParameters object
	x-amazon-apigateway-integration.responseParameters example

	x-amazon-apigateway-integration.tlsConfig object
	x-amazon-apigateway-integration.tlsConfig examples

	x-amazon-apigateway-minimum-compression-size
	x-amazon-apigateway-minimum-compression-size example

	x-amazon-apigateway-policy
	x-amazon-apigateway-policy example

	x-amazon-apigateway-request-validator property
	x-amazon-apigateway-request-validator example

	x-amazon-apigateway-request-validators object
	x-amazon-apigateway-request-validators example

	x-amazon-apigateway-request-validators.requestValidator object
	x-amazon-apigateway-request-validators.requestValidator example

	x-amazon-apigateway-tag-value property
	x-amazon-apigateway-tag-value example

	Security in Amazon API Gateway
	Data protection in Amazon API Gateway
	Data encryption in Amazon API Gateway
	Data encryption at rest in Amazon API Gateway
	Data encryption in transit in Amazon API Gateway

	Internetwork traffic privacy

	Identity and access management for Amazon API Gateway
	Audience
	Authenticating with identities
	AWS account root user
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon API Gateway works with IAM
	API Gateway identity-based policies
	Actions
	Resources
	Condition keys
	Examples

	API Gateway resource-based policies
	Examples

	Authorization based on API Gateway tags
	API Gateway IAM roles
	Using temporary credentials with API Gateway
	Service-linked roles
	Service roles
	

	Amazon API Gateway identity-based policy examples
	Policy best practices
	Allow users to view their own permissions
	Simple read permissions
	Create only REQUEST or JWT authorizers
	Require that the default execute-api endpoint is disabled
	Allow users to create or update only private REST APIs
	Require that API routes have authorization
	Prevent a user from creating or updating a VPC link

	Amazon API Gateway resource-based policy examples
	Troubleshooting Amazon API Gateway identity and access
	I am not authorized to perform an action in API Gateway
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my API Gateway resources

	Using service-linked roles for API Gateway
	Service-linked role permissions for API Gateway
	Creating a service-linked role for API Gateway
	Editing a service-linked role for API Gateway
	Deleting a service-linked role for API Gateway
	Supported Regions for API Gateway service-linked roles
	API Gateway updates to AWS managed policies

	Logging and monitoring in Amazon API Gateway
	Logging Amazon API Gateway API calls using AWS CloudTrail
	API Gateway management events in CloudTrail
	API Gateway event example

	Monitoring API Gateway API configuration with AWS Config
	Supported resource types
	Setting up AWS Config
	Configuring AWS Config to record API Gateway resources
	Viewing API Gateway configuration details in the AWS Config console
	Evaluating API Gateway resources using AWS Config rules

	Compliance validation for Amazon API Gateway
	Resilience in Amazon API Gateway
	Infrastructure security in Amazon API Gateway
	Vulnerability analysis in Amazon API Gateway
	Security best practices in Amazon API Gateway

	Tagging your API Gateway resources
	API Gateway resources that can be tagged
	Tag inheritance in the Amazon API Gateway V1 API
	Tag restrictions and usage conventions

	Using tags to control access to API Gateway REST API resources
	Limit actions based on resource tags
	Allow actions based on resource tags
	Deny tagging operations
	Allow tagging operations

	API references
	Amazon API Gateway quotas and important notes
	API Gateway account-level quotas, per Region
	HTTP API quotas
	

	API Gateway quotas for configuring and running a WebSocket API
	API Gateway quotas for configuring and running a REST API
	API Gateway quotas for creating, deploying and managing an API
	Amazon API Gateway important notes
	Amazon API Gateway important notes for REST APIs, HTTP APIs, and WebSocket APIs
	Amazon API Gateway important notes for REST and WebSocket APIs
	Amazon API Gateway important notes for WebSocket APIs
	Amazon API Gateway important notes for REST APIs

	Document history
	Earlier updates

	AWS Glossary

