[0.001s][warning][perf,memops] Cannot use file /tmp/hsperfdata_ec2-user/321105 because it is locked by another process (errno = 11)

User Guide

Amazon EventBridge

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon EventBridge User Guide

Amazon EventBridge: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon EventBridge User Guide

Table of Contents

What Is Amazon EventBridge? .. 1
CloudWatch Events .. 2

Setup and prerequisites .. 3
Sign up for an AWS account .. 3
Create an administrative user .. 4
Sign in to the Amazon EventBridge console .. 5
Account credentials .. 5
Set up the AWS Command Line Interface .. 6
Regional Endpoints .. 6

Getting started .. 7
Create rule .. 7

Event Bus ... 10
How event buses work .. 11
Event bus concepts .. 12

Event buses .. 13
Events .. 14
Event sources ... 14
Rules .. 15
Targets ... 16
Advanced features .. 16

Creating an event bus ... 17
Updating an event bus ... 19

Updating event bus permissions ... 19
Updating archives ... 19
Starting or stopping schema discovery .. 20
Updating tags .. 21

Deleting an event bus ... 21
Permissions for event buses .. 22

Managing event bus permissions .. 23
Example policy: Send events to the default bus in a different account 25
Example policy: Send events to a custom bus in a different account .. 26
Example policy: Send events to an event bus in the same account ... 26
Example policy: Send events to the same account and restrict updates 27
Example policy: Send events only from a specific rule to the bus in a different Region 28

iii

Amazon EventBridge User Guide

Example policy: Send events only from a specific Region to a different Region 29
Example policy: Deny sending events from specific Regions ... 29

Generating a template from an event bus ... 30
Considerations when using a generated template .. 31

Events ... 33
Event structure reference ... 34

Minimum valid custom event ... 36
Adding events with PutEvents .. 36

Handling failures with PutEvents ... 38
Sending events using the AWS CLI ... 40
Calculating event entry size ... 42

Events from AWS services .. 43
Service event delivery .. 43
Events via CloudTrail .. 44
Services that generate events .. 46
Management events ... 54
EventBridge events ... 83

Receiving events from a SaaS partner .. 89
Supported SaaS partner integrations ... 89
Configuring EventBridge ... 92
Create a rule for Saas partner events .. 93
Receiving events using Lambda function URLs .. 96
Receiving events from Salesforce ... 106

Debugging event delivery .. 110
Using dead-letter queues ... 111

Event patterns ... 115
Creating event patterns .. 116

Matching event values ... 117
Considerations when creating event patterns .. 117
Comparison operations for use in event patterns ... 119

Example events and event patterns .. 121
Field matching .. 121
Value matching ... 122

Null values and empty strings .. 124
Arrays .. 126
Content-based filtering .. 127

iv

Amazon EventBridge User Guide

Prefix matching ... 128
Suffix matching ... 128
Anything-but matching ... 129
Numeric matching .. 131
IP address matching .. 132
Exists matching ... 132
Equals-ignore-case matching ... 133
Matching using wildcards ... 133
Complex example with multiple matching ... 135
Complex example with $or matching ... 136

Testing an event pattern .. 137
Best practices .. 141

Avoid writing infinite loops .. 141
Make event patterns precise as possible ... 142
Scope your event patterns to account for event source updates ... 143
Validate event patterns ... 145

Rules ... 146
Managed rules .. 147
Creating a rule that reacts to events .. 148

Create a rule that reacts to events ... 148
Using EventBridge Scheduler .. 159

Set up the execution role ... 159
Create a schedule ... 160
Related resources .. 164

Creating a rule that runs on a schedule ... 164
Create a rule that runs on a schedule ... 166
Cron expressions ... 174
Rate expressions ... 178

Disabling or deleting a rule ... 180
Best practices .. 180

Set a single target for each rule ... 180
Set rule permissions .. 180
Monitor rule performance .. 181

Using AWS SAM templates .. 182
Combined template ... 182
Separated template ... 183

v

Amazon EventBridge User Guide

Generating rule templates ... 184
Considerations when using a generated template .. 186

Targets .. 187
Targets available in the EventBridge console .. 187
Target parameters ... 188

Dynamic path parameters .. 189
Permissions .. 189
EventBridge target specifics .. 190

AWS Batch job queues .. 190
CloudWatch Logs group .. 191
CodeBuild project ... 191
Amazon ECS task .. 191
Incident Manager Response Plan .. 191

Configure targets ... 192
API destinations .. 193
API Gateway ... 213
AWS AppSync targets .. 215
Connections ... 219
Cross-account event buses ... 222
Cross-Region event buses ... 226
Same account event buses ... 227

Input transformation ... 229
Predefined variables .. 230
Input transform examples .. 230
Transforming input by using the EventBridge API .. 233
Transforming input by using AWS CloudFormation .. 233
Common Issues with transforming input .. 234
Configuring an input transformer ... 236
Testing an input transformer ... 239

Archive and replay .. 243
Archiving events ... 244
Replaying archived events ... 246

Pipes ... 248
How Pipes work ... 248
Pipes concepts .. 249

Pipe .. 250

vi

Amazon EventBridge User Guide

Source .. 250
Filters ... 250
Enrichment ... 251
Target .. 251

Permissions for pipes .. 251
DynamoDB permissions ... 252
Kinesis permissions .. 252
Amazon MQ permissions .. 253
Amazon MSK permissions ... 253
Self managed Apache Kafka permissions ... 254
Amazon SQS permissions ... 255
Enrichment and target permissions .. 256

Creating a pipe ... 256
Specifying a source .. 256
Configuring filtering ... 261
Defining enrichment .. 261
Configuring a target .. 262
Configuring pipe settings ... 263
Validating configuration parameters .. 265

Starting or stopping a pipe ... 265
Sources ... 266

DynamoDB stream ... 267
Kinesis stream ... 270
Amazon MQ message broker ... 274
Amazon MSK topic ... 279
Self managed Apache Kafka stream .. 287
Amazon SQS queue ... 292

Filtering .. 297
Message and data fields ... 299
Filtering Amazon SQS messages ... 299
Filtering Kinesis and DynamoDB messages .. 299
Filtering Amazon MSK, self managed Apache Kafka, and Amazon MQ messages 302
Differences with Lambda ESM ... 303

Enrichment .. 303
Filtering events using enrichment .. 304
Invoking enrichments .. 304

vii

Amazon EventBridge User Guide

Targets .. 305
Target parameters .. 306
Permissions .. 307
Invoking targets .. 307
EventBridge Pipes target specifics .. 308

Batching and concurrency .. 309
Batching behavior ... 309
Throughput and concurrency behavior .. 311

Input transformation ... 312
Reserved variables .. 314
Input transform example .. 315
Implicit body data parsing ... 316
Common issues with transforming input .. 317

Log pipe performance .. 318
How pipe logging works ... 319
Specifying log level .. 320
Including execution data in logs ... 322
Error reporting in log records .. 324
Pipe execution steps .. 325
Log schema reference ... 328
Log & monitor ... 331

Error handling & troubleshooting .. 335
Retry behavior ... 335
Invocation errors and retry behavior .. 335
DLQ behavior ... 336
Pipe failure states ... 337
Custom encryption failures .. 338

Tutorial: Create a pipe that filters events ... 338
Prerequisites .. 338
Create the pipe ... 340
Confirm the pipe filters events ... 342
Clean up resources ... 343
Template for prerequisites ... 344

Generating a pipe template .. 346
EventBridge resources in pipe templates .. 346
Generating a CloudFormation template from EventBridge Pipes .. 346

viii

Amazon EventBridge User Guide

Considerations when using a generated template .. 347
Global endpoints ... 348

Recovery Time & Recovery Point Objectives ... 348
Event replication .. 349

Replicated event payload ... 349
Create a global endpoint ... 350

To create a global endpoint by using the console .. 350
To create a global endpoint by using the API .. 351
To create a global endpoint by using AWS CloudFormation ... 351

Working with global endpoints by using an AWS SDK .. 351
Available Regions ... 352
Best practices .. 353

Enabling event replication .. 353
Preventing event throttling .. 353
Using subscriber metrics in Amazon Route 53 health checks ... 354

AWS CloudFormation template .. 354
AWS CloudFormation template for defining a Route 53 health check 354
CloudWatch alarm template properties .. 357
Route 53 health check template properties ... 359

Schemas ... 361
Schema registry API property value masking .. 361
Finding a schema ... 363
Schema registries ... 364
Creating a schema ... 365

Create a schema by using a template ... 365
Edit a schema template directly in the console ... 367
Create a schema from the JSON of an event ... 368
Create a schema from events on an event bus .. 371

Code bindings ... 373
Related AWS services and tools ... 374

Interface VPC Endpoints .. 375
Availability .. 375
Creating a VPC Endpoint for EventBridge ... 376
EventBridge Pipes specifics .. 377

AWS X-Ray ... 378
Testing with AWS IATK ... 379

ix

Amazon EventBridge User Guide

AWS IATK integration .. 379
AWS CloudFormation .. 380

EventBridge resources ... 380
Generating resource definitions .. 381
Managing CloudFormation stack events ... 381

Tutorials ... 382
Get started tutorials .. 383

Archive and replay events .. 384
Create a sample application ... 389
Download code bindings .. 394
Use input transformer ... 396

AWS tutorials .. 401
Log Auto Scaling group states .. 402
Log AWS API calls .. 406
Log Amazon EC2 instance states .. 411
Log Amazon S3 object level operations .. 415
Send events to a Kinesis stream using aws.events ... 420
Schedule Automated Amazon EBS Snapshots ... 425
Send a notification when an S3 object is created ... 428
Schedule AWS Lambda functions ... 432

SaaS tutorials .. 437
Create a connection to Datadog ... 438
Create a connection to Salesforce .. 443
Create a connection to Zendesk .. 448

Working with AWS SDKs ... 453
Code examples ... 454

Actions .. 458
Add a target .. 459
Create a rule .. 469
Delete a rule .. 479
Describe a rule .. 482
Disable a rule .. 485
Enable a rule ... 488
List rule names for a target ... 491
List rules ... 494
List targets for a rule .. 498

x

Amazon EventBridge User Guide

Remove targets from a rule ... 500
Send events ... 504

Scenarios .. 512
Create and trigger a rule .. 512
Get started with rules and targets ... 533

Cross-service examples ... 593
Use scheduled events to invoke a Lambda function ... 594

Security .. 596
Data protection .. 597

Encryption at rest ... 597
Encryption in transit .. 598

Tag-based policies ... 599
IAM .. 600

Authentication ... 600
Access control .. 602
Managing access ... 603
Using identity-based policies (IAM policies) ... 608
Using resource-based policies .. 626
Cross-service confused deputy prevention ... 632
Resource-based policies for EventBridge schemas .. 635
Permissions reference .. 639
IAM policy conditions .. 642
Using service-linked roles ... 659

CloudTrail logs .. 666
Data events .. 667
Management events ... 669
Event examples ... 669
Events for Pipe actions ... 670

Compliance validation .. 673
Resilience ... 674
Infrastructure security ... 675
Security and vulnerability analysis ... 676

Monitoring ... 677
EventBridge metrics .. 677

EventBridge PutEvents metrics .. 681
EventBridge PutPartnerEvents metrics .. 683

xi

Amazon EventBridge User Guide

Dimensions for EventBridge metrics ... 684
Troubleshooting ... 685

My rule ran but my Lambda function wasn't invoked ... 685
I just created or modified a rule, but it didn't match a test event .. 687
My rule didn't run at the time I specified in the ScheduleExpression 687
My rule didn't run at the time that I expected ... 688
My rule matches AWS global service API calls but it didn't run ... 688
The IAM role associated with my rule is being ignored when the rule runs 689
My rule has an event pattern that is supposed to match a resource, but no events match 689
My event's delivery to the target was delayed .. 689
Some events were never delivered to my target .. 689
My rule ran more than once in response to one event ... 690
Preventing infinite loops .. 690
My events are not delivered to the target Amazon SQS queue ... 690
My rule runs, but I don't see any messages published into my Amazon SNS topic 691
My Amazon SNS topic still has permissions for EventBridge even after I deleted the rule
associated with the Amazon SNS topic .. 692
Which IAM condition keys can I use with EventBridge? ... 693
How can I tell when EventBridge rules are broken? ... 693

Quotas .. 694
EventBridge quotas ... 694
PutPartnerEvents quotas .. 701
Schema Registry quotas ... 702
Pipes quotas .. 703

Tags .. 705
Document History .. 707

xii

Amazon EventBridge User Guide

What Is Amazon EventBridge?

EventBridge is a serverless service that uses events to connect application components together,
making it easier for you to build scalable event-driven applications. Event-driven architecture
is a style of building loosely-coupled software systems that work together by emitting and
responding to events. Event-driven architecture can help you boost agility and build reliable,
scalable applications.

Use EventBridge to route events from sources such as home-grown applications, AWS services,
and third-party software to consumer applications across your organization. EventBridge provides
simple and consistent ways to ingest, filter, transform, and deliver events so you can build
applications quickly.

The following video provides a brief introduction to the features of Amazon EventBridge:

EventBridge includes two ways to process events: event buses and pipes.

• Event buses are routers that receive events and delivers them to zero or more targets. Event
buses are well-suited for routing events from many sources to many targets, with optional
transformation of events prior to delivery to a target.

The following video provides a high-level overview of event buses:

• Pipes EventBridge Pipes is intended for point-to-point integrations; each pipe receives events
from a single source for processing and delivery to a single target. Pipes also include support for
advanced transformations and enrichment of events prior to delivery to a target.

Pipes and event buses are often used together. A common use case is to create a pipe with an
event bus as its target; the pipe sends events to the event bus, which then sends those events on to
multiple targets. For example, you could create a pipe with a DynamoDB stream for a source, and
an event bus as the target. The pipe receives events from the DynamoDB stream and sends them to
the event bus, which then sends them on to multiple targets according to the rules you've specified
on the event bus.

1

Amazon EventBridge User Guide

EventBridge is the evolution of Amazon CloudWatch Events

EventBridge was formerly called Amazon CloudWatch Events. The default event bus and the rules
you created in CloudWatch Events also display in the EventBridge console. EventBridge uses the
same CloudWatch Events API, so your code that uses the CloudWatch Events API stays the same.

EventBridge builds on the capabilities of CloudWatch Events with features such as partner events,
Schema Registry, and EventBridge Pipes. New features added to EventBridge are not added to
CloudWatch Events. For more information, see ???.

All the features you're used to in CloudWatch Events are also present in EventBridge, including:

• ???

• ???

• ???

• ???

EventBridge features that build on and expand the capabilities of events include:

• ???

• ???

• ???

• ???

CloudWatch Events 2

Amazon EventBridge User Guide

Amazon EventBridge setup and prerequisites

To use Amazon EventBridge, you need an AWS account. Your account allows you to use services
such as Amazon EC2 to generate events that you can see in the EventBridge console. You can also
install and configure the AWS Command Line Interface (AWS CLI) to use a command-line interface
to see events.

Topics

• Sign up for an AWS account

• Create an administrative user

• Sign in to the Amazon EventBridge console

• Account credentials

• Set up the AWS Command Line Interface

• Regional Endpoints

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Sign up for an AWS account 3

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/

Amazon EventBridge User Guide

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Create an administrative user 4

https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html

Amazon EventBridge User Guide

Sign in to the Amazon EventBridge console

To sign in to the Amazon EventBridge console

• Sign in to the AWS Management Console and open the Amazon EventBridge console at
https://console.aws.amazon.com/events/.

Account credentials

Although you can use your root user credentials to access EventBridge, we recommend that you use
an AWS Identity and Access Management (IAM) account instead. If you're using an IAM account to
access EventBridge, you must have the following permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "events:*"
],
 "Effect": "Allow",
 "Resource": "arn:aws:events:*:*:*"
 },
 {
 "Action": [
 "iam:PassRole"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": "events.amazonaws.com"
 }
 }
 }
]
}

For more information, see Authentication.

Sign in to the Amazon EventBridge console 5

https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

Set up the AWS Command Line Interface

You can use the AWS CLI to perform EventBridge operations.

For information about how to install and configure the AWS CLI, see Getting Set Up with the AWS
Command Line Interface in the AWS Command Line Interface User Guide.

Regional Endpoints

You must enable the default regional endpoints to use EventBridge. For more information, see
Activating and Deactivating AWS STS in an AWS Region in the IAM User Guide.

Set up the AWS Command Line Interface 6

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html

Amazon EventBridge User Guide

Getting started with Amazon EventBridge

The basis of EventBridge is to create rules that route events to a target. In this section, you create
a basic rule. For tutorials about specific scenarios and specific targets, see Amazon EventBridge
tutorials.

Create a rule in Amazon EventBridge

To create a rule for events, you specify an action to take when EventBridge receives an event that
matches the event pattern in the rule. When an event matches, EventBridge sends the event to the
specified target and triggers the action defined in the rule.

When an AWS service in your AWS account emits an event, it always goes to the default event bus
for your account. To write a rule that matches events from AWS services in your account, you must
associate it with the default event bus.

To create a rule for an AWS service

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

4. Enter a name and description for the rule.

A rule can't have the same name as another rule in the same Region and on the same event
bus.

5. For Event bus, choose the event bus that you want to associate with this rule. If you want this
rule to match events that come from your account, select AWS default event bus. When an
AWS service in your account emits an event, it always goes to your account’s default event bus.

6. For Rule type, choose Rule with an event pattern.

7. Choose Next.

8. For Event source, choose AWS services.

9. (Optional) For Sample events, choose the type of event.

10. For Event pattern, do one the following:

Create rule 7

https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

• To use a template to create your event pattern, choose Event pattern form and choose
the Event source and Event type. If you choose All Events as the event type, all events
emitted by this AWS service will match the rule.

To customize the template, choose Custom pattern (JSON editor) and make your
changes.

• To use a custom event pattern, choose Custom pattern (JSON editor) and create your
event pattern.

11. Choose Next.

12. For Target types, choose AWS service.

13. For Select a target, choose the AWS service that you want to send information to when
EventBridge detects an event that matches the event pattern.

14. The fields displayed vary depending on the service you choose. Enter information specific to
this target type as needed.

15. For many target types, EventBridge needs permissions to send events to the target. In
these cases, EventBridge can create the IAM role needed for your rule to run. Do one of the
following:

• To create an IAM role automatically, choose Create a new role for this specific resource.

• To use an IAM role that you created earlier, choose Use existing role and select the existing
role from the drop-down list.

16. (Optional) For Additional settings, do the following:

a. For Maximum age of event, enter a value between one minute (00:01) and 24 hours
(24:00).

b. For Retry attempts, enter a number between 0 and 185.

c. For Dead-letter queue, choose whether to use a standard Amazon SQS queue as a dead-
letter queue. EventBridge sends events that match this rule to the dead-letter queue if
they are not successfully delivered to the target. Do one of the following:

• Choose None to not use a dead-letter queue.

• Choose Select an Amazon SQS queue in the current AWS account to use as the
dead-letter queue and then select the queue to use from the drop-down list.

• Choose Select an Amazon SQS queue in an other AWS account as a dead-letter
queue and then enter the ARN of the queue to use. You must attach a resource-based

Create rule 8

Amazon EventBridge User Guide

policy to the queue that grants EventBridge permission to send messages to it. For
more information, see Granting permissions to the dead-letter queue.

17. (Optional) Choose Add another target to add another target for this rule.

18. Choose Next.

19. (Optional) Enter one or more tags for the rule. For more information, see Amazon EventBridge
tags.

20. Choose Next.

21. Review the details of the rule and choose Create rule.

Create rule 9

Amazon EventBridge User Guide

Amazon EventBridge Event Bus

An event bus is a router that receives events and delivers them to zero or more destinations, or
targets. Event buses are well-suited for routing events from many sources to many targets, with
optional transformation of events prior to delivery to a target.

Rules associated with the event bus evaluate events as they arrive. Each rule checks whether an
event matches the rule's pattern. If the event does match, EventBridge sends the event

You associate a rule with a specific event bus, so the rule only applies to events received by that
event bus.

Note

You can also process events using EventBridge Pipes. EventBridge Pipes is intended for
point-to-point integrations; each pipe receives events from a single source for processing
and delivery to a single target. Pipes also include support for advanced transformations
and enrichment of events prior to delivery to a target. For more information, see ???.

Topics

• How event buses work

• Amazon EventBridge Event Bus concepts

• Creating an Amazon EventBridge event bus

• Updating an Amazon EventBridge event bus

• Deleting an Amazon EventBridge event bus

10

Amazon EventBridge User Guide

• Permissions for Amazon EventBridge event buses

• Generate an AWS CloudFormation template from an Amazon EventBridge event bus

How event buses work

Event buses enable you to route events from multiple sources to multiple destinations, or targets.

At a high level, here's how it works:

1. An event source, which can be an AWS service, your own custom application, or a SaaS provider,
sends an event to an event bus.

2. EventBridge then evaluates the event against each rule defined for that event bus.

For each event that matches a rule, EventBridge then sends the event to the targets specified for
that rule. Optionally, as part of the rule, you can also specify how EventBridge should transform
the event prior to sending it to the target(s).

An event might match multiple rules, and each rule can specify up to five targets. (An event may
not match any rules, in which case EventBridge takes no action.)

Consider an example using the EventBridge default event bus, which automatically receives events
from AWS services:

How event buses work 11

Amazon EventBridge User Guide

1. You create a rule on the default event bus for the EC2 Instance State-change
Notification event:

• You specify that the rule matches events where an Amazon EC2 instance has changed its
state to running.

You do this by specifying JSON that defines the attributes and values an event must match to
trigger the rule. This is called an event pattern.

{
 "source": ["aws.ec2"],
 "detail-type": ["EC2 Instance State-change Notification"],
 "detail": {
 "state": ["running"]
 }
}

• You specify the target of the rule to be a given Lambda function.

2. Whenever an Amazon EC2 instance changes state, Amazon EC2 (the event source) automatically
sends that event to the default event bus.

3. EventBridge evaluates all events sent to the default event bus against the rule you've created.

If the event matches your rule (that is, if the event was an Amazon EC2 instance changing state
to running), EventBridge sends the event to the specified target. In this case, that's the Lambda
function.

The following video describes what event buses are and what they do: What are event buses

The following video covers the different event buses and when to use them: The differences
between event buses

Amazon EventBridge Event Bus concepts

Here's a closer look at the main components of an event driven architecture built on event buses.

Event bus concepts 12

http://www.youtube.com/embed/LkEBBgWRKkI
http://www.youtube.com/embed/cB5-GTSJNqc
http://www.youtube.com/embed/cB5-GTSJNqc

Amazon EventBridge User Guide

Event buses

An event bus is a router that receives events and delivers them to zero or more destinations,or
targets. Use an event bus when you need to route events from many sources to many targets, with
optional transformation of events prior to delivery to a target.

Your account includes a default event bus that automatically receives events from AWS services.
You can also:

• Create additional event buses, called custom event buses, and specify which events they receive.

• Create partner event buses, which receive events from SaaS partners.

Common use cases for event buses include:

• Using an event bus as a broker between different workloads, services, or systems.

• Using multiple event buses in your applications to divide up the event traffic. For example,
creating a bus to process events containing personal identification information (PII), and another
bus for events that don't.

• Aggregating events by sending events from multiple event buses to a centralized event bus.
This centralized bus can be in the same account as the other buses, but can also be in a different
account or Region.

Event buses 13

Amazon EventBridge User Guide

Events

At its simplest, an EventBridge event is a JSON object sent to an event bus or pipe.

In the context of event-driven architecture (EDA), an event often represents an indicator of a
change in a resource or environment.

For more information, see ???.

Event sources

EventBridge can receive events from event sources including:

• AWS services

Events 14

Amazon EventBridge User Guide

• Custom applications

• Software as a service (SaaS) partners

Rules

A rule receives incoming events and sends them as appropriate to targets for processing. You can
specify how each rule invokes their target(s) based on either:

• An event pattern, which contains one or more filters to match events. Event patterns can include
filters that match on:

• Event metadata – Data about the event, such as the event source, or the account or Region in
which the event originated.

• Event data – The properties of the event itself. These properties vary according to event.

• Event content – The actual property values of the event data.

• A schedule to invoke the target(s) at regular intervals.

You can specify a scheduled rule within EventBridge, or by using EventBridge Scheduler.

Note

EventBridge offers Amazon EventBridge Scheduler, a serverless scheduler that allows
you to create, run, and manage tasks from one central, managed service. EventBridge
Scheduler is highly customizable, and offers improved scalability over EventBridge
scheduled rules, with a wider set of target API operations and AWS services.
We recommend that you use EventBridge Scheduler to invoke targets on a schedule. For
more information, see ???.

Each rule is defined for a specific event bus, and only apply to events on that event bus.

A single rule can send an event to up to five targets.

By default, you can configure up to 300 rules per event bus. This quota can be raised to thousands
of rules in the Service Quotas console. Since the rule limit apply to each bus, if you require even
more rules, you can create additional custom event buses in your account.

You can customize how events are received in your account by creating event buses with different
permissions for different services.

Rules 15

https://console.aws.amazon.com/servicequotas/home

Amazon EventBridge User Guide

To customize the structure or date of an event before EventBridge passes it to a target, use the
input transformer to edit the information before it goes to the target.

For more information, see ???.

Targets

A target is a resource or endpoint to which EventBridge sends an event when the event matches
the event pattern defined for a rule.

A target can receive multiple events from multiple event buses.

For more information, see ???.

Advanced features for event buses

EventBridge includes the following features to help you develop, manage, and use event buses.

Using API destinations to enable REST API calls between services

EventBridge API destinations are HTTP endpoints that you can set as the target of a rule, in the
same way that you would send event data to an AWS service or resource. By using API destinations,
you can use API calls to route events between AWS services, integrated SaaS applications, and your
applications outside of AWS. When you create an API destination, you specify a connection to use
for it. Each connection includes the details about the authorization type and parameters to use to
authorize with the API destination endpoint.

Archiving and replaying events to aid development and disaster recovery

You can archive, or save, events and then replay them at a later time from the archive. Archiving is
useful for:

• Testing an application because you have a store of events to use rather than having to wait for
new events.

• Hydrating a new service when it first comes online.

• Adding more durability to your event-driven applications.

Using the Schema Registry to jump-start event pattern creation

Targets 16

Amazon EventBridge User Guide

When you build serverless applications that use EventBridge, it can be helpful to know the
structure of typical events without having to generate the event. The event structure are described
in schemas, which are available for all events generated by AWS services on EventBridge.

For events that don't come from AWS services, you can:

• Create or upload custom schemas.

• Use Schema Discovery to have EventBridge automatically create schemas for events sent to the
event bus.

Once you have a schema for an event, you can download code bindings for popular programming
languages.

Managing resources and access with policies

To organize AWS resources or to track costs in EventBridge, you can assign a custom label, or tag,
to AWS resources. Using tag-based policies, you can control what resources can and can’t do within
EventBridge.

In addition to tag-based policies, EventBridge supports identity-based and resource-based policies
to control access to EventBridge. Use identity-based policies to control the permissions of a group,
role, or user. Use resource-based policies to give specific permissions to each resource, such as a
Lambda function or Amazon SNS topic.

Creating an Amazon EventBridge event bus

You can create a custom event bus to receive events from your applications. Your applications
can also send events to the default event bus. When you create an event bus, you can attach a
resource-based policy to grant permissions to other accounts. Then other accounts can send events
to the event bus in the current account.

The following video goes through creating event buses: Creating an event bus

To create a custom event bus

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Event buses.

Creating an event bus 17

http://www.youtube.com/embed/ZcG3kFmS8es
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

3. Choose Create event bus.

4. Enter a name for the new event bus.

5. Configure the event bus:

• Specify a resource-based policy by doing one of the following:

• Enter the policy that includes the permissions to grant for the event bus. You can paste
in a policy from another source or enter the JSON for the policy. You can use one of the
example policies and modify it for your environment.

• To use a template for the policy, choose Load template. Modify the policy as appropriate
for your environment, including adding additional actions that you authorize the principal
in the policy to use.

For more information about granting permissions to an event bus through resource-based
policies, see ???.

• Enable an archive (optional)

You can create an archive of events so that you can easily replay them at a later time.
For example, you might want to replay events to recover from errors or to validate new
functionality in your application. For more information, see ???

a. Under Archives, choose Enabled.

b. Specify a name and description for the archive.

• Enable schema discovery (optional)

Enable schema discovery to have EventBridge automatically infer schemas directly from
events running on this event bus. For more information, see ???

a. Under Schema discovery, choose Enabled.

• Specify tags (optional)

A tag is a custom attribute label that you assign to an AWS resource. Use tags to identify
and organize your AWS resources. Many AWS services support tagging, so you can assign the
same tag to resources from different services to indicate that the resources are related. For
more information, see ???

a. Under Tags, choose Add new tag.

b. Specify a key and, optionally, a value for the new tag.

6. Choose Create.
Creating an event bus 18

Amazon EventBridge User Guide

Updating an Amazon EventBridge event bus

You can update the configuration of event bus after you create them. This includes the default
event bus, which EventBridge creates in your account automatically.

Topics

• Updating permissions on an event bus

• Adding or removing archives on event buses

• Starting or stopping schema discovery on event buses

• Adding or removing tags on event buses

Updating permissions on an event bus

You can grant additional permissions to an event bus by attaching a resource-based policy to it.
For detailed instructions on updating the permissions given an event bus, see Managing event bus
permissions.

Adding or removing archives on event buses

An archive enables you to capture events so that you can easily replay them at a later time. For
example, you might want to replay events to recover from errors or to validate new functionality in
your application. For more information, see EventBridge archive and replay.

To add or remove an archive from an event bus using the EventBridge console

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Event buses.

3. Choose the event bus you want to update.

4. On the events bus details page, choose the Archives tab.

5. Do one of the following:

• To add an archive:

a. Choose Create archive.

b. Specify attributes for the archive.

c. Choose Next.

Updating an event bus 19

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-bus-perms.html#eb-event-bus-permissions-manage
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-bus-perms.html#eb-event-bus-permissions-manage
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-archive.html
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

d. Choose the event pattern to apply to events for the archive.

e. Choose Create archive.

• To delete an archive:

a. For the tag you want to remove, choose Delete.

b. Enter the name of the archive, and choose Delete.

The archive is permanently deleted. You cannot undo this operation.

To create or delete an archive for an event bus using the AWS CLI

• To create an archive, use create-archive.

To permanently delete an archive, use delete-archive.

Starting or stopping schema discovery on event buses

For more information on schema discovery, see EventBridge schemas.

To start or stop schema discovery on an event bus using the EventBridge console

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Event buses.

3. Choose the event bus you want to update.

4. Do one of the following:

• To start schema discovery, choose Start discovery.

• To stop schema discovery, choose Delete discovery.

To start or stop schema discovery on an event bus using the AWS CLI

• To start schema discovery, use create-discoverer.

To stop schema discovery, use delete-discoverer.

Starting or stopping schema discovery 20

https://docs.aws.amazon.com/cli/latest/reference/events/create-archive.html
https://docs.aws.amazon.com/cli/latest/reference/events/delete-archive.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-schema.html
https://console.aws.amazon.com/events/
https://docs.aws.amazon.com/cli/latest/reference/schemas/create-discoverer.html
https://docs.aws.amazon.com/cli/latest/reference/schemas/delete-discoverer.html

Amazon EventBridge User Guide

Adding or removing tags on event buses

A tag is a custom attribute label that you or AWS assigns to an AWS resource. Use tags to identify
and organize your AWS resources. For more information, see EventBridge tags.

To add or remove tags from an event bus using the EventBridge console

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Event buses.

3. Choose the event bus you want to update.

4. On the events bus details page, choose the Tags tab, and then choose Manage tags.

5. Do one of the following:

• To add a tag:

a. Choose Add new tag.

b. Specify the key and value for the tag

c. Choose Update.

• To remove a tag:

a. For the tag you want to remove, choose Remove.

b. Choose Update.

To add or remove tags from an event bus using the AWS CLI

• To add tags, use tag-resource.

To remove tags, use untag-resource.

Deleting an Amazon EventBridge event bus

You can delete a custom or partner event bus. You cannot delete the default event bus. Deleting an
event bus deletes the rules associated with that event bus.

To delete an event bus using the EventBridge console

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Event buses.

Updating tags 21

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-tagging.html
https://console.aws.amazon.com/events/
https://docs.aws.amazon.com/cli/latest/reference/events/tag-resource.html
https://docs.aws.amazon.com/cli/latest/reference/events/untag-resource.html
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

3. Choose the event bus you want to delete.

4. Do one of the following:

• Choose Delete.

• Choose the name of the event bus.

On the event bus details page, choose Delete.

Permissions for Amazon EventBridge event buses

The default event bus in your AWS account only allows events from one account. You can grant
additional permissions to an event bus by attaching a resource-based policy to it. With a resource-
based policy, you can allow PutEvents, PutRule, and PutTargets API calls from another
account. You can also use IAM conditions in the policy to grant permissions to an organization,
apply tags, or filter events to only those from a specific rule or account. You can set a resource-
based policy for an event bus when you create it or afterward.

EventBridge APIs that accept an event bus Name parameter such as PutRule, PutTargets,
DeleteRule, RemoveTargets, DisableRule, and EnableRule also accept the event bus ARN.
Use these parameters to reference cross-account or cross-Region event buses through the APIs.
For example, you can call PutRule to create a rule on an event bus in a different account without
needing to assume a role.

You can attach the example policies in this topic to an IAM role to grant permission to send events
to a different account or Region. Use IAM roles to set organization control policies and boundaries
on who can send events from your account to other accounts. We recommend always using IAM
roles when the target of a rule is an event bus. You can attach IAM roles using PutTarget calls. For
information about creating a rule to send events to a different account or Region, see Sending and
receiving Amazon EventBridge events between AWS accounts.

Topics

• Managing event bus permissions

• Example policy: Send events to the default bus in a different account

• Example policy: Send events to a custom bus in a different account

• Example policy: Send events to an event bus in the same account

• Example policy: Send events to the same account and restrict updates

• Example policy: Send events only from a specific rule to the bus in a different Region

Permissions for event buses 22

Amazon EventBridge User Guide

• Example policy: Send events only from a specific Region to a different Region

• Example policy: Deny sending events from specific Regions

Managing event bus permissions

Use the following procedure to modify the permissions for an existing event bus. For
information about how to use AWS CloudFormation to create an event bus policy, see
AWS::Events::EventBusPolicy.

To manage permissions for an existing event bus

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the left navigation pane, choose Event buses.

3. In Name, choose the name of the event bus to manage permissions for.

If a resource policy is attached to the event bus, the policy displays.

4. Choose Manage permissions, and then do one of the following:

• Enter the policy that includes the permissions to grant for the event bus. You can paste in
a policy from another source, or enter the JSON for the policy.

• To use a template for the policy, choose Load template. Modify the policy as appropriate
for your environment, and add additional actions that you authorize the principal in the
policy to use.

5. Choose Update.

The template provides example policy statements that you can customize for your account and
environment. The template isn't a valid policy. You can modify the template for your use case, or
you can copy one of the example policies and customize it.

The template loads policies that include an example of how to grant permissions to an account
to use the PutEvents action, how to grant permissions to an organization, and how to grant
permissions to the account to manage rules in the account. You can customize the template for
your specific account, and then delete the other sections from the template. More example policies
are included later in this topic.

If you try to update the permissions for the bus but the policy contains an error, an error message
indicates the specific issue in the policy.

Managing event bus permissions 23

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-eventbuspolicy.html
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

 ### Choose which sections to include in the policy to match your use case. ###
 ### Be sure to remove all lines that start with ###, including the ### at the end of
 the line. ###

 ### The policy must include the following: ###

 {
 "Version": "2012-10-17",
 "Statement": [

 ### To grant permissions for an account to use the PutEvents action, include the
 following, otherwise delete this section: ###

 {

 "Sid": "AllowAccountToPutEvents",
 "Effect": "Allow",
 "Principal": {
 "AWS": "<ACCOUNT_ID>"
 },
 "Action": "events:PutEvents",
 "Resource": "arn:aws:events:us-east-1:123456789012:event-bus/default"
 },

 ### Include the following section to grant permissions to all members of your AWS
 Organizations to use the PutEvents action ###

 {
 "Sid": "AllowAllAccountsFromOrganizationToPutEvents",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "events:PutEvents",
 "Resource": "arn:aws:events:us-east-1:123456789012:event-bus/default",
 "Condition": {
 "StringEquals": {
 "aws:PrincipalOrgID": "o-yourOrgID"
 }
 }
 },

 ### Include the following section to grant permissions to the account to manage
 the rules created in the account ###

Managing event bus permissions 24

Amazon EventBridge User Guide

 {
 "Sid": "AllowAccountToManageRulesTheyCreated",
 "Effect": "Allow",
 "Principal": {
 "AWS": "<ACCOUNT_ID>"
 },
 "Action": [
 "events:PutRule",
 "events:PutTargets",
 "events:DeleteRule",
 "events:RemoveTargets",
 "events:DisableRule",
 "events:EnableRule",
 "events:TagResource",
 "events:UntagResource",
 "events:DescribeRule",
 "events:ListTargetsByRule",
 "events:ListTagsForResource"],
 "Resource": "arn:aws:events:us-east-1:123456789012:rule/default",
 "Condition": {
 "StringEqualsIfExists": {
 "events:creatorAccount": "<ACCOUNT_ID>"
 }
 }
 }]
 }

Example policy: Send events to the default bus in a different account

The following example policy grants the account 111122223333 permission to publish events to
the default event bus in the account 123456789012.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "sid1",
 "Effect": "Allow",
 "Principal": {"AWS":"arn:aws:iam::111112222333:root"},
 "Action": "events:PutEvents",
 "Resource": "arn:aws:events:us-east-1:123456789012:event-bus/default"
 }

Example policy: Send events to the default bus in a different account 25

Amazon EventBridge User Guide

]
 }

Example policy: Send events to a custom bus in a different account

The following example policy grants the account 111122223333 permission to publish events to
the central-event-bus in account 123456789012, but only for events with a source value set
to com.exampleCorp.webStore and a detail-type set to newOrderCreated.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "WebStoreCrossAccountPublish",
 "Effect": "Allow",
 "Action": [
 "events:PutEvents"
],
 "Principal": {
 "AWS": "arn:aws:iam::111112222333:root"
 },
 "Resource": "arn:aws:events:us-east-1:123456789012:event-bus/central-event-bus",
 "Condition": {
 "StringEquals": {
 "events:detail-type": "newOrderCreated",
 "events:source": "com.exampleCorp.webStore"
 }
 }
 }
]
}

Example policy: Send events to an event bus in the same account

The following example policy attached to an event bus named CustomBus1 allows the event bus
to receive events from the same account and Region.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Example policy: Send events to a custom bus in a different account 26

Amazon EventBridge User Guide

 "Effect": "Allow",
 "Action": [
 "events:PutEvents"
],
 "Resource": [
 "arn:aws:events:us-east-1:123456789:event-bus/CustomBus1"
]
 }
]
}

Example policy: Send events to the same account and restrict updates

The following example policy grants account 123456789012 permission to create, delete, update,
disable and enable rules, and add or remove targets. It limits these rules that match against events
with a source of com.exampleCorp.webStore, and it uses the "events:creatorAccount":
"${aws:PrincipalAccount}" to ensure that only account 123456789012 can modify these
rules and targets once they have been created.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "InvoiceProcessingRuleCreation",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:root"
 },
 "Action": [
 "events:PutRule",
 "events:DeleteRule",
 "events:DescribeRule",
 "events:DisableRule",
 "events:EnableRule",
 "events:PutTargets",
 "events:RemoveTargets"
],
 "Resource": "arn:aws:events:us-east-1:123456789012:rule/central-event-bus/*",
 "Condition": {
 "StringEqualsIfExists": {
 "events:creatorAccount": "${aws:PrincipalAccount}",
 "events:source": "com.exampleCorp.webStore"

Example policy: Send events to the same account and restrict updates 27

Amazon EventBridge User Guide

 }
 }
 }
]
}

Example policy: Send events only from a specific rule to the bus in a
different Region

The following example policy grants the account 111122223333 permission to send events that
match a rule named SendToUSE1AnotherAccount in the Middle East (Bahrain) and US West
(Oregon) Regions to an event bus named CrossRegionBus in the US East (N. Virginia) in account
123456789012. The example policy is added to the event bus named CrossRegionBus in account
123456789012. The policy allows events only if they match a rule specified for the event bus in
account 111122223333. The Condition statement restricts events to only events that match the
rules with the specified rule ARN.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowSpecificRulesAsCrossRegionSource",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111112222333:root"
 },
 "Action": "events:PutEvents",
 "Resource": "arn:aws:events:us-east-1:123456789012:event-bus/CrossRegionBus",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": [
 "arn:aws:events:us-west-2:111112222333:rule/CrossRegionBus/
SendToUSE1AnotherAccount",
 "arn:aws:events:me-south-1:111112222333:rule/CrossRegionBus/
SendToUSE1AnotherAccount"
]
 }
 }
 }
]
}

Example policy: Send events only from a specific rule to the bus in a different Region 28

Amazon EventBridge User Guide

Example policy: Send events only from a specific Region to a different
Region

The following example policy grants account 111122223333 permission to send all events
that are generated in the Middle East (Bahrain) and US West (Oregon) Regions to the event bus
named CrossRegionBus in account 123456789012 in the US East (N. Virginia) Region. Account
111122223333 doesn't have permission to send events that are generated in any other Region.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowCrossRegionEventsFromUSWest2AndMESouth1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111112222333:root"
 },
 "Action": "events:PutEvents",
 "Resource": "arn:aws:events:us-east-1:123456789012:event-bus/CrossRegionBus",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": [
 "arn:aws:events:us-west-2:*:*",
 "arn:aws:events:me-south-1:*:*"
]
 }
 }
 }
]
}

Example policy: Deny sending events from specific Regions

The following example policy attached to an event bus named CrossRegionBus in account
123456789012 grants permission for the event bus to receive events from the account
111122223333, but not events that are generated in the US West (Oregon) Region.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Example policy: Send events only from a specific Region to a different Region 29

Amazon EventBridge User Guide

 "Sid": "1AllowAnyEventsFromAccount111112222333",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111112222333:root"
 },
 "Action": "events:PutEvents",
 "Resource": "arn:aws:events:us-east-1:123456789012:event-bus/CrossRegionBus"
 },
 {
 "Sid": "2DenyAllCrossRegionUSWest2Events",
 "Effect": "Deny",
 "Principal": {
 "AWS": "*"
 },
 "Action": "events:PutEvents",
 "Resource": "arn:aws:events:us-east-1:123456789012:event-bus/CrossRegionBus",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": [
 "arn:aws:events:us-west-2:*:*"
]
 }
 }
 }
]
}

Generate an AWS CloudFormation template from an Amazon
EventBridge event bus

AWS CloudFormation enables you to configure and manage your AWS resources across
accounts and regions in a centralized and repeatable manner by treating infrastructure as code.
CloudFormation does this by letting you create templates, which define the resources you want to
provision and manage.

EventBridge enables you to generate templates from the existing event buses in your account,
as an aid to help you jumpstart developing CloudFormation templates. In addition, EventBridge
provides the option of including the rules associated with that event bus in your template. You
can then use these templates as the basis for creating stacks of resources under CloudFormation
management.

Generating a template from an event bus 30

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html

Amazon EventBridge User Guide

For more information on CloudFormation see The AWS CloudFormation User Guide.

Note

EventBridge does not include managed rules in the generated template.

You can also generate a template from one or more rules contained in a selected event bus.

To generate an CloudFormation template from an event bus

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Event buses.

3. Choose the event bus from which you want to generate a CloudFormation template.

4. From the Actions menu, choose CloudFormation Template, and then choose which format
you want EventBridge to generate the template in: JSON or YAML.

EventBridge displays the template, generated in the selected format. By default, all rules
associated with the event bus are included in the template.

• To generate the template without including rules, deselect Include rules on this
EventBus.

5. EventBridge gives you the option of downloading the template file, or copying the template to
the clipboard.

• To download the template file, choose Download.

• To copy the template to the clipboard, choose Copy.

6. To exit the template, choose Cancel.

Once you've customized your AWS CloudFormation template as necessary for your use case, you
can use it to create stacks in CloudFormation.

Considerations when using CloudFormation templates generated from
Amazon EventBridge

Consider the following factors when using a CloudFormation template you generated from an
event bus:

Considerations when using a generated template 31

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-rules.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/rule-create-template.html
https://console.aws.amazon.com/events/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html

Amazon EventBridge User Guide

• EventBridge does not include any passwords in the generate template.

You can edit the template to include template parameters that enable users to specify passwords
or other sensitive information when using the template to create or update a CloudFormation
stack.

In addition, users can use Secrets Manager to create a secret in the desired region and then edit
the generated template to employ dynamic parameters.

• Targets in the generated template remain exactly as they were specified in the original event
bus. This can lead to cross-region issues if you do not appropriately edit the template before
using it to create stacks in other regions.

Additionally, the generated template will not create the downstream targets automatically.

Considerations when using a generated template 32

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-references.html#dynamic-references-secretsmanager

Amazon EventBridge User Guide

Amazon EventBridge events

An event indicates a change in an environment such as an AWS environment, a SaaS partner service
or application, or one of your applications or services. The following are examples of events:

• Amazon EC2 generates an event when the state of an instance changes from pending to running.

• Amazon EC2 Auto Scaling generates events when it launches or terminates instances.

• AWS CloudTrail publishes events when you make API calls.

You can also set up scheduled events that are generated on a periodic basis.

For a list of services that generate events, including sample events from each service, see Events
from AWS services and follow the links in the table.

Events are represented as JSON objects and they all have a similar structure, and the same top-
level fields.

The contents of the detail top-level field are different depending on which service generated
the event and what the event is. The combination of the source and detail-type fields serves to
identify the fields and values found in the detail field. For examples of events generated by AWS
services, see Events from AWS services.

Topics

• Event structure reference

• Adding Amazon EventBridge events with PutEvents

• Events from AWS services

• Receiving events from a SaaS partner with Amazon EventBridge

• Debugging Amazon EventBridge event delivery

The following video explains the basics of events: What is an event

The following video covers the ways events get to EventBridge: Where do events come from

33

http://www.youtube.com/embed/5bsFBbIAdT4
http://www.youtube.com/embed/JlRV0Q7gLJQ

Amazon EventBridge User Guide

Event structure reference

The following fields appear in an event:

{
 "version": "0",
 "id": "UUID",
 "detail-type": "event name",
 "source": "event source",
 "account": "ARN",
 "time": "timestamp",
 "region": "region",
 "resources": [
 "ARN"
],
 "detail": {
 JSON object
 }
}

version

By default, this is set to 0 (zero) in all events.

id

A Version 4 UUID that's generated for every event. You can use id to trace events as they move
through rules to targets.

detail-type

Identifies, in combination with the source field, the fields and values that appear in the detail
field.

Events that are delivered by CloudTrail have AWS API Call via CloudTrail as the value
for detail-type.

source

Identifies the service that generated the event. All events that come from AWS services begin
with "aws." Customer-generated events can have any value here, as long as it doesn't begin with
"aws." We recommend the use of Java package-name style reverse domain-name strings.

Event structure reference 34

Amazon EventBridge User Guide

To find the correct value for source for an AWS service, see The condition keys table, select a
service from the list, and look for the service prefix. For example, the source value for Amazon
CloudFront is aws.cloudfront.

account

The 12-digit number identifying an AWS account.

time

The event timestamp, which can be specified by the service originating the event. If the event
spans a time interval, the service can report the start time, so this value might be before the
time the event is received.

region

Identifies the AWS Region where the event originated.

resources

A JSON array that contains ARNs that identify resources that are involved in the event. The
service generating the event determines whether to include these ARNs. For example, Amazon
EC2 instance state-changes include Amazon EC2 instance ARNs, Auto Scaling events include
ARNs for both instances and Auto Scaling groups, but API calls with AWS CloudTrail do not
include resource ARNs.

detail

A JSON object that contains information about the event. The service generating the event
determines the content of this field. The detail content can be as simple as two fields. AWS API
call events have detail objects with approximately 50 fields nested several levels deep.

Example Example: Amazon EC2 instance state-change notification

The following event in Amazon EventBridge indicates an Amazon EC2 instance being terminated.

{
 "version": "0",
 "id": "6a7e8feb-b491-4cf7-a9f1-bf3703467718",
 "detail-type": "EC2 Instance State-change Notification",
 "source": "aws.ec2",
 "account": "111122223333",
 "time": "2017-12-22T18:43:48Z",

Event structure reference 35

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html#context_keys_table

Amazon EventBridge User Guide

 "region": "us-west-1",
 "resources": [
 "arn:aws:ec2:us-west-1:123456789012:instance/i-1234567890abcdef0"
],
 "detail": {
 "instance-id": " i-1234567890abcdef0",
 "state": "terminated"
 }
}

Minimum information needed for a valid custom event

When you create custom events they must include the following fields:

{
 "detail-type": "event name",
 "source": "event source",
 "detail": {
 }
}

• detail – A JSON object that contains information about the event. It can be "{}".

Note

PutEvents accepts data in JSON format. For the JSON number (integer) data type, the
constraints are: a minimum value of -9,223,372,036,854,775,808 and a maximum value
of 9,223,372,036,854,775,807.

• detail-type – A string that identifies the type of event.

• source – A string that identifies the source of the event. Customer-generated events can have
any value here, as long as it doesn't begin with "aws." We recommend the use of Java package-
name style reverse domain-name strings.

Adding Amazon EventBridge events with PutEvents

The PutEvents action sends multiple events to EventBridge in a single request. For more
information, see PutEvents in the Amazon EventBridge API Reference and put-events in the AWS CLI
Command Reference.

Minimum valid custom event 36

https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutEvents.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html
https://docs.aws.amazon.com/cli/latest/reference/events/put-events.html

Amazon EventBridge User Guide

Each PutEvents request can support a limited number of entries. For more information, see
Amazon EventBridge quotas. The PutEvents operation attempts to process all entries in the
natural order of the request. After you call PutEvents, EventBridge assigns each event a unique
ID.

Topics

• Handling failures with PutEvents

• Sending events using the AWS CLI

• Calculating Amazon EventBridge PutEvents event entry size

The following example Java code sends two identical events to EventBridge.

AWS SDK for Java Version 2.x

EventBridgeClient eventBridgeClient =
 EventBridgeClient.builder().build();

PutEventsRequestEntry requestEntry = PutEventsRequestEntry.builder()
 .resources("resource1", "resource2")
 .source("com.mycompany.myapp")
 .detailType("myDetailType")
 .detail("{ \"key1\": \"value1\", \"key2\": \"value2\" }")
 .build();

List <
PutEventsRequestEntry > requestEntries = new ArrayList <
PutEventsRequestEntry > ();
requestEntries.add(requestEntry);

PutEventsRequest eventsRequest = PutEventsRequest.builder()
 .entries(requestEntries)
 .build();

PutEventsResponse result = eventBridgeClient.putEvents(eventsRequest);

for (PutEventsResultEntry resultEntry: result.entries()) {
 if (resultEntry.eventId() != null) {
 System.out.println("Event Id: " + resultEntry.eventId());
 } else {
 System.out.println("PutEvents failed with Error Code: " +
 resultEntry.errorCode());

Adding events with PutEvents 37

Amazon EventBridge User Guide

 }
}

AWS SDK for Java Version 1.0

EventBridgeClient eventBridgeClient =
 EventBridgeClient.builder().build();

PutEventsRequestEntry requestEntry = new PutEventsRequestEntry()
 .withTime(new Date())
 .withSource("com.mycompany.myapp")
 .withDetailType("myDetailType")
 .withResources("resource1", "resource2")
 .withDetail("{ \"key1\": \"value1\", \"key2\": \"value2\" }");

PutEventsRequest request = new PutEventsRequest()
 .withEntries(requestEntry, requestEntry);

PutEventsResult result = awsEventsClient.putEvents(request);

for (PutEventsResultEntry resultEntry : result.getEntries()) {
 if (resultEntry.getEventId() != null) {
 System.out.println("Event Id: " + resultEntry.getEventId());
 } else {
 System.out.println("Injection failed with Error Code: " +
 resultEntry.getErrorCode());
 }
}

After you run this code, the PutEvents result includes an array of response entries. Each entry in
the response array corresponds to an entry in the request array in order from the beginning to the
end of the request and response. The response Entries array always includes the same number of
entries as the request array.

Handling failures with PutEvents

By default, if an individual entry within a request fails, EventBridge continues processing the rest of
the entries in the request. A response Entries array can include both successful and unsuccessful
entries. You must detect unsuccessful entries and include them in a subsequent call.

Handling failures with PutEvents 38

Amazon EventBridge User Guide

Successful result entries include an Id value, and unsuccessful result entries include ErrorCode
and ErrorMessage values. ErrorCode describes the type of error. ErrorMessage provides
more information about the error. The following example has three result entries for a PutEvents
request. The second entry is unsuccessful.

{
 "FailedEntryCount": 1,
 "Entries": [
 {
 "EventId": "11710aed-b79e-4468-a20b-bb3c0c3b4860"
 },
 { "ErrorCode": "InternalFailure",
 "ErrorMessage": "Internal Service Failure"
 },
 {
 "EventId": "d804d26a-88db-4b66-9eaf-9a11c708ae82"
 }
]
}

Note

If you use PutEvents to publish an event to an event bus that does not exist, EventBridge
event matching will not find a corresponding rule and will drop the event. Although
EventBridge will send a 200 response, it will not fail the request or include the event in the
FailedEntryCount value of the request response.

You can include entries that are unsuccessful in subsequent PutEvents requests. First, to find
out if there are failed entries in the request, check the FailedRecordCount parameter in
PutEventsResult. If it isn't zero, then you can add each Entry that has an ErrorCode that is
not null to a subsequent request. The following example shows a failure handler.

PutEventsRequestEntry requestEntry = new PutEventsRequestEntry()
 .withTime(new Date())
 .withSource("com.mycompany.myapp")
 .withDetailType("myDetailType")
 .withResources("resource1", "resource2")
 .withDetail("{ \"key1\": \"value1\", \"key2\": \"value2\" }");

Handling failures with PutEvents 39

Amazon EventBridge User Guide

List<PutEventsRequestEntry> putEventsRequestEntryList = new ArrayList<>();
for (int i = 0; i < 3; i++) {
 putEventsRequestEntryList.add(requestEntry);
}

PutEventsRequest putEventsRequest = new PutEventsRequest();
putEventsRequest.withEntries(putEventsRequestEntryList);
PutEventsResult putEventsResult = awsEventsClient.putEvents(putEventsRequest);

while (putEventsResult.getFailedEntryCount() > 0) {
 final List<PutEventsRequestEntry> failedEntriesList = new ArrayList<>();
 final List<PutEventsResultEntry> PutEventsResultEntryList =
 putEventsResult.getEntries();
 for (int i = 0; i < PutEventsResultEntryList.size(); i++) {
 final PutEventsRequestEntry putEventsRequestEntry =
 putEventsRequestEntryList.get(i);
 final PutEventsResultEntry putEventsResultEntry =
 PutEventsResultEntryList.get(i);
 if (putEventsResultEntry.getErrorCode() != null) {
 failedEntriesList.add(putEventsRequestEntry);
 }
 }
 putEventsRequestEntryList = failedEntriesList;
 putEventsRequest.setEntries(putEventsRequestEntryList);
 putEventsResult = awsEventsClient.putEvents(putEventsRequest);
 }

Sending events using the AWS CLI

You can use the AWS CLI to send custom events to EventBridge so they can be processed. The
following example puts one custom event into EventBridge:

aws events put-events \
--entries '[{"Time": "2016-01-14T01:02:03Z", "Source": "com.mycompany.myapp",
 "Resources": ["resource1", "resource2"], "DetailType": "myDetailType", "Detail":
 "{ \"key1\": \"value1\", \"key2\": \"value2\" }"}]'

You can also create a JSON file that contains custom events.

[
 {
 "Time": "2016-01-14T01:02:03Z",

Sending events using the AWS CLI 40

Amazon EventBridge User Guide

 "Source": "com.mycompany.myapp",
 "Resources": [
 "resource1",
 "resource2"
],
 "DetailType": "myDetailType",
 "Detail": "{ \"key1\": \"value1\", \"key2\": \"value2\" }"
 }
]

Then, to use the AWS CLI to read the entries from this file and send events, at a command prompt,
type:

aws events put-events --entries file://entries.json

Sending events using the AWS CLI 41

Amazon EventBridge User Guide

Calculating Amazon EventBridge PutEvents event entry size

You can send custom events to EventBridge by using the PutEvents action. You can batch
multiple event entries into one request for efficiency. The total entry size must be less than 256KB.
You can calculate the entry size before you send the events.

Note

The size limit is imposed on the entry. Even if the entry is less than the size limit, the event
in EventBridge is always larger than the entry size due to the necessary characters and keys
of the JSON representation of the event. For more information, see Amazon EventBridge
events.

EventBridge calculates the PutEventsRequestEntry size as follows:

• If specified, the Time parameter is 14 bytes.

• The Source and DetailType parameters are the number of bytes for their UTF-8 encoded
forms.

• If specified, the Detail parameter is the number of bytes for its UTF-8 encoded form.

• If specified, each entry of the Resources parameter is the number of bytes for its UTF-8
encoded forms.

The following example Java code calculates the size of a given PutEventsRequestEntry object.

int getSize(PutEventsRequestEntry entry) {
 int size = 0;
 if (entry.getTime() != null) {
 size += 14;
 }
 size += entry.getSource().getBytes(StandardCharsets.UTF_8).length;
 size += entry.getDetailType().getBytes(StandardCharsets.UTF_8).length;
 if (entry.getDetail() != null) {
 size += entry.getDetail().getBytes(StandardCharsets.UTF_8).length;
 }
 if (entry.getResources() != null) {
 for (String resource : entry.getResources()) {
 if (resource != null) {

Calculating event entry size 42

Amazon EventBridge User Guide

 size += resource.getBytes(StandardCharsets.UTF_8).length;
 }
 }
 }
 return size;
}

Note

If the entry size is larger than 256KB, we recommend uploading the event to an Amazon S3
bucket and including the Object URL in the PutEvents entry.

Events from AWS services

Many AWS services generate events that EventBridge receives. When an AWS service in your
account emits an event, it goes to your account’s default event bus.

Event delivery from AWS services

Each AWS service that generates events sends them to EventBridge as either best effort or durable
delivery attempts.

• Best effort delivery means that the service attempts to send all events to EventBridge, but in
some rare cases an event might not be delivered.

• Durable delivery means the service will successfully attempt to deliver events to EventBridge at
least once.

EventBridge will accept all valid events under normal conditions. In cases where events cannot
be delivered because of an EventBridge service disruption, they will be retried again later by the
AWS service for up to 24 hours.

Once an event is delivered to EventBridge, EventBridge matches it against rules and then follows
the retry policy and any dead-letter queue specified for the event target(s).

For a list of AWS services that generate events, see ???.

Events from AWS services 43

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-rules.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-rule-dlq.html

Amazon EventBridge User Guide

Accessing AWS service events via AWS CloudTrail

AWS CloudTrail is a service that automatically records events such as AWS API calls. You can create
EventBridge rules that use the information from CloudTrail. For more information about CloudTrail,
see What is AWS CloudTrail?.

All events that are delivered by CloudTrail have AWS API Call via CloudTrail as the value
for detail-type.

To record events with a detail-type value of AWS API Call via CloudTrail, a CloudTrail
trail with logging enabled is required.

When using CloudTrail with Amazon S3, you need to configure CloudTrail to log data events. For
more information, see Enabling CloudTrail event logging for S3 buckets and objects .

Some occurrences in AWS services can be reported to EventBridge both by the service itself and
by CloudTrail. For example, an Amazon EC2 API call that starts or stops an instance generates
EventBridge events as well as events through CloudTrail.

CloudTrail supports both API callers and resource owners to receive events in their Amazon S3
buckets by creating trails, and delivers events to API callers through EventBridge. Resource owners
in addition to API callers can monitor cross-account API calls through EventBridge. CloudTrail’s
integration with EventBridge provides a convenient way to set automated rules-based workflows in
response to events.

You can't use AWS Put*Events API call events that are larger than 256 KB in size as event patterns
because the maximum size of any Put*Events requests is 256 KB. For more information about the
API calls that you can use, see CloudTrail supported services and integrations.

Receiving read-only management events from AWS services

You can set up rules on your default or custom event bus to receive read-only management
events from AWS services via CloudTrail. Management events provide visibility into management
operations that are performed on resources in your AWS account. These are also known as control
plane operations. For more information, see Logging management events in the CloudTrail User
Guide.

For each rule on the default or custom event buses, you can set the rule state to control the types
of events to receive:

• Disable the rule so that EventBridge does not match events against the rule.

Events via CloudTrail 44

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/enable-cloudtrail-logging-for-s3.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html#logging-management-events

Amazon EventBridge User Guide

• Enable the rule so that EventBridge matches events against the rule, except for read-only AWS
management events delivered through CloudTrail.

• Enable the rule so that EventBridge matches all events against the rule, including read-only
management events delivered through CloudTrail.

Partner event buses do not receive AWS events.

Some things to consider when deciding whether to receive read-only management events:

• Certain read-only management events, such as AWS Key Management Service GetKeyPolicy
and DescribeKey, or IAM GetPolicy and GetRole events, occur at a much higher volume
than typical change events.

• You may already be receiving read-only management events, if those events don't start with
Describe, Get, or List. For example, events from the following AWS STS APIs are change
events, even thought they start with the verb Get:

• GetFederationToken

• GetSessionToken

For a list of read-only management events that do not adhere to the Describe, Get, or List
naming convention, by AWS services, see ???.

To create a rule that receives read-only management events using the AWS CLI

• Use the put-rule command to create or update the rule, using parameters to:

• Specify that the rule belongs on the default event bus, or a specific custom event bus

• Set rule state as ENABLED_WITH_ALL_CLOUDTRAIL_MANAGEMENT_EVENTS

aws events put-rule --name "ruleForManagementEvents" --event-bus-name
"default" --state "ENABLED_WITH_ALL_CLOUDTRAIL_MANAGEMENT_EVENTS"

Note

Enabling a rule for CloudWatch management events is supported through the AWS CLI and
AWS CloudFormation templates only.

Events via CloudTrail 45

Amazon EventBridge User Guide

Example

The following example illustrates how to match against specific events. Best practice is to define a
dedicated rule for matching specific events, for clarity and ease of editing.

In this case, the dedicated rule matches the AssumeRole management event from AWS Security
Token Service.

{
 "source" : ["aws.sts"],
 "detail-type": ["AWS API Call via CloudTrail"],
 "detail" : {
 "eventName" : ["AssumeRole"]
 }
}

AWS services that generate events

The following table shows AWS services that generate events. Choose the service name to see
more information about how that service and EventBridge work together.

Each AWS service that generates events sends them to EventBridge as either best effort or durable
delivery attempts. For more information, see ???.

This table includes a representation of the AWS services that send events to EventBridge, but it
doesn't include every service. For services not listed that send events to EventBridge, assume a best
effort delivery.

Service Attempt Type

Alexa for Business Best effort

AWS Account Management Best effort

Amazon API Gateway Best effort

AWS AppConfig Best effort

Amazon AppFlow Best effort

Application Auto Scaling Best effort

Services that generate events 46

https://docs.aws.amazon.com/autoscaling/application/userguide/monitoring-eventbridge.html

Amazon EventBridge User Guide

Service Attempt Type

AWS Application Cost Profiler Best effort

AWS Application Migration Service Best effort

Amazon Athena Best effort

AWS Backup Best effort

AWS Batch Durable

Amazon Braket Durable

AWS Certificate Manager Best effort

Amazon Chime Best effort

Amazon Cloud Directory Best effort

AWS CloudFormation Durable

Amazon CloudFront Best effort

AWS CloudHSM Best effort

Amazon CloudSearch Best effort

AWS CloudShell Best effort

Events from AWS CloudTrail Best effort

Amazon CloudWatch Durable

Amazon CloudWatch Application Insights Best effort

Amazon CloudWatch Internet Monitor Best effort

Amazon CloudWatch Logs Best effort

Amazon CloudWatch Synthetics Best effort

Services that generate events 47

https://docs.aws.amazon.com/application-cost-profiler/latest/userguide/monitoring-events.html
https://docs.aws.amazon.com/aws-backup/latest/devguide/eventbridge.html
https://docs.aws.amazon.com/batch/latest/userguide/batch_cwe_events.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-monitor-eventbridge.html
https://docs.aws.amazon.com/chime/latest/ag/automating-chime-with-cloudwatch-events.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks-event-bridge.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch-and-eventbridge.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-IM-EventBridge-integration.html

Amazon EventBridge User Guide

Service Attempt Type

AWS CodeArtifact Durable

AWS CodeBuild Best effort

AWS CodeCommit Best effort

AWS CodeDeploy Best effort

Amazon CodeGuru Profiler Best effort

AWS CodePipeline Best effort

AWS CodeStar Best effort

AWS CodeStar Connections Best effort

Amazon Cognito Identity Best effort

Amazon Cognito user pools Best effort

Amazon Cognito Sync Best effort

AWS Config Best effort

Amazon Connect Best effort

Amazon Connect Voice ID Best effort

AWS Control Tower Best effort

AWS Database Migration Service Best effort

AWS Data Exchange Best effort

Amazon Data Lifecycle Manager Best effort

AWS Data Pipeline Best effort

AWS DataSync Best effort

Services that generate events 48

https://docs.aws.amazon.com/codebuild/latest/userguide/sample-build-notifications.html#sample-build-notifications-ref
https://docs.aws.amazon.com/codecommit/latest/userguide/monitoring-events.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/monitoring-cloudwatch-events.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/detect-state-changes-cloudwatch-events.html
https://docs.aws.amazon.com/config/latest/developerguide/security-logging-and-monitoring.html#monitor-config-with-cloudwatchevents
https://docs.aws.amazon.com/connect/latest/adminguide/connect-eventbridge-events.html
https://docs.aws.amazon.com/controltower/latest/userguide/monitoring-overview.html

Amazon EventBridge User Guide

Service Attempt Type

AWS Device Farm Best effort

Amazon DevOps Guru Best effort

AWS Direct Connect Best effort

AWS Directory Service Best effort

Amazon DynamoDB Best effort

AWS Elastic Beanstalk Best effort

Amazon Elastic Block Store Best effort

Amazon Elastic Block Store volume modificat
ions

Best effort

Amazon ElastiCache Best effort

Amazon Elastic Compute Cloud (Amazon EC2) Best effort

Amazon EC2 Auto Scaling Best effort

Amazon EC2 Fleets Best effort

Amazon EC2 Spot Instance Interruption Best effort

Amazon Elastic Container Registry Best effort

Amazon Elastic Container Service Durable

AWS Elastic Disaster Recovery Best effort

Amazon Elastic File System Best effort

Amazon Elastic Kubernetes Service Best effort

Elastic Load Balancing Best effort

Amazon Elastic MapReduce Best effort

Services that generate events 49

https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-eventbridge.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/AWSHowTo.eventbridge.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-cloud-watch-events.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/automating_with_eventbridge.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/cloud-watch-events.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html#spot-instance-termination-notices
https://docs.aws.amazon.com/AmazonECR/latest/userguide/ecr-eventbridge.html#ecr-eventbridge-bus
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch_event_stream.html

Amazon EventBridge User Guide

Service Attempt Type

Amazon Elastic Transcoder Best effort

AWS Elemental MediaConnect Best effort

AWS Elemental MediaConvert Durable

AWS Elemental MediaLive Best effort

AWS Elemental MediaPackage Best effort

AWS Elemental MediaStore Durable

Amazon EMR Best effort

Amazon EMR on EKS Best effort

Amazon EMR Serverless Best effort

Amazon EventBridge scheduled rules Durable

Amazon EventBridge schemas Best effort

AWS Fault Injection Service Best effort

Forecast Best effort

Amazon GameLift Best effort

AWS Glue Best effort

AWS Glue DataBrew Best effort

AWS Ground Station Best effort

Amazon GuardDuty Best effort

AWS Health Durable

AWS HealthLake Durable

Services that generate events 50

https://docs.aws.amazon.com/mediaconvert/latest/ug/cloudwatch_events.html
https://docs.aws.amazon.com/mediapackage/latest/ug/monitoring-cloudwatch-events.html
https://docs.aws.amazon.com/mediastore/latest/ug/monitoring-automating-with-cloudwatch-events.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/using-eventbridge.html
https://docs.aws.amazon.com/fis/latest/userguide/monitoring-eventbridge.html
https://docs.aws.amazon.com/ground-station/latest/ug/automating-events.html
https://docs.aws.amazon.com/health/latest/ug/cloudwatch-events-health.html

Amazon EventBridge User Guide

Service Attempt Type

AWS Identity and Access Management (IAM) Best effort

IAM Access Analyzer Best effort

Amazon Inspector Classic Best effort

Amazon Inspector Best effort

AWS IoT Best effort

AWS IoT Analytics Durable

AWS IoT Greengrass V1 Best effort

AWS IoT Greengrass V2 Best effort

Amazon Interactive Video Service Best effort

Amazon Kinesis Best effort

Amazon Data Firehose Best effort

AWS Key Management Service CMK deletion Durable

AWS Key Management Service CMK rotation Best effort

AWS Key Management Service imported key
material expiration

Best effort

AWS Lambda Best effort

Amazon Location Service Durable

Amazon Machine Learning Best effort

Amazon Macie Best effort

Amazon Managed Blockchain Best effort

AWS Managed Services Best effort

Services that generate events 51

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-eventbridge.html
https://docs.aws.amazon.com/inspector/latest/user/findings-managing-automating-responses.html
https://docs.aws.amazon.com/iotanalytics/latest/userguide/cloudwatch-events.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/deployment-notifications.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/telemetry.html
https://docs.aws.amazon.com/ivs/latest/userguide/SUE.html
https://docs.aws.amazon.com/location/latest/developerguide/location-events.html
https://docs.aws.amazon.com/macie/latest/user/findings-publish-event-schemas.html

Amazon EventBridge User Guide

Service Attempt Type

AWS Management Console Sign-in Best effort

AWS Metering Marketplace Best effort

AWS Migration Hub Best effort

AWS Migration Hub Refactor Spaces Best effort

AWS Monitoring Best effort

AWS Network Manager Best effort

Amazon OpenSearch Service Best effort

AWS OpsWorks Durable

AWS OpsWorks CM Best effort

AWS Organizations Best effort

Amazon Polly Best effort

AWS Private Certificate Authority Best effort

AWS Proton Best effort

Amazon QLDB Durable

Amazon QuickSight Best effort

Amazon RDS Best effort

AWS Recycle Bin Best effort

Amazon Redshift Durable

Amazon Redshift Data API Best effort

Amazon Redshift Serverless Best effort

Services that generate events 52

https://docs.aws.amazon.com/network-manager/latest/cloudwan/cloudwan-cloudwatch-events.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/monitoring-events.html
https://docs.aws.amazon.com/proton/latest/adminguide/monitoring.html
https://docs.aws.amazon.com/quicksight/latest/user/events-integration.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-cloudwatch-events.sample.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/rbin-eventbridge.html
https://docs.aws.amazon.com/redshift/latest/mgmt/data-api-calling-event-bridge.html

Amazon EventBridge User Guide

Service Attempt Type

AWS Resource Access Manager Best effort

AWS Resource Groups Best effort

AWS Resource Groups Tagging API Best effort

Amazon Route 53 Best effort

Amazon Route 53 Recovery Readiness Best effort

Amazon SageMaker Best effort

Savings Plans Best effort

AWS Secrets Manager Best effort

AWS Security Hub Durable

AWS Security Token Service Best effort

AWS Server Migration Service Best effort

AWS Service Catalog Best effort

AWS Signer Durable

Amazon Simple Email Service Best effort

Amazon Simple Storage Service (Amazon S3) Durable

Amazon S3 Glacier Best effort

Amazon S3 on Outposts Best effort

Amazon Simple Queue Service Best effort

Amazon Simple Notification Service Best effort

Amazon Simple Workflow Service Best effort

Services that generate events 53

https://docs.aws.amazon.com/ARG/latest/userguide/monitor-groups.html
https://docs.aws.amazon.com/tag-editor/latest/userguide/tag-monitor.html
https://docs.aws.amazon.com/sagemaker/latest/dg/automating-sagemaker-with-eventbridge.html
https://docs.aws.amazon.com/savingsplans/latest/userguide/automating-savingsplans-with-eventbridge.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/monitoring-eventbridge.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-cloudwatch-events.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/EventBridge.html

Amazon EventBridge User Guide

Service Attempt Type

AWS Step Functions Best effort

AWS Storage Gateway Durable

AWS Support Best effort

AWS Systems Manager Best effort

Amazon Transcribe Best effort

AWS Transfer Family Best effort

AWS Transit Gateway Best effort

Amazon Translate Durable

AWS Trusted Advisor Best effort

AWS WAF Best effort

AWS WAF Regional Best effort

AWS Well-Architected Tool Best effort

Amazon WorkDocs Best effort

Amazon WorkSpaces Best effort

AWS X-Ray Best effort

Management events generated by AWS services

In general, APIs that generate management (or read-only) events start with the verbs Describe,
Get, or List. The table below list AWS services and the management events they generate that do
not follow this naming convention. For more information on management events, see ???.

Management events 54

https://docs.aws.amazon.com/step-functions/latest/dg/cw-events.html#cw-events-events
https://docs.aws.amazon.com/awssupport/latest/user/event-bridge-support.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/monitoring-eventbridge-events.html
https://docs.aws.amazon.com/transcribe/latest/dg/monitoring-events.html
https://docs.aws.amazon.com/transfer/latest/userguide/eventbridge.html
https://docs.aws.amazon.com/translate/latest/dg/monitoring-with-eventbridge.html
https://docs.aws.amazon.com/awssupport/latest/user/cloudwatch-events-ta.html
https://docs.aws.amazon.com/wellarchitected/latest/userguide/eventbridge.html
https://docs.aws.amazon.com/workspaces/latest/adminguide/cloudwatch-events.html

Amazon EventBridge User Guide

Management events that don't start with Describe, Get, or List

The following table list AWS services and the management events they generate that do not follow
typical naming conventions of starting with Describe, Get, or List.

Service Event name Event type

Alexa for Business ResolveRoom API call

Alexa for Business SearchAddressBooks API call

Alexa for Business SearchContacts API call

Alexa for Business SearchDevices API call

Alexa for Business SearchProfiles API call

Alexa for Business SearchRooms API call

Alexa for Business SearchSkillGroups API call

Alexa for Business SearchUsers API call

IAM Access Analyzer ValidatePolicy API call

AWS AdSpace Clean Rooms BatchGetSchema API call

AWS Amplify UI Builder ExportComponents API call

AWS Amplify UI Builder ExportForms API call

AWS Amplify UI Builder ExportThemes API call

Amazon OpenSearch Service BatchGetCollection API call

Amazon API Gateway ExportApi API call

AWS AppConfig ValidateConfiguration API call

Amazon AppFlow RetrieveConnectorData API call

Management events 55

Amazon EventBridge User Guide

Service Event name Event type

Amazon CloudWatch
Application Insights

UpdateApplicationD
ashboardConfiguration

API call

Amazon Athena BatchGetNamedQuery API call

Amazon Athena BatchGetPreparedStatement API call

Amazon Athena BatchGetQueryExecution API call

Amazon Athena CheckQueryCompatibility API call

Amazon Athena ExportNotebook API call

AWS Auto Scaling AreScalableTargetsRegistered API call

AWS Auto Scaling Test API call

AWS Marketplace SearchAgreements API call

AWS Backup CreateLegalHold API call

AWS Backup ExportBackupPlanTemplate API call

AWS Backup gateway TestHypervisorConfiguration API call

AWS Billing and Cost
Management

AWSPaymentInstrume
ntGateway.Get

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.DescribeMake
PaymentPage

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.DescribePaymentsDashb
oard

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetAccountPreferences

Console action

Management events 56

Amazon EventBridge User Guide

Service Event name Event type

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetAdvancePa
ySummary

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetAsoBulkDownload

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetBillingContactAddr
ess

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetDocuments

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetEligiblePaymentIns
truments

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetEntitiesByIds

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetFundingDocuments

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetKybcValidationStatus

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetOneTimePa
sswordStatus

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetPaymentHistory

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetPaymentProfileByArn

Console action

Management events 57

Amazon EventBridge User Guide

Service Event name Event type

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetPaymentProfileCurr
encies

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetPaymentProfiles

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetPaymentProfileServ
iceProviders

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetPaymentsDue

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetRemittanceInformat
ion

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetTaxInvoiceMetadata

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetTermsAndConditions
ForProgramGroup

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetTransactionsHistory

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetUnappliedFunds

Console action

AWS Billing and Cost
Management

AWSPaymentPortalSe
rvice.GetUnpaidInvoices

Console action

AWS Billing and Cost
Management

AWSPaymentPreferen
ceGateway.Get

Console action

Management events 58

Amazon EventBridge User Guide

Service Event name Event type

AWS Billing and Cost
Management

CancelBulkDownload Console action

AWS Billing and Cost
Management

DownloadCommercialInvoice Console action

AWS Billing and Cost
Management

DownloadCsv Console action

AWS Billing and Cost
Management

DownloadDoc Console action

AWS Billing and Cost
Management

DownloadECSVForBillingPerio
d

Console action

AWS Billing and Cost
Management

DownloadPaymentHistory Console action

AWS Billing and Cost
Management

DownloadRegistrati
onDocument

Console action

AWS Billing and Cost
Management

DownloadTaxInvoice Console action

AWS Billing and Cost
Management

FindBankRedirectPaymentInst
ruments

Console action

AWS Billing and Cost
Management

FindECSVForBillingPeriod Console action

AWS Billing and Cost
Management

ValidateReportDestination Console action

AWS Billing and Cost
Management

VerifyChinaPaymentEligibility Console action

Amazon Braket SearchCompilations API call

Management events 59

Amazon EventBridge User Guide

Service Event name Event type

Amazon Braket SearchDevices API call

Amazon Braket SearchQuantumTasks API call

Amazon Connect Cases BatchGetField API call

Amazon Connect Cases SearchCases API call

Amazon Connect Cases SearchRelatedItems API call

Amazon Chime RetrieveDataExports API call

Amazon Chime SearchChannels API call

Amazon Chime SDK Identity DeleteProfile Service event

Amazon Chime SDK Identity DeleteWorkTalkAccount Service event

AWS Clean Rooms BatchGetSchema API call

Amazon Cloud Directory BatchRead API call

Amazon Cloud Directory LookupPolicy API call

AWS CloudFormation DetectStackDrift API call

AWS CloudFormation DetectStackResourceDrift API call

AWS CloudFormation DetectStackSetDrift API call

AWS CloudFormation EstimateTemplateCost API call

AWS CloudFormation ValidateTemplate API call

AWS CloudShell RedeemCode API call

AWS CloudTrail LookupEvents API call

AWS CodeArtifact ReadFromRepository API call

Management events 60

Amazon EventBridge User Guide

Service Event name Event type

AWS CodeArtifact SearchPackages API call

AWS CodeArtifact VerifyResourcesExistForTagris API call

AWS CodeBuild BatchGetBuildBatches API call

AWS CodeBuild BatchGetBuilds API call

AWS CodeBuild BatchGetProjects API call

AWS CodeBuild BatchGetReportGroups API call

AWS CodeBuild BatchGetReports API call

AWS CodeBuild BatchPutCodeCoverages API call

AWS CodeBuild BatchPutTestCases API call

AWS CodeBuild RequestBadge Service event

AWS CodeCommit BatchDescribeMergeConflicts API call

AWS CodeCommit BatchGetCommits API call

AWS CodeCommit BatchGetPullRequests API call

AWS CodeCommit BatchGetRepositories API call

AWS CodeCommit EvaluatePullRequestApproval
Rules

API call

AWS CodeCommit GitPull API call

AWS CodeDeploy BatchGetApplicationRevisions API call

AWS CodeDeploy BatchGetApplications API call

AWS CodeDeploy BatchGetDeploymentGroups API call

Management events 61

Amazon EventBridge User Guide

Service Event name Event type

AWS CodeDeploy BatchGetDeployment
Instances

API call

AWS CodeDeploy BatchGetDeployments API call

AWS CodeDeploy BatchGetDeploymentTargets API call

AWS CodeDeploy BatchGetOnPremises
Instances

API call

Amazon CodeGuru Profiler BatchGetFrameMetricData API call

Amazon CodeGuru Profiler SubmitFeedback API call

AWS CodePipeline PollForJobs API call

AWS CodePipeline PollForThirdPartyJobs API call

AWS CodeStar Connections StartAppRegistrationHandsha
ke

API call

AWS CodeStar Connections StartOAuthHandshake API call

AWS CodeStar Connections ValidateHostWebhook API call

Amazon CodeWhisperer CreateCodeScan API call

Amazon CodeWhisperer CreateProfile API call

Amazon CodeWhisperer CreateUploadUrl API call

Amazon CodeWhisperer GenerateRecommendations API call

Amazon CodeWhisperer UpdateProfile API call

Amazon Cognito Identity LookupDeveloperIdentity API call

Amazon Cognito user pools AdminGetDevice API call

Amazon Cognito user pools AdminGetUser API call

Management events 62

Amazon EventBridge User Guide

Service Event name Event type

Amazon Cognito user pools AdminListDevices API call

Amazon Cognito user pools AdminListGroupsForUser API call

Amazon Cognito user pools AdminListUserAuthEvents API call

Amazon Cognito user pools Beta_Authorize_GET Service event

Amazon Cognito user pools Confirm_GET Service event

Amazon Cognito user pools ConfirmForgotPassword_GET Service event

Amazon Cognito user pools Error_GET Service event

Amazon Cognito user pools ForgotPassword_GET Service event

Amazon Cognito user pools IntrospectToken API call

Amazon Cognito user pools Login_Error_POST Service event

Amazon Cognito user pools Login_GET Service event

Amazon Cognito user pools Mfa_GET Service event

Amazon Cognito user pools MfaOption_GET Service event

Amazon Cognito user pools ResetPassword_GET Service event

Amazon Cognito user pools Signup_GET Service event

Amazon Cognito user pools UserInfo_GET Service event

Amazon Cognito user pools UserInfo_POST Service event

Amazon Cognito Sync BulkPublish API call

Amazon Comprehend BatchContainsPiiEntities API call

Amazon Comprehend BatchDetectDominan
tLanguage

API call

Management events 63

Amazon EventBridge User Guide

Service Event name Event type

Amazon Comprehend BatchDetectEntities API call

Amazon Comprehend BatchDetectKeyPhrases API call

Amazon Comprehend BatchDetectPiiEntities API call

Amazon Comprehend BatchDetectSentiment API call

Amazon Comprehend BatchDetectSyntax API call

Amazon Comprehend BatchDetectTargete
dSentiment

API call

Amazon Comprehend ClassifyDocument API call

Amazon Comprehend ContainsPiiEntities API call

Amazon Comprehend DetectDominantLanguage API call

Amazon Comprehend DetectEntities API call

Amazon Comprehend DetectKeyPhrases API call

Amazon Comprehend DetectPiiEntities API call

Amazon Comprehend DetectSentiment API call

Amazon Comprehend DetectSyntax API call

Amazon Comprehend DetectTargetedSentiment API call

Amazon Comprehend DetectToxicContent API call

AWS Compute Optimizer ExportAutoScalingG
roupRecommendations

API call

AWS Compute Optimizer ExportEBSVolumeRec
ommendations

API call

Management events 64

Amazon EventBridge User Guide

Service Event name Event type

AWS Compute Optimizer ExportECInstanceRe
commendations

API call

AWS Compute Optimizer ExportECSServiceRe
commendations

API call

AWS Compute Optimizer ExportLambdaFuncti
onRecommendations

API call

AWS Compute Optimizer ExportRDSInstanceR
ecommendations

API call

AWS Config BatchGetAggregateR
esourceConfig

API call

AWS Config BatchGetResourceConfig API call

AWS Config SelectAggregateResourceConf
ig

API call

AWS Config SelectResourceConfig API call

Amazon Connect AdminGetEmergencyA
ccessToken

API call

Amazon Connect SearchQueues API call

Amazon Connect SearchRoutingProfiles API call

Amazon Connect SearchSecurityProfiles API call

Amazon Connect SearchUsers API call

AWS Glue DataBrew SendProjectSessionAction API call

AWS Data Pipeline EvaluateExpression API call

AWS Data Pipeline QueryObjects API call

Management events 65

Amazon EventBridge User Guide

Service Event name Event type

AWS Data Pipeline ValidatePipelineDefinition API call

AWS DataSync VerifyResourcesExistForTagris API call

AWS DeepLens BatchGetDevice API call

AWS DeepLens BatchGetModel API call

AWS DeepLens BatchGetProject API call

AWS DeepLens CreateDeviceCertificates API call

AWS DeepRacer AdminGetAccountConfig API call

AWS DeepRacer AdminListAssociatedUsers API call

AWS DeepRacer TestRewardFunction API call

AWS DeepRacer VerifyResourcesExistForTagris API call

Amazon Detective BatchGetGraphMembe
rDatasources

API call

Amazon Detective BatchGetMembership
Datasources

API call

Amazon Detective SearchGraph API call

Amazon DevOps Guru SearchInsights API call

Amazon DevOps Guru SearchOrganizationInsights API call

AWS Database Migration
Service

BatchStartRecommendations API call

AWS Database Migration
Service

ModifyRecommendation API call

Management events 66

Amazon EventBridge User Guide

Service Event name Event type

AWS Database Migration
Service

StartRecommendations API call

AWS Database Migration
Service

VerifyResourcesExistForTagris API call

AWS Directory Service VerifyTrust API call

Amazon Elastic Compute
Cloud

ConfirmProductInstance API call

Amazon Elastic Compute
Cloud

ReportInstanceStatus API call

Amazon Elastic Container
Registry

BatchCheckLayerAvailability API call

Amazon Elastic Container
Registry

BatchGetImage API call

Amazon Elastic Container
Registry

BatchGetImageReferrer API call

Amazon Elastic Container
Registry

BatchGetRepository
ScanningConfiguration

API call

Amazon Elastic Container
Registry

DryRunEvent Service event

Amazon Elastic Container
Registry

PolicyExecutionEvent Service event

Amazon Elastic Container
Registry Public

BatchCheckLayerAvailability API call

Amazon Elastic Container
Service

DiscoverPollEndpoint API call

Management events 67

Amazon EventBridge User Guide

Service Event name Event type

Amazon Elastic Container
Service

FindSubfleetRoute API call

Amazon Elastic Container
Service

ValidateResources API call

Amazon Elastic Container
Service

VerifyTaskSetsExist API call

Amazon Elastic Kubernetes
Service

AccessKubernetesApi API call

AWS Elastic Beanstalk CheckDNSAvailability API call

AWS Elastic Beanstalk RequestEnvironmentInfo API call

AWS Elastic Beanstalk RetrieveEnvironmentInfo API call

AWS Elastic Beanstalk ValidateConfigurationSettings API call

Amazon Elastic File System NewClientConnection Service event

Amazon Elastic File System UpdateClientConnection Service event

Amazon Elastic Transcoder ReadJob API call

Amazon Elastic Transcoder ReadPipeline API call

Amazon Elastic Transcoder ReadPreset API call

Amazon EventBridge TestEventPattern API call

Amazon EventBridge TestScheduleExpression API call

Amazon FinSpace API BatchListCatalogNo
desByDataset

API call

Amazon FinSpace API BatchListNodesByDataset API call

Management events 68

Amazon EventBridge User Guide

Service Event name Event type

Amazon FinSpace API BatchValidateAccess API call

Amazon FinSpace API CreateAuditRecordsQuery API call

Amazon FinSpace API SearchDatasets API call

Amazon FinSpace API SearchDatasetsV API call

Amazon FinSpace API ValidateIdToken API call

AWS Firewall Manager DisassociateAdminAccount API call

Amazon Forecast InvokeForecastEndpoint API call

Amazon Forecast QueryFeature API call

Amazon Forecast QueryForecast API call

Amazon Forecast QueryWhatIfForecast API call

Amazon Forecast VerifyResourcesExistForTagris API call

Amazon Fraud Detector BatchGetVariable API call

Amazon Fraud Detector VerifyResourcesExistForTagris API call

FreeRTOS VerifyEmailAddress API call

Amazon GameLift RequestUploadCredentials API call

Amazon GameLift ResolveAlias API call

Amazon GameLift SearchGameSessions API call

Amazon GameLift ValidateMatchmakingRuleSet API call

Amazon GameSparks ExportSnapshot API call

Amazon Location Service BatchGetDevicePosition API call

Management events 69

Amazon EventBridge User Guide

Service Event name Event type

Amazon Location Service CalculateRoute API call

Amazon Location Service CalculateRouteMatrix API call

Amazon Location Service SearchPlaceIndexForPosition API call

Amazon Location Service SearchPlaceIndexForSuggesti
ons

API call

Amazon Location Service SearchPlaceIndexForText API call

Amazon S3 Glacier InitiateJob API call

AWS Glue BatchGetBlueprints API call

AWS Glue BatchGetColumnStatisticsFor
Table

API call

AWS Glue BatchGetCrawlers API call

AWS Glue BatchGetCustomEntityTypes API call

AWS Glue BatchGetDataQualityResult API call

AWS Glue BatchGetDevEndpoints API call

AWS Glue BatchGetJobs API call

AWS Glue BatchGetMLTransform API call

AWS Glue BatchGetPartition API call

AWS Glue BatchGetTriggers API call

AWS Glue BatchGetWorkflows API call

AWS Glue QueryJobRuns API call

AWS Glue QueryJobRunsAggregated API call

Management events 70

Amazon EventBridge User Guide

Service Event name Event type

AWS Glue QueryJobs API call

AWS Glue QuerySchemaVersion
Metadata

API call

AWS Glue SearchTables API call

AWS HealthLake ReadResource API call

AWS HealthLake SearchWithGet API call

AWS HealthLake SearchWithPost API call

AWS Identity and Access
Management

GenerateCredentialReport API call

AWS Identity and Access
Management

GenerateOrganizationsAccess
Report

API call

AWS Identity and Access
Management

GenerateServiceLastAccessed
Details

API call

AWS Identity and Access
Management

SimulateCustomPolicy API call

AWS Identity and Access
Management

SimulatePrincipalPolicy API call

AWS Identity Store IsMemberInGroups API call

AWS Identity Store Auth BatchGetSession API call

Amazon Inspector Classic PreviewAgents API call

Amazon Inspector Classic BatchGetAccountStatus API call

Amazon Inspector Classic BatchGetFreeTrialInfo API call

Amazon Inspector Classic BatchGetMember API call

Management events 71

Amazon EventBridge User Guide

Service Event name Event type

AWS Invoicing ValidateDocumentDe
liveryS3LocationInfo

API call

AWS IoT SearchIndex API call

AWS IoT TestAuthorization API call

AWS IoT TestInvokeAuthorizer API call

AWS IoT ValidateSecurityProfileBeha
viors

API call

AWS IoT Analytics SampleChannelData API call

AWS IoT SiteWise GatewaysVerifyResourcesExis
tForTagrisInternal

API call

AWS IoT Things Graph SearchEntities API call

AWS IoT Things Graph SearchFlowExecutions API call

AWS IoT Things Graph SearchFlowTemplates API call

AWS IoT Things Graph SearchSystemInstances API call

AWS IoT Things Graph SearchSystemTemplates API call

AWS IoT Things Graph SearchThings API call

AWS IoT TwinMaker ExecuteQuery API call

AWS IoT Wireless CreateNetworkAnalyzerConfig
uration

API call

AWS IoT Wireless DeleteNetworkAnalyzerConfig
uration

API call

AWS IoT Wireless DeregisterWirelessDevice API call

Management events 72

Amazon EventBridge User Guide

Service Event name Event type

Amazon Interactive Video
Service

BatchGetChannel API call

Amazon Interactive Video
Service

BatchGetStreamKey API call

Amazon Kendra BatchGetDocumentStatus API call

Amazon Kendra Query API call

Amazon Managed Service for
Apache Flink

DiscoverInputSchema API call

AWS Key Management
Service

Decrypt API call

AWS Key Management
Service

Encrypt API call

AWS Key Management
Service

GenerateDataKey API call

AWS Key Management
Service

GenerateDataKeyPair API call

AWS Key Management
Service

GenerateDataKeyPai
rWithoutPlaintext

API call

AWS Key Management
Service

GenerateDataKeyWit
houtPlaintext

API call

AWS Key Management
Service

GenerateMac API call

AWS Key Management
Service

GenerateRandom API call

Management events 73

Amazon EventBridge User Guide

Service Event name Event type

AWS Key Management
Service

ReEncrypt API call

AWS Key Management
Service

Sign API call

AWS Key Management
Service

Verify API call

AWS Key Management
Service

VerifyMac API call

AWS Lake Formation SearchDatabasesByLFTags API call

AWS Lake Formation SearchTablesByLFTags API call

AWS Lake Formation StartQueryPlanning API call

Amazon Lex BatchCreateCustomV
ocabularyItem

API call

Amazon Lex BatchDeleteCustomV
ocabularyItem

API call

Amazon Lex BatchUpdateCustomV
ocabularyItem

API call

Amazon Lex DeleteCustomVocabulary API call

Amazon Lex SearchAssociatedTranscripts API call

Amazon Lightsail CreateGUISessionAccessDetai
ls

API call

Amazon Lightsail DownloadDefaultKeyPair API call

Amazon Lightsail IsVpcPeered API call

Amazon CloudWatch Logs FilterLogEvents API call

Management events 74

Amazon EventBridge User Guide

Service Event name Event type

Amazon Macie BatchGetCustomDataIdentifie
rs

API call

Amazon Macie UpdateFindingsFilter API call

AWS Elemental MediaConnect ManagedDescribeFlow API call

AWS Elemental MediaConnect PrivateDescribeFlowMeta API call

AWS Application Migration
Service

OperationalDescribeJobLogIt
ems

API call

AWS Application Migration
Service

OperationalDescribeJobs API call

AWS Application Migration
Service

OperationalDescribeReplicat
ionConfigurationTemplates

API call

AWS Application Migration
Service

OperationalDescribeSourceSe
rver

API call

AWS Application Migration
Service

OperationalGetLaun
chConfiguration

API call

AWS Application Migration
Service

OperationalListSourceServers API call

AWS Application Migration
Service

VerifyClientRoleForMgn API call

AWS HealthOmics VerifyResourceExists API call

AWS HealthOmics VerifyResourcesExistForTagris API call

Amazon Polly SynthesizeLongSpeech API call

Amazon Polly SynthesizeSpeech API call

Amazon Polly SynthesizeSpeechGet API call

Management events 75

Amazon EventBridge User Guide

Service Event name Event type

AWS service providing
managed private networks

Ping API call

AWS Proton DeleteEnvironmentT
emplateVersion

API call

AWS Proton DeleteServiceTemplateVersio
n

API call

Amazon QLDB ShowCatalog API call

Amazon QuickSight GenerateEmbedUrlFo
rAnonymousUser

API call

Amazon QuickSight GenerateEmbedUrlFo
rRegisteredUser

API call

Amazon QuickSight QueryDatabase Service event

Amazon QuickSight SearchAnalyses API call

Amazon QuickSight SearchDashboards API call

Amazon QuickSight SearchDataSets API call

Amazon QuickSight SearchDataSources API call

Amazon QuickSight SearchFolders API call

Amazon QuickSight SearchGroups API call

Amazon QuickSight SearchUsers API call

Amazon Relational Database
Service

DownloadCompleteDBLogFile API call

Amazon Relational Database
Service

DownloadDBLogFilePortion API call

Management events 76

Amazon EventBridge User Guide

Service Event name Event type

Amazon Rekognition CompareFaces API call

Amazon Rekognition DetectCustomLabels API call

Amazon Rekognition DetectFaces API call

Amazon Rekognition DetectLabels API call

Amazon Rekognition DetectModerationLabels API call

Amazon Rekognition DetectProtectiveEquipment API call

Amazon Rekognition DetectText API call

Amazon Rekognition RecognizeCelebrities API call

Amazon Rekognition SearchFaces API call

Amazon Rekognition SearchFacesByImage API call

Amazon Rekognition SearchUsers API call

Amazon Rekognition SearchUsersByImage API call

AWS Resource Explorer BatchGetView API call

AWS Resource Explorer Search API call

AWS Resource Groups SearchResources API call

AWS Resource Groups ValidateResourceSharing API call

AWS RoboMaker BatchDescribeSimulationJob API call

Amazon Route 53 TestDNSAnswer API call

Amazon Route 53 Domains checkAvailabilities API call

Amazon Route 53 Domains CheckDomainAvailability API call

Management events 77

Amazon EventBridge User Guide

Service Event name Event type

Amazon Route 53 Domains checkDomainTransferability API call

Amazon Route 53 Domains CheckDomainTransferability API call

Amazon Route 53 Domains isEmailReachable API call

Amazon Route 53 Domains searchDomains API call

Amazon Route 53 Domains sendVerificationMessage API call

Amazon Route 53 Domains ViewBilling API call

Amazon Route 53 Domains viewBilling API call

Amazon CloudWatch RUM BatchGetRumMetricDefinition
s

API call

Amazon Simple Storage
Service

echo API call

Amazon Simple Storage
Service

GenerateInventory Service event

Amazon SageMaker BatchDescribeModelPackage API call

Amazon SageMaker DeleteModelCard API call

Amazon SageMaker QueryLineage API call

Amazon SageMaker RenderUiTemplate API call

Amazon SageMaker Search API call

Amazon EventBridge
Schemas

ExportSchema API call

Amazon EventBridge
Schemas

SearchSchemas API call

Management events 78

Amazon EventBridge User Guide

Service Event name Event type

Amazon SimpleDB DomainMetadata API call

AWS Secrets Manager ValidateResourcePolicy API call

AWS Service Catalog ScanProvisionedProducts API call

AWS Service Catalog SearchProducts API call

AWS Service Catalog SearchProductsAsAdmin API call

AWS Service Catalog SearchProvisionedProducts API call

Amazon SES BatchGetMetricData API call

Amazon SES TestRenderEmailTemplate API call

Amazon SES TestRenderTemplate API call

Amazon Simple Notification
Service

CheckIfPhoneNumber
IsOptedOut

API call

AWS SQL Workbench BatchGetNotebookCell API call

AWS SQL Workbench ExportNotebook API call

Amazon EC2 Systems
Manager

ExecuteApi API call

AWS Systems Manager
Incident Manager

DeleteContactChannel API call

AWS IAM Identity Center IsMemberInGroup API call

AWS IAM Identity Center SearchGroups API call

AWS IAM Identity Center SearchUsers API call

AWS STS AssumeRole API call

AWS STS AssumeRoleWithSAML API call

Management events 79

Amazon EventBridge User Guide

Service Event name Event type

AWS STS AssumeRoleWithWebIdentity API call

AWS STS DecodeAuthorizationMessage API call

AWS Tax Settings BatchGetTaxExemptions API call

AWS WAFV2 CheckCapacity API call

AWS WAFV2 GenerateMobileSdkR
eleaseUrl

API call

AWS Well-Architected Tool ExportLens API call

AWS Well-Architected Tool TagResource API call

AWS Well-Architected Tool UntagResource API call

AWS Well-Architected Tool UpdateGlobalSettings API call

Amazon Connect Wisdom QueryAssistant API call

Amazon Connect Wisdom SearchContent API call

Amazon Connect Wisdom SearchSessions API call

Amazon WorkDocs AbortDocumentVersi
onUpload

API call

Amazon WorkDocs AddUsersToGroup API call

Amazon WorkDocs BatchGetUsers API call

Amazon WorkDocs CheckAlias API call

Amazon WorkDocs CompleteDocumentVe
rsionUpload

API call

Amazon WorkDocs CreateAnnotation API call

Amazon WorkDocs CreateComment API call

Management events 80

Amazon EventBridge User Guide

Service Event name Event type

Amazon WorkDocs CreateFeedbackRequest API call

Amazon WorkDocs CreateFolder API call

Amazon WorkDocs CreateGroup API call

Amazon WorkDocs CreateShare API call

Amazon WorkDocs CreateUser API call

Amazon WorkDocs DeleteAnnotation API call

Amazon WorkDocs DeleteComment API call

Amazon WorkDocs DeleteDocument API call

Amazon WorkDocs DeleteFeedbackRequest API call

Amazon WorkDocs DeleteFolder API call

Amazon WorkDocs DeleteFolderContents API call

Amazon WorkDocs DeleteGroup API call

Amazon WorkDocs DeleteOrganizationShare API call

Amazon WorkDocs DeleteUser API call

Amazon WorkDocs DownloadDocumentVersion API call

Amazon WorkDocs DownloadDocumentVe
rsionUnderlays

API call

Amazon WorkDocs InitiateDocumentVersionUplo
ad

API call

Amazon WorkDocs LogoutUser API call

Amazon WorkDocs PaginatedOrganizationActivi
ty

API call

Management events 81

Amazon EventBridge User Guide

Service Event name Event type

Amazon WorkDocs PublishAnnotations API call

Amazon WorkDocs PublishComments API call

Amazon WorkDocs RestoreDocument API call

Amazon WorkDocs RestoreFolder API call

Amazon WorkDocs SearchGroups API call

Amazon WorkDocs SearchOrganizationUsers API call

Amazon WorkDocs TransferUserResources API call

Amazon WorkDocs UpdateAnnotation API call

Amazon WorkDocs UpdateComment API call

Amazon WorkDocs UpdateDocument API call

Amazon WorkDocs UpdateDocumentVersion API call

Amazon WorkDocs UpdateFolder API call

Amazon WorkDocs UpdateGroup API call

Amazon WorkDocs UpdateOrganization API call

Amazon WorkDocs UpdateUser API call

Amazon WorkMail AssumeImpersonationRole API call

Amazon WorkMail QueryDnsRecords API call

Amazon WorkMail SearchMembers API call

Amazon WorkMail TestAvailabilityConfiguration API call

Amazon WorkMail TestInboundMailFlowRules API call

Management events 82

Amazon EventBridge User Guide

Service Event name Event type

Amazon WorkMail TestOutboundMailFlowRules API call

EventBridge events detail reference

EventBridge itself emits the following events. These events are automatically sent to the default
event bus as with any other AWS service.

For definitions of the metadata fields that are included in all events, see the section called “Event
structure reference”.

Topics

• Scheduled Event

• Schema Created

• Schema Version Created

Scheduled Event

Below are the detail fields for the Scheduled Event event.

The source and detail-type fields are included because they contain specific values for
EventBridge events. For definitions of the other metadata fields that are included in all events, see
the section called “Event structure reference”.

{
 . . .,
 "detail-type": "Scheduled Event",
 "source": "aws.events",
 . . .,
 "detail": {}
}

detail-type

Identifies the type of event.

For this event, this value is Scheduled Event.

EventBridge events 83

Amazon EventBridge User Guide

Required: Yes

source

Identifies the service that generated the event. For EventBridge events, this value is
aws.events.

Required: Yes

detail

A JSON object that contains information about the event. The service generating the event
determines the content of this field.

Required: Yes

There are no required fields in this object for Scheduled Event events.

Example Example Scheduled Event event

{
 "version": "0",
 "id": "89d1a02d-5ec7-412e-82f5-13505f849b41",
 "detail-type": "Scheduled Event",
 "source": "aws.events",
 "account": "123456789012",
 "time": "2016-12-30T18:44:49Z",
 "region": "us-east-1",
 "resources": ["arn:aws:events:us-east-1:123456789012:rule/SampleRule"],
 "detail": {}
}

Schema Created

Below are the detail fields for the Schema Created event.

When a schema is created, EventBridge sends both a Schema Created and a Schema Version
Created event.

The source and detail-type fields are included because they contain specific values for
EventBridge events. For definitions of the other metadata fields that are included in all events, see
the section called “Event structure reference”.

EventBridge events 84

Amazon EventBridge User Guide

{
 . . .,
 "detail-type": "Schema Created",
 "source": "aws.schemas",
 . . .,
 "detail": {
 "SchemaName" : "String",
 "SchemaType" : "String",
 "RegistryName" : "String",
 "CreationDate" : "DateTime",
 "Version" : "Number"
 }
}

detail-type

Identifies the type of event.

For this event, this value is Schema Created.

Required: Yes

source

Identifies the service that generated the event. For EventBridge events, this value is
aws.schemas.

Required: Yes

detail

A JSON object that contains information about the event. The service generating the event
determines the content of this field.

Required: Yes

For this event, this data includes:

SchemaName

The name of the schema.

Required: Yes

EventBridge events 85

Amazon EventBridge User Guide

SchemaType

The type of schema.

Valid values: OpenApi3 | JSONSchemaDraft4

Required: Yes

RegistryName

The name of the registry that contains the schema.

Required: Yes

CreationDate

The date the schema was created.

Required: Yes

Version

The version of the schema.

For Schema Created events, this value will always be 1.

Required: Yes

Example Example Schema Created event

{
 "version": "0",
 "id": "01234567-0123-0123-0123-012345678901",
 "detail-type": "Schema Created",
 "source": "aws.schemas",
 "account": "123456789012",
 "time": "2019-05-31T21:49:54Z",
 "region": "us-east-1",
 "resources": ["arn:aws:schemas:us-east-1::schema/myRegistry/mySchema"],
 "detail": {
 "SchemaName": "mySchema",
 "SchemaType": "OpenApi3",
 "RegistryName": "myRegistry",
 "CreationDate": "2019-11-29T20:08:55Z",
 "Version": "1"

EventBridge events 86

Amazon EventBridge User Guide

 }
}

Schema Version Created

Below are the detail fields for the Schema Version Created event.

When a schema is created, EventBridge sends both a Schema Created and a Schema Version
Created event.

The source and detail-type fields are included because they contain specific values for
EventBridge events. For definitions of the other metadata fields that are included in all events, see
the section called “Event structure reference”.

{
 . . .,
 "detail-type": "Schema Version Created",
 "source": "aws.schemas",
 . . .,
 "detail": {
 "SchemaName" : "String",
 "SchemaType" : "String",
 "RegistryName" : "String",
 "CreationDate" : "DateTime",
 "Version" : "Number"
 }
}

detail-type

Identifies the type of event.

For this event, this value is Schema Version Created.

Required: Yes

source

Identifies the service that generated the event. For EventBridge events, this value is
aws.schemas.

Required: Yes

EventBridge events 87

Amazon EventBridge User Guide

detail

A JSON object that contains information about the event. The service generating the event
determines the content of this field.

Required: Yes

For this event, this data includes:

SchemaName

The name of the schema.

Required: Yes

SchemaType

The type of schema.

Valid values: OpenApi3 | JSONSchemaDraft4

Required: Yes

RegistryName

The name of the registry that contains the schema.

Required: Yes

CreationDate

The date the schema version was created.

Required: Yes

Version

The version of the schema.

Required: Yes

Example Example Schema Version Created event

{
 "version": "0",
 "id": "01234567-0123-0123-0123-012345678901",

EventBridge events 88

Amazon EventBridge User Guide

 "detail-type": "Schema Version Created",
 "source": "aws.schemas",
 "account": "123456789012",
 "time": "2019-05-31T21:49:54Z",
 "region": "us-east-1",
 "resources": ["arn:aws:schemas:us-east-1::schema/myRegistry/mySchema"],
 "detail": {
 "SchemaName": "mySchema",
 "SchemaType": "OpenApi3",
 "RegistryName": "myRegistry",
 "CreationDate": "2019-11-29T20:08:55Z",
 "Version": "5"
 }
}

Receiving events from a SaaS partner with Amazon EventBridge

To receive events from SaaS partner applications and services, you need a partner event source
from the partner. Then you can create a partner event bus and match it to the partner event
source.

The following video covers SaaS integrations with EventBridge: Software as a service (SaaS)
partners

Topics

• Supported SaaS partner integrations

• Configuring Amazon EventBridge to receive events from a SaaS integration

• Creating a rule that matches SaaS partner events

• Receiving events using AWS Lambda function URLs

• Receiving events from Salesforce

Supported SaaS partner integrations

EventBridge supports the following SaaS partner integrations:

• Adobe

• Auth0

Receiving events from a SaaS partner 89

http://www.youtube.com/embed/zxFrM6z8Wdg
http://www.youtube.com/embed/zxFrM6z8Wdg
https://console.aws.amazon.com/events/#/partners/adobe.com?page=overview
https://console.aws.amazon.com/events/#/partners/auth0.com?page=overview

Amazon EventBridge User Guide

• Blitline

• BUIDLHub

• Buildkite

• CleverTap

• Datadog

• Epsagon

• Freshworks

• Genesys

• GS2

• Karte

• Kloudless

• Mackerel

• MongoDB

• New Relic

• OneLogin

• Opsgenie

• PagerDuty

• Payshield

• SaaSus Platform

• SailPoint

• Saviynt

• Segment

• Shopify

• SignalFx

• Site24x7

• Stax

• Stripe

• SugarCRM

• SugarCRM

• Symantec

Supported SaaS partner integrations 90

https://console.aws.amazon.com/events/#/partners/blitline.com?page=overview
https://console.aws.amazon.com/events/#/partners/buidlhub.com?page=overview
https://console.aws.amazon.com/events/#/partners/buildkite.com?page=overview
https://console.aws.amazon.com/events/#/partners/clevertap.com?page=overview
https://console.aws.amazon.com/events/#/partners/datadoghq.com?page=overview
https://console.aws.amazon.com/events/#/partners/epsagon.com?page=overview
https://console.aws.amazon.com/events/#/partners/freshworks.com?page=overview
https://console.aws.amazon.com/events/#/partners/genesys.com?page=overview
https://console.aws.amazon.com/events/#/partners/gs2.io?page=overview
https://console.aws.amazon.com/events/#/partners/karte.io?page=overview
https://console.aws.amazon.com/events/#/partners/kloudless.com?page=overview
https://console.aws.amazon.com/events/#/partners/mackerel.io?page=overview
https://console.aws.amazon.com/events/#/partners/mongodb.com?page=overview
https://console.aws.amazon.com/events/#/partners/newrelic.com?page=overview
https://console.aws.amazon.com/events/#/partners/onelogin.com?page=overview
https://console.aws.amazon.com/events/#/partners/opsgenie.com?page=overview
https://console.aws.amazon.com/events/#/partners/pagerduty.com?page=overview
https://console.aws.amazon.com/events/#/partners/payshield.com.au?page=overview
https://console.aws.amazon.com/events/#/partners/saasus.io?page=overview
https://console.aws.amazon.com/events/#/partners/sailpoint.com?page=overview
https://console.aws.amazon.com/events/#/partners/saviynt.com?page=overview
https://console.aws.amazon.com/events/#/partners/segment.com?page=overview
https://console.aws.amazon.com/events/#/partners/shopify.com?page=overview
https://console.aws.amazon.com/events/#/partners/signalfx.com?page=overview
https://console.aws.amazon.com/events/#/partners/site24x7.com?page=overview
https://console.aws.amazon.com/events/#/partners/stax.io
https://console.aws.amazon.com/events/#/partners/stripe.com
https://console.aws.amazon.com/events/#/partners/sugarcrm.com?page=overview
https://console.aws.amazon.com/events/#/partners/sugarcrm.com?page=overview
https://console.aws.amazon.com/events/#/partners/symantec.com?page=overview

Amazon EventBridge User Guide

• Thundra

• TriggerMesh

• Whispir

• Zendesk

• Amazon Seller Partner API

Partner event sources are available in the following Regions.

Code Name

us-east-1 US East (N. Virginia)

us-east-2 US East (Ohio)

us-west-1 US West (N. California)

us-west-2 US West (Oregon)

ca-central-1 Canada (Central)

eu-central-1 Europe (Frankfurt)

eu-central-2 Europe (Zurich)

eu-west-1 Europe (Ireland)

eu-west-2 Europe (London)

eu-west-3 Europe (Paris)

eu-north-1 Europe (Stockholm)

eu-south-1 Europe (Milan)

eu-south-2 Europe (Spain)

af-south-1 Africa (Cape Town)

ap-south-1 Asia Pacific (Mumbai)

Supported SaaS partner integrations 91

https://console.aws.amazon.com/events/#/partners/thundra.io?page=overview
https://console.aws.amazon.com/events/#/partners/triggermesh.com?page=overview
https://console.aws.amazon.com/events/#/partners/whispir.com?page=overview
https://console.aws.amazon.com/events/#/partners/zendesk.com?page=overview
https://console.aws.amazon.com/events/#/partners/sellingpartnerapi.amazon.com?page=overview

Amazon EventBridge User Guide

Code Name

ap-south-2 Asia Pacific (Hyderabad)

ap-east-1 Asia Pacific (Hong Kong)

ap-northeast-1 Asia Pacific (Tokyo)

ap-northeast-2 Asia Pacific (Seoul)

ap-northeast-3 Asia Pacific (Osaka)

ap-southeast-1 Asia Pacific (Singapore)

ap-southeast-2 Asia Pacific (Sydney)

ap-southeast-3 Asia Pacific (Jakarta)

ap-southeast-4 Asia Pacific (Melbourne)

cn-north-1 China (Beijing)

cn-northwest-1 China (Ningxia)

me-central-1 Middle East (UAE)

me-south-1 Middle East (Bahrain)

sa-east-1 South America (São Paulo)

il-central-1 Israel (Tel Aviv)

Configuring Amazon EventBridge to receive events from a SaaS
integration

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Partner event sources.

3. Find the partner that you want and then choose Set up for that partner.

4. To copy your account ID to the clipboard, choose Copy.

Configuring EventBridge 92

https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

5. In the navigation pane, choose Partner event sources.

6. Go to the partner's website and follow the instructions to create a partner event source using
your account ID. The event source that you create is available to only your account.

7. Go back to the EventBridge console and choose Partner event sources in the navigation pane.

8. Select the button next to the partner event source and then choose Associate with event bus.

The status of the event source changes from Pending to Active, and the name of the event
bus updates to match the partner event source name. You can now start creating rules that
match events from the partner event source. For more information, see Creating a rule that
matches SaaS partner events.

Note

Any events published by a partner to a partner event source that has not been
associated with an event bus will be immediately dropped. Those events will not be
persisted at rest in EventBridge.

Creating a rule that matches SaaS partner events

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

4. Enter a name and description for the rule.

A rule can't have the same name as another rule in the same Region and on the same event
bus.

5. For Event bus, choose the event bus that you want to associate with this rule. If you want this
rule to match events that come from your account, select AWS default event bus. When an
AWS service in your account emits an event, it always goes to your account’s default event bus.

6. For Rule type, choose Rule with an event pattern.

7. Choose Next.

8. For Event source, choose Other.

9. (Optional) For Sample events, choose the type of event.

10. For Event pattern, enter a JSON event pattern.

Create a rule for Saas partner events 93

https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

11. Choose Next.

12. For Target types, choose AWS service.

13. For Select a target, choose the AWS service that you want to send information to when
EventBridge detects an event that matches the event pattern.

14. The fields displayed vary depending on the service you choose. Enter information specific to
this target type as needed.

15. For many target types, EventBridge needs permissions to send events to the target. In
these cases, EventBridge can create the IAM role needed for your rule to run. Do one of the
following:

• To create an IAM role automatically, choose Create a new role for this specific resource.

• To use an IAM role that you created earlier, choose Use existing role and select the existing
role from the drop-down list.

16. (Optional) For Additional settings, do the following:

a. For Maximum age of event, enter a value between one minute (00:01) and 24 hours
(24:00).

b. For Retry attempts, enter a number between 0 and 185.

c. For Dead-letter queue, choose whether to use a standard Amazon SQS queue as a dead-
letter queue. EventBridge sends events that match this rule to the dead-letter queue if
they are not successfully delivered to the target. Do one of the following:

• Choose None to not use a dead-letter queue.

• Choose Select an Amazon SQS queue in the current AWS account to use as the
dead-letter queue and then select the queue to use from the drop-down list.

• Choose Select an Amazon SQS queue in an other AWS account as a dead-letter
queue and then enter the ARN of the queue to use. You must attach a resource-based
policy to the queue that grants EventBridge permission to send messages to it. For
more information, see Granting permissions to the dead-letter queue.

17. (Optional) Choose Add another target to add another target for this rule.

18. Choose Next.

19. (Optional) Enter one or more tags for the rule. For more information, see Amazon EventBridge
tags.

20. Choose Next.

21. Review the details of the rule and choose Create rule.

Create a rule for Saas partner events 94

Amazon EventBridge User Guide

Create a rule for Saas partner events 95

Amazon EventBridge User Guide

Receiving events using AWS Lambda function URLs

Note

In order for the Inbound Webhook to be accessible by our partners, we're creating an
Open Lambda in your AWS account that is secured at the Lambda application level by
verifying the authentication signature sent by the third-party partner. Please review this
configuration with your security team. For more information, see Security and auth model
for Lambda function URLs.

Your Amazon EventBridge event bus can use an AWS Lambda function URL created by an AWS
CloudFormation template to receive events from supported SaaS providers. With function URLs,
the event data is sent to a Lambda function. The function then converts this data into an event
that can be ingested by EventBridge and sent to an event bus for processing. Once the event is on
an event bus, you can use rules to filter the events, apply any configured input transformations,
and then route it to the correct target.

Note

Creating Lambda function URLs will increase your monthly costs. For more information, see
AWS Lambda pricing.

To set up a connection to EventBridge, you first select the SaaS provider that you want to set
up a connection with. Then, you provide a signing secret that you’ve created with that provider,
and select the EventBridge event bus to send events to. Finally, you use an AWS CloudFormation
template and create the needed resources to complete the connection.

The following SaaS providers are currently available for use with EventBridge using Lambda
function URLs:

• GitHub

• Stripe

• Twilio

Topics

Receiving events using Lambda function URLs 96

https://docs.aws.amazon.com/lambda/latest/dg/urls-auth.html#urls-auth-none
https://docs.aws.amazon.com/lambda/latest/dg/urls-auth.html#urls-auth-none
https://docs.aws.amazon.com/lambda/latest/dg/lambda-urls.html
https://aws.amazon.com/lambda/pricing

Amazon EventBridge User Guide

• Set up a connection to GitHub

• Step 1: Create the AWS CloudFormation stack

• Step 2: Create a GitHub webhook

• Set up a connection to a Stripe

• Set up a connection to a Twilio

• Update webhook secret or auth token

• Update Lambda function

• Available event types

• Quotas, error codes, and retrying delivery

Set up a connection to GitHub

Step 1: Create the AWS CloudFormation stack

First, use the Amazon EventBridge console to create a CloudFormation stack:

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. From the navigation pane, choose Quick starts.

3. Under Inbound webhooks using Lambda fURLs, choose Get started.

4. Under GitHub, choose Set up.

5. Under Step 1: Select an event bus, select an event bus from the dropdown list. This event bus
receives data from the Lambda function URL that you provide to GitHub. You can also create
an event bus by selecting New event bus.

6. Under Step 2: Set up using CloudFormation, choose New GitHub webhook.

7. Select I acknowledge that the Inbound Webhook I create will be publicly accessible. and
choose Confirm.

8. Enter a name for the stack.

9. Under parameters, verify that the correct event bus is listed, then specify a secure token for
the GitHubWebhookSecret. For more information on creating a secure token, see Setting your
secret token in the GitHub documentation.

10. Under Capabilities and transforms, select each of the following:

• I acknowledge that AWS CloudFormation might create IAM resources.

• I acknowledge that AWS CloudFormation might create IAM resources with custom names.

Receiving events using Lambda function URLs 97

https://console.aws.amazon.com/events/
https://docs.github.com/en/developers/webhooks-and-events/webhooks/securing-your-webhooks#setting-your-secret-token
https://docs.github.com/en/developers/webhooks-and-events/webhooks/securing-your-webhooks#setting-your-secret-token

Amazon EventBridge User Guide

• I acknowledge that AWS CloudFormation might require the following capability:
CAPABILITY_AUTO_EXPAND

11. Choose Create stack.

Step 2: Create a GitHub webhook

Next, create the webhook on GitHub. You’ll need both the secure token and the Lambda function
URL you created in step 2 to complete this step. For more information, see Creating webhooks in
the GitHub documentation.

Set up a connection to a Stripe

Step 1: Create a Stripe endpoint

To set up a connection between EventBridge and Stripe, first create a Stripe endpoint and note
the endpoint secret. You'll use this endpoint secret when you set up your stack in step 2. For more
information, see Interactive webhook endpoint builder in the Stripe documentation.

Note

You’ll need a dummy URL to set up the endpoint with Stripe. For example,
www.example.com.

Step 2: Create the AWS CloudFormation stack

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Quick starts.

3. Under Inbound webhooks using Lambda fURLs, choose Get started.

4. Under Stripe, choose Set up.

5. Under Step 1: Select and event bus, select an event bus from the dropdown list. This event
bus receives data from the Lambda function URL that you provide to Stripe. You can also
create an event bus by selecting New event bus.

6. Under Step 2: Set up using CloudFormation, choose New Stripe webhook.

7. Select I acknowledge that the Inbound Webhook I create will be publicly accessible. and
choose Confirm.

8. Enter a name for the stack.

Receiving events using Lambda function URLs 98

https://docs.github.com/en/developers/webhooks-and-events/webhooks/creating-webhooks
https://stripe.com/docs/webhooks/quickstart
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

9. Under parameters, verify that the correct event bus is listed, then enter the
StripeWebhookSecret that you created in Step 1.

10. Under Capabilities and transforms, select each of the following:

• I acknowledge that AWS CloudFormation might create IAM resources.

• I acknowledge that AWS CloudFormation might create IAM resources with custom names.

• I acknowledge that AWS CloudFormation might require the following capability:
CAPABILITY_AUTO_EXPAND

11. Choose Create stack.

Step 3: Update the Stripe endpoint

Now that you’ve created the Lambda function URL, update the Stripe endpoint to send events to
the Lambda function URL.

Set up a connection to a Twilio

Step 1: Find your Twilio auth token

To set up a connection between Twilio and EventBridge, first set up the connection to Twilio with
the auth token, or secret, for your Twilio account. For more information, see Auth Tokens and How
To Change Them in the Twilio documentation.

Step 2: Create the AWS CloudFormation stack

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Quick starts.

3. Under Inbound webhooks using Lambda fURLs, choose Get started.

4. Under Twilio, choose Set up.

5. Under Step 1: Select and event bus, sselect an event bus from the dropdown list. This event
bus receives data from the Lambda function URL that you provide to Twilio. You can also
create an event bus by selecting New event bus.

6. Under Step 2: Set up using CloudFormation, choose New Twilio webhook.

7. Select I acknowledge that the Inbound Webhook I create will be publicly accessible. and
choose Confirm.

8. Enter a name for the stack.

Receiving events using Lambda function URLs 99

https://support.twilio.com/hc/en-us/articles/223136027-Auth-Tokens-and-How-to-Change-Them
https://support.twilio.com/hc/en-us/articles/223136027-Auth-Tokens-and-How-to-Change-Them
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

9. Under parameters, verify that the correct event bus is listed, then enter the
TwilioWebhookSecret that you created in Step 1.

10. Under Capabilities and transforms, select each of the following:

• I acknowledge that AWS CloudFormation might create IAM resources.

• I acknowledge that AWS CloudFormation might create IAM resources with custom names.

• I acknowledge that AWS CloudFormation might require the following capability:
CAPABILITY_AUTO_EXPAND

11. Choose Create stack.

Step 3: Create a Twilio webhook

After you set up the Lambda function URL, you need to give it to Twilio so that event data can be
sent. For more information, see Configure your public URL with Twilio in the Twilio documentation.

Update webhook secret or auth token

Update GitHub secret

Note

GitHub doesn’t support having two secrets at the same time. You may experience resource
downtime while the GitHub secret and the secret in the AWS CloudFormation stack are out
of sync. GitHub messages sent while the secrets are out of sync will fail becaue of incorrect
signatures. Wait until the GitHub and CloudFormation secrets are in sync, then try again.

1. Create a new GitHub secret. For more information, see Encrypted secrets in the GitHub
documentation.

2. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

3. From the navigation pane, choose Stacks.

4. Choose the stack for the webhook that includes the secret you want to update.

5. Choose Update.

6. Make sure Use current template is selected and choose Next.

7. Under GitHubWebhookSecret, clear Use existing value, enter the new GitHub secret you
created in step 1, and choose Next.

Receiving events using Lambda function URLs 100

https://www.twilio.com/docs/usage/webhooks/getting-started-twilio-webhooks#configure-your-public-url-with-twilio
https://docs.github.com/en/actions/security-guides/encrypted-secrets
https://console.aws.amazon.com/cloudformation/

Amazon EventBridge User Guide

8. Choose Next.

9. Choose Update stack.

It may take up to one hour for the secret to propagate. To reduce this downtime, you can refresh
the Lambda execution context.

Update Stripe secret

1. From the Stripe dashboard, in the Webhooks section, select Roll secret and delay the
expiration for at least two(2) hours. For more information, see Roll endpoint secrets in the
Stripe documentation.

2. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

3. From the navigation pane, choose Stacks.

4. Choose the stack for the webhook that includes the secret you want to update.

5. Choose Update.

6. Make sure Use current template is selected and choose Next.

7. Under StripeWebhookSecret, clear Use existing value, enter the new Stripe secret you
created in step 1, and choose Next.

8. Choose Next.

9. Choose Update stack.

Stripe will send both the old signature and the new signature during the rotation period.

Update Twilio secret

Note

Twilio doesn’t support having two secrets at the same time. You may experience resource
downtime while the Twilio secret and the secret in the AWS CloudFormation stack are out
of sync. Twilio messages sent while the secrets are out of sync will fail because of incorrect
signatures. Wait until the Twilio and CloudFormation secrets are in sync, then try again.

1. Create a new Twilio secret. For more information, see Auth Tokens and How To Change Them
in the Twilio documentation.

Receiving events using Lambda function URLs 101

https://stripe.com/docs/webhooks/best-practices#endpoint-secrets
https://console.aws.amazon.com/cloudformation/
https://support.twilio.com/hc/en-us/articles/223136027-Auth-Tokens-and-How-to-Change-Them

Amazon EventBridge User Guide

2. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

3. From the navigation pane, choose Stacks.

4. Choose the stack for the webhook that includes the secret you want to update.

5. Choose Update.

6. Make sure Use current template is selected and choose Next.

7. Under TwilioWebhookSecret, clear Use existing value, enter the new Twilio secret you
created in step 1, and choose Next.

8. Choose Next.

9. Choose Update stack.

It may take up to one hour for the secret to propagate. To reduce this downtime, you can refresh
the Lambda execution context.

Update Lambda function

The Lambda function that's created by the CloudFormation stack creates the basic webhook. If you
want to customize the Lambda function for a specific use case, such as customized logging, use the
CloudFormation console to access the function and then use the Lambda console to update the
Lambda function code.

Access the Lambda function

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. From the navigation pane, choose Stacks.

3. Choose the stack for the webhook that includes the Lambda function you want to update.

4. Choose Resources tab.

5. To open the Lambda function in the Lambda console, under Physical ID, choose the ID of the
Lambda function.

Now that you've accessed the Lambda function, use the Lambda console to update the function
code.

Update the Lambda function code

1. Under Actions, choose Export function.

Receiving events using Lambda function URLs 102

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/

Amazon EventBridge User Guide

2. Choose Download deployment package and save the file to your computer.

3. Unzip the deployment package .zip file, update the app.py file, and zip the updated
deployment package, making sure all the files in the original .zip file are included.

4. In the Lambda console, choose the Code tab.

5. Under Code source, choose Upload from.

6. Choose .zip file, and then choose Upload.

• In the file chooser, select the file you updated, choose Open, and then choose Save.

7. Under Actions, choose Publish new version.

Available event types

The following event types are currently supported by CloudFormation event buses:

• GitHub – All event types are supported.

• Stripe – All event types are supported.

• Twilio – Post-event webhooks are supported.

Quotas, error codes, and retrying delivery

Quotas

The number of incoming requests to the webhook is capped by the underlying AWS services. The
following table includes the relevant quotas.

Service Quota

AWS Lambda Default: 10 concurrent executions

For more information about quotas, including requestin
g quota increases, see Lambda quotas.

AWS Secrets Manager Default: 5,000 requests per second

For more information about quotas, including requestin
g quota increases, see AWS Secrets Manager quotas.

Receiving events using Lambda function URLs 103

https://docs.github.com/en/developers/webhooks-and-events/webhooks/webhook-events-and-payloads
https://stripe.com/docs/api/events/types
https://www.twilio.com/docs/chat/webhook-events
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_limits.html

Amazon EventBridge User Guide

Service Quota

Note

The number of requests per second is minimized
using the AWS Secrets Manager Python caching
client.

Amazon EventBridge 256KB maximum entry size for PutEvents actions.

EventBridge enforces Region-based rate quotas. For
more information, see ???.

Error codes

Each AWS service returns specific error codes when errors occur. The following table includes the
relevant error codes.

Service Error code Description

AWS Lambda 429 “TooManyRequestsEx
ption”

The concurrent execution
quota is exceeded.

AWS Secrets Manager 500 “Internal Server Error” The requests per second
quota is exceeded.

Amazon EventBridge 500 “Internal Server Error” The rate quota is exceeded for
the Region.

Event redelivery

When errors happen you can retry delivery of the affected events. Each SaaS provider has different
retry procedures.

GitHub

Use the GitHub webhooks API to check the deliver status of any webhook call and redeliver the
event, if needed. For more information, see the following GitHub documentation:

Receiving events using Lambda function URLs 104

https://github.com/aws/aws-secretsmanager-caching-python#cache-configuration
https://github.com/aws/aws-secretsmanager-caching-python#cache-configuration

Amazon EventBridge User Guide

• Organization – Redeliver a delivery for an organization webhook

• Repository – Redeliver a delivery for a repository webhook

• App – Redeliver a delivery for an app webhook

Stripe

Stripe attempts to deliver your webhooks for up to three days with an exponential back off. For
more information, see the following Stripe documentation:

• Delivery attempts and retries

• Handle errors

Twilio

Twilio users can customize event retry options using connection overrides. For more information,
see Webhooks (HTTP callbacks): Connection Overrides in the Twilio documentation.

Receiving events using Lambda function URLs 105

https://docs.github.com/en/rest/orgs/webhooks#redeliver-a-delivery-for-an-organization-webhook
https://docs.github.com/en/rest/webhooks/repo-deliveries#redeliver-a-delivery-for-a-repository-webhook
https://docs.github.com/en/rest/apps/webhooks#redeliver-a-delivery-for-an-app-webhook
https://stripe.com/docs/webhooks/best-practices#events-and-retries
https://stripe.com/docs/error-handling
https://www.twilio.com/docs/usage/webhooks/webhooks-connection-overrides

Amazon EventBridge User Guide

Receiving events from Salesforce

You can use Amazon EventBridge to receive events from Salesforce in following ways:

• By using Salesforce's Event Bus Relay feature to receive events directly on an EventBridge partner
event bus.

• By configuring a flow in Amazon AppFlow that uses Salesforce as a data source. Amazon
AppFlow then sends Salesforce events to EventBridge by using a partner event bus.

You can send event information to Salesforce using API destinations. Once the event is sent to
Salesforce, it can be processed by Flows or Apex triggers. For more information about setting up a
Salesforce API destination, see ???.

Topics

• Receiving events from Salesforce using Event Bus Relay

• Receiving events from Salesforce using Amazon AppFlow

Receiving events from Salesforce using Event Bus Relay

Step 1: Set up Salesforce Event Bus Relay and an EventBridge partner event source

When you create an event relay configuration on Salesforce, Salesforce creates a partner event
source in EventBridge in the pending state.

To configure Salesforce Event Bus Relay

1. Set Up a REST API Tool

2. (Optional) Define a Platform Event

3. Create a Channel for a Custom Platform Event

4. Create a Channel Member to Associate the Custom Platform Event

5. Create a Named Credential

6. Create an Event Relay Configuration

Receiving events from Salesforce 106

https://aws.amazon.com/appflow/
https://help.salesforce.com/s/articleView?id=flow.htm
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_triggers.htm
https://resources.docs.salesforce.com/rel1/doc/en-us/static/pdf/Salesforce_Event_Bus_Relay_Pilot.pdf#h.z63eim1tqkm3
https://resources.docs.salesforce.com/rel1/doc/en-us/static/pdf/Salesforce_Event_Bus_Relay_Pilot.pdf#h.2m5t2i52o23m
https://resources.docs.salesforce.com/rel1/doc/en-us/static/pdf/Salesforce_Event_Bus_Relay_Pilot.pdf#h.s0spl5puf9d0
https://resources.docs.salesforce.com/rel1/doc/en-us/static/pdf/Salesforce_Event_Bus_Relay_Pilot.pdf#h.rdhi4awp8cvv
https://resources.docs.salesforce.com/rel1/doc/en-us/static/pdf/Salesforce_Event_Bus_Relay_Pilot.pdf#h.etec44jyv3og
https://resources.docs.salesforce.com/rel1/doc/en-us/static/pdf/Salesforce_Event_Bus_Relay_Pilot.pdf#h.43rfyeehz0w5

Amazon EventBridge User Guide

Step 2: Activate Salesforce partner event source in the EventBridge console and start the event
relay

1. Open the Partner event sources page in the EventBridge console.

2. Select the Salesforce partner event source that you created in Step 1.

3. Choose Associate with event bus.

4. Validate the name of the partner event bus.

5. Choose Associate.

6. Start the Event Relay

Now that you've set up and started the Event Bus Relay and configured the partner event source
you can create an EventBridge rule that reacts to events to filter and send the data to a target.

Receiving events from Salesforce using Amazon AppFlow

Amazon AppFlow encapsulates events from Salesforce in an EventBridge event envelope. The
following example shows a Salesforce event received by an EventBridge partner event bus.

{
 "version": "0",
 "id": "5c42b99e-e005-43b3-c744-07990c50d2cc",
 "detail-type": "AccountChangeEvent",
 "source": "aws.partner/appflow.test/salesforce.com/364228160620/CustomSF-Source-
Final",
 "account": "000000000",
 "time": "2020-08-20T18:25:51Z",
 "region": "us-west-2",
 "resources": [],
 "detail": {
 "ChangeEventHeader": {
 "commitNumber": 248197218874,
 "commitUser": "0056g000003XW7AAAW",
 "sequenceNumber": 1,
 "entityName": "Account",
 "changeType": "UPDATE",
 "changedFields": [
 "LastModifiedDate",
 "Region__c"
],

Receiving events from Salesforce 107

https://console.aws.amazon.com/events/home?#/partners
https://resources.docs.salesforce.com/rel1/doc/en-us/static/pdf/Salesforce_Event_Bus_Relay_Pilot.pdf#h.t01b3xp87vhu

Amazon EventBridge User Guide

 "changeOrigin": "com/salesforce/api/soap/49.0;client=SfdcInternalAPI/",
 "transactionKey": "000035af-b239-0581-9f14-461e4187de11",
 "commitTimestamp": 1597947935000,
 "recordIds": [
 "0016g00000MLhLeAAL"
]
 },
 "LastModifiedDate": "2020-08-20T18:25:35.000Z",
 "Region__c": "America"
 }
}

Step 1: Configure Amazon AppFlow to use Salesforce as a partner event source

To send events to EventBridge, you first need to configure Amazon AppFlow to use Salesforce as a
partner event source.

1. In the Amazon AppFlow console, choose Create flow.

2. In the Flow details section, in Flow name enter a name for your flow.

3. (Optional) Enter a description for the flow and then choose Next.

4. Under Source details, choose Salesforce from the Source name drop-down, and then choose
Connect to create a new connection.

5. In the Connect to Salesforce dialog box, choose either Production or Sandbox for the
Salesforce environment.

6. In the Connection name field, enter a unique name for the connection, and then choose
Continue.

7. In the Salesforce dialog box, do the following:

a. Enter your Salesforce sign-in credentials to log in to Salesforce.

b. Select Salesforce events for the types of data for Amazon AppFlow to process.

8. In the Choose Salesforce event drop-down, select the type of event to send to EventBridge.

9. For a destination, select Amazon EventBridge.

10. Select Create new partner event source.

11. (Optional) Specify a unique suffix for the partner event source.

12. Choose Generate partner event source.

13. Choose an Amazon S3 bucket to store event payload files that are larger than 256 KB.

Receiving events from Salesforce 108

https://console.aws.amazon.com/appflow/

Amazon EventBridge User Guide

14. In the Flow trigger section, ensure that Run flow on event is selected. This setting ensures
that the flow is executed when a new Salesforce event occurs.

15. Choose Next.

16. For field mapping, select Map all fields directly. Alternatively, you can select the fields that
are of interest from the Source field name list.

For more information about field mapping, see Map data fields.

17. Choose Next.

18. (Optional) Configure filters for data fields in Amazon AppFlow.

19. Choose Next.

20. Review the settings and then choose Create flow.

With the flow configured, Amazon AppFlow creates a new partner event source that you then need
to associate with a partner event bus in your account.

Step 2: Configure EventBridge to receive Salesforce events

Ensure that the Amazon AppFlow flow that is triggered from Salesforce events with EventBridge as
a destination is configured before following instructions in this section.

To configure EventBridge to receive Salesforce events

1. Open the Partner event sources page in the EventBridge console.

2. Select the Salesforce partner event source that you created in Step 1.

3. Choose Associate with event bus.

4. Validate the name of the partner event bus.

5. Choose Associate.

6. In the Amazon AppFlow console, open the flow you created and choose Activate flow.

7. Open the Rules page in the EventBridge console.

8. Choose Create rule.

9. Enter a unique name for the rule.

10. Choose Event pattern in the Define pattern section.

11. For Event matching pattern, select Pre-defined pattern by service.

12. For Service provider section, select All Events.

Receiving events from Salesforce 109

https://docs.aws.amazon.com/appflow/latest/userguide/getting-started.html#map-fields
https://console.aws.amazon.com/events/home?#/partners
https://console.aws.amazon.com/events/home?#/rules

Amazon EventBridge User Guide

13. For Select event bus, choose Custom or partner event bus.

14. Select the event bus that you associated with the Amazon AppFlow partner event source.

15. For Select targets, choose the AWS service that is to act when the rule runs. One rule can have
up to five targets.

16. Choose Create.

The target service receives all Salesforce events configured for your account. To filter the events or
send some events to different targets, you can use content-based filtering with event patterns.

Note

For events larger than 256KB, Amazon AppFlow doesn't send the full event to EventBridge.
Instead, Amazon AppFlow puts the event into an S3 bucket in your account, and then sends
an event to EventBridge with a pointer to the Amazon S3 bucket. You can use the pointer
to get the full event from the bucket.

Debugging Amazon EventBridge event delivery

Event delivery issues can be hard to identify, EventBridge offers a few ways to debug and recover
from event delivery failures.

Topics

• Event retry policy and using dead-letter queues

Debugging event delivery 110

Amazon EventBridge User Guide

Event retry policy and using dead-letter queues

Sometimes an event isn't successfully delivered to the target specified in a rule. This can happen
when, for example, the target resource is unavailable, when EventBridge lacks permission to the
target resource, or due to network conditions. When an event isn't successfully delivered to a
target because of retriable errors, EventBridge retries sending the event. You set the length of
time it tries, and number of retry attempts in the Retry policy settings for the target. By default,
EventBridge retries sending the event for 24 hours and up to 185 times with an exponential back
off and jitter, or randomized delay. If an event isn't delivered after all retry attempts are exhausted,
the event is dropped and EventBridge doesn't continue to process it. To avoid losing events after
they fail to be delivered to a target, you can configure a dead-letter queue (DLQ) and send all failed
events to it for processing later.

EventBridge DLQs are standard Amazon SQS queues that EventBridge uses to store events that
couldn't successfully be delivered to a target. When you create a rule and add a target, you can
choose whether or not to use a DLQ. When you configure a DLQ, you can retain any events that
weren't successfully delivered. Then you can resolve the issue that resulted in the failed event
delivery and process the events at a later time.

Event errors are handled in different ways. Some events are dropped or sent to a DLQ without
any retry attempts. For example, for errors that result from missing permissions to a target, or a
target resource that no longer exists, all retry attempts fail until an action is taken to resolve the
underlying issue. Rather than retrying, EventBridge sends these events directly to the DLQ, if you
have one.

When an event delivery fails, EventBridge publishes an event to Amazon CloudWatch metrics
indicating that a target invocation failed. If you use a DLQ, additional metrics are sent to
CloudWatch including InvocationsSentToDLQ and InvocationsFailedToBeSentToDLQ.

Each message in your DLQ will include the following custom attributes:

• RULE_ARN

• TARGET_ARN

• ERROR_CODE

The following is a sample of the error codes a DLQ can return:

• CONNECTION_FAILURE

• CROSS_ACCOUNT_INGESTION_FAILED

Using dead-letter queues 111

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

Amazon EventBridge User Guide

• CROSS_REGION_INGESTION_FAILED

• ERROR_FROM_TARGET

• EVENTS_IN_BATCH_REQUEST_REJECTED

• EVENTS_IN_BATCH_REQUEST_REJECTED

• FAILED_TO_ASSUME_ROLE

• INTERNAL_ERROR

• INVALID_JSON

• INVALID_PARAMETER

• NO_PERMISSIONS

• NO_RESOURCE

• RESOURCE_ALREADY_EXISTS

• RESOURCE_LIMIT_EXCEEDED

• RESOURCE_MODIFICATION_COLLISION

• SDK_CLIENT_ERROR

• THIRD_ACCOUNT_HOP_DETECTED

• THIRD_REGION_HOP_DETECTED

• THROTTLING

• TIMEOUT

• TRANSIENT_ASSUME_ROLE

• UNKNOWN

• ERROR_MESSAGE

• EXHAUSTED_RETRY_CONDITION

The following conditions can be returned:

• MaximumRetryAttempts

• MaximumEventAgeInSeconds

• RETRY_ATTEMPTS

The following video goes over settings up DLQs: Using dead-letter queues (DLQs)
Using dead-letter queues 112

http://www.youtube.com/embed/I6cXfiMkh

Amazon EventBridge User Guide

Topics

• Considerations for using a dead-letter queue

• Granting permissions to the dead-letter queue

• How to resend events from a dead-letter queue

Considerations for using a dead-letter queue

Consider the following when configuring a DLQ for EventBridge.

• Only standard queues are supported. You can't use a FIFO queue for a DLQ in EventBridge.

• EventBridge includes event metadata and message attributes in the message, including: the
Error Code, Error Message, the Exhausted Retry Condition, Rule ARN, Retry Attempts, and the
Target ARN. You can use these values to identify an event and the cause of the failure.

• Permissions for DLQs in the same account:

• If you add a target to a rule using the console, and you choose an Amazon SQS queue in the
same account, a resource-based policy that grants EventBridge access to the queue is attached
to the queue for you.

• If you use the PutTargets operation of the EventBridge API to add or update a target for a
rule, and you choose an Amazon SQS queue in the same account, you must manually grant
permissions to the queue selected. To learn more, see Granting permissions to the dead-letter
queue.

• Permissions for using Amazon SQS queues from a different AWS account.

• If you create a rule from the console, queues from other accounts aren't displayed for you
to select. You must provide the ARN for the queue in the other account, and then manually
attach a resource-based policy to grant permission to the queue. To learn more, see Granting
permissions to the dead-letter queue.

• If you create a rule using the API, you must manually attach a resource-based policy to the SQS
queues in another account that is used as the dead-letter queue. To learn more, see Granting
permissions to the dead-letter queue.

• The Amazon SQS queue you use must be in the same Region in which you create the rule.

Granting permissions to the dead-letter queue

When you configure a DLQ for a target of a rule, EventBridge sends the events with failed
invocations to the Amazon SQS queue selected. To successfully deliver events to the queue,

Using dead-letter queues 113

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html

Amazon EventBridge User Guide

EventBridge must have permission to do so. When you configure a target for a rule and select
a DLQ using the EventBridge console, the permissions are automatically added. If you create a
rule using the API, or use a queue that is in a different AWS account, you must manually create a
resource-based policy that grants the required permissions and then attach it to the queue.

The following resource-based policy demonstrates how to grant the required permissions for
EventBridge to send event messages to an Amazon SQS queue. The policy example grants the
EventBridge service permissions to use the SendMessage operation to send messages to a queue
named "MyEventDLQ". The queue must be in the us-west-2 Region in AWS account 123456789012.
The Condition statement allows only requests that come from a rule named "MyTestRule" that is
created in the us-west-2 Region in the AWS account 123456789012.

{
 "Sid": "Dead-letter queue permissions",
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sqs:SendMessage",
 "Resource": "arn:aws:sqs:us-west-2:123456789012:MyEventDLQ",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:events:us-west-2:123456789012:rule/MyTestRule"
 }
 }
}

To attach the policy to the queue, use the Amazon SQS console, open the queue, then choose the
Access policy and edit the policy. You can also use the AWS CLI, to learn more see Amazon SQS
permissions.

How to resend events from a dead-letter queue

You can move messages out of a DLQ in two ways:

• Avoid writing Amazon SQS consumer logic – Set your DLQ as an event source to the Lambda
function to drain your DLQ.

• Write Amazon SQS consumer logic – Use the Amazon SQS API, AWS SDK, or AWS CLI to write
custom consumer logic for polling, processing, and deleting the messages in the DLQ.

Using dead-letter queues 114

Amazon EventBridge User Guide

Amazon EventBridge event patterns

Event patterns have the same structure as the events they match. Rules use event patterns to
select events and send them to targets. An event pattern either matches an event or it doesn't.

Important

In EventBridge, it is possible to create rules that can lead to higher-than-expected charges
and throttling. For example, you can inadvertently create a rule that leads to an infinite
loop, where a rule is fired recursively without end. Suppose you created a rule to detect
that ACLs have changed on an Amazon S3 bucket, and trigger software to change them
to the desired state. If the rule is not written carefully, the subsequent change to the ACLs
fires the rule again, creating an infinite loop.
For guidance on how to write precise rules and event patterns to minimize such unexpected
results, see ??? and ???.

The following video goes over the basics of event patterns: How to filter events

Topics

• Creating event patterns

• Example events and event patterns

• Matching null values and empty strings in Amazon EventBridge event patterns

• Arrays in Amazon EventBridge event patterns

• Content filtering in Amazon EventBridge event patterns

• Testing an event pattern using the EventBridge Sandbox

• Best practices when defining Amazon EventBridge event patterns

The following event shows a simple AWS event from Amazon EC2.

{
 "version": "0",

115

http://www.youtube.com/embed/69Z394rGclk

Amazon EventBridge User Guide

 "id": "6a7e8feb-b491-4cf7-a9f1-bf3703467718",
 "detail-type": "EC2 Instance State-change Notification",
 "source": "aws.ec2",
 "account": "111122223333",
 "time": "2017-12-22T18:43:48Z",
 "region": "us-west-1",
 "resources": [
 "arn:aws:ec2:us-west-1:123456789012:instance/i-1234567890abcdef0"
],
 "detail": {
 "instance-id": "i-1234567890abcdef0",
 "state": "terminated"
 }
}

The following event pattern processes all Amazon EC2 instance-termination events.

{
 "source": ["aws.ec2"],
 "detail-type": ["EC2 Instance State-change Notification"],
 "detail": {
 "state": ["terminated"]
 }
}

Creating event patterns

To create an event pattern, you specify the fields of an event that you want the event pattern to
match. Only specify the fields that you use for matching. The previous event pattern example
only provides values for three fields: the top-level fields "source" and "detail-type", and the
"state" field inside the "detail" object field. EventBridge ignores all the other fields in the
event when applying the rule.

For an event pattern to match an event, the event must contain all the field names listed in the
event pattern. The field names must also appear in the event with the same nesting structure.

When you write event patterns to match events, you can use the TestEventPattern API or the
test-event-pattern CLI command to test that your pattern matches the correct events. For
more information, see TestEventPattern.

Creating event patterns 116

https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_TestEventPattern.html

Amazon EventBridge User Guide

Matching event values

In an event pattern, the value to match is in a JSON array, surrounded by square brackets ("[",
"]") so that you can provide multiple values. For example, to match events from Amazon EC2 or
AWS Fargate, you could use the following pattern, which matches events where the value for the
"source" field is either "aws.ec2" or "aws.fargate".

{
 "source": ["aws.ec2", "aws.fargate"]
}

Considerations when creating event patterns

Below are some things to consider when constructing your event patterns:

• EventBridge ignores the fields in the event that aren't included in the event pattern. The effect is
that there is a "*": "*" wildcard for fields that don't appear in the event pattern.

• The values that event patterns match follow JSON rules. You can include strings enclosed in
quotation marks ("), numbers, and the keywords true, false, and null.

• For strings, EventBridge uses exact character-by-character matching without case-folding or any
other string normalization.

• For numbers, EventBridge uses string representation. For example, 300, 300.0, and 3.0e2 are not
considered equal.

• If multiple patterns are specified for the same JSON field, EventBridge only uses the last one.

• Be aware that when EventBridge compiles event patterns for use, it uses dot (.) as the joining
character.

This means EventBridge will treat the following event patterns as identical:

has no dots in keys
{ "detail" : { "state": { "status": ["running"] } } }

has dots in keys
{ "detail" : { "state.status": ["running"] } }

And that both event patterns will match the following two events:

has no dots in keys

Matching event values 117

Amazon EventBridge User Guide

{ "detail" : { "state": { "status": "running" } } }

has dots in keys
{ "detail" : { "state.status": "running" } }

Note

This describes current EventBridge behavior, and should not be relied on to not change.

• Event patterns containing duplicate fields are invalid. If a pattern contains duplicate fields,
EventBridge only considers the final field value.

For example, the following event patterns will match the same event:

has duplicate keys
{
 "source": ["aws.s3"],
 "source": ["aws.sns"],
 "detail-type": ["AWS API Call via CloudTrail"],
 "detail": {
 "eventSource": ["s3.amazonaws.com"],
 "eventSource": ["sns.amazonaws.com"]
 }
}

has unique keys
{
 "source": ["aws.sns"],
 "detail-type": ["AWS API Call via CloudTrail"],
 "detail": { "eventSource": ["sns.amazonaws.com"] }
}

And EventBridge treats the following two events as identical:

has duplicate keys
{
 "source": ["aws.s3"],
 "source": ["aws.sns"],
 "detail-type": ["AWS API Call via CloudTrail"],
 "detail": [
 {

Considerations when creating event patterns 118

Amazon EventBridge User Guide

 "eventSource": ["s3.amazonaws.com"],
 "eventSource": ["sns.amazonaws.com"]
 }
]
}

has unique keys
{
 "source": ["aws.sns"],
 "detail-type": ["AWS API Call via CloudTrail"],
 "detail": [
 { "eventSource": ["sns.amazonaws.com"] }
]
}

Note

This describes current EventBridge behavior, and should not be relied on to not change.

Comparison operations for use in event patterns

Below a summary of all the comparison operators available in EventBridge.

Comparison operators only work on leaf nodes, with the exception of $or and anything-but.

Comparison Example Rule syntax

And Location is "New York" and Day is
"Monday"

"Location": ["New
York"], "Day": ["Monday"]

Anything-but State is any value besides "initiali
zing".

"state": [{ "anything-
but": "initializing" }]

Anything-but
(begins with)

Region is not in the US. "Region": [{ "anything
-but": {"prefix":
"us-" } }]

Comparison operations for use in event patterns 119

Amazon EventBridge User Guide

Comparison Example Rule syntax

Anything-but
(ends with)

FileName does not end with a .png
extension.

"FileName": [{ "anything
-but": { "suffix":
".png" } }]

Anything-but
(ignore case)

State is any value besides "initiali
zing" or any other casing variation,
such as "INITIALIZING".

"state": : [{ "anything-
but": { "equals-ignore-cas
e": "initializing" }}]}

Begins with Region is in the US. "Region": [{"prefix":
"us-" }]

Begins with
(ignore case)

Service name starts with the letters
"eventb", regardless of case.

{"service" : [{ "prefix":
{ "equals-ignore-case":
"eventb" }}]}

Empty LastName is empty. "LastName": [""]

Equals Name is "Alice" "Name": ["Alice"]

Equals (ignore
case)

Name is "Alice" "Name": [{ "equals-i
gnore-case": "alice" }]

Ends with FileName ends with a .png extension "FileName": [{ "suffix":
".png" }]

Ends with
(ignore case)

Service name ends with the letters
"tbridge", or any other casing
variation, such as "TBRIDGE".

{"service" : [{ "suffix":
{ "equals-ignore-case":
"tBridge" }}]}

Exists ProductName exists "ProductName":
[{ "exists": true }]

Does not exist ProductName does not exist "ProductName":
[{ "exists": false }]

Not Weather is anything but "Raining" "Weather": [{ "anything-
but": ["Raining"] }]

Comparison operations for use in event patterns 120

Amazon EventBridge User Guide

Comparison Example Rule syntax

Null UserID is null "UserID": [null]

Numeric (equals) Price is 100 "Price": [{ "numeric":
["=", 100] }]

Numeric (range) Price is more than 10, and less than
or equal to 20

"Price": [{ "numeric":
[">", 10, "<=", 20] }]

Or PaymentType is "Credit" or "Debit" "PaymentType": ["Credit",
"Debit"]

Or (multiple
 fields)

Location is "New York", or Day is
"Monday".

"$or": [{ "Location":
["New York"] }, { "Day":
["Monday"] }]

Wildcard Any file with a .png extension,
located within the folder "dir"

"FileName": [{ "wildcard
": "dir/*.png" }]

Example events and event patterns

You can use all of the JSON data types and values to match events. The following examples show
events and the event patterns that match them.

Field matching

You can match on the value of a field. Consider the following Amazon EC2 Auto Scaling event.

{
 "version": "0",
 "id": "3e3c153a-8339-4e30-8c35-687ebef853fe",
 "detail-type": "EC2 Instance Launch Successful",
 "source": "aws.autoscaling",
 "account": "123456789012",
 "time": "2015-11-11T21:31:47Z",
 "region": "us-east-1",
 "resources": [],
 "detail": {
 "eventVersion": "",

Example events and event patterns 121

Amazon EventBridge User Guide

 "responseElements": null
 }
}

For the preceding event, you can use the "responseElements" field to match.

{
 "source": ["aws.autoscaling"],
 "detail-type": ["EC2 Instance Launch Successful"],
 "detail": {
 "responseElements": [null]
 }
}

Value matching

Consider the following Amazon Macie event, which is truncated.

{
 "version": "0",
 "id": "0948ba87-d3b8-c6d4-f2da-732a1example",
 "detail-type": "Macie Finding",
 "source": "aws.macie",
 "account": "123456789012",
 "time": "2021-04-29T23:12:15Z",
 "region":"us-east-1",
 "resources": [

],
 "detail": {
 "schemaVersion": "1.0",
 "id": "64b917aa-3843-014c-91d8-937ffexample",
 "accountId": "123456789012",
 "partition": "aws",
 "region": "us-east-1",
 "type": "Policy:IAMUser/S3BucketEncryptionDisabled",
 "title": "Encryption is disabled for the S3 bucket",
 "description": "Encryption is disabled for the Amazon S3 bucket. The data in the
 bucket isn’t encrypted
 using server-side encryption.",
 "severity": {
 "score": 1,

Value matching 122

Amazon EventBridge User Guide

 "description": "Low"
 },
 "createdAt": "2021-04-29T15:46:02Z",
 "updatedAt": "2021-04-29T23:12:15Z",
 "count": 2,
.
.
.

The following event pattern matches any event that has a severity score of 1 and a count of 2.

{
 "source": ["aws.macie"],
 "detail-type": ["Macie Finding"],
 "detail": {
 "severity": {
 "score": [1]
 },
 "count":[2]
 }
}

Value matching 123

Amazon EventBridge User Guide

Matching null values and empty strings in Amazon EventBridge
event patterns

Important

In EventBridge, it is possible to create rules that can lead to higher-than-expected charges
and throttling. For example, you can inadvertently create a rule that leads to an infinite
loop, where a rule is fired recursively without end. Suppose you created a rule to detect
that ACLs have changed on an Amazon S3 bucket, and trigger software to change them
to the desired state. If the rule is not written carefully, the subsequent change to the ACLs
fires the rule again, creating an infinite loop.
For guidance on how to write precise rules and event patterns to minimize such unexpected
results, see ??? and ???.

You can create an event pattern that matches a field in an event that has a null value or is an
empty string. Consider the following example event.

See best practices to avoid higher than expected charges and throttling

{
 "version": "0",
 "id": "3e3c153a-8339-4e30-8c35-687ebef853fe",
 "detail-type": "EC2 Instance Launch Successful",
 "source": "aws.autoscaling",
 "account": "123456789012",
 "time": "2015-11-11T21:31:47Z",
 "region": "us-east-1",
 "resources": [
],
 "detail": {
 "eventVersion": "",
 "responseElements": null
 }
}

To match events where the value of eventVersion is an empty string, use the following event
pattern, which matches the preceding event.

Null values and empty strings 124

Amazon EventBridge User Guide

{
 "detail": {
 "eventVersion": [""]
 }
}

To match events where the value of responseElements is null, use the following event pattern,
which matches the preceding event.

{
 "detail": {
 "responseElements": [null]
 }
}

Note

Null values and empty strings are not interchangeable in pattern matching. An event
pattern that matches empty strings doesn't match values of null.

Null values and empty strings 125

Amazon EventBridge User Guide

Arrays in Amazon EventBridge event patterns

The value of each field in an event pattern is an array containing one or more values. An event
pattern matches the event if any of the values in the array match the value in the event. If the
value in the event is an array, then the event pattern matches if the intersection of the event
pattern array and the event array is non-empty.

Important

In EventBridge, it is possible to create rules that can lead to higher-than-expected charges
and throttling. For example, you can inadvertently create a rule that leads to an infinite
loop, where a rule is fired recursively without end. Suppose you created a rule to detect
that ACLs have changed on an Amazon S3 bucket, and trigger software to change them
to the desired state. If the rule is not written carefully, the subsequent change to the ACLs
fires the rule again, creating an infinite loop.
For guidance on how to write precise rules and event patterns to minimize such unexpected
results, see ??? and ???.

For example, consider an event pattern that includes the following field.

"resources": [
 "arn:aws:ec2:us-east-1:123456789012:instance/i-b188560f",
 "arn:aws:ec2:us-east-1:111122223333:instance/i-b188560f",
 "arn:aws:ec2:us-east-1:444455556666:instance/i-b188560f",
]

The preceding event pattern matches an event that includes the following field because the first
item in the event pattern array matches the second item in the event array.

"resources": [
 "arn:aws:autoscaling:us-east-1:123456789012:autoScalingGroup:eb56d16b-bbf0-401d-
b893-d5978ed4a025:autoScalingGroupName/ASGTerminate",
 "arn:aws:ec2:us-east-1:123456789012:instance/i-b188560f"
]

Arrays 126

Amazon EventBridge User Guide

Content filtering in Amazon EventBridge event patterns

Amazon EventBridge supports declarative content filtering using event patterns. With content
filtering, you can write complex event patterns that only match events under very specific
conditions. For example, you can create an event pattern that matches an event when:

• A field of the event is within a specific numeric range.

• The event comes from a specific IP address.

• A specific field doesn't exist in the event JSON.

Important

In EventBridge, it is possible to create rules that can lead to higher-than-expected charges
and throttling. For example, you can inadvertently create a rule that leads to an infinite
loop, where a rule is fired recursively without end. Suppose you created a rule to detect
that ACLs have changed on an Amazon S3 bucket, and trigger software to change them
to the desired state. If the rule is not written carefully, the subsequent change to the ACLs
fires the rule again, creating an infinite loop.
For guidance on how to write precise rules and event patterns to minimize such unexpected
results, see ??? and ???.

Filter types

• Prefix matching

• Suffix matching

• Anything-but matching

• Numeric matching

• IP address matching

• Exists matching

• Equals-ignore-case matching

• Matching using wildcards

• Complex example with multiple matching

• Complex example with $or matching

Content-based filtering 127

Amazon EventBridge User Guide

Prefix matching

You can match an event depending on the prefix of a value in the event source. You can use prefix
matching for string values.

For example, the following event pattern would match any event where the "time" field started
with "2017-10-02" such as "time": "2017-10-02T18:43:48Z".

{
 "time": [{ "prefix": "2017-10-02" }]
}

Prefix matching while ignoring case

You can also match a prefix value regardless of the casing of the characters a value begins with,
using equals-ignore-case in conjunction with prefix.

For example, the following event pattern would match any event where the service field started
with the character string EventB, but also EVENTB, eventb, or any other capitalization of those
characters.

{
 "detail": {"service" : [{ "prefix": { "equals-ignore-case": "EventB" }}]}
}

Suffix matching

You can match an event depending on the suffix of a value in the event source. You can use suffix
matching for string values.

For example, the following event pattern would match any event where the "FileName" field
ends with the .png file extension.

{
 "FileName": [{ "suffix": ".png" }]
}

Prefix matching 128

Amazon EventBridge User Guide

Suffix matching while ignoring case

You can also match a suffix value regardless of the casing of the characters a value ends with, using
equals-ignore-case in conjunction with suffix.

For example, the following event pattern would match any event where the FileName field ended
with the character string .png, but also .PNG or any other capitalization of those characters.

{
 "detail": {"FileName" : [{ "suffix": { "equals-ignore-case": ".png" }}]}
}

Anything-but matching

Anything-but matching matches anything except what's provided in the rule.

You can use anything-but matching with strings and numeric values, including lists that contain
only strings, or only numbers.

The following event pattern shows anything-but matching with strings and numbers.

{
 "detail": {
 "state": [{ "anything-but": "initializing" }]
 }
}

{
 "detail": {
 "x-limit": [{ "anything-but": 123 }]
 }
}

The following event pattern shows anything-but matching with a list of strings.

{
 "detail": {
 "state": [{ "anything-but": ["stopped", "overloaded"] }]
 }
}

Anything-but matching 129

Amazon EventBridge User Guide

The following event pattern shows anything-but matching with a list of numbers.

{
 "detail": {
 "x-limit": [{ "anything-but": [100, 200, 300] }]
 }
}

Anything-but matching while ignoring case

You can also use equals-ignore-case in conjunction with anything-but, to match string
values regardless of character casing.

The following event pattern matches state fields containing the string "initializing", but also
"INITIALIZING", "Initializing", or any other capitalization of those characters.

{
 "detail": {"state" : [{ "anything-but": { "equals-ignore-case": "initializing" }}]}
}

You can use equals-ignore-case in conjunction with anything-but to match against a list of
values as well:

{
 "detail": {"state" : [{ "anything-but": { "equals-ignore-case": ["initializing",
 "stopped"] }}]}
}

Anything-but matching on prefixes

The following event pattern shows anything-but matching that matches any event that doesn't
have the prefix "init" in the "state" field.

Note

Anything-but matching only works with a single prefix, not a list.

{

Anything-but matching 130

Amazon EventBridge User Guide

 "detail": {
 "state": [{ "anything-but": { "prefix": "init" } }]
 }
}

Anything-but matching on suffixes

You can use suffix in conjunction with anything-but to match string values regardless of
character casing.

Note

Anything-but matching only works with a single suffix, not a list.

The following event pattern matches any values for the FileName field that end with .txt.

{
 "detail": {
 "FileName": [{ "anything-but": { "suffix": ".txt" } }]
 }
}

Numeric matching

Numeric matching works with values that are JSON numbers. It is limited to values between -5.0e9
and +5.0e9 inclusive, with 15 digits of precision, or six digits to the right of the decimal point.

The following shows numeric matching for an event pattern that only matches events that are true
for all fields.

{
 "detail": {
 "c-count": [{ "numeric": [">", 0, "<=", 5] }],
 "d-count": [{ "numeric": ["<", 10] }],
 "x-limit": [{ "numeric": ["=", 3.018e2] }]
 }
}

Numeric matching 131

Amazon EventBridge User Guide

IP address matching

You can use IP address matching for IPv4 and IPv6 addresses. The following event pattern shows
IP address matching to IP addresses that start with 10.0.0 and end with a number between 0 and
255.

{
 "detail": {
 "sourceIPAddress": [{ "cidr": "10.0.0.0/24" }]
 }
}

Exists matching

Exists matching works on the presence or absence of a field in the JSON of the event.

Exists matching only works on leaf nodes. It does not work on intermediate nodes.

The following event pattern matches any event that has a detail.state field.

{
 "detail": {
 "state": [{ "exists": true }]
 }
}

The preceding event pattern matches the following event.

{
 "version": "0",
 "id": "7bf73129-1428-4cd3-a780-95db273d1602",
 "detail-type": "EC2 Instance State-change Notification",
 "source": "aws.ec2",
 "account": "123456789012",
 "time": "2015-11-11T21:29:54Z",
 "region": "us-east-1",
 "resources": ["arn:aws:ec2:us-east-1:123456789012:instance/i-abcd1111"],
 "detail": {
 "instance-id": "i-abcd1111",
 "state": "pending"
 }

IP address matching 132

Amazon EventBridge User Guide

}

The preceding event pattern does NOT match the following event because it doesn't have a
detail.state field.

{
 "detail-type": ["EC2 Instance State-change Notification"],
 "resources": ["arn:aws:ec2:us-east-1:123456789012:instance/i-02ebd4584a2ebd341"],
 "detail": {
 "c-count" : {
 "c1" : 100
 }
 }
}

Equals-ignore-case matching

Equals-ignore-case matching works on string values regardless of case.

The following event pattern matches any event that has a detail-type field that matches the
specified string, regardless of case.

{
 "detail-type": [{ "equals-ignore-case": "ec2 instance state-change notification" }]
}

The preceding event pattern matches the following event.

{
 "detail-type": ["EC2 Instance State-change Notification"],
 "resources": ["arn:aws:ec2:us-east-1:123456789012:instance/i-02ebd4584a2ebd341"],
 "detail": {
 "c-count" : {
 "c1" : 100
 }
 }
}

Matching using wildcards

You can use the wildcard character (*) to match string values in event patterns.

Equals-ignore-case matching 133

Amazon EventBridge User Guide

Note

Currently the wildcard character is supported in event bus rules only.

Considerations when using wildcards in your event patterns:

• You can specify any number of wildcard characters in a given string value; however, consecutive
wildcard characters are not supported.

• EventBridge supports using the backslash character (\) to specify the literal * and \ characters in
wildcard filters:

• The string * represents the literal * character

• The string \\ represents the literal \ character

Using the backslash to escape other characters is not supported.

Wildcards and event pattern complexity

There is a limit to how complex a rule using wildcards can be. If a rule is too complex, EventBridge
returns an InvalidEventPatternException when attempting to create the rule. If your rule
generates such an error, consider using the guidance below to reduce the complexity of the event
pattern:

• Reduce the number of wildcard characters used

Only use wildcard characters where you truly need to match against multiple possible values. For
example, consider the following event pattern, where you want to match against event buses in
the same Region:

{
"EventBusArn": [{ "wildcard": "*:*:*:*:*:event-bus/*" }]
}

In the above case, many of the sections of the ARN will be directly based on the Region in which
your event buses reside. So if you are using the us-east-1 Region, a less complex pattern that
still matches the desired values might be the following example:

{

Matching using wildcards 134

Amazon EventBridge User Guide

"EventBusArn": [{ "wildcard": "arn:aws:events:us-east-1:*:event-bus/*" }]
}

• Reduce repeating character sequences that occur after a wildcard character

Having the same character sequence appear multiple times after the use of a wildcard increases
the complexity of processing the event pattern. Recast your event pattern to minimize repeated
sequences. For example, consider the following example, that matches on the file name
doc.txt file for any user:

{
"FileName": [{ "wildcard": "/Users/*/dir/dir/dir/dir/dir/doc.txt" }]
}

If you knew that the doc.txt file would only occur in the specified path, you could reduce the
repeated character sequence in this way:

{
"FileName": [{ "wildcard": "/Users/*/doc.txt" }]
}

Complex example with multiple matching

You can combine multiple matching rules into a more complex event pattern. For example, the
following event pattern combines anything-but and numeric.

{
 "time": [{ "prefix": "2017-10-02" }],
 "detail": {
 "state": [{ "anything-but": "initializing" }],
 "c-count": [{ "numeric": [">", 0, "<=", 5] }],
 "d-count": [{ "numeric": ["<", 10] }],
 "x-limit": [{ "anything-but": [100, 200, 300] }]
 }
}

Complex example with multiple matching 135

Amazon EventBridge User Guide

Note

When building event patterns, if you include a key more than once the last reference will be
the one used to evaluate events. For example, for the following pattern:

{
 "detail": {
 "location": [{ "prefix": "us-" }],
 "location": [{ "anything-but": "us-east" }]
 }
}

only { "anything-but": "us-east" } will be taken into account when evaluating the
location.

Complex example with $or matching

You can also create complex event patterns that check to see if any field values match, across
multiple fields. Use $or to create an event pattern that matches if any of the values for multiple
fields are matched.

Note that you can include other filter types, such as numeric matching and arrays, in your pattern
matching for individual fields in your $or construct.

The following event pattern matches if any of the following conditions are met:

• The c-count field is greater than 0 or less than or equal to 5.

• The d-count field is less than 10.

• The x-limit field equals 3.018e2.

{
 "detail": {
 "$or": [
 { "c-count": [{ "numeric": [">", 0, "<=", 5] }] },
 { "d-count": [{ "numeric": ["<", 10] }] },
 { "x-limit": [{ "numeric": ["=", 3.018e2] }] }
]
 }

Complex example with $or matching 136

Amazon EventBridge User Guide

}

Note

APIs that accept an event pattern (such as PutRule, CreateArchive, UpdateArchive,
and TestEventPattern) will throw an InvalidEventPatternException if the use of
$or results in over 1000 rule combinations.
To determine the number of rule combinations in an event pattern, multiply the total
number of arguments from each $or array in the event pattern. For example, the above
pattern contains a single $or array with three arguments, so the total number of rule
combinations is also three. If you added another $or array with two arguments, the total
rule combinations would then be six.

Testing an event pattern using the EventBridge Sandbox

Rules use event patterns to select events and send them to targets. Event patterns have the same
structure as the events they match. An event pattern either matches an event or it doesn't.

Defining an event pattern is typically part of the larger process of creating a new rule or editing an
existing one. Using the Sandbox in EventBridge, however, you can quickly define an event pattern
and use a sample event to confirm the pattern matches the desired events, without having to
create or edit a rule. Once you've got your event pattern tested, EventBridge give you the option of
creating a new rule using that event pattern directly from the sandbox.

For more information about event patterns, see ???.

Important

In EventBridge, it is possible to create rules that can lead to higher-than-expected charges
and throttling. For example, you can inadvertently create a rule that leads to an infinite
loop, where a rule is fired recursively without end. Suppose you created a rule to detect
that ACLs have changed on an Amazon S3 bucket, and trigger software to change them
to the desired state. If the rule is not written carefully, the subsequent change to the ACLs
fires the rule again, creating an infinite loop.
For guidance on how to write precise rules and event patterns to minimize such unexpected
results, see ??? and ???.

Testing an event pattern 137

Amazon EventBridge User Guide

To test an event pattern using the EventBridge sandbox

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Developer resources, then select Sandbox, and on the
Sandbox page choose the Event pattern tab.

3. For Event source, choose AWS events or EventBridge partner events.

4. In the Sample events section, choose a Sample event type against which you want to test
your event pattern.

The following sample event types are available:

• AWS events – Select from events emitted from supported AWS services.

• EventBridge partner events – Select from events emitted from third-party services that
support EventBridge, such as Salesforce.

• Enter my own – Enter your own event in JSON text.

You can also use an AWS or partner event as the starting point for creating your own custom
event.

1. Select AWS events or EventBridge partner events.

2. Use the Sample events dropdown to select the event you want to use as a starting point
for your custom event.

EventBridge displays the sample event.

3. Select Copy.

4. Select Enter my own for Event type.

5. Delete the sample event structure in the JSON editing pane, and paste the AWS or
partner event in its place.

6. Edit the event JSON to create your own sample event.

5. Choose a Creation method. You can create an event pattern from an EventBridge schema or
template, or you can create a custom event pattern.

Existing schema

To use an existing EventBridge schema to create the event pattern, do the following:

1. In the Creation method section, for Method, select Use schema.
Testing an event pattern 138

https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

2. In the Event pattern section, for Schema type, select Select schema from Schema
registry.

3. For Schema registry, choose the dropdown box and enter the name of a schema
registry, such as aws.events. You can also select an option from the dropdown list that
appears.

4. For Schema, choose the dropdown box and enter the name of the schema to use. For
example, aws.s3@ObjectDeleted. You can also select an option from the dropdown
list that appears.

5. In the Models section, choose the Edit button next to any attribute to open its
properties. Set the Relationship and Value fields as needed, then choose Set to save the
attribute.

Note

For information about an attribute's definition, choose the Info icon next to the
attribute's name. For a reference on how to set attribute properties in your event,
open the Note section of the attribute properties dialog box.
To delete an attribute's properties, choose the Edit button for that attribute,
then choose Clear.

6. Choose Generate event pattern in JSON to generate and validate your event pattern as
JSON text.

7. To test the sample event against your test pattern, choose Test pattern.

EventBridge displays a message box stating whether your sample event matches the
event pattern.

You can also choose any of the following options:

• Copy – Copy the event pattern to your device's clipboard.

• Prettify – Makes the JSON text easier to read by adding line breaks, tabs, and spaces.

Custom schema

To write a custom schema and convert it to an event pattern, do the following:

1. In the Creation method section, for Method, choose Use schema.

Testing an event pattern 139

Amazon EventBridge User Guide

2. In the Event pattern section, for Schema type, choose Enter schema.

3. Enter your schema into the text box. You must format the schema as valid JSON text.

4. In the Models section, choose the Edit button next to any attribute to open its
properties. Set the Relationship and Value fields as needed, then choose Set to save the
attribute.

Note

For information about an attribute's definition, choose the Info icon next to the
attribute's name. For a reference on how to set attribute properties in your event,
open the Note section of the attribute properties dialog box.
To delete an attribute's properties, choose the Edit button for that attribute,
then choose Clear.

5. Choose Generate event pattern in JSON to generate and validate your event pattern as
JSON text.

6. To test the sample event against your test pattern, choose Test pattern.

EventBridge displays a message box stating whether your sample event matches the
event pattern.

You can also choose any of the following options:

• Copy – Copy the event pattern to your device's clipboard.

• Prettify – Makes the JSON text easier to read by adding line breaks, tabs, and spaces.

Event pattern

To write a custom event pattern in JSON format, do the following:

1. In the Creation method section, for Method, choose Custom pattern (JSON editor).

2. For Event pattern, enter your custom event pattern in JSON-formatted text.

3. To test the sample event against your test pattern, choose Test pattern.

EventBridge displays a message box stating whether your sample event matches the
event pattern.

You can also choose any of the following options:
Testing an event pattern 140

Amazon EventBridge User Guide

• Copy – Copy the event pattern to your device's clipboard.

• Prettify – Makes the JSON text easier to read by adding line breaks, tabs, and spaces.

• Event pattern form – Opens the event pattern in Pattern Builder. If the pattern can't
be rendered in Pattern Builder as-is, EventBridge warns you before it opens Pattern
Builder.

6. (Optional) To create a rule with this event pattern, and assign the rule to a specific event bus,
choose Create rule with pattern.

EventBridge takes you to Step 1 of Create rule, which you can use to create a rule and assign it
to the event bus of your choice.

Note that Step 2 - Build event pattern contains the event pattern information you've already
specified, and which you can accept or update.

For more on how to create rules, see ???.

Best practices when defining Amazon EventBridge event
patterns

Below are some best practices to consider when defining event patterns in your event bus rules.

Avoid writing infinite loops

In EventBridge, it is possible to create rules that lead to infinite loops, where a rule is fired
repeatedly. For example, a rule might detect that ACLs have changed on an S3 bucket, and trigger
software to change them to the desired state. If the rule is not written carefully, the subsequent
change to the ACLs fires the rule again, creating an infinite loop.

To prevent these issues, write the event patterns for your rules to be as precise as possible, so
they only match the events you actually want sent to the target. In the above example, you would
create an event pattern to match events so that the triggered actions do not re-fire the same rule.
For example, create an event pattern in your rule that would match events only if ACLs are found
to be in a bad state, instead of after any change. For more information, see ??? and ???.

An infinite loop can quickly cause higher than expected charges. It can also lead to throttling and
delayed event delivery. You can monitor the upper bound of your invocation rates to be warned
about unexpected spikes in volume.

Best practices 141

Amazon EventBridge User Guide

Use budgeting to alert you when charges exceed your specified limit. For more information, see
Managing Your Costs with Budgets.

Make event patterns precise as possible

The more precise your event pattern, the more likely it will match only the events you actually
want it to, and avoid unexpected matches when new events are added to an event source, or
existing events are updated to include new properties.

Event patterns can include filters that match on:

• Event metadata about the event, such as source, detail-type. account, or region.

• Event data, this is, the fields inside the detail object.

• Event content, or the actual values of the fields inside the detail object.

Most patterns are simple, such as specifying only source and detail-type filters. However,
EventBridge patterns include the flexibility to filter on any key or value of the event. In addition,
you can apply content filters such as prefix and suffix filters to improve the precision of your
patterns. For more information, see ???.

Specify event source and detail type as filters

You can reduce generating infinite loops and matching undesired events by making your event
patterns more precise using the source and detail-type metadata fields.

When you need to match specific values within two or more fields, use the $or comparison
operator, rather than listing all possible values within a single array of values.

For events that are delivered through AWS CloudTrail, we recommend you use the eventName field
as a filter.

The following event pattern example matches CreateQueue or SetQueueAttributes from the
Amazon Simple Queue Service service, or CreateKey or DisableKeyRotation events from the
AWS Key Management Service service.

{
 "detail-type": ["AWS API Call via CloudTrail"],
 "$or": [{

Make event patterns precise as possible 142

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html

Amazon EventBridge User Guide

 "source": [
 "aws.sqs"
],
 "detail": {
 "eventName": [
 "CreateQueue",
 "SetQueueAttributes"
]
 }
 },
 {
 "source": [
 "aws.kms"
],
 "detail": {
 "eventName": [
 "CreateKey",
 "DisableKeyRotation"
]
 }
 }
]
}

Specify account and region as filters

Including account and region fields in your event pattern helps limit cross-account or cross-
region event matching.

Specify content filters

Content-based filtering can help improve event pattern precision, while still keeping the length of
the event pattern to a minimum. For example, matching based on a numeric range can be helpful
instead of listing all possible numeric values.

For more information, see ???.

Scope your event patterns to account for event source updates

When creating event patterns, you should take into account that event schemas and event domains
may evolve and expand over time. Here again, making your event patterns as precise as possible
helps you limit unexpected matches if the event source changes or expands.

Scope your event patterns to account for event source updates 143

Amazon EventBridge User Guide

For example, suppose you are matching against events from a new micro-service that publishes
payment-related events. Initially, the service uses the domain acme.payments, and publishes a
single event, Payment accepted:

{
 "detail-type": "Payment accepted",
 "source": "acme.payments",
 "detail": {
 "type": "credit",
 "amount": "100",
 "date": "2023-06-10",
 "currency": "USD"
 }
 }
}

At this point, you could create a simple event pattern that matches Payment accepted events:

{ “source” : “acme.payments” }

However, suppose the service later introduces a new event for rejected payments:

{
 "detail-type": "Payment rejected",
 "source": "acme.payments",
 "detail": {
 }
}

In this case, the simple event pattern you created will now match against both Payment
accepted and Payment rejected events. EventBridge routes both types of events to the
specified target for processing, possibly introducing processing failures and additional processing
cost.

To scope your event pattern to only Payment accepted events, you'd want to specify both
source and detail-type, at a minimum:

{
 "detail-type": "Payment accepted",
 "source": "acme.payments"

Scope your event patterns to account for event source updates 144

Amazon EventBridge User Guide

 }
}

You can also specify account and Region in your event pattern, to further limit when cross-account
or cross-Region events match this rule.

{
 "account": "012345678910",
 "source": "acme.payments",
 "region": "AWS-Region",
 "detail-type": "Payment accepted"
}

Validate event patterns

To ensure rules match the desired events, we strongly recommend you validate your event
patterns. You can validate your event patterns using the EventBridge console or API:

• In the EventBridge console, you can create and test event patterns as part of creating a rule, or
separately by using the Sandbox.

• You can test your event patterns programmatically using the TestEventPattern action.

Validate event patterns 145

https://docs.aws.amazon.com/API_TestEventPattern.html

Amazon EventBridge User Guide

Amazon EventBridge rules

You specify what EventBridge does with the events delivered to each event bus. To do this, you
create rules. A rule specifies which events to send to which targets for processing. A single rule can
send an event to multiple targets, which then run in parallel.

You can create two types of rules:

• Rules that match on event data

You can create rules that match against incoming events based on event data criteria (called an
event pattern). An event pattern defines the event structure and the fields that a rule matches. If
an event matches the criteria defined in the event pattern, EventBridge sends it to the target(s)
you specify.

For more information, see ???.

• Rules that run on a schedule

You can also create rules that sends events to the specified targets at specified intervals. For
example, to periodically run an Lambda function, you can create a rule to run on a schedule.

Note

EventBridge offers Amazon EventBridge Scheduler, a serverless scheduler that allows
you to create, run, and manage tasks from one central, managed service. EventBridge
Scheduler is highly customizable, and offers improved scalability over EventBridge
scheduled rules, with a wider set of target API operations and AWS services.
We recommend that you use EventBridge Scheduler to invoke targets on a schedule. For
more information, see ???.

The following video goes over the basics of rules: What are rules

146

http://www.youtube.com/embed/DQF_Md3Hvr8

Amazon EventBridge User Guide

Amazon EventBridge managed rules

In addition to the rules you create, AWS services can create and manage EventBridge rules in your
AWS account that are needed for certain functions in those services. These are called managed
rules.

When a service creates a managed rule, it can also create an IAM policy that grants permission to
that service to create the rule. IAM policies created this way are scoped narrowly with resource-
level permissions to allow the creation of only the necessary rules.

You can delete managed rules by using the Force delete option, but you should only delete them
if you're sure that the other service no longer needs the rule. Otherwise, deleting a managed rule
causes the features that rely on it to stop working.

Managed rules 147

Amazon EventBridge User Guide

Creating Amazon EventBridge rules that react to events

To take action on events received by Amazon EventBridge, you can create rules. When an event
matches the event pattern defined in your rule, EventBridge sends the event to the specified target
and triggers the action defined in the rule.

The following video explores creating different kinds of rules and how to test them: Learning
about rules .

Use the following procedure to create an Amazon EventBridge rule that responds to events.

Create a rule that reacts to events

The following steps walk you through how to create a rule that EventBridge uses to match events
as they are sent to the specified event bus.

Steps

• Define the rule

• Build the event pattern

• Select targets

• Configure tags and review rule

Define the rule

First, enter a name and description for your rule to identify it. You must also define the event bus
where your rule looks for events to match to an event pattern.

To define the rule detail

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

4. Enter a Name and, optionally, a Description for the rule.

A rule can't have the same name as another rule in the same AWS Region and on the same
event bus.

Creating a rule that reacts to events 148

http://www.youtube.com/embed/S_LZ9yDNNAo
http://www.youtube.com/embed/S_LZ9yDNNAo
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

5. For Event bus, choose the event bus to associate with this rule. If you want this rule to match
events that come from your account, select AWS default event bus. When an AWS service in
your account emits an event, it always goes to your account’s default event bus.

6. For Rule type, choose Rule with an event pattern.

7. Choose Next.

Build the event pattern

Next, build the event pattern. To do this, specify the event source, choose the basis for the event
pattern, and define the attributes and values to match on. You can also generate the event pattern
in JSON and test it against a sample event.

To build the event pattern

1. For Event source, choose AWS events or EventBridge partner events.

2. (Optional) In the Sample events section, choose a Sample event type against which you want
to test your event pattern.

The following sample event types are available:

• AWS events – Select from events emitted from supported AWS services.

• EventBridge partner events – Select from events emitted from third-party services that
support EventBridge, such as Salesforce.

• Enter my own – Enter your own event in JSON text.

You can also use an AWS or partner event as the starting point for creating your own custom
event.

1. Select AWS events or EventBridge partner events.

2. Use the Sample events dropdown to select the event you want to use as a starting point
for your custom event.

EventBridge displays the sample event.

3. Select Copy.

4. Select Enter my own for Event type.

5. Delete the sample event structure in the JSON editing pane, and paste the AWS or
partner event in its place.

Create a rule that reacts to events 149

Amazon EventBridge User Guide

6. Edit the event JSON to create your own sample event.

3. Choose a Creation method. You can create an event pattern from an EventBridge schema or
template, or you can create a custom event pattern.

Existing schema

To use an existing EventBridge schema to create the event pattern, do the following:

1. In the Creation method section, for Method, select Use schema.

2. In the Event pattern section, for Schema type, select Select schema from Schema
registry.

3. For Schema registry, choose the dropdown box and enter the name of a schema
registry, such as aws.events. You can also select an option from the dropdown list that
appears.

4. For Schema, choose the dropdown box and enter the name of the schema to use. For
example, aws.s3@ObjectDeleted. You can also select an option from the dropdown
list that appears.

5. In the Models section, choose the Edit button next to any attribute to open its
properties. Set the Relationship and Value fields as needed, then choose Set to save the
attribute.

Note

For information about an attribute's definition, choose the Info icon next to the
attribute's name. For a reference on how to set attribute properties in your event,
open the Note section of the attribute properties dialog box.
To delete an attribute's properties, choose the Edit button for that attribute,
then choose Clear.

6. Choose Generate event pattern in JSON to generate and validate your event pattern as
JSON text.

7. (Optional) To test the sample event against your test pattern, choose Test pattern.

EventBridge displays a message box stating whether your sample event matches the
event pattern.

You can also choose any of the following options:

Create a rule that reacts to events 150

Amazon EventBridge User Guide

• Copy – Copy the event pattern to your device's clipboard.

• Prettify – Makes the JSON text easier to read by adding line breaks, tabs, and spaces.

Custom schema

To write a custom schema and convert it to an event pattern, do the following:

1. In the Creation method section, for Method, choose Use schema.

2. In the Event pattern section, for Schema type, choose Enter schema.

3. Enter your schema into the text box. You must format the schema as valid JSON text.

4. In the Models section, choose the Edit button next to any attribute to open its
properties. Set the Relationship and Value fields as needed, then choose Set to save the
attribute.

Note

For information about an attribute's definition, choose the Info icon next to the
attribute's name. For a reference on how to set attribute properties in your event,
open the Note section of the attribute properties dialog box.
To delete an attribute's properties, choose the Edit button for that attribute,
then choose Clear.

5. Choose Generate event pattern in JSON to generate and validate your event pattern as
JSON text.

6. (Optional) To test the sample event against your test pattern, choose Test pattern.

EventBridge displays a message box stating whether your sample event matches the
event pattern.

You can also choose any of the following options:

• Copy – Copy the event pattern to your device's clipboard.

• Prettify – Makes the JSON text easier to read by adding line breaks, tabs, and spaces.

Event pattern

To write a custom event pattern in JSON format, do the following:

Create a rule that reacts to events 151

Amazon EventBridge User Guide

1. In the Creation method section, for Method, choose Custom pattern (JSON editor).

2. For Event pattern, enter your custom event pattern in JSON-formatted text.

3. (Optional) To test the sample event against your test pattern, choose Test pattern.

EventBridge displays a message box stating whether your sample event matches the
event pattern.

You can also choose any of the following options:

• Copy – Copy the event pattern to your device's clipboard.

• Prettify – Makes the JSON text easier to read by adding line breaks, tabs, and spaces.

• Event pattern form – Opens the event pattern in Pattern Builder. If the pattern can't
be rendered in Pattern Builder as-is, EventBridge warns you before it opens Pattern
Builder.

4. Choose Next.

Select targets

Choose one or more targets to receive events that match the specified pattern. Targets can
include an EventBridge event bus, EventBridge API destinations, including SaaS partners such as
Salesforce, or another AWS service.

To select targets

1. For Target type, choose one of the following target types:

Event bus

To select an EventBridge event bus, select EventBridge event bus, then do the following:

• To use an event bus in the same AWS Region as this rule:

1. Select Event bus in the same account and Region.

2. For Event bus for target, choose the dropdown box and enter the name of the event
bus. You can also select the event bus from the dropdown list.

For more information, see ???.

• To use an event bus in a different AWS Region or account as this rule:

Create a rule that reacts to events 152

Amazon EventBridge User Guide

1. Select Event bus in a different account or Region.

2. For Event bus as target, enter the ARN of the event bus you want to use.

For more information, see:

• ???

• ???

API destination

To use an EventBridge API destination, select EventBridge API destination, then do one of
the following:

• To use an existing API destination, select Use an existing API destination. Then select an
API destination from the dropdown list.

• To create a new API destination, select Create a new API destination. Then, provide the
following details for the destination:

• Name – Enter a name for the destination.

Names must be unique within your AWS account. Names can have up to 64 characters.
Valid characters are A-Z, a-z, 0-9, and . _ - (hyphen).

• (Optional) Description – Enter a description for the destination.

Descriptions can have up to 512 characters.

• API destination endpoint – The URL endpoint for the target.

The endpoint URL must start with https. You can include the * as a path parameter
wildcard. You can set path parameters from the target's HttpParameters attribute.

• HTTP method – Select the HTTP method used when you invoke the endpoint.

• (Optional) Invocation rate limit per second – Enter the maximum number of
invocations accepted for each second for this destination.

This value must be greater than zero. By default, this value is set to 300.

• Connection – Choose to use a new or existing connection:

• To use an existing connection, select Use an existing connection and select the
connection from the dropdown list.

Create a rule that reacts to events 153

Amazon EventBridge User Guide

• To create a new connection for this destination select Create a new connection,
then define the connection's Name, Destination type, and Authorization type. You
can also add an optional Description for this connection.

For more information, see ???.

AWS service

To use an AWS service, select AWS service, then do the following:

1. For Select a target, select an AWS service to use as the target. Provide the information
requested for the service you select.

Note

The fields displayed vary depending on the service selected. For more
information about available targets, see Targets available in the EventBridge
console.

2. For many target types, EventBridge needs permissions to send events to the target. In these
cases, EventBridge can create the IAM role needed for your rule to run.

For Execution role, do one of the following:

• To create a new execution role for this rule:

a. Select Create a new role for this specific resource.

b. Either enter a name for this execution role, or use the name generated by
EventBridge.

• To use an existing execution role for this rule:

a. Select Use existing role.

b. Enter or select the name of the execution role to use from the dropdown list.

3. (Optional) For Additional settings, specify any of the optional settings available for your
target type:

Create a rule that reacts to events 154

Amazon EventBridge User Guide

Event bus

(Optional) For Dead-letter queue, choose whether to use a standard Amazon SQS queue
as a dead-letter queue. EventBridge sends events that match this rule to the dead-letter
queue if they are not successfully delivered to the target. Do one of the following:

• Choose None to not use a dead-letter queue.

• Choose Select an Amazon SQS queue in the current AWS account to use as the dead-
letter queue and then select the queue to use from the drop-down list.

• Choose Select an Amazon SQS queue in an other AWS account as a dead-letter queue
and then enter the ARN of the queue to use. You must attach a resource-based policy to
the queue that grants EventBridge permission to send messages to it.

For more information, see Granting permissions to the dead-letter queue.

API destination

1. (Optional) For Configure target input, choose how you want to customize the text sent
to the target for matching events. Choose one of the following:

• Matched events – EventBridge sends the entire original source event to the target.
This is the default.

• Part of the matched events – EventBridge only sends the specified portion of the
original source event to the target.

Under Specify the part of the matched event, specify a JSON path that defines the
part of the event you want EventBridge to send to the target.

• Constant (JSON text) – EventBridge sends only the specified JSON text to the target.
No part of the original source event is sent.

Under Specify the constant in JSON, specify the JSON text that you want EventBridge
to send to the target instead of the event.

• Input transformer – Configure an input transformer to customize the text you want
EventBridge send to the target. For more information, see ???.

a. Select Configure input transformer.

b. Configure the input transformer following the steps in ???.

Create a rule that reacts to events 155

Amazon EventBridge User Guide

2. (Optional) Under Retry policy, specify how EventBridge should retry sending an event to
a target after an error occurs.

• Maximum age of event – Enter the maximum amount of time (in hours, minutes, and
seconds) for EventBridge to retain unprocessed events. The default is 24 hours.

• Retry attempts – Enter the maximum number of times EventBridge should retry
sending an event to the target after an error occurs. The default is 185 times.

3. (Optional) For Dead-letter queue, choose whether to use a standard Amazon SQS queue
as a dead-letter queue. EventBridge sends events that match this rule to the dead-letter
queue if they are not successfully delivered to the target. Do one of the following:

• Choose None to not use a dead-letter queue.

• Choose Select an Amazon SQS queue in the current AWS account to use as the
dead-letter queue and then select the queue to use from the drop-down list.

• Choose Select an Amazon SQS queue in an other AWS account as a dead-letter
queue and then enter the ARN of the queue to use. You must attach a resource-based
policy to the queue that grants EventBridge permission to send messages to it.

For more information, see Granting permissions to the dead-letter queue.

AWS service

Note that EventBridge may not display all of the following fields for a given AWS service.

1. (Optional) For Configure target input, choose how you want to customize the text sent
to the target for matching events. Choose one of the following:

• Matched events – EventBridge sends the entire original source event to the target.
This is the default.

• Part of the matched events – EventBridge only sends the specified portion of the
original source event to the target.

Under Specify the part of the matched event, specify a JSON path that defines the
part of the event you want EventBridge to send to the target.

• Constant (JSON text) – EventBridge sends only the specified JSON text to the target.
No part of the original source event is sent.

Under Specify the constant in JSON, specify the JSON text that you want EventBridge
to send to the target instead of the event.

Create a rule that reacts to events 156

Amazon EventBridge User Guide

• Input transformer – Configure an input transformer to customize the text you want
EventBridge send to the target. For more information, see ???.

a. Select Configure input transformer.

b. Configure the input transformer following the steps in ???.

2. (Optional) Under Retry policy, specify how EventBridge should retry sending an event to
a target after an error occurs.

• Maximum age of event – Enter the maximum amount of time (in hours, minutes, and
seconds) for EventBridge to retain unprocessed events. The default is 24 hours.

• Retry attempts – Enter the maximum number of times EventBridge should retry
sending an event to the target after an error occurs. The default is 185 times.

3. (Optional) For Dead-letter queue, choose whether to use a standard Amazon SQS queue
as a dead-letter queue. EventBridge sends events that match this rule to the dead-letter
queue if they are not successfully delivered to the target. Do one of the following:

• Choose None to not use a dead-letter queue.

• Choose Select an Amazon SQS queue in the current AWS account to use as the
dead-letter queue and then select the queue to use from the drop-down list.

• Choose Select an Amazon SQS queue in an other AWS account as a dead-letter
queue and then enter the ARN of the queue to use. You must attach a resource-based
policy to the queue that grants EventBridge permission to send messages to it.

For more information, see Granting permissions to the dead-letter queue.

4. (Optional) Choose Add another target to add another target for this rule.

5. Choose Next.

Note that EventBridge may not display all of the following fields for a given AWS service.

Configure tags and review rule

Finally, enter any desired tags for the rule, then review and create the rule.

To configure tags, and review and create the rule

1. (Optional) Enter one or more tags for the rule. For more information, see Amazon EventBridge
tags.

2. Choose Next.
Create a rule that reacts to events 157

Amazon EventBridge User Guide

3. Review the details for the new rule. To make changes to any section, choose the Edit button
next to that section.

When satisfied with the rule details, choose Create rule.

Create a rule that reacts to events 158

Amazon EventBridge User Guide

Using Amazon EventBridge Scheduler with Amazon
EventBridge

Amazon EventBridge Scheduler is a serverless scheduler that allows you to create, run, and manage
tasks from one central, managed service. With EventBridge Scheduler, you can create schedules
using cron and rate expressions for recurring patterns, or configure one-time invocations. You can
set up flexible time windows for delivery, define retry limits, and set the maximum retention time
for failed API invocations.

EventBridge Scheduler is highly customizable, and offers improved scalability over EventBridge
scheduled rules, with a wider set of target API operations and AWS services. We recommend that
you use EventBridge Scheduler to invoke targets on a schedule.

Topics

• Set up the execution role

• Create a schedule

• Related resources

Set up the execution role

When you create a new schedule, EventBridge Scheduler must have permission to invoke its target
API operation on your behalf. You grant these permissions to EventBridge Scheduler using an
execution role. The permission policy you attach to your schedule's execution role defines the
required permissions. These permissions depend on the target API you want EventBridge Scheduler
to invoke.

When you use the EventBridge Scheduler console to create a schedule, as in the following
procedure, EventBridge Scheduler automatically sets up an execution role based on your selected
target. If you want to create a schedule using one of the EventBridge Scheduler SDKs, the AWS
CLI, or AWS CloudFormation, you must have an existing execution role that grants the permissions
EventBridge Scheduler requires to invoke a target. For more information about manually setting up
an execution role for your schedule, see Setting up an execution role in the EventBridge Scheduler
User Guide.

Using EventBridge Scheduler 159

https://docs.aws.amazon.com/scheduler/latest/UserGuide/what-is-scheduler.html
https://docs.aws.amazon.com/scheduler/latest/UserGuide/setting-up.html#setting-up-execution-role

Amazon EventBridge User Guide

Create a schedule

To create a schedule by using the console

1. Open the Amazon EventBridge Scheduler console at https://console.aws.amazon.com/
scheduler/home.

2. On the Schedules page, choose Create schedule.

3. On the Specify schedule detail page, in the Schedule name and description section, do the
following:

a. For Schedule name, enter a name for your schedule. For example, MyTestSchedule.

b. (Optional) For Description, enter a description for your schedule. For example, My first
schedule.

c. For Schedule group, choose a schedule group from the dropdown list. If you don't have a
group, choose default. To create a schedule group, choose create your own schedule.

You use schedule groups to add tags to groups of schedules.

4. • Choose your schedule options.

Occurrence Do this...

One-time schedule

A one-time schedule
invokes a target only once
at the date and time that
you specify.

For Date and time, do the
following:

• Enter a valid date in
YYYY/MM/DD format.

• Enter a timestamp in 24-
hour hh:mm format.

• For Timezone, choose
the timezone.

Recurring schedule

A recurring schedule
invokes a target at a rate
that you specify using a

a. For Schedule type, do
one of the following:

• To use a cron
expression to define
the schedule, choose

Create a schedule 160

https://console.aws.amazon.com/scheduler/home/
https://console.aws.amazon.com/scheduler/home/

Amazon EventBridge User Guide

Occurrence Do this...

cron expression or rate
expression.

Cron-based schedule
and enter the cron
expression.

• To use a rate
expression to define
the schedule, choose
Rate-based schedule
and enter the rate
expression.

For more informati
on about cron and
rate expressions,
see Schedule types
on EventBridge
Scheduler in the
Amazon EventBridge
Scheduler User Guide.

b. For Flexible time
window, choose Off to
turn off the option, or
choose one of the pre-
defined time windows.
For example, if you
choose 15 minutes
and you set a recurring
 schedule to invoke its
target once every hour,
the schedule runs within
15 minutes after the
start of every hour.

5. (Optional) If you chose Recurring schedule in the previous step, in the Timeframe section, do
the following:

Create a schedule 161

https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based

Amazon EventBridge User Guide

a. For Timezone, choose a timezone.

b. For Start date and time, enter a valid date in YYYY/MM/DD format, and then specify a
timestamp in 24-hour hh:mm format.

c. For End date and time, enter a valid date in YYYY/MM/DD format, and then specify a
timestamp in 24-hour hh:mm format.

6. Choose Next.

7. On the Select target page, choose the AWS API operation that EventBridge Scheduler invokes:

a. For Target API, choose Templated targets.

b. Choose Amazon EventBridge PutEvents.

c. Under PutEvents, specify the following:

• For EventBridge event bus, choose the event bus from the drop-down menu. For
example, default.

You can also create a new event bus in the EventBridge console by choosing Create new
event bus.

• For Detail-type, enter the detail type of the events you want to match. For example,
Object Created.

• For Source, enter the name of the service that is the source of the events.

For AWS service events, specify the service prefix as the source. Do not include the aws.
prefix. For example, for Amazon S3 events, enter s3.

To determine a service's prefix, see The condition keys table in the Service Authorization
Reference. For more information about source and detail-type event values, see ???.

• (Optional): For Detail, enter an event pattern to further filter the events EventBridge
Scheduler sends to EventBridge.

For more information, see ???.

8. Choose Next.

9. On the Settings page, do the following:

a. To turn on the schedule, under Schedule state, toggle Enable schedule.

b. To configure a retry policy for your schedule, under Retry policy and dead-letter queue
(DLQ), do the following:

Create a schedule 162

service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html#context_keys_table

Amazon EventBridge User Guide

• Toggle Retry.

• For Maximum age of event, enter the maximum hour(s) and min(s) that EventBridge
Scheduler must keep an unprocessed event.

• The maximum time is 24 hours.

• For Maximum retries, enter the maximum number of times EventBridge Scheduler
retries the schedule if the target returns an error.

The maximum value is 185 retries.

With retry policies, if a schedule fails to invoke its target, EventBridge Scheduler re-runs
the schedule. If configured, you must set the maximum retention time and retries for the
schedule.

c. Choose where EventBridge Scheduler stores undelivered events.

Dead-letter queue (DLQ)
option

Do this...

Don't store Choose None.

Store the event in the
same AWS account
where you're creating the
schedule

a. Choose Select an
Amazon SQS queue in
my AWS account as a
DLQ.

b. Choose the Amazon
Resource Name (ARN) of
the Amazon SQS queue.

Store the event in a
different AWS account
from where you're creating
the schedule

a. Choose Specify an
Amazon SQS queue in
other AWS accounts as
a DLQ.

b. Enter the Amazon
Resource Name (ARN) of
the Amazon SQS queue.

Create a schedule 163

Amazon EventBridge User Guide

d. To use a customer managed key to encrypt your target input, under Encryption, choose
Customize encryption settings (advanced).

If you choose this option, enter an existing KMS key ARN or choose Create an AWS KMS
key to navigate to the AWS KMS console. For more information about how EventBridge
Scheduler encrypts your data at rest, see Encryption at rest in the Amazon EventBridge
Scheduler User Guide.

e. To have EventBridge Scheduler create a new execution role for you, choose Create new
role for this schedule. Then, enter a name for Role name. If you choose this option,
EventBridge Scheduler attaches the required permissions necessary for your templated
target to the role.

10. Choose Next.

11. In the Review and create schedule page, review the details of your schedule. In each section,
choose Edit to go back to that step and edit its details.

12. Choose Create schedule.

You can view a list of your new and existing schedules on the Schedules page. Under the
Status column, verify that your new schedule is Enabled.

Related resources

For more information about EventBridge Scheduler, see the following:

• EventBridge Scheduler User Guide

• EventBridge Scheduler API Reference

• EventBridge Scheduler Pricing

Creating an Amazon EventBridge rule that runs on a schedule

A rule can run in response to an event, or at certain time intervals. For example, to periodically run
an AWS Lambda function, you can create a rule to run on a schedule.

Note

EventBridge offers Amazon EventBridge Scheduler, a serverless scheduler that allows you
to create, run, and manage tasks from one central, managed service. EventBridge Scheduler

Related resources 164

https://docs.aws.amazon.com/scheduler/latest/UserGuide/encryption-rest.html
https://docs.aws.amazon.com/scheduler/latest/UserGuide/what-is-scheduler.html
https://docs.aws.amazon.com/scheduler/latest/APIReference/Welcome.html
https://aws.amazon.com/eventbridge/pricing/#Scheduler

Amazon EventBridge User Guide

is highly customizable, and offers improved scalability over EventBridge scheduled rules,
with a wider set of target API operations and AWS services.
We recommend that you use EventBridge Scheduler to invoke targets on a schedule. For
more information, see ???.

In EventBridge, you can create two types of scheduled rules:

• Rules that run at a regular rate

EventBridge runs these rules at regular intervals; for example, every 20 minutes.

To specify the rate for a scheduled rule, you define a rate expression.

• Rules that run at specific times

EventBridge runs these rules at specific times and dates; for example, 8:00 a.m. PST on the first
Monday of every month.

To specify the time and dates a scheduled rule runs, you define a cron expression.

Rate expressions are simpler to define, while cron expressions offer detailed schedule control. For
example, with a cron expression, you can define a rule that runs at a specified time on a certain day
of each week or month. In contrast, rate expressions run a rule at a regular rate, such as once every
hour or once every day.

All scheduled events use UTC+0 time zone, and the minimum precision for a schedule is one
minute.

Note

EventBridge doesn't provide second-level precision in schedule expressions. The finest
resolution using a cron expression is one minute. Due to the distributed nature of
EventBridge and the target services, there can be a delay of several seconds between
the time the scheduled rule is triggered and the time the target service runs the target
resource.

Creating a rule that runs on a schedule 165

Amazon EventBridge User Guide

The following video gives an overview of scheduling tasks: Creating scheduled tasks with
EventBridge

Topics

• Create a rule that runs on a schedule

• Cron expressions reference

• Rate expressions reference

Create a rule that runs on a schedule

The following steps walk you through how to create an EventBridge rule that runs on a regular
schedule.

Note

You can only create scheduled rules using the default event bus.

Steps

• Define the rule

• Define the schedule

• Select targets

• Configure tags and review rule

Define the rule

First, enter a name and description for your rule to identify it.

To define the rule detail

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

4. Enter a Name and, optionally, a Description for the rule.

Create a rule that runs on a schedule 166

http://www.youtube.com/embed/5RGa773BVeU
http://www.youtube.com/embed/5RGa773BVeU
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

A rule can't have the same name as another rule in the same AWS Region and on the same
event bus.

5. For Event bus, choose the default event bus. You can only create scheduled rules using the
default event bus.

6. To have the rule take effect as soon as you create it, make sure the Enable the rule on the
selected event bus option is enabled.

7. For Rule type, choose Schedule.

At this point, you can choose to continue with creating a rule that runs on a schedule, or use
Amazon EventBridge Scheduler.

8. Choose how you want to continue:

• Use EventBridge Scheduler to create your schedule

Note

EventBridge Scheduler is a serverless scheduler that allows you to create, run, and
manage tasks from one central, managed service. It provides one-time and recurring
scheduling functionality independent of event buses and rules. EventBridge
Scheduler is highly customizable, and offers improved scalability over EventBridge
scheduled rules, with a wider set of target API operations and AWS services.
We recommend that you use EventBridge Scheduler to invoke targets on a schedule.
For more information, see What is Amazon EventBridge Scheduler? in the Amazon
EventBridge Scheduler User Guide.

1. Select Continue in EventBridge Scheduler

EventBridge opens the EventBridge Scheduler console to the Create schedule page.

2. Create the schedule in the EventBridge Scheduler console.

• Continue using EventBridge to create a scheduled rule for the default event bus

1. Select Continue to create rule.

Define the schedule

Next, define the schedule pattern.

Create a rule that runs on a schedule 167

https://docs.aws.amazon.com/scheduler/latest/UserGuide/what-is-scheduler.html
https://docs.aws.amazon.com/scheduler/latest/UserGuide/getting-started.html#getting-started-console

Amazon EventBridge User Guide

To define the schedule pattern

1. For Schedule pattern, choose whether you want the schedule to run at a specific time, or at a
regular rate:

Specific time

1. Choose A fine-grained schedule that runs at a specific time, such as 8:00 a.m. PST on
the first Monday of every month.

2. For Cron expression, specify fields to define the cron expresssion that EventBridge
should use to determine when to execute this scheduled rule.

Once you have specified all fields, EventBridge displays the next ten dates when
EventBridge will execute this scheduled rule. You can choose whether to display those
dates in UTC or Local time zone.

For more information on constructing a cron expression, see ???.

Regular rate

1. Choose A schedule that runs at a regular rate, such as every 10 minutes.

2. For Rate expression, specify the Value and Unit fields to define the rate at which
EventBridge should execute this scheduled rule.

For more information on constructing a rate expression, see ???.

2. Choose Next.

Select targets

Choose one or more targets to receive events that match the specified pattern. Targets can
include an EventBridge event bus, EventBridge API destinations, including SaaS partners such as
Salesforce, or another AWS service.

To select targets

1. For Target type, choose one of the following target types:

Create a rule that runs on a schedule 168

Amazon EventBridge User Guide

Event bus

To select an EventBridge event bus, select EventBridge event bus, then do the following:

• To use an event bus in the same AWS Region as this rule:

1. Select Event bus in the same account and Region.

2. For Event bus for target, choose the dropdown box and enter the name of the event
bus. You can also select the event bus from the dropdown list.

For more information, see ???.

• To use an event bus in a different AWS Region or account as this rule:

1. Select Event bus in a different account or Region.

2. For Event bus as target, enter the ARN of the event bus you want to use.

For more information, see:

• ???

• ???

API destination

To use an EventBridge API destination, select EventBridge API destination, then do one of
the following:

• To use an existing API destination, select Use an existing API destination. Then select an
API destination from the dropdown list.

• To create a new API destination, select Create a new API destination. Then, provide the
following details for the destination:

• Name – Enter a name for the destination.

Names must be unique within your AWS account. Names can have up to 64 characters.
Valid characters are A-Z, a-z, 0-9, and . _ - (hyphen).

• (Optional) Description – Enter a description for the destination.

Descriptions can have up to 512 characters.

• API destination endpoint – The URL endpoint for the target.

Create a rule that runs on a schedule 169

Amazon EventBridge User Guide

The endpoint URL must start with https. You can include the * as a path parameter
wildcard. You can set path parameters from the target's HttpParameters attribute.

• HTTP method – Select the HTTP method used when you invoke the endpoint.

• (Optional) Invocation rate limit per second – Enter the maximum number of
invocations accepted for each second for this destination.

This value must be greater than zero. By default, this value is set to 300.

• Connection – Choose to use a new or existing connection:

• To use an existing connection, select Use an existing connection and select the
connection from the dropdown list.

• To create a new connection for this destination select Create a new connection,
then define the connection's Name, Destination type, and Authorization type. You
can also add an optional Description for this connection.

For more information, see ???.

AWS service

To use an AWS service, select AWS service, then do the following:

1. For Select a target, select an AWS service to use as the target. Provide the information
requested for the service you select.

Note

The fields displayed vary depending on the service selected. For more
information about available targets, see Targets available in the EventBridge
console.

2. For many target types, EventBridge needs permissions to send events to the target. In these
cases, EventBridge can create the IAM role needed for your rule to run.

For Execution role, do one of the following:

• To create a new execution role for this rule:

a. Select Create a new role for this specific resource.

Create a rule that runs on a schedule 170

Amazon EventBridge User Guide

b. Either enter a name for this execution role, or use the name generated by
EventBridge.

• To use an existing execution role for this rule:

a. Select Use existing role.

b. Enter or select the name of the execution role to use from the dropdown list.

3. (Optional) For Additional settings, specify any of the optional settings available for your
target type:

Event bus

(Optional) For Dead-letter queue, choose whether to use a standard Amazon SQS queue
as a dead-letter queue. EventBridge sends events that match this rule to the dead-letter
queue if they are not successfully delivered to the target. Do one of the following:

• Choose None to not use a dead-letter queue.

• Choose Select an Amazon SQS queue in the current AWS account to use as the dead-
letter queue and then select the queue to use from the drop-down list.

• Choose Select an Amazon SQS queue in an other AWS account as a dead-letter queue
and then enter the ARN of the queue to use. You must attach a resource-based policy to
the queue that grants EventBridge permission to send messages to it.

For more information, see Granting permissions to the dead-letter queue.

API destination

1. (Optional) For Configure target input, choose how you want to customize the text sent
to the target for matching events. Choose one of the following:

• Matched events – EventBridge sends the entire original source event to the target.
This is the default.

• Part of the matched events – EventBridge only sends the specified portion of the
original source event to the target.

Under Specify the part of the matched event, specify a JSON path that defines the
part of the event you want EventBridge to send to the target.

• Constant (JSON text) – EventBridge sends only the specified JSON text to the target.
No part of the original source event is sent.

Create a rule that runs on a schedule 171

Amazon EventBridge User Guide

Under Specify the constant in JSON, specify the JSON text that you want EventBridge
to send to the target instead of the event.

• Input transformer – Configure an input transformer to customize the text you want
EventBridge send to the target. For more information, see ???.

a. Select Configure input transformer.

b. Configure the input transformer following the steps in ???.

2. (Optional) Under Retry policy, specify how EventBridge should retry sending an event to
a target after an error occurs.

• Maximum age of event – Enter the maximum amount of time (in hours, minutes, and
seconds) for EventBridge to retain unprocessed events. The default is 24 hours.

• Retry attempts – Enter the maximum number of times EventBridge should retry
sending an event to the target after an error occurs. The default is 185 times.

3. (Optional) For Dead-letter queue, choose whether to use a standard Amazon SQS queue
as a dead-letter queue. EventBridge sends events that match this rule to the dead-letter
queue if they are not successfully delivered to the target. Do one of the following:

• Choose None to not use a dead-letter queue.

• Choose Select an Amazon SQS queue in the current AWS account to use as the
dead-letter queue and then select the queue to use from the drop-down list.

• Choose Select an Amazon SQS queue in an other AWS account as a dead-letter
queue and then enter the ARN of the queue to use. You must attach a resource-based
policy to the queue that grants EventBridge permission to send messages to it.

For more information, see Granting permissions to the dead-letter queue.

AWS service

Note that EventBridge may not display all of the following fields for a given AWS service.

1. (Optional) For Configure target input, choose how you want to customize the text sent
to the target for matching events. Choose one of the following:

• Matched events – EventBridge sends the entire original source event to the target.
This is the default.

• Part of the matched events – EventBridge only sends the specified portion of the
original source event to the target.

Create a rule that runs on a schedule 172

Amazon EventBridge User Guide

Under Specify the part of the matched event, specify a JSON path that defines the
part of the event you want EventBridge to send to the target.

• Constant (JSON text) – EventBridge sends only the specified JSON text to the target.
No part of the original source event is sent.

Under Specify the constant in JSON, specify the JSON text that you want EventBridge
to send to the target instead of the event.

• Input transformer – Configure an input transformer to customize the text you want
EventBridge send to the target. For more information, see ???.

a. Select Configure input transformer.

b. Configure the input transformer following the steps in ???.

2. (Optional) Under Retry policy, specify how EventBridge should retry sending an event to
a target after an error occurs.

• Maximum age of event – Enter the maximum amount of time (in hours, minutes, and
seconds) for EventBridge to retain unprocessed events. The default is 24 hours.

• Retry attempts – Enter the maximum number of times EventBridge should retry
sending an event to the target after an error occurs. The default is 185 times.

3. (Optional) For Dead-letter queue, choose whether to use a standard Amazon SQS queue
as a dead-letter queue. EventBridge sends events that match this rule to the dead-letter
queue if they are not successfully delivered to the target. Do one of the following:

• Choose None to not use a dead-letter queue.

• Choose Select an Amazon SQS queue in the current AWS account to use as the
dead-letter queue and then select the queue to use from the drop-down list.

• Choose Select an Amazon SQS queue in an other AWS account as a dead-letter
queue and then enter the ARN of the queue to use. You must attach a resource-based
policy to the queue that grants EventBridge permission to send messages to it.

For more information, see Granting permissions to the dead-letter queue.

4. (Optional) Choose Add another target to add another target for this rule.

5. Choose Next.

Configure tags and review rule

Finally, enter any desired tags for the rule, then review and create the rule.

Create a rule that runs on a schedule 173

Amazon EventBridge User Guide

To configure tags, and review and create the rule

1. (Optional) Enter one or more tags for the rule. For more information, see Amazon EventBridge
tags.

2. Choose Next.

3. Review the details for the new rule. To make changes to any section, choose the Edit button
next to that section.

When satisfied with the rule details, choose Create rule.

Cron expressions reference

Cron expressions have six required fields, which are separated by white space.

Syntax

cron(fields)

Field Values Wildcards

Minutes 0-59 , - * /

Hours 0-23 , - * /

Day-of-month 1-31 , - * ? / L W

Month 1-12 or JAN-DEC , - * /

Day-of-week 1-7 or SUN-SAT , - * ? L #

Year 1970-2199 , - * /

Wildcards

• The , (comma) wildcard includes additional values. In the Month field, JAN,FEB,MAR includes
January, February, and March.

• The - (dash) wildcard specifies ranges. In the Day field, 1-15 includes days 1 through 15 of the
specified month.

Cron expressions 174

Amazon EventBridge User Guide

• The * (asterisk) wildcard includes all values in the field. In the Hours field, * includes every hour.
You can't use * in both the Day-of-month and Day-of-week fields. If you use it in one, you must
use ? in the other.

• The / (slash) wildcard specifies increments. In the Minutes field, you could enter 1/10 to specify
every tenth minute, starting from the first minute of the hour (for example, the 11th, 21st, and
31st minute, and so on).

• The ? (question mark) wildcard specifies any. In the Day-of-month field you could enter 7 and if
any day of the week was acceptable, you could enter ? in the Day-of-week field.

• The L wildcard in the Day-of-month or Day-of-week fields specifies the last day of the month or
week.

• The W wildcard in the Day-of-month field specifies a weekday. In the Day-of-month field, 3W
specifies the weekday closest to the third day of the month.

• The # wildcard in the Day-of-week field specifies a certain instance of the specified day of the
week within a month. For example, 3#2 would be the second Tuesday of the month: the 3 refers
to Tuesday because it is the third day of each week, and the 2 refers to the second day of that
type within the month.

Note

If you use a '#' character, you can define only one expression in the day-of-week field. For
example, "3#1,6#3" is not valid because it is interpreted as two expressions.

Limitations

• You can't specify the Day-of-month and Day-of-week fields in the same cron expression. If you
specify a value or a * (asterisk) in one of the fields, you must use a ? (question mark) in the other.

• Cron expressions that lead to rates faster than 1 minute are not supported.

Examples

You can use the following sample cron strings when creating a rule with schedule.

Cron expressions 175

Amazon EventBridge User Guide

Minutes Hours Day of
month

Month Day of
week

Year Meaning

0 10 * * ? * Run at
10:00 am
(UTC+0)
every day

15 12 * * ? * Run at
12:15 pm
(UTC+0)
every day

0 18 ? * MON-FRI * Run at
6:00 pm
(UTC+0)
every
Monday
through
Friday

0 8 1 * ? * Run at
8:00 am
(UTC+0)
every 1st
day of the
month

0/15 * * * ? * Run every
15 minutes

0/10 * ? * MON-FRI * Run every
10 minutes
Monday
through
Friday

Cron expressions 176

Amazon EventBridge User Guide

Minutes Hours Day of
month

Month Day of
week

Year Meaning

0/5 8-17 ? * MON-FRI * Run every
5 minutes
Monday
through
Friday
between
8:00 am
and 5:55
pm (UTC
+0)

0/30 20-2 ? * MON-FRI * Run every
30 minutes
Monday
through
Friday
between
10:00 pm
on the
starting
day to 2:00
am on the
following
day (UTC)

Run from
12:00 am
to 2:00 am
on Monday
morning
(UTC).

The following example creates a rule that runs every day at 12:00pm UTC+0.

Cron expressions 177

Amazon EventBridge User Guide

aws events put-rule --schedule-expression "cron(0 12 * * ? *)" --name MyRule1

The following example creates a rule that runs every day, at 2:05pm and 2:35pm UTC+0.

aws events put-rule --schedule-expression "cron(5,35 14 * * ? *)" --name MyRule2

The following example creates a rule that runs at 10:15am UTC+0 on the last Friday of each month
during the years 2019 to 2022.

aws events put-rule --schedule-expression "cron(15 10 ? * 6L 2019-2022)" --name MyRule3

Rate expressions reference

A rate expression starts when you create the scheduled event rule, and then it runs on a defined
schedule.

Rate expressions have two required fields separated by white space.

Syntax

rate(value unit)

value

A positive number.

unit

The unit of time. Different units are required for values of 1, such as minute, and values over 1,
such as minutes.

Valid values: minute | minutes | hour | hours | day | days

Limitations

If the value is equal to 1, then the unit must be singular. If the value is greater than 1, the unit
must be plural. For example, rate(1 hours) and rate(5 hour) aren't valid, but rate(1 hour) and rate(5
hours) are valid.

Examples

Rate expressions 178

Amazon EventBridge User Guide

The following examples show how to use rate expressions with the AWS CLI put-rule command.
The first example triggers the rule every minute, the next triggers it every five minutes, the third
example triggers it once an hour, and the final example triggers it once per day.

aws events put-rule --schedule-expression "rate(1 minute)" --name MyRule2

aws events put-rule --schedule-expression "rate(5 minutes)" --name MyRule3

aws events put-rule --schedule-expression "rate(1 hour)" --name MyRule4

aws events put-rule --schedule-expression "rate(1 day)" --name MyRule5

Rate expressions 179

Amazon EventBridge User Guide

Disabling or deleting an Amazon EventBridge rule

To stop a rule from processing events or running on a schedule, you can delete or disable the rule.
The following steps walk you through how to delete or disable an EventBridge rule.

To delete or disable a rule

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

Under Event bus, select the event bus that is associated with the rule.

3. Do one of the following:

a. To delete a rule, select the button next to the rule and choose Actions, Delete, Delete.

If the rule is a managed rule, enter the name of the rule to acknowledge that it is a
managed rule and that deleting it may stop functionality in the service that created the
rule. To continue, enter the rule name and choose Force delete.

b. To temporarily disable a rule, select the button next to the rule and choose Disable,
Disable.

You can't disable a managed rule.

Best practices when defining Amazon EventBridge rules

Below are some best practices to consider when you create rules for your event buses.

Set a single target for each rule

While you can specify up to five targets for a given rule, managing rules is easier when you specify
a single target for each rule. If more than one target needs to receive the same set of events, we
recommend duplicating the rule to deliver the same events to different targets. This encapsulation
simplifies maintaining rules: if the needs of the event targets diverge over time, you can update
each rule and its event pattern independently of the others.

Set rule permissions

You can enable event-consuming application components or services to be in control of managing
their own rules. A common architectural approach adopted by customers is to isolate these

Disabling or deleting a rule 180

https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

application components or services by using separate AWS accounts. To enable the flow of events
from one account to another, you must create a rule on one event bus that routes events to an
event bus in another account. You can enable event-consuming teams or services to be in control
of managing their own rules. You do this by specifying the appropriate permissions to their
accounts through resource policies. This works across accounts and Regions.

For more information, see ???.

For example of resource policies, see Multi-account design patterns with Amazon EventBridge on
GitHub.

Monitor rule performance

Monitor your rules to make sure they are performing as you expect:

• Monitor the TriggeredRules metric for missing data-points or anomalies can assist you in
detecting discrepancies for a publisher that made a breaking change. For more information, see
???.

• Alarm on anomalies or maximum expected count can also help detecting when a rule is
matching against new events. This can happen when event publishers, including AWS services
and SaaS partners, introduce new events when enabling new use-cases and features. When
these new events are unexpected and lead to a higher volume than the processing rate of the
downstream target, they can lead to an event backlog.

Such processing of unexpected events can also lead to unwanted billing charges.

It can also trigger throttling of rules when the account goes over its aggregate target invocations
per second service quota. EventBridge will still attempt to deliver events matched by throttled
rules and retry up to 24 hours or as described within the target’s custom retry policy. You can
detect and alarm throttled rules using the ThrottledRules metric

• For low-latency use cases, you can also monitor latency using
IngestionToInvocationStartLatency, which provides an indication of health of your event
bus. Any extended periods of high latency over 30 seconds may indicate a service disruption or
rule throttling.

Monitor rule performance 181

https://github.com/aws-samples/amazon-eventbridge-resource-policy-samples/tree/main/patterns

Amazon EventBridge User Guide

Using Amazon EventBridge and AWS Serverless Application
Model templates

You can build and test rules manually in the EventBridge console, which can help in the
development process as you refine event patterns. However, once you are ready to deploy your
application, it’s easier to use a framework like AWS SAM to launch all your serverless resources
consistently.

We'll use this example application to look into the ways you can use AWS SAM templates to build
EventBridge resources. The template.yaml file in this example is a AWS SAM template that defines
four AWS Lambda functions and shows two different ways to integrate the Lambda functions with
EventBridge.

For a walkthrough of this example application, see ???.

There are two approaches to using EventBridge and AWS SAM templates. For simple integrations
where one Lambda function is invoked by one rule, the the Combined template approach is
recommended. If you have complex routing logic, or you are connecting to resources outside of
your AWS SAM template, the Separated template approach is the better choice.

Approaches:

• Combined template

• Separated template

Combined template

The first approach uses the Events property to configure the EventBridge rule. The following
example code defines an event that invokes your Lambda function.

Note

This example automatically creates the rule on the default event bus, which exists in
every AWS account. To associate the rule with a custom event bus, you can add the
EventBusName to the template.

atmConsumerCase3Fn:
 Type: AWS::Serverless::Function

Using AWS SAM templates 182

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/what-is-sam.html
https://github.com/aws-samples/amazon-eventbridge-producer-consumer-example
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

Amazon EventBridge User Guide

 Properties:
 CodeUri: atmConsumer/
 Handler: handler.case3Handler
 Runtime: nodejs12.x
 Events:
 Trigger:
 Type: CloudWatchEvent
 Properties:
 Pattern:
 source:
 - custom.myATMapp
 detail-type:
 - transaction
 detail:
 result:
 - "anything-but": "approved"

This YAML code is equivalent to an event pattern in the EventBridge console. In YAML, you only
need to define the event pattern, and AWS SAM automatically creates an IAM role with the
required permissions.

Separated template

In the second approach to defining an EventBridge configuration in AWS SAM, the resources are
separated more clearly in the template.

1. First, you define the Lambda function:

atmConsumerCase1Fn:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: atmConsumer/
 Handler: handler.case1Handler
 Runtime: nodejs12.x

2. Next, define the rule using an AWS::Events::Rule resource. The properties define the event
pattern and can also specify targets. You can explicitly define multiple targets.

EventRuleCase1:
 Type: AWS::Events::Rule
 Properties:
 Description: "Approved transactions"

Separated template 183

Amazon EventBridge User Guide

 EventPattern:
 source:
 - "custom.myATMapp"
 detail-type:
 - transaction
 detail:
 result:
 - "approved"
 State: "ENABLED"
 Targets:
 -
 Arn:
 Fn::GetAtt:
 - "atmConsumerCase1Fn"
 - "Arn"
 Id: "atmConsumerTarget1"

3. Finally, define an AWS::Lambda::Permission resource that grants permission to
EventBridge to invoke the target.

PermissionForEventsToInvokeLambda:
 Type: AWS::Lambda::Permission
 Properties:
 FunctionName:
 Ref: "atmConsumerCase1Fn"
 Action: "lambda:InvokeFunction"
 Principal: "events.amazonaws.com"
 SourceArn:
 Fn::GetAtt:
 - "EventRuleCase1"
 - "Arn"

Generate an AWS CloudFormation template from Amazon
EventBridge rules

AWS CloudFormation enables you to configure and manage your AWS resources across
accounts and regions in a centralized and repeatable manner by treating infrastructure as code.
CloudFormation does this by letting you create templates, which define the resources you want to
provision and manage.

Generating rule templates 184

Amazon EventBridge User Guide

EventBridge enables you to generate templates from the existing rules in your account, as an aid to
help you jumpstart developing CloudFormation templates. You can select a single rule, or multiple
rules to include in the template. You can then use these templates as the basis for creating stacks
of resources under CloudFormation management.

For more information on CloudFormation see The AWS CloudFormation User Guide.

Note

EventBridge does not include managed rules in the generated template.

You can also generate a template from an existing event bus, including the rules that event bus
contains.

To generate an AWS CloudFormation template from one or more rules

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Under Select event bus, choose the event bus that contains the rules you want to include in
the template.

4. Under Rules, choose the rules you want to include in the generated AWS CloudFormation
template.

For a single rule, you can also choose the rule name to display the rule's details page.

5. Choose CloudFormation Template, and then choose which format you want EventBridge to
generate the template in: JSON or YAML.

EventBridge displays the template, generated in the selected format.

6. EventBridge gives you the option of downloading the template file, or copying the template to
the clipboard.

• To download the template file, choose Download.

• To copy the template to the clipboard, choose Copy.

7. To exit the template, choose Cancel.

Generating rule templates 185

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-rules.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-generate-event-bus-template.html
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

Once you've customized your AWS CloudFormation template as necessary for your use case, you
can use it to create stacks in AWS CloudFormation.

Considerations when using CloudFormation templates generated from
Amazon EventBridge

Consider the following factors when using a CloudFormation template you generated from
EventBridge:

• EventBridge does not include any passwords in the generate template.

You can edit the template to include template parameters that enable users to specify passwords
or other sensitive information when using the template to create or update a CloudFormation
stack.

In addition, users can use Secrets Manager to create a secret in the desired region and then edit
the generated template to employ dynamic parameters.

• Targets in the generated template remain exactly as they were specified in the original event
bus. This can lead to cross-region issues if you do not appropriately edit the template before
using it to create stacks in other regions.

Additionally, the generated template does not create the downstream targets automatically.

Considerations when using a generated template 186

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-references.html#dynamic-references-secretsmanager

Amazon EventBridge User Guide

Amazon EventBridge targets

A target is a resource or endpoint that EventBridge sends an event to when the event matches
the event pattern defined for a rule. The rule processes the event data and sends the pertinent
information to the target. To deliver event data to a target, EventBridge needs permission to access
the target resource. You can define up to five targets for each rule.

When you add targets to a rule and that rule runs soon after, any new or updated targets might not
be immediately invoked. Allow a short period of time for changes to take effect.

The following video covers the basics of targets: What is a target

Targets available in the EventBridge console

You can configure the following targets for events in the EventBridge console:

• API destination

• API Gateway

• AWS AppSync;

• Batch job queue

• CloudWatch log group

• CodeBuild project

• CodePipeline

• Amazon EBS CreateSnapshot API call

• EC2 Image Builder

• EC2 RebootInstances API call

• EC2 StopInstances API call

• EC2 TerminateInstances API call

• ECS task

• Event bus in a different account or Region

• Event bus in the same account and Region

• Firehose delivery stream

Targets available in the EventBridge console 187

http://www.youtube.com/embed/hrZG1mr6H8I

Amazon EventBridge User Guide

• Glue workflow

• Incident Manager response plan

• Inspector assessment template

• Kinesis stream

• Lambda function (ASYNC)

• Amazon Redshift cluster data API queries

• Amazon Redshift Serverless workgroup data API queries

• SageMaker Pipeline

• Amazon SNS topic

EventBridge does not support Amazon SNS FIFO (first in, first out) topics.

• Amazon SQS queue

• Step Functions state machine (ASYNC)

• Systems Manager Automation

• Systems Manager OpsItem

• Systems Manager Run Command

Target parameters

Some targets don't send the information in the event payload to the target, instead, they treat the
event as a trigger for invoking a specific API. EventBridge uses the Target parameters to determine
what happens with that target. These include the following:

• API destinations (The data sent to an API destination must match the structure of the API. You
must use the InputTransformer object to make sure the data is structured correctly. If you
want to include the original event payload, reference it in the InputTransformer.)

• API Gateway (The data sent to API Gateway must match the structure of the API. You must use
the InputTransformer object to make sure the data is structured correctly. If you want to
include the original event payload, reference it in the InputTransformer.)

• Amazon EC2 Image Builder

• RedshiftDataParameters (Amazon Redshift Data API clusters)

• SageMakerPipelineParameters (Amazon SageMaker Runtime Model Building Pipelines)

Target parameters 188

https://docs.aws.amazon.com//incident-manager/latest/userguide/incident-creation.html#incident-tracking-auto-eventbridge
https://docs.aws.amazon.com/redshift/latest/mgmt/data-api-calling-event-bridge.html
https://docs.aws.amazon.com/redshift/latest/mgmt/data-api-calling-event-bridge.html
https://docs.aws.amazon.com/sns/latest/dg/sns-fifo-topics.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_Target.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_InputTransformer.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_InputTransformer.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_InputTransformer.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_InputTransformer.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_RedshiftDataParameters.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_SageMakerPipelineParameters.html

Amazon EventBridge User Guide

Note

EventBridge does not support all JSON Path syntax and evaluate it at runtime. Supported
syntax includes:

• dot notation (for example,$.detail)

• dashes

• underscores

• alphanumeric characters

• array indices

• wildcards (*)

Dynamic path parameters

Some target parameters support optional dynamic JSON path syntax. This syntax allows you to
specify JSON paths instead of static values (for example $.detail.state). The entire value
has to be a JSON path, not just part of it. For example, RedshiftParameters.Sql can be
$.detail.state but it can't be "SELECT * FROM $.detail.state". These paths are replaced
dynamically at runtime with data from the event payload itself at the specified path. Dynamic path
parameters can't reference new or transformed values resulting from input transformation. The
supported syntax for dynamic parameter JSON paths is the same as when transforming input. For
more information, see ???

Dynamic syntax can be used on all the string, non-enum fields of these parameters:

• EcsParameters

• HttpParameters (except HeaderParameters keys)

• RedshiftDataParameters

• SageMakerPipelineParameters

Permissions

To make API calls on the resources that you own, EventBridge needs appropriate permission.
For AWS Lambda and Amazon SNS resources, EventBridge uses resource-based policies. For EC2
instances, Kinesis data streams, and Step Functions state machines, EventBridge uses IAM roles

Dynamic path parameters 189

https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_EcsParameters.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_HttpParameters.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_RedshiftDataParameters.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_SageMakerPipelineParameters.html

Amazon EventBridge User Guide

that you specify in the RoleARN parameter in PutTargets. You can invoke an API Gateway
endpoint with configured IAM authorization, but the role is optional if you haven't configured
authorization. For more information, see Amazon EventBridge and AWS Identity and Access
Management.

If another account is in the same Region and has granted you permission, then you can send events
to that account. For more information, see Sending and receiving Amazon EventBridge events
between AWS accounts.

If your target is encrypted, you must include the following section in your KMS key policy.

{
 "Sid": "Allow EventBridge to use the key",
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "*"
}

EventBridge target specifics

AWS Batch job queues

Certain parameters to AWS Batch submitJob can be configured via BatchParameters.

Others can be specified in the event payload. If the event payload (passed through or via
InputTransformers) contains the following keys, they are mapped to submitJob request
parameters:

• ContainerOverrides: containerOverrides

Note

This includes only command, environment, memory, and vcpus

EventBridge target specifics 190

https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_BatchParameters.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-transform-target-input.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html#API_SubmitJob_RequestSyntax
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html#API_SubmitJob_RequestSyntax

Amazon EventBridge User Guide

• DependsOn: dependsOn

Note

This includes only jobId

• Parameters: parameters

CloudWatch Logs group

If you don’t use an InputTransformer with a CloudWatch Logs target, the event payload is used as
the log message, and the source of the event as the timestamp. If you do use an InputTransformer,
the template must be:

{"timestamp":<timestamp>,"message":<message>}

EventBridge batches the entries sent to a log stream; therefore, EventBridge may deliver a single or
multiple events to a log stream, depending on traffic.

CodeBuild project

If you use InputTransformers to shape the input event to a Target to match the CodeBuild
StartBuildRequest structure, the parameters will be mapped 1-to-1 and passed through to
codeBuild.StartBuild.

Amazon ECS task

If you use InputTransformers to shape the input event to a Target to match the Amazon ECS
RunTask TaskOverride structure, the parameters will be mapped 1-to-1 and passed through to
ecs.RunTask.

Incident Manager Response Plan

If the matched event came from CloudWatch Alarms, the alarm state change details are populated
into the trigger details of the StartIncidentRequest call to Incident Manager.

CloudWatch Logs group 191

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-transform-target-input.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-transform-target-input.html
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestSyntax
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-transform-target-input.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_TaskOverride.html

Amazon EventBridge User Guide

Configure targets

Learn how to configure settings for EventBridge targets.

Targets:

• API destinations

• Amazon EventBridge targets for Amazon API Gateway

• AWS AppSync targets for Amazon EventBridge

• Connections for HTTP endpoint targets

• Sending and receiving Amazon EventBridge events between AWS accounts

• Sending and receiving Amazon EventBridge events between AWS Regions

• Sending and receiving Amazon EventBridge events between event buses in the same account
and Region

Configure targets 192

Amazon EventBridge User Guide

API destinations

Amazon EventBridge API destinations are HTTP endpoints that you can invoke as the target of
a rule, similar to how you invoke an AWS service or resource as a target. Using API destinations,
you can route events between AWS services, integrated software as a service (SaaS) applications,
and your applications outside of AWS by using API calls. When you specify an API destination
as the target of a rule, EventBridge invokes the HTTP endpoint for any event that matches the
event pattern specified in the rule and then delivers the event information with the request. With
EventBridge, you can use any HTTP method except CONNECT and TRACE for the request. The
most common HTTP methods to use are PUT and POST. You can also use input transformers
to customize the event to the parameters of a specific HTTP endpoint parameters. For more
information, see Amazon EventBridge input transformation.

API destinations do not support private destinations, such as interface VPC endpoints. For more
information, see ???.

Important

EventBridge requests to an API destination endpoint must have a maximum client
execution timeout of 5 seconds. If the target endpoint takes longer than 5 seconds to
respond, EventBridge times out the request. EventBridge retries timed out requests up to
the maximums that are configured on your retry policy. By default the maximums are 24
hours and 185 times. After the maximum number of retries, events are sent to your dead-
letter queue if you have one.Otherwise, the event is dropped.

The following video demonstrates the use of API destination: Using API destinations

In this topic:

• Create an API destination

• Creating rules that send events to an API destination

• Service-linked role for API destinations

• Headers in requests to API destinations

• API destination error codes

• How invocation rate affects event delivery

API destinations 193

http://www.youtube.com/embed/2ayxa3AdiK0

Amazon EventBridge User Guide

• Sending CloudEvents events to API destinations

• API destination partners

Create an API destination

Each API destination requires a connection. A connection specifies the authorization type and
credentials to use to authorize with the API destination endpoint. You can choose an existing
connection, or create a connection at the same time that you create the API destination. For more
information, see ???

To create an API destination using the EventBridge console

1. Log in to AWS using an account that has permissions to manage EventBridge and open the
EventBridge console.

2. In the left navigation pane, choose API destinations.

3. Scroll down to the API destinations table, and then choose Create API destination.

4. On the Create API destination page, enter a Name for the API destination. You can use up to
64 uppercase or lowercase letters, numbers, dot (.), dash (-), or underscore (_) characters.

The name must be unique to your account in the current Region.

5. Enter a Description for the API destination.

6. Enter an API destination endpoint for the API destination. The API destination endpoint is an
HTTP invocation endpoint target for events. The authorization information you include in the
connection used for this API destination is used to authorize against this endpoint. The URL
must use HTTPS.

7. Enter the HTTP method to use to connect to the API destination endpoint.

8. (Optional) For Invocation rate limit per second field, enter the maximum number of
invocations per second to send to the API destination endpoint.

The rate limit you set may affect how EventBridge delivers events. For more information, see
How invocation rate affects event delivery.

9. For Connection, do one of the following:

• Choose Use an existing connection, and then select the connection to use for this API
destination.

• Choose Create a new connection, and then enter the details for the connection to create.
For more information, see Connections.

API destinations 194

https://console.aws.amazon.com/events

Amazon EventBridge User Guide

10. Choose Create.

Creating rules that send events to an API destination

After you create an API destination, you can select it as the target of a rule. To use an API
destination as a target, you must provide an IAM role with the correct permissions. For more
information, see ???

Selecting an API destination as a target is part of creating the rule.

To create a rule that sends events to an API destination using the console

1. Follow the steps in the ??? procedure.

2. In the ??? step, when prompted to choose an API destination as the target type:

a. Select EventBridge API destination.

b. Do one of the following:

• Choose Use an existing API destination and select an existing API destination

• Choose Create a new API destination and specify the necessary setting to define your
new API destination.

For more information on specifying the required settings, see ???.

c. (Optional): To specify header parameters for the event, under Header Parameters choose
Add header parameter.

Next, specify the key and value for the header parameter.

d. (Optional): To specify query string parameters for the event, under Query string
parameters choose Add query string parameter.

Next, specify the key and value for the query string parameter.

3. Complete creating the rule following the procedure steps.

Service-linked role for API destinations

When you create a connection for an API destination, a service-linked role named
AWSServiceRoleForAmazonEventBridgeApiDestinations is added to your account.
EventBridge uses the service-linked role to create and store a secret in Secrets Manager.

API destinations 195

Amazon EventBridge User Guide

To grant the necessary permissions to the service-linked role, EventBridge attaches the
AmazonEventBridgeApiDestinationsServiceRolePolicy policy to the role. The policy limits
the permissions granted to only those necessary for the role to interact with the secret for the
connection. No other permissions are included, and the role can interact only with the connections
in your account to manage the secret.

The following policy is the AmazonEventBridgeApiDestinationsServiceRolePolicy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:CreateSecret",
 "secretsmanager:UpdateSecret",
 "secretsmanager:DescribeSecret",
 "secretsmanager:DeleteSecret",
 "secretsmanager:GetSecretValue",
 "secretsmanager:PutSecretValue"
],
 "Resource": "arn:aws:secretsmanager:*:*:secret:events!connection/*"
 }
]
}

For more information about service-linked roles, see Using service-linked roles in the IAM
documentation.

The AmazonEventBridgeApiDestinationsServiceRolePolicy service-linked role is
supported in the following AWS regions:

• US East (N. Virginia)

• US East (Ohio)

• US West (N. California)

• US West (Oregon)

• Africa (Cape Town)

• Asia Pacific (Hong Kong)

• Asia Pacific (Mumbai)

API destinations 196

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html

Amazon EventBridge User Guide

• Asia Pacific (Osaka)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Canada (Central)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Milan)

• Europe (Paris)

• Europe (Stockholm)

• Europe (Milan)

• South America (São Paulo)

• China (Ningxia)

• China (Beijing)

Headers in requests to API destinations

The following section details how EventBridge handles HTTP headers in requests to API
destinations.

Headers included in requests to API destinations

In addition to the authorization headers defined for the connection used for an API destination,
EventBridge includes the following headers in each request.

Header key Header value

User-Agent Amazon/EventBridge/ApiDestinations

Content-Type If no custom Content-Type value is specified
, EventBridge includes the following default
value as Content-Type:

API destinations 197

Amazon EventBridge User Guide

Header key Header value

application/json; charset=utf-8

Range bytes=0-1048575

Accept-Encoding gzip,deflate

Connection close

Content-Length An entity header that indicates the size of the
entity-body, in bytes, sent to the recipient.

Host A request header that specifies the host and
port number of the server where the request is
being sent.

Headers that cannot be overridden in requests to API destinations

EventBridge does not allow you to override the following headers:

• User-Agent

• Range

Headers EventBridge removes from requests to API destinations

EventBridge removes the following headers for all API destination requests:

• A-IM

• Accept-Charset

• Accept-Datetime

• Accept-Encoding

• Cache-Control

• Connection

• Content-Encoding

• Content-Length

• Content-MD5

API destinations 198

Amazon EventBridge User Guide

• Date

• Expect

• Forwarded

• From

• Host

• HTTP2-Settings

• If-Match

• If-Modified-Since

• If-None-Match

• If-Range

• If-Unmodified-Since

• Max-Forwards

• Origin

• Pragma

• Proxy-Authorization

• Range

• Referer

• TE

• Trailer

• Transfer-Encoding

• User-Agent

• Upgrade

• Via

• Warning

API destination error codes

When EventBridge tries to deliver an event to an API destination and an error occurs, EventBridge
does the following:

API destinations 199

Amazon EventBridge User Guide

• Events associated with error codes 409, 429, and 5xx are retried.

• Events associated with error codes 1xx, 2xx, 3xx, and 4xx (excluding 429) aren't retried.

EventBridge API destinations read the standard HTTP response header Retry-After to find out
how long to wait before making a follow-up request. EventBridge chooses the more conservative
value between the defined retry policy and the Retry-After header. If Retry-After value is
negative, EventBridge stops retrying delivery for that event.

How invocation rate affects event delivery

If you set the invocation rate per second to a value much lower than the number of invocations
generated, events may not be delivered within the 24 hour retry time for events. For example, if
you set the invocation rate to 10 invocations per second, but thousands of events per second are
generated, you will quickly have a backlog of events to deliver that exceeds 24 hours. To ensure
that no events are lost, set up a dead-letter queue to send events with failed invocations to so you
can process the events at a later time. For more information, see Event retry policy and using dead-
letter queues.

Sending CloudEvents events to API destinations

CloudEvents is a vendor-neutral specification for event formatting, with the goal of providing
interoperability across services, platforms and systems. You can use EventBridge to transform AWS
service events to CloudEvents before they are sent to a target, such as an API destination.

Note

The following procedure explains how to transform source events into structured-mode
CloudEvents. In the CloudEvents specification, a structured-mode message is one where the
entire event (attributes and data) is encoded into the payload of the event.

For more information on the CloudEvents specification, see cloudevents.io.

To transform AWS events to the CloudEvents format using the console

To transform events to the CloudEvents format prior to delivery to a target, you start by creating
an event bus rule. As part of defining the rule, you use an input transformer to have EventBridge
transform events prior to sending to the target you specify.

API destinations 200

https://cloudevents.io/

Amazon EventBridge User Guide

1. Follow the steps in the ??? procedure.

2. In the ??? step, when prompted to choose an API destination as the target type:

a. Select EventBridge API destination.

b. Do one of the following:

• Choose Use an existing API destination and select an existing API destination

• Choose Create a new API destination and specify the necessary setting to define your
new API destination.

For more information on specifying the required settings, see ???.

c. Specify the necessary Content-Type header parameters for the CloudEvents events:

• Under Header Parameters choose Add header parameter.

• For key, specify Content-Type.

For value, specify application/cloudevents+json; charset=UTF-8.

3. Specify an execution role for your target.

4. Define an input transformer to transform the source event data into the CloudEvents format:

a. Under Additional settings, for Configure target input, choose Input transformer.

Then choose Configure input transformer.

b. Under Target input transformer, specify the Input path.

In the input path below, the region attribute is a custom extension attribute of the
CloudEvents format. As such it is not required for adherence to the CloudEvents
specification.

CloudEvents allows you to use and create extension attributes not defined in the core
specification. For more information, including a list of known extension attributes, see
CloudEvents Extension Attributes in the CloudEvents specification documentation on
GitHub.

{
 "detail": "$.detail",
 "detail-type": "$.detail-type",
 "id": "$.id",
 "region": "$.region",

API destinations 201

https://github.com/cloudevents/spec/blob/main/cloudevents/documented-extensions.md
https://github.com/cloudevents/spec/tree/main

Amazon EventBridge User Guide

 "source": "$.source",
 "time": "$.time"
}

c. For Template, enter the template to transform the source event data to the CloudEvents
format.

In the template below, region is not strictly required, since the region attribute in the
input path is an extension attribute to the CloudEvents specification.

{
 "specversion":"1.0",
 "id":<id>,
 "source":<source>,
 "type":<detail-type>,
 "time":<time>,
 "region":<region>,
 "data":<detail>
}

5. Complete creating the rule following the procedure steps.

API destination partners

Use the information provided by the following AWS Partners to configure an API destination and
connection for their service or application.

Coralogix

API destination invocation endpoint URL

For a full list of endpoints, see Coralogix API Reference.

Supported authorization types

API Key

Additional authorization parameters required

Header "x-amz-event-bridge-access-key", the value is the Coralogix API Key

Coralogix documentation

Amazon EventBridge authentication

API destinations 202

https://coralogix.com/docs/log-query-simply-retrieve-data/
https://coralogix.com/docs/amazon-eventbridge/

Amazon EventBridge User Guide

Commonly used API operations

US: https://ingress.coralogix.us/aws/event-bridge

Singapore: https://ingress.coralogixsg.com/aws/event-bridge

Ireland: https://ingress.coralogix.com/aws/event-bridge

Stockholm: https://ingress.eu2.coralogix.com/aws/event-bridge

India: https://ingress.coralogix.in/aws/event-bridge

Additional information

The events are stored as log entries with applicationName=[AWS Account] and
subsystemName=[event.source].

Datadog

API destination invocation endpoint URL

For a full list of endpoints, see Datadog API Reference.

Supported authorization types

API Key

Additional authorization parameters required

None

Datadog documentation

Authentication

Commonly used API operations

POST https://api.datadoghq.com/api/v1/events

POST https://http-intake.logs.datadoghq.com/v1/input

Additional information

Endpoint URLs differ depending on the location of your Datadog organization. For the correct
URL for your organization, see documentation.

API destinations 203

https://docs.datadoghq.com/api/latest/
https://docs.datadoghq.com/api/latest/authentication/
https://docs.datadoghq.com/api/latest/

Amazon EventBridge User Guide

Freshworks

API destination invocation endpoint URL

For a list of endpoints, see https://developers.freshworks.com/documentation/

Supported authorization types

Basic, API Key

Additional authorization parameters required

Not applicable

Freshworks documentation

Authentication

Commonly used API operations

https://developers.freshdesk.com/api/#create_ticket

https://developers.freshdesk.com/api/#update_ticket

https://developer.freshsales.io/api/#create_lead

https://developer.freshsales.io/api/#update_lead

Additional information

None

MongoDB

API destination invocation endpoint URL

https://data.mongodb-api.com/app/App ID/endpoint/

Supported authorization types

API Key

Email/Password

Custom JWT Authentication

Additional authorization parameters required

None

API destinations 204

https://developers.freshworks.com/documentation/
https://developers.freshdesk.com/api/#authentication

Amazon EventBridge User Guide

MongoDB documentation

Atlas Data API

Endpoints

Custom HTTPS Endpoints

Authentication

Commonly used API operations

None

Additional information

None

New Relic

API destination invocation endpoint URL

For more information, see Our EU and US region data centers.

Events

US– https://insights-collector.newrelic.com/v1/accounts/YOUR_NEW_RELIC_ACCOUNT_ID/
events

EU– https://insights-collector.eu01.nr-data.net/v1/accounts/YOUR_NEW_RELIC_ACCOUNT_ID/
events

Metrics

US– https://metric-api.newrelic.com/metric/v1

EU– https://metric-api.eu.newrelic.com/metric/v1

Logs

US– https://log-api.newrelic.com/log/v1

EU– https://log-api.eu.newrelic.com/log/v1

Traces

API destinations 205

https://www.mongodb.com/docs/atlas/app-services/data-api/
https://www.mongodb.com/docs/atlas/app-services/data-api/generated-endpoints/#endpoints
https://www.mongodb.com/docs/atlas/app-services/data-api/custom-endpoints/
https://www.mongodb.com/docs/atlas/app-services/data-api/generated-endpoints/#authentication
https://docs.newrelic.com/docs/using-new-relic/welcome-new-relic/get-started/our-eu-us-region-data-centers/

Amazon EventBridge User Guide

US– https://trace-api.newrelic.com/trace/v1

EU– https://trace-api.eu.newrelic.com/trace/v1

Supported authorization types

API Key

New Relic documentation

Metric API

Event API

Log API

Trace API

Commonly used API operations

Metric API

Event API

Log API

Trace API

Additional information

Metric API limits

Event API limits

Log API limits

Trace API limits

Operata

API destination invocation endpoint URL:

https://api.operata.io/v2/aws/events/contact-record

Supported authorization types:

Basic

API destinations 206

https://docs.newrelic.com/docs/telemetry-data-platform/ingest-manage-data/ingest-apis/report-metrics-metric-api/
https://docs.newrelic.com/docs/telemetry-data-platform/ingest-manage-data/ingest-apis/introduction-event-api/
https://docs.newrelic.com/docs/logs/log-management/log-api/introduction-log-api/
https://docs.newrelic.com/docs/understand-dependencies/distributed-tracing/trace-api/introduction-trace-api/
https://docs.newrelic.com/docs/telemetry-data-platform/ingest-manage-data/ingest-apis/report-metrics-metric-api/
https://docs.newrelic.com/docs/telemetry-data-platform/ingest-manage-data/ingest-apis/introduction-event-api/
https://docs.newrelic.com/docs/logs/log-management/log-api/introduction-log-api/
https://docs.newrelic.com/docs/understand-dependencies/distributed-tracing/trace-api/introduction-trace-api/
https://docs.newrelic.com/docs/telemetry-data-platform/get-data/apis/metric-api-limits-restricted-attributes/
https://docs.newrelic.com/docs/telemetry-data-platform/ingest-manage-data/ingest-apis/introduction-event-api/#limits
https://docs.newrelic.com/docs/logs/log-management/log-api/introduction-log-api/#limits
https://docs.newrelic.com/docs/understand-dependencies/distributed-tracing/trace-api/trace-api-general-requirements-limits/

Amazon EventBridge User Guide

Additional authorization parameters required:

None

Operata documentation:

How do I create, view, change and revoke API Tokens?

Operata AWS Integration using Amazon EventBridge Scheduler Pipes

Commonly used API operations:

POST https://api.operata.io/v2/aws/events/contact-record

Additional information:

The username is the Operata Group ID and the password is your API token.

Salesforce

API destination invocation endpoint URL

Sobject– https:// myDomainName.my.salesforce.com/services/data/versionNumber/
sobjects /SobjectEndpoint/*

Custom platform events– https://myDomainName.my.salesforce.com/services/
data /versionNumber/sobjects/customPlatformEndpoint/*

For a full list of endpoints, see Salesforce API Reference

Supported authorization types

OAuth client credentials

OAUTH tokens are refreshed when a 401 or 407 response is returned.

Additional authorization parameters required

Salesforce Connected App Client Id and Client Secret.

One of the following authorization endpoints:

• Production– https://MyDomainName.my.salesforce.com./services/oauth2/token

• Sandbox without enhanced domains– https://MyDomainName-- SandboxName.my.
salesforce.com/services /oauth2/token

API destinations 207

https://help.operata.com/en/articles/5542797-how-do-i-create-view-change-and-revoke-api-tokens
https://docs.operata.com/docs/aws-integration
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_list.htm
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/intro_oauth_and_connected_apps.htm

Amazon EventBridge User Guide

• Sandbox with enhanced domains– https://MyDomainName--
SandboxName.sandbox.my.salesforce.com/services/oauth2/token

The following key/value pair:

Key Value

grant_type client_credentials

Salesforce documentation

REST API Developer Guide

Commonly used API operations

Working with Object Metadata

Working with Records

Additional information

For a tutorial explaining how to use the EventBridge console to create a connection to
Salesforce, an API Destination, and a rule to route information to Salesforce, see ???.

Slack

API destination invocation endpoint URL

For a list of endpoints and other resources, see Using the Slack Web API

Supported authorization types

OAuth 2.0

OAUTH tokens are refreshed when a 401 or 407 response is returned.

When you create a Slack application and install it to your workspace, an OAuth bearer token
will be created on your behalf to be used for authenticating calls by your API destination
connection.

Additional authorization parameters required

Not applicable

API destinations 208

https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/intro_what_is_rest_api.htm
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/using_resources_working_with_object_metadata.htm
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/using_resources_working_with_records.htm
https://api.slack.com/web

Amazon EventBridge User Guide

Slack documentation

Basic app setup

Installing with OAuth

Retrieving messages

Sending messages

Sending messages using Incoming Webhooks

Commonly used API operations

https://slack.com/api/chat.postMessage

Additional information

When configuring your EventBridge rule there are two configurations to highlight:

• Include a header parameter that defines the content type as “application/json;charset=utf-8”.

• Use an input transformer to map the input event to the expected output for the Slack API,
namely ensure that the payload sent to the Slack API has “channel” and “text” key/value
pairs.

Shopify

API destination invocation endpoint URL

For a list of endpoints and other resouces and methods, see Endpoints and requests

Supported authorization types

OAuth, API Key

Note

OAUTH tokens are refreshed when a 401 or 407 response is returned.

Additional authorization parameters required

Not applicable

API destinations 209

https://api.slack.com/authentication/basics
https://api.slack.com/authentication/oauth-v2
https://api.slack.com/messaging/retrieving
https://api.slack.com/messaging/sending
https://api.slack.com/messaging/webhooks
https://shopify.dev/api/admin-rest#endpoints

Amazon EventBridge User Guide

Shopify documentation

Authentication and authorization overview

Commonly used API operations

POST - /admin/api/2022-01/products.json

GET - admin/api/2022-01/products/{product_id}.json

PUT - admin/api/2022-01/products/{product_id}.json

DELETE - admin/api/2022-01/products/{product_id}.json

Additional information

Create an app

Amazon EventBridge webhook delivery

Access tokens for custom apps in the Shopify admin

Product

Shopify Admin API

Splunk

API destination invocation endpoint URL

https://SPLUNK_HEC_ENDPOINT:optional_port/services/collector/raw

Supported authorization types

Basic, API Key

Additional authorization parameters required

None

Splunk documentation

For both authorization types, you need an HEC token ID. For more information, see Set up and
use HTTP Event Collector in Splunk Web.

API destinations 210

https://shopify.dev/apps/auth
https://shopify.dev/apps/getting-started/create
https://shopify.dev/apps/webhooks/configuration/eventbridge
https://shopify.dev/apps/auth/admin-app-access-tokens
https://shopify.dev/api/admin-rest/2021-10/resources/product#top
https://shopify.dev/api/admin
https://docs.splunk.com/Documentation/Splunk/8.1.2/Data/UsetheHTTPEventCollector
https://docs.splunk.com/Documentation/Splunk/8.1.2/Data/UsetheHTTPEventCollector

Amazon EventBridge User Guide

Commonly used API operations

POST https://SPLUNK_HEC_ENDPOINT:optional_port/services/collector/raw

Additional information

API Key – When configuring the endpoint for EventBridge, the API key name is “Authorization”
and value is the Splunk HEC token ID.

Basic (Username/Password) – When configuring the endpoint for EventBridge, the username is
“Splunk” and the password is the Splunk HEC token ID.

Sumo Logic

API destination invocation endpoint URL

HTTP Log and Metric Source endpoint URLs will be different for every user. For more
information, see HTTP Logs and Metrics Source.

Supported authorization types

Sumo Logic doesn’t require authentication on their HTTP Sources because there’s a unique key
baked into the URL. For this reason, you should make sure to treat that URL as a secret.

When you configure the EventBridge API destination, an authorization type is required. To meet
this requirement, select API Key and give it a key name of “dummy-key” and a key value of
“dummy-value”.

Additional authorization parameters required

Not applicable

Sumo Logic documentation

Sumo Logic has already built hosted sources to collect logs and metrics from many AWS
services and you can use the information on their website to work with those sources. For more
information, see Amazon Web Services.

If you’re generating custom events from an application and want to send them to Sumo Logic
as either logs or metrics, then use EventBridge API Destinations and Sumo Logic HTTP Log and
Metric Source endpoints.

• To sign up and create a free Sumo Logic instance, see Start your free trial today.

• For more information about using Sumo Logic, see HTTP Logs and Metrics Source.

API destinations 211

https://help.sumologic.com/03Send-Data/Sources/02Sources-for-Hosted-Collectors/HTTP-Source
https://help.sumologic.com/03Send-Data/Sources/02Sources-for-Hosted-Collectors/Amazon-Web-Services
https://www.sumologic.com/sign-up/
https://help.sumologic.com/03Send-Data/Sources/02Sources-for-Hosted-Collectors/HTTP-Source

Amazon EventBridge User Guide

Commonly used API operations

POST https://endpoint4.collection.us2.sumologic.com/receiver/v1/
http/UNIQUE_ID_PER_COLLECTOR

Additional information

None

TriggerMesh

API destination invocation endpoint URL

Use the information in the Event Source for HTTP topic to formulate the endpoint URL. An
endpoint URL includes the event source name and user namespace in the following format:

https://source-name.user-namespace.cloud.triggermesh.io

Include the Basic authorization parameters in the request to the endpoint.

Supported authorization types

Basic

Additional authorization parameters required

None

TriggerMesh documentation

Event Source for HTTP

Commonly used API operations

Not applicable

Additional information

None

Zendesk

API destination invocation endpoint URL

https://developer.zendesk.com/rest_api/docs/support/tickets

API destinations 212

https://docs.triggermesh.io/concepts/sources
https://docs.triggermesh.io/concepts/sources

Amazon EventBridge User Guide

Supported authorization types

Basic, API Key

Additional authorization parameters required

None

Zendesk documentation

Security and Authentication

Commonly used API operations

POST https://your_Zendesk_subdomain/api/v2/tickets

Additional information

API requests EventBridge makes count against your Zendesk API limits. For information about
Zendesk limits for your plan, see Usage limits.

To better safeguard your account and data, we recommend using an API key rather than basic
sign-in credentials authentication.

Amazon EventBridge targets for Amazon API Gateway

You can use Amazon API Gateway to create, publish, maintain, and monitor APIs. Amazon
EventBridge supports sending events to an API Gateway endpoint. When you specify an API
Gateway endpoint as a target, each event sent to the target maps to a request sent to the
endpoint.

Important

EventBridge supports using API Gateway Edge-optimized and Regional endpoints as targets.
Private endpoints are not currently supported. To learn more about endpoints, see https://
docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-api-endpoint-
types.html.

You can use an API Gateway target for the following use cases:

• To invoke a customer-specified API hosted in API Gateway based on AWS or third-party events.

• To invoke an endpoint periodically on a schedule.

API Gateway 213

https://developer.zendesk.com/rest_api/docs/support/introduction#security-and-authentication
https://developer.zendesk.com/rest_api/docs/support/usage_limits
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-api-endpoint-types.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-api-endpoint-types.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-api-endpoint-types.html

Amazon EventBridge User Guide

The EventBridge JSON event information is sent as the body of the HTTP request to your endpoint.
You can specify the other request attributes in the target’s HttpParameters field as follows:

• PathParameterValues lists the values that correspond sequentially to any
path variables in your endpoint ARN, for example "arn:aws:execute-api:us-
east-1:112233445566:myapi/dev/POST/pets/*/*".

• QueryStringParameters represents the query string parameters that EventBridge appends to
the invoked endpoint.

• HeaderParameters defines HTTP headers to add to the request.

Note

For security considerations, the following HTTP header keys aren't permitted:

• Anything prefixed with X-Amz or X-Amzn

• Authorization

• Connection

• Content-Encoding

• Content-Length

• Host

• Max-Forwards

• TE

• Transfer-Encoding

• Trailer

• Upgrade

• Via

• WWW-Authenticate

• X-Forwarded-For

Dynamic Parameters

When invoking an API Gateway target, you can dynamically add data to events that are sent to the
target. For more information, see the section called “Target parameters”.

API Gateway 214

Amazon EventBridge User Guide

Invocation Retries

As with all targets, EventBridge retries some failed invocations. For API Gateway, EventBridge
retries responses sent with a 5xx or 429 HTTP status code for up to 24 hours with exponential
back off and jitter. After that, EventBridge publishes a FailedInvocations metric in Amazon
CloudWatch. EventBridge doesn't retry other 4xx HTTP errors.

Timeout

EventBridge rule API Gateway requests must have a maximum client execution timeout of 5
seconds. If API Gateway takes longer than 5 seconds to respond, EventBridge times out the request
and then retries.

EventBridge Pipes API Gateway requests have a maximum timeout of 29 seconds, the API Gateway
maximum.

AWS AppSync targets for Amazon EventBridge

AWS AppSync enables developers to connect their applications and services to data and events
with secure, serverless and high-performing GraphQL and Pub/Sub APIs. With AWS AppSync, you
can publish real-time data updates to your applications with GraphQL mutations. EventBridge
supports calling a valid GraphQL mutation operation for matched events. When you specify
an AWS AppSync API mutation as a target, AWS AppSync processes the event via a mutation
operation, which can then trigger subscriptions linked to the mutation.

Note

EventBridge supports AWS AppSync public GraphQL APIs. EventBridge does not currently
support AWS AppSync Private APIs.

You can use an AWS AppSync GraphQL API target for the following use cases:

• To push, transform, and store event data into your configured data sources.

• To send real-time notifications to connected application clients.

AWS AppSync targets 215

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

Amazon EventBridge User Guide

Note

AWS AppSync targets only support calling AWS AppSync GraphQL APIs using the AWS_IAM
authorization type.

For more information on AWS AppSync GraphQL APIs, see the GraphQL and AWS AppSync
architecture in the AWS AppSync Developer Guide.

To specify an AWS AppSync target for an EventBridge rule using the console

1. Create or edit the rule.

2. Under Target, specify the target by choosing AWS service and then AWS AppSync.

3. Specify the mutation operation to be parsed and executed, along with the selection set.

• Choose the AWS AppSync API, and then the GraphQL API mutation to invoke.

• Under Configure parameters and selection set, choose to create a selection set using key-
value mapping or an input transformer.

Key-value mapping

To use key-value mapping to create your selection set:

• Specify variables for the API parameters. Each variables can be either a static values or
a dynamic JSON path expression to the event payload.

• Under Selection set, choose the variables you want included in the response.

Input transformer

To use an input transformer to create your selection set:

• Specify an input path that defines the variables to use.

• Specify an input template to define and format the information you want passed to
the target.

For more information, see ???.

4. For Execution role, choose whether to create a new role or use an existing role.

5. Complete creating or editing the rule.

AWS AppSync targets 216

https://docs.aws.amazon.com/appsync/latest/devguide/security-authz.html#aws-iam-authorization
https://docs.aws.amazon.com/appsync/latest/devguide/security-authz.html#aws-iam-authorization
https://docs.aws.amazon.com/appsync/latest/devguide/graphql-overview.html
https://docs.aws.amazon.com/appsync/latest/devguide/graphql-overview.html

Amazon EventBridge User Guide

Example: AWS AppSync targets for Amazon EventBridge

In the following example, we'll walk through how to specifying an AWS AppSync target for an
EventBridge rule, including defining an input transformation to format events for delivery.

Suppose you have an AWS AppSync GraphQL API, Ec2EventAPI, defined by the following schema:

type Event {
 id: ID!
 statusCode: String
 instanceId: String
}

type Mutation {
 pushEvent(id: ID!, statusCode: String!, instanceId: String): Event
}

type Query {
 listEvents: [Event]
}

type Subscription {
 subscribeToEvent(id: ID, statusCode: String, instanceId: String): Event
 @aws_subscribe(mutations: ["pushEvent"])
}

Applications clients that use this API can subscribe to the subscribeToEvent subscription, which
is triggered by the pushEvent mutation.

You can create an EventBridge rule with a target that sends events to the AppSync API via the
pushEvent mutation. When the mutation is invoked, any client that is subscribed will receive the
event.

To specifying this API as the target for an EventBridge rule, you would do the following:

1. Set the Amazon Resource Name (ARN) of the rule target to the GraphQL endpoint ARN of the
Ec2EventAPI API.

2. Specify the mutation GraphQL Operation as a target parameter:

mutation CreatePushEvent($id: ID!, $statusCode: String, $instanceId: String) {
 pushEvent(id: $input, statusCode: $statusCode, instanceId: $instanceId) {
 id

AWS AppSync targets 217

Amazon EventBridge User Guide

 statusCode
 instanceId
 }
}

Your mutation selection set must include all the fields you wish to subscribe to in your GraphQL
subscription.

3. Configure an input transformer to specify how data from matched events is used in your
operation.

Suppose you selected the “EC2 Instance Launch Successful” sample event:

{
 "version": "0",
 "id": "3e3c153a-8339-4e30-8c35-687ebef853fe",
 "detail-type": "EC2 Instance Launch Successful",
 "source": "aws.autoscaling",
 "account": "123456789012",
 "time": "2015-11-11T21:31:47Z",
 "region": "us-east-1",
 "resources": ["arn:aws:autoscaling:us-
east-1:123456789012:autoScalingGroup:eb56d16b-bbf0-401d-b893-
d5978ed4a025:autoScalingGroupName/sampleLuanchSucASG", "arn:aws:ec2:us-
east-1:123456789012:instance/i-b188560f"],
 "detail": {
 "StatusCode": "InProgress",
 "AutoScalingGroupName": "sampleLuanchSucASG",
 "ActivityId": "9cabb81f-42de-417d-8aa7-ce16bf026590",
 "Details": {
 "Availability Zone": "us-east-1b",
 "Subnet ID": "subnet-95bfcebe"
 },
 "RequestId": "9cabb81f-42de-417d-8aa7-ce16bf026590",
 "EndTime": "2015-11-11T21:31:47.208Z",
 "EC2InstanceId": "i-b188560f",
 "StartTime": "2015-11-11T21:31:13.671Z",
 "Cause": "At 2015-11-11T21:31:10Z a user request created an AutoScalingGroup
 changing the desired capacity from 0 to 1. At 2015-11-11T21:31:11Z an instance was
 started in response to a difference between desired and actual capacity, increasing
 the capacity from 0 to 1."
 }
}

AWS AppSync targets 218

Amazon EventBridge User Guide

You can define the following variables for use in your template, using the target input
transformer's input path:

{
 "id": "$.id",
 "statusCode": "$.detail.StatusCode",
 "EC2InstanceId": "$.detail.EC2InstanceId"
}

Compose the input transformer template to define the variables that EventBridge passes to the
AWS AppSync mutation operation. The template must evaluate to JSON. Given our input path,
you can compose the following template:

{
 "id": <id>,
 "statusCode": <statusCode>,
 "instanceId": <EC2InstanceId>
}

Connections for HTTP endpoint targets

A connection defines the authorization method and credentials for EventBridge to use in
connecting to a given HTTP endpoint. When you configure the authorization settings and create
a connection, it creates a secret in AWS Secrets Manager to securely store the authorization
information. You can also add additional parameters to include in the connection as appropriate
for your HTTP endpoint target.

Use connections with:

• API destinations

When you create an API destination, you specify a connection to use for it. You can choose
an existing connection from your account, or create a connection when you create an API
destination.

Authorization methods for connections

EventBridge connections support the following authorization methods:

Connections 219

Amazon EventBridge User Guide

• Basic

• API Key

For Basic and API Key authorization, EventBridge populates the required authorization headers
for you.

• OAuth

For OAuth authorization, EventBridge also exchanges your client ID and secret for an access
token and then manages it securely.

OAUTH tokens are refreshed when a 401 or 407 response is returned.

When you create a connection, you can also include the header, body, and query parameters that
are required for authorization with an endpoint. You can use the same connection for more than
one HTTP endpoint if the authorization for the endpoint is the same.

When you create a connection and add authorization parameters, EventBridge creates a secret
in AWS Secrets Manager. The cost of both storing and accessing the Secrets Manager secret is
included with the charge for using an API destination. To learn more about best practices for using
secrets with API destinations, see AWS::Events::ApiDestination in the CloudFormation User Guide.

Note

To successfully create or update a connection, you must use an account that has
permission to use Secrets Manager. The required permission is included in the
AmazonEventBridgeFullAccess policy. The same permission is granted to the service-linked
role that's created in your account for the connection.

Creating connections for HTTP endpoint targets

To create a connection for use with HTTP endpoints using the EventBridge console

1. Log in to AWS using an account that has permissions to manage EventBridge and open the
EventBridge console.

2. In the left navigation pane, choose API destinations.

3. Scroll down to the API destinations table, and then choose the Connections tab.

4. Choose Create connection.

Connections 220

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-apidestination.html
https://console.aws.amazon.com/events

Amazon EventBridge User Guide

5. On the Create connection page, enter a Connection name for the connection.

6. Enter a Description for the connection.

7. For Authorization type, select the type of authorization to use to authorize connections to
the HTTP endpoint specified for the API destination that uses this connection. Do one of the
following:

• Choose Basic (Username/Password), and then enter the Username and Password to use
to authorize with the HTTP endpoint.

• Choose OAuth Client Credentials, and then enter the Authorization endpoint, HTTP
method, Client ID, and Client secret to use to authorize with the endpoint.

Under OAuth Http Parameters, add any additional parameters to include for
authorization with the authorization endpoint. Select a Parameter from the drop-
down list, then enter a Key and Value. To include an additional parameter, choose Add
parameter.

Under Invocation Http Parameters, add any additional parameters to include in the
authorization request. To add a parameter, select a Parameter from the drop-down list,
then enter a Key and Value. To include an additional parameter, choose Add parameter.

• Choose API key, and then enter the API key name and associated Value to use for API Key
authorization.

Under Invocation Http Parameters, add any additional parameters to include in the
authorization request. To add a parameter, select a Parameter from the drop-down list,
then enter a Key and Value. To include an additional parameter, choose Add parameter.

8. Choose Create.

Editing connections using the EventBridge console

You can edit existing connections.

To edit a connection using the EventBridge console

1. Log in to AWS using an account that has permissions to manage EventBridge and open the
EventBridge console.

2. In the left navigation pane, choose API destinations.

3. Scroll down to the API destinations table, and then choose the Connections tab.

Connections 221

https://console.aws.amazon.com/events

Amazon EventBridge User Guide

4. In the Connections table, choose the connection to edit.

5. On the Connection details page, choose Edit.

6. Update the values for the connection, and then choose Update.

De-authorizing connections using the EventBridge console

When you de-authorize a connection, it removes all authorization parameters. Removing
authorization parameters removes the secret from the connection, so you can reuse it without
having to create a new connection.

Note

You must update any HTTP endpoints that use the de-authorized connection to use a
different connection to successfully send requests to the HTTP endpoint.

To de-authorize a connection

1. Log in to AWS using an account that has permissions to manage EventBridge and open the
EventBridge console.

2. In the left navigation pane, choose API destinations.

3. Scroll down to the API destinations table, and then choose the Connections tab.

4. In the Connections table, choose the connection.

5. On the Connection details page, choose De-authorize.

6. In the Deauthorize connection? dialog box, enter the name of the connection, and then
choose De-authorize.

The status of the connection changes to De-authorizing until the process is complete. Then the
status changes to De-authorized. Now you can edit the connection to add new authorization
parameters.

Sending and receiving Amazon EventBridge events between AWS
accounts

You can configure EventBridge to send and receive events between event buses in AWS accounts.
When you configure EventBridge to send or receive events between accounts, you can specify

Cross-account event buses 222

https://console.aws.amazon.com/events

Amazon EventBridge User Guide

which AWS accounts can send events to or receive events from the event bus in your account.
You can also allow or deny events from specific rules associated with the event bus, or events
from specific sources. For more information, see Simplifying cross-account access with Amazon
EventBridge resource policies

Note

If you use AWS Organizations, you can specify an organization and grant access to all
accounts in that organization. In addition, the sending event bus must have IAM roles
attached to them when sending events to another account. For more information, see What
is AWS Organizations in the AWS Organizations User Guide.

Note

If you're using an Incident Manager response plan as a target, all the response plans that
are shared with your account are available by default.

You can send and receive events between event buses in AWS accounts within the same Region
in all Regions and between accounts in different Regions as long as the destination Region is a
supported cross-Region destination Region.

The steps to configure EventBridge to send events to or receive events from an event bus in a
different account include the following:

• On the receiver account, edit the permissions on an event bus to allow specified AWS accounts,
an organization, or all AWS accounts to send events to the receiver account.

• On the sender account, set up one or more rules that have the receiver account's event bus as the
target.

If the sender account inherits permissions to send events from an AWS Organization, the sender
account also must have an IAM role with policies that enable it to send events to the receiver
account. If you use the AWS Management Console to create the rule that targets the event bus
in the receiver account, the role is created automatically. If you use the AWS CLI, you must create
the role manually.

• On the receiver account, set up one or more rules that match events that come from the sender
account.

Cross-account event buses 223

https://aws.amazon.com/blogs/compute/simplifying-cross-account-access-with-amazon-eventbridge-resource-policies/
https://aws.amazon.com/blogs/compute/simplifying-cross-account-access-with-amazon-eventbridge-resource-policies/
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html

Amazon EventBridge User Guide

Events sent from one account to another are charged to the sending account as custom events. The
receiving account is not charged. For more information, see Amazon EventBridge Pricing.

If a receiver account sets up a rule that sends events received from a sender account on to a third
account, these events are not sent to the third account.

The following video covers routing events between accounts: Routing events to buses in other
AWS accounts

Grant permissions to allow events from other AWS accounts

To receive events from other accounts or organizations, you must first edit the permissions on the
event bus where you intend to receive events. The default event bus accepts events from AWS
services, other authorized AWS accounts, and PutEvents calls. The permissions for an event bus
are granted or denied using a resource-based policy attached to the event bus. In the policy, you
can grant permissions to other AWS accounts using the account ID, or to an AWS organization using
the organization ID. To learn more about event bus permissions, including example policies, see
Permissions for Amazon EventBridge event buses.

Note

EventBridge now requires all new cross account event bus targets to add IAM roles. This
only applies to event bus targets created after March 2, 2023. Applications created without
an IAM role before that date are not affected. However, we recommend adding IAM roles to
grant users access to resources in another account, as this ensures organization boundaries
using Service Control Policies (SCPs) are applied to determine who can send and receive
events from accounts in your organization.

Important

If you choose to receive events from all AWS accounts, be careful to create rules that match
only the events to receive from others. To create more secure rules, make sure that the
event pattern for each rule contains an Account field with the account IDs of one or more
accounts from which to receive events. Rules that have an event pattern containing an
Account field do not match events sent from accounts that are not listed in the Account
field. For more information, see Amazon EventBridge events.

Cross-account event buses 224

https://aws.amazon.com/eventbridge/pricing/
http://www.youtube.com/embed/pX_xIW_EuCE
http://www.youtube.com/embed/pX_xIW_EuCE

Amazon EventBridge User Guide

Rules for events between AWS accounts

If your account is set up to receive events from event buses in other AWS accounts, you can write
rules that match those events. Set the event pattern of the rule to match the events you are
receiving from event buses in the other account.

Unless you specify account in the event pattern of a rule, any of your account's rules, both new
and existing, that match events you receive from event buses in other accounts trigger based on
those events. If you are receiving events from event buses in another account, and you want a rule
to trigger only on that event pattern when it is generated from your own account, you must add
account and specify your own account ID to the event pattern of the rule.

If you set up your AWS account to accept events from event buses in all AWS accounts, we strongly
recommend that you add account to every EventBridge rule in your account. This prevents rules
in your account from triggering on events from unknown AWS accounts. When you specify the
account field in the rule, you can specify the account IDs of more than one AWS account in the
field.

To have a rule trigger on a matching event from any event buses in AWS account that you have
granted permissions to, do not specify * in the account field of the rule. Doing so would not
match any events, because * never appears in the account field of an event. Instead, just omit the
account field from the rule.

Creating rules that send events between AWS accounts

Specifying an event bus in another account as a target is part of creating the rule.

To create a rule that sends events to a different AWS account using the console

1. Follow the steps in the ??? procedure.

2. In the ??? step, when prompted to choose a target type:

a. Select EventBridge event bus.

b. Select Event bus in a different account or Region.

c. For Event bus as target, enter the ARN of the event bus you want to use.

3. Complete creating the rule following the procedure steps.

Cross-account event buses 225

Amazon EventBridge User Guide

Sending and receiving Amazon EventBridge events between AWS
Regions

You can configure EventBridge to send and receive events between AWS Regions. You can also
allow or deny events from specific Regions, specific rules associated with the event bus, or events
from specific sources. For more information, see Introducing cross-Region event routing with
Amazon EventBridge

The following Regions are supported destination Regions:

• Africa (Cape Town) Region

• Asia Pacific (Hong Kong) Region

• Asia Pacific (Tokyo) Region

• Asia Pacific (Seoul) Region

• Asia Pacific (Osaka) Region

• Asia Pacific (Mumbai) Region

• Asia Pacific (Singapore) Region

• Asia Pacific (Sydney) Region

• Canada (Central) Region

• Europe (Frankfurt) Region

• Europe (Stockholm) Region

• Europe (Milan) Region

• Europe (Ireland) Region

• Europe (London) Region

• Europe (Paris) Region

• Middle East (UAE) Region

• Middle East (Bahrain) Region

• South America (São Paulo) Region

• US East (N. Virginia) Region

• US East (Ohio) Region

• US West (N. California) Region

• US West (Oregon) Region

Cross-Region event buses 226

https://aws.amazon.com/blogs/compute/introducing-cross-region-event-routing-with-amazon-eventbridge/
https://aws.amazon.com/blogs/compute/introducing-cross-region-event-routing-with-amazon-eventbridge/

Amazon EventBridge User Guide

• Asia Pacific (Jakarta) Region

• Asia Pacific (Melbourne) Region

• Israel (Tel Aviv) Region

The following video covers routing events between Regions using the https://
console.aws.amazon.com/events/, AWS CloudFormation, and AWS Serverless Application Model:
Cross-Region event routing

Creating rules that send events to a different AWS Region

Specifying an event bus in another AWS Region as a target is part of creating the rule.

To create a rule that sends events to a different AWS account using the console

1. Follow the steps in the ??? procedure.

2. In the ??? step, when prompted to choose a target type:

a. Select EventBridge event bus.

b. Select Event bus in a different account or Region.

c. For Event bus as target, enter the ARN of the event bus you want to use.

3. Complete creating the rule following the procedure steps.

Sending and receiving Amazon EventBridge events between event
buses in the same account and Region

You can configure EventBridge to send and receive events between event buses in the same AWS
account and Region.

When you configure EventBridge to send or receive events between event buses, you use IAM roles
on the sender event bus to give the sender event bus permission to send events to the receiver
event bus. You use Resource-based policies on the receiver event bus to give the receiver event bus
permission to receive events from the sender event bus. You can also allow or deny events from
certain event buses, specific rules associated with the event bus, or events from specific sources.
For more information about event bus permissions, including example policies, see Permissions for
Amazon EventBridge event buses.

Same account event buses 227

https://console.aws.amazon.com/events/
https://console.aws.amazon.com/events/
http://www.youtube.com/embed/hrZG1mr6H8I
http://www.youtube.com/embed/hrZG1mr6H8I

Amazon EventBridge User Guide

The steps to configure EventBridge to send events to or receive events between event buses in your
account include the following:

• To use an existing IAM role, you need to give either the sender event bus permissions to the
receiver event bus or the receiver event bus permissions to the sender event bus.

• On the sender event bus, set up one or more rules that have the receiver event bus as the target
and create an IAM role. For an example of the policy that should be attached to the role, see ???.

• On the receiver event bus, edit the permissions to allow events to be passed from the other event
bus.

• On the receiver event, set up one or more rules that match events that come from the sender
event bus.

Note

EventBridge can't route events received from a sender event bus to a third event bus.

Events sent from one event bus to another are charged as custom events. For more information,
see Amazon EventBridge Pricing.

Creating rules that send events to a different event bus in the same AWS account
and Region

To send events to another event bus, you create a rule with an event bus as a target. Specifying an
event bus in the same AWS account and Region as a target is part of creating the rule.

To create a rule that sends events to a different event bus in the same AWS account and Region
using the console

1. Follow the steps in the ??? procedure.

2. In the ??? step, when prompted to choose a target type:

a. Select EventBridge event bus.

b. Select Event bus in the same AWS account and Region.

c. For Event bus as a target, select an event bus from the drop-down list.

3. Complete creating the rule following the procedure steps.

Same account event buses 228

https://aws.amazon.com/eventbridge/pricing/

Amazon EventBridge User Guide

Amazon EventBridge input transformation

You can customize the text from an event before EventBridge passes the information to the target
of a rule. Using the input transformer in the console or the API, you define variables that use JSON
path to reference values in the original event source. The transformed event is sent to a target
instead of the original event. However, dynamic path parameters must reference the original event,
not the transformed event. You can define up to 100 variables, assigning each a value from the
input. Then you can use those variables in the Input Template as <variable-name>.

For a tutorial on using input transformer, see ???.

Note

EventBridge does not support all JSON Path syntax and evaluate it at runtime. Supported
syntax includes:

• dot notation (for example,$.detail)

• dashes

• underscores

• alphanumeric characters

• array indices

• wildcards (*)

In this topic:

• Predefined variables

• Input transform examples

• Transforming input by using the EventBridge API

• Transforming input by using AWS CloudFormation

• Common Issues with transforming input

• Configuring an input transformer as part of creating a rule

• Testing a target input transformer using the EventBridge Sandbox

Input transformation 229

Amazon EventBridge User Guide

Predefined variables

There are pre-defined variables you can use without defining a JSON path. These variables are
reserved, and you can't create variables with these names:

• aws.events.rule-arn — The Amazon Resource Name (ARN) of the EventBridge rule.

• aws.events.rule-name — The Name of the EventBridge rule.

• aws.events.event.ingestion-time — The time at which the event was received by
EventBridge. This is an ISO 8601 timestamp. This variable is generated by EventBridge and can't
be overwritten.

• aws.events.event — The original event payload as JSON (without the detail field). Can only
be used as a value for a JSON field, as it's contents are not escaped.

• aws.events.event.json — The full original event payload as JSON. (with the detail field).
Can only be used as a value for a JSON field, as it's contents are not escaped.

Input transform examples

The following is an example Amazon EC2 event.

{
 "version": "0",
 "id": "7bf73129-1428-4cd3-a780-95db273d1602",
 "detail-type": "EC2 Instance State-change Notification",
 "source": "aws.ec2",
 "account": "123456789012",
 "time": "2015-11-11T21:29:54Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:ec2:us-east-1:123456789012:instance/i-abcd1111"
],
 "detail": {
 "instance-id": "i-0123456789",
 "state": "RUNNING"
 }
}

Predefined variables 230

Amazon EventBridge User Guide

When defining a rule in the console, select the Input Transformer option under Configure input.
This option displays two text boxes: one for the Input Path and one for the Input Template.

Input Path is used to define variables. Use JSON path to reference items in your event and store
those values in variables. For instance, you could create an Input Path to reference values in the
example event by entering the following in the first text box. You can also use brackets and indices
to get items from arrays.

Note

EventBridge replaces input transformers at runtime to ensure a valid JSON output. Because
of this, put quotes around variables that refer to JSON path parameters, but do not put
quotes around variables that refer to JSON objects or arrays.

{
 "timestamp" : "$.time",
 "instance" : "$.detail.instance-id",
 "state" : "$.detail.state",
 "resource" : "$.resources[0]"
}

This defines four variables, <timestamp>, <instance>, <state>, and <resource>. You can
reference these variables as you create your Input Template.

The Input Template is a template for the information you want to pass to your target. You can
create a template that passes either a string or JSON to the target. Using the previous event and
Input Path, the following Input Template examples will transform the event to the example output
before routing it to a target.

Description Template Output

Simple string "instance <instance> is
 in <state>"

"instance i-0123456789
 is in RUNNING"

String with escaped quotes "instance \"<instance>
\" is in <state>"

"instance \"i-01234
56789\" is in RUNNING"

Input transform examples 231

Amazon EventBridge User Guide

Description Template Output

Note that this is the behavior
in the EventBridge console.
The AWS CLI escapes the
slash characters and the
result is "instance
"i-0123456789" is in
RUNNING".

Simple JSON {
 "instance" :
 <instance>,
 "state": <state>
}

{
 "instance" :
 "i-0123456789",
 "state": "RUNNING"
}

JSON with strings and
variables

{
 "instance" : <instance
>,
 "state": "<state>",
 "instanceStatus":
 "instance \"<instance>
\" is in <state>"
}

{
 "instance" : "i-012345
6789",
 "state": "RUNNING",
 "instanceStatus":
 "instance \"i-01234
56789\" is in RUNNING"
}

JSON with a mix of variables
and static information

{
 "instance" :
 <instance>,
 "state": [9, <state>,
 true],
 "Transformed" : "Yes"
}

{
 "instance" :
 "i-0123456789",
 "state": [
 9,
 "RUNNING",
 true
],
 "Transformed" : "Yes"
}

Input transform examples 232

Amazon EventBridge User Guide

Description Template Output

Including reserved variables
in JSON

{
 "instance" :
 <instance>,
 "state": <state>,
 "ruleArn" : <aws.even
ts.rule-arn>,
 "ruleName" :
 <aws.events.rule-n
ame>,
 "originalEvent" :
 <aws.events.event.
json>
}

{
 "instance" :
 "i-0123456789",
 "state": "RUNNING",
 "ruleArn" : "arn:aws:
events:us-east-2:1
23456789012:rule/e
xample",
 "ruleName" :
 "example",
 "originalEvent" : {
 ... // commented for
 brevity
 }
}

Including reserved variables
in a string

"<aws.events.rule-
name> triggered"

"example triggered"

Amazon CloudWatch log
group

{
 "timestamp" :
 <timestamp>,
 "message": "instance
 \"<instance>\" is in
 <state>"
}

{
 "timestamp" :
 2015-11-11T21:29:54Z,
 "message": "instance
 "i-0123456789" is in
 RUNNING
}

Transforming input by using the EventBridge API

For information about using the EventBridge API to transform input, see Use Input Transformer to
extract data from an event and input that data to the target.

Transforming input by using AWS CloudFormation

For information about using AWS CloudFormation to transform input, see AWS::Events::Rule
InputTransformer.

Transforming input by using the EventBridge API 233

https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutTargets.html#API_PutTargets_Example_2
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutTargets.html#API_PutTargets_Example_2
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-events-rule-inputtransformer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-events-rule-inputtransformer.html

Amazon EventBridge User Guide

Common Issues with transforming input

These are some common issues when transforming input in EventBridge:

• For Strings, quotes are required.

• There is no validation when creating JSON path for your template.

• If you specify a variable to match a JSON path that doesn't exist in the event, that variable isn't
created and won't appear in the output.

• JSON properties like aws.events.event.json can only be used as the value of a JSON field,
not inline in other strings.

• EventBridge doesn't escape values extracted by Input Path, when populating the Input Template
for a target.

• If a JSON path references a JSON object or array, but the variable is referenced in a string,
EventBridge removes any internal quotes to ensure a valid string. For example, for a variable
<detail> pointed at $.detail, "Detail is <detail>" would result in EventBridge removing
quotes from the object.

Therefore, if you want to output a JSON object based on a single JSON path variable, you must
place it as a key. In this example, {"detail": <detail>}.

• Quotes are not required for variables that represent strings. They are permitted, but EventBridge
automatically adds quotes to string variable values during transformation, to ensure the
transformation output is valid JSON. EventBridge does not add quotes to variables that
represent JSON objects or arrays. Do not add quotes for variables that represent JSON objects or
arrays.

For example, the following input template includes variables that represent both strings and
JSON objects:

{
 "ruleArn" : <aws.events.rule-arn>,
 "ruleName" : <aws.events.rule-name>,
 "originalEvent" : <aws.events.event.json>
}

Resulting in valid JSON with proper quotation:

{

Common Issues with transforming input 234

Amazon EventBridge User Guide

 "ruleArn" : "arn:aws:events:us-east-2:123456789012:rule/example",
 "ruleName" : "example",
 "originalEvent" : {
 ... // commented for brevity
 }
}

• For (non-JSON) text output as multi-line strings, wrap each separate line in your input template
in double quotes.

For example, if you were matching Amazon Inspector Finding events against the following event
pattern:

{
 "detail": {
 "severity": ["HIGH"],
 "status": ["ACTIVE"]
 },
 "detail-type": ["Inspector2 Finding"],
 "source": ["inspector2"]
}

And using the following input path:

{
 "account": "$.detail.awsAccountId",
 "ami": "$.detail.resources[0].details.awsEc2Instance.imageId",
 "arn": "$.detail.findingArn",
 "description": "$.detail.description",
 "instance": "$.detail.resources[0].id",
 "platform": "$.detail.resources[0].details.awsEc2Instance.platform",
 "region": "$.detail.resources[0].region",
 "severity": "$.detail.severity",
 "time": "$.time",
 "title": "$.detail.title",
 "type": "$.detail.type"
}

You could use the input template below to generate multi-line string output:

"<severity> severity finding <title>"
"Description: <description>"

Common Issues with transforming input 235

https://docs.aws.amazon.com/inspector/latest/user/eventbridge-integration.html#event-finding

Amazon EventBridge User Guide

"ARN: \"<arn>\""
"Type: <type>"
"AWS Account: <account>"
"Region: <region>"
"EC2 Instance: <instance>"
"Platform: <platform>"
"AMI: <ami>"

Configuring an input transformer as part of creating a rule

As part of creating a rule, you can specify an input transformer for EventBridge to use to process
matching events prior to sending those event to the specified target. You can configure input
transformers for targets that are AWS services or API destinations.

To create a target input transformer as part of a rule

1. Follow the steps for creating a rule as detailed in ???.

2. In Step 3 - Select target(s), expand Additional settings.

3. For Configure target input, choose Input transformer in the dropdown.

Click Configure input transformer.

EventBridge displays the Configure input transformer dialog box.

4. In the Sample event section, choose a Sample event type against which you want to test your
event pattern. You can choose an AWS event, a partner event, or enter your own custom event.

AWS events

Select from events emitted from supported AWS services.

1. Select AWS events.

2. Under Sample events, choose the desired AWS event. Events are organized by AWS
service.

When you select an event, EventBridge populates the sample event.

For example, if you choose S3 Object Created, EventBridge displays a sample S3 Object
Created event.

3. (Optional) You can also select Copy to copy the sample event to your device's clipboard.

Configuring an input transformer 236

Amazon EventBridge User Guide

Partner events

Select from events emitted from third-party services that support EventBridge, such as
Salesforce.

1. Select EventBridge partner events.

2. Under Sample events, choose the desired partner event. Events are organized by
partner.

When you select an event, EventBridge populates the sample event.

3. (Optional) You can also select Copy to copy the sample event to your device's clipboard.

Enter your own

Enter your own event in JSON text.

1. Select Enter your own.

2. EventBridge populates the sample event with a template of required event attributes.

3. Edit and add to the sample event as desired. The sample event must be valid JSON.

4. (Optional) You can also choose any of the following options:

• Copy – Copy the sample event to your device's clipboard.

• Prettify – Makes the JSON text easier to read by adding line breaks, tabs, and spaces.

5. (Optional) Expand the Example input paths, Templates and Outputs section to see examples
of:

• How JSON paths are used to define variables that represent event data

• How those variables can be used in an input transformer template

• The resulting output that EventBridge sends to the target

For more detailed examples of input transformations, see ???.

6. In the Target input transformer section, define any variables you want to use in the input
template.

Variables use JSON path to reference values in the original event source. You can then
reference those variables in the input template in order to include data from the original

Configuring an input transformer 237

Amazon EventBridge User Guide

source event in the transformed event that EventBridge passes to the target. You can define
up to 100 variables. The input transformer must be valid JSON.

For example, suppose you had chosen AWS event S3 Object Created as your sample event for
this input transformer. You could then define the following variables for use in your template:

{
 "requester": "$.detail.requester",
 "key": "$.detail.object.key",
 "bucket": "$.detail.bucket.name"
}

(Optional) You can also choose Copy to copy the input transformer to your device's clipboard.

7. In the Template section, compose the template you want to use to determine what
EventBridge passes to the target.

You can use JSON, strings, static information, variables you've defined as well as reserved
variables. For more detailed examples of input transformations, see ???.

For example, suppose you had defined the variables in the previous example. You could
then compose the following template, which references those variables, as well as reserved
variables, and static information.

{
 "message": "<requester> has created the object \"<key>\" in the bucket
 \"<bucket>\"",
 "RuleName": <aws.events.rule-name>,
 "ruleArn" : <aws.events.rule-arn>,
 "Transformed": "Yes"
}

(Optional) You can also choose Copy to copy the template to your device's clipboard.

8. To test your template, select Generate output.

EventBridge processes the sample event based on the input template, and displays the
transformed output generated under Output. This is the information that EventBridge will
pass to the target in place of the original source event.

Configuring an input transformer 238

Amazon EventBridge User Guide

The generated output for the example input template described above would be the
following:

{
 "message": "123456789012 has created the object "example-key" in the bucket
 "example-bucket"",
 "RuleName": rule-name,
 "ruleArn" : arn:aws:events:us-east-1:123456789012:rule/rule-name,
 "Transformed": "Yes"
}

(Optional) You can also choose Copy to copy the generated output to your device's clipboard.

9. Select Confirm

10. Follow the rest of the steps for creating a rule as detailed in ???.

Testing a target input transformer using the EventBridge Sandbox

You can use input transformers to customize the text from an event before EventBridge passes the
information to the target of a rule.

Configuring an input transformer is typically part of the larger process of specifying a target while
creating a new rule or editing an existing one. Using the Sandbox in EventBridge, however, you
can quickly configure an input transformer and use a sample event to confirm you are getting the
desired output, without having to create or edit a rule.

For more information about input transformations, see ???.

To test a target input transformer

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. Under Developer resources, choose Sandbox, and on the Sandbox page choose the Target
input transformer tab.

3. In the Sample event section, choose a Sample event type against which you want to test your
event pattern. You can choose an AWS event, a partner event, or enter your own custom event.

AWS events

Select from events emitted from supported AWS services.

Testing an input transformer 239

https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

1. Select AWS events.

2. Under Sample events, choose the desired AWS event. Events are organized by AWS
service.

When you select an event, EventBridge populates the sample event.

For example, if you choose S3 Object Created, EventBridge displays a sample S3 Object
Created event.

3. (Optional) You can also select Copy to copy the sample event to your device's clipboard.

Partner events

Select from events emitted from third-party services that support EventBridge, such as
Salesforce.

1. Select EventBridge partner events.

2. Under Sample events, choose the desired partner event. Events are organized by
partner.

When you select an event, EventBridge populates the sample event.

3. (Optional) You can also select Copy to copy the sample event to your device's clipboard.

Enter your own

Enter your own event in JSON text.

1. Select Enter your own.

2. EventBridge populates the sample event with a template of required event attributes.

3. Edit and add to the sample event as desired. The sample event must be valid JSON.

4. (Optional) You can also choose any of the following options:

• Copy – Copy the sample event to your device's clipboard.

• Prettify – Makes the JSON text easier to read by adding line breaks, tabs, and spaces.

4. (Optional) Expand the Example input paths, Templates and Outputs section to see examples
of:

• How JSON paths are used to define variables that represent event data
Testing an input transformer 240

Amazon EventBridge User Guide

• How those variables can be used in an input transformer template

• The resulting output that EventBridge sends to the target

For more detailed examples of input transformations, see ???.

5. In the Target input transformer section, define any variables you want to use in the input
template.

Variables use JSON path to reference values in the original event source. You can then
reference those variables in the input template in order to include data from the original
source event in the transformed event that EventBridge passes to the target. You can define
up to 100 variables. The input transformer must be valid JSON.

For example, suppose you had chosen AWS event S3 Object Created as your sample event for
this input transformer. You could then define the following variables for use in your template:

{
 "requester": "$.detail.requester",
 "key": "$.detail.object.key",
 "bucket": "$.detail.bucket.name"
}

(Optional) You can also choose Copy to copy the input transformer to your device's clipboard.

6. In the Template section, compose the template you want to use to determine what
EventBridge passes to the target.

You can use JSON, strings, static information, variables you've defined as well as reserved
variables. For more detailed examples of input transformations, see ???.

For example, suppose you had defined the variables in the previous example. You could
then compose the following template, which references those variables, as well as reserved
variables, and static information.

{
 "message": "<requester> has created the object \"<key>\" in the bucket
 \"<bucket>\"",
 "RuleName": <aws.events.rule-name>,
 "ruleArn" : <aws.events.rule-arn>,
 "Transformed": "Yes"

Testing an input transformer 241

Amazon EventBridge User Guide

}

(Optional) You can also choose Copy to copy the template to your device's clipboard.

7. To test your template, select Generate output.

EventBridge processes the sample event based on the input template, and displays the
transformed output generated under Output. This is the information that EventBridge will
pass to the target in place of the original source event.

The generated output for the example input template described above would be the
following:

{
 "message": "123456789012 has created the object "example-key" in the bucket
 "example-bucket"",
 "RuleName": rule-name,
 "ruleArn" : arn:aws:events:us-east-1:123456789012:rule/rule-name,
 "Transformed": "Yes"
}

(Optional) You can also choose Copy to copy the generated output to your device's clipboard.

Testing an input transformer 242

Amazon EventBridge User Guide

Amazon EventBridge archive and replay

In EventBridge, you can create an archive of events so that you can easily replay them at a later
time. For example, you might want to replay events to recover from errors or to validate new
functionality in your application.

Note

There may be a delay between an event being published to an event bus and the event
arriving in the archive. We recommend you delay replaying archived events for 10 minutes
to make sure all events are replayed.

The following video demonstrates the use of archive and replay: Creating archives and replays

Topics

• Archiving Amazon EventBridge events

• Replaying archived Amazon EventBridge events

243

http://www.youtube.com/embed/s37BMCIGLC0

Amazon EventBridge User Guide

Archiving Amazon EventBridge events

When you create an archive in EventBridge, you can determine which events are sent to the archive
by specifying an event pattern. EventBridge sends events that match the event pattern to the
archive. You also set the retention period to store events in the archive before they are discarded.

By default, EventBridge encrypts event data in an archive using 256-bit Advanced Encryption
Standard (AES-256) under an AWS owned CMK, which helps secure your data from unauthorized
access.

Note

Expired events are usually deducted from the EventCount and SizeBytes values of the
DescribeArchive operation every 24 hours. Therefore, recently expired events may not
be reflected in these values.

To create an archive for all events

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the left navigation pane, choose Archives.

3. Choose Create archive.

4. Under Archive detail, enter a Name for the archive. The name must be unique to your account
in the selected Region.

You can't change the name after you create the archive.

5. (Optional) Enter a Description for the archive.

6. For Source, select the event bus that emits the events to send to the archive.

7. For Retention period, do one of the following:

• Choose Indefinite to retain the events in the archive and not ever delete them.

• Enter the number of days to retain the events. After the number of days specified,
EventBridge deletes the events from the archive.

8. Choose Next.

9. Under Event pattern, choose No event filtering.

10. Choose Create archive.

Archiving events 244

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_DescribeArchive.html
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

To create an archive with an event pattern

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the left navigation pane, choose Archives.

3. Choose Create archive.

4. Under Archive detail, enter a Name for the archive. The name must be unique to your account
in the selected Region.

You can't change the name after you create the archive.

5. (Optional) Enter a Description for the archive.

6. For Source, select the event bus that emits the events to send to the archive.

7. For Retention period, do one of the following:

• Choose Indefinite* to retain the events in the archive and not ever delete them.

• Enter the number of days to retain the events. After the number of days specified,
EventBridge deletes the events from the archive.

8. Choose Next.

9. Under Event pattern, choose Filtering events by event pattern matching.

10. Do one of the following:

• Select Pattern builder, then choose the Service provider. If you choose AWS, also select
the AWS service name and Event type to use in the pattern.

• Select JSON editor to create a pattern manually. You can also copy the pattern from a
rule and then paste it into the JSON editor.

11. Choose Create archive.

To confirm that events are successfully sent to the archive, you can use the DescribeArchive
operation of the EventBridge API to see if the EventCount reflects the number of events in the
archive. If it is 0, there are no events in the archive.

Archiving events 245

https://console.aws.amazon.com/events/
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_DescribeArchive.html

Amazon EventBridge User Guide

Replaying archived Amazon EventBridge events

After you create an archive, you can then replay events from the archive. For example, if you
update an application with additional functionality, you can replay historical events to ensure that
the events are reprocessed to keep the application consistent. You can also use an archive to replay
events for new functionality. When you replay events, you can specify which archive to replay
events from, the start and end time for the event to replay, the event bus, or one or more rules to
replay the events to.

Events aren't necessarily replayed in the same order that they were added to the archive. A replay
processes events to replay based on the time in the event, and replays them on one minute
intervals. If you specify an event start time and an event end time that covers a 20 minute time
range, the events are replayed from the first minute of that 20 minute range first. Then the
events from the second minute are replayed. You can use the DescribeReplay operation of the
EventBridge API to determine the progress of a replay. EventLastReplayedTime returns the
time stamp of the last event replayed.

Events are replayed based on, but separate from, the PutEvents transactions per second limit for
the AWS account. You can request an increase to the limit for PutEvents. For more information, see
Amazon EventBridge Quotas.

Note

You can have a maximum of 10 active concurrent replays per account per AWS Region.

To start an event replay

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the left navigation pane, choose Replays.

3. Choose Start new replay.

4. Enter a Name for the replay and, optionally, a Description.

5. For Source, select the archive to replay events from.

6. For destination, you can replay events only to the same event bus that emitted the events.

7. For Specify rules, do one of the following:

• Choose All rules to replay events to all rules.

Replaying archived events 246

https://docs.aws.amazon.com/eventbridge/latest/userguide/cloudwatch-limits-eventbridge.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/cloudwatch-limits-eventbridge.html
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

• Choose Specify rules, and then select the rule or rules to replay the events to.

8. Under Replay time frame, specify the Date, Time, and Time zone for the Start time and the
End time. Only events that occurred between the Start time and End time are replayed.

9. Choose Start replay.

When the events from the archived are replayed, the status of the replay is Completed.

If you start a replay and then want to interrupt it, you can cancel it as long as the status is Starting
or Running.

To cancel a replay

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the left navigation pane, choose Replays.

3. Choose the replay to cancel.

4. Choose Cancel.

Replaying archived events 247

https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

Amazon EventBridge Pipes

Amazon EventBridge Pipes connects sources to targets. Pipes are intended for point-to-point
integrations between supported sources and targets, with support for advanced transformations
and enrichment. It reduces the need for specialized knowledge and integration code when
developing event-driven architectures, fostering consistency across your company’s applications. To
set up a pipe, you choose the source, add optional filtering, define optional enrichment, and choose
the target for the event data.

Note

You can also route events using event buses. Event buses are well-suited for many-to-many
routing of events between event-driven services. For more information, see ???.

How EventBridge Pipes work

At a high level, here's how EventBridge Pipes works:

1. You create a pipe in your account. This includes:

• Specifying one of the supported event sources from which you want your pipe to receive
events.

• Optionally, configuring a filter so that the pipe only processes a subset of the events it
receives from the source.

• Optionally, configuring an enrichment step that enhances the event data before sending it to
the target.

• Specifying one of the supported targets to which you want your pipe to send events.

2. The event source begins sending events to the pipe, and the pipe processes the event before
sending it to the target.

• If you have configured a filter, the pipe evaluates the event and only sends it to the target if it
matches that filter.

You are only charged for those events that match the filter.

• If you have configured an enrichment, the pipe performs that enrichment on the event before
sending it to the target.

How Pipes work 248

Amazon EventBridge User Guide

If the events are batched, the enrichment maintains the ordering of the events in the batch.

For example, a pipe could be used to create an e-commerce system. Suppose you have an API that
contains customer information, such as shipping addresses.

1. You then create a pipe with the following:

• An Amazon SQS order received message queue as the event source.

• An EventBridge API Destination as an enrichment

• An AWS Step Functions state machine as the target

2. Then, when an Amazon SQS order received message appears in the queue, it is sent to your pipe.

3. The pipe then sends that data to the EventBridge API Destination enrichment, which returns the
customer information for that order.

4. Lastly, the pipe sends the enriched data to the AWS Step Functions state machine, which
processes the order.

EventBridge Pipes concepts

Here's a closer look at the basic components of EventBridge Pipes.

Pipes concepts 249

Amazon EventBridge User Guide

Pipe

A pipe routes events from a single source to a single target. The pipe also includes the ability to
filter for specific events, and to perform enrichments on the event data before it is sent to the
target.

Source

EventBridge Pipes receives event data from a variety of sources, applies optional filters and
enrichment to that data, and sends it to a target. If a source enforces order to the events sent to
pipes, that order is maintained throughout the entire process to the target.

For more information about sources, see ???.

Filters

A pipe can filter a given source’s events and then process only a subset of those events. To
configure filtering on a pipe, you define an event pattern the pipe uses to determine which events
to send to the target.

You are only charged for those events that match the filter.

For more information, see ???.

Pipe 250

Amazon EventBridge User Guide

Enrichment

With the enrichment step of EventBridge Pipes, you can enhance the data from the source before
sending it to the target. For example, you might receive Ticket created events that don’t include the
full ticket data. Using enrichment, you can have a Lambda function call the get-ticket API for
the full ticket details. The pipe can then send that information to a target.

For more information about enriching event data, see ???.

Target

After the event data has been filtered and enriched, you can specify the pipe send it to a specific
target, such as an Amazon Kinesis stream or an Amazon CloudWatch log group. For a list of the
available targets, see ???.

You can transform the data after it’s enhanced and before it’s sent by the pipe to the target. For
more information, see ???.

Multiple pipes, each with a different source, can send events to the same target.

You can also use pipes and event buses together to send events to multiple targets. A common
use case is to create a pipe with an event bus as its target; the pipe sends events to the event bus,
which then sends those events on to multiple targets. For example, you could create a pipe with a
DynamoDB stream for a source, and an event bus as the target. The pipe receives events from the
DynamoDB stream and sends them to the event bus, which then sends them on to multiple targets
according to the rules you've specified on the event bus.

Permissions for Amazon EventBridge Pipes

When settings up a pipe, you can use an existing execution role, or have EventBridge create one for
you with the needed permissions. The permissions EventBridge Pipes requires vary based on the
source type, and are listed below. If you’re setting up your own execution role, you must add these
permissions yourself.

Note

If you’re unsure of the exact well-scoped permissions required to access the source, use the
EventBridge Pipes console to create a new role, then inspect the actions listed in the policy.

Enrichment 251

Amazon EventBridge User Guide

Topics

• DynamoDB execution role permissions

• Kinesis execution role permissions

• Amazon MQ execution role permissions

• Amazon MSK execution role permissions

• Self managed Apache Kafka execution role permissions

• Amazon SQS execution role permissions

• Enrichment and target permissions

DynamoDB execution role permissions

For DynamoDB Streams, EventBridge Pipes requires the following permissions to manage resources
that are related to your DynamoDB data stream.

• dynamodb:DescribeStream

• dynamodb:GetRecords

• dynamodb:GetShardIterator

• dynamodb:ListStreams

To send records of failed batches to the pipe dead-letter queue, your pipe execution role needs the
following permission:

• sqs:SendMessage

Kinesis execution role permissions

For Kinesis, EventBridge Pipes requires the following permissions to manage resources that are
related to your Kinesis data stream.

• kinesis:DescribeStream

• kinesis:DescribeStreamSummary

• kinesis:GetRecords

• kinesis:GetShardIterator

• kinesis:ListShards

DynamoDB permissions 252

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_streams_DescribeStream.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_streams_GetRecords.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_streams_GetShardIterator.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_streams_ListStreams.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DescribeStream.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DescribeStreamSummary.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetShardIterator.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_ListShards.html

Amazon EventBridge User Guide

• kinesis:ListStreams

• kinesis:SubscribeToShard

To send records of failed batches to the pipe dead-letter queue, your pipe execution role needs the
following permission:

• sqs:SendMessage

Amazon MQ execution role permissions

For Amazon MQ, EventBridge Pipes requires the following permissions to manage resources that
are related to your Amazon MQ message broker.

• mq:DescribeBroker

• secretsmanager:GetSecretValue

• ec2:CreateNetworkInterface

• ec2:DeleteNetworkInterface

• ec2:DescribeNetworkInterfaces

• ec2:DescribeSecurityGroups

• ec2:DescribeSubnets

• ec2:DescribeVpcs

• logs:CreateLogGroup

• logs:CreateLogStream

• logs:PutLogEvents

Amazon MSK execution role permissions

For Amazon MSK, EventBridge requires the following permissions to manage resources that are
related to your Amazon MSK topic.

Note

If you're using IAM role-based authentication, your execution role will need the permissions
listed in ??? in addition the ones listed below.

Amazon MQ permissions 253

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_ListStreams.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_SubscribeToShard.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/amazon-mq/latest/api-reference/brokers-broker-id.html#brokers-broker-id-http-methods
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateNetworkInterface.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DeleteNetworkInterface.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeNetworkInterfaces.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSecurityGroups.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSubnets.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeVpcs.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogGroup.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogStream.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutLogEvents.html

Amazon EventBridge User Guide

• kafka:DescribeClusterV2

• kafka:GetBootstrapBrokers

• ec2:CreateNetworkInterface

• ec2:DescribeNetworkInterfaces

• ec2:DescribeVpcs

• ec2:DeleteNetworkInterface

• ec2:DescribeSubnets

• ec2:DescribeSecurityGroups

• logs:CreateLogGroup

• logs:CreateLogStream

• logs:PutLogEvents

Self managed Apache Kafka execution role permissions

For self managed Apache Kafka, EventBridge requires the following permissions to manage
resources that are related to your self managed Apache Kafka stream.

Required permissions

To create and store logs in a log group in Amazon CloudWatch Logs, your pipe must have the
following permissions in its execution role:

• logs:CreateLogGroup

• logs:CreateLogStream

• logs:PutLogEvents

Optional permissions

Your pipe might also need permissions to:

• Describe your Secrets Manager secret.

• Access your AWS Key Management Service (AWS KMS) customer managed key.

• Access your Amazon VPC.

Self managed Apache Kafka permissions 254

https://docs.aws.amazon.com/MSK/2.0/APIReference/v2-clusters-clusterarn.html#v2-clusters-clusterarnget
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-bootstrap-brokers.html#clusters-clusterarn-bootstrap-brokersget
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateNetworkInterface.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeNetworkInterfaces.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeVpcs.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DeleteNetworkInterface.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSubnets.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSecurityGroups.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogGroup.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogStream.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutLogEvents.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogGroup.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogStream.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutLogEvents.html

Amazon EventBridge User Guide

Secrets Manager and AWS KMS permissions

Depending on the type of access control that you're configuring for your Apache Kafka brokers,
your pipe might need permission to access your Secrets Manager secret or to decrypt your AWS
KMS customer managed key. To access these resources, your function's execution role must have
the following permissions:

• secretsmanager:GetSecretValue

• kms:Decrypt

VPC permissions

If only users within a VPC can access your self managed Apache Kafka cluster, your pipe must
have permission to access your Amazon VPC resources. These resources include your VPC, subnets,
security groups, and network interfaces. To access these resources, your pipe's execution role must
have the following permissions:

• ec2:CreateNetworkInterface

• ec2:DescribeNetworkInterfaces

• ec2:DescribeVpcs

• ec2:DeleteNetworkInterface

• ec2:DescribeSubnets

• ec2:DescribeSecurityGroups

Amazon SQS execution role permissions

For Amazon SQS, EventBridge requires the following permissions to manage resources that are
related to your Amazon SQS queue.

• sqs:ReceiveMessage

• sqs:DeleteMessage

• sqs:GetQueueAttributes

Amazon SQS permissions 255

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateNetworkInterface.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeNetworkInterfaces.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeVpcs.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DeleteNetworkInterface.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSubnets.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSecurityGroups.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html

Amazon EventBridge User Guide

Enrichment and target permissions

To make API calls on the resources that you own, EventBridge Pipes needs appropriate permission.
EventBridge Pipes uses the IAM role that you specify on the pipe for enrichment and target calls
using the IAM principal pipes.amazonaws.com.

Creating an Amazon EventBridge pipe

EventBridge Pipes enables you to create point-to-point integrations between sources and targets,
including advanced event transformations and enrichment. To create an EventBridge pipe, you
perform the following steps:

1. ???

2. ???

3. ???

4. ???

5. ???

For information on how to create a pipe using the AWS CLI, see create-pipe in the AWS CLI
Command Reference.

Specifying a source

To start, specify the source from which you want the pipe to receive events.

To specify a pipe source by using the console

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. On the navigation pane, choose Pipes.

3. Choose Create pipe.

4. Enter a name for the pipe.

5. (Optional) Add a description for the pipe.

6. On the Build pipe tab, for Source, choose the type of source you want to specify for this pipe,
and configure the source.

Configuration properties differ based on the type of source you choose:

Enrichment and target permissions 256

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/pipes/create-pipe.html
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

DynamoDB

1. For Source, choose DynamoDB.

2. For DynamoDB stream, choose the stream you want to use as a source.

3. For Starting position, choose one of the following:

• Latest – Start reading the stream with the most recent record in the shard.

• Trim horizon – Start reading the stream with the last untrimmed record in the shard.
This is the oldest record in the shard.

4. (Optional) For Additional setting - optional, do the following:

a. For Batch size - optional, enter a maximum number of records for each batch. The
default value is 100.

b. For Batch window - optional, enter a maximum number of seconds to gather records
before proceeding.

c. For Concurrent batches per shard - optional, enter the number of batches from the
same shard that can be read at the same time.

d. For On partial batch item failure, choose the following:

• AUTOMATIC_BISECT – Halve each batch and retry each half until all the records are
processed or there is one failed message remaining in the batch.

Note

If you don't choose AUTOMATIC_BISECT, you can return specific failed records
and only those get retried.

Kinesis

To configure a Kinesis source by using the console

1. For Source, choose Kinesis.

2. For Kinesis stream, choose the stream that you want to use as a source.

3. For Starting position, choose one of the following:

• Latest – Start reading the stream with the most recent record in the shard.

Specifying a source 257

Amazon EventBridge User Guide

• Trim horizon – Start reading the stream with the last untrimmed record in the shard.
This is the oldest record in the shard.

• At timestamp – Start reading the stream from a specified time. Under Timestamp,
enter a data and time using YYYY/MM/DD and hh:mm:ss format.

4. (Optional) For Additional setting - optional, do the following:

a. For Batch size - optional, enter a maximum number of records for each batch. The
default value is 100.

b. (Optional) For Batch window - optional, enter a maximum number of seconds to
gather records before proceeding.

c. For Concurrent batches per shard - optional, enter the number of batches from the
same shard that can be read at the same time.

d. For On partial batch item failure, choose the following:

• AUTOMATIC_BISECT – Halve each batch and retry each half until all the records are
processed or there is one failed message remaining in the batch.

Note

If you don't choose AUTOMATIC_BISECT, you can return specific failed records
and only those get retried.

Amazon MQ

To configure an Amazon MQ source by using the console

1. For Source, choose Amazon MQ.

2. For Amazon MQ broker, choose the stream you want to use as a source.

3. For Queue name, enter the name of the queue that the pipe will read from.

4. For Authentication Method, choose BASIC_AUTH.

5. For Secret key, choose the secret key.

6. (Optional) For Additional setting - optional, do the following:

a. For Batch size - optional, enter a maximum number of messages for each batch. The
default value is 100.

Specifying a source 258

Amazon EventBridge User Guide

b. For Batch window - optional, enter a maximum number of seconds to gather records
before proceeding.

Amazon MSK

To configure an Amazon MSK source by using the console

1. For Source, choose Amazon MSK.

2. For Amazon MSK cluster, choose the cluster that you want to use.

3. For Topic name, enter the name of topic that the pipe will read from.

4. (Optional) For Consumer Group ID - optional, enter the ID of the consumer group you
want the pipe to join.

5. (Optional) For Authentication - optional, turn on Use Authentication and do the
following:

a. For Authentication method, choose the type you want.

b. For Secret key, choose the secret key.

6. (Optional) For Additional setting - optional, do the following:

a. For Batch size - optional, enter a maximum number of records for each batch. The
default value is 100.

b. For Batch window - optional, enter a maximum number of seconds to gather records
before proceeding.

c. For Starting position, choose one of the following:

• Latest – Start reading the topic with the most recent record in the shard.

• Trim horizon – Start reading the topic with the last untrimmed record in the shard.
This is the oldest record in the shard.

Note

Trim horizon is the same as Earliest for Apache Kafka.

Specifying a source 259

Amazon EventBridge User Guide

Self managed Apache Kafka

To configure a self managed Apache Kafka source by using the console

1. For Source, choose Self-managed Apache Kafka.

2. For Bootstrap servers, enter the host:port pair addresses of your brokers.

3. For Topic name, enter the name of topic that the pipe will read from.

4. (Optional) For VPC, choose the VPC that you want. Then, for VPC subnets, choose the
desired subnets. For VPC security groups, choose the security groups.

5. (Optional) For Authentication - optional, turn on Use Authentication and do the
following:

a. For Authentication method, choose the authentication type.

b. For Secret key, choose the secret key.

6. (Optional) For Additional setting - optional, do the following:

a. For Starting position, choose one of the following:

• Latest – Start reading the stream with the most recent record in the shard.

• Trim horizon – Start reading the stream with the last untrimmed record in the
shard. This is the oldest record in the shard.

b. For Batch size - optional, enter a maximum number of records for each batch. The
default value is 100.

c. For Batch window - optional, enter a maximum number of seconds to gather records
before proceeding.

Amazon SQS

To configure an Amazon SQS source by using the console

1. For Source, choose SQS.

2. For SQS queue, choose the queue you want to use.

3. (Optional) For Additional setting - optional, do the following:

a. For Batch size - optional, enter a maximum number of records for each batch. The
default value is 100.

Specifying a source 260

Amazon EventBridge User Guide

b. For Batch window - optional, enter a maximum number of seconds to gather records
before proceeding.

Configuring event filtering (optional)

You can add filtering to your pipe so you’re sending only a subset of events from your source to the
target.

To configure filtering by using the console

1. Choose Filtering.

2. Under Sample event - optional, you’ll see a sample event that you can use to build your event
pattern, or you can enter your own event by choosing Enter your own.

3. Under Event pattern, enter the event pattern that you want to use to filter the events. For
more information about building event patterns, see ???.

The following is an example event pattern that only sends events with the value Seattle in the
City field.

{
 "data": {
 "City": ["Seattle"]
 }
}

Now that events are being filtered, you can add optional enrichment and a target for the pipe.

Defining event enrichment (optional)

You can send the event data for enrichment to a Lambda function, AWS Step Functions state
machine, Amazon API Gateway, or API destination.

To select enrichment

1. Choose Enrichment.

2. Under Details, for Service, select the service and related settings you want to use for
enrichment.

Configuring filtering 261

Amazon EventBridge User Guide

You can also transform the data before sending it to be enhanced.

(Optional) To define the input transformer

1. Choose Enrichment Input Transformer - optional.

2. For Sample events/Event Payload, choose the sample event type.

3. For Transformer, enter the transformer syntax, such as "Event happened at <
$.detail.field>." where <$.detail.field> is a reference to a field from the sample
event. You can also double-click a field from the sample event to add it to the transformer.

4. For Output, verify that the output looks like you want it to.

Now that the data has been filtered and enhanced, you must define a target to send the event data
to.

Configuring a target

To configure a target

1. Choose Target.

2. Under Details, for Target service, choose the target. The fields that display vary depending on
the target that you choose. Enter information specific to this target type, as needed.

You can also transform the data before sending it to the target.

(Optional) To define the input transformer

1. Choose Target Input Transformer - optional.

2. For Sample events/Event Payload, choose the sample event type.

3. For Transformer, enter the transformer syntax, such as "Event happened at <
$.detail.field>." where <$.detail.field> is a reference to a field from the sample
event. You can also double-click a field from the sample event to add it to the transformer.

4. For Output, verify that the output looks like you want it to.

Now that the pipe is configured, make sure that its settings are configured correctly.

Configuring a target 262

Amazon EventBridge User Guide

Configuring the pipe settings

A pipe is active by default, but you can deactivate it. You can also specify the permissions of the
pipe, set up pipe logging, and add tags.

To configure the pipe settings

1. Choose the Pipe settings tab.

2. By default, newly created pipes are active as soon as they're created. If you want to create an
inactive pipe, under Activation, for Activate pipe, turn off Active.

3. Under Permissions, for Execution role, do one of the following:

a. To have EventBridge create a new execution role for this pipe, choose Create a new role
for this specific resource. Under Role name, you can optionally edit the role name.

b. To use an existing execution role, choose Use existing role. Under Role name, choose the
role.

4. (Optional) If you have specified a Kinesis or DynamoDB stream as the pipe source, you can
configure a retry policy and dead-letter queue (DLQ).

For Retry policy and Dead-letter queue - optional, do the following:

Under Retry policy, do the following:

a. If you want to turn on retry policies, turn on Retry. By default, newly created pipes don't
have a retry policy turned on.

b. For Maximum age of event, enter a value between one minute (00:01) and 24 hours
(24:00).

c. For Retry attempts, enter a number between 0 and 185.

d. If you want to use a dead-letter queue (DLQ), turn on Dead-letter queue, choose the
method of your choice, and choose the queue or topic you'd like to use. By default, newly
created pipes don't use a DLQ.

5. (Optional) Under Logs - optional, you can set up how EventBridge Pipes sends logging
information to supported services, including how to configure those logs.

For more information about logging pipe records, see ???.

Configuring pipe settings 263

Amazon EventBridge User Guide

CloudWatch logs is selected as a log destination by default, as is the ERROR log level. So, by
default, EventBridge Pipes creates a new CloudWatch log group to which it sends log records
containing the ERROR level of detail.

To have EventBridge Pipes send log records to any of the supported log destinations, do the
following:

a. Under Logs - optional, choose the destinations to which you want log records delivered.

b. For Log level, choose the level of information for EventBridge to include in log records.
The ERROR log level is selected by default.

For more information, see ???.

c. Select Include execution data if you want EventBridge to include event payload
information and service request and response information in log records.

For more information, see ???.

d. Configure each log destination you selected:

For CloudWatch Logs logs, under CloudWatch logs do the following:

• For CloudWatch log group, choose whether to have EventBridge create a new log
group, or you can select an existing log group or specifying the ARN of an existing log
group.

• For new log groups, edit the log group name as desired.

CloudWatch logs is selected by default.

For Firehose stream logs, under Firehose stream log, select the Firehose stream.

For Amazon S3 logs, under S3 logs do the following:

• Enter the name of the bucket to use as the log destination.

• Enter the AWS account ID of the bucket owner.

• Enter any prefix text you want used when EventBridge creates S3 objects.

For more information, see Organizing objects using prefixes in the Amazon Simple
Storage Service User Guide.

Configuring pipe settings 264

https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-prefixes.html

Amazon EventBridge User Guide

• Choose how you want EventBridge to format S3 log records:

• json: JSON

• plain: Plain text

• w3c: W3C extended logging file format

6. (Optional) Under Tags - optional, choose Add new tag and enter one or more tags for the
rule. For more information, see ???.

7. Choose Create pipe.

Validating configuration parameters

After a pipe is created, EventBridge validates the following configuration parameters:

• IAM role – Because the source of a pipe can't be changed after the pipe is created, EventBridge
verifies that the provided IAM role can access the source.

Note

EventBridge doesn't perform the same validation for enrichments or targets because
they can be updated after the pipe is created.

• Batching – EventBridge validates that the batch size of the source doesn't exceed the maximum
batch size of the target. If it does, EventBridge requires a lower batch size. Additionally, if a
target doesn't support batching, you can't configure batching in EventBridge for the source.

• Enrichments – EventBridge validates that the batch size for API Gateway and API destination
enrichments is 1 because only batch sizes of 1 are supported.

Starting or stopping a pipe

By default, a pipe is Running and processes events when it's created.

If you create a pipe with Amazon SQS, Kinesis, or DynamoDB sources, pipe creation can typically
take a minute or two.

If you create a pipe with Amazon MSK, self managed Apache Kafka, or Amazon MQ sources, pipes
creation can take up to ten minutes.

Validating configuration parameters 265

https://www.w3.org/TR/WD-logfile

Amazon EventBridge User Guide

To create a pipe without processing events using the console

• Turn off the Activate pipe setting.

To create a pipe without processing events programmatically

• In your API call, set the DesiredState to Stopped.

To start or stop an existing pipe using the console

• On the Pipes settings tab, under Activation, for Activate pipe, turn Active on or off.

To start or stop an existing pipe programmatically

• In your API call, set the DesiredState parameter to either RUNNING or STOPPED.

There can be a delay between when a pipe is STOPPED and when it no longer processes events:

• For Amazon SQS and stream sources, this delay is typically less than two minutes.

• For Amazon MQ and Apache Kafka sources, this delay may be up to fifteen minutes.

Amazon EventBridge Pipes sources

EventBridge Pipes receives event data from a variety of sources, applies optional filters and
enrichments to that data, and sends it to a destination.

If a source enforces order to the events sent to EventBridge Pipes, that order is maintained
throughout the entire process to the destination.

The following sources are currently available for EventBridge Pipes:

• Amazon DynamoDB stream

• Amazon Kinesis stream

• Amazon MQ broker

• Amazon MSK stream

• Self managed Apache Kafka stream

Sources 266

Amazon EventBridge User Guide

• Amazon SQS queue

Amazon DynamoDB stream as a source

You can use EventBridge Pipes to receive records in a DynamoDB stream. You can then optionally
filter or enhance these records before sending them to a target for processing. There are settings
specific to Amazon DynamoDB Streams that you can choose when setting up the pipe. EventBridge
Pipes maintains the order of records from the data stream when sending that data to the
destination.

Important

Disabling a DynamoDB stream that is the source of a pipe results in that pipe becoming
unusable, even if you then re-enable the stream. This happens because:

• You cannot stop, start, or update a pipe whose source is disabled.

• You cannot update a pipe with a new source after creation. When you re-enable a
DynamoDB stream, that stream is assigned a new Amazon Resource Name (ARN), and is
no longer associated with your pipe.

If you do re-enable the DynamoDB stream, you will then need to create a new pipe using
the stream's new ARN.

Example event

The following sample event shows the information that's received by the pipe. You can use this
event to create and filter your event patterns , or to define input transformation. Not all of the
fields can be filtered. For more information about which fields you can filter, see ???.

[
 {
 "eventID": "1",
 "eventVersion": "1.0",
 "dynamodb": {
 "Keys": {
 "Id": {
 "N": "101"
 }

DynamoDB stream 267

Amazon EventBridge User Guide

 },
 "NewImage": {
 "Message": {
 "S": "New item!"
 },
 "Id": {
 "N": "101"
 }
 },
 "StreamViewType": "NEW_AND_OLD_IMAGES",
 "SequenceNumber": "111",
 "SizeBytes": 26
 },
 "awsRegion": "us-west-2",
 "eventName": "INSERT",
 "eventSourceARN": "arn:aws:dynamodb:us-east-1:111122223333:table/EventSourceTable",
 "eventSource": "aws:dynamodb"
 },
 {
 "eventID": "2",
 "eventVersion": "1.0",
 "dynamodb": {
 "OldImage": {
 "Message": {
 "S": "New item!"
 },
 "Id": {
 "N": "101"
 }
 },
 "SequenceNumber": "222",
 "Keys": {
 "Id": {
 "N": "101"
 }
 },
 "SizeBytes": 59,
 "NewImage": {
 "Message": {
 "S": "This item has changed"
 },
 "Id": {
 "N": "101"
 }

DynamoDB stream 268

Amazon EventBridge User Guide

 },
 "StreamViewType": "NEW_AND_OLD_IMAGES"
 },
 "awsRegion": "us-west-2",
 "eventName": "MODIFY",
 "eventSourceARN": "arn:aws:dynamodb:us-east-1:111122223333:table/EventSourceTable",
 "eventSource": "aws:dynamodb"
 }
]

Polling and batching streams

EventBridge polls shards in your DynamoDB stream for records at a base rate of four times per
second. When records are available, EventBridge processes the event and waits for the result. If
processing succeeds, EventBridge resumes polling until it receives more records.

By default, EventBridge invokes your pipe as soon as records are available. If the batch that
EventBridge reads from the source has only one record in it, only one event is processed. To avoid
processing a small number of records, you can tell the pipe to buffer records for up to five minutes
by configuring a batching window. Before processing the events, EventBridge continues to read
records from the source until it has gathered a full batch, the batching window expires, or the
batch reaches the payload limit of 6 MB.

You can also increase concurrency by processing multiple batches from each shard in parallel.
EventBridge can process up to 10 batches in each shard simultaneously. If you increase the number
of concurrent batches per shard, EventBridge still ensures in-order processing at the partition key
level.

Configure the ParallelizationFactor setting to process one shard of a Kinesis or DynamoDB
data stream with more than one Pipe execution simultaneously. You can specify the number of
concurrent batches that EventBridge polls from a shard via a parallelization factor from 1 (default)
to 10. For example, when you set ParallelizationFactor to 2, you can have 200 concurrent
EventBridge Pipe executions at maximum to process 100 Kinesis data shards. This helps scale up
the processing throughput when the data volume is volatile and the IteratorAge is high. Note
that parallelization factor will not work if you are using Kinesis aggregation.

Polling and stream starting position

Be aware that stream source polling during pipe creation and updates is eventually consistent.

• During pipe creation, it may take several minutes to start polling events from the stream.

DynamoDB stream 269

Amazon EventBridge User Guide

• During pipe updates to the source polling configuration, it may take several minutes to stop and
restart polling events from the stream.

This means that if you specify LATEST as the starting position for the stream, the pipe could miss
events sent during pipe creation or updates. To ensure no events are missed, specify the stream
starting position as TRIM_HORIZON.

Reporting batch item failures

When EventBridge consumes and processes streaming data from an source, by default it
checkpoints to the highest sequence number of a batch, but only when the batch is a complete
success. To avoid reprocessing successfully processed messages in a failed batch, you can configure
your enrichment or target to return an object indicating which messages succeeded and which
failed. This is called a partial batch response.

For more information, see ???.

Success and failure conditions

If you return any of the following, EventBridge treats a batch as a complete success:

• An empty batchItemFailure list

• A null batchItemFailure list

• An empty EventResponse

• A null EventResponse

If you return any of the following, EventBridge treats a batch as a complete failure:

• An empty string itemIdentifier

• A null itemIdentifier

• An itemIdentifier with a bad key name

EventBridge retries failures based on your retry strategy.

Amazon Kinesis stream as a source

You can use EventBridge Pipes to receive records in a Kinesis data stream. You can then optionally
filter or enhance these records before sending them to one of the available destinations for

Kinesis stream 270

Amazon EventBridge User Guide

processing. There are settings specific to Kinesis that you can choose when setting up the pipe.
EventBridge Pipes maintains the order of records from the data stream when sending that data to
the destination.

A Kinesis data stream is a set of shards. Each shard contains a sequence of data records. A
consumer is an application that processes the data from a Kinesis data stream. You can map
an EventBridge Pipe to a shared-throughput consumer (standard iterator), or to a dedicated-
throughput consumer with enhanced fan-out.

For standard iterators, EventBridge uses the HTTP protocol to poll each shard in your Kinesis
stream for records. The pipe shares the read throughput with other consumers of the shard.

To minimize latency and maximize read throughput, you can create a data stream consumer with
enhanced fan-out. Stream consumers get a dedicated connection to each shard that doesn't impact
other applications reading from the stream. The dedicated throughput can help if you have many
applications reading the same data, or if you're reprocessing a stream with large records. Kinesis
pushes records to EventBridge over HTTP/2. For information about Kinesis data streams, see
Reading Data from Amazon Kinesis Data Streams.

Example event

The following sample event shows the information that is received by the pipe. You can use this
event to create and filter your event patterns, or to define input transformation. Not all of the
fields can be filtered. For more information about which fields you can filter, see ???.

[
 {
 "kinesisSchemaVersion": "1.0",
 "partitionKey": "1",
 "sequenceNumber": "49590338271490256608559692538361571095921575989136588898",
 "data": "SGVsbG8sIHRoaXMgaXMgYSB0ZXN0Lg==",
 "approximateArrivalTimestamp": 1545084650.987
 "eventSource": "aws:kinesis",
 "eventVersion": "1.0",
 "eventID":
 "shardId-000000000006:49590338271490256608559692538361571095921575989136588898",
 "eventName": "aws:kinesis:record",
 "invokeIdentityArn": "arn:aws:iam::123456789012:role/lambda-role",
 "awsRegion": "us-east-2",
 "eventSourceARN": "arn:aws:kinesis:us-east-2:123456789012:stream/lambda-stream"
 },
 {

Kinesis stream 271

https://docs.aws.amazon.com/kinesis/latest/dev/key-concepts.html#shard
https://docs.aws.amazon.com/kinesis/latest/dev/enhanced-consumers.html
https://docs.aws.amazon.com/kinesis/latest/dev/building-consumers.html
https://docs.aws.amazon.com/kinesis/latest/dev/building-consumers.html

Amazon EventBridge User Guide

 "kinesisSchemaVersion": "1.0",
 "partitionKey": "1",
 "sequenceNumber": "49590338271490256608559692540925702759324208523137515618",
 "data": "VGhpcyBpcyBvbmx5IGEgdGVzdC4=",
 "approximateArrivalTimestamp": 1545084711.166
 "eventSource": "aws:kinesis",
 "eventVersion": "1.0",
 "eventID":
 "shardId-000000000006:49590338271490256608559692540925702759324208523137515618",
 "eventName": "aws:kinesis:record",
 "invokeIdentityArn": "arn:aws:iam::123456789012:role/lambda-role",
 "awsRegion": "us-east-2",
 "eventSourceARN": "arn:aws:kinesis:us-east-2:123456789012:stream/lambda-stream"
 }
]

Polling and batching streams

EventBridge polls shards in your Kinesis stream for records at a base rate of four times per second.
When records are available, EventBridge processes the event and waits for the result. If processing
succeeds, EventBridge resumes polling until it receives more records.

By default, EventBridge invokes your pipe as soon as records are available. If the batch that
EventBridge reads from the source has only one record in it, only one event is processed. To avoid
processing a small number of records, you can tell the pipe to buffer records for up to five minutes
by configuring a batching window. Before processing the events, EventBridge continues to read
records from the source until it has gathered a full batch, the batching window expires, or the
batch reaches the payload limit of 6 MB.

You can also increase concurrency by processing multiple batches from each shard in parallel.
EventBridge can process up to 10 batches in each shard simultaneously. If you increase the number
of concurrent batches per shard, EventBridge still ensures in-order processing at the partition key
level.

Configure the ParallelizationFactor setting to process one shard of a Kinesis or DynamoDB
data stream with more than one Pipe execution simultaneously. You can specify the number of
concurrent batches that EventBridge polls from a shard via a parallelization factor from 1 (default)
to 10. For example, when you set ParallelizationFactor to 2, you can have 200 concurrent
EventBridge Pipe executions at maximum to process 100 Kinesis data shards. This helps scale up
the processing throughput when the data volume is volatile and the IteratorAge is high. Note
that parallelization factor will not work if you are using Kinesis aggregation.

Kinesis stream 272

Amazon EventBridge User Guide

Polling and stream starting position

Be aware that stream source polling during pipe creation and updates is eventually consistent.

• During pipe creation, it may take several minutes to start polling events from the stream.

• During pipe updates to the source polling configuration, it may take several minutes to stop and
restart polling events from the stream.

This means that if you specify LATEST as the starting position for the stream, the pipe could miss
events sent during pipe creation or updates. To ensure no events are missed, specify the stream
starting position as TRIM_HORIZON or AT_TIMESTAMP.

Reporting batch item failures

When EventBridge consumes and processes streaming data from an source, by default it
checkpoints to the highest sequence number of a batch, but only when the batch is a complete
success. To avoid reprocessing successfully processed messages in a failed batch, you can configure
your enrichment or target to return an object indicating which messages succeeded and which
failed. This is called a partial batch response.

For more information, see ???.

Success and failure conditions

If you return any of the following, EventBridge treats a batch as a complete success:

• An empty batchItemFailure list

• A null batchItemFailure list

• An empty EventResponse

• A null EventResponse

If you return any of the following, EventBridge treats a batch as a complete failure:

• An empty string itemIdentifier

• A null itemIdentifier

• An itemIdentifier with a bad key name

EventBridge retries failures based on your retry strategy.

Kinesis stream 273

Amazon EventBridge User Guide

Amazon MQ message broker as a source

You can use EventBridge Pipes to receive records from an Amazon MQ message broker. You
can then optionally filter or enhance these records before sending them to one of the available
destinations for processing. There are settings specific to Amazon MQ that you can choose when
setting up a pipe. EventBridge Pipes maintains the order of the records from the message broker
when sending that data to the destination.

Amazon MQ is a managed message broker service for Apache ActiveMQ and RabbitMQ. A
message broker enables software applications and components to communicate using different
programming languages, operating systems, and formal messaging protocols with either topics or
queues as event destinations.

Amazon MQ can also manage Amazon Elastic Compute Cloud (Amazon EC2) instances on your
behalf by installing ActiveMQ or RabbitMQ brokers. After a broker is installed, it provides different
network topologies and other infrastructure needs to your instances.

The Amazon MQ source has the following configuration restrictions:

• Cross account – EventBridge doesn’t support cross-account processing. You can’t use
EventBridge to process records from an Amazon MQ message broker that is in a different AWS
account.

• Authentication – For ActiveMQ, only the ActiveMQ SimpleAuthenticationPlugin is supported.
For RabbitMQ, only the PLAIN authentication mechanism is supported. To manage credentials,
use AWS Secrets Manager. For more information about ActiveMQ authentication, see Integrating
ActiveMQ brokers with LDAP in the Amazon MQ Developer Guide.

• Connection quota – Brokers have a maximum number of allowed connections for each wire-level
protocol. This quota is based on the broker instance type. For more information, see the Brokers
section of *Quotas in Amazon MQ* in the Amazon MQ Developer Guide.

• Connectivity – You can create brokers in a public or private virtual private cloud (VPC). For
private VPCs, your pipe needs access to the VPC to receive messages.

• Event destinations – Only queue destinations are supported. However, you can use a virtual
topic, which behaves as both a topic internally and as a queue externally when it interacts with
your pipes. For more information, see Virtual Destinations on the Apache ActiveMQ website, and
Virtual Hosts on the RabbitMQ website.

• Network topology – For ActiveMQ, only one single-instance or standby broker is supported
for pipe. For RabbitMQ, only one single-instance broker or cluster deployment is supported for

Amazon MQ message broker 274

https://activemq.apache.org/
https://www.rabbitmq.com/
https://activemq.apache.org/security#simple-authentication-plugin
https://www.rabbitmq.com/access-control.html#mechanisms
https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/security-authentication-authorization.html
https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/security-authentication-authorization.html
https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/amazon-mq-limits.html#broker-limits
https://activemq.apache.org/virtual-destinations
https://www.rabbitmq.com/vhosts.html

Amazon EventBridge User Guide

each pipe. Single-instance brokers require a failover endpoint. For more information about these
broker deployment modes, see Active MQ Broker Architecture and Rabbit MQ Broker Architecture
in the Amazon MQ Developer Guide.

• Protocols – Supported protocols depend on the Amazon MQ integration that you use.

• For ActiveMQ integrations, EventBridge uses the OpenWire/Java Message Service (JMS)
protocol to consume messages. Message consumption isn’t supported on any other protocol.
EventBridge only supports the TextMessage and BytesMessage operations within the JMS
protocol. For more information about the OpenWire protocol, see OpenWire on the Apache
ActiveMQ website.

• For RabbitMQ integrations, EventBridge uses the AMQP 0-9-1 protocol to consume messages.
No other protocols are supported for consuming messages. For more information about
RabbitMQ's implementation of the AMQP 0-9-1 protocol, see AMQP 0-9-1 Complete
Reference Guide on the RabbitMQ website.

EventBridge automatically supports the latest versions of ActiveMQ and RabbitMQ that Amazon
MQ supports. For the latest supported versions, see Amazon MQ release notes in the Amazon MQ
Developer Guide.

Note

By default, Amazon MQ has a weekly maintenance window for brokers. During that window
of time, brokers are unavailable. For brokers without standby, EventBridge won’t process
messages until the window ends.

Example events

The following sample event shows the information that is received by the pipe. You can use this
event to create and filter your event patterns, or to define input transformation. Not all of the
fields can be filtered. For more information about which fields you can filter, see ???.

ActiveMQ

[
 {
 "eventSource": "aws:amq",
 "eventSourceArn": "arn:aws:mq:us-
west-2:112556298976:broker:test:b-9bcfa592-423a-4942-879d-eb284b418fc8",

Amazon MQ message broker 275

https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/amazon-mq-broker-architecture.html
https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/rabbitmq-broker-architecture.html
https://activemq.apache.org/maven/apidocs/org/apache/activemq/command/ActiveMQTextMessage.html
https://activemq.apache.org/maven/apidocs/org/apache/activemq/command/ActiveMQBytesMessage.html
https://activemq.apache.org/openwire.html
https://www.rabbitmq.com/amqp-0-9-1-reference.html
https://www.rabbitmq.com/amqp-0-9-1-reference.html
https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/amazon-mq-release-notes.html

Amazon EventBridge User Guide

 "messageID": "ID:b-9bcfa592-423a-4942-879d-eb284b418fc8-1.mq.us-
west-2.amazonaws.com-37557-1234520418293-4:1:1:1:1",
 "messageType": "jms/text-message",
 "data": "QUJDOkFBQUE=",
 "connectionId": "myJMSCoID",
 "redelivered": false,
 "destination": {
 "physicalname": "testQueue"
 },
 "timestamp": 1598827811958,
 "brokerInTime": 1598827811958,
 "brokerOutTime": 1598827811959
 },
 {
 "eventSource": "aws:amq",
 "eventSourceArn": "arn:aws:mq:us-
west-2:112556298976:broker:test:b-9bcfa592-423a-4942-879d-eb284b418fc8",
 "messageID": "ID:b-9bcfa592-423a-4942-879d-eb284b418fc8-1.mq.us-
west-2.amazonaws.com-37557-1234520418293-4:1:1:1:1",
 "messageType": "jms/bytes-message",
 "data": "3DTOOW7crj51prgVLQaGQ82S48k=",
 "connectionId": "myJMSCoID1",
 "persistent": false,
 "destination": {
 "physicalname": "testQueue"
 },
 "timestamp": 1598827811958,
 "brokerInTime": 1598827811958,
 "brokerOutTime": 1598827811959
 }
]

RabbitMQ

[
 {
 "eventSource": "aws:rmq",
 "eventSourceArn": "arn:aws:mq:us-
west-2:111122223333:broker:pizzaBroker:b-9bcfa592-423a-4942-879d-eb284b418fc8",
 "eventSourceKey": "pizzaQueue::/",
 "basicProperties": {
 "contentType": "text/plain",
 "contentEncoding": null,

Amazon MQ message broker 276

Amazon EventBridge User Guide

 "headers": {
 "header1": {
 "bytes": [
 118,
 97,
 108,
 117,
 101,
 49
]
 },
 "header2": {
 "bytes": [
 118,
 97,
 108,
 117,
 101,
 50
]
 },
 "numberInHeader": 10
 },
 "deliveryMode": 1,
 "priority": 34,
 "correlationId": null,
 "replyTo": null,
 "expiration": "60000",
 "messageId": null,
 "timestamp": "Jan 1, 1970, 12:33:41 AM",
 "type": null,
 "userId": "AIDACKCEVSQ6C2EXAMPLE",
 "appId": null,
 "clusterId": null,
 "bodySize": 80
 },
 "redelivered": false,
 "data": "eyJ0aW1lb3V0IjowLCJkYXRhIjoiQ1pybWYwR3c4T3Y0YnFMUXhENEUifQ=="
 }
]

Amazon MQ message broker 277

Amazon EventBridge User Guide

Consumer group

To interact with Amazon MQ, EventBridge creates a consumer group that can read from your
Amazon MQ brokers. The consumer group is created with the same ID as the pipe UUID.

For Amazon MQ sources, EventBridge batches records together and sends them to your function
in a single payload. To control behavior, you can configure the batching window and batch size.
EventBridge pulls messages until one of the following occurs:

• The processed records reach the payload size maximum of 6 MB.

• The batching window expires.

• The number of records reaches the full batch size.

EventBridge converts your batch into a single payload and then invokes your function. Messages
aren't persisted or deserialized. Instead, the consumer group retrieves them as a BLOB of bytes.
It then base64-encodes them into a JSON payload. If the pipe returns an error for any of the
messages in a batch, EventBridge retries the entire batch of messages until processing succeeds or
the messages expire.

Network configuration

By default, Amazon MQ brokers are created with the PubliclyAccessible flag set to false. It's
only when PubliclyAccessible is set to true that the broker receives a public IP address. For
full access with your pipe, your broker must either use a public endpoint or provide access to the
VPC.

If your Amazon MQ broker isn't publicly accessible, EventBridge must have access to the Amazon
Virtual Private Cloud (Amazon VPC) resources associated with your broker. To access the VPC of
your Amazon MQ brokers, EventBridge requires outbound internet access for the subnets of your
source. For public subnets this must be a managed NAT gateway. For private subnets it can be a
NAT gateway, or your own NAT. Ensure that the NAT has a public IP address and can connect to the
internet.

Configure your Amazon VPC security groups with the following rules (at minimum):

• Inbound rules – For a broker without public accessibility, allow all traffic on all ports for the
security group that's specified as your source. For a broker with public accessibility, allow all
traffic on all ports for all destinations.

Amazon MQ message broker 278

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

Amazon EventBridge User Guide

• Outbound rules – Allow all traffic on all ports for all destinations.

Note

Your Amazon VPC configuration is discoverable through the Amazon MQ API. You don't
need to configure it during setup.

Amazon Managed Streaming for Apache Kafka topic as a source

You can use EventBridge Pipes to receive records from an Amazon Managed Streaming for Apache
Kafka (Amazon MSK) topic. You can optionally filter or enhance these records before sending them
to one of the available destinations for processing. There are settings specific to Amazon MSK that
you can choose when setting up a pipe. EventBridge Pipes maintains the order of the records from
the message broker when sending that data to the destination.

Amazon MSK is a fully managed service that you can use to build and run applications that
use Apache Kafka to process streaming data. Amazon MSK simplifies the setup, scaling, and
management of clusters running Apache Kafka. With Amazon MSK, you can configure your
application for multiple Availability Zones and for security with AWS Identity and Access
Management (IAM). Amazon MSK supports multiple open-source versions of Kafka.

Amazon MSK as an source operates similarly to using Amazon Simple Queue Service (Amazon
SQS) or Amazon Kinesis. EventBridge internally polls for new messages from the source and then
synchronously invokes the target. EventBridge reads the messages in batches and provides these
to your function as an event payload. The maximum batch size is configurable. (The default is 100
messages.)

For Apache Kafka-based sources, EventBridge supports processing control parameters, such as
batching windows and batch size.

EventBridge reads the messages sequentially for each partition. After EventBridge processes each
batch, it commits the offsets of the messages in that batch. If the pipe's target returns an error for
any of the messages in a batch, EventBridge retries the entire batch of messages until processing
succeeds or the messages expire.

EventBridge sends the batch of messages in the event when it invokes the target. The event
payload contains an array of messages. Each array item contains details of the Amazon MSK topic
and partition identifier, together with a timestamp and a base64-encoded message.

Amazon MSK topic 279

https://docs.aws.amazon.com/amazon-mq/latest/api-reference/resources.html
https://docs.aws.amazon.com/msk/latest/developerguide/what-is-msk.html
https://docs.aws.amazon.com/msk/latest/developerguide/what-is-msk.html

Amazon EventBridge User Guide

Example events

The following sample event shows the information that is received by the pipe. You can use this
event to create and filter your event patterns, or for to define input transformation. Not all of the
fields can be filtered. For more information about which fields you can filter, see ???.

[
 {
 "eventSource": "aws:kafka",
 "eventSourceArn": "arn:aws:kafka:sa-east-1:123456789012:cluster/
vpc-2priv-2pub/751d2973-a626-431c-9d4e-d7975eb44dd7-2",
 "eventSourceKey": "mytopic-0",
 "topic": "mytopic",
 "partition": "0",
 "offset": 15,
 "timestamp": 1545084650987,
 "timestampType": "CREATE_TIME",
 "key":"abcDEFghiJKLmnoPQRstuVWXyz1234==",
 "value":"SGVsbG8sIHRoaXMgaXMgYSB0ZXN0Lg==",
 "headers": [
 {
 "headerKey": [
 104,
 101,
 97,
 100,
 101,
 114,
 86,
 97,
 108,
 117,
 101
]
 }
]
 }
]

Polling and stream starting position

Be aware that stream source polling during pipe creation and updates is eventually consistent.

Amazon MSK topic 280

Amazon EventBridge User Guide

• During pipe creation, it may take several minutes to start polling events from the stream.

• During pipe updates to the source polling configuration, it may take several minutes to stop and
restart polling events from the stream.

This means that if you specify LATEST as the starting position for the stream, the pipe could miss
events sent during pipe creation or updates. To ensure no events are missed, specify the stream
starting position as TRIM_HORIZON.

MSK cluster authentication

EventBridge needs permission to access the Amazon MSK cluster, retrieve records, and perform
other tasks. Amazon MSK supports several options for controlling client access to the MSK cluster.
For more information about which authentication method is used when, see ???.

Cluster access options

• Unauthenticated access

• SASL/SCRAM authentication

• IAM role-based authentication

• Mutual TLS authentication

• Configuring the mTLS secret

• How EventBridge chooses a bootstrap broker

Unauthenticated access

We recommend only using unauthenticated access for development. Unauthenticated access will
only work if IAM role-based authentication is disabled for the cluster.

SASL/SCRAM authentication

Amazon MSK supports Simple Authentication and Security Layer/Salted Challenge Response
Authentication Mechanism (SASL/SCRAM) authentication with Transport Layer Security (TLS)
encryption. For EventBridge to connect to the cluster, you store the authentication credentials
(sign-in credentials) in an AWS Secrets Manager secret.

For more information about using Secrets Manager, see User name and password authentication
with AWS Secrets Manager in the Amazon Managed Streaming for Apache Kafka Developer Guide.

Amazon MSK topic 281

https://docs.aws.amazon.com/msk/latest/developerguide/msk-password.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-password.html

Amazon EventBridge User Guide

Amazon MSK doesn't support SASL/PLAIN authentication.

IAM role-based authentication

You can use IAM to authenticate the identity of clients that connect to the MSK cluster. If IAM
authentication is active on your MSK cluster, and you don't provide a secret for authentication,
EventBridge automatically defaults to using IAM authentication. To create and deploy IAM user or
role-based policies, use the IAM console or API. For more information, see IAM access control in the
Amazon Managed Streaming for Apache Kafka Developer Guide.

To allow EventBridge to connect to the MSK cluster, read records, and perform other required
actions, add the following permissions to your pipes's execution role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:Connect",
 "kafka-cluster:DescribeGroup",
 "kafka-cluster:AlterGroup",
 "kafka-cluster:DescribeTopic",
 "kafka-cluster:ReadData",
 "kafka-cluster:DescribeClusterDynamicConfiguration"
],
 "Resource": [
 "arn:aws:kafka:region:account-id:cluster/cluster-name/cluster-uuid",
 "arn:aws:kafka:region:account-id:topic/cluster-name/cluster-uuid/topic-
name",
 "arn:aws:kafka:region:account-id:group/cluster-name/cluster-
uuid/consumer-group-id"
]
 }
]
}

You can scope these permissions to a specific cluster, topic, and group. For more information, see
the Amazon MSK Kafka actions in the Amazon Managed Streaming for Apache Kafka Developer
Guide.

Amazon MSK topic 282

https://docs.aws.amazon.com/msk/latest/developerguide/iam-access-control.html
https://docs.aws.amazon.com/msk/latest/developerguide/iam-access-control.html#kafka-actions

Amazon EventBridge User Guide

Mutual TLS authentication

Mutual TLS (mTLS) provides two-way authentication between the client and server. The client
sends a certificate to the server for the server to verify the client, and the server sends a certificate
to the client for the client to verify the server.

For Amazon MSK, EventBridge acts as the client. You configure a client certificate (as a secret in
Secrets Manager) to authenticate EventBridge with the brokers in your MSK cluster. The client
certificate must be signed by a certificate authority (CA) in the server's trust store. The MSK cluster
sends a server certificate to EventBridge to authenticate the brokers with EventBridge. The server
certificate must be signed by a CA that's in the AWS trust store.

Amazon MSK doesn't support self-signed server certificates, because all brokers in Amazon MSK
use public certificates signed by Amazon Trust Services CAs, which EventBridge trusts by default.

For more information about mTLS for Amazon MSK, see Mutual TLS Authentication in the Amazon
Managed Streaming for Apache Kafka Developer Guide.

Configuring the mTLS secret

The CLIENT_CERTIFICATE_TLS_AUTH secret requires a certificate field and a private key field.
For an encrypted private key, the secret requires a private key password. Both the certificate and
private key must be in PEM format.

Note

EventBridge supports the PBES1 (but not PBES2) private key encryption algorithms.

The certificate field must contain a list of certificates, beginning with the client certificate, followed
by any intermediate certificates, and ending with the root certificate. Each certificate must start on
a new line with the following structure:

-----BEGIN CERTIFICATE-----
 <certificate contents>
-----END CERTIFICATE-----

Secrets Manager supports secrets up to 65,536 bytes, which is enough space for long certificate
chains.

Amazon MSK topic 283

https://docs.aws.amazon.com/msk/latest/developerguide/msk-encryption.html
https://www.amazontrust.com/repository/
https://docs.aws.amazon.com/msk/latest/developerguide/msk-authentication.html
https://datatracker.ietf.org/doc/html/rfc2898/#section-6.1

Amazon EventBridge User Guide

The private key must be in PKCS #8 format, with the following structure:

-----BEGIN PRIVATE KEY-----
 <private key contents>
-----END PRIVATE KEY-----

For an encrypted private key, use the following structure:

-----BEGIN ENCRYPTED PRIVATE KEY-----
 <private key contents>
-----END ENCRYPTED PRIVATE KEY-----

The following example shows the contents of a secret for mTLS authentication using an encrypted
private key. For an encrypted private key, you include the private key password in the secret.

{
 "privateKeyPassword": "testpassword",
 "certificate": "-----BEGIN CERTIFICATE-----
MIIE5DCCAsygAwIBAgIRAPJdwaFaNRrytHBto0j5BA0wDQYJKoZIhvcNAQELBQAw
...
j0Lh4/+1HfgyE2KlmII36dg4IMzNjAFEBZiCRoPimO40s1cRqtFHXoal0QQbIlxk
cmUuiAii9R0=
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
MIIFgjCCA2qgAwIBAgIQdjNZd6uFf9hbNC5RdfmHrzANBgkqhkiG9w0BAQsFADBb
...
rQoiowbbk5wXCheYSANQIfTZ6weQTgiCHCCbuuMKNVS95FkXm0vqVD/YpXKwA/no
c8PH3PSoAaRwMMgOSA2ALJvbRz8mpg==
-----END CERTIFICATE-----",
 "privateKey": "-----BEGIN ENCRYPTED PRIVATE KEY-----
MIIFKzBVBgkqhkiG9w0BBQ0wSDAnBgkqhkiG9w0BBQwwGgQUiAFcK5hT/X7Kjmgp
...
QrSekqF+kWzmB6nAfSzgO9IaoAaytLvNgGTckWeUkWn/V0Ck+LdGUXzAC4RxZnoQ
zp2mwJn2NYB7AZ7+imp0azDZb+8YG2aUCiyqb6PnnA==
-----END ENCRYPTED PRIVATE KEY-----"
}

How EventBridge chooses a bootstrap broker

EventBridge chooses a bootstrap broker based on the authentication methods available on your
cluster, and whether you provide a secret for authentication. If you provide a secret for mTLS or

Amazon MSK topic 284

https://datatracker.ietf.org/doc/html/rfc5208
https://docs.aws.amazon.com/msk/latest/developerguide/msk-get-bootstrap-brokers.html

Amazon EventBridge User Guide

SASL/SCRAM, EventBridge automatically chooses that authentication method. If you don't provide
a secret, EventBridge chooses the strongest authentication method that's active on your cluster.
The following is the order of priority in which EventBridge selects a broker, from strongest to
weakest authentication:

• mTLS (secret provided for mTLS)

• SASL/SCRAM (secret provided for SASL/SCRAM)

• SASL IAM (no secret provided, and IAM authentication is active)

• Unauthenticated TLS (no secret provided, and IAM authentication is not active)

• Plaintext (no secret provided, and both IAM authentication and unauthenticated TLS are not
active)

Note

If EventBridge can't connect to the most secure broker type, it doesn't attempt to connect
to a different (weaker) broker type. If you want EventBridge to choose a weaker broker
type, deactivate all stronger authentication methods on your cluster.

Network configuration

EventBridge must have access to the Amazon Virtual Private Cloud (Amazon VPC) resources
associated with your Amazon MSK cluster. To access the VPC of your Amazon MSK cluster,
EventBridge requires outbound internet access for the subnets of your source. For public subnets
this must be a managed NAT gateway. For private subnets it can be a NAT gateway, or your own
NAT. Ensure that the NAT has a public IP address and can connect to the internet.

Configure your Amazon VPC security groups with the following rules (at minimum):

• Inbound rules – Allow all traffic on the Amazon MSK broker port (9092 for plaintext, 9094 for
TLS, 9096 for SASL, 9098 for IAM) for the security groups specified for your source.

• Outbound rules – Allow all traffic on port 443 for all destinations. Allow all traffic on the Amazon
MSK broker port (9092 for plaintext, 9094 for TLS, 9096 for SASL, 9098 for IAM) for the security
groups specified for your source.

Amazon MSK topic 285

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

Amazon EventBridge User Guide

Note

Your Amazon VPC configuration is discoverable through the Amazon MSK API. You don't
need to configure it during setup.

Customizable consumer group ID

When setting up Apache Kafka as an source, you can specify a consumer group ID. This consumer
group ID is an existing identifier for the Apache Kafka consumer group that you want your pipe to
join. You can use this feature to migrate any ongoing Apache Kafka record processing setups from
other consumers to EventBridge.

If you specify a consumer group ID and there are other active pollers within that consumer group,
Apache Kafka distributes messages across all consumers. In other words, EventBridge doesn't
receive all messages for the Apache Kafka topic. If you want EventBridge to handle all messages in
the topic, turn off any other pollers in that consumer group.

Additionally, if you specify a consumer group ID, and Apache Kafka finds a valid existing consumer
group with the same ID, EventBridge ignores the StartingPosition parameter for your pipe.
Instead, EventBridge begins processing records according to the committed offset of the consumer
group. If you specify a consumer group ID, and Apache Kafka can't find an existing consumer group,
then EventBridge configures your source with the specified StartingPosition.

The consumer group ID that you specify must be unique among all your Apache Kafka event
sources. After creating a pipe with the consumer group ID specified, you can't update this value.

Auto scaling of the Amazon MSK source

When you initially create an Amazon MSK source, EventBridge allocates one consumer to process
all partitions in the Apache Kafka topic. Each consumer has multiple processors running in parallel
to handle increased workloads. Additionally, EventBridge automatically scales up or down the
number of consumers, based on workload. To preserve message ordering in each partition, the
maximum number of consumers is one consumer per partition in the topic.

In one-minute intervals, EventBridge evaluates the consumer offset lag of all the partitions in the
topic. If the lag is too high, the partition is receiving messages faster than EventBridge can process
them. If necessary, EventBridge adds or removes consumers from the topic. The scaling process of
adding or removing consumers occurs within three minutes of evaluation.

Amazon MSK topic 286

https://docs.aws.amazon.com/msk/1.0/apireference/resources.html

Amazon EventBridge User Guide

If your target is overloaded, EventBridge reduces the number of consumers. This action reduces the
workload on the pipe by reducing the number of messages that consumers can retrieve and send
to the pipe.

Self managed Apache Kafka stream as a source

You can use EventBridge Pipes to receive records from self managed Apache Kafka. You can then
optionally filter or enhance these records before sending them to an available destination for
processing. There are source-specific settings that you can choose when setting up the pipe.
EventBridge Pipes maintains the order of the records received from the cluster when it sends that
data to the destination.

Apache Kafka is an open-source event streaming platform that supports workloads such as data
pipelines and streaming analytics. You can use the AWS managed Apache Kafka service Amazon
Managed Streaming for Apache Kafka (Amazon MSK), or a self managed Apache Kafka cluster.

This topic describes how to use EventBridge Pipes with a self managed Apache Kafka cluster. In
AWS terminology, a self-managed cluster includes non-AWS hosted Apache Kafka clusters. For
example, you can host your Apache Kafka cluster with a cloud provider such as CloudKarafka. You
can also use other AWS hosting options for your cluster. For more information, see Best Practices
for Running Apache Kafka on AWS on the AWS Big Data Blog.

Apache Kafka as an source operates similarly to using Amazon Simple Queue Service (Amazon
SQS) or Amazon Kinesis. EventBridge internally polls for new messages from the source and then
synchronously invokes the target. EventBridge reads the messages in batches and provides these
to your function as an event payload. The maximum batch size is configurable. (The default is 100
messages.)

For Apache Kafka-based sources, EventBridge supports processing control parameters, such as
batching windows and batch size.

EventBridge sends the batch of messages in the event parameter when it invokes your pipe. The
event payload contains an array of messages. Each array item contains details of the Apache Kafka
topic and Apache Kafka partition identifier, together with a timestamp and a base64-encoded
message.

Example events

Self managed Apache Kafka stream 287

https://www.cloudkarafka.com/
https://aws.amazon.com/blogs/big-data/best-practices-for-running-apache-kafka-on-aws/
https://aws.amazon.com/blogs/big-data/best-practices-for-running-apache-kafka-on-aws/

Amazon EventBridge User Guide

The following sample event shows the information that is received by the pipe. You can use this
event to create and filter your event patterns, or to define input transformation. Not all of the
fields can be filtered. For more information about which fields you can filter, see ???.

[
 {
 "eventSource": "SelfManagedKafka",
 "bootstrapServers": "b-2.demo-cluster-1.a1bcde.c1.kafka.us-
east-1.amazonaws.com:9092,b-1.demo-cluster-1.a1bcde.c1.kafka.us-
east-1.amazonaws.com:9092",
 "eventSourceKey": "mytopic-0",
 "topic": "mytopic",
 "partition": 0,
 "offset": 15,
 "timestamp": 1545084650987,
 "timestampType": "CREATE_TIME",
 "key":"abcDEFghiJKLmnoPQRstuVWXyz1234==",
 "value":"SGVsbG8sIHRoaXMgaXMgYSB0ZXN0Lg==",
 "headers": [
 {
 "headerKey": [
 104,
 101,
 97,
 100,
 101,
 114,
 86,
 97,
 108,
 117,
 101
]
 }
]
 }
]

Apache Kafka cluster authentication

EventBridge Pipes supports several methods to authenticate with your self managed Apache Kafka
cluster. Make sure that you configure the Apache Kafka cluster to use one of these supported

Self managed Apache Kafka stream 288

Amazon EventBridge User Guide

authentication methods. For more information about Apache Kafka security, see the Security
section of the Apache Kafka documentation.

VPC access

If only Apache Kafka users within your VPC access your Apache Kafka brokers, you must configure
the Apache Kafka source for Amazon Virtual Private Cloud (Amazon VPC) access.

SASL/SCRAM authentication

EventBridge Pipes supports Simple Authentication and Security Layer/Salted Challenge Response
Authentication Mechanism (SASL/SCRAM) authentication with Transport Layer Security (TLS)
encryption. EventBridge Pipes sends the encrypted credentials to authenticate with the cluster. For
more information about SASL/SCRAM authentication, see RFC 5802.

EventBridge Pipes supports SASL/PLAIN authentication with TLS encryption. With SASL/PLAIN
authentication, EventBridge Pipes sends credentials as clear text (unencrypted) to the server.

For SASL authentication, you store the sign-in credentials as a secret in AWS Secrets Manager.

Mutual TLS authentication

Mutual TLS (mTLS) provides two-way authentication between the client and server. The client
sends a certificate to the server for the server to verify the client, and the server sends a certificate
to the client for the client to verify the server.

In self managed Apache Kafka, EventBridge Pipes acts as the client. You configure a client
certificate (as a secret in Secrets Manager) to authenticate EventBridge Pipes with your Apache
Kafka brokers. The client certificate must be signed by a certificate authority (CA) in the server's
trust store.

The Apache Kafka cluster sends a server certificate to EventBridge Pipes to authenticate the
Apache Kafka brokers with EventBridge Pipes. The server certificate can be a public CA certificate
or a private CA/self-signed certificate. The public CA certificate must be signed by a CA that's in the
EventBridge Pipes trust store. For a private CA/self-signed certificate, you configure the server root
CA certificate (as a secret in Secrets Manager). EventBridge Pipes uses the root certificate to verify
the Apache Kafka brokers.

For more information about mTLS, see Introducing mutual TLS authentication for Amazon MSK as
an source.

Self managed Apache Kafka stream 289

http://kafka.apache.org/documentation.html#security
https://tools.ietf.org/html/rfc5802
https://aws.amazon.com/blogs/compute/introducing-mutual-tls-authentication-for-amazon-msk-as-an-event-source
https://aws.amazon.com/blogs/compute/introducing-mutual-tls-authentication-for-amazon-msk-as-an-event-source

Amazon EventBridge User Guide

Configuring the client certificate secret

The CLIENT_CERTIFICATE_TLS_AUTH secret requires a certificate field and a private key field.
For an encrypted private key, the secret requires a private key password. Both the certificate and
private key must be in PEM format.

Note

EventBridge Pipes supports the PBES1 (but not PBES2) private key encryption algorithms.

The certificate field must contain a list of certificates, beginning with the client certificate, followed
by any intermediate certificates, and ending with the root certificate. Each certificate must start on
a new line with the following structure:

-----BEGIN CERTIFICATE-----
 <certificate contents>
-----END CERTIFICATE-----

Secrets Manager supports secrets up to 65,536 bytes, which is enough space for long certificate
chains.

The private key must be in PKCS #8 format, with the following structure:

-----BEGIN PRIVATE KEY-----
 <private key contents>
-----END PRIVATE KEY-----

For an encrypted private key, use the following structure:

-----BEGIN ENCRYPTED PRIVATE KEY-----
 <private key contents>
-----END ENCRYPTED PRIVATE KEY-----

The following example shows the contents of a secret for mTLS authentication using an encrypted
private key. For an encrypted private key, include the private key password in the secret.

{
 "privateKeyPassword": "testpassword",

Self managed Apache Kafka stream 290

https://datatracker.ietf.org/doc/html/rfc2898/#section-6.1
https://datatracker.ietf.org/doc/html/rfc5208

Amazon EventBridge User Guide

 "certificate": "-----BEGIN CERTIFICATE-----
MIIE5DCCAsygAwIBAgIRAPJdwaFaNRrytHBto0j5BA0wDQYJKoZIhvcNAQELBQAw
...
j0Lh4/+1HfgyE2KlmII36dg4IMzNjAFEBZiCRoPimO40s1cRqtFHXoal0QQbIlxk
cmUuiAii9R0=
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
MIIFgjCCA2qgAwIBAgIQdjNZd6uFf9hbNC5RdfmHrzANBgkqhkiG9w0BAQsFADBb
...
rQoiowbbk5wXCheYSANQIfTZ6weQTgiCHCCbuuMKNVS95FkXm0vqVD/YpXKwA/no
c8PH3PSoAaRwMMgOSA2ALJvbRz8mpg==
-----END CERTIFICATE-----",
 "privateKey": "-----BEGIN ENCRYPTED PRIVATE KEY-----
MIIFKzBVBgkqhkiG9w0BBQ0wSDAnBgkqhkiG9w0BBQwwGgQUiAFcK5hT/X7Kjmgp
...
QrSekqF+kWzmB6nAfSzgO9IaoAaytLvNgGTckWeUkWn/V0Ck+LdGUXzAC4RxZnoQ
zp2mwJn2NYB7AZ7+imp0azDZb+8YG2aUCiyqb6PnnA==
-----END ENCRYPTED PRIVATE KEY-----"
}

Configuring the server root CA certificate secret

You create this secret if your Apache Kafka brokers use TLS encryption with certificates signed
by a private CA. You can use TLS encryption for VPC, SASL/SCRAM, SASL/PLAIN, or mTLS
authentication.

The server root CA certificate secret requires a field that contains the Apache Kafka broker's root
CA certificate in PEM format. The following example shows the structure of the secret.

{
 "certificate": "-----BEGIN CERTIFICATE-----
 MIID7zCCAtegAwIBAgIBADANBgkqhkiG9w0BAQsFADCBmDELMAkGA1UEBhMCVVMx
 EDAOBgNVBAgTB0FyaXpvbmExEzARBgNVBAcTClNjb3R0c2RhbGUxJTAjBgNVBAoT
 HFN0YXJmaWVsZCBUZWNobm9sb2dpZXMsIEluYy4xOzA5BgNVBAMTMlN0YXJmaWVs
 ZCBTZXJ2aWNlcyBSb290IENlcnRpZmljYXRlIEF1dG...
 -----END CERTIFICATE-----"

Network configuration

EventBridge must have access to the Amazon Virtual Private Cloud (Amazon VPC) resources
associated with your Apache Kafka brokers. To access the VPC of your Apache Kafka cluster,
EventBridge requires outbound internet access for the subnets of your source. For public subnets

Self managed Apache Kafka stream 291

Amazon EventBridge User Guide

this must be a managed NAT gateway. For private subnets it can be a NAT gateway, or your own
NAT. Ensure that the NAT has a public IP address and can connect to the internet.

Configure your Amazon VPC security groups with the following rules (at minimum):

• Inbound rules – Allow all traffic on the Apache Kafka broker port (9092 for plaintext, 9094 for
TLS, 9096 for SASL, 9098 for IAM) for the security groups specified for your source.

• Outbound rules – Allow all traffic on port 443 for all destinations. Allow all traffic on the Apache
Kafka broker port (9092 for plaintext, 9094 for TLS, 9096 for SASL, 9098 for IAM) for the
security groups specified for your source.

Auto scaling of the Apache Kafka source

When you initially create an Apache Kafka source, EventBridge allocates one consumer to process
all partitions in the Kafka topic. Each consumer has multiple processors running in parallel to
handle increased workloads. Additionally, EventBridge automatically scales up or down the number
of consumers, based on workload. To preserve message ordering in each partition, the maximum
number of consumers is one consumer per partition in the topic.

In one-minute intervals, EventBridge evaluates the consumer offset lag of all the partitions in the
topic. If the lag is too high, the partition is receiving messages faster than EventBridge can process
them. If necessary, EventBridge adds or removes consumers from the topic. The scaling process of
adding or removing consumers occurs within three minutes of evaluation.

If your target is overloaded, EventBridge reduces the number of consumers. This action reduces the
workload on the function by reducing the number of messages that consumers can retrieve and
send to the function.

Amazon Simple Queue Service as a source

You can use EventBridge Pipes to receive records from an Amazon SQS queue. You can then
optionally filter or enhance these records before sending them to an available destination for
processing.

You can use a pipe to process messages in an Amazon Simple Queue Service (Amazon SQS) queue.
EventBridge Pipes support standard queues and first-in, first-out (FIFO) queues. With Amazon SQS,
you can offload tasks from one component of your application by sending them to a queue and
processing them asynchronously.

Amazon SQS queue 292

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html

Amazon EventBridge User Guide

EventBridge polls the queue and invokes your pipe synchronously with an event that contains
queue messages. EventBridge reads messages in batches and invokes your pipe once for each
batch. When your pipe successfully processes a batch, EventBridge deletes its messages from the
queue.

By default, EventBridge polls up to 10 messages in your queue simultaneously and sends that
batch to your pipe. To avoid invoking the pipe with a small number of records, you can tell the
event source to buffer records for up to five minutes by configuring a batch window. Before
invoking the pipe, EventBridge continues to poll messages from the Amazon SQS standard queue
until one of these things occurs:

• The batch window expires.

• The invocation payload size quota is reached.

• The configured maximum batch size is reached.

Note

If you're using a batch window and your Amazon SQS queue contains low traffic,
EventBridge might wait for up to 20 seconds before invoking your pipe. This is true even
if you set a batch window for fewer than 20 seconds. For FIFO queues, records contain
additional attributes that are related to deduplication and sequencing.

When EventBridge reads a batch, the messages stay in the queue but are hidden for the length of
the queue's visibility timeout. If your pipe successfully processes the batch, EventBridge deletes the
messages from the queue. By default, if your pipe encounters an error while processing a batch, all
messages in that batch become visible in the queue again. For this reason, your pipe code must be
able to process the same message multiple times without unintended side effects. You can modify
this reprocessing behavior by including batch item failures in your pipe response. The following
example shows an event for a batch of two messages.

Example events

The following sample event shows the information that is received by the pipe. You can use this
event to create and filter your event patterns, or to define input transformation. Not all of the
fields can be filtered. For more information about which fields you can filter, see ???.

Standard queue

Amazon SQS queue 293

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html

Amazon EventBridge User Guide

[
 {
 "messageId": "059f36b4-87a3-44ab-83d2-661975830a7d",
 "receiptHandle": "AQEBwJnKyrHigUMZj6rYigCgxlaS3SLy0a...",
 "body": "Test message.",
 "attributes": {
 "ApproximateReceiveCount": "1",
 "SentTimestamp": "1545082649183",
 "SenderId": "AIDAIENQZJOLO23YVJ4VO",
 "ApproximateFirstReceiveTimestamp": "1545082649185"
 },
 "messageAttributes": {},
 "md5OfBody": "e4e68fb7bd0e697a0ae8f1bb342846b3",
 "eventSource": "aws:sqs",
 "eventSourceARN": "arn:aws:sqs:us-east-2:123456789012:my-queue",
 "awsRegion": "us-east-2"
 },
 {
 "messageId": "2e1424d4-f796-459a-8184-9c92662be6da",
 "receiptHandle": "AQEBzWwaftRI0KuVm4tP+/7q1rGgNqicHq...",
 "body": "Test message.",
 "attributes": {
 "ApproximateReceiveCount": "1",
 "SentTimestamp": "1545082650636",
 "SenderId": "AIDAIENQZJOLO23YVJ4VO",
 "ApproximateFirstReceiveTimestamp": "1545082650649"
 },
 "messageAttributes": {},
 "md5OfBody": "e4e68fb7bd0e697a0ae8f1bb342846b3",
 "eventSource": "aws:sqs",
 "eventSourceARN": "arn:aws:sqs:us-east-2:123456789012:my-queue",
 "awsRegion": "us-east-2"
 }
]

FIFO queue

[
 {
 "messageId": "11d6ee51-4cc7-4302-9e22-7cd8afdaadf5",
 "receiptHandle": "AQEBBX8nesZEXmkhsmZeyIE8iQAMig7qw...",
 "body": "Test message.",
 "attributes": {

Amazon SQS queue 294

Amazon EventBridge User Guide

 "ApproximateReceiveCount": "1",
 "SentTimestamp": "1573251510774",
 "SequenceNumber": "18849496460467696128",
 "MessageGroupId": "1",
 "SenderId": "AIDAIO23YVJENQZJOL4VO",
 "MessageDeduplicationId": "1",
 "ApproximateFirstReceiveTimestamp": "1573251510774"
 },
 "messageAttributes": {},
 "md5OfBody": "e4e68fb7bd0e697a0ae8f1bb342846b3",
 "eventSource": "aws:sqs",
 "eventSourceARN": "arn:aws:sqs:us-east-2:123456789012:fifo.fifo",
 "awsRegion": "us-east-2"
 }
]

Scaling and processing

For standard queues, EventBridge uses long polling to poll a queue until it becomes active. When
messages are available, EventBridge reads up to five batches and sends them to your pipe. If
messages are still available, EventBridge increases the number of processes that are reading
batches by up to 300 more instances per minute. The maximum number of batches that a pipe can
process simultaneously is 1,000.

For FIFO queues, EventBridge sends messages to your pipe in the order that it receives them. When
you send a message to a FIFO queue, you specify a message group ID. Amazon SQS facilitates
delivering messages in the same group to EventBridge, in order. EventBridge sorts the received
messages into groups and sends only one batch at a time for a group. If your pipe returns an error,
the pipe attempts all retries on the affected messages before EventBridge receives additional
messages from the same group.

Configuring a queue to use with EventBridge Pipes

Create an Amazon SQS queue to serve as an source for your pipe. Then configure the queue to
allow time for your pipe to process each batch of events—and for EventBridge to retry in response
to throttling errors as it scales up.

To allow your pipe time to process each batch of records, set the source queue's visibility timeout
to at least six times the combined runtime of the pipe enrichment and target components. The
extra time allows for EventBridge to retry if your pipe is throttled while processing a previous
batch.

Amazon SQS queue 295

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-short-and-long-polling.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/using-messagegroupid-property.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-create-queue.html

Amazon EventBridge User Guide

If your pipe fails to process a message multiple times, Amazon SQS can send it to a dead-letter
queue. When your pipe returns an error, EventBridge keeps it in the queue. After the visibility
timeout occurs, EventBridge receives the message again. To send messages to a second queue after
a number of receives, configure a dead-letter queue on your source queue.

Note

Make sure that you configure the dead-letter queue on the source queue, not on the pipe.
The dead-letter queue that you configure on a pipe is used for the pipe's asynchronous
invocation queue, not for source queues.

If your pipe returns an error, or can't be invoked because it's at maximum concurrency, processing
might succeed with additional attempts. To give messages more chances to be processed before
sending them to the dead-letter queue, set the maxReceiveCount on the source queue's redrive
policy to at least 5.

Reporting batch item failures

When EventBridge consumes and processes streaming data from an source, by default it
checkpoints to the highest sequence number of a batch, but only when the batch is a complete
success. To avoid reprocessing successfully processed messages in a failed batch, you can configure
your enrichment or target to return an object indicating which messages succeeded and which
failed. This is called a partial batch response.

For more information, see ???.

Success and failure conditions

If you return any of the following, EventBridge treats a batch as a complete success:

• An empty batchItemFailure list

• A null batchItemFailure list

• An empty EventResponse

• A null EventResponse

If you return any of the following, EventBridge treats a batch as a complete failure:

• An empty string itemIdentifier

Amazon SQS queue 296

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html

Amazon EventBridge User Guide

• A null itemIdentifier

• An itemIdentifier with a bad key name

EventBridge retries failures based on your retry strategy.

Amazon EventBridge Pipes filtering

With EventBridge Pipes, you can filter a given source’s events and process only a subset of them.
This filtering works in the same way as filtering on an EventBridge event bus or Lambda event
source mapping, by using event patterns. For more information about event patterns, see ???.

A filter criteria FilterCriteria object is a structure that consists of a list of filters (Filters).
Each filter is a structure that defines an filtering pattern (Pattern). A Pattern is a string
representation of a JSON filter rule. A FilterCriteria object looks like the following example:

{
 "Filters": [
 {"Pattern": "{ \"Metadata1\": [rule1], \"data\": { \"Data1\": [rule2] }}"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON:

{
 "Metadata1": [pattern1],
 "data": {"Data1": [pattern2]}
}

The main parts to a FilterCriteria object are metadata properties and data properties.

• Metadata properties are the fields of the event object. In the example,
FilterCriteria.Metadata1 refers to a metadata property.

• Data properties are the fields of the event body. In the example, FilterCriteria.Data1
refers to a data property.

For example, suppose your Kinesis stream contains an event like this::

Filtering 297

Amazon EventBridge User Guide

{
 "kinesisSchemaVersion": "1.0",
 "partitionKey": "1",
 "sequenceNumber": "49590338271490256608559692538361571095921575989136588898",
 "data": {"City": "Seattle",
 "State": "WA",
 "Temperature": "46",
 "Month": "December"
 },
 "approximateArrivalTimestamp": 1545084650.987
}

When the event flows through your pipe, it'll look like the following with the data field base64-
encoded:

{
 "kinesisSchemaVersion": "1.0",
 "partitionKey": "1",
 "sequenceNumber": "49590338271490256608559692538361571095921575989136588898",
 "data": "SGVsbG8sIHRoaXMgaXMgYSB0ZXN0Lg==",
 "approximateArrivalTimestamp": 1545084650.987
 "eventSource": "aws:kinesis",
 "eventVersion": "1.0",
 "eventID":
 "shardId-000000000006:49590338271490256608559692538361571095921575989136588898",
 "eventName": "aws:kinesis:record",
 "invokeIdentityArn": "arn:aws:iam::123456789012:role/lambda-role",
 "awsRegion": "us-east-2",
 "eventSourceARN": "arn:aws:kinesis:us-east-2:123456789012:stream/lambda-stream"
},

The metadata properties on the Kinesis event are any field outside of the data object, such as
partitionKey or sequenceNumber.

The data properties of the Kinesis event are the fields inside the data object, such as City or
Temperature.

When you filter to match this event, you can use filters on the decoded fields. For example, to filter
on partitionKey and City you'd use the following filter:

{ "partitionKey": ["1"], "data": { "City": ["Seattle"] }

Filtering 298

Amazon EventBridge User Guide

When you’re creating event filters, EventBridge Pipes can access event content. This content is
either JSON-escaped, such as the Amazon SQS body field, or base64-encoded, such as the Kinesis
data field. If your data is valid JSON, your input templates or JSON paths for target parameters
can reference the content directly. For example, if a Kinesis event source is valid JSON, you can
reference a variable using <$.data.someKey>.

When creating event patterns, you can filter based on the fields sent by the source API, and not on
fields added by the polling operation. The following fields can't be used in event patterns:

• awsRegion

• eventSource

• eventSourceARN

• eventVersion

• eventID

• eventName

• invokeIdentityArn

• eventSourceKey

Message and data fields

Every EventBridge Pipe source contains a field which contains the core message or data. We refer
to these as message fields or data fields. These fields are special because they may be JSON-
escaped or base64-encoded, but when they are valid JSON they can be filtered with JSON patterns
as if the body was not escaped. The contents of these fields can also be used in input transformers
seamlessly.

Properly filtering Amazon SQS messages

If an Amazon SQS message doesn't satisfy your filter criteria, EventBridge automatically removes
the message from the queue. You don't have to delete these messages manually in Amazon SQS.

For Amazon SQS, the message body can be any string. However, this can be problematic if your
FilterCriteria expects body to be in a valid JSON format. The reverse scenario is also true —if
the incoming message body is in a valid JSON format, but your filter criteria expects body to be a
plain string, it lead to unintended behavior.

Message and data fields 299

Amazon EventBridge User Guide

To avoid this issue, make sure that the format of body in your FilterCriteria matches the
expected format of body in messages that you receive from your queue. Before filtering your
messages, EventBridge automatically evaluates the format of the incoming message body and of
your filter pattern for body. If there is a mismatch, EventBridge drops the message. The following
table summarizes this evaluation:

Incoming message body
format

Filter pattern body format Resulting action

Plain string Plain string EventBridge filters based on
your filter criteria.

Plain string No filter pattern for data
properties

EventBridge filters (on the
other metadata propertie
s only) based on your filter
criteria.

Plain string Valid JSON EventBridge drops the
message.

Valid JSON Plain string EventBridge drops the
message.

Valid JSON No filter pattern for data
properties

EventBridge filters (on the
other metadata propertie
s only) based on your filter
criteria.

Valid JSON Valid JSON EventBridge filters based on
your filter criteria.

If you don't include body as part of your FilterCriteria, EventBridge skips this check.

Properly filtering Kinesis and DynamoDB messages

After your filter criteria processes a Kinesis or DynamoDB record, the streams iterator advances
past this record. If the record doesn't satisfy your filter criteria, you don't have to delete the
record manually from your event source. After the retention period, Kinesis and DynamoDB

Filtering Kinesis and DynamoDB messages 300

Amazon EventBridge User Guide

automatically delete these old records. If you want records to be deleted sooner, see Changing the
Data Retention Period.

To properly filter events from stream event sources, both the data field and your filter criteria for
the data field must be in valid JSON format. (For Kinesis, the data field is data. For DynamoDB, the
data field is dynamodb.) If either field isn't in a valid JSON format, EventBridge drops the message
or throws an exception. The following table summarizes the specific behavior:

Incoming data format (data
or dynamodb)

Filter pattern format for
data properties

Resulting action

Valid JSON Valid JSON EventBridge filters based on
your filter criteria.

Valid JSON No filter pattern for data
properties

EventBridge filters (on the
other metadata propertie
s only) based on your filter
criteria.

Valid JSON Non-JSON EventBridge throws an
exception at the time of the
pipe or update. The filter
pattern for data propertie
s must be in a valid JSON
format.

Non-JSON Valid JSON EventBridge drops the record.

Non-JSON No filter pattern for data
properties

EventBridge filters (on the
other metadata propertie
s only) based on your filter
criteria.

Non-JSON Non-JSON EventBridge throws an
exception at the time of
the pipe creation or update.
The filter pattern for data

Filtering Kinesis and DynamoDB messages 301

https://docs.aws.amazon.com/kinesis/latest/dev/kinesis-extended-retention.html
https://docs.aws.amazon.com/kinesis/latest/dev/kinesis-extended-retention.html

Amazon EventBridge User Guide

Incoming data format (data
or dynamodb)

Filter pattern format for
data properties

Resulting action

properties must be in a valid
JSON format.

Properly filtering Amazon Managed Streaming for Apache Kafka, self
managed Apache Kafka, and Amazon MQ messages

For Amazon MQ sources, the message field is data. For Apache Kafka sources (Amazon MSK and
self managed Apache Kafka), there are two message fields: key and value.

EventBridge drops messages that don't match all fields included in the filter. For Apache Kafka,
EventBridge commits offsets for matched and unmatched messages after successfully invoking
the function. For Amazon MQ, EventBridge acknowledges matched messages after successfully
invoking the function and acknowledges unmatched messages when filtering them.

Apache Kafka and Amazon MQ messages must be UTF-8 encoded strings, either plain strings or
in JSON format. That's because EventBridge decodes Apache Kafka and Amazon MQ byte arrays
into UTF-8 before applying filter criteria. If your messages use another encoding, such as UTF-16
or ASCII, or if the message format doesn't match the FilterCriteria format, EventBridge
processes metadata filters only. The following table summarizes the specific behavior:

Incoming message format
(data or key and value)

Filter pattern format for
message properties

Resulting action

Plain string Plain string EventBridge filters based on
your filter criteria.

Plain string No filter pattern for data
properties

EventBridge filters (on the
other metadata propertie
s only) based on your filter
criteria.

Plain string Valid JSON EventBridge filters (on the
other metadata propertie

Filtering Amazon MSK, self managed Apache Kafka, and Amazon MQ messages 302

Amazon EventBridge User Guide

Incoming message format
(data or key and value)

Filter pattern format for
message properties

Resulting action

s only) based on your filter
criteria.

Valid JSON Plain string EventBridge filters (on the
other metadata propertie
s only) based on your filter
criteria.

Valid JSON No filter pattern for data
properties

EventBridge filters (on the
other metadata propertie
s only) based on your filter
criteria.

Valid JSON Valid JSON EventBridge filters based on
your filter criteria.

Non-UTF-8 encoded string JSON, plain string, or no
pattern

EventBridge filters (on the
other metadata propertie
s only) based on your filter
criteria.

Differences between Lambda ESM and EventBridge Pipes

When filtering events, Lambda ESM and EventBridge Pipes operate generally the same way. The
main difference is that eventSourceKey field isn't present in ESM payloads.

Amazon EventBridge Pipes event enrichment

With the enrichment step of EventBridge Pipes, you can enhance the data from the source before
sending it to the target. For example, you might receive Ticket created events that don’t include the
full ticket data. Using enrichment, you can have a Lambda function call the get-ticket API for
the full ticket details. Pipes can then send that information to a target.

You can configure the following enrichments when setting up a pipe in EventBridge:

Differences with Lambda ESM 303

Amazon EventBridge User Guide

• API destination

• Amazon API Gateway

• Lambda function

• Step Functions state machine

Note

EventBridge Pipes only supports Express workflows as enrichments.

EventBridge invokes enrichments synchronously because it must wait for a response from the
enrichment before invoking the target.

Enrichment responses are limited to a maximum size of 6MB.

You can also transform the data you receive from the source before sending it for enhancement.
For more information, see ???.

Filtering events using enrichment

EventBridge Pipes passes the enrichment responses directly to the configured target. This includes
array responses for targets that support batches. For more information about batch behavior, see
???. You can also use your enrichment as a filter and pass fewer events than were received from the
source. If you don’t want to invoke the target, return an empty response, such as "", {}, or [].

Note

If you want to invoke the target with an empty payload, return an array with empty JSON
[{}].

Invoking enrichments

EventBridge invokes enrichments synchronously (invocation type set to REQUEST_RESPONSE)
because it must wait for a response from the enrichment before invoking the target.

Filtering events using enrichment 304

https://docs.aws.amazon.com/step-functions/latest/dg/concepts-standard-vs-express.html

Amazon EventBridge User Guide

Note

For Step Functions state machines, EventBridge only supports Express workflows as
enrichments, because they can be invoked synchronously.

Amazon EventBridge Pipes targets

You can send data in your pipe to a specific target. You can configure the following targets when
setting up a pipe in EventBridge:

• API destination

• API Gateway

• Batch job queue

• CloudWatch log group

• ECS task

• Event bus in the same account and Region

• Firehose delivery stream

• Inspector assessment template

• Kinesis stream

• Lambda function (SYNC or ASYNC)

• Redshift cluster data API queries

• SageMaker Pipeline

• Amazon SNS topic (SNS FIFO topics not supported)

• Amazon SQS queue

• Step Functions state machine

• Express workflows (SYNC or ASYNC)

• Standard workflows (ASYNC)

Targets 305

https://docs.aws.amazon.com/step-functions/latest/dg/concepts-standard-vs-express.html

Amazon EventBridge User Guide

Target parameters

Some target services don't send the event payload to the target, instead, they treat the event as a
trigger for invoking a specific API. EventBridge uses the PipeTargetParameters to specify what
information gets sent to that API. These include the following:

• API destinations (The data sent to an API destination must match the structure of the API. You
must use the InputTemplate object to make sure the data is structured correctly. If you want to
include the original event payload, reference it in the InputTemplate.)

• API Gateway (The data sent to API Gateway must match the structure of the API. You must use
the InputTemplate object to make sure the data is structured correctly. If you want to include
the original event payload, reference it in the InputTemplate.)

• PipeTargetRedshiftDataParameters (Amazon Redshift Data API clusters)

• PipeTargetSageMakerPipelineParameters (Amazon SageMaker Runtime Model Building
Pipelines)

• PipeTargetBatchJobParameters (AWS Batch)

Note

EventBridge does not support all JSON Path syntax and evaluate it at runtime. Supported
syntax includes:

• dot notation (for example,$.detail)

• dashes

• underscores

• alphanumeric characters

• array indices

• wildcards (*)

Dynamic path parameters

EventBridge Pipes target parameters support optional dynamic JSON path syntax. You can use this
syntax to specify JSON paths instead of static values (for example $.detail.state). The entire
value has to be a JSON path, not only part of it. For example, RedshiftParameters.Sql can be

Target parameters 306

https://docs.aws.amazon.com/eventbridge/latest/pipes-reference/API_PipeTargetParameters.html
https://docs.aws.amazon.com/eventbridge/latest/pipes-reference/API_PipeTargetParameters.html#pipes-Type-PipeTargetParameters-InputTemplate
https://docs.aws.amazon.com/eventbridge/latest/pipes-reference/API_PipeTargetParameters.html#pipes-Type-PipeTargetParameters-InputTemplate
https://docs.aws.amazon.com/eventbridge/latest/pipes-reference/API_PipeTargetParameters.html#pipes-Type-PipeTargetParameters-InputTemplate
https://docs.aws.amazon.com/eventbridge/latest/pipes-reference/API_PipeTargetParameters.html#pipes-Type-PipeTargetParameters-InputTemplate
https://docs.aws.amazon.com/eventbridge/latest/pipes-reference/API_PipeTargetRedshiftDataParameters.html
https://docs.aws.amazon.com/eventbridge/latest/pipes-reference/API_PipeTargetSageMakerPipelineParameters.html
https://docs.aws.amazon.com/eventbridge/latest/pipes-reference/API_PipeTargetBatchJobParameters.html

Amazon EventBridge User Guide

$.detail.state but it can't be "SELECT * FROM $.detail.state". These paths are replaced
dynamically at runtime with data from the event payload itself at the specified path. Dynamic path
parameters can't reference new or transformed values resulting from input transformation. The
supported syntax for dynamic parameter JSON paths is the same as when transforming input. For
more information, see ???.

Dynamic syntax can be used on all string, non-enum fields of all EventBridge Pipes enrichment and
target parameters except:

• PipeTargetCloudWatchLogsParameters.LogStreamName

• PipeTargetEventBridgeEventBusParameters.EndpointId

• PipeEnrichmentHttpParameters.HeaderParameters

• PipeTargetHttpParameters.HeaderParameters

For example, to set the PartitionKey of a pipe Kinesis target to a custom key from your source
event, set the KinesisTargetParameter.PartitionKey to:

• "$.data.someKey" for a Kinesis source

• "$.body.someKey" for an Amazon SQS source

Then, if the event payload is a valid JSON string, such as {"someKey":"someValue"},
EventBridge extracts the value from the JSON path and uses it as the target parameter. In this
example, EventBridge would set the Kinesis PartitionKey to "someValue".

Permissions

To make API calls on the resources that you own, EventBridge Pipes needs appropriate permission.
EventBridge PIpes uses the IAM role that you specify on the pipe for enrichment and target calls
using the IAM principal pipes.amazonaws.com.

Invoking targets

EventBridge has the following ways to invoke a target:

• Synchronously (invocation type set to REQUEST_RESPONSE) – EventBridge waits for a response
from the target before proceeding.

Permissions 307

https://docs.aws.amazon.com/eventbridge/latest/pipes-reference/API_PipeTargetCloudWatchLogsParameters.html
https://docs.aws.amazon.com/eventbridge/latest/pipes-reference/API_PipeTargetEventBridgeEventBusParameters.html
https://docs.aws.amazon.com/eventbridge/latest/pipes-reference/API_PipeEnrichmentHttpParameters.html
https://docs.aws.amazon.com/eventbridge/latest/pipes-reference/API_PipeTargetHttpParameters.html
https://docs.aws.amazon.com/

Amazon EventBridge User Guide

• Asynchronously (invocation type set to FIRE_AND_FORGET) – EventBridge doesn't wait for a
response before proceeding.

By default, for pipes with ordered sources, EventBridge invokes targets synchronously because a
response from the target is needed before proceeding to the next event.

If an source doesn't enforce order, such as a standard Amazon SQS queue, EventBridge can invoke a
supported target synchronously or asynchronously.

With Lambda functions and Step Functions state machines, you can configure the invocation type.

Note

For Step Functions state machines, Standard workflows must be invoked asynchronously.

EventBridge Pipes target specifics

AWS Batch job queues

All AWS Batch submitJob parameters are configured explicitly with BatchParameters, and as
with all Pipe parameters, these can be dynamic using a JSON path to your incoming event payload.

CloudWatch Logs group

Whether you use an input transformer or not, the event payload is used as the log message.
You can set the Timestamp (or the explicit LogStreamName of your destination) through
CloudWatchLogsParameters in PipeTarget. As with all pipe parameters, these parameters can
be dynamic when using a JSON path to your incoming event payload.

Amazon ECS task

All Amazon ECS runTask parameters are configured explicitly through EcsParameters. As with
all pipe parameters, these parameters can be dynamic when using a JSON path to your incoming
event payload.

EventBridge Pipes target specifics 308

https://docs.aws.amazon.com/step-functions/latest/dg/concepts-standard-vs-express.html

Amazon EventBridge User Guide

Lambda functions and Step Functions workflows

Lambda and Step Functions do not have a batch API. To process batches of events from a pipe
source, the batch is converted to a JSON array and passed to as input to the Lambda or Step
Functions target. For more information, see ???.

Amazon EventBridge Pipes batching and concurrency

Batching behavior

EventBridge Pipes supports batching from the source and to targets that support it. In addition,
batching to enrichment is supported for AWS Lambda and AWS Step Functions. Because different
services support different levels of batching, you can’t configure a pipe with a larger batch size
than the target supports. For example, Amazon Kinesis stream sources support a maximum batch
size of 10,000 records, but Amazon Simple Queue Service supports a maximum of 10 messages
per batch as a target. Therefore, a pipe from a Kinesis stream to an Amazon SQS queue can have a
maximum configured batch size on the source of 10.

If you configure a pipe with an enrichment or target that doesn’t support batching, you won’t be
able to activate batching on the source.

When batching is activated on the source, arrays of JSON records are passed through the pipe and
then mapped to the batch API of a supported enrichment or target. Input transformers are applied
separately on each individual JSON record in the array, not the array as a whole. For examples of
these arrays, see ??? and select a specific source. Pipes will use the batch API for the supported
enrichment or target even if the batch size is 1. If the enrichment or target doesn’t have a batch
API but receives full JSON payloads, such as Lambda and Step Functions, the entire JSON array is
sent in one request. The request will be sent as a JSON array even if the batch size is 1.

If a pipe is configured for batching at the source, and the target supports batching, you can return
an array of JSON items from your enrichment. This array can include a shorter or longer array than
the original source. However, if the array is larger than the batch size supported by the target, the
pipe won’t invoke the target.

Supported batchable targets

Target Maximum batch size

CloudWatch Logs 10,000

Batching and concurrency 309

Amazon EventBridge User Guide

Target Maximum batch size

EventBridge event bus 10

Firehose stream 500

Kinesis stream 500

Lambda function customer defined

Step Functions state machine customer defined

Amazon SNS topic 10

Amazon SQS queue 10

The following enrichments and targets receive the full batch event payload for processing and are
constrained by the total payload size of the event, rather than the size of the batch:

• Step Functions state machine (262144 characters)

• Lambda function (6MB)

Partial batch failure

For Amazon SQS and stream sources, such as Kinesis and DynamoDB, EventBridge Pipes supports
partial batch failure handling of target failures. If the target supports batching and only part of the
batch succeeds, EventBridge automatically retries batching the remainder of the payload. For the
most up-to-date enriched content, this retry occurs through the entire pipe, including re-invoking
any configured enrichment.

Partial batch failure handling of the enrichment is not supported.

For Lambda and Step Functions targets, you can also specify a partial failure by returning a
payload with defined structure from the target. This indicates events that need to be retried.

Example partial failure payload structure

{
 "batchItemFailures": [

Batching behavior 310

Amazon EventBridge User Guide

 {
 "itemIdentifier": "id2"
 },
 {
 "itemIdentifier": "id4"
 }
]

In the example, the itemIdentifier match the ID of the events handled by your target from
their original source. For Amazon SQS, this is the messageId. For Kinesis and DynamoDB, this is
the eventID. For EventBridge Pipes to adequately handle partial batch failures from the targets,
these fields need to be included in any array payload returned by the enrichment.

Throughput and concurrency behavior

Every event or batch of events received by a pipe that travel to an enrichment or target is
considered a pipe execution. A pipe in STARTED state continuously polls for events from the source,
scaling up and down depending on the available backlog and configured batching settings.

For quotas on concurrent pipe executions, and number of pipes per account and Region, see ???.

By default, a single pipe will scale to the following maximum concurrent executions, depending on
the source:

• DynamoDB – The concurrent executions can climb as high as the ParallelizationFactor
configured on the pipe multiplied by the number of shards in the stream.

• Apache Kafka – The concurrent executions can climb as high the number of partitions on the
topic, up to 1000.

• Kinesis – The concurrent execxutions can climb as high as the ParallelizationFactor
configured on the pipe multiplied by the number of shards in the stream.

• Amazon MQ – 5

• Amazon SQS – 1250

If you have requirements for higher maximum polling throughputs or concurrency limits, contact
support.

Throughput and concurrency behavior 311

https://console.aws.amazon.com/support/home?#/case/create?issueType=technical
https://console.aws.amazon.com/support/home?#/case/create?issueType=technical

Amazon EventBridge User Guide

Note

The execution limits are considered best-effort safety limitations. Although polling isn't
throttled below these values, a pipe or account might burst higher than these recommend
values.

Pipe executions are limited to a maximum of 5 minutes including the enrichment and target
processing. This limit currently can't be increased.

Pipes with strictly ordered sources, such as Amazon SQS FIFO queues, Kinesis and DynamoDB
Streams, or Apache Kafka topics) are further limited in concurrency by the configuration of the
source, such as the number of message group IDs for FIFO queues or the number of shards for
Kinesis queues. Because ordering is strictly guaranteedwithin these constraints, a pipe with an
ordered source can't exceed those concurrency limits.

Amazon EventBridge Pipes input transformation

Amazon EventBridge Pipes support optional input transformers when passing data to the
enrichment and the target. You can use Input transformers to reshape the JSON event input
payload to serve the needs of the enrichment or target service. For Amazon API Gateway and
API destinations, this is how you shape the input event to the RESTful model of your API. Input
transformers are modeled as an InputTemplate parameter. They can be free text, a JSON path
to the event payload, or a JSON object that includes inline JSON paths to the event payload. For
enrichment, the event payload is coming from the source. For targets, the event payload is what is
returned from the enrichment, if one is configured on the pipe. In addition to the service-specific
data in the event payload, you can use reserved variables in your InputTemplate to reference
data for your pipe.

To access items in an array, use square bracket notation.

Note

EventBridge does not support all JSON Path syntax and evaluate it at runtime. Supported
syntax includes:

• dot notation (for example,$.detail)

• dashes

Input transformation 312

Amazon EventBridge User Guide

• underscores

• alphanumeric characters

• array indices

• wildcards (*)

The following are sample InputTemplate parameters referencing an Amazon SQS event payload:

Static string

InputTemplate: "Hello, sender"

JSON Path

InputTemplate: <$.attributes.SenderId>

Dynamic string

InputTemplate: "Hello, <$.attributes.SenderId>"

Static JSON

InputTemplate: >
{
 "key1": "value1",
 "key2": "value2",
 "key3": "value3",
}

Dynamic JSON

InputTemplate: >
{
 "key1": "value1"
 "key2": <$.body.key>,
 "d": <aws.pipes.event.ingestion-time>
}

Input transformation 313

Amazon EventBridge User Guide

Using square bracket notation to access an item in an array:

InputTemplate: >
{
 "key1": "value1"
 "key2": <$.body.Records[3]>,
 "d": <aws.pipes.event.ingestion-time>
}

Note

EventBridge replaces input transformers at runtime to ensure a valid JSON output. Because
of this, put quotes around variables that refer to JSON path parameters, but do not put
quotes around variables that refer to JSON objects or arrays.

Reserved variables

Input templates can use the following reserved variables:

• <aws.pipes.pipe-arn> – The Amazon Resource Name (ARN) of the pipe.

• <aws.pipes.pipe-name> – The name of the pipe.

• <aws.pipes.source-arn> – The ARN of the event source of the pipe.

• <aws.pipes.enrichment-arn> – The ARN of the enrichment of the pipe.

• <aws.pipes.target-arn> – The ARN of the target of the pipe.

• <aws.pipes.event.ingestion-time> – The time at which the event was received by the
input transformer. This is an ISO 8601 timestamp. This time is different for the enrichment input
transformer and the target input transformer, depending on when the enrichment completed
processing the event.

• <aws.pipes.event> – The event as received by the input transformer.

For an enrichment input transformer, this is the event from the source. This contains the original
payload from the source, plus additional service-specific metadata. See the topics in ??? for
service-specific examples.

For a target input transformer, this is the event returned by the enrichment, if one is configured,
with no additional metadata. As such, an enrichment-returned payload may be non-JSON. If no
enrichment is configured on the pipe, this is the event from the source with metadata.

Reserved variables 314

Amazon EventBridge User Guide

• <aws.pipes.event.json> – The same as aws.pipes.event, but the variable only has a
value if the original payload, either from the source or returned by the enrichment, is JSON. If
the pipe has an encoded field, such as the Amazon SQS body field or the Kinesis data, those
fields are decoded and turned into valid JSON. Because it isn't escaped, the variable can only be
used as a value for a JSON field. For more information, see ???.

Input transform example

The following is an example Amazon EC2 event that we can use as our sample event.

{
 "version": "0",
 "id": "7bf73129-1428-4cd3-a780-95db273d1602",
 "detail-type": "EC2 Instance State-change Notification",
 "source": "aws.ec2",
 "account": "123456789012",
 "time": "2015-11-11T21:29:54Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:ec2:us-east-1:123456789012:instance/i-abcd1111"
],
 "detail": {
 "instance-id": "i-0123456789",
 "state": "RUNNING"
 }
}

Let's use the following JSON as our Transformer.

{
 "instance" : <$.detail.instance-id>,
 "state": <$.detail.state>,
 "pipeArn" : <aws.pipes.pipe-arn>,
 "pipeName" : <aws.pipes.pipe-name>,
 "originalEvent" : <aws.pipes.event.json>
}

The following will be the resulting Output:

Input transform example 315

Amazon EventBridge User Guide

{
 "instance" : "i-0123456789",
 "state": "RUNNING",
 "pipeArn" : "arn:aws:pipe:us-east-1:123456789012:pipe/example",
 "pipeName" : "example",
 "originalEvent" : {
 ... // commented for brevity
 }
}

Implicit body data parsing

The following fields in the incoming payload may be JSON-escaped, such as the Amazon SQS
body object, or base64-encoded, such as the Kinesis data object. For both filtering and input
transformation, EventBridge transforms these fields into valid JSON so sub-values can be
referenced directly. For example, <$.data.someKey> for Kinesis.

To have the target receive the original payload without any additional metadata, use an input
transformer with this body data, specific to the source. For example, <$.body> for Amazon SQS,
or <$.data> for Kinesis. If the original payload is a valid JSON string (for example {"key":
"value"}), then use of the input transformer with source specific body data will result in the
quotes within the original source payload being removed. For example, {"key": "value"}
will become "{key: value}" when delivered to the target. If your target requires valid JSON
payloads (for example, EventBridge Lambda or Step Functions), this will cause delivery failure. To
have the target receive the original source data without generating invalid JSON, wrap the source
body data input transformer in JSON. For example, {"data": <$.data>}.

Implicit body parsing can also be used to dynamically populate values for most pipe target or
enrichment parameters. For more information, see ???

Note

If the original payload is valid JSON, this field will contain the unescaped, non-base64-
encoded JSON. However, if the payload is not valid JSON, EventBridge base64-encodes for
the fields listed below, with the exception of Amazon SQS.

• Active MQ – data

Implicit body data parsing 316

Amazon EventBridge User Guide

• Kinesis – data

• Amazon MSK – key and value

• Rabbit MQ – data

• Self managed Apache Kafka; – key and value

• Amazon SQS – body

Common issues with transforming input

These are some common issues when transforming input in EventBridge pipes:

• For Strings, quotes are required.

• There is no validation when creating JSON path for your template.

• If you specify a variable to match a JSON path that doesn't exist in the event, that variable isn't
created and won't appear in the output.

• JSON properties like aws.pipes.event.json can only be used as the value of a JSON field,
not inline in other strings.

• EventBridge doesn't escape values extracted by Input Path, when populating the Input Template
for a target.

• If a JSON path references a JSON object or array, but the variable is referenced in a string,
EventBridge removes any internal quotes to ensure a valid string. For example, "Body is <
$.body>" would result in EventBridge removing quotes from the object.

Therefore, if you want to output a JSON object based on a single JSON path variable, you must
place it as a key. In this example, {"body": <$.body>}.

• Quotes are not required for variables that represent strings. They are permitted, but EventBridge
Pipes automatically adds quotes to string variable values during transformation, to ensure the
transformation output is valid JSON. EventBridge Pipes does not add quotes to variables that
represent JSON objects or arrays. Do not add quotes for variables that represent JSON objects or
arrays.

For example, the following input template includes variables that represent both strings and
JSON objects:

{
 "pipeArn" : <aws.pipes.pipe-arn>,

Common issues with transforming input 317

Amazon EventBridge User Guide

 "pipeName" : <aws.pipes.pipe-name>,
 "originalEvent" : <aws.pipes.event.json>
}

Resulting in valid JSON with proper quotation:

{
 "pipeArn" : "arn:aws:events:us-east-2:123456789012:pipe/example",
 "pipeName" : "example",
 "originalEvent" : {
 ... // commented for brevity
 }
}

• For Lambda or Step Functions enrichments or targets, batches are delivered to the target as
JSON arrays, even if the batch size is 1. However, input transformers will still be applied to
individual records in the JSON Array, not the array as a whole. For more information, see ???.

Log Amazon EventBridge Pipes

EventBridge Pipes logging enables you to have EventBridge Pipes send records detailing pipe
performance to supported AWS services. Use logs to gain insight into your pipe’s execution
performance, and to help with troubleshooting and debugging.

You can select the following AWS services as log destinations to which EventBridge Pipes delivers
records:

• CloudWatch Logs

EventBridge delivers log records to the specified CloudWatch Logs log group.

Use CloudWatch Logs to centralize the logs from all of your systems, applications, and AWS
services that you use, in a single, highly scalable service. For more information, see Working with
log groups and log streams in the Amazon CloudWatch Logs User Guide.

• Firehose stream logs

EventBridge delivers log records to a Firehose delivery stream.

Amazon Data Firehose is a fully-managed service for delivering real-time streaming data
to destinations such as certain AWS services, as well as any custom HTTP endpoint or HTTP

Log pipe performance 318

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html

Amazon EventBridge User Guide

endpoints owned by supported third-party service providers. For more information, see Creating
an Amazon Data Firehose delivery stream in the Amazon Data Firehose User Guide.

• Amazon S3 logs

EventBridge delivers log records as Amazon S3 objects to the specified bucket.

Amazon S3 is an object storage service that offers industry-leading scalability, data availability,
security, and performance. For more information, see Uploading, downloading, and working with
objects in Amazon S3 in the Amazon Simple Storage Service User Guide.

How Amazon EventBridge Pipes logging works

A pipe execution is an event or batch of events received by a pipe that travel to an enrichment and/
or target. If enabled, EventBridge generates a log record for each execution step it performs as the
event batch is processed. The information contained in the record applies to the event batch, be it
a single event or up to 10,000 events.

You can configure the size of the event batch on the pipe source and target. For more information,
see ???.

The record data sent to each log destination is the same.

If a Amazon CloudWatch Logs destination is configured, the log records delivered to all
destinations have a limit of 256kb. Fields will be truncated as necessary.

You can customize the records EventBridge sends to the selected log destinations in the following
way:

• You can specify the log level, which determines the execution steps for which EventBridge sends
records to the selected log destinations. For more information, see ???.

• You can specify whether EventBridge Pipes includes execution data in records for execution steps
where it is relevant. This data includes:

• The payload of the event batch

• The request sent to the AWS enrichment or target service

• The response returned by the AWS enrichment or target service

For more information, see ???.

How pipe logging works 319

https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/uploading-downloading-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/uploading-downloading-objects.html

Amazon EventBridge User Guide

Specifying EventBridge Pipes log level

You can specify the types of execution steps for which EventBridge sends records to the selected
log destinations.

Choose from the following levels of detail to include in log records. The log level applies to all log
destinations specified for the pipe. Each log level includes the execution steps of the previous log
levels.

• OFF – EventBridge does not send any records to any specified log destinations. This is the default
setting.

• ERROR – EventBridge sends any records related to errors generated during pipe execution to the
specified log destinations.

• INFO – EventBridge sends any records related to errors, as well as select other steps performed
during pipe execution to the specified log destinations.

• TRACE – EventBridge sends any records generated during any steps in the pipe execution to the
specified log destinations.

In the EventBridge console, CloudWatch logs is selected as a log destination by default, as is the
ERROR log level. So, by default, EventBridge Pipes creates a new CloudWatch log group to which it
sends log records containing the ERROR level of detail. No default is selected when you configure
logs programmatically.

The following table lists the execution steps included in each log level.

Step TRACE INFO ERROR OFF

Execution Failed x x x

Execution Partially Failed x x x

Execution Started x x

Execution Succeeded x x

Execution Throttled x x x

Execution Timeout x x x

Specifying log level 320

Amazon EventBridge User Guide

Step TRACE INFO ERROR OFF

Enrichment Invocation Failed x x x

Enrichment Invocation
Skipped

x x

Enrichment Invocation
Started

x

Enrichment Invocation
Succeeded

x

Enrichment Stage Entered x x

Enrichment Stage Failed x x x

Enrichment Stage Succeeded x x

Enrichment Transformation
Failed

x x x

Enrichment Transformation
Started

x

Enrichment Transformation
Succeeded

x

Target Invocation Failed x x x

Target Invocation Partially
Failed

x x x

Target Invocation Skipped x

Target Invocation Started x

Target Invocation Succeeded x

Target Stage Entered x x

Specifying log level 321

Amazon EventBridge User Guide

Step TRACE INFO ERROR OFF

Target Stage Failed x x x

Target Stage Partially Failed x x x

Target Stage Skipped x

Target Stage Succeeded x x

Target Transformation Failed x x x

Target Transformation
Started

x

Target Transformation
Succeeded

x

Including execution data in EventBridge Pipes logs

You can specify for EventBridge to include execution data in the records it generates. Execution
data includes fields representing the event batch payload, as well as the request sent to and the
response from the enrichment and target.

Execution data is useful for troubleshooting and debugging. The payload field contains the actual
contents of each event included in the batch, enabling you to correlate individual events to a
specific pipe execution.

If you choose to include execution data, it is included for all log destinations specified for the pipe.

Important

These fields may contain sensitive information. EventBridge makes no attempt to redact
the contents of these fields during logging.

When including execution data, EventBridge adds the following fields to the relevant records:

• payload

Including execution data in logs 322

Amazon EventBridge User Guide

Represents the contents of the event batch being processed by the pipe.

EventBridge includes the payload field in records generated at steps where the event batch
contents may have been updated. This includes the following steps:

• EXECUTION_STARTED

• ENRICHMENT_TRANSFORMATION_SUCCEEDED

• ENRICHMENT_STAGE_SUCCEEDED

• TARGET_TRANSFORMATION_SUCCEEDED

• TARGET_STAGE_SUCCEEDED

• awsRequest

Represents the request sent to the enrichment or target as a JSON string. For requests sent to an
API destination, this represents the HTTP request sent to that endpoint.

EventBridge includes the awsRequest field in records generated at the final steps of enrichment
and targeting; that is, after EventBridge has executed or attempted to execute the request
against the specified enrichment or target service. This includes the following steps:

• ENRICHMENT_INVOCATION_FAILED

• ENRICHMENT_INVOCATION_SUCCEEDED

• TARGET_INVOCATION_FAILED

• TARGET_INVOCATION_PARTIALLY_FAILED

• TARGET_INVOCATION_SUCCEEDED

• awsResponse

Represents the response returned by the enrichment or target, in JSON format. For requests sent
to an API destination, this represents the HTTP response returned from that endpoint.

As with awsRequest, EventBridge includes the awsResponse field in records generated at the
final steps of enrichment and targeting; that is, after EventBridge has executed or attempted
to execute a request against the specified enrichment or target service and received a response.
This includes the following steps:

• ENRICHMENT_INVOCATION_FAILED

• ENRICHMENT_INVOCATION_SUCCEEDED

• TARGET_INVOCATION_FAILED
Including execution data in logs 323

Amazon EventBridge User Guide

• TARGET_INVOCATION_PARTIALLY_FAILED

• TARGET_INVOCATION_SUCCEEDED

For a discussion of pipe execution steps, see ???.

Truncating execution data in EventBridge Pipes log records

If you choose to have EventBridge include execution data in a pipe's log records, there is
a possibility that a record may exceed the 256 KB size limit. To prevent this, EventBridge
automatically truncates the execution data fields, in the following order. EventBridge truncates
each field entirely before progressing to truncate the next field. EventBridge truncates field data
simply by removing characters from the end of the data string; no attempt is made to truncate
based on data importance, and truncation will invalidate JSON formatting.

• payload

• awsRequest

• awsResponse

If EventBridge does truncate fields in the event, the truncatedFields field includes a list of the
truncated data fields.

Error reporting in EventBridge Pipes log records

EventBridge also includes error data, where available, in pipe execution steps that represent failure
states. These steps include:

• ExecutionThrottled

• ExecutionTimeout

• ExecutionFailed

• ExecutionPartiallyFailed

• EnrichmentTransformationFailed

• EnrichmentInvocationFailed

• EnrichmentStageFailed

• TargetTransformationFailed

• TargetInvocationFailed

Error reporting in log records 324

Amazon EventBridge User Guide

• TargetInvocationPartiallyFailed

• TargetStageFailed

• TargetStagePartiallyFailed

EventBridge Pipes execution steps

Understanding the flow of pipe execution steps can aid you in troubleshooting or debugging your
pipe's performance using logs.

A pipe execution is an event or batch of events received by a pipe that travel to an enrichment or
target. If enabled, EventBridge generates a log record for each execution step it performs as the
event batch is processed.

At a high level, the execution contains two stages, or collection of steps: enrichment, and target.
Each of these stages consists of transformation and invocation steps.

The main steps of a successful pipe execution follows this flow:

• The pipe execution starts.

• The execution enters the enrichment stage if you have specified an enrichment for the events. If
you haven't specified an enrichment, the execution proceeds to the target stage.

In the enrichment stage, the pipe performs any transformation you have specified, then invokes
the enrichment.

• In the target stage, the pipe performs any transformation you have specified, then invokes the
target.

If you haven't specified transformation or target, the execution skips the target stage.

• The pipe execution completes successfully.

The diagram below demonstrates this flow. Diverging paths are formatted as dotted lines.

Pipe execution steps 325

Amazon EventBridge User Guide

The diagram below presents a detailed view of the pipe execution flow, with all possible execution
steps represented. Again, diverging paths are formatted as dotted lines

For a complete list of pipe execution steps, see ???.

Pipe execution steps 326

Amazon EventBridge User Guide

Pipe execution steps 327

Amazon EventBridge User Guide

Note that target invocation may result in a partial failure of the batch. For more information, see
???.

EventBridge Pipes log schema reference

The following reference details the schema for EventBridge Pipes log records.

Each log record represents a pipe execution step, and may contain up to 10,000 events if the pipe
source and target have been configured for batching.

For more information, see ???.

{
 "executionId": "guid",
 "timestamp": "date_time",
 "messageType": "execution_step",
 "resourceArn": "arn:aws:pipes:region:account:pipe/pipe-name",
 "logLevel": "TRACE | INFO | ERROR",
 "payload": "{}",
 "awsRequest": "{}"
 "awsResponse":"{}"
 "truncatedFields": ["awsRequest","awsResponse","payload"],
 "error": {
 "httpStatusCode": code,
 "message": "error_message",
 "details": "",
 "awsService": "service_name",
 "requestId": "service_request_id"
 }
}

executionId

The ID of the pipe execution.

A pipe execution is an event or batch of events received by a pipe that travel to an enrichment
or target. For more information, see ???.

timestamp

The date and time the log event was emitted.

Unit: millisecond

Log schema reference 328

Amazon EventBridge User Guide

messageType

The pipe execution step for which the record was generated.

For more information on pipe execution steps, see ???.

resourceArn

The Amazon Resource Name (ARN) for the pipe.

logLevel

The level of detail specified for the pipe log.

Valid values: ERROR | INFO | TRACE

For more information, see ???.

payload

The contents of the event batch being processed by the pipe.

EventBridge includes this field only if you have specified to include execution data in the logs
for this pipe. For more information, see ???

Important

These fields may contain sensitive information. EventBridge makes no attempt to redact
the contents of these fields during logging.

For more information, see ???.

awsRequest

The request sent to the enrichment or target, in JSON format. For requests sent to an API
destination, this represents the HTTP request sent to that endpoint.

EventBridge includes this field only if you have specified to include execution data in the logs
for this pipe. For more information, see ???

Important

These fields may contain sensitive information. EventBridge makes no attempt to redact
the contents of these fields during logging.

Log schema reference 329

Amazon EventBridge User Guide

For more information, see ???.

awsResponse

The response returned by the enrichment or target, in JSON format. For requests sent to an
API destination, this represents the HTTP response returned from that endpoint, and not the
response returned by the API Destination service itself.

EventBridge includes this field only if you have specified to include execution data in the logs
for this pipe. For more information, see ???

Important

These fields may contain sensitive information. EventBridge makes no attempt to redact
the contents of these fields during logging.

For more information, see ???.

truncatedFields

A list of any execution data fields EventBridge has truncated to keep the record below the 256
KB size limitation.

If EventBridge did not have to truncate any of the execution data fields, this field is present but
null.

For more information, see ???.

error

Contains information for any error generated during this pipe execution step.

If no error was generated during this pipe execution step, this field is present but null.

httpStatusCode

The HTTP status code returned by the called service.

message

The error message returned by the called service.

details

Any detailed error information returned by the called service.

Log schema reference 330

Amazon EventBridge User Guide

awsService

The name of the service called.

requestId

The request ID for this request from the called service.

Logging and monitoring Amazon EventBridge Pipes using AWS
CloudTrail and Amazon CloudWatch Logs

You can log EventBridge Pipes invocations and using CloudTrail and monitor the health of your
pipes using CloudWatch metrics.

CloudWatch metrics

EventBridge Pipes sends metrics to Amazon CloudWatch every minute for everything from a pipe
executions being throttled to a target successfully being invoked.

Metric Description

Concurrency The number of concurrent executions of a pipe.

Valid Dimensions: AwsAccountId

Units: None

Duration Length of time the pipe execution took.

Valid Dimensions: PipeName

Units: Milliseconds

EventCount The number of events a pipe has processed.

Valid Dimensions: PipeName

Units: None

EventSize The size of the payload of the event that invoked the pipe.

Valid Dimensions: PipeName

Log & monitor 331

Amazon EventBridge User Guide

Metric Description

Units: Bytes

Execution
Throttled

How many executions of a pipe were throttled.

Note

This value will be 0 if no executions were throttled.

Valid Dimensions: AwsAccountId, PipeName

Units: None

Execution
Timeout

How many executions of a pipe timed out before completing execution.

Note

This value will be 0 if no executions timed out.

Valid Dimensions: PipeName

Units: None

ExecutionFailed How many executions of a pipe failed.

Note

This value will be 0 if no executions failed.

Valid Dimensions: PipeName

Units: None

Log & monitor 332

Amazon EventBridge User Guide

Metric Description

Execution
Partially
Failed

How many executions of a pipe partially failed.

Note

This value will be 0 if no executions partially failed.

Valid Dimensions: PipeName

Units: None

Enrichmen
tStageDuration

How long the enrichment stage took to complete.

Valid Dimensions: PipeName

Units: Milliseconds

Enrichmen
tStageFailed

How many executions of a pipe's enrichment stage failed.

Note

This value will be 0 if no executions failed.

Valid Dimensions: PipeName

Units: None

Invocations Total number of invocations.

Valid Dimensions: AwsAccountId, PipeName

Units: None

TargetSta
geDuration

How long the target stage took to complete.

Valid Dimensions: PipeName

Units: Milliseconds

Log & monitor 333

Amazon EventBridge User Guide

Metric Description

TargetSta
geFailed

How many executions of a pipe's target stage failed.

Note

This value will be 0 if no executions failed.

Valid Dimensions: PipeName

Units: None

TargetSta
gePartial
lyFailed

How many executions of a pipe's target stage partially failed.

Note

This value will be 0 if no target stage executions partially failed.

Valid Dimensions: PipeName

Units: None

TargetSta
geSkipped

How many executions of a pipe's target stage were skipped (for
example, due to the enrichment returning an empty payload).

Valid Dimensions: PipeName

Units: Count

Dimensions for CloudWatch metrics

CloudWatch metrics have dimensions, or sortable attributes, which are listed below.

Dimension Description

AwsAccountId Filters the available metrics by account ID.

Log & monitor 334

Amazon EventBridge User Guide

Dimension Description

PipeName Filters the available metrics by pipe name.

Amazon EventBridge Pipes error handling and troubleshooting

Retry behavior and error handling

EventBridge Pipes automatically retries enrichment and target invocation on any retryable AWS
failures with the source service, the enrichment or target services, or EventBridge. However, if
there are failures returned by enrichment or target customer implementations, the pipe polling
throughput will gradually back off. For nearly continuous 4xx errors (such as authorization
problems with IAM or missing resources), the pipe can be automatically disabled with an
explanatory message in the StateReason.

Pipe invocation errors and retry behavior

When you invoke a pipe, two main types of errors can occur: pipe internal errors and customer
invocation errors.

Pipe internal errors

Pipe internal errors are errors resulting by aspects of the invocation managed by the EventBridge
Pipes service.

These types of errors can include issues such as:

• A HTTP connection failure when attempting to invoke the customer targer service

• A transient drop in availability on the pipe service itself.

In general, EventBridge Pipes retries internal errors an indefinite number of times, and stops only
when the record expires in the source.

For pipes with a stream source, EventBridge Pipes does not count retries for internal errors against
the maximum number of retries specified on the retry policy for the stream source. For pipes with
an Amazon SQS source, EventBridge Pipes does not count retries for internal errors against the
maximum receive count for the Amazon SQS source.

Error handling & troubleshooting 335

Amazon EventBridge User Guide

Customer invocation errors

Customer invocation errors are errors resulting from configuration or code managed by the user.

These types of errors can include issues such as:

• Insufficient permissions on the pipe to invoke the target.

• A logic error in a synchronously-invoked customer Lambda, Step Functions, API destination, or
API Gateway endpoint.

For customer invocation errors, EventBridge Pipes does the following:

• For pipes with a stream source, EventBridge Pipes retries up to the maximum retry times
configured on the pipe retry policy or until the maximum record age expires, whichever comes
first.

• For pipes with an Amazon SQS source, EventBridge Pipes retries a customer error up to the
maximum receive count on the source queue.

• For pipes with a Apache Kafka or Amazon MQ source, EventBridge retries customer errors the
same as it retries internal errors.

For pipes with compute targets, you must invoke the pipe synchronously in order for EventBridge
Pipes to be aware of any runtime errors that are thrown from the customer compute logic and
retry on such errors. Pipes cannot retry on errors thrown from the logic of a Step Functions
standard workflow, as this target must be invoked asynchronously.

For Amazon SQS and stream sources, such as Kinesis and DynamoDB, EventBridge Pipes supports
partial batch failure handling of target failures. For more information, see Partial batch failure.

Pipe DLQ behavior

A pipe inherits dead-letter queue (DLQ) behavior from the source:

• If the source Amazon SQS queue has a configured DLQ, messages are automatically delivered
there after the specified number of attempts.

• For stream sources, such as DynamoDB and Kinesis streams, you can configure a DLQ for the
pipe and route events. DynamoDB and Kinesis stream sources support Amazon SQS queues and
Amazon SNS topics as DLQ targets.

DLQ behavior 336

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes-batching-concurrency.html#pipes-partial-batch-failure

Amazon EventBridge User Guide

If you specify a DeadLetterConfig for a pipe with a Kinesis or DynamoDB source, make sure that
the MaximumRecordAgeInSeconds property on the pipe is less than the MaximumRecordAge
of the source event. MaximumRecordAgeInSeconds controls when the pipe poller will
give up on the event and deliver it to the DLQ and the MaximumRecordAge controls how
long the message will be visible in the source stream before it gets deleted. Therefore, set
MaximumRecordAgeInSeconds to a value that is less than the source MaximumRecordAge
so that there's adequate time between when the event gets sent to the DLQ, and when it gets
automatically deleted by the source for you to determine why the event went to the DLQ.

For Amazon MQ sources, the DLQ can be configured directly on the message broker.

EventBridge Pipes does not support first-in first-out (FIFO) DLQs for stream sources.

EventBridge Pipes does not support DLQ for Amazon MSK stream and Self managed Apache Kafka
stream sources.

Pipe failure states

Creating, deleting, and updating pipes are asynchronous operations that might result in a failure
state. Likewise, a pipe might be automatically disabled due to failures. In all cases, the pipe
StateReason provides information to help troubleshoot the failure.

The following is a sample of the possible StateReason values:

• Stream not found. To resume processing please delete the pipe and create a new one.

• Pipes does not have required permissions to perform Queue operations (sqs:ReceiveMessage,
sqs:DeleteMessage and sqs:GetQueueAttributes)

• Connection error. Your VPC must be able to connect to pipes. You can provide access by
configuring a NAT Gateway. For how to setup NAT gateway, please check AWS documentation.

• MSK cluster does not have security groups associated with it

A pipe may be automatically stopped with an updated StateReason. Possible reasons include:

• A Step Functions standard workflow configured as an enrichment.

• A Step Functions standard workflow configured as as a target to be invoked synchronously.

Pipe failure states 337

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes.html#pipes-enrichment
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes.html#pipes-invocation

Amazon EventBridge User Guide

Custom encryption failures

If you configure a source to use an AWS KMS custom encryption key (CMK), rather than an AWS-
managed AWS KMS key, you must explicitly give your pipe's Execution Role decryption permission.
To do so, include the following additional permission in the custom CMK policy:

 {
 "Sid": "Allow Pipes access",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::01234567890:role/service-role/
Amazon_EventBridge_Pipe_DDBStreamSourcePipe_12345678"
 },
 "Action": "kms:Decrypt",
 "Resource": "*"
 }

Replace the above role with your pipe's Execution Role.

This is true for all pipe sources with AWS KMS CMK, including:

• Amazon DynamoDB Streams

• Amazon Kinesis Data Streams

• Amazon MQ

• Amazon MSK

• Amazon SQS

Tutorial: Create an EventBridge pipe that filters source events

In this tutorial, you'll create a pipe that connects a DynamoDB stream source to an Amazon SQS
queue target. This includes specifying an event pattern for the pipe to use when filtering events
to deliver to the queue. You'll then test the pipe to ensure that only the desired events are being
delivered.

Prerequisites: Create the source and target

Before you create the pipe, you'll need to create the source and target that the pipe is to connect.
In this case, an Amazon DynamoDB data stream to act as the pipe source, and an Amazon SQS
queue as the pipe target.

Custom encryption failures 338

Amazon EventBridge User Guide

To simplify this step, you can use AWS CloudFormation to provision the source and target
resources. To do this, you'll create a CloudFormation template defining the following resources:

• The pipe source

An Amazon DynamoDB table, named pipe-tutorial-source, with a stream enabled to
provide an ordered flow of information about changes to items in the DynamoDB table.

• The pipe target

An Amazon SQS queue, named pipe-tutorial-target, to receive the DynamoDB stream of
events from your pipe.

To create the CloudFormation template for provisioning pipe resources

1. Copy the JSON template text in the ??? section, below.

2. Save the template as a JSON file (for example, ~/pipe-tutorial-resources.json).

Next, use the template file you just created to provision a CloudFormation stack.

Note

Once you create your CloudFormation stack, you will be charged for the AWS resources it
provisions.

Provision the tutorial prerequisites using the AWS CLI

• Run the following CLI command, where --template-body specifies the location of your
template file:

aws cloudformation create-stack --stack-name pipe-tuturial-resources --template-
body file://~/pipe-tutorial-resources.json

Provision tutorial prerequisites using the CloudFormation console

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Select Stacks, then select Create stack, and choose with new resources (standard).

Prerequisites 339

https://console.aws.amazon.com/cloudformation/

Amazon EventBridge User Guide

CloudFormation displays the Create stack wizard.

3. For Prerequisite - Prepare template, leave the default, Template is ready, selected.

4. Under Specify template, select Upload a template file, and then choose the file and select
Next.

5. Configure the stack and the resources it will provision:

• For Stack name, enter pipe-tuturial-resources.

• For Parameters, leave the default names for the DynamoDB table and Amazon SQS queue.

• Choose Next.

6. Choose Next, then choose Submit.

CloudFormation creates the stack and provisions the resources defined in the template.

For more information about CloudFormation, see What is AWS CloudFormation? in the AWS
CloudFormation User Guide.

Step 1: Create the pipe

With the pipe source and target provisioned, you can now create the pipe to connect the two
services.

Create the pipe using the EventBridge console

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. On the navigation pane, choose Pipes.

3. Choose Create pipe.

4. For Name, name your pipe pipe-tutorial.

5. Specify the DynamoDB data stream source:

a. Under Details, for Source, select DynamoDB data stream .

EventBridge displays DynamoDB-specific source configuration settings.

b. For DynamoDB stream, select pipe-tutorial-source.

Leave Starting position set to the default, Latest.

c. Choose Next.

Create the pipe 340

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

6. Specify and test an event pattern to filter events:

Filtering enables you to control which events the pipes sends to enrichment or the target. The
pipe only sends events that match the event pattern on to enrichment or the target.

For more information, see ???.

Note

You are only billed for those events sent to enrichment or the target.

a. Under Sample event - optional, leave AWS events selected, and make sure that
DynamoDB Stream Sample event 1 is selected.

This is the sample event which you'll use to test our event pattern.

b. Under Event pattern, enter the following event pattern:

{
 "eventName": ["INSERT", "MODIFY"]
}

c. Choose Test pattern.

EventBridge displays a message that the sample event matches the event pattern. This is
because the sample event has an eventName value of INSERT.

d. Choose Next.

7. Choose Next to skip specifying an enrichment.

In this example, you won’t select an enrichment. Enrichments enable you to select a service to
enhance the data from the source before sending it to the target. For more details, see ???.

8. Specify your Amazon SQS queue as the pipe target:

a. Under Details, for Target service, select Amazon SQS queue.

b. For Queue, select pipe-tutorial-target.

c. Leave the Target Input transformer section empty.

For more information, see ???.

9. Choose Create Pipe

Create the pipe 341

Amazon EventBridge User Guide

EventBridge creates the pipe and displays the pipe detail page. The pipe is ready once its
status updates to Running.

Step 2: Confirm the pipe filters events

Pipe is set up, but has yet to receive events from table.

To test the pipe, you'll update entries in the DynamoDB table. Each update will generate events
that the DynamoDB stream sends to our pipe. Some will match the event pattern you specified,
some will not. You can then examine the Amazon SQS queue to ensure that the pipe only delivered
those event that matched our event pattern.

Update table items to generate events

1. Open the DynamoDB console at https://console.aws.amazon.com/dynamodb/.

2. From the left navigation, select Tables. Select the pipe-tutorial-source table.

DynamoDB displays the table details page for pipe-tutorial-source.

3. Select Explore table items, and then choose Create item.

DynamoDB displays the Create item page.

4. Under Attributes, create a new table item:

a. For Album enter Album A.

b. For Artist enter Artist A.

c. Choose Create item.

5. Update the table item:

a. Under Items returned, choose Album A.

b. Select Add new attribute, then select String.

c. Enter a new value of Song, with a value of Song A.

d. Choose Save changes.

6. Delete the table item:

a. Under Items returned, check Album A.

b. From the Actions menu, select Delete items.

Confirm the pipe filters events 342

https://console.aws.amazon.com/dynamodb/

Amazon EventBridge User Guide

You have made three updates to the table item; this generates three events for the DynamoDB
data stream:

• An INSERT event when you created the item.

• A MODIFY event when you added an attribute to the item.

• A REMOVE event when you deleted the item.

However, the event pattern you specified for the pipe should filter out any events that are not
INSERT or MODIFY events. Next, confirm that the pipe delivered the expected events to the queue.

Confirm the expected events were delivered to the queue

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

2. Choose the pipe-tutorial-target queue.

Amazon SQS displays the queue details page.

3. Select Send and receive messages, then under Receive messages choose Poll for messages.

The queue polls the pipe and then lists the events it receives.

4. Choose the event name to see the event JSON that was delivered.

There should be two events in the queue: one with an eventName of INSERT, and one with
an eventName of MODIFY. However, the pipe did not deliver the event for deleting the table
item, since that event had an eventName of REMOVE, which did not match the event pattern you
specified in the pipe.

Step 3: Clean up your resources

First, delete the pipe itself.

Delete the pipe using the EventBridge console

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. On the navigation pane, choose Pipes.

3. Select the pipe-tutorial pipe, and choose Delete.

Clean up resources 343

https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

Then, delete the CloudFormation stack, to prevent being billed for the continued usage of the
resources provisioned within it.

Delete the tutorial prerequisites using the AWS CLI

• Run the following CLI command, where --stack-name specifies the name of your stack:

aws cloudformation delete-stack --stack-name pipe-tuturial-resources

Delete the tutorial prerequisites using the AWS CloudFormation console

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. On the Stacks page, select the stack and then select Delete.

3. Select Delete to confirm your action.

AWS CloudFormation template for generating prerequisites

Use the JSON below to create a CloudFormation template for provisioning the source and target
resources necessary for this tutorial.

{
 "AWSTemplateFormatVersion": "2010-09-09",

 "Description" : "Provisions resources to use with the EventBridge Pipes tutorial. You
 will be billed for the AWS resources used if you create a stack from this template.",

 "Parameters" : {
 "SourceTableName" : {
 "Type" : "String",
 "Default" : "pipe-tutorial-source",
 "Description" : "Specify the name of the table to provision as the pipe source,
 or accept the default."
 },
 "TargetQueueName" : {
 "Type" : "String",
 "Default" : "pipe-tutorial-target",
 "Description" : "Specify the name of the queue to provision as the pipe target, or
 accept the default."
 }
},

Template for prerequisites 344

https://console.aws.amazon.com/cloudformation/

Amazon EventBridge User Guide

 "Resources": {
 "PipeTutorialSourceDynamoDBTable": {
 "Type": "AWS::DynamoDB::Table",
 "Properties": {
 "AttributeDefinitions": [{
 "AttributeName": "Album",
 "AttributeType": "S"
 },
 {
 "AttributeName": "Artist",
 "AttributeType": "S"
 }

],
 "KeySchema": [{
 "AttributeName": "Album",
 "KeyType": "HASH"

 },
 {
 "AttributeName": "Artist",
 "KeyType": "RANGE"
 }
],
 "ProvisionedThroughput": {
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 10
 },
 "StreamSpecification": {
 "StreamViewType": "NEW_AND_OLD_IMAGES"
 },
 "TableName": { "Ref" : "SourceTableName" }
 }
 },
 "PipeTutorialTargetQueue": {
 "Type": "AWS::SQS::Queue",
 "Properties": {
 "QueueName": { "Ref" : "TargetQueueName" }
 }
 }
 }
}

Template for prerequisites 345

Amazon EventBridge User Guide

Generate an AWS CloudFormation template from EventBridge
Pipes

AWS CloudFormation enables you to configure and manage your AWS resources across
accounts and regions in a centralized and repeatable manner by treating infrastructure as code.
CloudFormation does this by letting you create templates, which define the resources you want to
provision and manage.

EventBridge enables you to generate templates from the existing pipes in your account, as an
aid to help you jumpstart developing CloudFormation templates. You can select a single pipe,
or multiple pipes to include in the template. You can then use these templates as the basis for
creating stacks of resources under CloudFormation management.

For more information on CloudFormation, see The AWS CloudFormation User Guide.

For event buses, you can generate CloudFormation templates from event buses and event bus
rules.

EventBridge resources in pipe templates

If your pipes include API destinations, either as enrichments or targets, EventBridge includes them
in the CloudFormation template as AWS::Events::ApiDestination resources.

If your pipes includes an event bus as a target, EventBridge includes it in the CloudFormation
template as an AWS::Events::EventBus resource.

Generating a CloudFormation template from EventBridge Pipes

To generate a CloudFormation template from one or more pipes using the EventBridge console, do
the following:

To generate an CloudFormation template from one or more pipes

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Pipes.

3. Under Pipes, choose one or more pipes you want to include in the generated AWS
CloudFormation template.

For a single pipe, you can also choose the pipe name to display the pipe's details page.

Generating a pipe template 346

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-apidestination.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-eventbus.html
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

4. Choose CloudFormation Template, and then choose which format you want EventBridge to
generate the template in: JSON or YAML.

EventBridge displays the template, generated in the selected format.

5. EventBridge gives you the option of downloading the template file, or copying the template to
the clipboard.

• To download the template file, choose Download.

• To copy the template to the clipboard, choose Copy.

6. To exit the template, choose Cancel.

Considerations when using CloudFormation templates generated from
EventBridge Pipes

Consider the following factors when using a CloudFormation template you generated from
EventBridge:

• EventBridge does not include any passwords in the generate template.

You can edit the template to include template parameters that enable users to specify passwords
or other sensitive information when using the template to create or update a CloudFormation
stack.

In addition, users can use Secrets Manager to create a secret in the desired region and then edit
the generated template to employ dynamic parameters.

• Targets in the generated template remain exactly as they were specified in the original pipe. This
can lead to cross-region issues if you do not appropriately edit the template before using it to
create stacks in other regions.

Additionally, the generated template does not create the downstream targets automatically.

Considerations when using a generated template 347

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-references.html#dynamic-references-secretsmanager

Amazon EventBridge User Guide

Making applications Regional-fault tolerant with global
endpoints and event replication

You can improve your application's availability with Amazon EventBridge global endpoints. Global
endpoints help make your application regional-fault tolerant at no additional cost. To start, you
assign an Amazon Route 53 health check to the endpoint. When failover is initiated, the health
check reports an “unhealthy” state. Within minutes of failover initiation, all custom events are
routed to an event bus in the secondary Region and are processed by that event bus. Once the
health check reports a “healthy” state, events are processed by the event bus in the primary
Region.

When you use global endpoints, you can enable event replication. Event replication sends all
custom events to the event buses in the primary and secondary Regions using managed rules.

Note

If you're using custom buses, you'll need a custom bus in each Region with the same name
and in the same account for failover to work properly.

Topics

• Recovery Time & Recovery Point Objectives

• Event replication

• Create a global endpoint

• Working with global endpoints by using an AWS SDK

• Available Regions

• Best practices for working with Amazon EventBridge global endpoints

• AWS CloudFormation template for setting up the Route 53 health check

Recovery Time & Recovery Point Objectives

The Recovery Time Objective (RTO) is the time that it takes for the secondary Region to start
receiving events after a failure. For RTO, the time includes time period for triggering CloudWatch
alarms and updating statuses for Route 53 health checks. The Recovery Point Objective (RPO) is

Recovery Time & Recovery Point Objectives 348

Amazon EventBridge User Guide

the measure of the data that will be left unprocessed during a failure. For RPO, the time includes
events that are not replicated to the secondary Region and are stuck in the primary Region until
the service or Region recovers. With global endpoints, if you follow our prescriptive guidance for
alarm configuration, you can expect the RTO and RPO to be 360 seconds with a maximum of 420
seconds.

Event replication

Events are processed in the secondary Region asynchronously. This means that events are not
guaranteed to be processed at the same time in both Regions. When failover is triggered, the
events are processed by the secondary Region and will be processed by the primary Region when
it’s available. Enabling event replication will increase your monthly costs. For more information, see
Amazon EventBridge pricing

We recommend enabling event replication when setting up global endpoints for the following
reasons:

• Event replication helps you verify that your global endpoints are configured correctly. This helps
to ensure that you’ll be covered in the event of failover.

• Event replication is required to automatically recover from a failover event. If you don’t have
event replication enabled, you’ll have to manually reset the Route 53 health check to “healthy”
before events will go back to the primary Region.

Replicated event payload

The following is an example of a replicated event payload:

Note

For region, the Region that the event was replicated from is listed.

{
 "version": "0",
 "id": "a908baa3-65e5-ab77-367e-527c0e71bbc2",
 "detail-type": "Test",
 "source": "test.service.com",
 "account": "0123456789",

Event replication 349

https://aws.amazon.com/eventbridge/pricing

Amazon EventBridge User Guide

 "time": "1900-01-01T00:00:00Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:events:us-east-1:0123456789:endpoint/MyEndpoint"
],
 "detail": {
 "a": "b"
 }
}

Create a global endpoint

Complete the following steps to set up a global endpoint:

1. Make sure that you have matching event buses and rules in both the primary and secondary
Region.

2. Create a Route 53 health check to monitor your event buses. For assistance in creating your
health check, choose New Health Check when creating your global endpoint.

3. Create your global endpoint.

Once you have set up the Route 53 health check, you can create a global endpoint.

To create a global endpoint by using the console

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Global endpoints.

3. Choose Create Endpoint.

4. Enter a name and description for the endpoint.

5. For Event bus in primary Region, choose the event bus you’d like the endpoint associated
with.

6. For Secondary Region, choose the Region you'd like to direct events to in the event of a
failover.

Note

The Event bus in secondary Region is auto-filled and not editable.

Create a global endpoint 350

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/health-checks-creating.html
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

7. For Route 53 health check for triggering failover and recovery, choose the health check that
the endpoint will monitor. If you don't already have a health check, choose New Health check
to open the AWS CloudFormation console and create a health check using a CloudFormation
template.

Note

Missing data will cause the health check to fail. If you only need to send events
intermittently, consider using a longer MinimumEvaluationPeriod, or treat missing
data as 'missing' instead of 'breaching'.

8. (Optional) For Event replication do the following:

a. Select Event replication enabled.

b. For Execution role, choose whether to create a new AWS Identity and Access Management
role or use an existing one. Do the following:

• Choose Create a new role for this specific resource. Optionally, you can update the
Role name to create a new role.

• Choose Use existing role. Then, for Execution role, choose the desired role to use.

9. Choose Create.

To create a global endpoint by using the API

To create a global endpoint using the EventBridge API, see CreateEndpoint in the Amazon
EventBridge API Reference.

To create a global endpoint by using AWS CloudFormation

To create a global endpoint using the AWS CloudFormation API, see AWS::Events::Endpoints in the
AWS CloudFormation User Guide.

Working with global endpoints by using an AWS SDK

Note

Support for C++ is coming soon.

To create a global endpoint by using the API 351

https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_CreateEndpoint.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-endpoint.html

Amazon EventBridge User Guide

When using an AWS SDK to work with global endpoints, keep the following in mind:

• You'll need to have the AWS Common Runtime (CRT) library installed for your specific SDK. If
you don't have the CRT installed, you'll get an exception message indicating what needs to be
installed. For more information, see the following:

• AWS Common Runtime (CRT) libraries

• awslabs/aws-crt-java

• awslabs/aws-crt-nodejs

• awslabs/aws-crt-python

• Once you have created a global endpoint, you'll need to add the endpointId and
EventBusName to any PutEvents calls that you use.

• Global endpoints support Signature Version 4A. This version of SigV4 allows requests to be
signed for multiple AWS Regions. This is useful in API operations that might result in data access
from one of several Regions. When using the AWS SDK, you supply your credentials and the
requests to global endpoints will use Signature Version 4A without additional configuration. For
more information about SigV4A, see Signing AWS API requests in the AWS General Reference.

Available Regions

The following Regions support global endpoints:

• US East (N. Virginia)

• US East (Ohio)

• US West (N. California)

• US West (Oregon)

• Canada (Central)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Milan)

• Europe (Paris)

• Europe (Stockholm)

• Asia Pacific (Mumbai)

Available Regions 352

https://docs.aws.amazon.com/sdkref/latest/guide/common-runtime.html
https://github.com/awslabs/aws-crt-java
https://github.com/awslabs/aws-crt-nodejs
https://github.com/awslabs/aws-crt-python
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html

Amazon EventBridge User Guide

• Asia Pacific (Osaka)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• South America (São Paulo)

Best practices for working with Amazon EventBridge global
endpoints

The following best practices are recommended when you set up global endpoints.

Topics

• Enabling event replication

• Preventing event throttling

• Using subscriber metrics in Amazon Route 53 health checks

Enabling event replication

We strongly recommend that you turn on replication and process your events in the secondary
Region that you assign to your global endpoint. This ensures that your application in the secondary
Region is configured correctly. You should also turn on replication to ensure automatic recovery to
the primary Region after an issue has been mitigated.

Event IDs can change across API calls so correlating events across Regions requires you to have an
immutable, unique identifier. Consumers should also be designed with idempotency in mind. That
way, if you're replicating events, or replaying them from archives, there are no side effects from the
events being processed in both Regions.

Preventing event throttling

To prevent events from being throttled, we recommend updating your PutEvents and targets
limits so they're consistent across Regions.

Best practices 353

Amazon EventBridge User Guide

Using subscriber metrics in Amazon Route 53 health checks

Avoid including subscriber metrics in your Amazon Route 53 health checks. Including these metrics
may cause your publisher to failover to the secondary Regions if a subscriber encounters an issue
despite all other subscribers remaining healthy in the primary Region. If one of your subcribers is
failing to process events in the primary Region, you should turn on replication to ensure that your
subscriber in the secondary Region can process events successfully.

AWS CloudFormation template for setting up the Route 53
health check

When using global endpoints you have to have a Route 53 health check to monitor the status of
your Regions. The following template defines a Amazon CloudWatch alarm and uses it to define a
Route 53 health check.

Topics

• AWS CloudFormation template for defining a Route 53 health check

• CloudWatch alarm template properties

• Route 53 health check template properties

AWS CloudFormation template for defining a Route 53 health check

Use the following template to define your Route 53 health check.

Description: |-
 Global endpoints health check that will fail when the average Amazon EventBridge
 latency is above 30 seconds for a duration of 5 minutes. Note, missing data will
 cause the health check to fail, so if you only send events intermittently, consider
 changing the heath check to use a longer evaluation period or instead treat missing
 data as 'missing' instead of 'breaching'.

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Global endpoint health check alarm configuration"
 Parameters:
 - HealthCheckName

Using subscriber metrics in Amazon Route 53 health checks 354

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-route53-healthcheck.html

Amazon EventBridge User Guide

 - HighLatencyAlarmPeriod
 - MinimumEvaluationPeriod
 - MinimumThreshold
 - TreatMissingDataAs
 ParameterLabels:
 HealthCheckName:
 default: Health check name
 HighLatencyAlarmPeriod:
 default: High latency alarm period
 MinimumEvaluationPeriod:
 default: Minimum evaluation period
 MinimumThreshold:
 default: Minimum threshold
 TreatMissingDataAs:
 default: Treat missing data as

Parameters:
 HealthCheckName:
 Description: Name of the health check
 Type: String
 Default: LatencyFailuresHealthCheck
 HighLatencyAlarmPeriod:
 Description: The period, in seconds, over which the statistic is applied. Valid
 values are 10, 30, 60, and any multiple of 60.
 MinValue: 10
 Type: Number
 Default: 60
 MinimumEvaluationPeriod:
 Description: The number of periods over which data is compared to the specified
 threshold. You must have at least one evaluation period.
 MinValue: 1
 Type: Number
 Default: 5
 MinimumThreshold:
 Description: The value to compare with the specified statistic.
 Type: Number
 Default: 30000
 TreatMissingDataAs:
 Description: Sets how this alarm is to handle missing data points.
 Type: String
 AllowedValues:
 - breaching
 - notBreaching
 - ignore

AWS CloudFormation template for defining a Route 53 health check 355

Amazon EventBridge User Guide

 - missing
 Default: breaching

Mappings:
 "InsufficientDataMap":
 "missing":
 "HCConfig": "LastKnownStatus"
 "breaching":
 "HCConfig": "Unhealthy"

Resources:
 HighLatencyAlarm:
 Type: AWS::CloudWatch::Alarm
 Properties:
 AlarmDescription: High Latency in Amazon EventBridge
 MetricName: IngestionToInvocationStartLatency
 Namespace: AWS/Events
 Statistic: Average
 Period: !Ref HighLatencyAlarmPeriod
 EvaluationPeriods: !Ref MinimumEvaluationPeriod
 Threshold: !Ref MinimumThreshold
 ComparisonOperator: GreaterThanThreshold
 TreatMissingData: !Ref TreatMissingDataAs

 LatencyHealthCheck:
 Type: AWS::Route53::HealthCheck
 Properties:
 HealthCheckTags:
 - Key: Name
 Value: !Ref HealthCheckName
 HealthCheckConfig:
 Type: CLOUDWATCH_METRIC
 AlarmIdentifier:
 Name:
 Ref: HighLatencyAlarm
 Region: !Ref AWS::Region
 InsufficientDataHealthStatus: !FindInMap [InsufficientDataMap, !Ref
 TreatMissingDataAs, HCConfig]

Outputs:
 HealthCheckId:
 Description: The identifier that Amazon Route 53 assigned to the health check when
 you created it.

AWS CloudFormation template for defining a Route 53 health check 356

Amazon EventBridge User Guide

 Value: !GetAtt LatencyHealthCheck.HealthCheckId

Event IDs can change across API calls so correlating events across Regions requires you to have an
immutable, unique identifier. Consumers should also be designed with idempotency in mind. That
way, if you're replicating events, or replaying them from archives, there are no side effects from the
events being processed in both Regions.

CloudWatch alarm template properties

Note

For all editable fields, consider your throughput per second. If you only send events
intermittently, consider changing the heath check to use a longer evaluation period or
instead treat missing data as missing instead of breaching.

The following properties are used in th CloudWatch alarm section of the template:

Metric Description

AlarmDesc
ription

The description of the alarm.

Default: High Latency in Amazon EventBridge

MetricName The name of the metric associated with the alarm. This is required for
an alarm based on a metric. For an alarm based on a math expression,
you use Metrics instead and you can't specify MetricName .

Default: IngestionToInvocationStartLatency

Namespace The namespace of the metric associated with the alarm. This is required
for an alarm based on a metric. For an alarm based on a math expressio
n, you can't specify Namespace and you use Metrics instead.

Default: AWS/Events

Statistic The statistic for the metric associated with the alarm, other than
percentile.

CloudWatch alarm template properties 357

Amazon EventBridge User Guide

Metric Description

Default: Average

Period The period, in seconds, over which the statistic is applied. This is
required for an alarm based on a metric. Valid values are 10, 30, 60,
and any multiple of 60.

Default: 60

Evaluatio
nPeriods

The number of periods over which data is compared to the specified
threshold. If you are setting an alarm that requires that a number of
consecutive data points be breaching to trigger the alarm, this value
specifies that number. If you are setting an "M out of N" alarm, this
value is the N, and DatapointsToAlarm is the M.

Default: 5

Threshold The value to compare with the specified statistic.

Default: 30,000

Compariso
nOperator

The arithmetic operation to use when comparing the specified statistic
and threshold. The specified statistic value is used as the first operand.

Default: GreaterThanThreshold

TreatMiss
ingData

Sets how this alarm is to handle missing data points.

Valid values: breaching , notBreaching , ignore, and missing

Default: breaching

CloudWatch alarm template properties 358

Amazon EventBridge User Guide

Route 53 health check template properties

Note

For all editable fields, consider your throughput per second. If you only send events
intermittently, consider changing the heath check to use a longer evaluation period or
instead treat missing data as missing instead of breaching.

The following properties are used in th Route 53 health check section of the template:

Metric Description

HealthCheckName The name of the health check.

Default: LatencyFailuresHealthCheck

Insuffici
entDataHe
althStatus

When CloudWatch has insufficient data about the metric to determine
the alarm state, the status that you want Amazon Route 53 to assign to
the health check

Valid values:

• Healthy: Route 53 considers the health check to be healthy.

• Unhealthy : Route 53 considers the health check to be unhealthy.

• LastKnownStatus : Route 53 uses the status of the health check
from the last time that CloudWatch had sufficient data to determine
the alarm state. For new health checks that have no last known
status, the default status for the health check is healthy.

Default: Unhealthy

Note

This field is updated based on the input to the TreatMiss
ingData field. If TreatingMissingData is set to
Missing, it will be updated to LastKnownStatus .If

Route 53 health check template properties 359

Amazon EventBridge User Guide

Metric Description

TreatingMissingData is set to Breaching , it will be
updated to Unhealthy .

Route 53 health check template properties 360

Amazon EventBridge User Guide

Amazon EventBridge schemas

A schema defines the structure of events that are sent to EventBridge. EventBridge provides
schemas for all events that are generated by AWS services. You can also create or upload custom
schemas or infer schemas directly from events on an event bus. Once you have a schema for
an event, you can download code bindings for popular programming languages and speed up
development. You can work with code bindings for schemas and manage schemas from the
EventBridge console, by using the API, or directly in your IDE by using the AWS toolkits. To build
serverless apps that use events, use AWS Serverless Application Model.

Note

When using the input transformer feature, the original event is inferred by schema
discovery, not the transformed event that's sent to the target.

EventBridge supports both OpenAPI 3 and JSONSchema Draft4 formats.

For AWS Toolkit for JetBrains and AWS Toolkit for VS Code, you can browse or search for schemas
and download code bindings for schemas directly in your IDE.

The following video gives an overview of schemas and schema registries: Using the Schema
Registry

Topics

• Schema registry API property value masking

• Finding an Amazon EventBridge schema

• Amazon EventBridge schema registries

• Creating an Amazon EventBridge schema

• Amazon EventBridge code bindings

Schema registry API property value masking

Some property values of events that are used to create a schema registry may contain sensitive
customer information. To protect the customer's information, the values will be masked with

Schema registry API property value masking 361

https://docs.aws.amazon.com/toolkit-for-jetbrains/latest/userguide/eventbridge-schemas.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/working-with-aws.html
http://www.youtube.com/embed/KixE94qTFjY
http://www.youtube.com/embed/KixE94qTFjY

Amazon EventBridge User Guide

asterisks (*). Because we're masking these values, EventBridge recommends not building
applications that explicitly depend on the following properties or their values:

• CreateSchema – The Content property of the requestParameters body

• GetDiscoveredSchema – The Events property of the requestParameters body and the
Content property of the responseElements body

• SearchSchemas – The keywords property of the requestParameters

• UpdateSchema – The Content property of the requestParameters

Schema registry API property value masking 362

https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname.html#CreateSchema
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-discover.html#GetDiscoveredSchema
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-search.html#SearchSchemas
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname.html#UpdateSchema

Amazon EventBridge User Guide

Finding an Amazon EventBridge schema

EventBridge includes schemas for all AWS services that generate events. You can find
these schemas in the EventBridge console, or you can find them by using the API action
SearchSchemas.

To find schemas for AWS services in the EventBridge console

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Schemas.

3. On the Schemas page, select AWS event schema registry.
<result>

The first page of available schemas is displayed.
</result>

4. To find a schema, in Search AWS event schemas, enter a search term.

A search returns matches for both the name and contents of the available schemas, and then
displays which versions of the schema contain matches.

5. Open an event schema by selecting the name of the schema.

Finding a schema 363

https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-search.html
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

Amazon EventBridge schema registries

Schema registries are containers for schemas. Schema registries collect and organize schemas so
that your schemas are in logical groups. The default schema registries are:

• All schemas – All the schemas from the AWS event, discovered, and custom schema registries.

• AWS event schema registry – The built-in schemas.

• Discovered schema registry – The schemas discovered by Schema discovery.

You can create custom registries to organize the schemas you create or upload.

To create a custom registry

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Schemas and then choose Create registry.

3. On the Registry details page, enter a Name.

4. (Optional) Enter a description for your new registry.

5. Choose Create.

To create a custom schema in your new registry, select Create custom schema. To add a schema to
your registry, select that registry when you're creating a new schema.

To create a registry by using the API, use CreateRegistry. For more information, see Amazon
EventBridge Schema Registry API Reference.

For information about using the EventBridge schema registry through AWS CloudFormation, see
EventSchemas Resource Type Reference in AWS CloudFormation.

Schema registries 364

https://console.aws.amazon.com/events/
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname.html#v1-registries-name-registryname-http-methods
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/index.html
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/index.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_EventSchemas.html

Amazon EventBridge User Guide

Creating an Amazon EventBridge schema

You create schemas by using JSON files with either the OpenAPI Specification or the JSONSchema
Draft4 specification. You can create or upload your own schemas in EventBridge by using a
template or generating a schema based on the JSON of an event. You can also infer the schema
from events on an event bus. To create a schema by using the EventBridge Schema Registry API,
use the CreateSchema API action.

When you choose between OpenAPI 3 and JSONSchema Draft4 formats, consider the following
differences:

• JSONSchema format supports additional keywords that aren't supported in OpenAPI, such as
$schema, additionalItems.

• There are minor differences in how keywords are handled, such as type and format.

• OpenAPI doesn't support JSONSchema Hyper-Schema hyperlinks in JSON documents.

• Tools for OpenAPI tend to focus on build-time, whereas tools for JSONSchema tend to focus on
run-time operations, such as client tools for schema validation.

We recommend using JSONSchema format to implement client-side validation so that events sent
to EventBridge conform to the schema. You can use JSONSchema to define a contract for valid
JSON documents, and then use a JSON schema validator before sending the associated events.

After you have a new schema, you can download code bindings to help create applications for
events with that schema.

Topics

• Create a schema by using a template

• Edit a schema template directly in the console

• Create a schema from the JSON of an event

• Create a schema from events on an event bus

Create a schema by using a template

You can create a schema from a template or by editing a template directly in the EventBridge
console. To get the template, you download it from the console. You can edit the template so that
the schema matches your events. Then upload your new template through the console.

Creating a schema 365

https://swagger.io/specification/
https://json-schema.org/specification-links.html#draft-4
https://json-schema.org/specification-links.html#draft-4
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname.html#v1-registries-nam
https://json-schema.org/implementations.html

Amazon EventBridge User Guide

To download the schema template

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Schema registry.

3. In the Getting started section under Schema template, choose Download.

Alternatively, you can copy the JSON template from the following code example.

{
 "openapi": "3.0.0",
 "info": {
 "version": "1.0.0",
 "title": "Event"
 },
 "paths": {},
 "components": {
 "schemas": {
 "Event": {
 "type": "object",
 "properties": {
 "ordinal": {
 "type": "number",
 "format": "int64"
 },
 "name": {
 "type": "string"
 },
 "price": {
 "type": "number",
 "format": "double"
 },
 "address": {
 "type": "string"
 },
 "comments": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "created_at": {
 "type": "string",

Create a schema by using a template 366

https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

 "format": "date-time"
 }
 }
 }
 }
 }
 }

To upload a schema template

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Schemas and then choose Create schema.

3. (Optional) Select or create a schema registry.

4. Under Schema details, enter a name for your schema.

5. (Optional) Enter a description for your schema.

6. For Schema type, choose either OpenAPI 3.0 or JSON Schema Draft 4.

7. On the Create tab, in the text box, either drag your schema file to the text box, or paste the
schema source.

8. Select Create.

Edit a schema template directly in the console

To edit a schema in the console

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Schemas and then choose Create schema.

3. (Optional) Select or create a schema registry.

4. Under Schema details, enter a name for your schema.

5. For Schema type, choose either OpenAPI 3.0 or JSON Schema Draft 4.

6. (Optional) Enter a description for the schema to create.

7. On the Create tab, choose Load template.

8. In the text box, edit the template so that the schema matches your events.

9. Select Create.

Edit a schema template directly in the console 367

https://console.aws.amazon.com/events/
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

Create a schema from the JSON of an event

If you have the JSON of an event, you can automatically create a schema for that type of event.

To create a schema based on the JSON of an event

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Schemas and then choose Create schema.

3. (Optional) Select or create a schema registry.

4. Under Schema details enter a name for your schema.

5. (Optional) Enter a description for the schema you created.

6. For Schema type, choose OpenAPI 3.0.

You can't use JSONSchema when you create a schema from the JSON of an event.

7. Select Discover from JSON

8. In the text box under JSON, paste or drag the JSON source of an event.

For example, you could paste in the source from this AWS Step Functions event for a failed
execution.

{
 "version": "0",
 "id": "315c1398-40ff-a850-213b-158f73e60175",
 "detail-type": "Step Functions Execution Status Change",
 "source": "aws.states",
 "account": "012345678912",
 "time": "2019-02-26T19:42:21Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:states:us-east-1:012345678912:execution:state-machine-
name:execution-name"
],
 "detail": {
 "executionArn": "arn:aws:states:us-east-1:012345678912:execution:state-
machine-name:execution-name",
 "stateMachineArn": "arn:aws:states:us-
east-1:012345678912:stateMachine:state-machine",
 "name": "execution-name",
 "status": "FAILED",
 "startDate": 1551225146847,

Create a schema from the JSON of an event 368

https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

 "stopDate": 1551225151881,
 "input": "{}",
 "output": null
 }
}

9. Choose Discover schema.

10. EventBridge generates an OpenAPI schema for the event. For example, the following schema is
generated for the preceding Step Functions event.

{
 "openapi": "3.0.0",
 "info": {
 "version": "1.0.0",
 "title": "StepFunctionsExecutionStatusChange"
 },
 "paths": {},
 "components": {
 "schemas": {
 "AWSEvent": {
 "type": "object",
 "required": ["detail-type", "resources", "detail", "id", "source", "time",
 "region", "version", "account"],
 "x-amazon-events-detail-type": "Step Functions Execution Status Change",
 "x-amazon-events-source": "aws.states",
 "properties": {
 "detail": {
 "$ref": "#/components/schemas/StepFunctionsExecutionStatusChange"
 },
 "account": {
 "type": "string"
 },
 "detail-type": {
 "type": "string"
 },
 "id": {
 "type": "string"
 },
 "region": {
 "type": "string"
 },
 "resources": {
 "type": "array",

Create a schema from the JSON of an event 369

Amazon EventBridge User Guide

 "items": {
 "type": "string"
 }
 },
 "source": {
 "type": "string"
 },
 "time": {
 "type": "string",
 "format": "date-time"
 },
 "version": {
 "type": "string"
 }
 }
 },
 "StepFunctionsExecutionStatusChange": {
 "type": "object",
 "required": ["output", "input", "executionArn", "name", "stateMachineArn",
 "startDate", "stopDate", "status"],
 "properties": {
 "executionArn": {
 "type": "string"
 },
 "input": {
 "type": "string"
 },
 "name": {
 "type": "string"
 },
 "output": {},
 "startDate": {
 "type": "integer",
 "format": "int64"
 },
 "stateMachineArn": {
 "type": "string"
 },
 "status": {
 "type": "string"
 },
 "stopDate": {
 "type": "integer",
 "format": "int64"

Create a schema from the JSON of an event 370

Amazon EventBridge User Guide

 }
 }
 }
 }
 }
}

11. After the schema has been generated, choose Create.

Create a schema from events on an event bus

EventBridge can infer schemas by discovering events. To infer schemas, you turn on event discovery
on an event bus and every unique schema is added to the schema registry, including those for
cross-account events. Schemas discovered by EventBridge appear in Discovered schemas registry
on the Schemas page.

If the contents of events on the event bus change, EventBridge creates new versions of the related
EventBridge schema.

Note

Enabling event discovery on an event bus can incur a cost. The first five million processed
events in each month are free.

Note

EventBridge infers schemas from cross-account events by default but you can disable it
by updating the cross-account property. Fore more information, see Discoverers in the
EventBridge Schema Registry API Refernce.

To enable schema discovery on an event bus

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Event buses.

3. Do one of the following:

• To enable discovery on the Default event bus, choose Start discovery.

Create a schema from events on an event bus 371

https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-discoverers.html
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

• To enable discovery on a Custom event bus, select the radio button for the custom event
bus and then choose Start discovery.

Create a schema from events on an event bus 372

Amazon EventBridge User Guide

Amazon EventBridge code bindings

You can generate code bindings for event schemas to speed up development in Golang, Java,
Python, and TypeScript. Code bindings are available for AWS service events, schemas you create,
and for schemas you generate based on events on an event bus. You can generate code bindings
for a schema by using the EventBridge console, the EventBridge Schema Registry API, or in your
IDE with an AWS toolkit.

To generate code bindings from an EventBridge schema

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Schemas.

3. Find a schema that you want code bindings for, either by browsing the schema registries, or by
searching for a schema.

4. Select the schema name..

5. On the Schema details page, in the Version section, choose Download code bindings.

6. On the Download code bindings page, select the language of the code bindings you want to
download.

7. Select Download.

It may take a few seconds for your download to begin. The downloaded file is a zip file of code
bindings for the language you selected.

Code bindings 373

https://docs.aws.amazon.com/eventbridge/latest/schema-reference/index.html
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

Amazon EventBridge related services and tools

Amazon EventBridge works with other AWS services and tools to process events or invoke a
resource as the target of a rule. For more information about EventBridge integrations with other
AWS services and tools, see the following:

Topics

• Using Amazon EventBridge with Interface VPC Endpoints

• Amazon EventBridge integration with AWS X-Ray

• Using EventBridge with AWS Integrated Application Test Kit

• Including Amazon EventBridge resources in AWS CloudFormation stacks

374

Amazon EventBridge User Guide

Using Amazon EventBridge with Interface VPC Endpoints

If you use Amazon Virtual Private Cloud (Amazon VPC) to host your AWS resources, you can
establish a private connection between your VPC and EventBridge. Your resources on your VPC can
use this connection to communicate with EventBridge.

With a VPC, you have control over your network settings, such as the IP address range, subnets,
route tables, and network gateways. To connect your VPC to EventBridge, you define an interface
VPC endpoint for EventBridge. The endpoint provides reliable, scalable connectivity to EventBridge
without requiring an internet gateway, network address translation (NAT) instance, or VPN
connection. For more information, see What is Amazon VPC in the Amazon VPC User Guide.

Interface VPC endpoints are powered by AWS PrivateLink, which enables private communication
between AWS services using an elastic network interface with private IP addresses. For more
information, see AWS PrivateLink and VPC endpoints.

When you use a private interface VPC endpoint, custom events your VPC sends to EventBridge
use that endpoint. EventBridge then sends those events to other AWS services based on the rules
and targets that you've configured. Once events are sent to another service you can receive them
through either the public endpoint or a VPC endpoint for that service. For example, if you create
a rule to send events to an Amazon SQS queue, you can configure an interface VPC endpoint for
Amazon SQS to receive messages from that queue in your VPC without using the public endpoint.

Availability

EventBridge currently supports VPC endpoints in the following Regions:

• US East (Ohio)

• US East (N. Virginia)

• US West (N. California)

• US West (Oregon)

• Africa (Cape Town)

• Asia Pacific (Mumbai)

• Asia Pacific (Hyderabad)

• Asia Pacific (Hong Kong)

• Asia Pacific (Singapore)

Interface VPC Endpoints 375

https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/vpc/latest/userguide/endpoint-services-overview.html

Amazon EventBridge User Guide

• Asia Pacific (Sydney)

• Asia Pacific (Jakarta)

• Asia Pacific (Melbourne)

• Asia Pacific (Tokyo)

• Asia Pacific (Seoul)

• Asia Pacific (Osaka)

• Canada (Central)

• Canada West (Calgary)

• China (Beijing)

• China (Ningxia)

• Europe (Frankfurt)

• Europe (Zurich)

• Europe (Ireland)

• Europe (London)

• Europe (Milan)

• Europe (Spain)

• Europe (Paris)

• Europe (Stockholm)

• Middle East (UAE)

• Middle East (Bahrain)

• South America (São Paulo)

• Israel (Tel Aviv)

• AWS GovCloud (US-West)

• AWS GovCloud (US-East)

Creating a VPC Endpoint for EventBridge

To use EventBridge with your VPC, create an interface VPC endpoint for EventBridge and choose
com.amazonaws.Region.events as the service name. For more information, see Creating an
Interface Endpoint in the Amazon VPC User Guide.

Creating a VPC Endpoint for EventBridge 376

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint.html

Amazon EventBridge User Guide

EventBridge Pipes specifics

Full EventBridge Pipes support for Interface VPC endpoints is not available. To use the following
sources within a VPC with EventBridge Pipes, see the following:

• Amazon MSK network configuration

• Self managed Apache Kafka network configuration

• Amazon MQ network configuration

EventBridge Pipes specifics 377

Amazon EventBridge User Guide

Amazon EventBridge integration with AWS X-Ray

You can use AWS X-Ray to trace events that pass through EventBridge. EventBridge passes the
original trace header to the target so that target services can track, analyze, and debug.

EventBridge can pass a trace header for an event only if the event came from a PutEvents request
that passed the trace context. X-Ray doesn't trace events that originate from third-party partners,
scheduled events, or AWS services, and these event sources don't appear on your X-Ray service
map.

X-Ray validates trace headers, and trace headers that aren't valid are dropped. However, the event
is still processed.

Important

The trace header is not available on the event that's delivered to the invocation target.

• If you have an event archive, the trace header isn't available on archived events. If you
replay archived events, the trace header isn't included.

• If you have a dead-letter queue (DLQ), the trace header is included in the SendMessage
request that sends the event to the DLQ. If you retrieve events (messages) from the DLQ
by using ReceiveMessage, the trace header associated with the event is included on the
Amazon SQS message attribute, but it isn't included in the event message.

For information about how an EventBridge event node connects source and target services, see
Viewing source and targets in the X-Ray service map in the AWS X-Ray Developer Guide.

You can pass the following trace header information through EventBridge:

• Default HTTP header – The X-Ray SDK automatically populates the trace header as the X-Amzn-
Trace-Id HTTP header for all invocation targets. To learn more about the default HTTP header,
see Tracing header in the AWS X-Ray Developer Guide..

• TraceHeader system attribute – TraceHeader is a PutEventsRequestEntry attribute
reserved by EventBridge to carry the X-Ray trace header to a target. If you also use
PutEventsRequestEntry, PutEventsRequestEntry overrides the HTTP trace header.

AWS X-Ray 378

https://docs.aws.amazon.com/xray/latest/devguide/xray-services-eventbridge.html#xray-services-eventbridge-service-map
https://docs.aws.amazon.com/xray/latest/devguide/xray-concepts.html#xray-concepts-tracingheader
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEventsRequestEntry.html

Amazon EventBridge User Guide

Note

The trace header doesn't count towards the PutEventsRequestEntry event size. For
more information, see Calculating Amazon EventBridge PutEvents event entry size.

The following video demonstrates the use X-Ray and EventBridge together: Using AWS X-Ray for
tracing

Using EventBridge with AWS Integrated Application Test Kit

When you create applications composed of serverless services like Lambda, EventBridge, or Step
Functions, many of your architecture components cannot be deployed to your desktop, but instead
only exist in the AWS cloud. In contrast to working with applications deployed locally, these
types of applications benefit from cloud-based strategies for performing automated tests. AWS
Integrated Application Test Kit (AWS IATK) helps you implement some of these strategies for your
applications.

AWS IATK is a software library that helps you write automated tests for cloud-based applications.

EventBridge integration with AWS IATK

You can use EventBridge events and event buses with AWS IATK to implement your automated
tests, including:

Implementing test harnesses

To write integration tests for event-driven architectures, establish logical boundaries by
breaking your application into subsystems. One useful technique for testing subsystems is to
create test harnesses; that is, resources that you create specifically for testing subsystems.

For example, an integration test can begin a subsystem process by passing an input test event
to it. AWS IATK can create a test harness for you that listens to EventBridge for output events.
(Under the hood, the harness is composed of an EventBridge rule that forwards the output
event to Amazon SQS.) Your integration test then queries the test harness to examine the
output and determine if the test passes or fails.

Testing with AWS IATK 379

http://www.youtube.com/embed/C1-nLxlkp-0
http://www.youtube.com/embed/C1-nLxlkp-0

Amazon EventBridge User Guide

Generating mock events

AWS IATK provides the capability for you to generate mock events from a schema stored in
the EventBridge schema registry. This allows you to generate a mock event and invoke any
consumer (such as a Lambda function or Step Functions state machine) with the generated
event.

For more information, see AWS Integrated Application Test Kit Overview on GitHub.

Including Amazon EventBridge resources in AWS
CloudFormation stacks

AWS CloudFormation enables you to configure and manage your AWS resources across
accounts and regions in a centralized and repeatable manner by treating infrastructure as code.
CloudFormation does this by letting you create templates, which define the resources you want to
provision and manage. These resources can include EventBridge artifacts such as event buses and
rules, pipes, schemas, and schedules, among others. Use these resources to include EventBridge
functionality in the technology stacks you provision and manage through CloudFormation.

Amazon EventBridge resources available in AWS CloudFormation

EventBridge provides resources for use in CloudFormation templates in the following resource
namespaces:

• AWS::Events

Template examples include:

• Create an API destination for PagerDuty

• Create an API destinatio for Slack

• Create a connection with ApiKey authorization parameters

• Create a connection with OAuth authorization parameters

• Create a global endpoint with event replication

• Deny policy using multiple principals and actions

• Grant permission to an organization using a custom event bus

• Create a cross-Region rule

• Create a rule that includes a dead-letter queue for a target

AWS CloudFormation 380

https://awslabs.github.io/aws-iatk/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_Events.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-apidestination.html#aws-resource-events-apidestination--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-apidestination.html#aws-resource-events-apidestination--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-connection.html#aws-resource-events-connection--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-connection.html#aws-resource-events-connection--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-endpoint.html#aws-resource-events-endpoint--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-eventbuspolicy.html#aws-resource-events-eventbuspolicy--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-eventbuspolicy.html#aws-resource-events-eventbuspolicy--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-rule.html#aws-resource-events-rule--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-rule.html#aws-resource-events-rule--examples

Amazon EventBridge User Guide

• Regularly invoke a Lambda function

• Invoke Lambda function in response to an event

• Notify a topic in response to a log nntry

• AWS::EventSchemas

• AWS::Pipes

Template examples include:

• Create a pipe with an event filter

• AWS::Scheduler

Generating Amazon EventBridge resource definitions for AWS
CloudFormation templates

As an aid to help you jumpstart developing CloudFormation templates, the EventBridge console
enables you to create CloudFormation templates from the existing event buses, rules, and pipes in
your account.

• ???

• ???

• ???

Managing AWS CloudFormation stack events using EventBridge

Beyond including EventBridge resources in your CloudFormation stacks, you can use EventBridge to
manage the events generated by CloudFormation stacks themselves. CloudFormation sends events
to EventBridge whenever a create, update, delete, or drift-detection operation is performed on a
stack. CloudFormation also sends events to EventBridge for status changes to stack sets and stack
set instances. You can use EventBridge rules to route events to your defined targets.

For more information, see Managing CloudFormation events using EventBridge in the AWS
CloudFormation User Guide.

Generating resource definitions 381

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-rule.html#aws-resource-events-rule--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-rule.html#aws-resource-events-rule--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-rule.html#aws-resource-events-rule--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_EventSchemas.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_Pipes.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-pipes-pipe.html#aws-resource-pipes-pipe--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_Scheduler.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks-event-bridge.html

Amazon EventBridge User Guide

Amazon EventBridge tutorials

EventBridge integrates with a number of AWS services and SaaS partners. These tutorials are
designed to help you get familiar with the basics of EventBridge and how it can be part of your
serverless architecture.

Tutorials:

• Amazon EventBridge get started tutorials

• Amazon EventBridge tutorials for integrating with other AWS services

• Amazon EventBridge tutorials for integrating with SaaS providers

382

Amazon EventBridge User Guide

Amazon EventBridge get started tutorials

The following tutorials help you explore the features of EventBridge and how to use them.

Tutorials:

• Archive and replay Amazon EventBridge events

• Create an Amazon EventBridge sample application

• Tutorial: Download code bindings for events using the EventBridge schema registry

• Tutorial: Use input transformer to customize what EventBridge passes to the event target

Get started tutorials 383

Amazon EventBridge User Guide

Archive and replay Amazon EventBridge events

You can use EventBridge to route events to specific AWS Lambda functions using rules.

In this tutorial, you’ll create a function to use as the target for the EventBridge rule using the
Lambda console. Then, you'll create an archive and a rule that'll archive test events using the
EventBridge console. Once there are events in that archive, you'll replay them.

Steps:

• Step 1: Create a Lambda function

• Step 2: Create archive

• Step 3: Create rule

• Step 4: Send test events

• Step 5: Replay events

• Step 6: Clean up your resources

Step 1: Create a Lambda function

First, create a Lambda function to log the events.

To create a Lambda function:

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Choose Create function.

3. Choose Author from scratch.

4. Enter a name and description for the Lambda function. For example, name the function
LogScheduledEvent.

5. Leave the rest of the options as the defaults and choose Create function.

6. On the Code tab of the function page, double-click index.js.

7. Replace the existing JavaScript code with the following code:

'use strict';

exports.handler = (event, context, callback) => {
 console.log('LogScheduledEvent');
 console.log('Received event:', JSON.stringify(event, null, 2));

Archive and replay events 384

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://console.aws.amazon.com/lambda/

Amazon EventBridge User Guide

 callback(null, 'Finished');
};

8. Choose Deploy.

Step 2: Create archive

Next, create the archive that will hold all the test events.

To create an archive

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Archives.

3. Choose Create archive.

4. Enter a name and description for the archive. For example, name the archive ArchiveTest.

5. Leave the rest of the options as the defaults and choose Next.

6. Choose Create archive.

Step 3: Create rule

Create a rule to archive events that are sent to the event bus.

To create a rule

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

4. Enter a name and description for the rule. For example, name the rule ARTestRule.

A rule can't have the same name as another rule in the same Region and on the same event
bus.

5. For Event bus, choose the event bus that you want to associate with this rule. If you want this
rule to match events that come from your account, select default. When an AWS service in
your account emits an event, it always goes to your account’s default event bus.

6. For Rule type, choose Rule with an event pattern.

7. Choose Next.

Archive and replay events 385

https://console.aws.amazon.com/events/
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

8. For Event source, choose Other.

9. For Event pattern, enter the following:

{
 "detail-type": [
 "customerCreated"
]
}

10. Choose Next.

11. For Target types, choose AWS service.

12. For Select a target, choose Lambda function from the drop-down list.

13. For Function, select the Lambda function that you created in the Step 1: Create a Lambda
function section. In this example, select LogScheduledEvent.

14. Choose Next.

15. Choose Next.

16. Review the details of the rule and choose Create rule.

Step 4: Send test events

Now that you've set up the archive and the rule, we'll send test events to make sure the archive is
working correctly.

Note

It can take some time for events to get to the archive.

To send test events (console)

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Event buses.

3. In the Default event bus tile, choose Actions, Send events.

4. Enter an event source. For example, TestEvent.

5. For Detail type, enter customerCreated.

6. For Event detail, enter {}.

Archive and replay events 386

https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

7. Choose Send.

Step 5: Replay events

Once the test events are in the archive you can replay them.

To replay archived events (console)

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Replays.

3. Choose Start new replay.

4. Enter a name and description for the replay. For example, name the replay ReplayTest.

5. For Source, select the archive you created in the Step 2: Create archive section.

6. For Replay time frame, do the following.

a. For Start time, select the date you sent test events and a time before you sent them. For
example, 2021/08/11 and 08:00:00.

b. For End time, select the current date and time. For example, 2021/08/11 and 09:15:00.

7. Choose Start Replay.

Step 6: Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you are no longer using, you prevent unnecessary charges to your
AWS account.

To delete the Lambda function(s)

1. Open the Functions page of the Lambda console.

2. Select the function(s) that you created.

3. Choose Actions, Delete.

4. Choose Delete.

To delete the EventBridge archives(s)

1. Open the Archives page of the EventBridge console.

Archive and replay events 387

https://console.aws.amazon.com/events/
https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/events/home#/archives

Amazon EventBridge User Guide

2. Select the archive(s) you created.

3. Choose Delete.

4. Enter the archive name and choose Delete.

To delete the EventBridge rule(s)

1. Open the Rules page of the EventBridge console.

2. Select the rule(s) that you created.

3. Choose Delete.

4. Choose Delete.

Archive and replay events 388

https://console.aws.amazon.com/events/home#/rules

Amazon EventBridge User Guide

Create an Amazon EventBridge sample application

You can use EventBridge to route events to specific Lambda functions using rules.

In this tutorial, you’ll use the AWS CLI, Node.js, and the code in the GitHub repo to create the
following:

• An AWS Lambda function that produces events for bank ATM transactions.

• Three Lambda functions to use as targets of an EventBridge rule.

• and the rule that routes the created events to the correct downstream function based on an
event pattern.

This example uses AWS SAM templates to define the EventBridge rules. To learn more about using
AWS SAM templates with EventBridge see ???.

In the repo, the atmProducer subdirectory contains handler.js, which represents the ATM service
producing events. This code is a Lambda handler written in Node.js, and publishes events to
EventBridge via the AWS SDK using this line of JavaScript code.

const result = await eventbridge.putEvents(params).promise()

This directory also contains events.js, listing several test transactions in an Entries array. A single
event is defined in JavaScript as follows:

{
 // Event envelope fields
 Source: 'custom.myATMapp',
 EventBusName: 'default',
 DetailType: 'transaction',
 Time: new Date(),

 // Main event body
 Detail: JSON.stringify({
 action: 'withdrawal',
 location: 'MA-BOS-01',
 amount: 300,
 result: 'approved',
 transactionId: '123456',
 cardPresent: true,
 partnerBank: 'Example Bank',

Create a sample application 389

https://github.com/aws-samples/amazon-eventbridge-producer-consumer-example
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://www.npmjs.com/package/aws-sdk

Amazon EventBridge User Guide

 remainingFunds: 722.34
 })
}

The Detail section of the event specifies transaction attributes. These include the location of the
ATM, the amount, the partner bank, and the result of the transaction.

The handler.js file in the atmConsumer subdirectory contains three functions:

exports.case1Handler = async (event) => {
 console.log('--- Approved transactions ---')
 console.log(JSON.stringify(event, null, 2))
}

exports.case2Handler = async (event) => {
 console.log('--- NY location transactions ---')
 console.log(JSON.stringify(event, null, 2))
}

exports.case3Handler = async (event) => {
 console.log('--- Unapproved transactions ---')
 console.log(JSON.stringify(event, null, 2))
}

Each function receives transaction events, which are logged via the console.log statements to
Amazon CloudWatch Logs. The consumer functions operate independently of the producer and are
unaware of the source of the events.

The routing logic is contained in the EventBridge rules that are deployed by the application’s AWS
SAM template. The rules evaluate the incoming stream of events, and route matching events to the
target Lambda functions.

The rules use event patterns that are JSON objects with the same structure as the events they
match. Here's the event pattern for the one of the rules.

{
 "detail-type": ["transaction"],
 "source": ["custom.myATMapp"],
 "detail": {
 "location": [{
 "prefix": "NY-"
 }]

Create a sample application 390

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html

Amazon EventBridge User Guide

 }
}

Steps:

• Prerequisites

• Step 1: Create application

• Step 2: Run application

• Step 3: Check the logs and verify the application works

• Step 4: Clean up your resources

Prerequisites

To complete this tutorial, you'll need the following resources:

• An AWS account. Create an AWS account if you don't already have one.

• AWS CLI installed. To install the AWS CLI, see the Installing, updating, and uninstalling the AWS
CLI version 2.

• Node.js 12.x installed. To install Node.js, see Downloads.

Step 1: Create application

To set up the example application, you'll use the AWS CLI and Git to create the AWS resources
you'll need.

To create the application

1. Sign in to AWS.

2. Install Git and install the AWS Serverless Application Model CLI on your local machine.

3. Create a new directory, and then navigate to that directory in a terminal.

4. At the command line, enter git clone https://github.com/aws-samples/amazon-
eventbridge-producer-consumer-example.

5. At the command line run the following command:

cd ./amazon-eventbridge-producer-consumer-example
sam deploy --guided

Create a sample application 391

https://portal.aws.amazon.com/gp/aws/developer/registration/index.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://nodejs.org/en/download/
https://console.aws.amazon.com/console/home
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html

Amazon EventBridge User Guide

6. In the terminal, do the following:

a. For Stack Name, enter a name for the stack. For example, name the stack Test.

b. For AWS Region, enter the Region. For example, us-west-2.

c. For Confirm changes before deploy, enter Y.

d. For Allow SAM CLI IAM role creation, enter Y

e. For Save arguments to configuration file, enter Y

f. For SAM configuration file, enter samconfig.toml.

g. For SAM configuration environment, enter default.

Step 2: Run application

Now that you've set up the resources, you'll use the console to test the functions.

To run the application

1. Open the Lambda console in the same Region where you deployed the AWS SAM application.

2. There are four Lambda functions with the prefix atm-demo. Select the atmProducerFn
function, then choose Actions, Test.

3. Enter Test for the Name.

4. Choose Test.

Step 3: Check the logs and verify the application works

Now that you've run the application, you'll use the console to check the CloudWatch Logs.

To check the logs

1. Open the CloudWatch console in the same Region where you ran the AWS SAM application.

2. Choose Logs, and then choose Log groups.

3. Select the log group containing atmConsumerCase1. You see two streams representing the
two transactions approved by the ATM. Choose a log stream to view the output.

4. Navigate back to the list of log groups, and then select the log group containing
atmConsumerCase2. You'll see two streams representing the two transactions matching the
New York location filter.

Create a sample application 392

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/cloudwatch/

Amazon EventBridge User Guide

5. Navigate back to the list of log groups, and select the log group containing
atmConsumerCase3. Open the stream to see the denied transactions.

Step 4: Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you are no longer using, you prevent unnecessary charges to your
AWS account.

To delete the EventBridge rule(s)

1. Open the Rules page of the EventBridge console.

2. Select the rule(s) that you created.

3. Choose Delete.

4. Choose Delete.

To delete the Lambda function(s)

1. Open the Functions page of the Lambda console.

2. Select the function(s) that you created.

3. Choose Actions, Delete.

4. Choose Delete.

To delete the CloudWatch Logs log group(s)

1. Open the Cloudwatch console.

2. Choose Logs, Log groups.

3. Select the log group(s) that were created in this tutorial.

4. Choose Actions, Delete log group(s).

5. Choose Delete.

Create a sample application 393

https://console.aws.amazon.com/events/home#/rules
https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/Cloudwatch/home

Amazon EventBridge User Guide

Tutorial: Download code bindings for events using the EventBridge
schema registry

You can generate code bindings for event schemas to speed development for Golang, Java, Python,
and TypeScript. You can get code bindings for existing AWS services, schemas you create, and for
schemas you generate based on events on an event bus. You can generate code bindings for a
schema using one of the following:

• EventBridge console

• EventBridge schema registry API

• Your IDE with an AWS toolkit

In this tutorial you generate and download code bindings from an EventBridge schema for the
events of an AWS service.

To generate code bindings from an EventBridge schema

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Schemas.

3. Select the AWS event schema registry tab.

4. Find the schema for the AWS service that you would like code bindings for, either by browsing
through the schema registry, or by searching for a schema.

5. Select the schema name.

6. On the Schema details page, in the Version section, select Download code bindings.

7. On the Download code bindings page, select the language of the code bindings you want to
download.

8. Select Download.

It may take a few seconds for your download to begin. The download file will be a .zip file of
code bindings for the language you selected.

9. Unzip the downloaded file and add it to your project.

The downloaded package contains a README file that explains how to configure the package's
dependencies in various frameworks.

Download code bindings 394

https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

Use these code bindings in your own code to help quickly build applications using this EventBridge
event.

Download code bindings 395

Amazon EventBridge User Guide

Tutorial: Use input transformer to customize what EventBridge passes
to the event target

You can use the Input transformer in EventBridge to customize text from an event before you send
it to the target of a rule.

To do this, you define JSON paths from the event and assign their outputs to different variables.
Then you can use those variables in the input template. The characters < and > can't be escaped.
For more information, see Amazon EventBridge input transformation

Note

If you specify a variable to match a JSON path that doesn't exist in the event, that variable
isn't created and doesn't appear in the output.

In this tutorial, you create a rule that matches an event with detail-type:
"customerCreated". The input transformer maps the type variable to the $.detail-type JSON
path from the event. Then EventBridge puts the variable into the input template "This event was
<type>." The result is the following Amazon SNS message.

"This event was of customerCreated type."

Steps:

• Step 1: Create an Amazon SNS topic

• Step 2: Create an Amazon SNS subscription

• Step 3: Create a rule

• Step 4: Send test events

• Step 5: Confirm success

• Step 6: Clean up your resources

Step 1: Create an Amazon SNS topic

Create a topic to receive the events from EventBridge.

Use input transformer 396

Amazon EventBridge User Guide

To create a topic

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/v3/home.

2. In the navigation pane, choose Topics.

3. Choose Create topic.

4. For Type, choose Standard.

5. Enter eventbridge-IT-test as the name of the topic.

6. Choose Create topic.

Step 2: Create an Amazon SNS subscription

Create a subscription to get emails with the transformed information.

To create a subscription

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/v3/home.

2. In the navigation pane, choose Subscriptions.

3. Choose Create subscription.

4. For Topic ARN, choose the topic you created in step 1. For this tutorial, choose eventbridge-
IT-test.

5. For Protocol, choose Email.

6. For Endpoint, enter your email address.

7. Choose Create subscription.

8. Confirm the subscription by choosing Confirm subscription in the email you receive from AWS
notifications.

Step 3: Create a rule

Create a rule to use the input transformer to customize the instance state information that goes to
a target.

To create a rule

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

Use input transformer 397

https://console.aws.amazon.com/sns/v3/home
https://console.aws.amazon.com/sns/v3/home
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

3. Choose Create rule.

4. Enter a name and description for the rule. For example, name the rule ARTestRule

5. For Event bus, choose the event bus that you want to associate with this rule. If you want this
rule to match events that come from your account, select default. When an AWS service in
your account emits an event, it always goes to your account’s default event bus.

6. For Rule type, choose Rule with an event pattern.

7. Choose Next.

8. For Event source, choose Other.

9. For Event pattern, enter the following:

{
 "detail-type": [
 "customerCreated"
]
}

10. Choose Next.

11. For Target types, choose AWS service.

12. For Select a target, choose SNS topic from the drop-down list.

13. For Topic, select the Amazon SNS topic that you created in step 1. For this tutorial, choose
eventbridge-IT-test.

14. For Additional settings, do the following:

a. For Configure target input, choose Input transformer from the drop-down list.

b. Choose Configure input transformer

c. for Sample events, enter the following:

{
 "detail-type": "customerCreated"
}

d. For Target input transformer do the following:

i. For Input Path, enter the following:

{"detail-type":"$.detail-type"}

Use input transformer 398

Amazon EventBridge User Guide

ii. For Input Template, enter the following:

"This event was of <detail-type> type."

e. Choose Confirm..

15. Choose Next.

16. Choose Next.

17. Review the details of the rule and choose Create rule.

Step 4: Send test events

Now that you've set up the SNS topic and the rule, we'll send test events to make sure the rule is
working correctly.

To send test events (console)

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Event buses.

3. In the Default event bus tile, choose Actions, Send events.

4. Enter an event source. For example, TestEvent.

5. For Detail type, enter customerCreated.

6. For Event detail, enter {}.

7. Choose Send.

Step 5: Confirm success

If you get an email from AWS notifications that matches the expected output, you've successfully
completed the tutorial.

Step 6: Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you are no longer using, you prevent unnecessary charges to your
AWS account.

Use input transformer 399

https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

To delete the SNS topic

1. Open the Topics page of the SNS console.

2. Select the topic that you created.

3. Choose Delete.

4. Enter delete me.

5. Choose Delete.

To delete the SNS subscription

1. Open the Subscriptions page of the SNS console.

2. Select the subscription that you created.

3. Choose Delete.

4. Choose Delete.

To delete the EventBridge rule(s)

1. Open the Rules page of the EventBridge console.

2. Select the rule(s) that you created.

3. Choose Delete.

4. Choose Delete.

Use input transformer 400

https://console.aws.amazon.com/sns/v3/home#/topics
https://console.aws.amazon.com/sns/v3/home#/subscriptions
https://console.aws.amazon.com/events/home#/rules

Amazon EventBridge User Guide

Amazon EventBridge tutorials for integrating with other AWS
services

Amazon EventBridge works with other AWS services to process events or invoke an AWS resource
as the target of a rule. The following tutorials show you how to integrate EventBridge with other
AWS services.

Tutorials:

• Tutorial: Log the state of an Auto Scaling group using EventBridge

• Tutorial: Log AWS API calls using EventBridge

• Tutorial: Log the state of an Amazon EC2 instance using EventBridge

• Tutorial: Log Amazon S3 object-level operations using EventBridge

• Tutorial: Send events to an Amazon Kinesis stream using EventBridge and the aws.events schema

• Tutorial: Schedule automated Amazon EBS snapshots using EventBridge

• Tutorial: Send a notification when an Amazon S3 object is created

• Tutorial: Schedule AWS Lambda functions using EventBridge

AWS tutorials 401

Amazon EventBridge User Guide

Tutorial: Log the state of an Auto Scaling group using EventBridge

You can run an AWS Lambda function that logs an events whenever an Auto Scaling group
launches or terminates an Amazon EC2 instance that indicates whether an event was successful.

For information about more scenarios that use Amazon EC2 Auto Scaling events, see Use
EventBridge to handle Auto Scaling events in the Amazon EC2 Auto Scaling User Guide.

In this tutorial, you create a Lambda function, and you create a rule in the EventBridge console that
calls that function when an Amazon EC2 Auto Scaling group launches or terminates an instance.

Steps:

• Prerequisites

• Step 1: Create a Lambda function

• Step 2: Create a rule

• Step 3: Test the rule

• Step 4: Confirm success

• Step 5: Clean up your resources

Prerequisites

To complete this tutorial, you'll need the following resources:

• An Auto Scaling group. For more information about creating one, see Creating an Auto Scaling
group using a launch configuration in the Amazon EC2 Auto Scaling User Guide.

Step 1: Create a Lambda function

Create a Lambda function to log the scale-out and scale-in events for your Auto Scaling group.

To create a Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Choose Create function.

3. Choose Author from scratch.

4. Enter a name for the Lambda function. For example, name the function
LogAutoScalingEvent.

Log Auto Scaling group states 402

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/autoscaling/latest/userguide/automating-ec2-auto-scaling-with-eventbridge.html
https://docs.aws.amazon.com/autoscaling/latest/userguide/automating-ec2-auto-scaling-with-eventbridge.html
https://docs.aws.amazon.com/autoscaling/latest/userguide/create-asg.html
https://docs.aws.amazon.com/autoscaling/latest/userguide/create-asg.html
https://console.aws.amazon.com/lambda/

Amazon EventBridge User Guide

5. Leave the rest of the options as the defaults and choose Create function.

6. On the Code tab of the function page, double-click index.js.

7. Replace the existing code with the following code.

'use strict';

exports.handler = (event, context, callback) => {
 console.log('LogAutoScalingEvent');
 console.log('Received event:', JSON.stringify(event, null, 2));
 callback(null, 'Finished');
};

8. Choose Deploy.

Step 2: Create a rule

Create a rule to run the Lambda function you created in Step 1. The rule runs when your Auto
Scaling group starts or stops an instance.

To create a rule

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

4. Enter a name and description for the rule. For example, name the rule TestRule

5. For Event bus, choose the event bus that you want to associate with this rule. If you want this
rule to match events that come from your account, select default. When an AWS service in
your account emits an event, it always goes to your account’s default event bus.

6. For Rule type, choose Rule with an event pattern.

7. Choose Next.

8. For Event source, choose AWS services.

9. For Event pattern, do the following:

a. For Event source, select Auto Scaling from the drop-down list.

b. For Event type, select Instance Launch and Terminate from the drop-down list.

c. Choose Any instance event and Any group name.

Log Auto Scaling group states 403

https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

10. Choose Next.

11. For Target types, choose AWS service.

12. For Select a target, choose Lambda function from the drop-down list.

13. For Function, select the Lambda function that you created in the Step 1: Create a Lambda
function section. In this example, select LogAutoScalingEvent.

14. Choose Next.

15. Choose Next.

16. Review the details of the rule and choose Create rule.

Step 3: Test the rule

You can test your rule by manually scaling an Auto Scaling group so that it launches an instance.
Wait a few minutes for the scale-out event to occur, and then verify that your Lambda function was
invoked.

To test your rule using an Auto Scaling group

1. To increase the size of your Auto Scaling group, do the following:

a. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

b. In the navigation pane, choose Auto Scaling, Auto Scaling Groups.

c. Select the check box for your Auto Scaling group.

d. On the Details tab, choose Edit. For Desired, increase the desired capacity by one. For
example, if the current value is 2, enter 3. The desired capacity must be less than or equal
to the maximum size of the group. If your new value for Desired is greater than Max, you
must update Max. When you're finished, choose Save.

2. To view the output from your Lambda function, do the following:

a. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

b. In the navigation pane, choose Logs.

c. Select the name of the log group for your Lambda function (/aws/lambda/function-
name).

d. Select the name of the log stream to view the data provided by the function for the
instance that you launched.

Log Auto Scaling group states 404

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/cloudwatch/

Amazon EventBridge User Guide

3. (Optional) When you're finished, you can decrease the desired capacity by one so that the Auto
Scaling group returns to its previous size.

Step 4: Confirm success

If you see the Lambda event in the CloudWatch logs, you've successfully completed this tutorial.
If the event isn't in your CloudWatch logs, start troubleshooting by verifying the rule was created
successfully and, if the rule looks correct, verify the code of your Lambda function is correct.

Step 5: Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you are no longer using, you prevent unnecessary charges to your
AWS account.

To delete the EventBridge rule(s)

1. Open the Rules page of the EventBridge console.

2. Select the rule(s) that you created.

3. Choose Delete.

4. Choose Delete.

To delete the Lambda function(s)

1. Open the Functions page of the Lambda console.

2. Select the function(s) that you created.

3. Choose Actions, Delete.

4. Choose Delete.

Log Auto Scaling group states 405

https://console.aws.amazon.com/events/home#/rules
https://console.aws.amazon.com/lambda/home#/functions

Amazon EventBridge User Guide

Tutorial: Log AWS API calls using EventBridge

You can use Amazon EventBridge rules to react to API calls made by an AWS service that are
recorded by AWS CloudTrail.

In this tutorial, you create an AWS CloudTrail trail, a Lambda function, and a rule in the EventBridge
console. The rule invokes the Lambda function when an Amazon EC2 instance is stopped.

Steps:

• Step 1: Create an AWS CloudTrail trail

• Step 2: Create an AWS Lambda function

• Step 3: Create a rule

• Step 4: Test the rule

• Step 5: Confirm success

• Step 6: Clean up your resources

Step 1: Create an AWS CloudTrail trail

If you already have a trail set up, skip to step 2.

To create a trail

1. Open the CloudTrail console at https://console.aws.amazon.com/cloudtrail/.

2. Choose Trails, Create trail.

3. For Trail name, type a name for the trail.

4. For Storage location, in Create a new S3 bucket.

5. For AWS KMS alias, type an alias for the KMS key.

6. Choose Next.

7. Choose Next.

8. Choose Create trail.

Step 2: Create an AWS Lambda function

Create a Lambda function to log the API call events.

Log AWS API calls 406

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://console.aws.amazon.com/cloudtrail/

Amazon EventBridge User Guide

To create a Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Choose Create function.

3. Choose Author from scratch.

4. Enter a name and description for the Lambda function. For example, name the function
LogEC2StopInstance.

5. Leave the rest of the options as the defaults and choose Create function.

6. On the Code tab of the function page, double-click index.js.

7. Replace the existing code with the following code.

'use strict';

exports.handler = (event, context, callback) => {
 console.log('LogEC2StopInstance');
 console.log('Received event:', JSON.stringify(event, null, 2));
 callback(null, 'Finished');
};

8. Choose Deploy.

Step 3: Create a rule

Create a rule to run the Lambda function you created in step 2 whenever you stop an Amazon EC2
instance.

To create a rule

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

4. Enter a name and description for the rule. For example, name the rule TestRule

5. For Event bus, choose the event bus that you want to associate with this rule. If you want this
rule to match events that come from your account, select default. When an AWS service in
your account emits an event, it always goes to your account’s default event bus.

6. For Rule type, choose Rule with an event pattern.

Log AWS API calls 407

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

7. Choose Next.

8. For Event source, choose AWS services.

9. For Event pattern, do the following:

a. For Event source, select EC2 from the drop-down list.

b. For Event type, select AWS API Call via CloudTrail from the drop-down list.

c. Choose Specific operation(s) and enter StopInstances.

10. Choose Next.

11. For Target types, choose AWS service.

12. For Select a target, choose Lambda function from the drop-down list.

13. For Function, select the Lambda function that you created in the Step 1: Create a Lambda
function section. In this example, select LogEC2StopInstance.

14. Choose Next.

15. Choose Next.

16. Review the details of the rule and choose Create rule.

Step 4: Test the rule

You can test your rule by stopping an Amazon EC2 instance using the Amazon EC2 console. Wait a
few minutes for the instance to stop, and then check your AWS Lambda metrics on the CloudWatch
console to verify that your function ran.

To test your rule by stopping an instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Launch an instance. For more information, see Launch Your Instance in the Amazon EC2 User
Guide for Linux Instances.

3. Stop the instance. For more information, see Stop and Start Your Instance in the Amazon EC2
User Guide for Linux Instances.

4. To view the output from your Lambda function, do the following:

a. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

b. In the navigation pane, choose Logs.

c. Select the name of the log group for your Lambda function (/aws/lambda/function-
name).

Log AWS API calls 408

https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/LaunchingAndUsingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html
https://console.aws.amazon.com/cloudwatch/

Amazon EventBridge User Guide

d. Select the name of the log stream to view the data provided by the function for the
instance that you stopped.

5. (Optional) When you're finished, terminate the stopped instance. For more information, see
Terminate Your Instance in the Amazon EC2 User Guide for Linux Instances.

Step 5: Confirm success

If you see the Lambda event in the CloudWatch logs, you've successfully completed this tutorial.
If the event isn't in your CloudWatch logs, start troubleshooting by verifying the rule was created
successfully and, if the rule looks correct, verify the code of your Lambda function is correct.

Step 6: Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you are no longer using, you prevent unnecessary charges to your
AWS account.

To delete the EventBridge rule(s)

1. Open the Rules page of the EventBridge console.

2. Select the rule(s) that you created.

3. Choose Delete.

4. Choose Delete.

To delete the Lambda function(s)

1. Open the Functions page of the Lambda console.

2. Select the function(s) that you created.

3. Choose Actions, Delete.

4. Choose Delete.

To delete the CloudTrail trail(s)

1. Open the Trails page of the CloudTrail console.

2. Select the trail(s) that you created.

3. Choose Delete.

Log AWS API calls 409

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://console.aws.amazon.com/events/home#/rules
https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/cloudtrail/home#/trails

Amazon EventBridge User Guide

4. Choose Delete.

Log AWS API calls 410

Amazon EventBridge User Guide

Tutorial: Log the state of an Amazon EC2 instance using EventBridge

You can create an AWS Lambda function that logs a state change for an Amazon EC2 instance.
Then you can create a rule that runs your Lambda function whenever there is a state transition or a
transition to one or more states that are of interest. In this tutorial, you log the launch of any new
instance.

Steps:

• Step 1: Create an AWS Lambda function

• Step 2: Create a rule

• Step 3: Test the rule

• Step 4: Confirm success

• Step 5: Clean up your resources

Step 1: Create an AWS Lambda function

Create a Lambda function to log the state change events. When you create your rule in Step 2, you
specify this function.

To create a Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Choose Create function.

3. Choose Author from scratch.

4. Enter a name and description for the Lambda function. For example, name the function
LogEC2InstanceStateChange.

5. Leave the rest of the options as the defaults and choose Create function.

6. On the Code tab of the function page, double-click index.js.

7. Replace the existing code with the following code.

'use strict';

exports.handler = (event, context, callback) => {
 console.log('LogEC2InstanceStateChange');
 console.log('Received event:', JSON.stringify(event, null, 2));
 callback(null, 'Finished');

Log Amazon EC2 instance states 411

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://console.aws.amazon.com/lambda/

Amazon EventBridge User Guide

};

8. Choose Deploy.

Step 2: Create a rule

Create a rule to run the Lambda function you created in Step 1. The rule runs when you launch an
Amazon EC2 instance.

To create the EventBridge rule

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

4. Enter a name and description for the rule. For example, name the rule TestRule

5. For Event bus, choose the event bus that you want to associate with this rule. If you want this
rule to match events that come from your account, select default. When an AWS service in
your account emits an event, it always goes to your account’s default event bus.

6. For Rule type, choose Rule with an event pattern.

7. Choose Next.

8. For Event source, choose AWS services.

9. For Event pattern, do the following:

a. For Event source, select EC2 from the drop-down list.

b. For Event type, choose EC2 Instance State-change Notification from the drop-down list.

c. Choose Specific states(s) and choose running from the drop-down list.

d. Choose Any instance

10. Choose Next.

11. For Target types, choose AWS service.

12. For Select a target, choose Lambda function from the drop-down list.

13. For Function, select the Lambda function that you created in the Step 1: Create a Lambda
function section. In this example, select LogEC2InstanceStateChange.

14. Choose Next.

15. Choose Next.

Log Amazon EC2 instance states 412

https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

16. Review the details of the rule and choose Create rule.

Step 3: Test the rule

You can test your rule by stopping an Amazon EC2 instance using the Amazon EC2 console. Wait a
few minutes for the instance to stop, and then check your AWS Lambda metrics on the CloudWatch
console to verify that your function ran.

To test your rule by stopping an instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Launch an instance. For more information, see Launch Your Instance in the Amazon EC2 User
Guide for Linux Instances.

3. Stop the instance. For more information, see Stop and Start Your Instance in the Amazon EC2
User Guide for Linux Instances.

4. To view the output from your Lambda function, do the following:

a. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

b. In the navigation pane, choose Logs.

c. Select the name of the log group for your Lambda function (/aws/lambda/function-
name).

d. Select the name of the log stream to view the data provided by the function for the
instance that you stopped.

5. (Optional) When you're finished, terminate the stopped instance. For more information, see
Terminate Your Instance in the Amazon EC2 User Guide for Linux Instances.

Step 4: Confirm success

If you see the Lambda event in the CloudWatch logs, you've successfully completed this tutorial.
If the event isn't in your CloudWatch logs, start troubleshooting by verifying the rule was created
successfully and, if the rule looks correct, verify the code of your Lambda function is correct.

Step 5: Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you are no longer using, you prevent unnecessary charges to your
AWS account.

Log Amazon EC2 instance states 413

https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/LaunchingAndUsingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html

Amazon EventBridge User Guide

To delete the EventBridge rule(s)

1. Open the Rules page of the EventBridge console.

2. Select the rule(s) that you created.

3. Choose Delete.

4. Choose Delete.

To delete the Lambda function(s)

1. Open the Functions page of the Lambda console.

2. Select the function(s) that you created.

3. Choose Actions, Delete.

4. Choose Delete.

Log Amazon EC2 instance states 414

https://console.aws.amazon.com/events/home#/rules
https://console.aws.amazon.com/lambda/home#/functions

Amazon EventBridge User Guide

Tutorial: Log Amazon S3 object-level operations using EventBridge

You can log the object-level API operations on your Amazon S3 buckets. Before Amazon
EventBridge can match these events, you must use AWS CloudTrail to set up and configure a trail to
receive these events.

In this tutorial, you create CloudTrail trail, create a AWS Lambda function, and then create rule in
the EventBridge console that invokes that function in response to an S3 data event.

Steps:

• Step 1: Configure your AWS CloudTrail trail

• Step 2: Create an AWS Lambda function

• Step 3: Create a Rule

• Step 4: Test the Rule

• Step 5: Confirm success

• Step 6: Clean up your resources

Step 1: Configure your AWS CloudTrail trail

To log data events for an S3 bucket to AWS CloudTrail and EventBridge, you first create a trail. A
trail captures API calls and related events in your account and then delivers the log files to an S3
bucket that you specify. You can update an existing trail or create one.

For more information, see Data Events in the AWS CloudTrail User Guide.

To create a trail

1. Open the CloudTrail console at https://console.aws.amazon.com/cloudtrail/.

2. Choose Trails, Create trail.

3. For Trail name, type a name for the trail.

4. For Storage location, in Create a new S3 bucket.

5. For AWS KMS alias, type an alias for the KMS key.

6. Choose Next.

7. For Event type, choose Data events

Log Amazon S3 object level operations 415

https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-and-data-events-with-cloudtrail.html#logging-data-events
https://console.aws.amazon.com/cloudtrail/

Amazon EventBridge User Guide

8. For Data events, do one of the following:

• To log data events for all Amazon S3 objects in a bucket, specify an S3 bucket and an empty
prefix. When an event occurs on an object in that bucket, the trail processes and logs the
event.

• To log data events for specific Amazon S3 objects in a bucket, specify an S3 bucket and the
object prefix. When an event occurs on an object in that bucket and the object starts with
the specified prefix, the trail processes and logs the event.

9. For each resource, choose whether to log Read events, Write events, or both.

10. Choose Next.

11. Choose Create trail.

Step 2: Create an AWS Lambda function

Create a Lambda function to log data events for your S3 buckets.

To create a Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Choose Create function.

3. Choose Author from scratch.

4. Enter a name and description for the Lambda function. For example, name the function
LogS3DataEvents.

5. Leave the rest of the options as the defaults and choose Create function.

6. On the Code tab of the function page, double-click index.js.

7. Replace the existing code with the following code.

'use strict';

exports.handler = (event, context, callback) => {
 console.log('LogS3DataEvents');
 console.log('Received event:', JSON.stringify(event, null, 2));
 callback(null, 'Finished');
};

8. Choose Deploy.

Log Amazon S3 object level operations 416

https://console.aws.amazon.com/lambda/

Amazon EventBridge User Guide

Step 3: Create a Rule

Create a rule to run the Lambda function you created in Step 2. This rule runs in response to an
Amazon S3 data event.

To create a rule

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

4. Enter a name and description for the rule. For example, name the rule TestRule

5. For Event bus, choose the event bus that you want to associate with this rule. If you want this
rule to match events that come from your account, select default. When an AWS service in
your account emits an event, it always goes to your account’s default event bus.

6. For Rule type, choose Rule with an event pattern.

7. Choose Next.

8. For Event source, choose AWS services.

9. For Event pattern, do the following:

a. For Event source, select Simple Storage Service (S3) from the drop-down list.

b. For Event type, select Object-Level API call via CloudTrail from the drop-down list.

c. Choose Specific operation(s), and then choose PutObject.

d. By default, the rule matches data events for all buckets in the Region. To match data
events for specific buckets, choose Specify bucket(s) by name and enter one or more
buckets.

10. Choose Next.

11. For Target types, choose AWS service.

12. For Select a target, choose Lambda function from the drop-down list.

13. For Function, select the LogS3DataEvents Lambda function that you created in step 1.

14. Choose Next.

15. Choose Next.

16. Review the details of the rule and choose Create rule.

Log Amazon S3 object level operations 417

https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

Step 4: Test the Rule

To test the rule, put an object in your S3 bucket. You can verify that your Lambda function was
invoked.

To view the logs for your Lambda function

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Logs.

3. Select the name of the log group for your Lambda function (/aws/lambda/function-name).

4. Select the name of the log stream to view the data provided by the function for the instance
that you launched.

You can also check your CloudTrail logs in the S3 bucket that you specified for your trail. For more
information, see Getting and Viewing Your CloudTrail Log Files in the AWS CloudTrail User Guide.

Step 5: Confirm success

If you see the Lambda event in the CloudWatch logs, you've successfully completed this tutorial.
If the event isn't in your CloudWatch logs, start troubleshooting by verifying the rule was created
successfully and, if the rule looks correct, verify the code of your Lambda function is correct.

Step 6: Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you are no longer using, you prevent unnecessary charges to your
AWS account.

To delete the EventBridge rule(s)

1. Open the Rules page of the EventBridge console.

2. Select the rule(s) that you created.

3. Choose Delete.

4. Choose Delete.

To delete the Lambda function(s)

1. Open the Functions page of the Lambda console.

Log Amazon S3 object level operations 418

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/get-and-view-cloudtrail-log-files.html
https://console.aws.amazon.com/events/home#/rules
https://console.aws.amazon.com/lambda/home#/functions

Amazon EventBridge User Guide

2. Select the function(s) that you created.

3. Choose Actions, Delete.

4. Choose Delete.

To delete the CloudTrail trail(s)

1. Open the Trails page of the CloudTrail console.

2. Select the trail(s) that you created.

3. Choose Delete.

4. Choose Delete.

Log Amazon S3 object level operations 419

https://console.aws.amazon.com/cloudtrail/home#/trails

Amazon EventBridge User Guide

Tutorial: Send events to an Amazon Kinesis stream using EventBridge
and the aws.events schema

You can send AWS API call events in EventBridge to an Amazon Kinesis stream, create Kinesis
Data Streams applications, and process large amounts of data. In this tutorial, you create a Kinesis
stream, and then create a rule in the EventBridge console that sends events to that stream when an
Amazon EC2 instance stops.

Steps:

• Prerequisites

• Step 1: Create an Amazon Kinesis stream

• Step 2: Create a rule

• Step 3: Test the rule

• Step 4: Verify that the event was sent

• Step 5: Clean up your resources

Prerequisites

In this tutorial, you'll use the following:

• Use the AWS CLI to work with Kinesis streams.

To install the AWS CLI, see the Installing, updating, and uninstalling the AWS CLI version 2.

Note

This tutorial uses AWS events and the built in aws.events schema registry. You can also
create an EventBridge rule based on the schema of your custom events by adding them to a
custom schema registry manually, or by using schema discovery.
For more information on schemas, see ???. For more information on creating a rule using
other event pattern options, see ???.

Step 1: Create an Amazon Kinesis stream

To create a stream, at a command prompt, use the create-stream AWS CLI command.

Send events to a Kinesis stream using aws.events 420

https://docs.aws.amazon.com/streams/latest/dev/introduction.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html

Amazon EventBridge User Guide

aws kinesis create-stream --stream-name test --shard-count 1

When the stream status is ACTIVE, the stream is ready. To check the stream status, use the
describe-stream command.

aws kinesis describe-stream --stream-name test

Step 2: Create a rule

Create a rule to send events to your stream when you stop an Amazon EC2 instance.

To create a rule

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

4. Enter a name and description for the rule. For example, name the rule TestRule

5. For Event bus, select default.

6. For Rule type, choose Rule with an event pattern.

7. Choose Next.

8. For Event source, choose AWS events or EventBridge partner events.

9. For Creation method, choose Use schema.

10. For Event pattern, do the following:

a. For Schema type, choose Select schema from Schema registry.

b. For Schema registry, choose aws.events from the drop-down list.

c. For Schema, choose aws.ec2@EC2InstanceStateChangeNotification from the drop-down
list.

EventBridge displays the event schema under Models.

EventBridge displays a red asterisk next to any properties that are required for the event,
not for the event pattern.

d. In Models, set the following event filter properties:

i. Select + Edit next to the state property.

Send events to a Kinesis stream using aws.events 421

https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

Leave Relationship empty. For Value, enter running. Choose Set.

ii. Select + Edit next to the source property.

Leave Relationship empty. For Value, enter aws.ec2. Choose Set.

iii. Select + Edit next to the detail-type property.

Leave Relationship empty. For Value, enter EC2 Instance State-change
Notification. Choose Set.

e. To view the event pattern you've constructed, choose Generate event pattern in JSON

EventBridge displays the event pattern in JSON:

{
 "detail": {
 "state": ["running"]
 },
 "detail-type": ["EC2 Instance State-change Notification"],
 "source": ["aws.ec2"]
}

11. Choose Next.

12. For Target types, choose AWS service.

13. For Select a target, choose Kinesis stream from the drop-down list.

14. For Stream, select the Kinesis stream that you created in the Step 1: Create an Amazon
Kinesis stream section. In this example, select test.

15. For Execution role, choose Create a new for role for this specific resource.

16. Choose Next.

17. Choose Next.

18. Review the details of the rule and choose Create rule.

Step 3: Test the rule

To test your rule, stop an Amazon EC2 instance. Wait a few minutes for the instance to stop, and
then check your CloudWatch metrics to verify that your function ran.

Send events to a Kinesis stream using aws.events 422

Amazon EventBridge User Guide

To test your rule by stopping an instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Launch an instance. For more information, see Launch Your Instance in the Amazon EC2 User
Guide for Linux Instances.

3. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

4. In the navigation pane, choose Rules.

Choose the name of the rule that you created and choose Metrics for the rule.

5. (Optional) When you're finished, terminate the instance. For more information, see Terminate
Your Instance in the Amazon EC2 User Guide for Linux Instances.

Step 4: Verify that the event was sent

You can use the AWS CLI to get the record from the stream to verify that the event was sent.

To get the record

1. To start reading from your Kinesis stream, at a command prompt, use the get-shard-
iterator command.

aws kinesis get-shard-iterator --shard-id shardId-000000000000 --shard-iterator-
type TRIM_HORIZON --stream-name test

The following is example output.

{
 "ShardIterator": "AAAAAAAAAAHSywljv0zEgPX4NyKdZ5wryMzP9yALs8NeKbUjp1IxtZs1Sp
+KEd9I6AJ9ZG4lNR1EMi+9Md/nHvtLyxpfhEzYvkTZ4D9DQVz/mBYWRO6OTZRKnW9gd
+efGN2aHFdkH1rJl4BL9Wyrk+ghYG22D2T1Da2EyNSH1+LAbK33gQweTJADBdyMwlo5r6PqcP2dzhg="
}

2. To get the record, use the following get-records command. Use the shard iterator from the
output in the previous step.

aws kinesis get-records --shard-
iterator AAAAAAAAAAHSywljv0zEgPX4NyKdZ5wryMzP9yALs8NeKbUjp1IxtZs1Sp

Send events to a Kinesis stream using aws.events 423

https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/LaunchingAndUsingInstances.html
https://console.aws.amazon.com/events/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html

Amazon EventBridge User Guide

+KEd9I6AJ9ZG4lNR1EMi+9Md/nHvtLyxpfhEzYvkTZ4D9DQVz/mBYWRO6OTZRKnW9gd
+efGN2aHFdkH1rJl4BL9Wyrk+ghYG22D2T1Da2EyNSH1+LAbK33gQweTJADBdyMwlo5r6PqcP2dzhg=

If the command is successful, it requests records from your stream for the specified shard. You
can receive zero or more records. Any records returned might not represent all records in your
stream. If you don't receive the data that you expect, keep calling get-records.

3. Records in Kinesis are encoded in Base64. Use a Base64 decoder to decode the data so that you
can verify that it's the event that was sent to the stream in JSON form.

Step 5: Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you are no longer using, you prevent unnecessary charges to your
AWS account.

To delete the EventBridge rule(s)

1. Open the Rules page of the EventBridge console.

2. Select the rule(s) that you created.

3. Choose Delete.

4. Choose Delete.

To delete the Kinesis stream(s)

1. Open the Data streams page of the Kinesis console.

2. Select the stream(s) that you created.

3. Choose Actions, Delete.

4. Enter delete in the fiekd and choose Delete.

Send events to a Kinesis stream using aws.events 424

https://console.aws.amazon.com/events/home#/rules
https://console.aws.amazon.com/kinesis/home#/streams/list

Amazon EventBridge User Guide

Tutorial: Schedule automated Amazon EBS snapshots using
EventBridge

You can run EventBridge rules on a schedule. In this tutorial, you create a snapshot of an existing
Amazon Elastic Block Store (Amazon EBS) volume on a schedule. You can choose a fixed rate to
create a snapshot every few minutes or use a cron expression to create the snapshot at a specific
time of day.

Important

To create rules with built-in targets, you must use the AWS Management Console.

Steps:

• Step 1: Create the rule

• Step 2: Test the rule

• Step 3: Confirm success

• Step 4: Clean up your resources

Step 1: Create the rule

Create a rule that takes snapshots on a schedule. You can use a rate expression or a cron expression
to specify the schedule. For more information, see Creating an Amazon EventBridge rule that runs
on a schedule.

To create a rule

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

4. Enter a name and description for the rule.

A rule can't have the same name as another rule in the same Region and on the same event
bus.

Schedule Automated Amazon EBS Snapshots 425

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

5. For Event bus, choose the event bus that you want to associate with this rule. If you want this
rule to match events that come from your account, select AWS default event bus. When an
AWS service in your account emits an event, it always goes to your account’s default event bus.

6. For Rule type, choose Schedule.

7. Choose Next.

8. For Schedule pattern, choose A schedule that runs at a regular rate, such as every 10
minutes. and enter 5 and choose Minutes from the drop-down list.

9. Choose Next.

10. For Target types, choose AWS service.

11. For Select a target, choose EBS Create Snapshot from the drop-down list.

12. For Volume ID, enter the volume ID of the Amazon EBS volume.

13. For Execution role, choose Create a new for role for this specific resource.

14. Choose Next.

15. Choose Next.

16. Review the details of the rule and choose Create rule.

Step 2: Test the rule

You can verify your rule works by viewing your first snapshot after it's taken.

To test your rule

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation pane, choose Elastic Block Store, Snapshots.

3. Verify that the first snapshot appears in the list.

Step 3: Confirm success

If you see the a snapshot in the list, you've successfully completed this tutorial. If the snapshot isn't
in the list, start troubleshooting by verifying the rule was created successfully.

Schedule Automated Amazon EBS Snapshots 426

https://console.aws.amazon.com/ec2/

Amazon EventBridge User Guide

Step 4: Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you are no longer using, you prevent unnecessary charges to your
AWS account.

To delete the EventBridge rule(s)

1. Open the Rules page of the EventBridge console.

2. Select the rule(s) that you created.

3. Choose Delete.

4. Choose Delete.

Schedule Automated Amazon EBS Snapshots 427

https://console.aws.amazon.com/events/home#/rules

Amazon EventBridge User Guide

Tutorial: Send a notification when an Amazon S3 object is created

You can send email notifications when Amazon Simple Storage Service (Amazon S3) objects are
created using Amazon EventBridge and Amazon SNS. In this tutorial, you will create an SNS topic
and subscription. Then, you will create a rule in the EventBridge console that sends events to that
topic when Amazon S3 Object Created events are received.

Steps:

• Prerequisites

• Step 1: Create an Amazon SNS topic

• Step 2: Create an Amazon SNS subscription

• Step 3: Create a rule

• Step 4: Test the rule

• Step 5: Clean up your resources

Prerequisites

To recieve Amazon S3 events in EventBridge, you must enable EventBridge in the Amazon S3
console. This tutorial assumes EventBridge is enabled. For more information, see Enabling Amazon
EventBridge in the S3 console.

Step 1: Create an Amazon SNS topic

Create a topic to receive the events from EventBridge.

To create a topic

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/v3/home.

2. In the navigation pane, choose Topics.

3. Choose Create topic.

4. For Type, choose Standard.

5. Enter eventbridge-test as the name of the topic.

6. Choose Create topic.

Send a notification when an S3 object is created 428

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/Welcome.html
https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-event-notifications-eventbridge.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-event-notifications-eventbridge.html
https://console.aws.amazon.com/sns/v3/home

Amazon EventBridge User Guide

Step 2: Create an Amazon SNS subscription

Create a subscription to get email notifications from Amazon S3 when events are received by the
topic.

To create a subscription

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/v3/home.

2. In the navigation pane, choose Subscriptions.

3. Choose Create subscription.

4. For Topic ARN, choose the topic you created in step 1. For this tutorial, choose eventbridge-
test.

5. For Protocol, choose Email.

6. For Endpoint, enter your email address.

7. Choose Create subscription.

8. Confirm the subscription by choosing Confirm subscription in the email you receive from AWS
notifications.

Step 3: Create a rule

Create a rule to send events to your topic when an Amazon S3 object is created.

To create a rule

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

4. Enter a name and description for the rule. For example, name the rule s3-test

5. For Event bus, select default.

6. For Rule type, choose Rule with an event pattern.

7. Choose Next.

8. For Event source, choose AWS events or EventBridge partner events.

9. For Creation method, choose Use pattern form.

10. For Event pattern, do the following:

Send a notification when an S3 object is created 429

https://console.aws.amazon.com/sns/v3/home
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

a. For Event source, select AWS services from the drop-down list.

b. For AWS service, select Simple Storage Service (S3) from the drop-down list.

c. For Event type, choose Amazon S3 Event Notification from the drop-down list.

d. Choose Specific events(s) and choose Object Created from the drop-down list.

e. Choose Any bucket

11. Choose Next.

12. For Target types, choose AWS service.

13. For Select a target, choose SNS topic from the drop-down list.

14. For Topic, select the Amazon SNS topic that you created in the Step 1: Create an SNS topic
section. In this example, select eventbridge-test.

15. Choose Next.

16. Choose Next.

17. Review the details of the rule and choose Create rule.

Step 4: Test the rule

To test your rule, create an Amazon S3 object by uploading a file to an EventBridge-enabled
bucket. Then, wait a few minutes and verify if you receive an email from AWS notifications.

Step 5: Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you are no longer using, you prevent unnecessary charges to your
AWS account.

To delete the SNS topic

1. Open the Topics page of the SNS console.

2. Select the topic that you created.

3. Choose Delete.

4. Enter delete me.

5. Choose Delete.

Send a notification when an S3 object is created 430

https://console.aws.amazon.com/sns/v3/home#/topics

Amazon EventBridge User Guide

To delete the SNS subscription

1. Open the Subscriptions page of the SNS console.

2. Select the subscription that you created.

3. Choose Delete.

4. Choose Delete.

To delete the EventBridge rule(s)

1. Open the Rules page of the EventBridge console.

2. Select the rule(s) that you created.

3. Choose Delete.

4. Choose Delete.

Send a notification when an S3 object is created 431

https://console.aws.amazon.com/sns/v3/home#/subscriptions
https://console.aws.amazon.com/events/home#/rules

Amazon EventBridge User Guide

Tutorial: Schedule AWS Lambda functions using EventBridge

You can set up a rule to run an AWS Lambda function on a schedule. This tutorial shows how to use
the AWS Management Console or the AWS CLI to create the rule. If you want to use the AWS CLI
but haven't installed it, see the Installing, updating, and uninstalling the AWS CLI version 2.

For schedules, EventBridge doesn't provide second-level precision in schedule expressions.
The finest resolution using a cron expression is one minute. Due to the distributed nature of
EventBridge and the target services, there can be a delay of several seconds between the time the
scheduled rule is triggered and the time the target service runs the target resource.

Steps:

• Step 1: Create a Lambda function

• Step 2: Create a Rule

• Step 3: Verify the rule

• Step 4: Confirm success

• Step 5: Clean up your resources

Step 1: Create a Lambda function

Create a Lambda function to log the scheduled events.

To create a Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Choose Create function.

3. Choose Author from scratch.

4. Enter a name and description for the Lambda function. For example, name the function
LogScheduledEvent.

5. Leave the rest of the options as the defaults and choose Create function.

6. On the Code tab of the function page, double-click index.js.

7. Replace the existing code with the following code.

'use strict';

exports.handler = (event, context, callback) => {

Schedule AWS Lambda functions 432

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://console.aws.amazon.com/lambda/

Amazon EventBridge User Guide

 console.log('LogScheduledEvent');
 console.log('Received event:', JSON.stringify(event, null, 2));
 callback(null, 'Finished');
};

8. Choose Deploy.

Step 2: Create a Rule

Create a rule to run the Lambda function you created in step 1 on a schedule.

You can use either the console or the AWS CLI to create the rule. To use the AWS CLI, you first grant
the rule permission to invoke your Lambda function. Then you can create the rule and add the
Lambda function as a target.

To create a rule (console)

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

4. Enter a name and description for the rule.

A rule can't have the same name as another rule in the same Region and on the same event
bus.

5. For Event bus, choose the event bus that you want to associate with this rule. If you want this
rule to match events that come from your account, select AWS default event bus. When an
AWS service in your account emits an event, it always goes to your account’s default event bus.

6. For Rule type, choose Schedule.

7. Choose Next.

8. For Schedule pattern, choose A schedule that runs at a regular rate, such as every 10
minutes. and enter 5 and choose Minutes from the drop-down list.

9. Choose Next.

10. For Target types, choose AWS service.

11. For Select a target, choose Lambda function from the drop-down list.

12. For Function, select the Lambda function that you created in the Step 1: Create a Lambda
function section. In this example, select LogScheduledEvent.

Schedule AWS Lambda functions 433

https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

13. Choose Next.

14. Choose Next.

15. Review the details of the rule and choose Create rule.

To create a rule (AWS CLI)

1. To create a rule that runs on a schedule, use the put-rule command.

aws events put-rule \
--name my-scheduled-rule \
--schedule-expression 'rate(5 minutes)'

When this rule runs, it creates an event and then sends it to the targets. The following is an
example event.

{
 "version": "0",
 "id": "53dc4d37-cffa-4f76-80c9-8b7d4a4d2eaa",
 "detail-type": "Scheduled Event",
 "source": "aws.events",
 "account": "123456789012",
 "time": "2015-10-08T16:53:06Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:events:us-east-1:123456789012:rule/my-scheduled-rule"
],
 "detail": {}
}

2. To grant the EventBridge service principal (events.amazonaws.com) permission to run the
rule, use the add-permission command.

aws lambda add-permission \
--function-name LogScheduledEvent \
--statement-id my-scheduled-event \
--action 'lambda:InvokeFunction' \
--principal events.amazonaws.com \
--source-arn arn:aws:events:us-east-1:123456789012:rule/my-scheduled-rule

3. Create the file targets.json with the following contents.

Schedule AWS Lambda functions 434

Amazon EventBridge User Guide

[
 {
 "Id": "1",
 "Arn": "arn:aws:lambda:us-east-1:123456789012:function:LogScheduledEvent"
 }
]

4. To add the Lambda function that you created in step 1 to the rule, use the put-
targetscommand .

aws events put-targets --rule my-scheduled-rule --targets file://targets.json

Step 3: Verify the rule

Wait at least five minutes after completing step 2, and then you can verify that your Lambda
function was invoked.

View the output from your Lambda function

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Logs.

3. Select the name of the log group for your Lambda function (/aws/lambda/function-name).

4. Select the name of the log stream to view the data provided by the function for the instance
that you launched.

Step 4: Confirm success

If you see the Lambda event in the CloudWatch logs, you've successfully completed this tutorial.
If the event isn't in your CloudWatch logs, start troubleshooting by verifying the rule was created
successfully and, if the rule looks correct, verify the code of your Lambda function is correct.

Step 5: Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you are no longer using, you prevent unnecessary charges to your
AWS account.

Schedule AWS Lambda functions 435

https://console.aws.amazon.com/cloudwatch/

Amazon EventBridge User Guide

To delete the EventBridge rule(s)

1. Open the Rules page of the EventBridge console.

2. Select the rule(s) that you created.

3. Choose Delete.

4. Choose Delete.

To delete the Lambda function(s)

1. Open the Functions page of the Lambda console.

2. Select the function(s) that you created.

3. Choose Actions, Delete.

4. Choose Delete.

Schedule AWS Lambda functions 436

https://console.aws.amazon.com/events/home#/rules
https://console.aws.amazon.com/lambda/home#/functions

Amazon EventBridge User Guide

Amazon EventBridge tutorials for integrating with SaaS
providers

EventBridge can work directly with SaaS partner applications and services to send and receive
events. The following tutorials show you how to integrate EventBridge with SaaS partners.

Tutorials:

• Tutorial: Create a connection to Datadog as an API destination

• Tutorial: Create a connection to Salesforce as an API destination

• Tutorial: Create a connection to Zendesk as an API destination

SaaS tutorials 437

Amazon EventBridge User Guide

Tutorial: Create a connection to Datadog as an API destination

You can use EventBridge to route events to third-party services,such as Datadog.

In this tutorial, you'll use the EventBridge console to create a connection to Datadog, an API
destination that points to Datadog, and a rule to route events to Datadog.

Steps:

• Prerequisites

• Step 1: Create connection

• Step 2: Create API destination

• Step 3: Create rule

• Step 4: Test the rule

• Step 5: Clean up your resources

Prerequisites

To complete this tutorial, you'll need the following resources:

• A Datadog account.

• A Datadog API key.

• An EventBridge-enabled Amazon Simple Storage Service (Amazon S3) bucket.

Step 1: Create connection

To send events to Datadog, you'll first have to establish a connection to the Datadog API.

To create the connection

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose API destinations.

3. Choose the Connections tab, and then choose Create connection.

4. Enter a name and description for the connection. For example, enter Datadog as a name, and
Datadog API Connection as a description.

5. For Authorization type, choose API key.

Create a connection to Datadog 438

https://www.datadoghq.com/
https://www.datadoghq.com/free-datadog-trial/
https://docs.datadoghq.com/account_management/api-app-keys/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/Welcome.html
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

6. For API key name, enter DD-API-KEY.

7. For Value, paste your Datadog secret API key.

8. Choose Create.

Step 2: Create API destination

Now that you've created the connection, next you'll create the API destination to use as the target
of the rule.

To create the API Destination

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose API destinations.

3. Choose Create API destination.

4. Enter a name and description for the API destination. For example, enter DatadogAD for the
name, and Datadog API Destination for the description..

5. For API destination endpoint, enter https://http-intake.logs.datadoghq.com/api/
v2/logs.

6. For HTTP method, choose POST.

7. For Invocation rate limit, enter 300.

8. For Connection, choose Use an existing connection and choose the Datadog connection you
created in step 1.

9. Choose Create.

Step 3: Create rule

Next, you'll create a rule to send events to Datadog when an Amazon S3 object is created.

To create a rule

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

4. Enter a name and description for the rule. For example, enter DatadogRule for the name, and
Rule to send events to Datadog for S3 object creation for the description.

Create a connection to Datadog 439

https://console.aws.amazon.com/events/
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

5. For Event bus, choose default.

6. For Rule type, choose Rule with an event pattern.

7. Choose Next.

8. For Event source, choose Other.

9. For Event pattern, enter the following:

{
 "source": ["aws.s3"]
}

10. Choose Next.

11. For Target types, choose EventBridge API destination.

12. For API destination, choose Use an existing API destination, and then choose the DatadogAD
destination you created in step 2.

13. For Execution role, choose Create a new for role for this specific resource.

14. For Additional settings, do the following:

a. For Configure target input, choose Input transformer from the drop-down list.

b. Choose Configure input transformer

c. for Sample events, enter the following:

{
 "detail":[]
}

d. For Target input transformer do the following:

i. For Input Path, enter the following:

{"detail":"$.detail"}

ii. For Input Template, enter the following:

{"message": <detail>}

e. Choose Confirm..

15. Choose Next.
Create a connection to Datadog 440

Amazon EventBridge User Guide

16. Choose Next.

17. Review the details of the rule and choose Create rule.

Step 4: Test the rule

To test your rule, create an Amazon S3 object by uploading a file to an EventBridge-enabled
bucket. The created object will be logged in the Datadog Logs console.

Step 5: Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you are no longer using, you prevent unnecessary charges to your
AWS account.

To delete the EventBridge Connections(s)

1. Open the API destination page of the EventBridge console.

2. Choose the Connections tab.

3. Select the Connection(s) you created.

4. Choose Delete.

5. Enter the name of the connection and choose Delete.

To delete the EventBridge API destination(s)

1. Open the API destination page of the EventBridge console.

2. Select the API destinations(s) you created.

3. Choose Delete.

4. Enter the name of the API destination and choose Delete.

To delete the EventBridge rule(s)

1. Open the Rules page of the EventBridge console.

2. Select the rule(s) that you created.

3. Choose Delete.

4. Choose Delete.

Create a connection to Datadog 441

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-objects.html
https://console.aws.amazon.com/events/home#/apidestinations
https://console.aws.amazon.com/events/home#/apidestinations
https://console.aws.amazon.com/events/home#/rules

Amazon EventBridge User Guide

Create a connection to Datadog 442

Amazon EventBridge User Guide

Tutorial: Create a connection to Salesforce as an API destination

You can use EventBridge to route events to third-party services, such as Salesforce.

In this tutorial, you'll use the EventBridge console to create a connection to Salesforce, an API
destination that points to Salesforce, and a rule to route events to Salesforce.

Steps:

• Prerequisites

• Step 1: Create connection

• Step 2: Create API destination

• Step 3: Create rule

• Step 4: Test the rule

• Step 5: Clean up your resources

Prerequisites

To complete this tutorial, you'll need the following resources:

• A Salesforce account.

• A Salesforce connected app.

• A Salesforce security token.

• A Salesforce custom platform event.

• An EventBridge-enabled Amazon Simple Storage Service (Amazon S3) bucket.

Step 1: Create connection

To send events to Salesforce, you'll first have to establish a connection to the Salesforce API.

To create the connection

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose API destinations.

3. Choose the Connections tab, and then choose Create connection.

4. Enter a name and description for the connection. For example, enter Salesforce as a name,
and Salesforce API Connection as a description.

Create a connection to Salesforce 443

https://www.salesforce.com/
https://login.salesforce.com/
https://help.salesforce.com/s/articleView?id=sf.connected_app_create_basics.htm
https://help.salesforce.com/s/articleView?id=sf.user_security_token.htm
https://developer.salesforce.com/docs/atlas.en-us.234.0.platform_events.meta/platform_events/platform_events_define.htm
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/Welcome.html
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

5. For Destination type, choose Partners and for Partner Destinations, select Salesforce from
the drop-down list.

6. For Authorization endpoint, enter one of these:

• If you're using a production org, enter https://MyDomainName.my.salesforce.com./
services/oauth2/token

• If you're using a sandbox without enhanced domains, enter
https://MyDomainName--SandboxName.my. salesforce.com/services /oauth2/
token

• If you're using a sandbox with enhanced domains, enter https://MyDomainName--
SandboxName.sandbox.my.salesforce.com/services/oauth2/token

7. For HTTP method, choose POST from the drop-down list.

8. For Client ID, enter the client ID from your Salesforce connected app.

9. For Client secret, enter the client secret from your Salesforce connected app.

10. For OAuth Http Parameters, enter the following key/value pair:

Key Value

grant_type client_credentials

11. Choose Create.

Step 2: Create API destination

Now that you've created the connection, next you'll create the API destination to use as the target
of the rule.

To create the API Destination

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose API destinations.

3. Choose Create API destination.

4. Enter a name and description for the API destination. For example, enter SalesforceAD for
the name, and Salesforce API Destination for the description..

Create a connection to Salesforce 444

https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

5. For API destination endpoint, enter https://MyDomainName.my.salesforce.com/
services/data/v54.0/sobjects/MyEvent__e where Myevent__e is the platform event
where you want to send information.

6. For HTTP method, choose POST from the drop-down list.

7. For Invocation rate limit, enter 300.

8. For Connection, choose Use an existing connection and choose the Salesforce connection
you created in step 1.

9. Choose Create.

Step 3: Create rule

Next, you'll create a rule to send events to Salesforce when an Amazon S3 object is created.

To create a rule

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

4. Enter a name and description for the rule. For example, enter SalesforceRule for the
name, and Rule to send events to Salesforce for S3 object creation for the
description.

5. For Event bus, choose default.

6. For Rule type, choose Rule with an event pattern.

7. Choose Next.

8. For Event source, choose Other.

9. For Event pattern, enter the following:

{
 "source": ["aws.s3"]
}

10. Choose Next.

11. For Target types, choose EventBridge API destination.

12. For API destination, choose Use an existing API destination, and then choose the
SalesforceAD destination you created in step 2.

Create a connection to Salesforce 445

https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

13. For Execution role, choose Create a new for role for this specific resource.

14. For Additional settings, do the following:

a. For Configure target input, choose Input transformer from the drop-down list.

b. Choose Configure input transformer

c. for Sample events, enter the following:

{
 "detail":[]
}

d. For Target input transformer do the following:

i. For Input Path, enter the following:

{"detail":"$.detail"}

ii. For Input Template, enter the following:

{"message": <detail>}

e. Choose Confirm..

15. Choose Next.

16. Choose Next.

17. Review the details of the rule and choose Create rule.

Step 4: Test the rule

To test your rule, create an Amazon S3 object by uploading a file to an EventBridge-enabled
bucket. The information about the created object will be sent to the Salesforce platform event.

Step 5: Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you are no longer using, you prevent unnecessary charges to your
AWS account.

Create a connection to Salesforce 446

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-objects.html

Amazon EventBridge User Guide

To delete the EventBridge Connections(s)

1. Open the API destination page of the EventBridge console.

2. Choose the Connections tab.

3. Select the Connection(s) you created.

4. Choose Delete.

5. Enter the name of the connection and choose Delete.

To delete the EventBridge API destination(s)

1. Open the API destination page of the EventBridge console.

2. Select the API destinations(s) you created.

3. Choose Delete.

4. Enter the name of the API destination and choose Delete.

To delete the EventBridge rule(s)

1. Open the Rules page of the EventBridge console.

2. Select the rule(s) that you created.

3. Choose Delete.

4. Choose Delete.

Create a connection to Salesforce 447

https://console.aws.amazon.com/events/home#/apidestinations
https://console.aws.amazon.com/events/home#/apidestinations
https://console.aws.amazon.com/events/home#/rules

Amazon EventBridge User Guide

Tutorial: Create a connection to Zendesk as an API destination

You can use EventBridge to route events to third-party services like Zendesk.

In this tutorial, you'll use the EventBridge console to create a connection to Zendesk, an API
destination that points to Zendesk, and a rule to route events to Zendesk.

Steps:

• Prerequisites

• Step 1: Create connection

• Step 2: Create API destination

• Step 3: Create rule

• Step 4: Test the rule

• Step 5: Clean up your resources

Prerequisites

To complete this tutorial, you'll need the following resources:

• A Zendesk account.

• An EventBridge-enabled Amazon Simple Storage Service (Amazon S3) bucket.

Step 1: Create connection

To send events to Zendesk, you'll first have to establish a connection to the Zendesk API.

To create the connection

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose API destinations.

3. Choose the Connections tab, and then choose Create connection.

4. Enter a name and description for the connection. For example, enter Zendesk for the name,
and Connection to Zendesk API for the description.

5. For Authorization type, choose Basic (Username/Password).

6. For Username, enter your Zendesk username.

7. For Password, enter your Zendesk password.

Create a connection to Zendesk 448

https://www.zendesk.com/
https://www.zendesk.com/register/#step-1
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/Welcome.html
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

8. Choose Create.

Step 2: Create API destination

Now that you've created the connection, you'll next create the API destination to use as the target
of the rule.

To create the API Destination

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose API destinations.

3. Choose Create API destination.

4. Enter a name and description for the API destination. For example, enter ZendeskAD for the
name, and Zendesk API destination for the description.

5. For API destination endpoint, enter https://your-subdomain.zendesk.com/api/v2/
tickets.json, where your-subdomain is the subdomain associated with your Zendesk
account.

6. For HTTP method, choose POST.

7. For Invocation rate limit, enter 10.

8. For Connection, choose Use an existing connection and choose the Zendesk connection you
created in step 1.

9. Choose Create.

Step 3: Create rule

Next, create a rule to send events to Zendesk when an Amazon S3 object is created.

To create a rule

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

4. Enter a name and description for the rule. For example, enter ZendeskRule for the name,
and Rule to send events to Zendesk when S3 objects are created for the
description.

Create a connection to Zendesk 449

https://console.aws.amazon.com/events/
https://console.aws.amazon.com/events/

Amazon EventBridge User Guide

5. For Event bus, choose default.

6. For Rule type, choose Rule with an event pattern.

7. Choose Next.

8. For Event source, choose Other.

9. For Event pattern, enter the following:

{
 "source": ["aws.s3"]
}

10. Choose Next.

11. For Target types, choose EventBridge API destination.

12. For API destination, choose Use an existing API destination, and then choose the ZendeskAD
destination you created in step 2.

13. For Execution role, choose Create a new for role for this specific resource.

14. For Additional settings, do the following:

a. For Configure target input, choose Input transformer from the drop-down list.

b. Choose Configure input transformer

c. for Sample events, enter the following:

{
 "detail":[]
}

d. For Target input transformer do the following:

i. For Input Path, enter the following:

{"detail":"$.detail"}

ii. For Input Template, enter the following:

{"message": <detail>}

e. Choose Confirm..

15. Choose Next.
Create a connection to Zendesk 450

Amazon EventBridge User Guide

16. Choose Next.

17. Review the details of the rule and choose Create rule.

Step 4: Test the rule

To test your rule, create an Amazon S3 object by uploading a file to an EventBridge-enabled
bucket. When the event matches the rule, EventBridge will call the Zendesk Create Ticket API. The
new ticket will appear in the Zendesk dashboard.

Step 5: Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you are no longer using, you prevent unnecessary charges to your
AWS account.

To delete the EventBridge Connections(s)

1. Open the API destination page of the EventBridge console.

2. Choose the Connections tab.

3. Select the Connection(s) you created.

4. Choose Delete.

5. Enter the name of the connection and choose Delete.

To delete the EventBridge API destination(s)

1. Open the API destination page of the EventBridge console.

2. Select the API destinations(s) you created.

3. Choose Delete.

4. Enter the name of the API destination and choose Delete.

To delete the EventBridge rule(s)

1. Open the Rules page of the EventBridge console.

2. Select the rule(s) that you created.

3. Choose Delete.

Create a connection to Zendesk 451

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-objects.html
https://developer.zendesk.com/rest_api/docs/support/tickets#create-ticket
https://console.aws.amazon.com/events/home#/apidestinations
https://console.aws.amazon.com/events/home#/apidestinations
https://console.aws.amazon.com/events/home#/rules

Amazon EventBridge User Guide

4. Choose Delete.

Create a connection to Zendesk 452

Amazon EventBridge User Guide

Using EventBridge with an AWS SDK

AWS software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

SDK documentation Code examples

AWS SDK for C++ AWS SDK for C++ code examples

AWS SDK for Go AWS SDK for Go code examples

AWS SDK for Java AWS SDK for Java code examples

AWS SDK for JavaScript AWS SDK for JavaScript code examples

AWS SDK for Kotlin AWS SDK for Kotlin code examples

AWS SDK for .NET AWS SDK for .NET code examples

AWS SDK for PHP AWS SDK for PHP code examples

AWS SDK for Python (Boto3) AWS SDK for Python (Boto3) code examples

AWS SDK for Ruby AWS SDK for Ruby code examples

AWS SDK for Rust AWS SDK for Rust code examples

AWS SDK for SAP ABAP AWS SDK for SAP ABAP code examples

AWS SDK for Swift AWS SDK for Swift code examples

For examples specific to EventBridge, see Code examples for EventBridge using AWS SDKs.

Example availability

Can't find what you need? Request a code example by using the Provide feedback link at
the bottom of this page.

453

https://docs.aws.amazon.com/sdk-for-cpp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp
https://docs.aws.amazon.com/sdk-for-go
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2
https://docs.aws.amazon.com/sdk-for-java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2
https://docs.aws.amazon.com/sdk-for-javascript
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3
https://docs.aws.amazon.com/sdk-for-kotlin
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin
https://docs.aws.amazon.com/sdk-for-net
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3
https://docs.aws.amazon.com/sdk-for-php
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php
https://docs.aws.amazon.com/pythonsdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python
https://docs.aws.amazon.com/sdk-for-ruby
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby
https://docs.aws.amazon.com/sdk-for-rust
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rust_dev_preview
https://docs.aws.amazon.com/sdk-for-sapabap
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap
https://docs.aws.amazon.com/sdk-for-swift
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift

Amazon EventBridge User Guide

Code examples for EventBridge using AWS SDKs

The following code examples show how to use EventBridge with an AWS software development kit
(SDK).

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios and
cross-service examples.

Scenarios are code examples that show you how to accomplish a specific task by calling multiple
functions within the same service.

Cross-service examples are sample applications that work across multiple AWS services.

For a complete list of AWS SDK developer guides and code examples, see Using EventBridge with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Get started

Hello EventBridge

The following code examples show how to get started using EventBridge.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

using Amazon.EventBridge;
using Amazon.EventBridge.Model;

namespace EventBridgeActions;

454

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

Amazon EventBridge User Guide

public static class HelloEventBridge
{
 static async Task Main(string[] args)
 {
 var eventBridgeClient = new AmazonEventBridgeClient();

 Console.WriteLine($"Hello Amazon EventBridge! Following are some of your
 EventBuses:");
 Console.WriteLine();

 // You can use await and any of the async methods to get a response.
 // Let's get the first five event buses.
 var response = await eventBridgeClient.ListEventBusesAsync(
 new ListEventBusesRequest()
 {
 Limit = 5
 });

 foreach (var eventBus in response.EventBuses)
 {
 Console.WriteLine($"\tEventBus: {eventBus.Name}");
 Console.WriteLine($"\tArn: {eventBus.Arn}");
 Console.WriteLine($"\tPolicy: {eventBus.Policy}");
 Console.WriteLine();
 }
 }
}

• For API details, see ListEventBuses in AWS SDK for .NET API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**

455

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/ListEventBuses
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/eventbridge#readme

Amazon EventBridge User Guide

 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 */
public class HelloEventBridge {
 public static void main(String[] args) {
 Region region = Region.US_WEST_2;
 EventBridgeClient eventBrClient = EventBridgeClient.builder()
 .region(region)
 .build();

 listBuses(eventBrClient);
 eventBrClient.close();
 }

 public static void listBuses(EventBridgeClient eventBrClient) {
 try {
 ListEventBusesRequest busesRequest = ListEventBusesRequest.builder()
 .limit(10)
 .build();

 ListEventBusesResponse response =
 eventBrClient.listEventBuses(busesRequest);
 List<EventBus> buses = response.eventBuses();
 for (EventBus bus : buses) {
 System.out.println("The name of the event bus is: " +
 bus.name());
 System.out.println("The ARN of the event bus is: " + bus.arn());
 }

 } catch (EventBridgeException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see ListEventBuses in AWS SDK for Java 2.x API Reference.

456

https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/ListEventBuses

Amazon EventBridge User Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import aws.sdk.kotlin.services.eventbridge.EventBridgeClient
import aws.sdk.kotlin.services.eventbridge.model.ListEventBusesRequest
import aws.sdk.kotlin.services.eventbridge.model.ListEventBusesResponse

suspend fun main() {
 listBusesHello()
}

suspend fun listBusesHello() {
 val request = ListEventBusesRequest {
 limit = 10
 }

 EventBridgeClient { region = "us-west-2" }.use { eventBrClient ->
 val response: ListEventBusesResponse =
 eventBrClient.listEventBuses(request)
 response.eventBuses?.forEach { bus ->
 println("The name of the event bus is ${bus.name}")
 println("The ARN of the event bus is ${bus.arn}")
 }
 }
}

• For API details, see ListEventBuses in AWS SDK for Kotlin API reference.

Code examples

• Actions for EventBridge using AWS SDKs

• Add a target using an AWS SDK

• Create an EventBridge rule using an AWS SDK

457

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/eventbridge#code-examples
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation

Amazon EventBridge User Guide

• Delete an EventBridge rule using an AWS SDK

• Describe an EventBridge rule using an AWS SDK

• Disable an EventBridge rule using an AWS SDK

• Enable an EventBridge rule using an AWS SDK

• List EventBridge rule names for a target using an AWS SDK

• List EventBridge rules using an AWS SDK

• List EventBridge targets for a rule using an AWS SDK

• Remove EventBridge targets from a rule using an AWS SDK

• Send EventBridge events using an AWS SDK

• Scenarios for EventBridge using AWS SDKs

• Create and trigger a rule in Amazon EventBridge using an AWS SDK

• Get started with EventBridge rules and targets using an AWS SDK

• Cross-service examples for EventBridge using AWS SDKs

• Use scheduled events to invoke a Lambda function

Actions for EventBridge using AWS SDKs

The following code examples demonstrate how to perform individual EventBridge actions
with AWS SDKs. These excerpts call the EventBridge API and are code excerpts from larger
programs that must be run in context. Each example includes a link to GitHub, where you can find
instructions for setting up and running the code.

The following examples include only the most commonly used actions. For a complete list, see the
Amazon EventBridge API Reference.

Examples

• Add a target using an AWS SDK

• Create an EventBridge rule using an AWS SDK

• Delete an EventBridge rule using an AWS SDK

• Describe an EventBridge rule using an AWS SDK

• Disable an EventBridge rule using an AWS SDK

• Enable an EventBridge rule using an AWS SDK

• List EventBridge rule names for a target using an AWS SDK

Actions 458

https://docs.aws.amazon.com/eventbridge/latest/APIReference/Welcome.html

Amazon EventBridge User Guide

• List EventBridge rules using an AWS SDK

• List EventBridge targets for a rule using an AWS SDK

• Remove EventBridge targets from a rule using an AWS SDK

• Send EventBridge events using an AWS SDK

Add a target using an AWS SDK

The following code examples show how to add a target to an Amazon EventBridge event.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with rules and targets

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Add an Amazon SNS topic as a target for a rule.

 /// <summary>
 /// Add an Amazon SNS target topic to a rule.
 /// </summary>
 /// <param name="ruleName">The name of the rule to update.</param>
 /// <param name="targetArn">The ARN of the Amazon SNS target.</param>
 /// <param name="eventBusArn">The optional event bus name, uses default if
 empty.</param>
 /// <returns>The ID of the target.</returns>
 public async Task<string> AddSnsTargetToRule(string ruleName, string
 targetArn, string? eventBusArn = null)
 {
 var targetID = Guid.NewGuid().ToString();

Add a target 459

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

Amazon EventBridge User Guide

 // Create the list of targets and add a new target.
 var targets = new List<Target>
 {
 new Target()
 {
 Arn = targetArn,
 Id = targetID
 }
 };

 // Add the targets to the rule.
 var response = await _amazonEventBridge.PutTargetsAsync(
 new PutTargetsRequest()
 {
 EventBusName = eventBusArn,
 Rule = ruleName,
 Targets = targets,
 });

 if (response.FailedEntryCount > 0)
 {
 response.FailedEntries.ForEach(e =>
 {
 _logger.LogError(
 $"Failed to add target {e.TargetId}: {e.ErrorMessage}, code
 {e.ErrorCode}");
 });
 }

 return targetID;
 }

Add an input transformer to a target for a rule.

 /// <summary>
 /// Update an Amazon S3 object created rule with a transform on the target.
 /// </summary>
 /// <param name="ruleName">The name of the rule.</param>
 /// <param name="targetArn">The ARN of the target.</param>
 /// <param name="eventBusArn">Optional event bus ARN. If empty, uses the
 default event bus.</param>
 /// <returns>The ID of the target.</returns>

Add a target 460

Amazon EventBridge User Guide

 public async Task<string> UpdateS3UploadRuleTargetWithTransform(string
 ruleName, string targetArn, string? eventBusArn = null)
 {
 var targetID = Guid.NewGuid().ToString();

 var targets = new List<Target>
 {
 new Target()
 {
 Id = targetID,
 Arn = targetArn,
 InputTransformer = new InputTransformer()
 {
 InputPathsMap = new Dictionary<string, string>()
 {
 {"bucket", "$.detail.bucket.name"},
 {"time", "$.time"}
 },
 InputTemplate = "\"Notification: an object was uploaded to
 bucket <bucket> at <time>.\""
 }
 }
 };
 var response = await _amazonEventBridge.PutTargetsAsync(
 new PutTargetsRequest()
 {
 EventBusName = eventBusArn,
 Rule = ruleName,
 Targets = targets,
 });
 if (response.FailedEntryCount > 0)
 {
 response.FailedEntries.ForEach(e =>
 {
 _logger.LogError(
 $"Failed to add target {e.TargetId}: {e.ErrorMessage}, code
 {e.ErrorCode}");
 });
 }
 return targetID;
 }

• For API details, see PutTargets in AWS SDK for .NET API Reference.

Add a target 461

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/PutTargets

Amazon EventBridge User Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Include the required files.

#include <aws/core/Aws.h>
#include <aws/events/EventBridgeClient.h>
#include <aws/events/model/PutTargetsRequest.h>
#include <aws/events/model/PutTargetsResult.h>
#include <aws/core/utils/Outcome.h>
#include <iostream>

Add the target.

 Aws::CloudWatchEvents::EventBridgeClient cwe;

 Aws::CloudWatchEvents::Model::Target target;
 target.SetArn(lambda_arn);
 target.SetId(target_id);

 Aws::CloudWatchEvents::Model::PutTargetsRequest request;
 request.SetRule(rule_name);
 request.AddTargets(target);

 auto putTargetsOutcome = cwe.PutTargets(request);
 if (!putTargetsOutcome.IsSuccess())
 {
 std::cout << "Failed to create CloudWatch events target for rule "
 << rule_name << ": " <<
 putTargetsOutcome.GetError().GetMessage() << std::endl;
 }
 else
 {
 std::cout <<

Add a target 462

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/eventbridge#code-examples

Amazon EventBridge User Guide

 "Successfully created CloudWatch events target for rule "
 << rule_name << std::endl;
 }

• For API details, see PutTargets in AWS SDK for C++ API Reference.

CLI

AWS CLI

To add targets for CloudWatch Events rules

This example adds a Lambda function as the target of a rule:

aws events put-targets --rule DailyLambdaFunction --targets
 "Id"="1","Arn"="arn:aws:lambda:us-east-1:123456789012:function:MyFunctionName"

This example sets an Amazon Kinesis stream as the target, so that events caught by this rule
are relayed to the stream:

aws events put-targets --rule EC2InstanceStateChanges --targets
 "Id"="1","Arn"="arn:aws:kinesis:us-east-1:123456789012:stream/
MyStream","RoleArn"="arn:aws:iam::123456789012:role/MyRoleForThisRule"

This example sets two Amazon Kinesis streams as targets for one rule:

aws events put-targets --rule DailyLambdaFunction --targets
 "Id"="Target1","Arn"="arn:aws:kinesis:us-east-1:379642911888:stream/
MyStream1","RoleArn"="arn:aws:iam::379642911888:role/ MyRoleToAccessLambda"
 "Id"="Target2"," Arn"="arn:aws:kinesis:us-east-1:379642911888:stream/
MyStream2","RoleArn"="arn:aws:iam::379642911888:role/MyRoleToAccessLambda"

• For API details, see PutTargets in AWS CLI Command Reference.

Add a target 463

https://docs.aws.amazon.com/goto/SdkForCpp/eventbridge-2015-10-07/PutTargets
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/events/put-targets.html

Amazon EventBridge User Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Add an Amazon SNS topic as a target for a rule.

 // Add a rule which triggers an SNS target when a file is uploaded to an S3
 // bucket.
 public static void addSnsEventRule(EventBridgeClient eventBrClient, String
 ruleName, String topicArn,
 String topicName, String eventRuleName, String bucketName) {
 String targetID = java.util.UUID.randomUUID().toString();
 Target myTarget = Target.builder()
 .id(targetID)
 .arn(topicArn)
 .build();

 List<Target> targets = new ArrayList<>();
 targets.add(myTarget);
 PutTargetsRequest request = PutTargetsRequest.builder()
 .eventBusName(null)
 .targets(targets)
 .rule(ruleName)
 .build();

 eventBrClient.putTargets(request);
 System.out.println("Added event rule " + eventRuleName + " with Amazon
 SNS target " + topicName + " for bucket "
 + bucketName + ".");
 }

Add an input transformer to a target for a rule.

 public static void updateCustomRuleTargetWithTransform(EventBridgeClient
 eventBrClient, String topicArn,

Add a target 464

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/eventbridge#readme

Amazon EventBridge User Guide

 String ruleName) {
 String targetId = java.util.UUID.randomUUID().toString();
 InputTransformer inputTransformer = InputTransformer.builder()
 .inputTemplate("\"Notification: sample event was received.\"")
 .build();

 Target target = Target.builder()
 .id(targetId)
 .arn(topicArn)
 .inputTransformer(inputTransformer)
 .build();

 try {
 PutTargetsRequest targetsRequest = PutTargetsRequest.builder()
 .rule(ruleName)
 .targets(target)
 .eventBusName(null)
 .build();

 eventBrClient.putTargets(targetsRequest);
 } catch (EventBridgeException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see PutTargets in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Import the SDK and client modules and call the API.

import {

Add a target 465

https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/PutTargets
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/eventbridge#code-examples

Amazon EventBridge User Guide

 EventBridgeClient,
 PutTargetsCommand,
} from "@aws-sdk/client-eventbridge";

export const putTarget = async (
 existingRuleName = "some-rule",
 targetArn = "arn:aws:lambda:us-east-1:000000000000:function:test-func",
 uniqueId = Date.now().toString(),
) => {
 const client = new EventBridgeClient({});
 const response = await client.send(
 new PutTargetsCommand({
 Rule: existingRuleName,
 Targets: [
 {
 Arn: targetArn,
 Id: uniqueId,
 },
],
 }),
);

 console.log("PutTargets response:");
 console.log(response);
 // PutTargets response:
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'f5b23b9a-2c17-45c1-ad5c-f926c3692e3d',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // FailedEntries: [],
 // FailedEntryCount: 0
 // }

 return response;
};

• For API details, see PutTargets in AWS SDK for JavaScript API Reference.

Add a target 466

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/eventbridge/command/PutTargetsCommand

Amazon EventBridge User Guide

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create CloudWatchEvents service object
var ebevents = new AWS.EventBridge({ apiVersion: "2015-10-07" });

var params = {
 Rule: "DEMO_EVENT",
 Targets: [
 {
 Arn: "LAMBDA_FUNCTION_ARN",
 Id: "myEventBridgeTarget",
 },
],
};

ebevents.putTargets(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

• For API details, see PutTargets in AWS SDK for JavaScript API Reference.

Add a target 467

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/eventbridge#code-examples
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/eventbridge-2015-10-07/PutTargets

Amazon EventBridge User Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Add a rule that triggers an SNS target when a file is uploaded to an S3
 bucket.
suspend fun addSnsEventRule(ruleName: String?, topicArn: String?, topicName:
 String, eventRuleName: String, bucketName: String) {
 val targetID = UUID.randomUUID().toString()
 val myTarget = Target {
 id = targetID
 arn = topicArn
 }

 val targetsOb = mutableListOf<Target>()
 targetsOb.add(myTarget)

 val request = PutTargetsRequest {
 eventBusName = null
 targets = targetsOb
 rule = ruleName
 }

 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 eventBrClient.putTargets(request)
 println("Added event rule $eventRuleName with Amazon SNS target
 $topicName for bucket $bucketName.")
 }
}

Add an input transformer to a target for a rule.

suspend fun updateCustomRuleTargetWithTransform(topicArn: String?, ruleName:
 String?) {
 val targetId = UUID.randomUUID().toString()

Add a target 468

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/eventbridge#code-examples

Amazon EventBridge User Guide

 val inputTransformerOb = InputTransformer {
 inputTemplate = "\"Notification: sample event was received.\""
 }

 val target = Target {
 id = targetId
 arn = topicArn
 inputTransformer = inputTransformerOb
 }

 val targetsRequest = PutTargetsRequest {
 rule = ruleName
 targets = listOf(target)
 eventBusName = null
 }

 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 eventBrClient.putTargets(targetsRequest)
 }
}

• For API details, see PutTargets in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using EventBridge with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create an EventBridge rule using an AWS SDK

The following code examples show how to create an Amazon EventBridge rule.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Create and trigger a rule

• Get started with rules and targets

Create a rule 469

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation

Amazon EventBridge User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create a rule that triggers when an object is added to an Amazon Simple Storage Service
bucket.

 /// <summary>
 /// Create a new event rule that triggers when an Amazon S3 object is created
 in a bucket.
 /// </summary>
 /// <param name="roleArn">The ARN of the role.</param>
 /// <param name="ruleName">The name to give the rule.</param>
 /// <param name="bucketName">The name of the bucket to trigger the event.</
param>
 /// <returns>The ARN of the new rule.</returns>
 public async Task<string> PutS3UploadRule(string roleArn, string ruleName,
 string bucketName)
 {
 string eventPattern = "{" +
 "\"source\": [\"aws.s3\"]," +
 "\"detail-type\": [\"Object Created\"]," +
 "\"detail\": {" +
 "\"bucket\": {" +
 "\"name\": [\"" + bucketName + "\"]"
 +
 "}" +
 "}" +
 "}";

 var response = await _amazonEventBridge.PutRuleAsync(
 new PutRuleRequest()
 {
 Name = ruleName,
 Description = "Example S3 upload rule for EventBridge",
 RoleArn = roleArn,

Create a rule 470

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

Amazon EventBridge User Guide

 EventPattern = eventPattern
 });

 return response.RuleArn;
 }

Create a rule that uses a custom pattern.

 /// <summary>
 /// Update a rule to use a custom defined event pattern.
 /// </summary>
 /// <param name="ruleName">The name of the rule to update.</param>
 /// <returns>The ARN of the updated rule.</returns>
 public async Task<string> UpdateCustomEventPattern(string ruleName)
 {
 string customEventsPattern = "{" +
 "\"source\": [\"ExampleSource\"]," +
 "\"detail-type\": [\"ExampleType\"]" +
 "}";

 var response = await _amazonEventBridge.PutRuleAsync(
 new PutRuleRequest()
 {
 Name = ruleName,
 Description = "Custom test rule",
 EventPattern = customEventsPattern
 });

 return response.RuleArn;
 }

• For API details, see PutRule in AWS SDK for .NET API Reference.

Create a rule 471

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/PutRule

Amazon EventBridge User Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Include the required files.

#include <aws/core/Aws.h>
#include <aws/events/EventBridgeClient.h>
#include <aws/events/model/PutRuleRequest.h>
#include <aws/events/model/PutRuleResult.h>
#include <aws/core/utils/Outcome.h>
#include <iostream>

Create the rule.

 Aws::CloudWatchEvents::EventBridgeClient cwe;
 Aws::CloudWatchEvents::Model::PutRuleRequest request;
 request.SetName(rule_name);
 request.SetRoleArn(role_arn);
 request.SetScheduleExpression("rate(5 minutes)");
 request.SetState(Aws::CloudWatchEvents::Model::RuleState::ENABLED);

 auto outcome = cwe.PutRule(request);
 if (!outcome.IsSuccess())
 {
 std::cout << "Failed to create CloudWatch events rule " <<
 rule_name << ": " << outcome.GetError().GetMessage() <<
 std::endl;
 }
 else
 {
 std::cout << "Successfully created CloudWatch events rule " <<
 rule_name << " with resulting Arn " <<
 outcome.GetResult().GetRuleArn() << std::endl;
 }

Create a rule 472

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/eventbridge#code-examples

Amazon EventBridge User Guide

• For API details, see PutRule in AWS SDK for C++ API Reference.

CLI

AWS CLI

To create CloudWatch Events rules

This example creates a rule that triggers every day at 9:00am (UTC). If you use put-targets to
add a Lambda function as a target of this rule, you could run the Lambda function every day
at the specified time:

aws events put-rule --name "DailyLambdaFunction" --schedule-expression "cron(0 9
 * * ? *)"

This example creates a rule that triggers when any EC2 instance in the region changes state:

aws events put-rule --name "EC2InstanceStateChanges" --event-pattern "{\"source
\":[\"aws.ec2\"],\"detail-type\":[\"EC2 Instance State-change Notification\"]}"
 --role-arn "arn:aws:iam::123456789012:role/MyRoleForThisRule"

This example creates a rule that triggers when any EC2 instance in the region is stopped or
terminated:

aws events put-rule --name "EC2InstanceStateChangeStopOrTerminate" --event-
pattern "{\"source\":[\"aws.ec2\"],\"detail-type\":[\"EC2 Instance State-change
 Notification\"],\"detail\":{\"state\":[\"stopped\",\"terminated\"]}}" --role-arn
 "arn:aws:iam::123456789012:role/MyRoleForThisRule"

• For API details, see PutRule in AWS CLI Command Reference.

Create a rule 473

https://docs.aws.amazon.com/goto/SdkForCpp/eventbridge-2015-10-07/PutRule
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/events/put-rule.html

Amazon EventBridge User Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create a scheduled rule.

 public static void createEBRule(EventBridgeClient eventBrClient, String
 ruleName, String cronExpression) {
 try {
 PutRuleRequest ruleRequest = PutRuleRequest.builder()
 .name(ruleName)
 .eventBusName("default")
 .scheduleExpression(cronExpression)
 .state("ENABLED")
 .description("A test rule that runs on a schedule created by
 the Java API")
 .build();

 PutRuleResponse ruleResponse = eventBrClient.putRule(ruleRequest);
 System.out.println("The ARN of the new rule is " +
 ruleResponse.ruleArn());

 } catch (EventBridgeException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

Create a rule that triggers when an object is added to an Amazon Simple Storage Service
bucket.

 // Create a new event rule that triggers when an Amazon S3 object is created
 in
 // a bucket.

Create a rule 474

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/eventbridge#readme

Amazon EventBridge User Guide

 public static void addEventRule(EventBridgeClient eventBrClient, String
 roleArn, String bucketName,
 String eventRuleName) {
 String pattern = "{\n" +
 " \"source\": [\"aws.s3\"],\n" +
 " \"detail-type\": [\"Object Created\"],\n" +
 " \"detail\": {\n" +
 " \"bucket\": {\n" +
 " \"name\": [\"" + bucketName + "\"]\n" +
 " }\n" +
 " }\n" +
 "}";

 try {
 PutRuleRequest ruleRequest = PutRuleRequest.builder()
 .description("Created by using the AWS SDK for Java v2")
 .name(eventRuleName)
 .eventPattern(pattern)
 .roleArn(roleArn)
 .build();

 PutRuleResponse ruleResponse = eventBrClient.putRule(ruleRequest);
 System.out.println("The ARN of the new rule is " +
 ruleResponse.ruleArn());

 } catch (EventBridgeException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see PutRule in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create a rule 475

https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/PutRule
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/eventbridge#code-examples

Amazon EventBridge User Guide

Import the SDK and client modules and call the API.

import { EventBridgeClient, PutRuleCommand } from "@aws-sdk/client-eventbridge";

export const putRule = async (
 ruleName = "some-rule",
 source = "some-source",
) => {
 const client = new EventBridgeClient({});

 const response = await client.send(
 new PutRuleCommand({
 Name: ruleName,
 EventPattern: JSON.stringify({ source: [source] }),
 State: "ENABLED",
 EventBusName: "default",
 }),
);

 console.log("PutRule response:");
 console.log(response);
 // PutRule response:
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'd7292ced-1544-421b-842f-596326bc7072',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // RuleArn: 'arn:aws:events:us-east-1:xxxxxxxxxxxx:rule/
EventBridgeTestRule-1696280037720'
 // }
 return response;
};

• For API details, see PutRule in AWS SDK for JavaScript API Reference.

Create a rule 476

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/eventbridge/command/PutRuleCommand

Amazon EventBridge User Guide

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create CloudWatchEvents service object
var ebevents = new AWS.EventBridge({ apiVersion: "2015-10-07" });

var params = {
 Name: "DEMO_EVENT",
 RoleArn: "IAM_ROLE_ARN",
 ScheduleExpression: "rate(5 minutes)",
 State: "ENABLED",
};

ebevents.putRule(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.RuleArn);
 }
});

• For API details, see PutRule in AWS SDK for JavaScript API Reference.

Create a rule 477

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/eventbridge#code-examples
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/eventbridge-2015-10-07/PutRule

Amazon EventBridge User Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create a scheduled rule.

suspend fun createScRule(ruleName: String?, cronExpression: String?) {
 val ruleRequest = PutRuleRequest {
 name = ruleName
 eventBusName = "default"
 scheduleExpression = cronExpression
 state = RuleState.Enabled
 description = "A test rule that runs on a schedule created by the Kotlin
 API"
 }

 EventBridgeClient { region = "us-west-2" }.use { eventBrClient ->
 val ruleResponse = eventBrClient.putRule(ruleRequest)
 println("The ARN of the new rule is ${ruleResponse.ruleArn}")
 }
}

Create a rule that triggers when an object is added to an Amazon Simple Storage Service
bucket.

// Create a new event rule that triggers when an Amazon S3 object is created in a
 bucket.
suspend fun addEventRule(roleArnVal: String?, bucketName: String, eventRuleName:
 String?) {
 val pattern = """{
 "source": ["aws.s3"],
 "detail-type": ["Object Created"],
 "detail": {
 "bucket": {
 "name": ["$bucketName"]

Create a rule 478

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/eventbridge#code-examples

Amazon EventBridge User Guide

 }
 }
 }"""

 val ruleRequest = PutRuleRequest {
 description = "Created by using the AWS SDK for Kotlin"
 name = eventRuleName
 eventPattern = pattern
 roleArn = roleArnVal
 }

 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 val ruleResponse = eventBrClient.putRule(ruleRequest)
 println("The ARN of the new rule is ${ruleResponse.ruleArn}")
 }
}

• For API details, see PutRule in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using EventBridge with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Delete an EventBridge rule using an AWS SDK

The following code examples show how to delete an Amazon EventBridge rule.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with rules and targets

Delete a rule 479

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation

Amazon EventBridge User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Delete a rule by its name.

 /// <summary>
 /// Delete an event rule by name.
 /// </summary>
 /// <param name="ruleName">The name of the event rule.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteRuleByName(string ruleName)
 {
 var response = await _amazonEventBridge.DeleteRuleAsync(
 new DeleteRuleRequest()
 {
 Name = ruleName
 });

 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteRule in AWS SDK for .NET API Reference.

CLI

AWS CLI

To delete a CloudWatch Events rule

This example deletes the rule named EC2InstanceStateChanges:

aws events delete-rule --name "EC2InstanceStateChanges"

Delete a rule 480

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/DeleteRule

Amazon EventBridge User Guide

• For API details, see DeleteRule in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void deleteRuleByName(EventBridgeClient eventBrClient, String
 ruleName) {
 DeleteRuleRequest ruleRequest = DeleteRuleRequest.builder()
 .name(ruleName)
 .build();

 eventBrClient.deleteRule(ruleRequest);
 System.out.println("Successfully deleted the rule");
 }

• For API details, see DeleteRule in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun deleteRuleByName(ruleName: String?) {
 val ruleRequest = DeleteRuleRequest {
 name = ruleName
 }

Delete a rule 481

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/events/delete-rule.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/eventbridge#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/DeleteRule
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/eventbridge#code-examples

Amazon EventBridge User Guide

 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 eventBrClient.deleteRule(ruleRequest)
 println("Successfully deleted the rule")
 }
}

• For API details, see DeleteRule in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using EventBridge with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Describe an EventBridge rule using an AWS SDK

The following code examples show how to describe an Amazon EventBridge rule.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with rules and targets

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Get the state of a rule using the rule description.

 /// <summary>
 /// Get the state for a rule by the rule name.
 /// </summary>
 /// <param name="ruleName">The name of the rule.</param>
 /// <param name="eventBusName">The optional name of the event bus. If empty,
 uses the default event bus.</param>

Describe a rule 482

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

Amazon EventBridge User Guide

 /// <returns>The state of the rule.</returns>
 public async Task<RuleState> GetRuleStateByRuleName(string ruleName, string?
 eventBusName = null)
 {
 var ruleResponse = await _amazonEventBridge.DescribeRuleAsync(
 new DescribeRuleRequest()
 {
 Name = ruleName,
 EventBusName = eventBusName
 });
 return ruleResponse.State;
 }

• For API details, see DescribeRule in AWS SDK for .NET API Reference.

CLI

AWS CLI

To display information about a CloudWatch Events rule

This example displays information about the rule named DailyLambdaFunction:

aws events describe-rule --name "DailyLambdaFunction"

• For API details, see DescribeRule in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void checkRule(EventBridgeClient eventBrClient, String
 eventRuleName) {
 try {

Describe a rule 483

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/DescribeRule
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/events/describe-rule.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/eventbridge#readme

Amazon EventBridge User Guide

 DescribeRuleRequest ruleRequest = DescribeRuleRequest.builder()
 .name(eventRuleName)
 .build();

 DescribeRuleResponse response =
 eventBrClient.describeRule(ruleRequest);
 System.out.println("The state of the rule is " +
 response.stateAsString());

 } catch (EventBridgeException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see DescribeRule in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun checkRule(eventRuleName: String?) {
 val ruleRequest = DescribeRuleRequest {
 name = eventRuleName
 }

 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 val response = eventBrClient.describeRule(ruleRequest)
 println("The state of the rule is $response")
 }
}

• For API details, see DescribeRule in AWS SDK for Kotlin API reference.

Describe a rule 484

https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/DescribeRule
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/eventbridge#code-examples
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation

Amazon EventBridge User Guide

For a complete list of AWS SDK developer guides and code examples, see Using EventBridge with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Disable an EventBridge rule using an AWS SDK

The following code examples show how to disable an Amazon EventBridge rule.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with rules and targets

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Disable a rule by its rule name.

 /// <summary>
 /// Disable a particular rule on an event bus.
 /// </summary
 /// <param name="ruleName">The name of the rule.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DisableRuleByName(string ruleName)
 {
 var ruleResponse = await _amazonEventBridge.DisableRuleAsync(
 new DisableRuleRequest()
 {
 Name = ruleName
 });
 return ruleResponse.HttpStatusCode == HttpStatusCode.OK;
 }

Disable a rule 485

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

Amazon EventBridge User Guide

• For API details, see DisableRule in AWS SDK for .NET API Reference.

CLI

AWS CLI

To disable a CloudWatch Events rule

This example disables the rule named DailyLambdaFunction. The rule is not deleted:

aws events disable-rule --name "DailyLambdaFunction"

• For API details, see DisableRule in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Disable a rule by using its rule name.

 public static void changeRuleState(EventBridgeClient eventBrClient, String
 eventRuleName, Boolean isEnabled) {
 try {
 if (!isEnabled) {
 System.out.println("Disabling the rule: " + eventRuleName);
 DisableRuleRequest ruleRequest = DisableRuleRequest.builder()
 .name(eventRuleName)
 .build();

 eventBrClient.disableRule(ruleRequest);
 } else {
 System.out.println("Enabling the rule: " + eventRuleName);
 EnableRuleRequest ruleRequest = EnableRuleRequest.builder()
 .name(eventRuleName)

Disable a rule 486

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/DisableRule
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/events/disable-rule.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/eventbridge#readme

Amazon EventBridge User Guide

 .build();
 eventBrClient.enableRule(ruleRequest);
 }

 } catch (EventBridgeException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see DisableRule in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun changeRuleState(eventRuleName: String, isEnabled: Boolean?) {
 if (!isEnabled!!) {
 println("Disabling the rule: $eventRuleName")
 val ruleRequest = DisableRuleRequest {
 name = eventRuleName
 }
 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 eventBrClient.disableRule(ruleRequest)
 }
 } else {
 println("Enabling the rule: $eventRuleName")
 val ruleRequest = EnableRuleRequest {
 name = eventRuleName
 }
 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 eventBrClient.enableRule(ruleRequest)
 }
 }
}

Disable a rule 487

https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/DisableRule
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/eventbridge#code-examples

Amazon EventBridge User Guide

• For API details, see DisableRule in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using EventBridge with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Enable an EventBridge rule using an AWS SDK

The following code examples show how to enable an Amazon EventBridge rule.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with rules and targets

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Enable a rule by its rule name.

 /// <summary>
 /// Enable a particular rule on an event bus.
 /// </summary>
 /// <param name="ruleName">The name of the rule.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> EnableRuleByName(string ruleName)
 {
 var ruleResponse = await _amazonEventBridge.EnableRuleAsync(
 new EnableRuleRequest()
 {

Enable a rule 488

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

Amazon EventBridge User Guide

 Name = ruleName
 });
 return ruleResponse.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see EnableRule in AWS SDK for .NET API Reference.

CLI

AWS CLI

To enable a CloudWatch Events rule

This example enables the rule named DailyLambdaFunction, which had been previously
disabled:

aws events enable-rule --name "DailyLambdaFunction"

• For API details, see EnableRule in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Enable a rule by using its rule name.

 public static void changeRuleState(EventBridgeClient eventBrClient, String
 eventRuleName, Boolean isEnabled) {
 try {
 if (!isEnabled) {
 System.out.println("Disabling the rule: " + eventRuleName);
 DisableRuleRequest ruleRequest = DisableRuleRequest.builder()

Enable a rule 489

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/EnableRule
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/events/enable-rule.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/eventbridge#readme

Amazon EventBridge User Guide

 .name(eventRuleName)
 .build();

 eventBrClient.disableRule(ruleRequest);
 } else {
 System.out.println("Enabling the rule: " + eventRuleName);
 EnableRuleRequest ruleRequest = EnableRuleRequest.builder()
 .name(eventRuleName)
 .build();
 eventBrClient.enableRule(ruleRequest);
 }

 } catch (EventBridgeException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see EnableRule in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun changeRuleState(eventRuleName: String, isEnabled: Boolean?) {
 if (!isEnabled!!) {
 println("Disabling the rule: $eventRuleName")
 val ruleRequest = DisableRuleRequest {
 name = eventRuleName
 }
 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 eventBrClient.disableRule(ruleRequest)
 }
 } else {
 println("Enabling the rule: $eventRuleName")

Enable a rule 490

https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/EnableRule
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/eventbridge#code-examples

Amazon EventBridge User Guide

 val ruleRequest = EnableRuleRequest {
 name = eventRuleName
 }
 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 eventBrClient.enableRule(ruleRequest)
 }
 }
}

• For API details, see EnableRule in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using EventBridge with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

List EventBridge rule names for a target using an AWS SDK

The following code examples show how to list Amazon EventBridge rule names for a target.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with rules and targets

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List all of the rule names using the target.

 /// <summary>
 /// List names of all rules matching a target.

List rule names for a target 491

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

Amazon EventBridge User Guide

 /// </summary>
 /// <param name="targetArn">The ARN of the target.</param>
 /// <returns>The list of rule names.</returns>
 public async Task<List<string>> ListAllRuleNamesByTarget(string targetArn)
 {
 var results = new List<string>();
 var request = new ListRuleNamesByTargetRequest()
 {
 TargetArn = targetArn
 };
 ListRuleNamesByTargetResponse response;
 do
 {
 response = await
 _amazonEventBridge.ListRuleNamesByTargetAsync(request);
 results.AddRange(response.RuleNames);
 request.NextToken = response.NextToken;

 } while (response.NextToken is not null);

 return results;
 }

• For API details, see ListRuleNamesByTarget in AWS SDK for .NET API Reference.

CLI

AWS CLI

To display all the rules that have a specified target

This example displays all rules that have the Lambda function named "MyFunctionName" as
the target:

aws events list-rule-names-by-target --target-arn "arn:aws:lambda:us-
east-1:123456789012:function:MyFunctionName"

• For API details, see ListRuleNamesByTarget in AWS CLI Command Reference.

List rule names for a target 492

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/ListRuleNamesByTarget
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/events/list-rule-names-by-target.html

Amazon EventBridge User Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List all of the rule names by using the target.

 public static void listTargetRules(EventBridgeClient eventBrClient, String
 topicArn) {
 ListRuleNamesByTargetRequest ruleNamesByTargetRequest =
 ListRuleNamesByTargetRequest.builder()
 .targetArn(topicArn)
 .build();

 ListRuleNamesByTargetResponse response =
 eventBrClient.listRuleNamesByTarget(ruleNamesByTargetRequest);
 List<String> rules = response.ruleNames();
 for (String rule : rules) {
 System.out.println("The rule name is " + rule);
 }
 }

• For API details, see ListRuleNamesByTarget in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List rule names for a target 493

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/eventbridge#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/ListRuleNamesByTarget
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/eventbridge#code-examples

Amazon EventBridge User Guide

suspend fun listTargetRules(topicArnVal: String?) {
 val ruleNamesByTargetRequest = ListRuleNamesByTargetRequest {
 targetArn = topicArnVal
 }

 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 val response =
 eventBrClient.listRuleNamesByTarget(ruleNamesByTargetRequest)
 response.ruleNames?.forEach { rule ->
 println("The rule name is $rule")
 }
 }
}

• For API details, see ListRuleNamesByTarget in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using EventBridge with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

List EventBridge rules using an AWS SDK

The following code examples show how to list Amazon EventBridge rules.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with rules and targets

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List rules 494

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

Amazon EventBridge User Guide

List all of the rules for an event bus.

 /// <summary>
 /// List the rules on an event bus.
 /// </summary>
 /// <param name="eventBusArn">The optional ARN of the event bus. If empty,
 uses the default event bus.</param>
 /// <returns>The list of rules.</returns>
 public async Task<List<Rule>> ListAllRulesForEventBus(string? eventBusArn =
 null)
 {
 var results = new List<Rule>();
 var request = new ListRulesRequest()
 {
 EventBusName = eventBusArn
 };
 // Get all of the pages of rules.
 ListRulesResponse response;
 do
 {
 response = await _amazonEventBridge.ListRulesAsync(request);
 results.AddRange(response.Rules);
 request.NextToken = response.NextToken;

 } while (response.NextToken is not null);

 return results;
 }

• For API details, see ListRules in AWS SDK for .NET API Reference.

CLI

AWS CLI

To display a list of all CloudWatch Events rules

This example displays all CloudWatch Events rules in the region:

aws events list-rules

List rules 495

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/ListRules

Amazon EventBridge User Guide

To display a list of CloudWatch Events rules beginning with a certain string.

This example displays all CloudWatch Events rules in the region that have a name starting
with "Daily":

aws events list-rules --name-prefix "Daily"

• For API details, see ListRules in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Enable a rule by using its rule name.

 public static void listRules(EventBridgeClient eventBrClient) {
 try {
 ListRulesRequest rulesRequest = ListRulesRequest.builder()
 .eventBusName("default")
 .limit(10)
 .build();

 ListRulesResponse response = eventBrClient.listRules(rulesRequest);
 List<Rule> rules = response.rules();
 for (Rule rule : rules) {
 System.out.println("The rule name is : " + rule.name());
 System.out.println("The rule description is : " +
 rule.description());
 System.out.println("The rule state is : " +
 rule.stateAsString());
 }

 } catch (EventBridgeException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);

List rules 496

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/events/list-rules.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/eventbridge#readme

Amazon EventBridge User Guide

 }
 }

• For API details, see ListRules in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun listRules() {
 val rulesRequest = ListRulesRequest {
 eventBusName = "default"
 limit = 10
 }

 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 val response = eventBrClient.listRules(rulesRequest)
 response.rules?.forEach { rule ->
 println("The rule name is ${rule.name}")
 println("The rule ARN is ${rule.arn}")
 }
 }
}

• For API details, see ListRules in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using EventBridge with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

List rules 497

https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/ListRules
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/eventbridge#code-examples
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation

Amazon EventBridge User Guide

List EventBridge targets for a rule using an AWS SDK

The following code examples show how to list Amazon EventBridge targets for a rule.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with rules and targets

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List all of the targets for a rule using the rule name.

 /// <summary>
 /// List all of the targets matching a rule by name.
 /// </summary>
 /// <param name="ruleName">The name of the rule.</param>
 /// <returns>The list of targets.</returns>
 public async Task<List<Target>> ListAllTargetsOnRule(string ruleName)
 {
 var results = new List<Target>();
 var request = new ListTargetsByRuleRequest()
 {
 Rule = ruleName
 };
 ListTargetsByRuleResponse response;
 do
 {
 response = await _amazonEventBridge.ListTargetsByRuleAsync(request);
 results.AddRange(response.Targets);
 request.NextToken = response.NextToken;

 } while (response.NextToken is not null);

List targets for a rule 498

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

Amazon EventBridge User Guide

 return results;
 }

• For API details, see ListTargetsByRule in AWS SDK for .NET API Reference.

CLI

AWS CLI

To display all the targets for a CloudWatch Events rule

This example displays all the targets of the rule named DailyLambdaFunction:

aws events list-targets-by-rule --rule "DailyLambdaFunction"

• For API details, see ListTargetsByRule in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List all of the targets for a rule by using the rule name.

 public static void listTargets(EventBridgeClient eventBrClient, String
 ruleName) {
 ListTargetsByRuleRequest ruleRequest = ListTargetsByRuleRequest.builder()
 .rule(ruleName)
 .build();

 ListTargetsByRuleResponse res =
 eventBrClient.listTargetsByRule(ruleRequest);
 List<Target> targetsList = res.targets();
 for (Target target: targetsList) {

List targets for a rule 499

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/ListTargetsByRule
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/events/list-targets-by-rule.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/eventbridge#readme

Amazon EventBridge User Guide

 System.out.println("Target ARN: "+target.arn());
 }
 }

• For API details, see ListTargetsByRule in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun listTargets(ruleName: String?) {
 val ruleRequest = ListTargetsByRuleRequest {
 rule = ruleName
 }

 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 val response = eventBrClient.listTargetsByRule(ruleRequest)
 response.targets?.forEach { target ->
 println("Target ARN: ${target.arn}")
 }
 }
}

• For API details, see ListTargetsByRule in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using EventBridge with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Remove EventBridge targets from a rule using an AWS SDK

The following code examples show how to remove Amazon EventBridge targets from a rule.

Remove targets from a rule 500

https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/ListTargetsByRule
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/eventbridge#code-examples
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation

Amazon EventBridge User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Remove all of the targets for a rule using the rule name.

 /// <summary>
 /// Delete an event rule by name.
 /// </summary>
 /// <param name="ruleName">The name of the event rule.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> RemoveAllTargetsFromRule(string ruleName)
 {
 var targetIds = new List<string>();
 var request = new ListTargetsByRuleRequest()
 {
 Rule = ruleName
 };
 ListTargetsByRuleResponse targetsResponse;
 do
 {
 targetsResponse = await
 _amazonEventBridge.ListTargetsByRuleAsync(request);
 targetIds.AddRange(targetsResponse.Targets.Select(t => t.Id));
 request.NextToken = targetsResponse.NextToken;

 } while (targetsResponse.NextToken is not null);

 var removeResponse = await _amazonEventBridge.RemoveTargetsAsync(
 new RemoveTargetsRequest()
 {
 Rule = ruleName,
 Ids = targetIds
 });

 if (removeResponse.FailedEntryCount > 0)
 {

Remove targets from a rule 501

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

Amazon EventBridge User Guide

 removeResponse.FailedEntries.ForEach(e =>
 {
 _logger.LogError(
 $"Failed to remove target {e.TargetId}: {e.ErrorMessage},
 code {e.ErrorCode}");
 });
 }

 return removeResponse.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see RemoveTargets in AWS SDK for .NET API Reference.

CLI

AWS CLI

To remove a target for an event

This example removes the Amazon Kinesis stream named MyStream1 from being a target of
the rule DailyLambdaFunction. When DailyLambdaFunction was created, this stream was set
as a target with an ID of Target1:

aws events remove-targets --rule "DailyLambdaFunction" --ids "Target1"

• For API details, see RemoveTargets in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Remove all of the targets for a rule by using the rule name.

Remove targets from a rule 502

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/RemoveTargets
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/events/remove-targets.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/eventbridge#readme

Amazon EventBridge User Guide

 public static void deleteTargetsFromRule(EventBridgeClient eventBrClient,
 String eventRuleName) {
 // First, get all targets that will be deleted.
 ListTargetsByRuleRequest request = ListTargetsByRuleRequest.builder()
 .rule(eventRuleName)
 .build();

 ListTargetsByRuleResponse response =
 eventBrClient.listTargetsByRule(request);
 List<Target> allTargets = response.targets();

 // Get all targets and delete them.
 for (Target myTarget : allTargets) {
 RemoveTargetsRequest removeTargetsRequest =
 RemoveTargetsRequest.builder()
 .rule(eventRuleName)
 .ids(myTarget.id())
 .build();

 eventBrClient.removeTargets(removeTargetsRequest);
 System.out.println("Successfully removed the target");
 }
 }

• For API details, see RemoveTargets in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun deleteTargetsFromRule(eventRuleName: String?) {
 // First, get all targets that will be deleted.
 val request = ListTargetsByRuleRequest {
 rule = eventRuleName

Remove targets from a rule 503

https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/RemoveTargets
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/eventbridge#code-examples

Amazon EventBridge User Guide

 }

 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 val response = eventBrClient.listTargetsByRule(request)
 val allTargets = response.targets

 // Get all targets and delete them.
 if (allTargets != null) {
 for (myTarget in allTargets) {
 val removeTargetsRequest = RemoveTargetsRequest {
 rule = eventRuleName
 ids = listOf(myTarget.id.toString())
 }
 eventBrClient.removeTargets(removeTargetsRequest)
 println("Successfully removed the target")
 }
 }
 }
}

• For API details, see RemoveTargets in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using EventBridge with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Send EventBridge events using an AWS SDK

The following code examples show how to send Amazon EventBridge events.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Create and trigger a rule

• Get started with rules and targets

Send events 504

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation

Amazon EventBridge User Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Send an event that matches a custom pattern for a rule.

 /// <summary>
 /// Add an event to the event bus that includes an email, message, and time.
 /// </summary>
 /// <param name="email">The email to use in the event detail of the custom
 event.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> PutCustomEmailEvent(string email)
 {
 var eventDetail = new
 {
 UserEmail = email,
 Message = "This event was generated by example code.",
 UtcTime = DateTime.UtcNow.ToString("g")
 };
 var response = await _amazonEventBridge.PutEventsAsync(
 new PutEventsRequest()
 {
 Entries = new List<PutEventsRequestEntry>()
 {
 new PutEventsRequestEntry()
 {
 Source = "ExampleSource",
 Detail = JsonSerializer.Serialize(eventDetail),
 DetailType = "ExampleType"
 }
 }
 });

 return response.FailedEntryCount == 0;
 }

Send events 505

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

Amazon EventBridge User Guide

• For API details, see PutEvents in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Include the required files.

#include <aws/core/Aws.h>
#include <aws/events/EventBridgeClient.h>
#include <aws/events/model/PutEventsRequest.h>
#include <aws/events/model/PutEventsResult.h>
#include <aws/core/utils/Outcome.h>
#include <iostream>

Send the event.

 Aws::CloudWatchEvents::EventBridgeClient cwe;

 Aws::CloudWatchEvents::Model::PutEventsRequestEntry event_entry;
 event_entry.SetDetail(MakeDetails(event_key, event_value));
 event_entry.SetDetailType("sampleSubmitted");
 event_entry.AddResources(resource_arn);
 event_entry.SetSource("aws-sdk-cpp-cloudwatch-example");

 Aws::CloudWatchEvents::Model::PutEventsRequest request;
 request.AddEntries(event_entry);

 auto outcome = cwe.PutEvents(request);
 if (!outcome.IsSuccess())
 {
 std::cout << "Failed to post CloudWatch event: " <<

Send events 506

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/PutEvents
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/eventbridge#code-examples

Amazon EventBridge User Guide

 outcome.GetError().GetMessage() << std::endl;
 }
 else
 {
 std::cout << "Successfully posted CloudWatch event" << std::endl;
 }

• For API details, see PutEvents in AWS SDK for C++ API Reference.

CLI

AWS CLI

To send a custom event to CloudWatch Events

This example sends a custom event to CloudWatch Events. The event is contained within the
putevents.json file:

aws events put-events --entries file://putevents.json

Here are the contents of the putevents.json file:

[
 {
 "Source": "com.mycompany.myapp",
 "Detail": "{ \"key1\": \"value1\", \"key2\": \"value2\" }",
 "Resources": [
 "resource1",
 "resource2"
],
 "DetailType": "myDetailType"
 },
 {
 "Source": "com.mycompany.myapp",
 "Detail": "{ \"key1\": \"value3\", \"key2\": \"value4\" }",
 "Resources": [
 "resource1",
 "resource2"
],
 "DetailType": "myDetailType"
 }

Send events 507

https://docs.aws.amazon.com/goto/SdkForCpp/eventbridge-2015-10-07/PutEvents

Amazon EventBridge User Guide

]

• For API details, see PutEvents in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void triggerCustomRule(EventBridgeClient eventBrClient, String
 email) {
 String json = "{" +
 "\"UserEmail\": \"" + email + "\"," +
 "\"Message\": \"This event was generated by example code.\"," +
 "\"UtcTime\": \"Now.\"" +
 "}";

 PutEventsRequestEntry entry = PutEventsRequestEntry.builder()
 .source("ExampleSource")
 .detail(json)
 .detailType("ExampleType")
 .build();

 PutEventsRequest eventsRequest = PutEventsRequest.builder()
 .entries(entry)
 .build();

 eventBrClient.putEvents(eventsRequest);
 }

• For API details, see PutEvents in AWS SDK for Java 2.x API Reference.

Send events 508

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/events/put-events.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/eventbridge#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/PutEvents

Amazon EventBridge User Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Import the SDK and client modules and call the API.

import {
 EventBridgeClient,
 PutEventsCommand,
} from "@aws-sdk/client-eventbridge";

export const putEvents = async (
 source = "eventbridge.integration.test",
 detailType = "greeting",
 resources = [],
) => {
 const client = new EventBridgeClient({});

 const response = await client.send(
 new PutEventsCommand({
 Entries: [
 {
 Detail: JSON.stringify({ greeting: "Hello there." }),
 DetailType: detailType,
 Resources: resources,
 Source: source,
 },
],
 }),
);

 console.log("PutEvents response:");
 console.log(response);
 // PutEvents response:
 // {
 // '$metadata': {
 // httpStatusCode: 200,

Send events 509

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/eventbridge#code-examples

Amazon EventBridge User Guide

 // requestId: '3d0df73d-dcea-4a23-ae0d-f5556a3ac109',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // Entries: [{ EventId: '51620841-5af4-6402-d9bc-b77734991eb5' }],
 // FailedEntryCount: 0
 // }

 return response;
};

• For API details, see PutEvents in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create CloudWatchEvents service object
var ebevents = new AWS.EventBridge({ apiVersion: "2015-10-07" });

var params = {
 Entries: [
 {
 Detail: '{ "key1": "value1", "key2": "value2" }',
 DetailType: "appRequestSubmitted",
 Resources: ["RESOURCE_ARN"],
 Source: "com.company.app",
 },
],
};

Send events 510

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/eventbridge/command/PutEventsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/eventbridge#code-examples

Amazon EventBridge User Guide

ebevents.putEvents(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.Entries);
 }
});

• For API details, see PutEvents in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun triggerCustomRule(email: String) {
 val json = "{" +
 "\"UserEmail\": \"" + email + "\"," +
 "\"Message\": \"This event was generated by example code.\"" +
 "\"UtcTime\": \"Now.\"" +
 "}"

 val entry = PutEventsRequestEntry {
 source = "ExampleSource"
 detail = json
 detailType = "ExampleType"
 }

 val eventsRequest = PutEventsRequest {
 this.entries = listOf(entry)
 }

 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 eventBrClient.putEvents(eventsRequest)
 }
}

Send events 511

https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/eventbridge-2015-10-07/PutEvents
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/eventbridge#code-examples

Amazon EventBridge User Guide

• For API details, see PutEvents in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using EventBridge with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Scenarios for EventBridge using AWS SDKs

The following code examples show you how to implement common scenarios in EventBridge with
AWS SDKs. These scenarios show you how to accomplish specific tasks by calling multiple functions
within EventBridge. Each scenario includes a link to GitHub, where you can find instructions on how
to set up and run the code.

Examples

• Create and trigger a rule in Amazon EventBridge using an AWS SDK

• Get started with EventBridge rules and targets using an AWS SDK

Create and trigger a rule in Amazon EventBridge using an AWS SDK

The following code example shows how to create and trigger a rule in Amazon EventBridge.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Call the functions in the correct order.

require "aws-sdk-sns"
require "aws-sdk-iam"
require "aws-sdk-cloudwatchevents"

Scenarios 512

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/eventbridge#code-examples

Amazon EventBridge User Guide

require "aws-sdk-ec2"
require "aws-sdk-cloudwatch"
require "aws-sdk-cloudwatchlogs"
require "securerandom"

Checks whether the specified Amazon Simple Notification Service (Amazon SNS) topic exists
among those provided to this function.

Checks whether the specified Amazon SNS
topic exists among those provided to this function.
This is a helper function that is called by the topic_exists? function.
#
@param topics [Array] An array of Aws::SNS::Types::Topic objects.
@param topic_arn [String] The ARN of the topic to find.
@return [Boolean] true if the topic ARN was found; otherwise, false.
@example
sns_client = Aws::SNS::Client.new(region: 'us-east-1')
response = sns_client.list_topics
if topic_found?(
response.topics,
'arn:aws:sns:us-east-1:111111111111:aws-doc-sdk-examples-topic'
)
puts 'Topic found.'
end

def topic_found?(topics, topic_arn)
 topics.each do |topic|
 return true if topic.topic_arn == topic_arn
 end
 return false
end

Checks whether the specified topic exists among those available to the caller in Amazon
SNS.

Checks whether the specified topic exists among those available to the
caller in Amazon SNS.
#
@param sns_client [Aws::SNS::Client] An initialized Amazon SNS client.
@param topic_arn [String] The ARN of the topic to find.

Create and trigger a rule 513

Amazon EventBridge User Guide

@return [Boolean] true if the topic ARN was found; otherwise, false.
@example
exit 1 unless topic_exists?(
Aws::SNS::Client.new(region: 'us-east-1'),
'arn:aws:sns:us-east-1:111111111111:aws-doc-sdk-examples-topic'
)
def topic_exists?(sns_client, topic_arn)
 puts "Searching for topic with ARN '#{topic_arn}'..."
 response = sns_client.list_topics
 if response.topics.count.positive?
 if topic_found?(response.topics, topic_arn)
 puts "Topic found."
 return true
 end
 while response.next_page? do
 response = response.next_page
 if response.topics.count.positive?
 if topic_found?(response.topics, topic_arn)
 puts "Topic found."
 return true
 end
 end
 end
 end
 puts "Topic not found."
 return false
rescue StandardError => e
 puts "Topic not found: #{e.message}"
 return false
end

Create a topic in Amazon SNS and then subscribe an email address to receive notifications to
that topic.

Creates a topic in Amazon SNS
and then subscribes an email address to receive notifications to that topic.
#
@param sns_client [Aws::SNS::Client] An initialized Amazon SNS client.
@param topic_name [String] The name of the topic to create.
@param email_address [String] The email address of the recipient to notify.
@return [String] The ARN of the topic that was created.
@example

Create and trigger a rule 514

Amazon EventBridge User Guide

puts create_topic(
Aws::SNS::Client.new(region: 'us-east-1'),
'aws-doc-sdk-examples-topic',
'mary@example.com'
)
def create_topic(sns_client, topic_name, email_address)
 puts "Creating the topic named '#{topic_name}'..."
 topic_response = sns_client.create_topic(name: topic_name)
 puts "Topic created with ARN '#{topic_response.topic_arn}'."
 subscription_response = sns_client.subscribe(
 topic_arn: topic_response.topic_arn,
 protocol: "email",
 endpoint: email_address,
 return_subscription_arn: true
)
 puts "Subscription created with ARN " \
 "'#{subscription_response.subscription_arn}'. Have the owner of the " \
 "email address '#{email_address}' check their inbox in a few minutes " \
 "and confirm the subscription to start receiving notification emails."
 return topic_response.topic_arn
rescue StandardError => e
 puts "Error creating or subscribing to topic: #{e.message}"
 return "Error"
end

Check whether the specified AWS Identity and Access Management (IAM) role exists among
those provided to this function.

Checks whether the specified AWS Identity and Access Management (IAM)
role exists among those provided to this function.
This is a helper function that is called by the role_exists? function.
#
@param roles [Array] An array of Aws::IAM::Role objects.
@param role_arn [String] The ARN of the role to find.
@return [Boolean] true if the role ARN was found; otherwise, false.
@example
iam_client = Aws::IAM::Client.new(region: 'us-east-1')
response = iam_client.list_roles
if role_found?(
response.roles,
'arn:aws:iam::111111111111:role/aws-doc-sdk-examples-ec2-state-change'
)

Create and trigger a rule 515

Amazon EventBridge User Guide

puts 'Role found.'
end
def role_found?(roles, role_arn)
 roles.each do |role|
 return true if role.arn == role_arn
 end
 return false
end

Check whether the specified role exists among those available to the caller in IAM.

Checks whether the specified role exists among those available to the
caller in AWS Identity and Access Management (IAM).
#
@param iam_client [Aws::IAM::Client] An initialized IAM client.
@param role_arn [String] The ARN of the role to find.
@return [Boolean] true if the role ARN was found; otherwise, false.
@example
exit 1 unless role_exists?(
Aws::IAM::Client.new(region: 'us-east-1'),
'arn:aws:iam::111111111111:role/aws-doc-sdk-examples-ec2-state-change'
)
def role_exists?(iam_client, role_arn)
 puts "Searching for role with ARN '#{role_arn}'..."
 response = iam_client.list_roles
 if response.roles.count.positive?
 if role_found?(response.roles, role_arn)
 puts "Role found."
 return true
 end
 while response.next_page? do
 response = response.next_page
 if response.roles.count.positive?
 if role_found?(response.roles, role_arn)
 puts "Role found."
 return true
 end
 end
 end
 end
 puts "Role not found."
 return false

Create and trigger a rule 516

Amazon EventBridge User Guide

rescue StandardError => e
 puts "Role not found: #{e.message}"
 return false
end

Create a role in IAM.

Creates a role in AWS Identity and Access Management (IAM).
This role is used by a rule in Amazon EventBridge to allow
that rule to operate within the caller's account.
This role is designed to be used specifically by this code example.
#
@param iam_client [Aws::IAM::Client] An initialized IAM client.
@param role_name [String] The name of the role to create.
@return [String] The ARN of the role that was created.
@example
puts create_role(
Aws::IAM::Client.new(region: 'us-east-1'),
'aws-doc-sdk-examples-ec2-state-change'
)
def create_role(iam_client, role_name)
 puts "Creating the role named '#{role_name}'..."
 response = iam_client.create_role(
 assume_role_policy_document: {
 'Version': "2012-10-17",
 'Statement': [
 {
 'Sid': "",
 'Effect': "Allow",
 'Principal': {
 'Service': "events.amazonaws.com"
 },
 'Action': "sts:AssumeRole"
 }
]
 }.to_json,
 path: "/",
 role_name: role_name
)
 puts "Role created with ARN '#{response.role.arn}'."
 puts "Adding access policy to role..."
 iam_client.put_role_policy(

Create and trigger a rule 517

Amazon EventBridge User Guide

 policy_document: {
 'Version': "2012-10-17",
 'Statement': [
 {
 'Sid': "CloudWatchEventsFullAccess",
 'Effect': "Allow",
 'Resource': "*",
 'Action': "events:*"
 },
 {
 'Sid': "IAMPassRoleForCloudWatchEvents",
 'Effect': "Allow",
 'Resource': "arn:aws:iam::*:role/AWS_Events_Invoke_Targets",
 'Action': "iam:PassRole"
 }
]
 }.to_json,
 policy_name: "CloudWatchEventsPolicy",
 role_name: role_name
)
 puts "Access policy added to role."
 return response.role.arn
rescue StandardError => e
 puts "Error creating role or adding policy to it: #{e.message}"
 puts "If the role was created, you must add the access policy " \
 "to the role yourself, or delete the role yourself and try again."
 return "Error"
end

Checks whether the specified EventBridge rule exists among those provided to this function.

Checks whether the specified Amazon EventBridge rule exists among
those provided to this function.
This is a helper function that is called by the rule_exists? function.
#
@param rules [Array] An array of Aws::CloudWatchEvents::Types::Rule objects.
@param rule_arn [String] The name of the rule to find.
@return [Boolean] true if the name of the rule was found; otherwise, false.
@example
cloudwatchevents_client = Aws::CloudWatch::Client.new(region: 'us-east-1')
response = cloudwatchevents_client.list_rules
if rule_found?(response.rules, 'aws-doc-sdk-examples-ec2-state-change')

Create and trigger a rule 518

Amazon EventBridge User Guide

puts 'Rule found.'
end
def rule_found?(rules, rule_name)
 rules.each do |rule|
 return true if rule.name == rule_name
 end
 return false
end

Checks whether the specified rule exists among those available to the caller in EventBridge.

Checks whether the specified rule exists among those available to the
caller in Amazon EventBridge.
#
@param cloudwatchevents_client [Aws::CloudWatchEvents::Client]
An initialized Amazon EventBridge client.
@param rule_name [String] The name of the rule to find.
@return [Boolean] true if the rule name was found; otherwise, false.
@example
exit 1 unless rule_exists?(
Aws::CloudWatch::Client.new(region: 'us-east-1')
'aws-doc-sdk-examples-ec2-state-change'
)
def rule_exists?(cloudwatchevents_client, rule_name)
 puts "Searching for rule with name '#{rule_name}'..."
 response = cloudwatchevents_client.list_rules
 if response.rules.count.positive?
 if rule_found?(response.rules, rule_name)
 puts "Rule found."
 return true
 end
 while response.next_page? do
 response = response.next_page
 if response.rules.count.positive?
 if rule_found?(response.rules, rule_name)
 puts "Rule found."
 return true
 end
 end
 end
 end
 puts "Rule not found."

Create and trigger a rule 519

Amazon EventBridge User Guide

 return false
rescue StandardError => e
 puts "Rule not found: #{e.message}"
 return false
end

Create a rule in EventBridge.

Creates a rule in Amazon EventBridge.
This rule is triggered whenever an available instance in
Amazon EC2 changes to the specified state.
This rule is designed to be used specifically by this code example.
#
Prerequisites:
#
- A role in AWS Identity and Access Management (IAM) that is designed
to be used specifically by this code example.
- A topic in Amazon SNS.
#
@param cloudwatchevents_client [Aws::CloudWatchEvents::Client]
An initialized Amazon EventBridge client.
@param rule_name [String] The name of the rule to create.
@param rule_description [String] Some description for this rule.
@param instance_state [String] The state that available instances in
Amazon EC2 must change to, to
trigger this rule.
@param role_arn [String] The Amazon Resource Name (ARN) of the IAM role.
@param target_id [String] Some identifying string for the rule's target.
@param topic_arn [String] The ARN of the Amazon SNS topic.
@return [Boolean] true if the rule was created; otherwise, false.
@example
exit 1 unless rule_created?(
Aws::CloudWatch::Client.new(region: 'us-east-1'),
'aws-doc-sdk-examples-ec2-state-change',
'Triggers when any available EC2 instance starts.',
'running',
'arn:aws:iam::111111111111:role/aws-doc-sdk-examples-ec2-state-change',
'sns-topic',
'arn:aws:sns:us-east-1:111111111111:aws-doc-sdk-examples-topic'
)
def rule_created?(
 cloudwatchevents_client,

Create and trigger a rule 520

Amazon EventBridge User Guide

 rule_name,
 rule_description,
 instance_state,
 role_arn,
 target_id,
 topic_arn
)
 puts "Creating rule with name '#{rule_name}'..."
 put_rule_response = cloudwatchevents_client.put_rule(
 name: rule_name,
 description: rule_description,
 event_pattern: {
 'source': [
 "aws.ec2"
],
 'detail-type': [
 "EC2 Instance State-change Notification"
],
 'detail': {
 'state': [
 instance_state
]
 }
 }.to_json,
 state: "ENABLED",
 role_arn: role_arn
)
 puts "Rule created with ARN '#{put_rule_response.rule_arn}'."

 put_targets_response = cloudwatchevents_client.put_targets(
 rule: rule_name,
 targets: [
 {
 id: target_id,
 arn: topic_arn
 }
]
)
 if put_targets_response.key?(:failed_entry_count) &&
 put_targets_response.failed_entry_count > 0
 puts "Error(s) adding target to rule:"
 put_targets_response.failed_entries.each do |failure|
 puts failure.error_message
 end

Create and trigger a rule 521

Amazon EventBridge User Guide

 return false
 else
 return true
 end
rescue StandardError => e
 puts "Error creating rule or adding target to rule: #{e.message}"
 puts "If the rule was created, you must add the target " \
 "to the rule yourself, or delete the rule yourself and try again."
 return false
end

Check to see whether the specified log group exists among those available to the caller in
Amazon CloudWatch Logs.

Checks to see whether the specified log group exists among those available
to the caller in Amazon CloudWatch Logs.
#
@param cloudwatchlogs_client [Aws::CloudWatchLogs::Client] An initialized
Amazon CloudWatch Logs client.
@param log_group_name [String] The name of the log group to find.
@return [Boolean] true if the log group name was found; otherwise, false.
@example
exit 1 unless log_group_exists?(
Aws::CloudWatchLogs::Client.new(region: 'us-east-1'),
'aws-doc-sdk-examples-cloudwatch-log'
)
def log_group_exists?(cloudwatchlogs_client, log_group_name)
 puts "Searching for log group with name '#{log_group_name}'..."
 response = cloudwatchlogs_client.describe_log_groups(
 log_group_name_prefix: log_group_name
)
 if response.log_groups.count.positive?
 response.log_groups.each do |log_group|
 if log_group.log_group_name == log_group_name
 puts "Log group found."
 return true
 end
 end
 end
 puts "Log group not found."
 return false
rescue StandardError => e

Create and trigger a rule 522

Amazon EventBridge User Guide

 puts "Log group not found: #{e.message}"
 return false
end

Create a log group in CloudWatch Logs.

Creates a log group in Amazon CloudWatch Logs.
#
@param cloudwatchlogs_client [Aws::CloudWatchLogs::Client] An initialized
Amazon CloudWatch Logs client.
@param log_group_name [String] The name of the log group to create.
@return [Boolean] true if the log group name was created; otherwise, false.
@example
exit 1 unless log_group_created?(
Aws::CloudWatchLogs::Client.new(region: 'us-east-1'),
'aws-doc-sdk-examples-cloudwatch-log'
)
def log_group_created?(cloudwatchlogs_client, log_group_name)
 puts "Attempting to create log group with the name '#{log_group_name}'..."
 cloudwatchlogs_client.create_log_group(log_group_name: log_group_name)
 puts "Log group created."
 return true
rescue StandardError => e
 puts "Error creating log group: #{e.message}"
 return false
end

Write an event to a log stream in CloudWatch Logs.

Writes an event to a log stream in Amazon CloudWatch Logs.
#
Prerequisites:
#
- A log group in Amazon CloudWatch Logs.
- A log stream within the log group.
#
@param cloudwatchlogs_client [Aws::CloudWatchLogs::Client] An initialized
Amazon CloudWatch Logs client.
@param log_group_name [String] The name of the log group.
@param log_stream_name [String] The name of the log stream within
the log group.

Create and trigger a rule 523

Amazon EventBridge User Guide

@param message [String] The message to write to the log stream.
@param sequence_token [String] If available, the sequence token from the
message that was written immediately before this message. This sequence
token is returned by Amazon CloudWatch Logs whenever you programmatically
write a message to the log stream.
@return [String] The sequence token that is returned by
Amazon CloudWatch Logs after successfully writing the message to the
log stream.
@example
puts log_event(
Aws::EC2::Client.new(region: 'us-east-1'),
'aws-doc-sdk-examples-cloudwatch-log'
'2020/11/19/53f985be-199f-408e-9a45-fc242df41fEX',
"Instance 'i-033c48ef067af3dEX' restarted.",
'495426724868310740095796045676567882148068632824696073EX'
)
def log_event(
 cloudwatchlogs_client,
 log_group_name,
 log_stream_name,
 message,
 sequence_token
)
 puts "Attempting to log '#{message}' to log stream '#{log_stream_name}'..."
 event = {
 log_group_name: log_group_name,
 log_stream_name: log_stream_name,
 log_events: [
 {
 timestamp: (Time.now.utc.to_f.round(3) * 1_000).to_i,
 message: message
 }
]
 }
 unless sequence_token.empty?
 event[:sequence_token] = sequence_token
 end

 response = cloudwatchlogs_client.put_log_events(event)
 puts "Message logged."
 return response.next_sequence_token
rescue StandardError => e
 puts "Message not logged: #{e.message}"
end

Create and trigger a rule 524

Amazon EventBridge User Guide

Restart an Amazon Elastic Compute Cloud (Amazon EC2) instance and adds information
about the related activity to a log stream in CloudWatch Logs.

Restarts an Amazon EC2 instance
and adds information about the related activity to a log stream
in Amazon CloudWatch Logs.
#
Prerequisites:
#
- The Amazon EC2 instance to restart.
- The log group in Amazon CloudWatch Logs to add related activity
information to.
#
@param ec2_client [Aws::EC2::Client] An initialized Amazon EC2 client.
@param cloudwatchlogs_client [Aws::CloudWatchLogs::Client]
An initialized Amazon CloudWatch Logs client.
@param instance_id [String] The ID of the instance.
@param log_group_name [String] The name of the log group.
@return [Boolean] true if the instance was restarted and the information
was written to the log stream; otherwise, false.
@example
exit 1 unless instance_restarted?(
Aws::EC2::Client.new(region: 'us-east-1'),
Aws::CloudWatchLogs::Client.new(region: 'us-east-1'),
'i-033c48ef067af3dEX',
'aws-doc-sdk-examples-cloudwatch-log'
)
def instance_restarted?(
 ec2_client,
 cloudwatchlogs_client,
 instance_id,
 log_group_name
)
 log_stream_name = "#{Time.now.year}/#{Time.now.month}/#{Time.now.day}/" \
 "#{SecureRandom.uuid}"
 cloudwatchlogs_client.create_log_stream(
 log_group_name: log_group_name,
 log_stream_name: log_stream_name
)
 sequence_token = ""

Create and trigger a rule 525

Amazon EventBridge User Guide

 puts "Attempting to stop the instance with the ID '#{instance_id}'. " \
 "This might take a few minutes..."
 ec2_client.stop_instances(instance_ids: [instance_id])
 ec2_client.wait_until(:instance_stopped, instance_ids: [instance_id])
 puts "Instance stopped."
 sequence_token = log_event(
 cloudwatchlogs_client,
 log_group_name,
 log_stream_name,
 "Instance '#{instance_id}' stopped.",
 sequence_token
)

 puts "Attempting to restart the instance. This might take a few minutes..."
 ec2_client.start_instances(instance_ids: [instance_id])
 ec2_client.wait_until(:instance_running, instance_ids: [instance_id])
 puts "Instance restarted."
 sequence_token = log_event(
 cloudwatchlogs_client,
 log_group_name,
 log_stream_name,
 "Instance '#{instance_id}' restarted.",
 sequence_token
)

 return true
rescue StandardError => e
 puts "Error creating log stream or stopping or restarting the instance: " \
 "#{e.message}"
 log_event(
 cloudwatchlogs_client,
 log_group_name,
 log_stream_name,
 "Error stopping or starting instance '#{instance_id}': #{e.message}",
 sequence_token
)
 return false
end

Display information about activity for a rule in EventBridge.

Create and trigger a rule 526

Amazon EventBridge User Guide

Displays information about activity for a rule in Amazon EventBridge.
#
Prerequisites:
#
- A rule in Amazon EventBridge.
#
@param cloudwatch_client [Amazon::CloudWatch::Client] An initialized
Amazon CloudWatch client.
@param rule_name [String] The name of the rule.
@param start_time [Time] The timestamp that determines the first datapoint
to return. Can also be expressed as DateTime, Date, Integer, or String.
@param end_time [Time] The timestamp that determines the last datapoint
to return. Can also be expressed as DateTime, Date, Integer, or String.
@param period [Integer] The interval, in seconds, to check for activity.
@example
display_rule_activity(
Aws::CloudWatch::Client.new(region: 'us-east-1'),
'aws-doc-sdk-examples-ec2-state-change',
Time.now - 600, # Start checking from 10 minutes ago.
Time.now, # Check up until now.
60 # Check every minute during those 10 minutes.
)
def display_rule_activity(
 cloudwatch_client,
 rule_name,
 start_time,
 end_time,
 period
)
 puts "Attempting to display rule activity..."
 response = cloudwatch_client.get_metric_statistics(
 namespace: "AWS/Events",
 metric_name: "Invocations",
 dimensions: [
 {
 name: "RuleName",
 value: rule_name
 }
],
 start_time: start_time,
 end_time: end_time,
 period: period,
 statistics: ["Sum"],

Create and trigger a rule 527

Amazon EventBridge User Guide

 unit: "Count"
)

 if response.key?(:datapoints) && response.datapoints.count.positive?
 puts "The event rule '#{rule_name}' was triggered:"
 response.datapoints.each do |datapoint|
 puts " #{datapoint.sum} time(s) at #{datapoint.timestamp}"
 end
 else
 puts "The event rule '#{rule_name}' was not triggered during the " \
 "specified time period."
 end
rescue StandardError => e
 puts "Error getting information about event rule activity: #{e.message}"
end

Display log information for all of the log streams in a CloudWatch Logs log group.

Displays log information for all of the log streams in a log group in
Amazon CloudWatch Logs.
#
Prerequisites:
#
- A log group in Amazon CloudWatch Logs.
#
@param cloudwatchlogs_client [Amazon::CloudWatchLogs::Client] An initialized
Amazon CloudWatch Logs client.
@param log_group_name [String] The name of the log group.
@example
display_log_data(
Amazon::CloudWatchLogs::Client.new(region: 'us-east-1'),
'aws-doc-sdk-examples-cloudwatch-log'
)
def display_log_data(cloudwatchlogs_client, log_group_name)
 puts "Attempting to display log stream data for the log group " \
 "named '#{log_group_name}'..."
 describe_log_streams_response = cloudwatchlogs_client.describe_log_streams(
 log_group_name: log_group_name,
 order_by: "LastEventTime",
 descending: true
)
 if describe_log_streams_response.key?(:log_streams) &&

Create and trigger a rule 528

Amazon EventBridge User Guide

 describe_log_streams_response.log_streams.count.positive?
 describe_log_streams_response.log_streams.each do |log_stream|
 get_log_events_response = cloudwatchlogs_client.get_log_events(
 log_group_name: log_group_name,
 log_stream_name: log_stream.log_stream_name
)
 puts "\nLog messages for '#{log_stream.log_stream_name}':"
 puts "-" * (log_stream.log_stream_name.length + 20)
 if get_log_events_response.key?(:events) &&
 get_log_events_response.events.count.positive?
 get_log_events_response.events.each do |event|
 puts event.message
 end
 else
 puts "No log messages for this log stream."
 end
 end
 end
rescue StandardError => e
 puts "Error getting information about the log streams or their messages: " \
 "#{e.message}"
end

Display a reminder to the caller to manually clean up any associated AWS resources that
they no longer need.

Displays a reminder to the caller to manually clean up any associated
AWS resources that they no longer need.
#
@param topic_name [String] The name of the Amazon SNS topic.
@param role_name [String] The name of the IAM role.
@param rule_name [String] The name of the Amazon EventBridge rule.
@param log_group_name [String] The name of the Amazon CloudWatch Logs log
 group.
@param instance_id [String] The ID of the Amazon EC2 instance.
@example
manual_cleanup_notice(
'aws-doc-sdk-examples-topic',
'aws-doc-sdk-examples-cloudwatch-events-rule-role',
'aws-doc-sdk-examples-ec2-state-change',
'aws-doc-sdk-examples-cloudwatch-log',

Create and trigger a rule 529

Amazon EventBridge User Guide

'i-033c48ef067af3dEX'
)
def manual_cleanup_notice(
 topic_name, role_name, rule_name, log_group_name, instance_id
)
 puts "-" * 10
 puts "Some of the following AWS resources might still exist in your account."
 puts "If you no longer want to use this code example, then to clean up"
 puts "your AWS account and avoid unexpected costs, you might want to"
 puts "manually delete any of the following resources if they exist:"
 puts "- The Amazon SNS topic named '#{topic_name}'."
 puts "- The IAM role named '#{role_name}'."
 puts "- The Amazon EventBridge rule named '#{rule_name}'."
 puts "- The Amazon CloudWatch Logs log group named '#{log_group_name}'."
 puts "- The Amazon EC2 instance with the ID '#{instance_id}'."
end

Example usage:
def run_me
 # Properties for the Amazon SNS topic.
 topic_name = "aws-doc-sdk-examples-topic"
 email_address = "mary@example.com"
 # Properties for the IAM role.
 role_name = "aws-doc-sdk-examples-cloudwatch-events-rule-role"
 # Properties for the Amazon EventBridge rule.
 rule_name = "aws-doc-sdk-examples-ec2-state-change"
 rule_description = "Triggers when any available EC2 instance starts."
 instance_state = "running"
 target_id = "sns-topic"
 # Properties for the Amazon EC2 instance.
 instance_id = "i-033c48ef067af3dEX"
 # Properties for displaying the event rule's activity.
 start_time = Time.now - 600 # Go back over the past 10 minutes
 # (10 minutes * 60 seconds = 600 seconds).
 end_time = Time.now
 period = 60 # Look back every 60 seconds over the past 10 minutes.
 # Properties for the Amazon CloudWatch Logs log group.
 log_group_name = "aws-doc-sdk-examples-cloudwatch-log"
 # AWS service clients for this code example.
 region = "us-east-1"
 sts_client = Aws::STS::Client.new(region: region)
 sns_client = Aws::SNS::Client.new(region: region)
 iam_client = Aws::IAM::Client.new(region: region)
 cloudwatchevents_client = Aws::CloudWatchEvents::Client.new(region: region)

Create and trigger a rule 530

Amazon EventBridge User Guide

 ec2_client = Aws::EC2::Client.new(region: region)
 cloudwatch_client = Aws::CloudWatch::Client.new(region: region)
 cloudwatchlogs_client = Aws::CloudWatchLogs::Client.new(region: region)

 # Get the caller's account ID for use in forming
 # Amazon Resource Names (ARNs) that this code relies on later.
 account_id = sts_client.get_caller_identity.account

 # If the Amazon SNS topic doesn't exist, create it.
 topic_arn = "arn:aws:sns:#{region}:#{account_id}:#{topic_name}"
 unless topic_exists?(sns_client, topic_arn)
 topic_arn = create_topic(sns_client, topic_name, email_address)
 if topic_arn == "Error"
 puts "Could not create the Amazon SNS topic correctly. Program stopped."
 manual_cleanup_notice(
 topic_name, role_name, rule_name, log_group_name, instance_id
)
 exit 1
 end
 end

 # If the IAM role doesn't exist, create it.
 role_arn = "arn:aws:iam::#{account_id}:role/#{role_name}"
 unless role_exists?(iam_client, role_arn)
 role_arn = create_role(iam_client, role_name)
 if role_arn == "Error"
 puts "Could not create the IAM role correctly. Program stopped."
 manual_cleanup_notice(
 topic_name, role_name, rule_name, log_group_name, instance_id
)
 end
 end

 # If the Amazon EventBridge rule doesn't exist, create it.
 unless rule_exists?(cloudwatchevents_client, rule_name)
 unless rule_created?(
 cloudwatchevents_client,
 rule_name,
 rule_description,
 instance_state,
 role_arn,
 target_id,
 topic_arn
)

Create and trigger a rule 531

Amazon EventBridge User Guide

 puts "Could not create the Amazon EventBridge rule correctly. " \
 "Program stopped."
 manual_cleanup_notice(
 topic_name, role_name, rule_name, log_group_name, instance_id
)
 end
 end

 # If the Amazon CloudWatch Logs log group doesn't exist, create it.
 unless log_group_exists?(cloudwatchlogs_client, log_group_name)
 unless log_group_created?(cloudwatchlogs_client, log_group_name)
 puts "Could not create the Amazon CloudWatch Logs log group " \
 "correctly. Program stopped."
 manual_cleanup_notice(
 topic_name, role_name, rule_name, log_group_name, instance_id
)
 end
 end

 # Restart the Amazon EC2 instance, which triggers the rule.
 unless instance_restarted?(
 ec2_client,
 cloudwatchlogs_client,
 instance_id,
 log_group_name
)
 puts "Could not restart the instance to trigger the rule. " \
 "Continuing anyway to show information about the rule and logs..."
 end

 # Display how many times the rule was triggered over the past 10 minutes.
 display_rule_activity(
 cloudwatch_client,
 rule_name,
 start_time,
 end_time,
 period
)

 # Display related log data in Amazon CloudWatch Logs.
 display_log_data(cloudwatchlogs_client, log_group_name)

 # Reminder the caller to clean up any AWS resources that are used
 # by this code example and are no longer needed.

Create and trigger a rule 532

Amazon EventBridge User Guide

 manual_cleanup_notice(
 topic_name, role_name, rule_name, log_group_name, instance_id
)
end

run_me if $PROGRAM_NAME == __FILE__

• For API details, see the following topics in AWS SDK for Ruby API Reference.

• PutEvents

• PutRule

For a complete list of AWS SDK developer guides and code examples, see Using EventBridge with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Get started with EventBridge rules and targets using an AWS SDK

The following code examples show how to:

• Create a rule and add a target to it.

• Enable and disable rules.

• List and update rules and targets.

• Send events, then clean up resources.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

public class EventBridgeScenario

Get started with rules and targets 533

https://docs.aws.amazon.com/goto/SdkForRubyV3/eventbridge-2015-10-07/PutEvents
https://docs.aws.amazon.com/goto/SdkForRubyV3/eventbridge-2015-10-07/PutRule
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

Amazon EventBridge User Guide

{
 /*
 Before running this .NET code example, set up your development environment,
 including your credentials.

 This .NET example performs the following tasks with Amazon EventBridge:
 - Create a rule.
 - Add a target to a rule.
 - Enable and disable rules.
 - List rules and targets.
 - Update rules and targets.
 - Send events.
 - Delete the rule.
 */

 private static ILogger logger = null!;
 private static EventBridgeWrapper _eventBridgeWrapper = null!;
 private static IConfiguration _configuration = null!;

 private static IAmazonIdentityManagementService? _iamClient = null!;
 private static IAmazonSimpleNotificationService? _snsClient = null!;
 private static IAmazonS3 _s3Client = null!;

 static async Task Main(string[] args)
 {
 // Set up dependency injection for Amazon EventBridge.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft",
 LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonEventBridge>()
 .AddAWSService<IAmazonIdentityManagementService>()
 .AddAWSService<IAmazonS3>()
 .AddAWSService<IAmazonSimpleNotificationService>()
 .AddTransient<EventBridgeWrapper>()
)
 .Build();

 _configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())

Get started with rules and targets 534

Amazon EventBridge User Guide

 .AddJsonFile("settings.json") // Load settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally, load local settings.
 .Build();

 logger = LoggerFactory.Create(builder => { builder.AddConsole(); })
 .CreateLogger<EventBridgeScenario>();

 ServicesSetup(host);

 string topicArn = "";
 string roleArn = "";

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Welcome to the Amazon EventBridge example scenario.");
 Console.WriteLine(new string('-', 80));

 try
 {
 roleArn = await CreateRole();

 await CreateBucketWithEventBridgeEvents();

 await AddEventRule(roleArn);

 await ListEventRules();

 topicArn = await CreateSnsTopic();

 var email = await SubscribeToSnsTopic(topicArn);

 await AddSnsTarget(topicArn);

 await ListTargets();

 await ListRulesForTarget(topicArn);

 await UploadS3File(_s3Client);

 await ChangeRuleState(false);

 await GetRuleState();

 await UpdateSnsEventRule(topicArn);

Get started with rules and targets 535

Amazon EventBridge User Guide

 await ChangeRuleState(true);

 await UploadS3File(_s3Client);

 await UpdateToCustomRule(topicArn);

 await TriggerCustomRule(email);

 await CleanupResources(topicArn);
 }
 catch (Exception ex)
 {
 logger.LogError(ex, "There was a problem executing the scenario.");
 await CleanupResources(topicArn);
 }
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("The Amazon EventBridge example scenario is
 complete.");
 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Populate the services for use within the console application.
 /// </summary>
 /// <param name="host">The services host.</param>
 private static void ServicesSetup(IHost host)
 {
 _eventBridgeWrapper =
 host.Services.GetRequiredService<EventBridgeWrapper>();
 _snsClient =
 host.Services.GetRequiredService<IAmazonSimpleNotificationService>();
 _s3Client = host.Services.GetRequiredService<IAmazonS3>();
 _iamClient =
 host.Services.GetRequiredService<IAmazonIdentityManagementService>();
 }

 /// <summary>
 /// Create a role to be used by EventBridge.
 /// </summary>
 /// <returns>The role Amazon Resource Name (ARN).</returns>
 public static async Task<string> CreateRole()
 {
 Console.WriteLine(new string('-', 80));

Get started with rules and targets 536

Amazon EventBridge User Guide

 Console.WriteLine("Creating a role to use with EventBridge and attaching
 managed policy AmazonEventBridgeFullAccess.");
 Console.WriteLine(new string('-', 80));

 var roleName = _configuration["roleName"];

 var assumeRolePolicy = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 $"\"Service\": \"events.amazonaws.com\"" +
 "}," +
 "\"Action\": \"sts:AssumeRole\"" +
 "}]" +
 "}";

 var roleResult = await _iamClient!.CreateRoleAsync(
 new CreateRoleRequest()
 {
 AssumeRolePolicyDocument = assumeRolePolicy,
 Path = "/",
 RoleName = roleName
 });

 await _iamClient.AttachRolePolicyAsync(
 new AttachRolePolicyRequest()
 {
 PolicyArn = "arn:aws:iam::aws:policy/
AmazonEventBridgeFullAccess",
 RoleName = roleName
 });
 // Allow time for the role to be ready.
 Thread.Sleep(10000);
 return roleResult.Role.Arn;
 }

 /// <summary>
 /// Create an Amazon Simple Storage Service (Amazon S3) bucket with
 EventBridge events enabled.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task CreateBucketWithEventBridgeEvents()
 {

Get started with rules and targets 537

Amazon EventBridge User Guide

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Creating an S3 bucket with EventBridge events
 enabled.");

 var testBucketName = _configuration["testBucketName"];

 var bucketExists = await
 Amazon.S3.Util.AmazonS3Util.DoesS3BucketExistV2Async(_s3Client,
 testBucketName);

 if (!bucketExists)
 {
 await _s3Client.PutBucketAsync(new PutBucketRequest()
 {
 BucketName = testBucketName,
 UseClientRegion = true
 });
 }

 await _s3Client.PutBucketNotificationAsync(new
 PutBucketNotificationRequest()
 {
 BucketName = testBucketName,
 EventBridgeConfiguration = new EventBridgeConfiguration()
 });

 Console.WriteLine($"\tAdded bucket {testBucketName} with EventBridge
 events enabled.");

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Create and upload a file to an S3 bucket to trigger an event.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task UploadS3File(IAmazonS3 s3Client)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Uploading a file to the test bucket. This will trigger
 a subscription email.");

 var testBucketName = _configuration["testBucketName"];

Get started with rules and targets 538

Amazon EventBridge User Guide

 var fileName = $"example_upload_{DateTime.UtcNow.Ticks}.txt";

 // Create the file if it does not already exist.
 if (!File.Exists(fileName))
 {
 await using StreamWriter sw = File.CreateText(fileName);
 await sw.WriteLineAsync(
 "This is a sample file for testing uploads.");
 }

 await s3Client.PutObjectAsync(new PutObjectRequest()
 {
 FilePath = fileName,
 BucketName = testBucketName
 });

 Console.WriteLine($"\tPress Enter to continue.");
 Console.ReadLine();

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Create an Amazon Simple Notification Service (Amazon SNS) topic to use as
 an EventBridge target.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task<string> CreateSnsTopic()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine(
 "Creating an Amazon Simple Notification Service (Amazon SNS) topic
 for email subscriptions.");

 var topicName = _configuration["topicName"];

 string topicPolicy = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Sid\": \"EventBridgePublishTopic\"," +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 $"\"Service\": \"events.amazonaws.com\"" +
 "}," +

Get started with rules and targets 539

Amazon EventBridge User Guide

 "\"Resource\": \"*\"," +
 "\"Action\": \"sns:Publish\"" +
 "}]" +
 "}";

 var topicAttributes = new Dictionary<string, string>()
 {
 { "Policy", topicPolicy }
 };

 var topicResponse = await _snsClient!.CreateTopicAsync(new
 CreateTopicRequest()
 {
 Name = topicName,
 Attributes = topicAttributes

 });

 Console.WriteLine($"\tAdded topic {topicName} for email subscriptions.");

 Console.WriteLine(new string('-', 80));

 return topicResponse.TopicArn;
 }

 /// <summary>
 /// Subscribe a user email to an SNS topic.
 /// </summary>
 /// <param name="topicArn">The ARN of the SNS topic.</param>
 /// <returns>The user's email.</returns>
 private static async Task<string> SubscribeToSnsTopic(string topicArn)
 {
 Console.WriteLine(new string('-', 80));

 string email = "";
 while (string.IsNullOrEmpty(email))
 {
 Console.WriteLine("Enter your email to subscribe to the Amazon SNS
 topic:");
 email = Console.ReadLine()!;
 }

 var subscriptions = new List<string>();

Get started with rules and targets 540

Amazon EventBridge User Guide

 var paginatedSubscriptions =
 _snsClient!.Paginators.ListSubscriptionsByTopic(
 new ListSubscriptionsByTopicRequest()
 {
 TopicArn = topicArn
 });

 // Get the entire list using the paginator.
 await foreach (var subscription in paginatedSubscriptions.Subscriptions)
 {
 subscriptions.Add(subscription.Endpoint);
 }

 if (subscriptions.Contains(email))
 {
 Console.WriteLine($"\tYour email is already subscribed.");
 Console.WriteLine(new string('-', 80));
 return email;
 }

 await _snsClient.SubscribeAsync(new SubscribeRequest()
 {
 TopicArn = topicArn,
 Protocol = "email",
 Endpoint = email
 });

 Console.WriteLine($"Use the link in the email you received to confirm
 your subscription, then press Enter to continue.");

 Console.ReadLine();

 Console.WriteLine(new string('-', 80));
 return email;
 }

 /// <summary>
 /// Add a rule which triggers when a file is uploaded to an S3 bucket.
 /// </summary>
 /// <param name="roleArn">The ARN of the role used by EventBridge.</param>
 /// <returns>Async task.</returns>
 private static async Task AddEventRule(string roleArn)
 {
 Console.WriteLine(new string('-', 80));

Get started with rules and targets 541

Amazon EventBridge User Guide

 Console.WriteLine("Creating an EventBridge event that sends an email when
 an Amazon S3 object is created.");

 var eventRuleName = _configuration["eventRuleName"];
 var testBucketName = _configuration["testBucketName"];

 await _eventBridgeWrapper.PutS3UploadRule(roleArn, eventRuleName,
 testBucketName);
 Console.WriteLine($"\tAdded event rule {eventRuleName} for bucket
 {testBucketName}.");

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Add an SNS target to the rule.
 /// </summary>
 /// <param name="topicArn">The ARN of the SNS topic.</param>
 /// <returns>Async task.</returns>
 private static async Task AddSnsTarget(string topicArn)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Adding a target to the rule to that sends an email
 when the rule is triggered.");

 var eventRuleName = _configuration["eventRuleName"];
 var testBucketName = _configuration["testBucketName"];
 var topicName = _configuration["topicName"];
 await _eventBridgeWrapper.AddSnsTargetToRule(eventRuleName, topicArn);
 Console.WriteLine($"\tAdded event rule {eventRuleName} with Amazon SNS
 target {topicName} for bucket {testBucketName}.");

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// List the event rules on the default event bus.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task ListEventRules()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Current event rules:");

Get started with rules and targets 542

Amazon EventBridge User Guide

 var rules = await _eventBridgeWrapper.ListAllRulesForEventBus();
 rules.ForEach(r => Console.WriteLine($"\tRule: {r.Name} Description:
 {r.Description} State: {r.State}"));

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Update the event target to use a transform.
 /// </summary>
 /// <param name="topicArn">The SNS topic ARN target to update.</param>
 /// <returns>Async task.</returns>
 private static async Task UpdateSnsEventRule(string topicArn)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Let's update the event target with a transform.");

 var eventRuleName = _configuration["eventRuleName"];
 var testBucketName = _configuration["testBucketName"];

 await
 _eventBridgeWrapper.UpdateS3UploadRuleTargetWithTransform(eventRuleName,
 topicArn);
 Console.WriteLine($"\tUpdated event rule {eventRuleName} with Amazon SNS
 target {topicArn} for bucket {testBucketName}.");

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Update the rule to use a custom event pattern.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task UpdateToCustomRule(string topicArn)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Updating the event pattern to be triggered by a custom
 event instead.");

 var eventRuleName = _configuration["eventRuleName"];

 await _eventBridgeWrapper.UpdateCustomEventPattern(eventRuleName);

Get started with rules and targets 543

Amazon EventBridge User Guide

 Console.WriteLine($"\tUpdated event rule {eventRuleName} to custom
 pattern.");
 await
 _eventBridgeWrapper.UpdateCustomRuleTargetWithTransform(eventRuleName,
 topicArn);

 Console.WriteLine($"\tUpdated event target {topicArn}.");

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Send rule events for a custom rule using the user's email address.
 /// </summary>
 /// <param name="email">The email address to include.</param>
 /// <returns>Async task.</returns>
 private static async Task TriggerCustomRule(string email)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Sending an event to trigger the rule. This will
 trigger a subscription email.");

 await _eventBridgeWrapper.PutCustomEmailEvent(email);

 Console.WriteLine($"\tEvents have been sent. Press Enter to continue.");
 Console.ReadLine();

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// List all of the targets for a rule.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task ListTargets()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("List all of the targets for a particular rule.");

 var eventRuleName = _configuration["eventRuleName"];
 var targets = await
 _eventBridgeWrapper.ListAllTargetsOnRule(eventRuleName);
 targets.ForEach(t => Console.WriteLine($"\tTarget: {t.Arn} Id: {t.Id}
 Input: {t.Input}"));

Get started with rules and targets 544

Amazon EventBridge User Guide

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// List all of the rules for a particular target.
 /// </summary>
 /// <param name="topicArn">The ARN of the SNS topic.</param>
 /// <returns>Async task.</returns>
 private static async Task ListRulesForTarget(string topicArn)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("List all of the rules for a particular target.");

 var rules = await _eventBridgeWrapper.ListAllRuleNamesByTarget(topicArn);
 rules.ForEach(r => Console.WriteLine($"\tRule: {r}"));

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Enable or disable a particular rule.
 /// </summary>
 /// <param name="isEnabled">True to enable the rule, otherwise false.</param>
 /// <returns>Async task.</returns>
 private static async Task ChangeRuleState(bool isEnabled)
 {
 Console.WriteLine(new string('-', 80));
 var eventRuleName = _configuration["eventRuleName"];

 if (!isEnabled)
 {
 Console.WriteLine($"Disabling the rule: {eventRuleName}");
 await _eventBridgeWrapper.DisableRuleByName(eventRuleName);
 }
 else
 {
 Console.WriteLine($"Enabling the rule: {eventRuleName}");
 await _eventBridgeWrapper.EnableRuleByName(eventRuleName);
 }

 Console.WriteLine(new string('-', 80));
 }

Get started with rules and targets 545

Amazon EventBridge User Guide

 /// <summary>
 /// Get the current state of the rule.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task GetRuleState()
 {
 Console.WriteLine(new string('-', 80));
 var eventRuleName = _configuration["eventRuleName"];

 var state = await
 _eventBridgeWrapper.GetRuleStateByRuleName(eventRuleName);
 Console.WriteLine($"Rule {eventRuleName} is in current state {state}.");

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Clean up the resources from the scenario.
 /// </summary>
 /// <param name="topicArn">The ARN of the SNS topic to clean up.</param>
 /// <returns>Async task.</returns>
 private static async Task CleanupResources(string topicArn)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Clean up resources.");

 var eventRuleName = _configuration["eventRuleName"];
 if (GetYesNoResponse($"\tDelete all targets and event rule
 {eventRuleName}? (y/n)"))
 {
 Console.WriteLine($"\tRemoving all targets from the event rule.");
 await _eventBridgeWrapper.RemoveAllTargetsFromRule(eventRuleName);

 Console.WriteLine($"\tDeleting event rule.");
 await _eventBridgeWrapper.DeleteRuleByName(eventRuleName);
 }

 var topicName = _configuration["topicName"];
 if (GetYesNoResponse($"\tDelete Amazon SNS subscription topic
 {topicName}? (y/n)"))
 {
 Console.WriteLine($"\tDeleting topic.");
 await _snsClient!.DeleteTopicAsync(new DeleteTopicRequest()
 {

Get started with rules and targets 546

Amazon EventBridge User Guide

 TopicArn = topicArn
 });
 }

 var bucketName = _configuration["testBucketName"];
 if (GetYesNoResponse($"\tDelete Amazon S3 bucket {bucketName}? (y/n)"))
 {
 Console.WriteLine($"\tDeleting bucket.");
 // Delete all objects in the bucket.
 var deleteList = await _s3Client.ListObjectsV2Async(new
 ListObjectsV2Request()
 {
 BucketName = bucketName
 });
 await _s3Client.DeleteObjectsAsync(new DeleteObjectsRequest()
 {
 BucketName = bucketName,
 Objects = deleteList.S3Objects
 .Select(o => new KeyVersion { Key = o.Key }).ToList()
 });
 // Now delete the bucket.
 await _s3Client.DeleteBucketAsync(new DeleteBucketRequest()
 {
 BucketName = bucketName
 });
 }

 var roleName = _configuration["roleName"];
 if (GetYesNoResponse($"\tDelete role {roleName}? (y/n)"))
 {
 Console.WriteLine($"\tDetaching policy and deleting role.");

 await _iamClient!.DetachRolePolicyAsync(new DetachRolePolicyRequest()
 {
 RoleName = roleName,
 PolicyArn = "arn:aws:iam::aws:policy/
AmazonEventBridgeFullAccess",
 });

 await _iamClient!.DeleteRoleAsync(new DeleteRoleRequest()
 {
 RoleName = roleName
 });
 }

Get started with rules and targets 547

Amazon EventBridge User Guide

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Helper method to get a yes or no response from the user.
 /// </summary>
 /// <param name="question">The question string to print on the console.</
param>
 /// <returns>True if the user responds with a yes.</returns>
 private static bool GetYesNoResponse(string question)
 {
 Console.WriteLine(question);
 var ynResponse = Console.ReadLine();
 var response = ynResponse != null &&
 ynResponse.Equals("y",
 StringComparison.InvariantCultureIgnoreCase);
 return response;
 }
}

Create a class that wraps EventBridge operations.

/// <summary>
/// Wrapper for Amazon EventBridge operations.
/// </summary>
public class EventBridgeWrapper
{
 private readonly IAmazonEventBridge _amazonEventBridge;
 private readonly ILogger<EventBridgeWrapper> _logger;

 /// <summary>
 /// Constructor for the EventBridge wrapper.
 /// </summary>
 /// <param name="amazonEventBridge">The injected EventBridge client.</param>
 /// <param name="logger">The injected logger for the wrapper.</param>
 public EventBridgeWrapper(IAmazonEventBridge amazonEventBridge,
 ILogger<EventBridgeWrapper> logger)

 {
 _amazonEventBridge = amazonEventBridge;

Get started with rules and targets 548

Amazon EventBridge User Guide

 _logger = logger;
 }

 /// <summary>
 /// Get the state for a rule by the rule name.
 /// </summary>
 /// <param name="ruleName">The name of the rule.</param>
 /// <param name="eventBusName">The optional name of the event bus. If empty,
 uses the default event bus.</param>
 /// <returns>The state of the rule.</returns>
 public async Task<RuleState> GetRuleStateByRuleName(string ruleName, string?
 eventBusName = null)
 {
 var ruleResponse = await _amazonEventBridge.DescribeRuleAsync(
 new DescribeRuleRequest()
 {
 Name = ruleName,
 EventBusName = eventBusName
 });
 return ruleResponse.State;
 }

 /// <summary>
 /// Enable a particular rule on an event bus.
 /// </summary>
 /// <param name="ruleName">The name of the rule.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> EnableRuleByName(string ruleName)
 {
 var ruleResponse = await _amazonEventBridge.EnableRuleAsync(
 new EnableRuleRequest()
 {
 Name = ruleName
 });
 return ruleResponse.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Disable a particular rule on an event bus.
 /// </summary
 /// <param name="ruleName">The name of the rule.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DisableRuleByName(string ruleName)
 {

Get started with rules and targets 549

Amazon EventBridge User Guide

 var ruleResponse = await _amazonEventBridge.DisableRuleAsync(
 new DisableRuleRequest()
 {
 Name = ruleName
 });
 return ruleResponse.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// List the rules on an event bus.
 /// </summary>
 /// <param name="eventBusArn">The optional ARN of the event bus. If empty,
 uses the default event bus.</param>
 /// <returns>The list of rules.</returns>
 public async Task<List<Rule>> ListAllRulesForEventBus(string? eventBusArn =
 null)
 {
 var results = new List<Rule>();
 var request = new ListRulesRequest()
 {
 EventBusName = eventBusArn
 };
 // Get all of the pages of rules.
 ListRulesResponse response;
 do
 {
 response = await _amazonEventBridge.ListRulesAsync(request);
 results.AddRange(response.Rules);
 request.NextToken = response.NextToken;

 } while (response.NextToken is not null);

 return results;
 }

 /// <summary>
 /// List all of the targets matching a rule by name.
 /// </summary>
 /// <param name="ruleName">The name of the rule.</param>
 /// <returns>The list of targets.</returns>
 public async Task<List<Target>> ListAllTargetsOnRule(string ruleName)
 {
 var results = new List<Target>();
 var request = new ListTargetsByRuleRequest()

Get started with rules and targets 550

Amazon EventBridge User Guide

 {
 Rule = ruleName
 };
 ListTargetsByRuleResponse response;
 do
 {
 response = await _amazonEventBridge.ListTargetsByRuleAsync(request);
 results.AddRange(response.Targets);
 request.NextToken = response.NextToken;

 } while (response.NextToken is not null);

 return results;
 }

 /// <summary>
 /// List names of all rules matching a target.
 /// </summary>
 /// <param name="targetArn">The ARN of the target.</param>
 /// <returns>The list of rule names.</returns>
 public async Task<List<string>> ListAllRuleNamesByTarget(string targetArn)
 {
 var results = new List<string>();
 var request = new ListRuleNamesByTargetRequest()
 {
 TargetArn = targetArn
 };
 ListRuleNamesByTargetResponse response;
 do
 {
 response = await
 _amazonEventBridge.ListRuleNamesByTargetAsync(request);
 results.AddRange(response.RuleNames);
 request.NextToken = response.NextToken;

 } while (response.NextToken is not null);

 return results;
 }

 /// <summary>
 /// Create a new event rule that triggers when an Amazon S3 object is created
 in a bucket.
 /// </summary>

Get started with rules and targets 551

Amazon EventBridge User Guide

 /// <param name="roleArn">The ARN of the role.</param>
 /// <param name="ruleName">The name to give the rule.</param>
 /// <param name="bucketName">The name of the bucket to trigger the event.</
param>
 /// <returns>The ARN of the new rule.</returns>
 public async Task<string> PutS3UploadRule(string roleArn, string ruleName,
 string bucketName)
 {
 string eventPattern = "{" +
 "\"source\": [\"aws.s3\"]," +
 "\"detail-type\": [\"Object Created\"]," +
 "\"detail\": {" +
 "\"bucket\": {" +
 "\"name\": [\"" + bucketName + "\"]"
 +
 "}" +
 "}" +
 "}";

 var response = await _amazonEventBridge.PutRuleAsync(
 new PutRuleRequest()
 {
 Name = ruleName,
 Description = "Example S3 upload rule for EventBridge",
 RoleArn = roleArn,
 EventPattern = eventPattern
 });

 return response.RuleArn;
 }

 /// <summary>
 /// Update an Amazon S3 object created rule with a transform on the target.
 /// </summary>
 /// <param name="ruleName">The name of the rule.</param>
 /// <param name="targetArn">The ARN of the target.</param>
 /// <param name="eventBusArn">Optional event bus ARN. If empty, uses the
 default event bus.</param>
 /// <returns>The ID of the target.</returns>
 public async Task<string> UpdateS3UploadRuleTargetWithTransform(string
 ruleName, string targetArn, string? eventBusArn = null)
 {
 var targetID = Guid.NewGuid().ToString();

Get started with rules and targets 552

Amazon EventBridge User Guide

 var targets = new List<Target>
 {
 new Target()
 {
 Id = targetID,
 Arn = targetArn,
 InputTransformer = new InputTransformer()
 {
 InputPathsMap = new Dictionary<string, string>()
 {
 {"bucket", "$.detail.bucket.name"},
 {"time", "$.time"}
 },
 InputTemplate = "\"Notification: an object was uploaded to
 bucket <bucket> at <time>.\""
 }
 }
 };
 var response = await _amazonEventBridge.PutTargetsAsync(
 new PutTargetsRequest()
 {
 EventBusName = eventBusArn,
 Rule = ruleName,
 Targets = targets,
 });
 if (response.FailedEntryCount > 0)
 {
 response.FailedEntries.ForEach(e =>
 {
 _logger.LogError(
 $"Failed to add target {e.TargetId}: {e.ErrorMessage}, code
 {e.ErrorCode}");
 });
 }
 return targetID;
 }

 /// <summary>
 /// Update a custom rule with a transform on the target.
 /// </summary>
 /// <param name="ruleName">The name of the rule.</param>
 /// <param name="targetArn">The ARN of the target.</param>
 /// <param name="eventBusArn">Optional event bus ARN. If empty, uses the
 default event bus.</param>

Get started with rules and targets 553

Amazon EventBridge User Guide

 /// <returns>The ID of the target.</returns>
 public async Task<string> UpdateCustomRuleTargetWithTransform(string
 ruleName, string targetArn, string? eventBusArn = null)
 {
 var targetID = Guid.NewGuid().ToString();

 var targets = new List<Target>
 {
 new Target()
 {
 Id = targetID,
 Arn = targetArn,
 InputTransformer = new InputTransformer()
 {
 InputTemplate = "\"Notification: sample event was received.
\""
 }
 }
 };
 var response = await _amazonEventBridge.PutTargetsAsync(
 new PutTargetsRequest()
 {
 EventBusName = eventBusArn,
 Rule = ruleName,
 Targets = targets,
 });
 if (response.FailedEntryCount > 0)
 {
 response.FailedEntries.ForEach(e =>
 {
 _logger.LogError(
 $"Failed to add target {e.TargetId}: {e.ErrorMessage}, code
 {e.ErrorCode}");
 });
 }
 return targetID;
 }

 /// <summary>
 /// Add an event to the event bus that includes an email, message, and time.
 /// </summary>
 /// <param name="email">The email to use in the event detail of the custom
 event.</param>
 /// <returns>True if successful.</returns>

Get started with rules and targets 554

Amazon EventBridge User Guide

 public async Task<bool> PutCustomEmailEvent(string email)
 {
 var eventDetail = new
 {
 UserEmail = email,
 Message = "This event was generated by example code.",
 UtcTime = DateTime.UtcNow.ToString("g")
 };
 var response = await _amazonEventBridge.PutEventsAsync(
 new PutEventsRequest()
 {
 Entries = new List<PutEventsRequestEntry>()
 {
 new PutEventsRequestEntry()
 {
 Source = "ExampleSource",
 Detail = JsonSerializer.Serialize(eventDetail),
 DetailType = "ExampleType"
 }
 }
 });

 return response.FailedEntryCount == 0;
 }

 /// <summary>
 /// Update a rule to use a custom defined event pattern.
 /// </summary>
 /// <param name="ruleName">The name of the rule to update.</param>
 /// <returns>The ARN of the updated rule.</returns>
 public async Task<string> UpdateCustomEventPattern(string ruleName)
 {
 string customEventsPattern = "{" +
 "\"source\": [\"ExampleSource\"]," +
 "\"detail-type\": [\"ExampleType\"]" +
 "}";

 var response = await _amazonEventBridge.PutRuleAsync(
 new PutRuleRequest()
 {
 Name = ruleName,
 Description = "Custom test rule",
 EventPattern = customEventsPattern
 });

Get started with rules and targets 555

Amazon EventBridge User Guide

 return response.RuleArn;
 }

 /// <summary>
 /// Add an Amazon SNS target topic to a rule.
 /// </summary>
 /// <param name="ruleName">The name of the rule to update.</param>
 /// <param name="targetArn">The ARN of the Amazon SNS target.</param>
 /// <param name="eventBusArn">The optional event bus name, uses default if
 empty.</param>
 /// <returns>The ID of the target.</returns>
 public async Task<string> AddSnsTargetToRule(string ruleName, string
 targetArn, string? eventBusArn = null)
 {
 var targetID = Guid.NewGuid().ToString();

 // Create the list of targets and add a new target.
 var targets = new List<Target>
 {
 new Target()
 {
 Arn = targetArn,
 Id = targetID
 }
 };

 // Add the targets to the rule.
 var response = await _amazonEventBridge.PutTargetsAsync(
 new PutTargetsRequest()
 {
 EventBusName = eventBusArn,
 Rule = ruleName,
 Targets = targets,
 });

 if (response.FailedEntryCount > 0)
 {
 response.FailedEntries.ForEach(e =>
 {
 _logger.LogError(
 $"Failed to add target {e.TargetId}: {e.ErrorMessage}, code
 {e.ErrorCode}");
 });

Get started with rules and targets 556

Amazon EventBridge User Guide

 }

 return targetID;
 }

 /// <summary>
 /// Delete an event rule by name.
 /// </summary>
 /// <param name="ruleName">The name of the event rule.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> RemoveAllTargetsFromRule(string ruleName)
 {
 var targetIds = new List<string>();
 var request = new ListTargetsByRuleRequest()
 {
 Rule = ruleName
 };
 ListTargetsByRuleResponse targetsResponse;
 do
 {
 targetsResponse = await
 _amazonEventBridge.ListTargetsByRuleAsync(request);
 targetIds.AddRange(targetsResponse.Targets.Select(t => t.Id));
 request.NextToken = targetsResponse.NextToken;

 } while (targetsResponse.NextToken is not null);

 var removeResponse = await _amazonEventBridge.RemoveTargetsAsync(
 new RemoveTargetsRequest()
 {
 Rule = ruleName,
 Ids = targetIds
 });

 if (removeResponse.FailedEntryCount > 0)
 {
 removeResponse.FailedEntries.ForEach(e =>
 {
 _logger.LogError(
 $"Failed to remove target {e.TargetId}: {e.ErrorMessage},
 code {e.ErrorCode}");
 });
 }

Get started with rules and targets 557

Amazon EventBridge User Guide

 return removeResponse.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an event rule by name.
 /// </summary>
 /// <param name="ruleName">The name of the event rule.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteRuleByName(string ruleName)
 {
 var response = await _amazonEventBridge.DeleteRuleAsync(
 new DeleteRuleRequest()
 {
 Name = ruleName
 });

 return response.HttpStatusCode == HttpStatusCode.OK;
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• DeleteRule

• DescribeRule

• DisableRule

• EnableRule

• ListRuleNamesByTarget

• ListRules

• ListTargetsByRule

• PutEvents

• PutRule

• PutTargets

Get started with rules and targets 558

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/DeleteRule
https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/DescribeRule
https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/DisableRule
https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/EnableRule
https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/ListRuleNamesByTarget
https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/ListRules
https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/ListTargetsByRule
https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/PutEvents
https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/PutRule
https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/PutTargets

Amazon EventBridge User Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * This Java code example performs the following tasks:
 *
 * This Java V2 example performs the following tasks with Amazon EventBridge:
 *
 * 1. Creates an AWS Identity and Access Management (IAM) role to use with
 * Amazon EventBridge.
 * 2. Amazon Simple Storage Service (Amazon S3) bucket with EventBridge events
 * enabled.
 * 3. Creates a rule that triggers when an object is uploaded to Amazon S3.
 * 4. Lists rules on the event bus.
 * 5. Creates a new Amazon Simple Notification Service (Amazon SNS) topic and
 * lets the user subscribe to it.
 * 6. Adds a target to the rule that sends an email to the specified topic.
 * 7. Creates an EventBridge event that sends an email when an Amazon S3 object
 * is created.
 * 8. Lists Targets.
 * 9. Lists the rules for the same target.
 * 10. Triggers the rule by uploading a file to the Amazon S3 bucket.
 * 11. Disables a specific rule.
 * 12. Checks and print the state of the rule.
 * 13. Adds a transform to the rule to change the text of the email.
 * 14. Enables a specific rule.
 * 15. Triggers the updated rule by uploading a file to the Amazon S3 bucket.

Get started with rules and targets 559

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/eventbridge#readme

Amazon EventBridge User Guide

 * 16. Updates the rule to be a custom rule pattern.
 * 17. Sending an event to trigger the rule.
 * 18. Cleans up resources.
 *
 */
public class EventbridgeMVP {
 public static final String DASHES = new String(new char[80]).replace("\0",
 "-");

 public static void main(String[] args) throws InterruptedException,
 IOException {
 final String usage = """

 Usage:
 <roleName> <bucketName> <topicName> <eventRuleName>

 Where:
 roleName - The name of the role to create.
 bucketName - The Amazon Simple Storage Service (Amazon S3)
 bucket name to create.
 topicName - The name of the Amazon Simple Notification
 Service (Amazon SNS) topic to create.
 eventRuleName - The Amazon EventBridge rule name to create.
 """;

 if (args.length != 5) {
 System.out.println(usage);
 System.exit(1);
 }

 String polJSON = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 "\"Service\": \"events.amazonaws.com\"" +
 "}," +
 "\"Action\": \"sts:AssumeRole\"" +
 "}]" +
 "}";

 Scanner sc = new Scanner(System.in);
 String roleName = args[0];
 String bucketName = args[1];

Get started with rules and targets 560

Amazon EventBridge User Guide

 String topicName = args[2];
 String eventRuleName = args[3];

 Region region = Region.US_EAST_1;
 EventBridgeClient eventBrClient = EventBridgeClient.builder()
 .region(region)
 .build();

 S3Client s3Client = S3Client.builder()
 .region(region)
 .build();

 Region regionGl = Region.AWS_GLOBAL;
 IamClient iam = IamClient.builder()
 .region(regionGl)
 .build();

 SnsClient snsClient = SnsClient.builder()
 .region(region)
 .build();

 System.out.println(DASHES);
 System.out.println("Welcome to the Amazon EventBridge example
 scenario.");
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out
 .println("1. Create an AWS Identity and Access Management (IAM)
 role to use with Amazon EventBridge.");
 String roleArn = createIAMRole(iam, roleName, polJSON);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("2. Create an S3 bucket with EventBridge events
 enabled.");
 if (checkBucket(s3Client, bucketName)) {
 System.out.println("Bucket " + bucketName + " already exists. Ending
 this scenario.");
 System.exit(1);
 }

 createBucket(s3Client, bucketName);
 Thread.sleep(3000);

Get started with rules and targets 561

Amazon EventBridge User Guide

 setBucketNotification(s3Client, bucketName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("3. Create a rule that triggers when an object is
 uploaded to Amazon S3.");
 Thread.sleep(10000);
 addEventRule(eventBrClient, roleArn, bucketName, eventRuleName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("4. List rules on the event bus.");
 listRules(eventBrClient);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("5. Create a new SNS topic for testing and let the
 user subscribe to the topic.");
 String topicArn = createSnsTopic(snsClient, topicName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("6. Add a target to the rule that sends an email to
 the specified topic.");
 System.out.println("Enter your email to subscribe to the Amazon SNS
 topic:");
 String email = sc.nextLine();
 subEmail(snsClient, topicArn, email);
 System.out.println(
 "Use the link in the email you received to confirm your
 subscription. Then, press Enter to continue.");
 sc.nextLine();
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("7. Create an EventBridge event that sends an email
 when an Amazon S3 object is created.");
 addSnsEventRule(eventBrClient, eventRuleName, topicArn, topicName,
 eventRuleName, bucketName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println(" 8. List Targets.");
 listTargets(eventBrClient, eventRuleName);

Get started with rules and targets 562

Amazon EventBridge User Guide

 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println(" 9. List the rules for the same target.");
 listTargetRules(eventBrClient, topicArn);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println(" 10. Trigger the rule by uploading a file to the S3
 bucket.");
 System.out.println("Press Enter to continue.");
 sc.nextLine();
 uploadTextFiletoS3(s3Client, bucketName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("11. Disable a specific rule.");
 changeRuleState(eventBrClient, eventRuleName, false);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("12. Check and print the state of the rule.");
 checkRule(eventBrClient, eventRuleName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("13. Add a transform to the rule to change the text of
 the email.");
 updateSnsEventRule(eventBrClient, topicArn, eventRuleName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("14. Enable a specific rule.");
 changeRuleState(eventBrClient, eventRuleName, true);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println(" 15. Trigger the updated rule by uploading a file to
 the S3 bucket.");
 System.out.println("Press Enter to continue.");
 sc.nextLine();
 uploadTextFiletoS3(s3Client, bucketName);
 System.out.println(DASHES);

Get started with rules and targets 563

Amazon EventBridge User Guide

 System.out.println(DASHES);
 System.out.println(" 16. Update the rule to be a custom rule pattern.");
 updateToCustomRule(eventBrClient, eventRuleName);
 System.out.println("Updated event rule " + eventRuleName + " to use a
 custom pattern.");
 updateCustomRuleTargetWithTransform(eventBrClient, topicArn,
 eventRuleName);
 System.out.println("Updated event target " + topicArn + ".");
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("17. Sending an event to trigger the rule. This will
 trigger a subscription email.");
 triggerCustomRule(eventBrClient, email);
 System.out.println("Events have been sent. Press Enter to continue.");
 sc.nextLine();
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("18. Clean up resources.");
 System.out.println("Do you want to clean up resources (y/n)");
 String ans = sc.nextLine();
 if (ans.compareTo("y") == 0) {
 cleanupResources(eventBrClient, snsClient, s3Client, iam, topicArn,
 eventRuleName, bucketName, roleName);
 } else {
 System.out.println("The resources will not be cleaned up. ");
 }
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("The Amazon EventBridge example scenario has
 successfully completed.");
 System.out.println(DASHES);
 }

 public static void cleanupResources(EventBridgeClient eventBrClient,
 SnsClient snsClient, S3Client s3Client,
 IamClient iam, String topicArn, String eventRuleName, String
 bucketName, String roleName) {
 System.out.println("Removing all targets from the event rule.");
 deleteTargetsFromRule(eventBrClient, eventRuleName);
 deleteRuleByName(eventBrClient, eventRuleName);
 deleteSNSTopic(snsClient, topicArn);

Get started with rules and targets 564

Amazon EventBridge User Guide

 deleteS3Bucket(s3Client, bucketName);
 deleteRole(iam, roleName);
 }

 public static void deleteRole(IamClient iam, String roleName) {
 String policyArn = "arn:aws:iam::aws:policy/AmazonEventBridgeFullAccess";
 DetachRolePolicyRequest policyRequest = DetachRolePolicyRequest.builder()
 .policyArn(policyArn)
 .roleName(roleName)
 .build();

 iam.detachRolePolicy(policyRequest);
 System.out.println("Successfully detached policy " + policyArn + " from
 role " + roleName);

 // Delete the role.
 DeleteRoleRequest roleRequest = DeleteRoleRequest.builder()
 .roleName(roleName)
 .build();

 iam.deleteRole(roleRequest);
 System.out.println("*** Successfully deleted " + roleName);
 }

 public static void deleteS3Bucket(S3Client s3Client, String bucketName) {
 // Remove all the objects from the S3 bucket.
 ListObjectsRequest listObjects = ListObjectsRequest.builder()
 .bucket(bucketName)
 .build();

 ListObjectsResponse res = s3Client.listObjects(listObjects);
 List<S3Object> objects = res.contents();
 ArrayList<ObjectIdentifier> toDelete = new ArrayList<>();

 for (S3Object myValue : objects) {
 toDelete.add(ObjectIdentifier.builder()
 .key(myValue.key())
 .build());
 }

 DeleteObjectsRequest dor = DeleteObjectsRequest.builder()
 .bucket(bucketName)
 .delete(Delete.builder()
 .objects(toDelete).build())

Get started with rules and targets 565

Amazon EventBridge User Guide

 .build();

 s3Client.deleteObjects(dor);

 // Delete the S3 bucket.
 DeleteBucketRequest deleteBucketRequest = DeleteBucketRequest.builder()
 .bucket(bucketName)
 .build();

 s3Client.deleteBucket(deleteBucketRequest);
 System.out.println("You have deleted the bucket and the objects");
 }

 // Delete the SNS topic.
 public static void deleteSNSTopic(SnsClient snsClient, String topicArn) {
 try {
 DeleteTopicRequest request = DeleteTopicRequest.builder()
 .topicArn(topicArn)
 .build();

 DeleteTopicResponse result = snsClient.deleteTopic(request);
 System.out.println("\n\nStatus was " +
 result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void deleteRuleByName(EventBridgeClient eventBrClient, String
 ruleName) {
 DeleteRuleRequest ruleRequest = DeleteRuleRequest.builder()
 .name(ruleName)
 .build();

 eventBrClient.deleteRule(ruleRequest);
 System.out.println("Successfully deleted the rule");
 }

 public static void deleteTargetsFromRule(EventBridgeClient eventBrClient,
 String eventRuleName) {
 // First, get all targets that will be deleted.
 ListTargetsByRuleRequest request = ListTargetsByRuleRequest.builder()

Get started with rules and targets 566

Amazon EventBridge User Guide

 .rule(eventRuleName)
 .build();

 ListTargetsByRuleResponse response =
 eventBrClient.listTargetsByRule(request);
 List<Target> allTargets = response.targets();

 // Get all targets and delete them.
 for (Target myTarget : allTargets) {
 RemoveTargetsRequest removeTargetsRequest =
 RemoveTargetsRequest.builder()
 .rule(eventRuleName)
 .ids(myTarget.id())
 .build();

 eventBrClient.removeTargets(removeTargetsRequest);
 System.out.println("Successfully removed the target");
 }
 }

 public static void triggerCustomRule(EventBridgeClient eventBrClient, String
 email) {
 String json = "{" +
 "\"UserEmail\": \"" + email + "\"," +
 "\"Message\": \"This event was generated by example code.\"," +
 "\"UtcTime\": \"Now.\"" +
 "}";

 PutEventsRequestEntry entry = PutEventsRequestEntry.builder()
 .source("ExampleSource")
 .detail(json)
 .detailType("ExampleType")
 .build();

 PutEventsRequest eventsRequest = PutEventsRequest.builder()
 .entries(entry)
 .build();

 eventBrClient.putEvents(eventsRequest);
 }

 public static void updateCustomRuleTargetWithTransform(EventBridgeClient
 eventBrClient, String topicArn,
 String ruleName) {

Get started with rules and targets 567

Amazon EventBridge User Guide

 String targetId = java.util.UUID.randomUUID().toString();
 InputTransformer inputTransformer = InputTransformer.builder()
 .inputTemplate("\"Notification: sample event was received.\"")
 .build();

 Target target = Target.builder()
 .id(targetId)
 .arn(topicArn)
 .inputTransformer(inputTransformer)
 .build();

 try {
 PutTargetsRequest targetsRequest = PutTargetsRequest.builder()
 .rule(ruleName)
 .targets(target)
 .eventBusName(null)
 .build();

 eventBrClient.putTargets(targetsRequest);
 } catch (EventBridgeException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void updateToCustomRule(EventBridgeClient eventBrClient, String
 ruleName) {
 String customEventsPattern = "{" +
 "\"source\": [\"ExampleSource\"]," +
 "\"detail-type\": [\"ExampleType\"]" +
 "}";

 PutRuleRequest request = PutRuleRequest.builder()
 .name(ruleName)
 .description("Custom test rule")
 .eventPattern(customEventsPattern)
 .build();

 eventBrClient.putRule(request);
 }

 // Update an Amazon S3 object created rule with a transform on the target.
 public static void updateSnsEventRule(EventBridgeClient eventBrClient, String
 topicArn, String ruleName) {

Get started with rules and targets 568

Amazon EventBridge User Guide

 String targetId = java.util.UUID.randomUUID().toString();
 Map<String, String> myMap = new HashMap<>();
 myMap.put("bucket", "$.detail.bucket.name");
 myMap.put("time", "$.time");

 InputTransformer inputTransformer = InputTransformer.builder()
 .inputTemplate("\"Notification: an object was uploaded to bucket
 <bucket> at <time>.\"")
 .inputPathsMap(myMap)
 .build();

 Target target = Target.builder()
 .id(targetId)
 .arn(topicArn)
 .inputTransformer(inputTransformer)
 .build();

 try {
 PutTargetsRequest targetsRequest = PutTargetsRequest.builder()
 .rule(ruleName)
 .targets(target)
 .eventBusName(null)
 .build();

 eventBrClient.putTargets(targetsRequest);

 } catch (EventBridgeException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void checkRule(EventBridgeClient eventBrClient, String
 eventRuleName) {
 try {
 DescribeRuleRequest ruleRequest = DescribeRuleRequest.builder()
 .name(eventRuleName)
 .build();

 DescribeRuleResponse response =
 eventBrClient.describeRule(ruleRequest);
 System.out.println("The state of the rule is " +
 response.stateAsString());

Get started with rules and targets 569

Amazon EventBridge User Guide

 } catch (EventBridgeException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void changeRuleState(EventBridgeClient eventBrClient, String
 eventRuleName, Boolean isEnabled) {
 try {
 if (!isEnabled) {
 System.out.println("Disabling the rule: " + eventRuleName);
 DisableRuleRequest ruleRequest = DisableRuleRequest.builder()
 .name(eventRuleName)
 .build();

 eventBrClient.disableRule(ruleRequest);
 } else {
 System.out.println("Enabling the rule: " + eventRuleName);
 EnableRuleRequest ruleRequest = EnableRuleRequest.builder()
 .name(eventRuleName)
 .build();
 eventBrClient.enableRule(ruleRequest);
 }

 } catch (EventBridgeException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 // Create and upload a file to an S3 bucket to trigger an event.
 public static void uploadTextFiletoS3(S3Client s3Client, String bucketName)
 throws IOException {
 // Create a unique file name.
 String fileSuffix = new SimpleDateFormat("yyyyMMddHHmmss").format(new
 Date());
 String fileName = "TextFile" + fileSuffix + ".txt";

 File myFile = new File(fileName);
 FileWriter fw = new FileWriter(myFile.getAbsoluteFile());
 BufferedWriter bw = new BufferedWriter(fw);
 bw.write("This is a sample file for testing uploads.");
 bw.close();

Get started with rules and targets 570

Amazon EventBridge User Guide

 try {
 PutObjectRequest putOb = PutObjectRequest.builder()
 .bucket(bucketName)
 .key(fileName)
 .build();

 s3Client.putObject(putOb, RequestBody.fromFile(myFile));

 } catch (S3Exception e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void listTargetRules(EventBridgeClient eventBrClient, String
 topicArn) {
 ListRuleNamesByTargetRequest ruleNamesByTargetRequest =
 ListRuleNamesByTargetRequest.builder()
 .targetArn(topicArn)
 .build();

 ListRuleNamesByTargetResponse response =
 eventBrClient.listRuleNamesByTarget(ruleNamesByTargetRequest);
 List<String> rules = response.ruleNames();
 for (String rule : rules) {
 System.out.println("The rule name is " + rule);
 }
 }

 public static void listTargets(EventBridgeClient eventBrClient, String
 ruleName) {
 ListTargetsByRuleRequest ruleRequest = ListTargetsByRuleRequest.builder()
 .rule(ruleName)
 .build();

 ListTargetsByRuleResponse res =
 eventBrClient.listTargetsByRule(ruleRequest);
 List<Target> targetsList = res.targets();
 for (Target target: targetsList) {
 System.out.println("Target ARN: "+target.arn());
 }
 }

 // Add a rule which triggers an SNS target when a file is uploaded to an S3

Get started with rules and targets 571

Amazon EventBridge User Guide

 // bucket.
 public static void addSnsEventRule(EventBridgeClient eventBrClient, String
 ruleName, String topicArn,
 String topicName, String eventRuleName, String bucketName) {
 String targetID = java.util.UUID.randomUUID().toString();
 Target myTarget = Target.builder()
 .id(targetID)
 .arn(topicArn)
 .build();

 List<Target> targets = new ArrayList<>();
 targets.add(myTarget);
 PutTargetsRequest request = PutTargetsRequest.builder()
 .eventBusName(null)
 .targets(targets)
 .rule(ruleName)
 .build();

 eventBrClient.putTargets(request);
 System.out.println("Added event rule " + eventRuleName + " with Amazon
 SNS target " + topicName + " for bucket "
 + bucketName + ".");
 }

 public static void subEmail(SnsClient snsClient, String topicArn, String
 email) {
 try {
 SubscribeRequest request = SubscribeRequest.builder()
 .protocol("email")
 .endpoint(email)
 .returnSubscriptionArn(true)
 .topicArn(topicArn)
 .build();

 SubscribeResponse result = snsClient.subscribe(request);
 System.out.println("Subscription ARN: " + result.subscriptionArn() +
 "\n\n Status is "
 + result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

Get started with rules and targets 572

Amazon EventBridge User Guide

 public static void listRules(EventBridgeClient eventBrClient) {
 try {
 ListRulesRequest rulesRequest = ListRulesRequest.builder()
 .eventBusName("default")
 .limit(10)
 .build();

 ListRulesResponse response = eventBrClient.listRules(rulesRequest);
 List<Rule> rules = response.rules();
 for (Rule rule : rules) {
 System.out.println("The rule name is : " + rule.name());
 System.out.println("The rule description is : " +
 rule.description());
 System.out.println("The rule state is : " +
 rule.stateAsString());
 }

 } catch (EventBridgeException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static String createSnsTopic(SnsClient snsClient, String topicName) {
 String topicPolicy = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Sid\": \"EventBridgePublishTopic\"," +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 "\"Service\": \"events.amazonaws.com\"" +
 "}," +
 "\"Resource\": \"*\"," +
 "\"Action\": \"sns:Publish\"" +
 "}]" +
 "}";

 Map<String, String> topicAttributes = new HashMap<>();
 topicAttributes.put("Policy", topicPolicy);
 CreateTopicRequest topicRequest = CreateTopicRequest.builder()
 .name(topicName)
 .attributes(topicAttributes)
 .build();

Get started with rules and targets 573

Amazon EventBridge User Guide

 CreateTopicResponse response = snsClient.createTopic(topicRequest);
 System.out.println("Added topic " + topicName + " for email
 subscriptions.");
 return response.topicArn();
 }

 // Create a new event rule that triggers when an Amazon S3 object is created
 in
 // a bucket.
 public static void addEventRule(EventBridgeClient eventBrClient, String
 roleArn, String bucketName,
 String eventRuleName) {
 String pattern = "{\n" +
 " \"source\": [\"aws.s3\"],\n" +
 " \"detail-type\": [\"Object Created\"],\n" +
 " \"detail\": {\n" +
 " \"bucket\": {\n" +
 " \"name\": [\"" + bucketName + "\"]\n" +
 " }\n" +
 " }\n" +
 "}";

 try {
 PutRuleRequest ruleRequest = PutRuleRequest.builder()
 .description("Created by using the AWS SDK for Java v2")
 .name(eventRuleName)
 .eventPattern(pattern)
 .roleArn(roleArn)
 .build();

 PutRuleResponse ruleResponse = eventBrClient.putRule(ruleRequest);
 System.out.println("The ARN of the new rule is " +
 ruleResponse.ruleArn());

 } catch (EventBridgeException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 // Determine if the S3 bucket exists.
 public static Boolean checkBucket(S3Client s3Client, String bucketName) {
 try {

Get started with rules and targets 574

Amazon EventBridge User Guide

 HeadBucketRequest headBucketRequest = HeadBucketRequest.builder()
 .bucket(bucketName)
 .build();

 s3Client.headBucket(headBucketRequest);
 return true;
 } catch (S3Exception e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 }
 return false;
 }

 // Set the S3 bucket notification configuration.
 public static void setBucketNotification(S3Client s3Client, String
 bucketName) {
 try {
 EventBridgeConfiguration eventBridgeConfiguration =
 EventBridgeConfiguration.builder()
 .build();

 NotificationConfiguration configuration =
 NotificationConfiguration.builder()
 .eventBridgeConfiguration(eventBridgeConfiguration)
 .build();

 PutBucketNotificationConfigurationRequest configurationRequest =
 PutBucketNotificationConfigurationRequest
 .builder()
 .bucket(bucketName)
 .notificationConfiguration(configuration)
 .skipDestinationValidation(true)
 .build();

 s3Client.putBucketNotificationConfiguration(configurationRequest);
 System.out.println("Added bucket " + bucketName + " with EventBridge
 events enabled.");

 } catch (S3Exception e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void createBucket(S3Client s3Client, String bucketName) {

Get started with rules and targets 575

Amazon EventBridge User Guide

 try {
 S3Waiter s3Waiter = s3Client.waiter();
 CreateBucketRequest bucketRequest = CreateBucketRequest.builder()
 .bucket(bucketName)
 .build();

 s3Client.createBucket(bucketRequest);
 HeadBucketRequest bucketRequestWait = HeadBucketRequest.builder()
 .bucket(bucketName)
 .build();

 // Wait until the bucket is created and print out the response.
 WaiterResponse<HeadBucketResponse> waiterResponse =
 s3Waiter.waitUntilBucketExists(bucketRequestWait);
 waiterResponse.matched().response().ifPresent(System.out::println);
 System.out.println(bucketName + " is ready");

 } catch (S3Exception e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static String createIAMRole(IamClient iam, String rolename, String
 polJSON) {
 try {
 CreateRoleRequest request = CreateRoleRequest.builder()
 .roleName(rolename)
 .assumeRolePolicyDocument(polJSON)
 .description("Created using the AWS SDK for Java")
 .build();

 CreateRoleResponse response = iam.createRole(request);
 AttachRolePolicyRequest rolePolicyRequest =
 AttachRolePolicyRequest.builder()
 .roleName(rolename)
 .policyArn("arn:aws:iam::aws:policy/
AmazonEventBridgeFullAccess")
 .build();

 iam.attachRolePolicy(rolePolicyRequest);
 return response.role().arn();

 } catch (IamException e) {

Get started with rules and targets 576

Amazon EventBridge User Guide

 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }
}

• For API details, see the following topics in AWS SDK for Java 2.x API Reference.

• DeleteRule

• DescribeRule

• DisableRule

• EnableRule

• ListRuleNamesByTarget

• ListRules

• ListTargetsByRule

• PutEvents

• PutRule

• PutTargets

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/*
 Before running this Kotlin code example, set up your development environment,
 including your credentials.

 For more information, see the following documentation topic:
 https://docs.aws.amazon.com/sdk-for-kotlin/latest/developer-guide/setup.html

Get started with rules and targets 577

https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/DeleteRule
https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/DescribeRule
https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/DisableRule
https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/EnableRule
https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/ListRuleNamesByTarget
https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/ListRules
https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/ListTargetsByRule
https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/PutEvents
https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/PutRule
https://docs.aws.amazon.com/goto/SdkForJavaV2/eventbridge-2015-10-07/PutTargets
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/eventbridge#code-examples

Amazon EventBridge User Guide

 This Kotlin example performs the following tasks with Amazon EventBridge:

 1. Creates an AWS Identity and Access Management (IAM) role to use with Amazon
 EventBridge.
 2. Creates an Amazon Simple Storage Service (Amazon S3) bucket with EventBridge
 events enabled.
 3. Creates a rule that triggers when an object is uploaded to Amazon S3.
 4. Lists rules on the event bus.
 5. Creates a new Amazon Simple Notification Service (Amazon SNS) topic and lets
 the user subscribe to it.
 6. Adds a target to the rule that sends an email to the specified topic.
 7. Creates an EventBridge event that sends an email when an Amazon S3 object is
 created.
 8. Lists targets.
 9. Lists the rules for the same target.
 10. Triggers the rule by uploading a file to the S3 bucket.
 11. Disables a specific rule.
 12. Checks and prints the state of the rule.
 13. Adds a transform to the rule to change the text of the email.
 14. Enables a specific rule.
 15. Triggers the updated rule by uploading a file to the S3 bucket.
 16. Updates the rule to a custom rule pattern.
 17. Sends an event to trigger the rule.
 18. Cleans up resources.
*/
val DASHES: String = String(CharArray(80)).replace("\u0000", "-")
suspend fun main(args: Array<String>) {
 val usage = """
 Usage:
 <roleName> <bucketName> <topicName> <eventRuleName>

 Where:
 roleName - The name of the role to create.
 bucketName - The Amazon Simple Storage Service (Amazon S3) bucket name to
 create.
 topicName - The name of the Amazon Simple Notification Service (Amazon
 SNS) topic to create.
 eventRuleName - The Amazon EventBridge rule name to create.
 """
 val polJSON = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +

Get started with rules and targets 578

Amazon EventBridge User Guide

 "\"Service\": \"events.amazonaws.com\"" +
 "}," +
 "\"Action\": \"sts:AssumeRole\"" +
 "}]" +
 "}"

 if (args.size != 4) {
 println(usage)
 exitProcess(1)
 }

 val sc = Scanner(System.`in`)
 val roleName = args[0]
 val bucketName = args[1]
 val topicName = args[2]
 val eventRuleName = args[3]

 println(DASHES)
 println("Welcome to the Amazon EventBridge example scenario.")
 println(DASHES)

 println(DASHES)
 println("1. Create an AWS Identity and Access Management (IAM) role to use
 with Amazon EventBridge.")
 val roleArn = createIAMRole(roleName, polJSON)
 println(DASHES)

 println(DASHES)
 println("2. Create an S3 bucket with EventBridge events enabled.")
 if (checkBucket(bucketName)) {
 println("$bucketName already exists. Ending this scenario.")
 exitProcess(1)
 }

 createBucket(bucketName)
 delay(3000)
 setBucketNotification(bucketName)
 println(DASHES)

 println(DASHES)
 println("3. Create a rule that triggers when an object is uploaded to Amazon
 S3.")
 delay(10000)
 addEventRule(roleArn, bucketName, eventRuleName)

Get started with rules and targets 579

Amazon EventBridge User Guide

 println(DASHES)

 println(DASHES)
 println("4. List rules on the event bus.")
 listRules()
 println(DASHES)

 println(DASHES)
 println("5. Create a new SNS topic for testing and let the user subscribe to
 the topic.")
 val topicArn = createSnsTopic(topicName)
 println(DASHES)

 println(DASHES)
 println("6. Add a target to the rule that sends an email to the specified
 topic.")
 println("Enter your email to subscribe to the Amazon SNS topic:")
 val email = sc.nextLine()
 subEmail(topicArn, email)
 println("Use the link in the email you received to confirm your subscription.
 Then press Enter to continue.")
 sc.nextLine()
 println(DASHES)

 println(DASHES)
 println("7. Create an EventBridge event that sends an email when an Amazon S3
 object is created.")
 addSnsEventRule(eventRuleName, topicArn, topicName, eventRuleName,
 bucketName)
 println(DASHES)

 println(DASHES)
 println("8. List targets.")
 listTargets(eventRuleName)
 println(DASHES)

 println(DASHES)
 println(" 9. List the rules for the same target.")
 listTargetRules(topicArn)
 println(DASHES)

 println(DASHES)
 println("10. Trigger the rule by uploading a file to the S3 bucket.")
 println("Press Enter to continue.")

Get started with rules and targets 580

Amazon EventBridge User Guide

 sc.nextLine()
 uploadTextFiletoS3(bucketName)
 println(DASHES)

 println(DASHES)
 println("11. Disable a specific rule.")
 changeRuleState(eventRuleName, false)
 println(DASHES)

 println(DASHES)
 println("12. Check and print the state of the rule.")
 checkRule(eventRuleName)
 println(DASHES)

 println(DASHES)
 println("13. Add a transform to the rule to change the text of the email.")
 updateSnsEventRule(topicArn, eventRuleName)
 println(DASHES)

 println(DASHES)
 println("14. Enable a specific rule.")
 changeRuleState(eventRuleName, true)
 println(DASHES)

 println(DASHES)
 println("15. Trigger the updated rule by uploading a file to the S3 bucket.")
 println("Press Enter to continue.")
 sc.nextLine()
 uploadTextFiletoS3(bucketName)
 println(DASHES)

 println(DASHES)
 println("16. Update the rule to a custom rule pattern.")
 updateToCustomRule(eventRuleName)
 println("Updated event rule $eventRuleName to use a custom pattern.")
 updateCustomRuleTargetWithTransform(topicArn, eventRuleName)
 println("Updated event target $topicArn.")
 println(DASHES)

 println(DASHES)
 println("17. Send an event to trigger the rule. This will trigger a
 subscription email.")
 triggerCustomRule(email)
 println("Events have been sent. Press Enter to continue.")

Get started with rules and targets 581

Amazon EventBridge User Guide

 sc.nextLine()
 println(DASHES)

 println(DASHES)
 println("18. Clean up resources.")
 println("Do you want to clean up resources (y/n)")
 val ans = sc.nextLine()
 if (ans.compareTo("y") == 0) {
 cleanupResources(topicArn, eventRuleName, bucketName, roleName)
 } else {
 println("The resources will not be cleaned up. ")
 }
 println(DASHES)

 println(DASHES)
 println("The Amazon EventBridge example scenario has successfully
 completed.")
 println(DASHES)
}

suspend fun cleanupResources(topicArn: String?, eventRuleName: String?,
 bucketName: String?, roleName: String?) {
 println("Removing all targets from the event rule.")
 deleteTargetsFromRule(eventRuleName)
 deleteRuleByName(eventRuleName)
 deleteSNSTopic(topicArn)
 deleteS3Bucket(bucketName)
 deleteRole(roleName)
}

suspend fun deleteRole(roleNameVal: String?) {
 val policyArnVal = "arn:aws:iam::aws:policy/AmazonEventBridgeFullAccess"
 val policyRequest = DetachRolePolicyRequest {
 policyArn = policyArnVal
 roleName = roleNameVal
 }
 IamClient { region = "us-east-1" }.use { iam ->
 iam.detachRolePolicy(policyRequest)
 println("Successfully detached policy $policyArnVal from role
 $roleNameVal")

 // Delete the role.
 val roleRequest = DeleteRoleRequest {
 roleName = roleNameVal

Get started with rules and targets 582

Amazon EventBridge User Guide

 }

 iam.deleteRole(roleRequest)
 println("*** Successfully deleted $roleNameVal")
 }
}

suspend fun deleteS3Bucket(bucketName: String?) {
 // Remove all the objects from the S3 bucket.
 val listObjects = ListObjectsRequest {
 bucket = bucketName
 }
 S3Client { region = "us-east-1" }.use { s3Client ->
 val res = s3Client.listObjects(listObjects)
 val myObjects = res.contents
 val toDelete = mutableListOf<ObjectIdentifier>()

 if (myObjects != null) {
 for (myValue in myObjects) {
 toDelete.add(
 ObjectIdentifier {
 key = myValue.key
 }
)
 }
 }

 val delOb = Delete {
 objects = toDelete
 }

 val dor = DeleteObjectsRequest {
 bucket = bucketName
 delete = delOb
 }
 s3Client.deleteObjects(dor)

 // Delete the S3 bucket.
 val deleteBucketRequest = DeleteBucketRequest {
 bucket = bucketName
 }
 s3Client.deleteBucket(deleteBucketRequest)
 println("You have deleted the bucket and the objects")
 }

Get started with rules and targets 583

Amazon EventBridge User Guide

}

// Delete the SNS topic.
suspend fun deleteSNSTopic(topicArnVal: String?) {
 val request = DeleteTopicRequest {
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 snsClient.deleteTopic(request)
 println(" $topicArnVal was deleted.")
 }
}

suspend fun deleteRuleByName(ruleName: String?) {
 val ruleRequest = DeleteRuleRequest {
 name = ruleName
 }
 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 eventBrClient.deleteRule(ruleRequest)
 println("Successfully deleted the rule")
 }
}

suspend fun deleteTargetsFromRule(eventRuleName: String?) {
 // First, get all targets that will be deleted.
 val request = ListTargetsByRuleRequest {
 rule = eventRuleName
 }

 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 val response = eventBrClient.listTargetsByRule(request)
 val allTargets = response.targets

 // Get all targets and delete them.
 if (allTargets != null) {
 for (myTarget in allTargets) {
 val removeTargetsRequest = RemoveTargetsRequest {
 rule = eventRuleName
 ids = listOf(myTarget.id.toString())
 }
 eventBrClient.removeTargets(removeTargetsRequest)
 println("Successfully removed the target")
 }

Get started with rules and targets 584

Amazon EventBridge User Guide

 }
 }
}

suspend fun triggerCustomRule(email: String) {
 val json = "{" +
 "\"UserEmail\": \"" + email + "\"," +
 "\"Message\": \"This event was generated by example code.\"" +
 "\"UtcTime\": \"Now.\"" +
 "}"

 val entry = PutEventsRequestEntry {
 source = "ExampleSource"
 detail = json
 detailType = "ExampleType"
 }

 val eventsRequest = PutEventsRequest {
 this.entries = listOf(entry)
 }

 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 eventBrClient.putEvents(eventsRequest)
 }
}

suspend fun updateCustomRuleTargetWithTransform(topicArn: String?, ruleName:
 String?) {
 val targetId = UUID.randomUUID().toString()

 val inputTransformerOb = InputTransformer {
 inputTemplate = "\"Notification: sample event was received.\""
 }

 val target = Target {
 id = targetId
 arn = topicArn
 inputTransformer = inputTransformerOb
 }

 val targetsRequest = PutTargetsRequest {
 rule = ruleName
 targets = listOf(target)
 eventBusName = null

Get started with rules and targets 585

Amazon EventBridge User Guide

 }

 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 eventBrClient.putTargets(targetsRequest)
 }
}

suspend fun updateToCustomRule(ruleName: String?) {
 val customEventsPattern = "{" +
 "\"source\": [\"ExampleSource\"]," +
 "\"detail-type\": [\"ExampleType\"]" +
 "}"
 val request = PutRuleRequest {
 name = ruleName
 description = "Custom test rule"
 eventPattern = customEventsPattern
 }

 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 eventBrClient.putRule(request)
 }
}

// Update an Amazon S3 object created rule with a transform on the target.
suspend fun updateSnsEventRule(topicArn: String?, ruleName: String?) {
 val targetId = UUID.randomUUID().toString()
 val myMap = mutableMapOf<String, String>()
 myMap["bucket"] = "$.detail.bucket.name"
 myMap["time"] = "$.time"

 val inputTransOb = InputTransformer {
 inputTemplate = "\"Notification: an object was uploaded to bucket
 <bucket> at <time>.\""
 inputPathsMap = myMap
 }
 val targetOb = Target {
 id = targetId
 arn = topicArn
 inputTransformer = inputTransOb
 }

 val targetsRequest = PutTargetsRequest {
 rule = ruleName
 targets = listOf(targetOb)

Get started with rules and targets 586

Amazon EventBridge User Guide

 eventBusName = null
 }

 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 eventBrClient.putTargets(targetsRequest)
 }
}

suspend fun checkRule(eventRuleName: String?) {
 val ruleRequest = DescribeRuleRequest {
 name = eventRuleName
 }

 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 val response = eventBrClient.describeRule(ruleRequest)
 println("The state of the rule is $response")
 }
}

suspend fun changeRuleState(eventRuleName: String, isEnabled: Boolean?) {
 if (!isEnabled!!) {
 println("Disabling the rule: $eventRuleName")
 val ruleRequest = DisableRuleRequest {
 name = eventRuleName
 }
 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 eventBrClient.disableRule(ruleRequest)
 }
 } else {
 println("Enabling the rule: $eventRuleName")
 val ruleRequest = EnableRuleRequest {
 name = eventRuleName
 }
 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 eventBrClient.enableRule(ruleRequest)
 }
 }
}

// Create and upload a file to an S3 bucket to trigger an event.
@Throws(IOException::class)
suspend fun uploadTextFiletoS3(bucketName: String?) {
 val fileSuffix = SimpleDateFormat("yyyyMMddHHmmss").format(Date())
 val fileName = "TextFile$fileSuffix.txt"

Get started with rules and targets 587

Amazon EventBridge User Guide

 val myFile = File(fileName)
 val fw = FileWriter(myFile.absoluteFile)
 val bw = BufferedWriter(fw)
 bw.write("This is a sample file for testing uploads.")
 bw.close()

 val putOb = PutObjectRequest {
 bucket = bucketName
 key = fileName
 body = myFile.asByteStream()
 }

 S3Client { region = "us-east-1" }.use { s3Client ->
 s3Client.putObject(putOb)
 }
}

suspend fun listTargetRules(topicArnVal: String?) {
 val ruleNamesByTargetRequest = ListRuleNamesByTargetRequest {
 targetArn = topicArnVal
 }

 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 val response =
 eventBrClient.listRuleNamesByTarget(ruleNamesByTargetRequest)
 response.ruleNames?.forEach { rule ->
 println("The rule name is $rule")
 }
 }
}

suspend fun listTargets(ruleName: String?) {
 val ruleRequest = ListTargetsByRuleRequest {
 rule = ruleName
 }

 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 val response = eventBrClient.listTargetsByRule(ruleRequest)
 response.targets?.forEach { target ->
 println("Target ARN: ${target.arn}")
 }
 }
}

Get started with rules and targets 588

Amazon EventBridge User Guide

// Add a rule that triggers an SNS target when a file is uploaded to an S3
 bucket.
suspend fun addSnsEventRule(ruleName: String?, topicArn: String?, topicName:
 String, eventRuleName: String, bucketName: String) {
 val targetID = UUID.randomUUID().toString()
 val myTarget = Target {
 id = targetID
 arn = topicArn
 }

 val targetsOb = mutableListOf<Target>()
 targetsOb.add(myTarget)

 val request = PutTargetsRequest {
 eventBusName = null
 targets = targetsOb
 rule = ruleName
 }

 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 eventBrClient.putTargets(request)
 println("Added event rule $eventRuleName with Amazon SNS target
 $topicName for bucket $bucketName.")
 }
}

suspend fun subEmail(topicArnVal: String?, email: String?) {
 val request = SubscribeRequest {
 protocol = "email"
 endpoint = email
 returnSubscriptionArn = true
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.subscribe(request)
 println(" Subscription ARN: ${result.subscriptionArn}")
 }
}

suspend fun createSnsTopic(topicName: String): String? {
 val topicPolicy = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +

Get started with rules and targets 589

Amazon EventBridge User Guide

 "\"Sid\": \"EventBridgePublishTopic\"," +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 "\"Service\": \"events.amazonaws.com\"" +
 "}," +
 "\"Resource\": \"*\"," +
 "\"Action\": \"sns:Publish\"" +
 "}]" +
 "}"

 val topicAttributes = mutableMapOf<String, String>()
 topicAttributes["Policy"] = topicPolicy

 val topicRequest = CreateTopicRequest {
 name = topicName
 attributes = topicAttributes
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val response = snsClient.createTopic(topicRequest)
 println("Added topic $topicName for email subscriptions.")
 return response.topicArn
 }
}

suspend fun listRules() {
 val rulesRequest = ListRulesRequest {
 eventBusName = "default"
 limit = 10
 }

 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 val response = eventBrClient.listRules(rulesRequest)
 response.rules?.forEach { rule ->
 println("The rule name is ${rule.name}")
 println("The rule ARN is ${rule.arn}")
 }
 }
}

// Create a new event rule that triggers when an Amazon S3 object is created in a
 bucket.
suspend fun addEventRule(roleArnVal: String?, bucketName: String, eventRuleName:
 String?) {

Get started with rules and targets 590

Amazon EventBridge User Guide

 val pattern = """{
 "source": ["aws.s3"],
 "detail-type": ["Object Created"],
 "detail": {
 "bucket": {
 "name": ["$bucketName"]
 }
 }
 }"""

 val ruleRequest = PutRuleRequest {
 description = "Created by using the AWS SDK for Kotlin"
 name = eventRuleName
 eventPattern = pattern
 roleArn = roleArnVal
 }

 EventBridgeClient { region = "us-east-1" }.use { eventBrClient ->
 val ruleResponse = eventBrClient.putRule(ruleRequest)
 println("The ARN of the new rule is ${ruleResponse.ruleArn}")
 }
}

// Set the Amazon S3 bucket notification configuration.
suspend fun setBucketNotification(bucketName: String) {
 val eventBridgeConfig = EventBridgeConfiguration {
 }

 val configuration = NotificationConfiguration {
 eventBridgeConfiguration = eventBridgeConfig
 }

 val configurationRequest = PutBucketNotificationConfigurationRequest {
 bucket = bucketName
 notificationConfiguration = configuration
 skipDestinationValidation = true
 }

 S3Client { region = "us-east-1" }.use { s3Client ->
 s3Client.putBucketNotificationConfiguration(configurationRequest)
 println("Added bucket $bucketName with EventBridge events enabled.")
 }
}

Get started with rules and targets 591

Amazon EventBridge User Guide

// Create an S3 bucket using a waiter.
suspend fun createBucket(bucketName: String) {
 val request = CreateBucketRequest {
 bucket = bucketName
 }

 S3Client { region = "us-east-1" }.use { s3 ->
 s3.createBucket(request)
 s3.waitUntilBucketExists {
 bucket = bucketName
 }
 println("$bucketName is ready")
 }
}

suspend fun checkBucket(bucketName: String?): Boolean {
 try {
 // Determine if the S3 bucket exists.
 val headBucketRequest = HeadBucketRequest {
 bucket = bucketName
 }

 S3Client { region = "us-east-1" }.use { s3Client ->
 s3Client.headBucket(headBucketRequest)
 return true
 }
 } catch (e: S3Exception) {
 System.err.println(e.message)
 }
 return false
}

suspend fun createIAMRole(rolenameVal: String?, polJSON: String?): String? {
 val request = CreateRoleRequest {
 roleName = rolenameVal
 assumeRolePolicyDocument = polJSON
 description = "Created using the AWS SDK for Kotlin"
 }

 val rolePolicyRequest = AttachRolePolicyRequest {
 roleName = rolenameVal
 policyArn = "arn:aws:iam::aws:policy/AmazonEventBridgeFullAccess"
 }

Get started with rules and targets 592

Amazon EventBridge User Guide

 IamClient { region = "us-east-1" }.use { iam ->
 val response = iam.createRole(request)
 iam.attachRolePolicy(rolePolicyRequest)
 return response.role?.arn
 }
}

• For API details, see the following topics in AWS SDK for Kotlin API reference.

• DeleteRule

• DescribeRule

• DisableRule

• EnableRule

• ListRuleNamesByTarget

• ListRules

• ListTargetsByRule

• PutEvents

• PutRule

• PutTargets

For a complete list of AWS SDK developer guides and code examples, see Using EventBridge with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Cross-service examples for EventBridge using AWS SDKs

The following sample applications use AWS SDKs to combine EventBridge with other AWS services.
Each example includes a link to GitHub, where you can find instructions on how to set up and run
the application.

Examples

• Use scheduled events to invoke a Lambda function

Cross-service examples 593

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation

Amazon EventBridge User Guide

Use scheduled events to invoke a Lambda function

The following code examples show how to create an AWS Lambda function invoked by an Amazon
EventBridge scheduled event.

Java

SDK for Java 2.x

Shows how to create an Amazon EventBridge scheduled event that invokes an AWS Lambda
function. Configure EventBridge to use a cron expression to schedule when the Lambda
function is invoked. In this example, you create a Lambda function by using the Lambda Java
runtime API. This example invokes different AWS services to perform a specific use case.
This example demonstrates how to create an app that sends a mobile text message to your
employees that congratulates them at the one year anniversary date.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• EventBridge

• Lambda

• Amazon SNS

JavaScript

SDK for JavaScript (v3)

Shows how to create an Amazon EventBridge scheduled event that invokes an AWS Lambda
function. Configure EventBridge to use a cron expression to schedule when the Lambda
function is invoked. In this example, you create a Lambda function by using the Lambda
JavaScript runtime API. This example invokes different AWS services to perform a specific
use case. This example demonstrates how to create an app that sends a mobile text message
to your employees that congratulates them at the one year anniversary date.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Use scheduled events to invoke a Lambda function 594

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_scheduled_events
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-scheduled-events

Amazon EventBridge User Guide

This example is also available in the AWS SDK for JavaScript v3 developer guide.

Services used in this example

• DynamoDB

• EventBridge

• Lambda

• Amazon SNS

Python

SDK for Python (Boto3)

This example shows how to register an AWS Lambda function as the target of a scheduled
Amazon EventBridge event. The Lambda handler writes a friendly message and the full
event data to Amazon CloudWatch Logs for later retrieval.

• Deploys a Lambda function.

• Creates an EventBridge scheduled event and makes the Lambda function the target.

• Grants permission to let EventBridge invoke the Lambda function.

• Prints the latest data from CloudWatch Logs to show the result of the scheduled
invocations.

• Cleans up all resources created during the demo.

This example is best viewed on GitHub. For complete source code and instructions on how to
set up and run, see the full example on GitHub.

Services used in this example

• CloudWatch Logs

• EventBridge

• Lambda

For a complete list of AWS SDK developer guides and code examples, see Using EventBridge with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use scheduled events to invoke a Lambda function 595

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/scheduled-events-invoking-lambda-example.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#readme

Amazon EventBridge User Guide

Amazon EventBridge security

Amazon EventBridge uses AWS Identity and Access Management to control access to other AWS
services and resources. For an overview of how IAM works, see Overview of Access Management
in the IAM User Guide. For an overview of security credentials, see AWS Security Credentials in the
Amazon Web Services General Reference.

Topics

• Data protection in Amazon EventBridge

• Tag-based policies

• Amazon EventBridge and AWS Identity and Access Management

• Logging Amazon EventBridge API calls using AWS CloudTrail

• Compliance validation in Amazon EventBridge

• Amazon EventBridge resilience

• Infrastructure security in Amazon EventBridge

• Configuration and vulnerability analysis in Amazon EventBridge

596

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html
https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html

Amazon EventBridge User Guide

Data protection in Amazon EventBridge

The AWS shared responsibility model applies to data protection in Amazon EventBridge. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with EventBridge or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

Encryption at rest

EventBridge encrypts event metadata and message data that it stores. By default, EventBridge
encrypts data using 256-bit Advanced Encryption Standard (AES-256) under an AWS owned

Data protection 597

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk

Amazon EventBridge User Guide

key, which helps secure your data from unauthorized access. There is no additional charge for
encrypting your data by using the AWS owned key.

Encryption in transit

EventBridge encrypts data that passes between EventBridge and other services by using Transport
layer Security (TLS).

Encryption in transit 598

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk

Amazon EventBridge User Guide

Tag-based policies

In Amazon EventBridge, you can use policies based on tags to control access to resources.

For example, you could restrict access to resources that include a tag with the key environment
and the value production. The following example policy denies any resource with this tag the
ability to create, delete, or modify tags, rules, or event buses for resources that have been tagged
environment/production.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "events:PutRule",
 "events:DescribeRule",
 "events:DeleteRule",
 "events:CreateEventBus",
 "events:DescribeEventBus"
 "events:DeleteEventBus"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {"aws:ResourceTag/environment": "production"}
 }
 }
]
}

For more information about tagging, see the following.

• Amazon EventBridge tags

• Controlling Access Using IAM Tags

Tag-based policies 599

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_iam-tags.html

Amazon EventBridge User Guide

Amazon EventBridge and AWS Identity and Access
Management

To access Amazon EventBridge, you need credentials that AWS can use to authenticate your
requests. Your credentials must have permissions to access AWS resources, such as retrieving
event data from other AWS resources. The following sections provide details on how you can use
AWS Identity and Access Management (IAM) and EventBridge to help secure your resources by
controlling who can access them.

Topics

• Authentication

• Access control

• Managing access permissions to your Amazon EventBridge resources

• Using identity-based policies (IAM policies) for Amazon EventBridge

• Using resource-based policies for Amazon EventBridge

• Cross-service confused deputy prevention

• Resource-based policies for Amazon EventBridge schemas

• Amazon EventBridge permissions reference

• Using IAM policy conditions for fine-grained access control

• Using service-linked roles for EventBridge

Authentication

You can access AWS as any of the following types of identities:

• AWS account root user – When you sign up for AWS, you provide an email address and password
that is associated with your account. These are your root credentials, and they provide complete
access to all of your AWS resources.

Important

For security reasons, we recommend that you use the root credentials only to create an
administrator, which is an IAM user with full permissions to your account. Then you can
use this administrator to create other users and roles with limited permissions. For more

IAM 600

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

Amazon EventBridge User Guide

information, see IAM Best Practices and Creating an Admin User and Group in the IAM
User Guide.

• IAM user – An IAM user is an identity within your account that has specific permissions, for
example, permission to send event data to a target in EventBridge. You can use an IAM sign-
in credentials to sign in to secure AWS webpages such as the AWS Management Console, AWS
Discussion Forums, or the AWS Support Center.

In addition to sign-in credentials, you can also generate access keys for each user. You can use
these keys when you access AWS services programmatically to cryptographically sign your
request, either through one of the SDKs or by using the AWS Command Line Interface (AWS
CLI). If you don’t use AWS tools, you must sign the request yourself with Signature Version 4, a
protocol for authenticating inbound API requests. For more information about authenticating
requests, see Signature Version 4 Signing Process in the Amazon Web Services General Reference.

• IAM role – An IAM role is another IAM identity that you can create in your account that has
specific permissions. It's similar to an IAM user, but it isn't associated with a specific person. Using
an IAM role, you can obtain temporary access keys to access AWS services and resources. IAM
roles with temporary credentials are useful in the following situations:

• Federated user access – Instead of creating a user, you can use identities from AWS Directory
Service, your enterprise user directory, or a web identity provider (IdP). These are known as
federated users. AWS assigns a role to a federated user when the user requests access through
an identity provider. For more information about federated users, see Federated Users and
Roles in the IAM User Guide.

• Cross-account access – You can use an IAM role in your account to grant another account
permission to access your account’s resources. For an example, see Tutorial: Delegate Access
Across AWS Accounts Using IAM Roles in the IAM User Guide.

• AWS service access – You can use an IAM role in your account to grant an AWS service
permission to access your account’s resources. For example, you can create a role that allows
Amazon Redshift to load data stored in an Amazon S3 bucket into an Amazon Redshift cluster.
For more information, see Creating a Role to Delegate Permissions to an AWS Service in the
IAM User Guide.

• Applications running on Amazon EC2 – For Amazon EC2 applications that need access to
EventBridge, you can either store access keys in the EC2 instance or you can use an IAM role
to manage temporary credentials. To assign an AWS role to an EC2 instance, you create an
instance profile that is attached to the instance. An instance profile contains the role, and

Authentication 601

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://console.aws.amazon.com/
https://forums.aws.amazon.com/
https://forums.aws.amazon.com/
https://console.aws.amazon.com/support/home#/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://aws.amazon.com/tools/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon EventBridge User Guide

it provides temporary credentials to applications running on the EC2 instance. For more
information, see Using Roles for Applications on Amazon EC2 in the IAM User Guide.

Access control

To create or access EventBridge resources, you need both valid credentials and permissions. For
example, to invoke AWS Lambda, Amazon Simple Notification Service (Amazon SNS), and Amazon
Simple Queue Service (Amazon SQS) targets, you must have permissions to those services.

Access control 602

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

Amazon EventBridge User Guide

Managing access permissions to your Amazon EventBridge resources

You manage access to EventBridge resources such as rules or events by using identity-based or
resource-based policies.

EventBridge resources

EventBridge resources and subresources have unique Amazon Resource Names (ARNs) associated
with them. You use ARNs in EventBridge to create event patterns. For more information about
ARNs, see Amazon Resource Names (ARN) and AWS Service Namespaces in the Amazon Web
Services General Reference.

For a list of operations EventBridge provides for working with resources, see Amazon EventBridge
permissions reference.

Note

Most services in AWS treat a colon (:) or a forward slash (/) as the same character in ARNs.
However, EventBridge uses an exact match in event patterns and rules. Be sure to use the
correct ARN characters when creating event patterns so that they match the ARN syntax in
the event that you want to match.

The following table shows the resources in EventBridge.

Resource Type ARN Format

Archive arn:aws:events: region:account:archive/ archive-n
ame

Replay arn:aws:events: region:account:replay/replay-name

Rule arn:aws:events: region:account:rule/[event-bus-
name]/rule-name

Event bus arn:aws:events: region:account:event-bus/ event-bus
-name

Managing access 603

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Amazon EventBridge User Guide

Resource Type ARN Format

All EventBridge
resources

arn:aws:events:*

All EventBridge
resources owned by the
specified account in the
specified Region

arn:aws:events: region:account:*

The following example shows how to indicate a specific rule (myRule) in your statement using its
ARN.

"Resource": "arn:aws:events:us-east-1:123456789012:rule/myRule"

To specify all rules that belong to a specific account by using the asterisk (*) wildcard as follows.

"Resource": "arn:aws:events:us-east-1:123456789012:rule/*"

To specify all resources, or if a specific API action doesn't support ARNs, use the asterisk (*) wildcard
in the Resource element as follows.

"Resource": "*"

To specify multiple resources or PutTargets in a single statement, separate their ARNs with
commas as follows.

"Resource": ["arn1", "arn2"]

Resource ownership

An account owns the resources in the account, no matter who creates the resources. The resource
owner is the account of the principal entity, the account root user, an IAM user or role that
authenticates the request to create the resource. The following examples illustrate how this works:

• If you use the root user credentials of your account to create a rule, your account is the owner of
the EventBridge resource.

Managing access 604

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html

Amazon EventBridge User Guide

• If you create an user in your account and grant permissions to create EventBridge resources
to that user, the user can create EventBridge resources. However, your account, which the user
belongs to, owns the EventBridge resources.

• If you create an IAM role in your account with permissions to create EventBridge resources,
anyone who can assume the role can create EventBridge resources. Your account, which the role
belongs to, owns the EventBridge resources.

Managing access to resources

A permissions policy describes who has access to what. The following section explains the available
options for creating permissions policies.

Note

This section discusses using IAM in the context of EventBridge. It doesn't provide detailed
information about the IAM service. For complete IAM documentation, see What is IAM?
in the IAM User Guide. For information about IAM policy syntax and descriptions, see IAM
policy reference in the IAM User Guide.

Policies attached to an IAM identity are referred to as identity-based policies (IAM policies) and
policies attached to a resource are referred to as resource-based policies. In EventBridge, you can
use both identity-based (IAM policies) and resource-based policies.

Topics

• Identity-based policies (IAM policies)

• Resource-based policies (IAM policies)

Identity-based policies (IAM policies)

You can attach policies to IAM identities. For example, you can do the following:

• Attach a permissions policy to a user or a group in your account – To grant a user permission
to view rules in the Amazon CloudWatch console, attach a permissions policy to a user or group
that the user belongs to.

• Attach a permissions policy to a role (grant cross-account permissions) – You can attach
an identity-based permissions policy to an IAM role to grant cross-account permissions. For

Managing access 605

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

Amazon EventBridge User Guide

example, the administrator in account A can create a role to grant cross-account permissions to
another account B or an AWS service as follows:

1. Account A administrator creates an IAM role and attaches a permissions policy to the role that
grants permission on resources in account A.

2. Account A administrator attaches a trust policy to the role identifying account B as the
principal who can assume the role.

3. Account B administrator can then delegate permissions to assume the role to any users in
account B. Doing this allows users in account B to create or access resources in account A. The
principal in the trust policy can also be an AWS service principal to grant to an AWS service the
permission needed to assume the role.

For more information about using IAM to delegate permissions, see Access Management in the
IAM User Guide.

You can create specific IAM policies to restrict the calls and resources that users in your account
have access to and then attach those policies to users. For more information about how to create
IAM roles and to explore example IAM policy statements for EventBridge, see Managing access
permissions to your Amazon EventBridge resources.

Resource-based policies (IAM policies)

When a rule runs in EventBridge, all of the targets associated with the rule are invoked, which
means invoking the AWS Lambda functions, publishing to the Amazon SNS topics, or relaying
the event to the Amazon Kinesis streams. To make API calls on the resources that you own,
EventBridge needs the appropriate permission. For Lambda, Amazon SNS, and Amazon SQS
resources, EventBridge uses resource-based policies. For Kinesis streams, EventBridge uses IAM
roles.

For more information about how to create IAM roles and to explore example resource-based policy
statements for EventBridge, see Using resource-based policies for Amazon EventBridge.

Specifying policy elements: actions, effects, and principals

For each EventBridge resource, EventBridge defines a set of API operations. To grant permissions
for these API operations, EventBridge defines a set of actions that you can specify in a policy. Some
API operations require permissions for more than one action to perform the API operation. For
more information about resources and API operations, see EventBridge resources and Amazon
EventBridge permissions reference.

Managing access 606

https://docs.aws.amazon.com/IAM/latest/UserGuide/access.html

Amazon EventBridge User Guide

The following are the basic policy elements:

• Resource – Use an Amazon Resource Name (ARN) to identify the resource that the policy applies
to. For more information, see EventBridge resources.

• Action – Use keywords to identify resource operations that you want to allow or deny. For
example, the events:Describe permission allows the user to perform the Describe
operation.

• Effect – Specify either allow or deny. If you don't explicitly grant access to (allow) a resource,
access is denied. You can also explicitly deny access to a resource, which you do to make sure that
a user can't access it, even if a different policy grants access.

• Principal – In identity-based policies (IAM policies), the user that the policy is attached to is the
implicit principal. For resource-based policies, you specify the user, account, service, or other
entity that you want to receive permissions (applies to resource-based policies only).

For more information about IAM policy syntax and descriptions, see IAM JSON Policy Reference in
the IAM User Guide.

For information about EventBridge API actions and the resources that they apply to, see Amazon
EventBridge permissions reference.

Specifying conditions in a policy

When you grant permissions, you can use the access policy language to specify the conditions
when a policy should take effect. For example, you might want a policy to be applied only after a
specific date. For more information about specifying conditions in a policy language, see Condition
in the IAM User Guide.

To define conditions, you use condition keys. There are AWS condition keys and EventBridge
specific keys that you can use as appropriate. For a complete list of AWS keys, see Available Keys
for Conditions in the IAM User Guide. For a complete list of EventBridge specific keys, see Using IAM
policy conditions for fine-grained access control.

Managing access 607

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

Amazon EventBridge User Guide

Using identity-based policies (IAM policies) for Amazon EventBridge

Identity-based policies are permissions policies that you attach to IAM identities .

Topics

• AWS managed policies for EventBridge

• Permissions required for EventBridge to access targets using IAM roles

• Customer-managed policy example: Using tagging to control access to rules

• Amazon EventBridge updates to AWS managed policies

AWS managed policies for EventBridge

AWS addresses many common use cases by providing standalone IAM policies that are created
and administered by AWS. Managed, or predefined, policies grant the necessary permissions
for common use cases, so you don't need to investigate what permissions are needed. For more
information, see AWS managed policies in the IAM User Guide.

The following AWS managed policies that you can attach to users in your account are specific to
EventBridge:

• AmazonEventBridgeFullAccess – Grants full access to EventBridge, including EventBridge Pipes,
EventBridge Schemas and EventBridge Scheduler.

• AmazonEventBridgeReadOnlyAccess – Grants read-only access to EventBridge, including
EventBridge Pipes, EventBridge Schemas and EventBridge Scheduler.

AmazonEventBridgeFullAccess policy

The AmazonEventBridgeFullAccess policy grants permissions to use all EventBridge actions, as well
as the following permissions:

• iam:CreateServiceLinkedRole – EventBridge requires this permission to create the service
role in your account for API destinations. This permission grants only the IAM service permissions
to create a role in your account specifically for API destinations.

• iam:PassRole – EventBridge requires this permission to pass an invocation role to EventBridge
to invoke the target of a rule.

Using identity-based policies (IAM policies) 608

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon EventBridge User Guide

• Secrets Manager permissions – EventBridge requires these permissions to manage secrets in
your account when you provide credentials through the connection resource to authorize API
Destinations.

The following JSON shows the AmazonEventBridgeFullAccess policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EventBridgeActions",
 "Effect": "Allow",
 "Action": [
 "events:*",
 "schemas:*",
 "scheduler:*",
 "pipes:*"
],
 "Resource": "*"
 },
 {
 "Sid": "IAMCreateServiceLinkedRoleForApiDestinations",
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::*:role/aws-service-role/
AmazonEventBridgeApiDestinationsServiceRolePolicy",
 "Condition": {
 "StringEquals": {
 "iam:AWSServiceName": "apidestinations.events.amazonaws.com"
 }
 }
 },
 {
 "Sid": "IAMCreateServiceLinkedRoleForAmazonEventBridgeSchemas",
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::*:role/aws-service-role/schemas.amazonaws.com/
AWSServiceRoleForSchemas",
 "Condition": {
 "StringEquals": {
 "iam:AWSServiceName": "schemas.amazonaws.com"
 }

Using identity-based policies (IAM policies) 609

Amazon EventBridge User Guide

 }
 },
 {
 "Sid": "SecretsManagerAccessForApiDestinations",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:CreateSecret",
 "secretsmanager:UpdateSecret",
 "secretsmanager:DeleteSecret",
 "secretsmanager:GetSecretValue",
 "secretsmanager:PutSecretValue"
],
 "Resource": "arn:aws:secretsmanager:*:*:secret:events!*"
 },
 {
 "Sid": "IAMPassRoleAccessForEventBridge",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::*:role/*",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": "events.amazonaws.com"
 }
 }
 },
 {
 "Sid": "IAMPassRoleAccessForScheduler",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::*:role/*",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": "scheduler.amazonaws.com"
 }
 }
 },
 {
 "Sid": "IAMPassRoleAccessForPipes",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::*:role/*",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": "pipes.amazonaws.com"

Using identity-based policies (IAM policies) 610

Amazon EventBridge User Guide

 }
 }
 }
]
}

Note

The information in this section also applies to the CloudWatchEventsFullAccess policy.
However, it is strongly recommended that you use Amazon EventBridge instead of Amazon
CloudWatch Events.

AmazonEventBridgeReadOnlyAccess policy

The AmazonEventBridgeReadOnlyAccess policy grants permissions to use all read EventBridge
actions.

The following JSON shows the AmazonEventBridgeReadOnlyAccess policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "events:DescribeRule",
 "events:DescribeEventBus",
 "events:DescribeEventSource",
 "events:ListEventBuses",
 "events:ListEventSources",
 "events:ListRuleNamesByTarget",
 "events:ListRules",
 "events:ListTargetsByRule",
 "events:TestEventPattern",
 "events:DescribeArchive",
 "events:ListArchives",
 "events:DescribeReplay",
 "events:ListReplays",
 "events:DescribeConnection",
 "events:ListConnections",
 "events:DescribeApiDestination",

Using identity-based policies (IAM policies) 611

Amazon EventBridge User Guide

 "events:ListApiDestinations",
 "events:DescribeEndpoint",
 "events:ListEndpoints",
 "schemas:DescribeCodeBinding",
 "schemas:DescribeDiscoverer",
 "schemas:DescribeRegistry",
 "schemas:DescribeSchema",
 "schemas:ExportSchema",
 "schemas:GetCodeBindingSource",
 "schemas:GetDiscoveredSchema",
 "schemas:GetResourcePolicy",
 "schemas:ListDiscoverers",
 "schemas:ListRegistries",
 "schemas:ListSchemas",
 "schemas:ListSchemaVersions",

 "schemas:ListTagsForResource",
 "schemas:SearchSchemas",
 "scheduler:GetSchedule",
 "scheduler:GetScheduleGroup",
 "scheduler:ListSchedules",
 "scheduler:ListScheduleGroups",
 "scheduler:ListTagsForResource",
 "pipes:DescribePipe",
 "pipes:ListPipes",
 "pipes:ListTagsForResource"
],
 "Resource": "*"
 }
]
}

Note

The information in this section also applies to the CloudWatchEventsReadOnlyAccess
policy. However, it is strongly recommended that you use Amazon EventBridge instead of
Amazon CloudWatch Events.

Using identity-based policies (IAM policies) 612

Amazon EventBridge User Guide

EventBridge Schema-specific managed policies

A schema defines the structure of events that are sent to EventBridge. EventBridge provides
schemas for all events that are generated by AWS services. The following AWS managed policies
specific to EventBridge Schemas are available:

• AmazonEventBridgeSchemasServiceRolePolicy

• AmazonEventBridgeSchemasFullAccess

• AmazonEventBridgeSchemasReadOnlyAccess

EventBridge Scheduler-specific managed policies

Amazon EventBridge Scheduler is a serverless scheduler that allows you to create, run, and
manage tasks from one central, managed service. For AWS managed policies that are specific to
EventBridge Scheduler, see AWS managed policies for EventBridge Scheduler in the EventBridge
Scheduler User Guide.

EventBridge Pipes-specific managed policies

Amazon EventBridge Pipes connects event sources to targets. Pipes reduces the need for
specialized knowledge and integration code when developing event driven architectures. This helps
ensures consistency across your company’s applications. The following AWS managed policies
specific to EventBridge Pipes are available:

• AmazonEventBridgePipesFullAccess

Provides full access to Amazon EventBridge Pipes.

Note

This policy provides iam:PassRole – EventBridge Pipes requires this permission to pass
an invocation role to EventBridge to create, and start pipes.

• AmazonEventBridgePipesReadOnlyAccess

Provides read-only access to Amazon EventBridge Pipes.

• AmazonEventBridgePipesOperatorAccess

Provides read-only and operator (that is, the ability to stop and start running Pipes) access to
Amazon EventBridge Pipes.

Using identity-based policies (IAM policies) 613

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-schema.html
https://us-east-1.console.aws.amazon.com/iam/home?region=us-east-1#/policies/arn:aws:iam::aws:policy/aws-service-role/AmazonEventBridgeSchemasServiceRolePolicy$jsonEditor
https://us-east-1.console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonEventBridgeSchemasFullAccess$jsonEditor
https://us-east-1.console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonEventBridgeSchemasReadOnlyAccess$jsonEditor
https://docs.aws.amazon.com/scheduler/latest/UserGuide/security_iam_id-based-policies.html#security_iam_id-based-policies-managed-policies
https://us-east-1.console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonEventBridgePipesFullAccess$jsonEditor
https://us-east-1.console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonEventBridgePipesReadOnlyAccess$jsonEditor
https://us-east-1.console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonEventBridgePipesOperatorAccess$jsonEditor

Amazon EventBridge User Guide

IAM roles for sending events

To relay events to targets, EventBridge needs an IAM role.

To create an IAM role for sending events to EventBridge

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. To create an IAM role, follow the steps in Creating a Role to Delegate Permissions to an AWS
Service in the IAM User Guide . As you follow the steps, do the following:

• In Role Name, use a name that is unique within your account.

• In Select Role Type, choose AWS Service Roles, and then choose Amazon EventBridge. This
grants EventBridge permissions to assume the role.

• In Attach Policy, choose AmazonEventBridgeFullAccess.

You can also create your own custom IAM policies to allow permissions for EventBridge actions
and resources. You can attach these custom policies to the IAM users or groups that require those
permissions. For more information about IAM policies, see Overview of IAM Policies in the IAM User
Guide. For more information about managing and creating custom IAM policies, see Managing IAM
Policies in the IAM User Guide.

Permissions required for EventBridge to access targets using IAM roles

EventBridge targets typically require IAM roles that grant permission to EventBridge to invoke the
target. The following are some examples for various AWS services and targets. For others, use the
EventBridge console to create a Rule and create a new Role which will be created with a policy with
well-scoped permissions preconfigured.

Amazon SQS, Amazon SNS, Lambda, CloudWatch Logs, and EventBridge bus targets do not use
roles, and permissions to EventBridge must be granted via a resource policy. API Gateway targets
can use either resource policies or IAM roles.

If the target is an API destination, the role that you specify must include the following policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Using identity-based policies (IAM policies) 614

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html

Amazon EventBridge User Guide

 "Action": ["events:InvokeApiDestination"],
 "Resource": ["arn:aws:events:::api-destination/*"]
 }
]
}

If the target is a Kinesis stream, the role used to send event data to that target must include the
following policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:PutRecord"
],
 "Resource": "*"
 }
]
}

If the target is Systems Manager run command, and you specify one or more InstanceIds values
for the command, the role that you specify must include the following policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "ssm:SendCommand",
 "Effect": "Allow",
 "Resource": [
 "arn:aws:ec2:region:accountId:instance/instanceIds",
 "arn:aws:ssm:region:*:document/documentName"
]
 }
]
}

If the target is Systems Manager run command, and you specify one or more tags for the
command, the role that you specify must include the following policy.

Using identity-based policies (IAM policies) 615

Amazon EventBridge User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "ssm:SendCommand",
 "Effect": "Allow",
 "Resource": [
 "arn:aws:ec2:region:accountId:instance/*"
],
 "Condition": {
 "StringEquals": {
 "ec2:ResourceTag/*": [
 "[[tagValues]]"
]
 }
 }
 },
 {
 "Action": "ssm:SendCommand",
 "Effect": "Allow",
 "Resource": [
 "arn:aws:ssm:region:*:document/documentName"
]
 }
]
}

If the target is an AWS Step Functions state machine, the role that you specify must include the
following policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["states:StartExecution"],
 "Resource": ["arn:aws:states:*:*:stateMachine:*"]
 }
]
}

If the target is an Amazon ECS task, the role that you specify must include the following policy.

Using identity-based policies (IAM policies) 616

Amazon EventBridge User Guide

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "ecs:RunTask"
],
 "Resource": [
 "arn:aws:ecs:*:account-id:task-definition/task-definition-name"
],
 "Condition": {
 "ArnLike": {
 "ecs:cluster": "arn:aws:ecs:*:account-id:cluster/cluster-name"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action":"iam:PassRole",
 "Resource": [
 "*"
],
 "Condition": {
 "StringLike": {
 "iam:PassedToService": "ecs-tasks.amazonaws.com"
 }
 }
 }]
}

The following policy allows built-in targets in EventBridge to perform Amazon EC2 actions on your
behalf. You need to use the AWS Management Console to create rules with built-in targets.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "TargetInvocationAccess",
 "Effect": "Allow",
 "Action": [
 "ec2:Describe*",
 "ec2:RebootInstances",
 "ec2:StopInstances",

Using identity-based policies (IAM policies) 617

Amazon EventBridge User Guide

 "ec2:TerminateInstances",
 "ec2:CreateSnapshot"
],
 "Resource": "*"
 }
]
}

The following policy allows EventBridge to relay events to the Kinesis streams in your account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "KinesisAccess",
 "Effect": "Allow",
 "Action": [
 "kinesis:PutRecord"
],
 "Resource": "*"
 }
]
}

Customer-managed policy example: Using tagging to control access to rules

The following example shows a user policy that grant permissions for EventBridge actions. This
policy works when you use the EventBridge API, AWS SDKs, or the AWS CLI.

You can grant users access to specific EventBridge rules while preventing them from accessing
other rules. To do so, you tag both sets of rules and then use IAM policies that refer to those tags.
For more information about tagging EventBridge resources, see Amazon EventBridge tags.

You can grant an IAM policy to a user to allow access to only the rules with a particular tag. You
choose which rules to grant access to by tagging them with that particular tag. For example, the
following policy grants a user access to rules with the value of Prod for the tag key Stack.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "events:*",

Using identity-based policies (IAM policies) 618

Amazon EventBridge User Guide

 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Stack": "Prod"
 }
 }
 }
]
}

For more information about using IAM policy statements, see Controlling Access Using Policies in
the IAM User Guide.

Amazon EventBridge updates to AWS managed policies

View details about updates to AWS managed policies for EventBridge since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the EventBridge Document history page.

Change Description Date

AmazonEventBridgeP
ipesFullAccess – New policy
added

EventBridge added managed
policy for full permissions for
using EventBridge Pipes.

December 1, 2022

AmazonEventBridgeP
ipesReadOnlyAccess – New
policy added

EventBridge added managed
policy for permissions to view
EventBridge Pipes informati
on resources.

December 1, 2022

AmazonEventBridgeP
ipesOperatorAccess – New
policy added

EventBridge added managed
policy for for permissions
to view EventBridge Pipes
information, as well as start
and stop running pipes.

December 1, 2022

AmazonEventBridgeF
ullAccess – Update to an
existing policy

EventBridge updated the
policy to include permissions

December 1, 2022

Using identity-based policies (IAM policies) 619

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_controlling.html

Amazon EventBridge User Guide

Change Description Date

necessary for using EventBrid
ge Pipes features.

AmazonEventBridgeR
eadOnlyAccess – Update to an
existing policy

EventBridge added permissio
ns necessary for view
EventBridge Pipes informati
on resources.

The following actions were
added:

• pipes:DescribePipe

• pipes:ListPipes

• pipes:ListTagsForR
esource

December 1, 2022

CloudWatchEventsRe
adOnlyAccess – Update to an
existing policy

Updated to match
AmazonEventBridgeR
eadOnlyAccess.

December 1, 2022

CloudWatchEventsFullAccess
– Update to an existing policy

Updated to match
AmazonEventBridgeF
ullAccess.

December 1, 2022

Using identity-based policies (IAM policies) 620

Amazon EventBridge User Guide

Change Description Date

AmazonEventBridgeF
ullAccess – Update to an
existing policy

EventBridge updated the
policy to include permissions
necessary for using schemas
and scheduler features.

The following permissions
were added:

• EventBridge Schema
Registry actions

• EventBridge Scheduler
actions

• iam:CreateServiceL
inkedRole permissio
n for EventBridge Schema
Registry

• iam:PassRole permissio
n for EventBridge Scheduler

November 10, 2022

Using identity-based policies (IAM policies) 621

Amazon EventBridge User Guide

Change Description Date

AmazonEventBridgeR
eadOnlyAccess – Update to an
existing policy

EventBridge added permissio
ns necessary for view schema
and scheduler information
resources.

The following actions were
added:

• schemas:DescribeCo
deBinding

• schemas:DescribeDi
scoverer

• schemas:DescribeRe
gistry

• schemas:DescribeSc
hema

• schemas:ExportSche
ma

• schemas:GetCodeBin
dingSource

• schemas:GetDiscove
redSchema

• schemas:GetResourc
ePolicy

• schemas:ListDiscov
erers

• schemas:ListRegist
ries

• schemas:ListSchemas

• schemas:ListSchema
Versions

November 10, 2022

Using identity-based policies (IAM policies) 622

Amazon EventBridge User Guide

Change Description Date

• schemas:ListTagsFo
rResource

• schemas:SearchSche
mas

• scheduler:GetSched
ule

• scheduler:GetSched
uleGroup

• scheduler:ListSche
dules

• scheduler:ListSche
duleGroups

• scheduler:ListTags
ForResource

AmazonEventBridgeR
eadOnlyAccess – Update to an
existing policy

EventBridge added permissio
ns necessary for view
endpoint information.

The following actions were
added:

• events:ListEndpoin
ts

• events:DescribeEnd
point

April 7, 2022

Using identity-based policies (IAM policies) 623

Amazon EventBridge User Guide

Change Description Date

AmazonEventBridgeR
eadOnlyAccess – Update to an
existing policy

EventBridge added permissio
ns necessary for view
connection and API destinati
on information.

The following actions were
added:

• events:DescribeCon
nection

• events:ListConnect
ions

• events:DescribeApi
Destination

• events:ListApiDest
inations

March 4, 2021

Using identity-based policies (IAM policies) 624

Amazon EventBridge User Guide

Change Description Date

AmazonEventBridgeF
ullAccess – Update to an
existing policy

EventBridge updated the
policy to include iam:Creat
eServiceLinkedRole

 and AWS Secrets Manager
permissions necessary for
using API destinations.

The following actions were
added:

• secretsmanager:Cre
ateSecret

• secretsmanager:Upd
ateSecret

• secretsmanager:Del
eteSecret

• secretsmanager:Get
SecretValue

• secretsmanager:Put
SecretValue

March 4, 2021

EventBridge started tracking
changes

EventBridge started tracking
changes for its AWS managed
policies.

March 4, 2021

Using identity-based policies (IAM policies) 625

Amazon EventBridge User Guide

Using resource-based policies for Amazon EventBridge

When a rule runs in EventBridge, all of the targets associated with the rule are invoked. Rules can
invoke AWS Lambda functions, publish to Amazon SNS topics, or relay the event to Kinesis streams.
To make API calls against the resources you own, EventBridge needs the appropriate permissions.
For Lambda, Amazon SNS, Amazon SQS, and Amazon CloudWatch Logs resources, EventBridge
uses resource-based policies. For Kinesis streams, EventBridge uses identity-based policies.

You use the AWS CLI to add permissions to your targets. For information about how to install
and configure the AWS CLI, see Getting Set Up with the AWS Command Line Interface in the AWS
Command Line Interface User Guide.

Topics

• Amazon API Gateway permissions

• CloudWatch Logs permissions

• AWS Lambda permissions

• Amazon SNS permissions

• Amazon SQS permissions

• EventBridge Pipes specifics

Amazon API Gateway permissions

To invoke your Amazon API Gateway endpoint by using a EventBridge rule, add the following
permission to the policy of your API Gateway endpoint.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "execute-api:Invoke",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:events:region:account-id:rule/rule-name"

Using resource-based policies 626

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html

Amazon EventBridge User Guide

 }
 },
 "Resource": [
 "execute-api:/stage/GET/api"
]
 }
]
}

CloudWatch Logs permissions

When CloudWatch Logs is the target of a rule, EventBridge creates log streams, and CloudWatch
Logs stores the text from the events as log entries. To allow EventBridge to create the log
stream and log the events, CloudWatch Logs must include a resource-based policy that enables
EventBridge to write to CloudWatch Logs.

If you use the AWS Management Console to add CloudWatch Logs as the target of a rule, the
resource-based policy is created automatically. If you use the AWS CLI to add the target, and the
policy doesn't already exist, you must create it.

The following example allows EventBridge to write to all log groups that have names that start
with /aws/events/. If you use a different naming policy for these types of logs, adjust the
example accordingly.

{
 "Statement": [
 {
 "Action": [
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Effect": "Allow",
 "Principal": {
 "Service": ["events.amazonaws.com", "delivery.logs.amazonaws.com"]
 },
 "Resource": "arn:aws:logs:region:account:log-group:/aws/events/*:*",
 "Sid": "TrustEventsToStoreLogEvent"
 }
],
 "Version": "2012-10-17"
}

Using resource-based policies 627

Amazon EventBridge User Guide

For more information, see PutResourcePolicy in the CloudWatch Logs API Reference guide.

AWS Lambda permissions

To invoke your AWS Lambda function by using a EventBridge rule, add the following permission to
the policy of your Lambda function.

{
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:region:account-id:function:function-name",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Condition": {
 "ArnLike": {
 "AWS:SourceArn": "arn:aws:events:region:account-id:rule/rule-name"
 }
 },
 "Sid": "InvokeLambdaFunction"
}

To add the above permissions that enable EventBridge to invoke Lambda functions using the
AWS CLI

• At a command prompt, enter the following command.

aws lambda add-permission --statement-id "InvokeLambdaFunction" \
--action "lambda:InvokeFunction" \
--principal "events.amazonaws.com" \
--function-name "arn:aws:lambda:region:account-id:function:function-name" \
--source-arn "arn:aws:events:region:account-id:rule/rule-name"

For more information about setting permissions that enable EventBridge to invoke Lambda
functions, see AddPermission and Using Lambda with Scheduled Events in the AWS Lambda
Developer Guide.

Amazon SNS permissions

To allow EventBridge to publish to an Amazon SNS topic, use the aws sns get-topic-
attributes and the aws sns set-topic-attributes commands.

Using resource-based policies 628

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutResourcePolicy.html
https://docs.aws.amazon.com/lambda/latest/dg/API_AddPermission.html
https://docs.aws.amazon.com/lambda/latest/dg/with-scheduled-events.html

Amazon EventBridge User Guide

Note

You can't use Condition blocks in Amazon SNS topic policies for EventBridge.

To add permissions that enable EventBridge to publish SNS topics

1. To list the attributes of an SNS topic, use the following command.

aws sns get-topic-attributes --topic-arn "arn:aws:sns:region:account-id:topic-name"

The following example shows the result of a new SNS topic.

{
 "Attributes": {
 "SubscriptionsConfirmed": "0",
 "DisplayName": "",
 "SubscriptionsDeleted": "0",
 "EffectiveDeliveryPolicy": "{\"http\":{\"defaultHealthyRetryPolicy\":
{\"minDelayTarget\":20,\"maxDelayTarget\":20,\"numRetries\":3,\"numMaxDelayRetries
\":0,\"numNoDelayRetries\":0,\"numMinDelayRetries\":0,\"backoffFunction\":\"linear
\"},\"disableSubscriptionOverrides\":false}}",
 "Owner": "account-id",
 "Policy": "{\"Version\":\"2012-10-17\",\"Id\":\"__default_policy_ID\",
\"Statement\":[{\"Sid\":\"__default_statement_ID\",\"Effect\":\"Allow\",\"Principal
\":{\"AWS\":\"*\"},\"Action\":[\"SNS:GetTopicAttributes\",\"SNS:SetTopicAttributes
\",\"SNS:AddPermission\",\"SNS:RemovePermission\",\"SNS:DeleteTopic\",
\"SNS:Subscribe\",\"SNS:ListSubscriptionsByTopic\",\"SNS:Publish\"],\"Resource
\":\"arn:aws:sns:region:account-id:topic-name\",\"Condition\":{\"StringEquals\":
{\"AWS:SourceOwner\":\"account-id\"}}}]}",
 "TopicArn": "arn:aws:sns:region:account-id:topic-name",
 "SubscriptionsPending": "0"
 }
}

2. Use a JSON to string converter to convert the following statement to a string.

{
 "Sid": "PublishEventsToMyTopic",
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"

Using resource-based policies 629

https://tools.knowledgewalls.com/jsontostring

Amazon EventBridge User Guide

 },
 "Action": "sns:Publish",
 "Resource": "arn:aws:sns:region:account-id:topic-name"
}

After you convert the statement to a string, it looks like the following example.

{\"Sid\":\"PublishEventsToMyTopic\",\"Effect\":\"Allow\",\"Principal\":
{\"Service\":\"events.amazonaws.com\"},\"Action\":\"sns:Publish\",\"Resource\":
\"arn:aws:sns:region:account-id:topic-name\"}

3. Add the string you created in the previous step to the "Statement" collection inside the
"Policy" attribute.

4. Use the aws sns set-topic-attributes command to set the new policy.

aws sns set-topic-attributes --topic-arn "arn:aws:sns:region:account-id:topic-name"
 \
--attribute-name Policy \
--attribute-value "{\"Version\":\"2012-10-17\",\"Id\":\"__default_policy_ID\",
\"Statement\":[{\"Sid\":\"__default_statement_ID\",\"Effect\":\"Allow\",\"Principal
\":{\"AWS\":\"*\"},\"Action\":[\"SNS:GetTopicAttributes\",\"SNS:SetTopicAttributes
\",\"SNS:AddPermission\",\"SNS:RemovePermission\",\"SNS:DeleteTopic\",
\"SNS:Subscribe\",\"SNS:ListSubscriptionsByTopic\",\"SNS:Publish\"],\"Resource
\":\"arn:aws:sns:region:account-id:topic-name\",\"Condition\":{\"StringEquals
\":{\"AWS:SourceOwner\":\"account-id\"}}}, {\"Sid\":\"PublishEventsToMyTopic\",
\"Effect\":\"Allow\",\"Principal\":{\"Service\":\"events.amazonaws.com\"},\"Action
\":\"sns:Publish\",\"Resource\":\"arn:aws:sns:region:account-id:topic-name\"}]}"

For more information, see the SetTopicAttributes action in the Amazon Simple Notification Service
API Reference.

Amazon SQS permissions

To allow an EventBridge rule to invoke an Amazon SQS queue, use the aws sqs get-queue-
attributes and aws sqs set-queue-attributes commands.

If the policy for the SQS queue is empty, you first need to create a policy and then you can add the
permissions statement to it. A new SQS queue has an empty policy.

Using resource-based policies 630

https://docs.aws.amazon.com/sns/latest/api/API_SetTopicAttributes.html

Amazon EventBridge User Guide

If the SQS queue already has a policy, you need to copy the original policy and combine it with a
new statement to add the permissions statement to it.

To add permissions that enable EventBridge rules to invoke an SQS queue

1. To list SQS queue attributes. At a command prompt, enter the following command.

aws sqs get-queue-attributes \
--queue-url https://sqs.region.amazonaws.com/account-id/queue-name \
--attribute-names Policy

2. Add the following statement.

{
 "Sid": "AWSEvents_custom-eventbus-ack-sqs-rule_dlq_sqs-rule-target",
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sqs:SendMessage",
 "Resource": "arn:aws:sqs:region:account-id:queue-name",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:events:region:account-id:rule/bus-name/rule-
name"
 }
 }
 }

3. Use a JSON to string converter to convert the preceding statement into a string. After you
convert the policy to a string, it looks like the following.

{\"Sid\": \"EventsToMyQueue\", \"Effect\": \"Allow\", \"Principal\": {\"Service
\": \"events.amazonaws.com\"}, \"Action\": \"sqs:SendMessage\", \"Resource\":
 \"arn:aws:sqs:region:account-id:queue-name\", \"Condition\": {\"ArnEquals\":
 {\"aws:SourceArn\": \"arn:aws:events:region:account-id:rule/rule-name\"}}

4. Create a file called set-queue-attributes.json with the following content.

{
 "Policy": "{\"Version\":\"2012-10-17\",\"Id\":\"arn:aws:sqs:region:account-
id:queue-name/SQSDefaultPolicy\",\"Statement\":[{\"Sid\": \"EventsToMyQueue\",

Using resource-based policies 631

https://tools.knowledgewalls.com/jsontostring

Amazon EventBridge User Guide

 \"Effect\": \"Allow\", \"Principal\": {\"Service\": \"events.amazonaws.com\"},
 \"Action\": \"sqs:SendMessage\", \"Resource\": \"arn:aws:sqs:region:account-
id:queue-name\", \"Condition\": {\"ArnEquals\": {\"aws:SourceArn\":
 \"arn:aws:events:region:account-id:rule/rule-name\"}}}]}"
}

5. Set the policy attribute by using the set-queue-attributes.json file you just created as
the input, as shown in the following command.

aws sqs set-queue-attributes \
--queue-url https://sqs.region.amazonaws.com/account-id/queue-name \
--attributes file://set-queue-attributes.json

For more information, see Amazon SQS Policy Examples in the Amazon Simple Queue Service
Developer Guide.

EventBridge Pipes specifics

EventBridge Pipes does not support resource-based policies and has no APIs which support
resource based policy conditions.

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource policies to limit the permissions that Amazon EventBridge gives another service to
the resource. Use aws:SourceArn if you want only one resource to be associated with the cross-
service access. Use aws:SourceAccount if you want to allow any resource in that account to be
associated with the cross-service use.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don't know

Cross-service confused deputy prevention 632

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/SQSExamples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

Amazon EventBridge User Guide

the full ARN of the resource or if you are specifying multiple resources, use the aws:SourceArn
global context condition key with wildcard characters (*) for the unknown portions of the ARN. For
example, arn:aws:servicename:*:123456789012:*.

If the aws:SourceArn value does not contain the account ID, such as an Amazon S3 bucket ARN,
you must use both global condition context keys to limit permissions.

Event buses

For EventBridge event bus rule targets, the value of aws:SourceArn must be the rule ARN.

The following example shows how you can use the aws:SourceArn and aws:SourceAccount
global condition context keys in EventBridge to prevent the confused deputy problem. This
example is for use in a role trust policy, for a role used by an EventBridge rule.

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "ConfusedDeputyPreventionExamplePolicy",
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
],
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:events:*:123456789012:rule/myRule"
 },
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 }
 }
 }
}

EventBridge Pipes

For EventBridge Pipes, the value of aws:SourceArn must be the pipe ARN.

Cross-service confused deputy prevention 633

Amazon EventBridge User Guide

The following example shows how you can use the aws:SourceArn and aws:SourceAccount
global condition context keys in EventBridge to prevent the confused deputy problem. This
example is for use in a role trust policy, for a role used by EventBridge Pipes.

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "ConfusedDeputyPreventionExamplePolicy",
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
],
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:pipe:*:123456789012::pipe/example"
 },
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 }
 }
 }
}

Cross-service confused deputy prevention 634

Amazon EventBridge User Guide

Resource-based policies for Amazon EventBridge schemas

The EventBridge schema registry supports resource-based policies. A resource-based policy is a
policy that is attached to a resource rather than to an IAM identity. For example, in Amazon Simple
Storage Service (Amazon S3), a resource policy is attached to an Amazon S3 bucket.

For more information about EventBridge Schemas and resource-based policies, see the following.

• Amazon EventBridge Schemas REST API Reference

• Identity-Based Policies and Resource-Based Policies in the IAM User Guide

Supported APIs for resource-based policies

You can use the following APIs with resource-based policies for the EventBridge schema registry.

• DescribeRegistry

• UpdateRegistry

• DeleteRegistry

• ListSchemas

• SearchSchemas

• DescribeSchema

• CreateSchema

• DeleteSchema

• UpdateSchema

• ListSchemaVersions

• DeleteSchemaVersion

• DescribeCodeBinding

• GetCodeBindingSource

• PutCodeBinding

Example policy granting all supported actions to an AWS account

For the EventBridge schema registry, you must always attach a resource-based policy to a registry.
To grant access to a schema, you specify the schema ARN and the registry ARN in the policy.

Resource-based policies for EventBridge schemas 635

https://docs.aws.amazon.com/eventbridge/latest/schema-reference/what-is-eventbridge-schemas.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html

Amazon EventBridge User Guide

To grant a user access to all available APIs for EventBridge Schemas, use a policy similar to the
following, replacing the "Principal" with the account ID of the account you want to grant
access.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Test",
 "Effect": "Allow",
 "Action": [
 "schemas:*"
],
 "Principal": {
 "AWS": [
 "109876543210"
]
 },
 "Resource": [
 "arn:aws:schemas:us-east-1:012345678901:registry/default",
 "arn:aws:schemas:us-east-1:012345678901:schema/default*"
]
 }
]
}

Example policy granting read-only actions to an AWS account

The following example grants access to an account for only the read-only APIs for EventBridge
schemas.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Test",
 "Effect": "Allow",
 "Action": [
 "schemas:DescribeRegistry",
 "schemas:ListSchemas",
 "schemas:SearchSchemas",
 "schemas:DescribeSchema",

Resource-based policies for EventBridge schemas 636

Amazon EventBridge User Guide

 "schemas:ListSchemaVersions",
 "schemas:DescribeCodeBinding",
 "schemas:GetCodeBindingSource"
],
 "Principal": {
 "AWS": [
 "109876543210"
]
 },
 "Resource": [
 "arn:aws:schemas:us-east-1:012345678901:registry/default",
 "arn:aws:schemas:us-east-1:012345678901:schema/default*"
]
 }
]
}

Example policy granting all actions to an organization

You can use resource-based policies with the EventBridge schema registry to grant access to an
organization. For more information, see the AWS Organizations User Guide. The following example
grants organization with an ID of o-a1b2c3d4e5 access to the schema registry.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Test",
 "Effect": "Allow",
 "Action": [
 "schemas:*"
],
 "Principal": "*",
 "Resource": [
 "arn:aws:schemas:us-east-1:012345678901:registry/default",
 "arn:aws:schemas:us-east-1:012345678901:schema/default*"
],
 "Condition": {
 "StringEquals": {
 "aws:PrincipalOrgID": [
 "o-a1b2c3d4e5"
]
 }

Resource-based policies for EventBridge schemas 637

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html

Amazon EventBridge User Guide

 }
 }
]
}

Resource-based policies for EventBridge schemas 638

Amazon EventBridge User Guide

Amazon EventBridge permissions reference

To specify an action in an EventBridge policy, use the events: prefix followed by the API
operation name, as shown in the following example.

"Action": "events:PutRule"

To specify multiple actions in a single statement, separate them with commas as follows.

"Action": ["events:action1", "events:action2"]

To specify multiple actions, you can also use wildcards. For example, you can specify all actions
that begin with the word "Put" as follows.

"Action": "events:Put*"

To specify all EventBridge API actions, use the * wildcard as follows.

"Action": "events:*"

The following table lists the EventBridge API operations and corresponding actions that you can
specify in an IAM policy.

EventBridge API operation Required permissions Description

DeleteRule events:DeleteRule Required to delete a rule.

DescribeEventBus events:DescribeEve
ntBus

Required to list accounts that
are allowed to write events
to the current account's event
bus.

DescribeRule events:DescribeRule Required to list the details
about a rule.

DisableRule events:DisableRule Required to disable a rule.

EnableRule events:EnableRule Required to enable a rule.

Permissions reference 639

https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_DeleteRule.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_DescribeEventBus.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_DescribeRule.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_DisableRule.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_EnableRule.html

Amazon EventBridge User Guide

EventBridge API operation Required permissions Description

ListRuleNamesByTarget events:ListRuleNam
esByTarget

Required to list rules
associated with a target.

ListRules events:ListRules Required to list all rules in
your account.

ListTagsForResource events:ListTagsFor
Resource

Required to list all tags
associated with an EventBrid
ge resource. Currently, only
rules can be tagged.

ListTargetsByRule events:ListTargets
ByRule

Required to list all targets
associated with a rule.

PutEvents events:PutEvents Required to add custom
events that can be matched
to rules.

PutPermission events:PutPermission Required to give another
account permission to write
events to this account’s
default event bus.

PutRule events:PutRule Required to create or update
a rule.

PutTargets events:PutTargets Required to add targets to a
rule.

RemovePermission events:RemovePermi
ssion

Required to revoke another
account’s permissions
for writing events to this
account’s default event bus.

RemoveTargets events:RemoveTargets Required to remove a target
from a rule.

Permissions reference 640

https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_ListRuleNamesByTarget.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_ListRules.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_ListTargetsByRule.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutPermission.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutRule.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutTargets.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_RemovePermission.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_RemoveTargets.html

Amazon EventBridge User Guide

EventBridge API operation Required permissions Description

TestEventPattern events:TestEventPa
ttern

Required to test an event
pattern against a given event.

Permissions reference 641

https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_TestEventPattern.html

Amazon EventBridge User Guide

Using IAM policy conditions for fine-grained access control

To grant permissions, you use the IAM policy language in a policy statement to specify the
conditions when a policy should take effect. For example, you can have a policy that is applied only
after a specific date.

A condition in a policy consists of key-value pairs. Condition keys aren't case sensitive.

If you specify multiple conditions or keys in a single condition, all conditions and keys must be met
for EventBridge to grant permission. If you specify a single condition with multiple values for one
key, EventBridge grants permission if one of the values is met.

You can use placeholders or policy variables when you specify conditions. For more information, see
Policy Variables in the IAM User Guide. For more information about specifying conditions in an IAM
policy language, see Condition in the IAM User Guide.

By default, IAM users and roles can't access the events in your account. To access events, a user
must be authorized for the PutRule API action. If an IAM user or role is authorized for the
events:PutRule action, they can create a rule that matches certain events. However, for the rule
to be useful, the user must also have permissions for the events:PutTargets action because, if
you want the rule to do more than publish a CloudWatch metric, you must also add a target to a
rule.

You can provide a condition in the policy statement of an IAM user or role that allows the user or
role to create a rule that only matches a specific set of sources and event types. To grant access
to specific sources and types of events, use the events:source and events:detail-type
condition keys.

Similarly, you can provide a condition in the policy statement of an IAM user or role that allows the
user or role to create a rule that only matches a specific resource in your accounts. To grant access
to a specific resource, use the events:TargetArn condition key.

The following example is a policy that allows users to access all events except Amazon EC2 events
in EventBridge using a deny statement on the PutRule API action.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyPutRuleForAllEC2Events",
 "Effect": "Deny",

IAM policy conditions 642

https://docs.aws.amazon.com/IAM/latest/UserGuide/policyvariables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html#Condition

Amazon EventBridge User Guide

 "Action": "events:PutRule",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "events:source": "aws.ec2"
 }
 }
 }
]
}

EventBridge condition keys

The following table shows the condition keys and key and value pairs that you can use in a policy in
EventBridge.

Condition key Key value pair Evaluation types

aws:SourceAccount The account in which the rule
specified by aws:SourceArn
exists.

Account Id, Null

aws:SourceArn The ARN of the rule that is
sending the event.

ARN, Null

events:creatorAccount "events:creatorAcc
ount":" creatorAccount "

For creatorAccount , use
the account ID for the account
that created the rule. Use this
condition to authorize API calls
on rules from a specific account.

creatorAccount, Null

events:detail-type "events:detail-typ
e":" detail-type "

Where detail-type is the
literal string for the detail-type
field of the event such as "AWS

Detail Type, Null

IAM policy conditions 643

Amazon EventBridge User Guide

Condition key Key value pair Evaluation types

API Call via CloudTrail"
and "EC2 Instance State-
change Notification" .

events: detail.ev
entTypeCode

"events:detail.eve
ntTypeCode":" eventType
Code "

For eventTypeCode , use the
literal string for the detail.ev
entTypeCode field of the event,
such as "AWS_ABUSE_DOS_REP
ORT" .

eventTypeCode, Null

events: detail.service "events:detail.ser
vice":" service"

For service, use the literal
string for the detail.service field
of the event, such as "ABUSE".

service, Null

events: detail.us
erIdentity.principalId

"events:detail.use
rIdentity.principa
lId":" principal-id "

For principal-id , use the
literal string for the detail.us
erIdentity.principalId field of
the event with detail-type "AWS
API Call via CloudTrail"
such as "AROAIDPPEZS35WEXA
MPLE:AssumedRoleSe
ssionName." .

Principal Id, Null

IAM policy conditions 644

Amazon EventBridge User Guide

Condition key Key value pair Evaluation types

events:eventBusInv
ocation

"events:eventBusIn
vocation":" boolean"

For boolean, use true when a
rule sends an event to a target
that is an event bus in another
account. Use false when when a
PutEvents API call is used.

eventBusInvocation, Null

events:ManagedBy Used internally by AWS services.
For a rule created by an AWS
service on your behalf, the value
is the principal name of the
service that created the rule.

Not intended for use in customer
policies.

events:source "events:source":" source
"

Use source for the literal
string for the source field of the
event such as "aws.ec2" or
"aws.s3". For more possible
values for source, see the
example events in Events from
AWS services.

Source, Null

events:TargetArn "events:TargetArn"
:" target-arn "

For target-arn , use the
ARN of the target for the
rule, for example "arn:aws:
lambda:*:*:functio
n:*" .

ArrayOfARN, Null

IAM policy conditions 645

Amazon EventBridge User Guide

For example policy statements for EventBridge, see Managing access permissions to your Amazon
EventBridge resources.

Topics

• EventBridge Pipes specifics

• Example: Using the creatorAccount condition

• Example: Using the eventBusInvocation condition

• Example: Limiting access to a specific source

• Example: Defining multiple sources that can be used in an event pattern individually

• Example: Defining a source and a DetailType that can be used in an event pattern

• Example: Ensuring that the source is defined in the event pattern

• Example: Defining a list of allowed sources in an event pattern with multiple sources

• Example: Limiting PutRule access by detail.service

• Example: Limiting PutRule access by detail.eventTypeCode

• Example: Ensuring that only AWS CloudTrail events for API calls from a certain PrincipalId are
allowed

• Example: Limiting access to targets

EventBridge Pipes specifics

EventBridge Pipes does not support any additional IAM policy condition keys.

Example: Using the creatorAccount condition

The following example policy statement shows how to use the creatorAccount condition in a
policy to only allow rules to be created if the account specified as the creatorAccount is the
account that created the rule.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPutRuleForOwnedRules",
 "Effect": "Allow",
 "Action": "events:PutRule",
 "Resource": "*",
 "Condition": {

IAM policy conditions 646

Amazon EventBridge User Guide

 "StringEqualsIfExists": {
 "events:creatorAccount": "${aws:PrincipalAccount}"
 }
 }
 }
]
}

Example: Using the eventBusInvocation condition

The eventBusInvocation indicates whether the invocation originates from a cross-account
target or a PutEvents API request. The value is true when the invocation results from a rule that
include a cross-account target, such as when the target is an event bus in another account. The
value is false when the invocation results from a PutEvents API request. The following example
indicates an invocation from a cross-account target.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowCrossAccountInvocationEventsOnly",
 "Effect": "Allow",
 "Action": "events:PutEvents",
 "Resource": "*",
 "Condition": {
 "BoolIfExists": {
 "events:eventBusInvocation": "true"
 }
 }
 }
]
}

Example: Limiting access to a specific source

The following example policies can be attached to an IAM user. Policy A allows the PutRule API
action for all events, whereas Policy B allows PutRule only if the event pattern of the rule being
created matches Amazon EC2 events.

Policy A: allow all events

{

IAM policy conditions 647

Amazon EventBridge User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPutRuleForAllEvents",
 "Effect": "Allow",
 "Action": "events:PutRule",
 "Resource": "*"
 }
]
 }

Policy B:—allow events only from Amazon EC2

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPutRuleForAllEC2Events",
 "Effect": "Allow",
 "Action": "events:PutRule",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "events:source": "aws.ec2"
 }
 }
 }
]
}

EventPattern is a mandatory argument to PutRule. Hence, if the user with Policy B calls
PutRule with an event pattern like the following.

{
 "source": ["aws.ec2"]
}

The rule would be created because the policy allows for this specific source: that is, "aws.ec2".
However, if the user with Policy B calls PutRule with an event pattern like the following, the
rule creation would be denied because the policy doesn't allow for this specific source: that is,
"aws.s3".

IAM policy conditions 648

Amazon EventBridge User Guide

{
 "source": ["aws.s3"]
}

Essentially, the user with Policy B is only allowed to create a rule that would match the events
originating from Amazon EC2; hence, they're only allowed access to the events from Amazon EC2.

See the following table for a comparison of Policy A and Policy B.

Event Pattern Allowed by Policy A Allowed by Policy B

{
 "source":
 ["aws.ec2"]
}

Yes Yes

{
 "source":
 ["aws.ec2",
 "aws.s3"]
}

Yes No (Source aws.s3 isn't allowed)

{
 "source":
 ["aws.ec2"],
 "detail-type":
 ["EC2 Instance
 State-change
 Notification"]
}

Yes Yes

{
 "detail-type":
 ["EC2 Instance
 State-change
 Notification"]
}

Yes No (Source must be specified)

IAM policy conditions 649

Amazon EventBridge User Guide

Example: Defining multiple sources that can be used in an event pattern
individually

The following policy allows an IAM user or role to create a rule where the source in the
EventPattern is either Amazon EC2 or Amazon ECS.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPutRuleIfSourceIsEC2OrECS",
 "Effect": "Allow",
 "Action": "events:PutRule",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "events:source": ["aws.ec2", "aws.ecs"]
 }
 }
 }
]
}

The following table shows some examples of event patterns that are allowed or denied by this
policy.

Event pattern Allowed by the policy

{
 "source": ["aws.ec2"]
}

Yes

{
 "source": ["aws.ecs"]
}

Yes

{
 "source": ["aws.s3"]
}

No

IAM policy conditions 650

Amazon EventBridge User Guide

Event pattern Allowed by the policy

{
 "source": ["aws.ec2",
 "aws.ecs"]
}

No

{
 "detail-type": ["AWS API
 Call via CloudTrail"]
}

No

Example: Defining a source and a DetailType that can be used in an event
pattern

The following policy allows events only from the aws.ec2 source with DetailType equal to EC2
instance state change notification.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid":
 "AllowPutRuleIfSourceIsEC2AndDetailTypeIsInstanceStateChangeNotification",
 "Effect": "Allow",
 "Action": "events:PutRule",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "events:source": "aws.ec2",
 "events:detail-type": "EC2 Instance State-change Notification"
 }
 }
 }
]
}

The following table shows some examples of event patterns that are allowed or denied by this
policy.

IAM policy conditions 651

Amazon EventBridge User Guide

Event pattern Allowed by the policy

{
 "source": ["aws.ec2"]
}

No

{
 "source": ["aws.ecs"]
}

No

{
 "source": ["aws.ec2"],
 "detail-type": ["EC2
 Instance State-change Notificat
ion"]
}

Yes

{
 "source": ["aws.ec2"],
 "detail-type": ["EC2
 Instance Health Failed"]
}

No

{
 "detail-type": ["EC2
 Instance State-change Notificat
ion"]
}

No

Example: Ensuring that the source is defined in the event pattern

The following policy allows users to only create rules with EventPatterns that have the source
field. With this policy, an IAM user or role can't create a rule with an EventPattern that doesn't
provide a specific source.

{

IAM policy conditions 652

Amazon EventBridge User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPutRuleIfSourceIsSpecified",
 "Effect": "Allow",
 "Action": "events:PutRule",
 "Resource": "*",
 "Condition": {
 "Null": {
 "events:source": "false"
 }
 }
 }
]
}

The following table shows some examples of event patterns that are allowed or denied by this
policy.

Event Pattern Allowed by the Policy

{
 "source": ["aws.ec2"],
 "detail-type": ["EC2
 Instance State-change Notificat
ion"]
}

Yes

{
 "source": ["aws.ecs",
 "aws.ec2"]
}

Yes

{
 "detail-type": ["EC2
 Instance State-change Notificat
ion"]
}

No

IAM policy conditions 653

Amazon EventBridge User Guide

Example: Defining a list of allowed sources in an event pattern with multiple
sources

The following policy allows users to create rules with EventPatterns that have multiple sources
in them. Each source in the event pattern must be a member of the list provided in the condition.
When you use the ForAllValues condition, make sure that at least one of the items in the
condition list is defined.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPutRuleIfSourceIsSpecifiedAndIsEitherS3OrEC2OrBoth",
 "Effect": "Allow",
 "Action": "events:PutRule",
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "events:source": ["aws.ec2", "aws.s3"]
 },
 "Null": {
 "events:source": "false"
 }
 }
 }
]
}

The following table shows some examples of event patterns that are allowed or denied by this
policy.

Event Pattern Allowed by the Policy

{
 "source": ["aws.ec2"]
}

Yes

{
 "source": ["aws.ec2",
 "aws.s3"]

Yes

IAM policy conditions 654

Amazon EventBridge User Guide

Event Pattern Allowed by the Policy

}

{
 "source": ["aws.ec2",
 "aws.autoscaling"]
}

No

{
 "detail-type": ["EC2
 Instance State-change Notificat
ion"]
}

No

Example: Limiting PutRule access by detail.service

You can restrict an IAM user or role to creating rules only for events that have a certain value in the
events:details.service field. The value of events:details.service isn't necessarily the
name of an AWS service.

This policy condition is helpful when you work with events from AWS Health that relate to security
or abuse. By using this policy condition, you can limit access to these sensitive alerts to only those
users who need to see them.

For example, the following policy allows the creation of rules only for events where the value of
events:details.service is ABUSE.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPutRuleEventsWithDetailServiceEC2",
 "Effect": "Allow",
 "Action": "events:PutRule",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "events:detail.service": "ABUSE"

IAM policy conditions 655

Amazon EventBridge User Guide

 }
 }
 }
]
}

Example: Limiting PutRule access by detail.eventTypeCode

You can restrict an IAM user or role to creating rules only for events that have a certain value in
the events:details.eventTypeCode field. This policy condition is helpful when you work with
events from AWS Health that relate to security or abuse. By using this policy condition, you can
limit access to these sensitive alerts to only those users who need to see them.

For example, the following policy allows the creation of rules only for events where the value of
events:details.eventTypeCode is AWS_ABUSE_DOS_REPORT.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPutRuleEventsWithDetailServiceEC2",
 "Effect": "Allow",
 "Action": "events:PutRule",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "events:detail.eventTypeCode": "AWS_ABUSE_DOS_REPORT"
 }
 }
 }
]
}

Example: Ensuring that only AWS CloudTrail events for API calls from a certain
PrincipalId are allowed

All AWS CloudTrail events have the PrincipalId of the user who made the API
call in the detail.userIdentity.principalId path of an event. Using the
events:detail.userIdentity.principalId condition key, you can limit the access of IAM
users or roles to the CloudTrail events for only those coming from a specific account.

IAM policy conditions 656

Amazon EventBridge User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPutRuleOnlyForCloudTrailEventsWhereUserIsASpecificIAMUser",
 "Effect": "Allow",
 "Action": "events:PutRule",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "events:detail-type": ["AWS API Call via CloudTrail"],
 "events:detail.userIdentity.principalId":
 ["AIDAJ45Q7YFFAREXAMPLE"]
 }
 }
 }
]
}

The following table shows some examples of event patterns that are allowed or denied by this
policy.

Event pattern Allowed by the policy

{
 "detail-type": ["AWS API
 Call via CloudTrail"]
}

No

{
 "detail-type": ["AWS API
 Call via CloudTrail"],
 "detail.userIdentity.princi
palId": ["AIDAJ45Q7YFFAREXA
MPLE"]
}

Yes

{
 "detail-type": ["AWS API
 Call via CloudTrail"],

No

IAM policy conditions 657

Amazon EventBridge User Guide

Event pattern Allowed by the policy

 "detail.userIdentity.princi
palId": ["AROAIDPPEZS35WEXA
MPLE:AssumedRoleSessionName
"]
}

Example: Limiting access to targets

If an IAM user or role has events:PutTargets permission, they can add any target under the
same account to the rules that they are allowed to access. The following policy limits users to
adding targets to only a specific rule: MyRule under account 123456789012.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPutTargetsOnASpecificRule",
 "Effect": "Allow",
 "Action": "events:PutTargets",
 "Resource": "arn:aws:events:us-east-1:123456789012:rule/MyRule"
 }
]
}

To limit what target can be added to the rule, use the events:TargetArn condition key. You can
limit targets to only Lambda functions, as in the following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPutTargetsOnASpecificRuleAndOnlyLambdaFunctions",
 "Effect": "Allow",
 "Action": "events:PutTargets",
 "Resource": "arn:aws:events:us-east-1:123456789012:rule/MyRule",
 "Condition": {
 "ArnLike": {
 "events:TargetArn": "arn:aws:lambda:*:*:function:*"
 }

IAM policy conditions 658

Amazon EventBridge User Guide

 }
 }
]
}

Using service-linked roles for EventBridge

Amazon EventBridge uses AWS Identity and Access Management (IAM) service-linked roles. A
service-linked role is a unique type of IAM role that is linked directly to EventBridge. Service-linked
roles are predefined by EventBridge and include all the permissions that the service requires to call
other AWS services on your behalf.

Topics

• Using roles for creating secrets for API destinations

• Using roles for schema discovery

Using roles for creating secrets for API destinations

Amazon EventBridge uses AWS Identity and Access Management (IAM) service-linked roles. A
service-linked role is a unique type of IAM role that is linked directly to EventBridge. Service-linked
roles are predefined by EventBridge and include all the permissions that the service requires to call
other AWS services on your behalf.

A service-linked role makes setting up EventBridge easier because you don’t have to manually add
the necessary permissions. EventBridge defines the permissions of its service-linked roles, and
unless defined otherwise, only EventBridge can assume its roles. The defined permissions include
the trust policy and the permissions policy, and that permissions policy cannot be attached to any
other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects
your EventBridge resources because you can't inadvertently remove permission to access the
resources.

For information about other services that support service-linked roles, see AWS services that work
with IAM and look for the services that have Yes in the Service-linked roles column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Using service-linked roles 659

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon EventBridge User Guide

Service-linked role permissions for EventBridge

EventBridge uses the service-linked role named
AWSServiceRoleForAmazonEventBridgeApiDestinations – Enables access to the Secrets Manager
Secrets created by EventBridge.

The AWSServiceRoleForAmazonEventBridgeApiDestinations service-linked role trusts the
following services to assume the role:

• apidestinations.events.amazonaws.com

The role permissions policy named AmazonEventBridgeApiDestinationsServiceRolePolicy allows
EventBridge to complete the following actions on the specified resources:

• Action: create, describe, update and delete secrets; get and put secret
values on secrets created for all connections by EventBridge

You must configure permissions to allow your users, groups, or roles to create, edit, or delete a
service-linked role. For more information, see Service-linked role permissions in the IAM User Guide.

Creating a service-linked role for EventBridge

You don't need to manually create a service-linked role. When you create a connection in the AWS
Management Console, the AWS CLI, or the AWS API, EventBridge creates the service-linked role for
you.

Important

This service-linked role can appear in your account if you completed an action in another
service that uses the features supported by this role. If you were using the EventBridge
service before February 11, 2021, when it began supporting service-linked roles, then
EventBridge created the AWSServiceRoleForAmazonEventBridgeApiDestinations role in
your account. To learn more, see A new role appeared in my AWS account.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you create a connection, EventBridge creates the
service-linked role for you again.

Using service-linked roles 660

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_roles.html#troubleshoot_roles_new-role-appeared

Amazon EventBridge User Guide

Editing a service-linked role for EventBridge

EventBridge does not allow you to edit the
AWSServiceRoleForAmazonEventBridgeApiDestinations service-linked role. After you create
a service-linked role, you cannot change the name of the role because various entities might
reference the role. However, you can edit the description of the role using IAM. For more
information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for EventBridge

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up your service-linked role before you can manually delete
it.

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first delete any resources used by
the role.

Note

If the EventBridge service is using the role when you try to delete the resources, then the
deletion might fail. If that happens, wait for a few minutes and try the operation again.

To delete EventBridge resources used by the
AWSServiceRoleForAmazonEventBridgeApiDestinations (console)

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. Under Integrations choose API destinations, then choose the Connections tab.

3. Choose the connection, then choose Delete.

To delete EventBridge resources used by the
AWSServiceRoleForAmazonEventBridgeApiDestinations (AWS CLI)

• Use the following command: delete-connection.

Using service-linked roles 661

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://console.aws.amazon.com/events/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/events/delete-connection.html

Amazon EventBridge User Guide

To delete EventBridge resources used by the
AWSServiceRoleForAmazonEventBridgeApiDestinations (API)

• Use the following command: DeleteConnection.

Manually delete the service-linked role

Use the IAM console, the AWS CLI, or the AWS API to delete the
AWSServiceRoleForAmazonEventBridgeApiDestinations service-linked role. For more
information, see Deleting a service-linked role in the IAM User Guide.

Supported Regions for EventBridge service-linked roles

EventBridge supports using service-linked roles in all of the Regions where the service is available.
For more information, see AWS Regions and endpoints.

Using roles for schema discovery

Amazon EventBridge uses AWS Identity and Access Management (IAM) service-linked roles. A
service-linked role is a unique type of IAM role that is linked directly to EventBridge. Service-linked
roles are predefined by EventBridge and include all the permissions that the service requires to call
other AWS services on your behalf.

A service-linked role makes setting up EventBridge easier because you don’t have to manually add
the necessary permissions. EventBridge defines the permissions of its service-linked roles, and
unless defined otherwise, only EventBridge can assume its roles. The defined permissions include
the trust policy and the permissions policy, and that permissions policy cannot be attached to any
other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects
your EventBridge resources because you can't inadvertently remove permission to access the
resources.

For information about other services that support service-linked roles, see AWS services that work
with IAM and look for the services that have Yes in the Service-linked roles column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for EventBridge

EventBridge uses the service-linked role named AWSServiceRoleForSchemas – Grants permissions
to Managed Rules created by Amazon EventBridge schemas..

Using service-linked roles 662

https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_DeleteConnection.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon EventBridge User Guide

The AWSServiceRoleForSchemas service-linked role trusts the following services to assume the
role:

• schemas.amazonaws.com

The role permissions policy named AmazonEventBridgeSchemasServiceRolePolicy allows
EventBridge to complete the following actions on the specified resources:

• Action: put, enable, disable, and delete rules; put and remove targets;
list targets per rule on all managed rules created by EventBridge

You must configure permissions to allow your users, groups, or roles to create, edit, or delete a
service-linked role. For more information, see Service-linked role permissions in the IAM User Guide.

Creating a service-linked role for EventBridge

You don't need to manually create a service-linked role. When you conduct a Schema Discovery
in the AWS Management Console, the AWS CLI, or the AWS API, EventBridge creates the service-
linked role for you.

Important

This service-linked role can appear in your account if you completed an action in another
service that uses the features supported by this role. If you were using the EventBridge
service before November 27, 2019, when it began supporting service-linked roles, then
EventBridge created the AWSServiceRoleForSchemas role in your account. To learn more,
see A new role appeared in my AWS account.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you conduct a Schema Discovery, EventBridge creates
the service-linked role for you again.

Editing a service-linked role for EventBridge

EventBridge does not allow you to edit the AWSServiceRoleForSchemas service-linked role. After
you create a service-linked role, you cannot change the name of the role because various entities
might reference the role. However, you can edit the description of the role using IAM. For more
information, see Editing a service-linked role in the IAM User Guide.

Using service-linked roles 663

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_roles.html#troubleshoot_roles_new-role-appeared
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role

Amazon EventBridge User Guide

Deleting a service-linked role for EventBridge

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up your service-linked role before you can manually delete
it.

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first delete any resources used by
the role.

Note

If the EventBridge service is using the role when you try to delete the resources, then the
deletion might fail. If that happens, wait for a few minutes and try the operation again.

To delete EventBridge resources used by the AWSServiceRoleForSchemas (console)

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. Under Buses choose Event buses, then choose an event bus.

3. Choose Stop discovery.

To delete EventBridge resources used by the AWSServiceRoleForSchemas (AWS CLI)

• Use the following command: delete-discoverer.

To delete EventBridge resources used by the AWSServiceRoleForSchemas (API)

• Use the following command: DeleteDiscoverer.

Manually delete the service-linked role

Use the IAM console, the AWS CLI, or the AWS API to delete the AWSServiceRoleForSchemas
service-linked role. For more information, see Deleting a service-linked role in the IAM User Guide.

Using service-linked roles 664

https://console.aws.amazon.com/events/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/events/delete-discoverer.html
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-discoverers-id-discovererid.html#DeleteDiscoverer
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role

Amazon EventBridge User Guide

Supported Regions for EventBridge service-linked roles

EventBridge supports using service-linked roles in all of the Regions where the service is available.
For more information, see AWS Regions and endpoints.

Using service-linked roles 665

https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon EventBridge User Guide

Logging Amazon EventBridge API calls using AWS CloudTrail

Amazon EventBridge is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service. CloudTrail captures all API calls for EventBridge as events.
The calls captured include calls from the EventBridge console and code calls to the EventBridge
API operations. Using the information collected by CloudTrail, you can determine the request that
was made to EventBridge, the IP address from which the request was made, when it was made, and
additional details.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root user or user credentials.

• Whether the request was made on behalf of an IAM Identity Center user.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

CloudTrail is active in your AWS account when you create the account and you automatically
have access to the CloudTrail Event history. The CloudTrail Event history provides a viewable,
searchable, downloadable, and immutable record of the past 90 days of recorded management
events in an AWS Region. For more information, see Working with CloudTrail Event history in the
AWS CloudTrail User Guide. There are no CloudTrail charges for viewing the Event history.

For an ongoing record of events in your AWS account past 90 days, create a trail or a CloudTrail
Lake event data store.

CloudTrail trails

A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. All trails created using the
AWS Management Console are multi-Region. You can create a single-Region or a multi-Region
trail by using the AWS CLI. Creating a multi-Region trail is recommended because you capture
activity in all AWS Regions in your account. If you create a single-Region trail, you can view only
the events logged in the trail's AWS Region. For more information about trails, see Creating a
trail for your AWS account and Creating a trail for an organization in the AWS CloudTrail User
Guide.

You can deliver one copy of your ongoing management events to your Amazon S3 bucket at no
charge from CloudTrail by creating a trail, however, there are Amazon S3 storage charges. For

CloudTrail logs 666

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html

Amazon EventBridge User Guide

more information about CloudTrail pricing, see AWS CloudTrail Pricing. For information about
Amazon S3 pricing, see Amazon S3 Pricing.

CloudTrail Lake event data stores

CloudTrail Lake lets you run SQL-based queries on your events. CloudTrail Lake converts existing
events in row-based JSON format to Apache ORC format. ORC is a columnar storage format
that is optimized for fast retrieval of data. Events are aggregated into event data stores, which
are immutable collections of events based on criteria that you select by applying advanced
event selectors. The selectors that you apply to an event data store control which events persist
and are available for you to query. For more information about CloudTrail Lake, see Working
with AWS CloudTrail Lake in the AWS CloudTrail User Guide.

CloudTrail Lake event data stores and queries incur costs. When you create an event data
store, you choose the pricing option you want to use for the event data store. The pricing
option determines the cost for ingesting and storing events, and the default and maximum
retention period for the event data store. For more information about CloudTrail pricing, see
AWS CloudTrail Pricing.

EventBridge data events in CloudTrail

Data events provide information about the resource operations performed on or in a resource
(for example, reading or writing to an Amazon S3 object). These are also known as data plane
operations. Data events are often high-volume activities. By default, CloudTrail doesn’t log data
events. The CloudTrail Event history doesn't record data events.

Additional charges apply for data events. For more information about CloudTrail pricing, see AWS
CloudTrail Pricing.

You can log data events for the EventBridge resource types by using the CloudTrail console, AWS
CLI, or CloudTrail API operations. For more information about how to log data events, see Logging
data events with the AWS Management Console and Logging data events with the AWS Command
Line Interface in the AWS CloudTrail User Guide.

The following table lists the EventBridge resource types for which you can log data events. The
Data event type (console) column shows the value to choose from the Data event type list on the
CloudTrail console. The resources.type value column shows the resources.type value, which
you would specify when configuring advanced event selectors using the AWS CLI or CloudTrail

Data events 667

https://aws.amazon.com/cloudtrail/pricing/
https://aws.amazon.com/s3/pricing/
https://orc.apache.org/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake-concepts.html#adv-event-selectors
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake-concepts.html#adv-event-selectors
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake-manage-costs.html#cloudtrail-lake-manage-costs-pricing-option
https://aws.amazon.com/cloudtrail/pricing/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events
https://aws.amazon.com/cloudtrail/pricing/
https://aws.amazon.com/cloudtrail/pricing/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-console
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-console
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-with-the-AWS-CLI
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-with-the-AWS-CLI

Amazon EventBridge User Guide

APIs. The Data APIs logged to CloudTrail column shows the API calls logged to CloudTrail for the
resource type.

Data event type (console) resources.type value Data APIs logged to
CloudTrail

Event bus AWS::Events::Event
Bus

• DescribeEventBus

Event bus rule AWS::Events::Rule • DeleteRule

• DescribeRule

• DisableRule

• EnableRule

• ListRuleNamesByTarget

• ListRules

• ListTargetsByRule

• PutRule

• PutTargets

• RemoveTargets

• TestEventPattern

Pipe AWS::Pipes::Pipe • CreatePipe

• DeletePipe

• DescribePipe

• ListPipes

• StartPipe

• StopPipe

• UpdatePipe

You can configure advanced event selectors to filter on the eventName, readOnly, and
resources.ARN fields to log only those events that are important to you. For more information
about these fields, see AdvancedFieldSelector in the AWS CloudTrail API Reference.

Data events 668

https://docs.aws.amazon.com/eventbridge/latest/API_DescribeRule.html
https://docs.aws.amazon.com/eventbridge/latest/API_DeleteRule.html
https://docs.aws.amazon.com/eventbridge/latest/API_DescribeRule.html
https://docs.aws.amazon.com/eventbridge/latest/API_DisableRule.html
https://docs.aws.amazon.com/eventbridge/latest/API_EnableRule.html
https://docs.aws.amazon.com/eventbridge/latest/API_ListRuleNamesByTarget.html
https://docs.aws.amazon.com/eventbridge/latest/API_ListRules.html
https://docs.aws.amazon.com/eventbridge/latest/API_ListTargetsByRule.html
https://docs.aws.amazon.com/eventbridge/latest/API_PutRule.html
https://docs.aws.amazon.com/eventbridge/latest/API_PutTargets.html
https://docs.aws.amazon.com/eventbridge/latest/API_RemoveTargets.html
https://docs.aws.amazon.com/eventbridge/latest/API_TestEventPattern.html
https://docs.aws.amazon.com/eventbridge/latest/pipes-reference/API_CreatePipe.html
https://docs.aws.amazon.com/eventbridge/latest/pipes-reference/API_DeletePipe.html
https://docs.aws.amazon.com/eventbridge/latest/pipes-reference/API_DescribePipe.html
https://docs.aws.amazon.com/eventbridge/latest/pipes-reference/API_ListPipes.html
https://docs.aws.amazon.com/eventbridge/latest/pipes-reference/API_StartPipe.html
https://docs.aws.amazon.com/eventbridge/latest/pipes-reference/API_StopPipe.html
https://docs.aws.amazon.com/eventbridge/latest/pipes-reference/API_UpdatePipe.html
https://docs.aws.amazon.com/awscloudtrail/latest/APIReference/API_AdvancedFieldSelector.html

Amazon EventBridge User Guide

EventBridge management events in CloudTrail

Management events provide information about management operations that are performed on
resources in your AWS account. These are also known as control plane operations. By default,
CloudTrail logs management events.

Amazon EventBridge logs all EventBridge control plane operations as management events. For a
list of the Amazon EventBridge control plane operations that EventBridge logs to CloudTrail, see
the Amazon EventBridge API Reference.

EventBridge event examples

An event represents a single request from any source and includes information about the requested
API operation, the date and time of the operation, request parameters, and so on. CloudTrail log
files aren't an ordered stack trace of the public API calls, so events don't appear in any specific
order.

The following example shows a CloudTrail event that demonstrates the PutRule operation.

{
 "eventVersion":"1.03",
 "userIdentity":{
 "type":"Root",
 "principalId":"123456789012",
 "arn":"arn:aws:iam::123456789012:root",
 "accountId":"123456789012",
 "accessKeyId":"AKIAIOSFODNN7EXAMPLE",
 "sessionContext":{
 "attributes":{
 "mfaAuthenticated":"false",
 "creationDate":"2015-11-17T23:56:15Z"
 }
 }
 },
 "eventTime":"2015-11-18T00:11:28Z",
 "eventSource":"events.amazonaws.com",
 "eventName":"PutRule",
 "awsRegion":"us-east-1",
 "sourceIPAddress":"AWS Internal",
 "userAgent":"AWS CloudWatch Console",
 "requestParameters":{
 "description":"",

Management events 669

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html#logging-management-events
https://docs.aws.amazon.com/eventbridge/latest/APIReference/Welcome.html

Amazon EventBridge User Guide

 "name":"cttest2",
 "state":"ENABLED",
 "eventPattern":"{\"source\":[\"aws.ec2\"],\"detail-type\":[\"EC2 Instance State-
change Notification\"]}",
 "scheduleExpression":""
 },
 "responseElements":{
 "ruleArn":"arn:aws:events:us-east-1:123456789012:rule/cttest2"
 },
 "requestID":"e9caf887-8d88-11e5-a331-3332aa445952",
 "eventID":"49d14f36-6450-44a5-a501-b0fdcdfaeb98",
 "eventType":"AwsApiCall",
 "apiVersion":"2015-10-07",
 "recipientAccountId":"123456789012"
}

For information about CloudTrail record contents, see CloudTrail record contents in the AWS
CloudTrail User Guide.

CloudTrail log entries for actions taken by EventBridge Pipes

EventBridge Pipes assumes the provided IAM role when reading events from sources, invoking
enrichments, or invoking targets. For CloudTrail entries related to actions taken in your
account on all enrichments, targets, and Amazon SQS, Kinesis, and DynamoDB sources, the
sourceIPAddress and invokedBy fields will include pipes.amazonaws.com.

Sample CloudTrail log entry for all enrichments, targets, and Amazon SQS, Kinesis, and
DynamoDB sources

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "...",
 "arn": "arn:aws:sts::111222333444:assumed-role/...",
 "accountId": "111222333444",
 "accessKeyId": "...",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "...",
 "arn": "...",

Events for Pipe actions 670

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-record-contents.html

Amazon EventBridge User Guide

 "accountId": "111222333444",
 "userName": "userName"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2022-09-22T21:41:15Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "pipes.amazonaws.com"
 },
 "eventTime": ",,,",
 "eventName": "...",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "pipes.amazonaws.com",
 "userAgent": "pipes.amazonaws.com",
 "requestParameters": {
 ...
 },
 "responseElements": null,
 "requestID": "...",
 "eventID": "...",
 "readOnly": true,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "...",
 "eventCategory": "Management"
}

For all other sources, the sourceIPAddress field of the CloudTrail log entries will have a dynamic
IP address and shouldn't be relied upon for any integration or event categorization. In addition,
these entries won't have the invokedBy field.

Sample CloudTrail log entry for all other sources

{
 "eventVersion": "1.08",
 "userIdentity": {
 ...
 },
 "eventTime": ",,,",
 "eventName": "...",
 "awsRegion": "us-west-2",

Events for Pipe actions 671

Amazon EventBridge User Guide

 "sourceIPAddress": "127.0.0.1",
 "userAgent": "Python-httplib2/0.8 (gzip)",
}

Events for Pipe actions 672

Amazon EventBridge User Guide

Compliance validation in Amazon EventBridge

Third-party auditors such as SOC, PCI, FedRAMP, and HIPAA assess the security and compliance of
AWS services as part of multiple AWS compliance programs.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using EventBridge is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – Architectural considerations and steps for
deploying security- and compliance-focused baseline environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper – How companies can use AWS to
create HIPAA-compliant applications.

• AWS Compliance Resources – A collection of workbooks and guides.

• Evaluating Resources with Rules in the AWS Config Developer Guide – Information about how
AWS Config assesses how well your resource configurations comply with internal practices,
industry guidelines, and regulations.

• AWS Security Hub – A comprehensive view of your security state within AWS that helps you
check your compliance with security industry standards and best practices.

Compliance validation 673

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

Amazon EventBridge User Guide

Amazon EventBridge resilience

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Resilience 674

https://aws.amazon.com/about-aws/global-infrastructure/

Amazon EventBridge User Guide

Infrastructure security in Amazon EventBridge

As a managed service, Amazon EventBridge is protected by AWS global network security. For
information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access EventBridge through the network. Clients must support
the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

You can call these API operations from any network location, and you can use resource-based
access policies in EventBridge, which can include restrictions based on the source IP address. You
can also use EventBridge policies to control access from specific Amazon Virtual Private Cloud
(Amazon VPC) endpoints or specific VPCs. Effectively, this isolates network access to a given
EventBridge resource from only the specific VPC within the AWS network.

Infrastructure security 675

https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon EventBridge User Guide

Configuration and vulnerability analysis in Amazon
EventBridge

Configuration and IT controls are a shared responsibility between AWS and you, our customer. For
more information, see the AWS shared responsibility model.

Security and vulnerability analysis 676

https://aws.amazon.com/compliance/shared-responsibility-model/

Amazon EventBridge User Guide

Monitoring Amazon EventBridge

EventBridge sends metrics to Amazon CloudWatch every minute for everything from the number
of matched events to the number of times a target is invoked by a rule.

The following video reviews monitoring and auditing EventBridge behavior through CloudWatch:
Monitoring and auditing events

Topics

• EventBridge metrics

• Dimensions for EventBridge metrics

EventBridge metrics

The AWS/Events namespace includes the following metrics.

For the metrics that use Count as a unit, Sum and SampleCount tend to be the most useful
statistics.

Metrics that specify only the RuleName dimension refer to the default event bus. Metrics that
specify both the EventBusName and RuleName dimensions refer to a custom event bus.

Metric Description

DeadLette
rInvocations

The number of times a rule’s target isn't invoked in response to an
event. This includes invocations that would result in running the same
rule again, causing an infinite loop.

Valid Dimensions: RuleName

Units: Count

Events The number of partner events ingested by EventBridge.

Valid Dimensions: EventSourceName

Units: Count

EventBridge metrics 677

http://www.youtube.com/embed/qm0Y2wxQJyk
http://www.youtube.com/embed/qm0Y2wxQJyk

Amazon EventBridge User Guide

Metric Description

FailedInv
ocations

The number of invocations that failed permanently. This doesn't
include invocations that are retried or invocations that succeeded
 after a retry attempt. It also doesn't count failed invocations that are
counted in DeadLetterInvocations .

Note

EventBridge only sends this metric to CloudWatch if it isn't
zero.

Valid Dimensions: RuleName

Units: Count

Invocations The number of times a target is invoked by a rule in response to an
event. This includes successful and failed invocations, but doesn't
include throttled or retried attempts until they fail permanently. It
doesn't include DeadLetterInvocations .

Note

EventBridge only sends this metric to CloudWatch if it isn't
zero.

Valid Dimensions: None, RuleName

Units: Count

Invocatio
nAttempts

Number of times EventBridge attempted invoking a target.

Valid Dimensions: None

Units: Count

EventBridge metrics 678

Amazon EventBridge User Guide

Metric Description

Invocatio
nsCreated

The total number of invocations created in response to each event.

This metric is often used to monitor utilization of the Invocations
throttle limit in transactions per second EventBridge service quota.

Valid Dimensions: None

Units: Count

Invocatio
nsFailedT
oBeSentToDlq

The number of invocations that couldn't be moved to a dead-lett
er queue. Dead-letter queue errors occur due to permissions errors,
unavailable resources, or size limits.

Note

EventBridge only sends this metric to CloudWatch if it isn't
zero.

Valid Dimensions: RuleName

Units: Count

Ingestion
toInvocat
ionComple
teLatency

The time taken from event ingestion to completion of the first
successful invocation attempt.

Valid Dimensions: EventBusName, None, RuleName

Units: Milliseconds

Ingestion
toInvocat
ionStartL
atency

The time to process events, measured from when an event is ingested
by EventBridge to the first invocation of a target.

Valid Dimensions: EventBusName, None, RuleName

Units: Milliseconds

EventBridge metrics 679

Amazon EventBridge User Guide

Metric Description

Invocatio
nsSentToDlq

The number of invocations that are moved to a dead-letter queue.

Note

EventBridge only sends this metric to CloudWatch if it isn't
zero.

Valid Dimensions: RuleName

Units: Count

MatchedEvents If EventBusName or EventSourceName is specified, the number of
events that matched with any rule. If RuleName is specified, the
number of events that matched with a specific rule.

Valid Dimensions: EventBusName, RuleName, EventSourceName

Units: Count

RetryInvo
cationAttempts

Number of times target invocation has been retried.

Note

EventBridge only sends this metric to CloudWatch if it isn't
zero.

Valid Dimensions: None

Units: Count

Successfu
lInvocati
onAttempts

Number of times target was successfully invoked.

Valid Dimensions: None

Units: Count

EventBridge metrics 680

Amazon EventBridge User Guide

Metric Description

ThrottledRules The number of times rule execution was throttled. Invocations for
those rules may be delayed.

For more information, see Invocations throttle limit in transactions
per second in ???.

Valid Dimensions: EventBusName, None, RuleName

Units: Count

TriggeredRules The number of rules that have run and matched with any event.

You won't see this metric in CloudWatch until a rule is triggered.

Valid Dimensions: EventBusName, None, RuleName

Units: Count

EventBridge PutEvents metrics

The AWS/Events namespace includes the following metrics pertaining to the PutEvents API
requests.

For the metrics that use Count as a unit, Sum and SampleCount tend to be the most useful
statistics.

Metric Description

PutEvents
Approxima
teCallCount

Approximate number of received PutEvents requests.

Valid Dimensions: None

Units: Count

PutEvents
Approxima
teFailedCount

Approximate number of failed PutEvents requests.

Valid Dimensions: None

EventBridge PutEvents metrics 681

https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html

Amazon EventBridge User Guide

Metric Description

Units: Count

PutEvents
Approxima
teSuccessCount

Approximate number of successful PutEvents requests.

Valid Dimensions: None

Units: Count

PutEvents
Approxima
teThrottl
edCount

Number of PutEvents requests rejected due to throttling.

Valid Dimensions: None

Units: Count

PutEvents
EntriesCount

The number of event entries contained in a PutEvents request.

Valid Dimensions: None

Units: Count

PutEvents
FailedEnt
riesCount

The number of event entries contained in a PutEvents request that
failed to be ingested.

Valid Dimensions: None

Units: Count

PutEvents
Latency

The time taken per PutEvents request.

Valid Dimensions: None

Units: Milliseconds

PutEvents
RequestSize

The size of the PutEvents request.

Valid Dimensions: None

Units: Bytes

EventBridge PutEvents metrics 682

https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html

Amazon EventBridge User Guide

EventBridge PutPartnerEvents metrics

The AWS/Events namespace includes the following metrics pertaining to the PutPartnerEvents
API requests.

Note

EventBridge only includes metrics pertaining to PutPartnerEvents requests in SaaS partner
accounts that send events. For more information, see ???

For the metrics that use Count as a unit, Sum and SampleCount tend to be the most useful
statistics.

Metric Description

PutPartne
rEventsAp
proximate
CallCount

Approximate number of received PutPartnerEvents requests.

Valid Dimensions: None

Units: Count

PutPartne
rEventsAp
proximate
FailedCount

Approximate number of failed PutPartnerEvents requests.

Valid Dimensions: None

Units: Count

PutPartne
rEventsAp
proximate
ThrottledCount

Number of PutPartnerEvents requests rejected due to throttling.

Valid Dimensions: None

Units: Count

PutPartne
rEventsAp
proximate
SuccessCount

Approximate number of successful PutPartnerEvents requests.

Valid Dimensions: None

Units: Count

EventBridge PutPartnerEvents metrics 683

https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutPartnerEvents.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutPartnerEvents.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutPartnerEvents.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutPartnerEvents.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutPartnerEvents.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutPartnerEvents.html

Amazon EventBridge User Guide

Metric Description

PutPartne
rEventsEn
triesCount

The number of event entries contained in a PutPartnerEvents
request.

Valid Dimensions: None

Units: Count

PutPartne
rEventsFa
iledEntri
esCount

The number of event entries contained in a PutPartnerEvents
request that failed to be ingested.

Valid Dimensions: None

Units: Count

PutPartne
rEventsLatency

The time taken per PutPartnerEvents request.

Valid Dimensions: None

Units: Milliseconds

Dimensions for EventBridge metrics

EventBridge metrics have dimensions, or sortable attributes, which are listed below.

Dimension Description

EventBusName Filters the available metrics by event bus name.

EventSourceName Filters the available metrics by partner event source name.

RuleName Filters the available metrics by rule name.

Dimensions for EventBridge metrics 684

https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutPartnerEvents.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutPartnerEvents.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutPartnerEvents.html

Amazon EventBridge User Guide

Troubleshooting Amazon EventBridge

You can use the steps in this section to troubleshoot Amazon EventBridge.

Topics

• My rule ran but my Lambda function wasn't invoked

• I just created or modified a rule, but it didn't match a test event

• My rule didn't run at the time I specified in the ScheduleExpression

• My rule didn't run at the time that I expected

• My rule matches AWS global service API calls but it didn't run

• The IAM role associated with my rule is being ignored when the rule runs

• My rule has an event pattern that is supposed to match a resource, but no events match

• My event's delivery to the target was delayed

• Some events were never delivered to my target

• My rule ran more than once in response to one event

• Preventing infinite loops

• My events are not delivered to the target Amazon SQS queue

• My rule runs, but I don't see any messages published into my Amazon SNS topic

• My Amazon SNS topic still has permissions for EventBridge even after I deleted the rule
associated with the Amazon SNS topic

• Which IAM condition keys can I use with EventBridge?

• How can I tell when EventBridge rules are broken?

My rule ran but my Lambda function wasn't invoked

One reason your Lambda function might not run is if you don't have the right permissions.

To check your permissions for your Lambda function

1. Using the AWS CLI, run the following command with your function and your AWS Region:

aws lambda get-policy --function-name MyFunction --region us-east-1

My rule ran but my Lambda function wasn't invoked 685

Amazon EventBridge User Guide

You should see the following output.

{
 "Policy": "{\"Version\":\"2012-10-17\",
 \"Statement\":[
 {\"Condition\":{\"ArnLike\":{\"AWS:SourceArn\":\"arn:aws:events:us-
east-1:123456789012:rule/MyRule\"}},
 \"Action\":\"lambda:InvokeFunction\",
 \"Resource\":\"arn:aws:lambda:us-east-1:123456789012:function:MyFunction\",
 \"Effect\":\"Allow\",
 \"Principal\":{\"Service\":\"events.amazonaws.com\"},
 \"Sid\":\"MyId\"}
],
 \"Id\":\"default\"}"
}

2. If you see the following message.

A client error (ResourceNotFoundException) occurred when calling the GetPolicy
 operation: The resource you requested does not exist.

Or, you see the output but you can't locate events.amazonaws.com as a trusted entity in the
policy, run the following command:

aws lambda add-permission \
--function-name MyFunction \
--statement-id MyId \
--action 'lambda:InvokeFunction' \
--principal events.amazonaws.com \
--source-arn arn:aws:events:us-east-1:123456789012:rule/MyRule

3. If the output contains a SourceAccount field, then you need to remove it. A SourceAccount
setting prevents EventBridge from being able to invoke the function.

Note

If the policy is incorrect, you can edit the rule in the EventBridge console by removing and
then adding it back to the rule. The EventBridge console then sets the correct permissions
on the target.

My rule ran but my Lambda function wasn't invoked 686

Amazon EventBridge User Guide

If you're using a specific Lambda alias or version, add the --qualifier parameter in the
aws lambda get-policy and aws lambda add-permission commands, as shown in
the following command

aws lambda add-permission \
--function-name MyFunction \
--statement-id MyId \
--action 'lambda:InvokeFunction' \
--principal events.amazonaws.com \
--source-arn arn:aws:events:us-east-1:123456789012:rule/MyRule
--qualifier alias or version

I just created or modified a rule, but it didn't match a test event

When you make a change to a rule or to its targets, incoming events might not immediately start
or stop matching to new or updated rules. Allow a short period of time for changes to take effect.

If events still don't match after a short period of time, check the CloudWatch metrics
TriggeredRules, Invocations, and FailedInvocations for your rule. For more information
about these metrics, see Monitoring Amazon EventBridge.

If the rule is intended to match an event from an AWS service, do one of these things:

• Use the TestEventPattern action to test the event pattern of your rule matches a test event.
For more information, see TestEventPattern in the Amazon EventBridge API Reference.

• Use the Sandbox on the EventBridge console.

My rule didn't run at the time I specified in the
ScheduleExpression

Make sure you have set the schedule for the rule in the UTC+0 time zone. If the
ScheduleExpression is correct, then follow the steps under I just created or modified a rule, but
it didn't match a test event.

I just created or modified a rule, but it didn't match a test event 687

https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_TestEventPattern.html
https://console.aws.amazon.com/events

Amazon EventBridge User Guide

My rule didn't run at the time that I expected

EventBridge runs rules within one minute of the start time you set. The count down to run time
begins as soon as you create the rule.

Note

Scheduled rules have delivery type of guaranteed meaning events will be triggered for
each expected time at least once.

You can use a cron expression to invoke targets at a specified time. To create a rule that runs every
four hours on the 0th minute, you do one of the following:

• In the EventBridge console, you use the cron expression 0 0/4 * * ? *.

• Using the AWS CLI, you use the expression cron(0 0/4 * * ? *).

For example, to create a rule named TestRule that runs every 4 hours by using the AWS CLI, you
use the following command.

aws events put-rule --name TestRule --schedule-expression 'cron(0 0/4 * * ? *)'

To run a rule every five minutes, you use the following cron expressio.

aws events put-rule --name TestRule --schedule-expression 'cron(0/5 * * * ? *)'

The finest resolution for an EventBridge rule that uses a cron expression is one minute. Your
scheduled rule runs within that minute but not on the precise 0th second.

Because EventBridge and target services are distributed, there can be a delay of several seconds
between the time the scheduled rule runs and the time the target service performs the action on
the target resource.

My rule matches AWS global service API calls but it didn't run

AWS global services; such as, IAM and Amazon Route 53 are only available in the US East (N.
Virginia) Region, so events from AWS API calls from global services are only available in that
region. For more information, see Events from AWS services.

My rule didn't run at the time that I expected 688

Amazon EventBridge User Guide

The IAM role associated with my rule is being ignored when the
rule runs

EventBridge only uses IAM roles for rules that send events to Kinesis streams. For rules that invoke
Lambda functions or Amazon SNS topics, you need to provide resource-based permissions.

Make sure your regional AWS STS endpoints are enabled, so that EventBridge can use them when
assuming the IAM role you provided. For more information, see Activating and Deactivating AWS
STS in an AWS Region in the IAM User Guide.

My rule has an event pattern that is supposed to match a
resource, but no events match

Most services in AWS treat a colon (:) or slash (/) as the same character in Amazon Resource Names
(ARNs)., but EventBridge uses an exact match in event patterns and rules. Be sure to use the correct
ARN characters when creating event patterns so that they match the ARN syntax in the event to
match.

Some events, such as AWS API call events from CloudTrail, don't have anything in the resources
field.

My event's delivery to the target was delayed

EventBridge tries to deliver an event to a target for up to 24 hours, except in scenarios where your
target resource is constrained. The first attempt is made as soon as the event arrives in the event
stream. If the target service is having problems, EventBridge automatically reschedules another
delivery. If 24 hours has passed since the arrival of event, EventBridge stops trying to deliver the
event and publishes the FailedInvocations metric in CloudWatch. We recommend that you set
up a DLQ to store events that couldn't successfully be delivered to a target. For more information,
see Event retry policy and using dead-letter queues

Some events were never delivered to my target

If the target of an EventBridge rule is constrained for a prolonged time, EventBridge might not
retry delivery. For example, if the target is not provisioned to handle the incoming event traffic and

The IAM role associated with my rule is being ignored when the rule runs 689

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html

Amazon EventBridge User Guide

the target service is throttling requests that EventBridge makes on your behalf, then EventBridge
might not retry delivery.

My rule ran more than once in response to one event

In rare cases, the same rule can run more than once for a single event or scheduled time, or the
same target can be invoked more than once for a given triggered rule.

Preventing infinite loops

In EventBridge, it is possible to create a rule that leads to infinite loops, where the rule runs
repeatedly. If you have a rule that causes an infinite loop, rewrite it so that the actions that the rule
takes don't match the same rule.

For example, a rule that detects that ACLs have changed on an Amazon S3 bucket and then runs
software to change them to a new state causes an infinite loop. One way to resolve it is to rewrite
the rule so that it only matches ACLs that are in a bad state.

An infinite loop can quickly cause higher than expected charges. We recommend that you use
budgeting, which alerts you when charges exceed your specified limit. For more information, see
Managing Your Costs with Budgets.

My events are not delivered to the target Amazon SQS queue

If your Amazon SQS queue is encrypted, you must create a customer-managed KMS key and
include the following permission section in your KMS key policy. For more information, see
Configuring AWS KMS permissions.

{
 "Sid": "Allow EventBridge to use the key",
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "*"

My rule ran more than once in response to one event 690

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-key-management.html#sqs-what-permissions-for-sse

Amazon EventBridge User Guide

}

My rule runs, but I don't see any messages published into my
Amazon SNS topic

Scenario 1

You need permission for messages to be published into your Amazon SNS topic. Use the following
command using the AWS CLI, replacing us-east-1 with your Region and using your topic ARN.

aws sns get-topic-attributes --region us-east-1 --topic-arn "arn:aws:sns:us-
east-1:123456789012:MyTopic"

To have the correct permission, your policy attributes similar to the following.

"{\"Version\":\"2012-10-17\",
\"Id\":\"__default_policy_ID\",
\"Statement\":[{\"Sid\":\"__default_statement_ID\",
\"Effect\":\"Allow\",
\"Principal\":{\"AWS\":\"*\"},
\"Action\":[\"SNS:Subscribe\",
\"SNS:ListSubscriptionsByTopic\",
\"SNS:DeleteTopic\",
\"SNS:GetTopicAttributes\",
\"SNS:Publish\",
\"SNS:RemovePermission\",
\"SNS:AddPermission\",
\"SNS:SetTopicAttributes\"],
\"Resource\":\"arn:aws:sns:us-east-1:123456789012:MyTopic\",
\"Condition\":{\"StringEquals\":{\"AWS:SourceOwner\":\"123456789012\"}}},{\"Sid\":
\"Allow_Publish_Events\",
\"Effect\":\"Allow\",
\"Principal\":{\"Service\":\"events.amazonaws.com\"},
\"Action\":\"sns:Publish\",
\"Resource\":\"arn:aws:sns:us-east-1:123456789012:MyTopic\"}]}"

If you don't see events.amazonaws.com with Publish permission in your policy, first copy the
current policy and add the following statement to the list of statements.

{\"Sid\":\"Allow_Publish_Events\",

My rule runs, but I don't see any messages published into my Amazon SNS topic 691

Amazon EventBridge User Guide

\"Effect\":\"Allow\",\"Principal\":{\"Service\":\"events.amazonaws.com\"},
\"Action\":\"sns:Publish\",
\"Resource\":\"arn:aws:sns:us-east-1:123456789012:MyTopic\"}

Then set the topic attributes by using the AWS CLI, use the following command.

aws sns set-topic-attributes --region us-east-1 --topic-arn "arn:aws:sns:us-
east-1:123456789012:MyTopic" --attribute-name Policy --attribute-
value NEW_POLICY_STRING

Note

If the policy is incorrect, you can also edit the rule in the EventBridge console by removing
and then adding it back to the rule. EventBridge sets the correct permissions on the target.

Scenario 2

If your SNS topic is encrypted, you must include the following section in your KMS key policy.

{
 "Sid": "Allow EventBridge to use the key",
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "*"
}

My Amazon SNS topic still has permissions for EventBridge
even after I deleted the rule associated with the Amazon SNS
topic

When you create a rule with Amazon SNS as the target, EventBridge adds permission to your
Amazon SNS topic on your behalf. If you delete the rule shortly after you create it, EventBridge

My Amazon SNS topic still has permissions for EventBridge even after I deleted the rule associated with
the Amazon SNS topic

692

Amazon EventBridge User Guide

might not remove the permission from your Amazon SNS topic. If this happens, you can remove
the permission from the topic by using the aws sns set-topic-attributes command. For
information about resource-based permissions for sending events, see Using resource-based
policies for Amazon EventBridge.

Which IAM condition keys can I use with EventBridge?

EventBridge supports the AWS-wide condition keys (see IAM and AWS STS condition context keys
in the IAM User Guide), plus the keys listed at Using IAM policy conditions for fine-grained access
control.

How can I tell when EventBridge rules are broken?

You can use the following alarm to notify you when your EventBridge rules are broken.

To create an alarm to alert when rules are broken

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Choose Create Alarm. In the CloudWatch Metrics by Category pane, choose Events Metrics.

3. In the list of metrics, select FailedInvocations.

4. Above the graph, choose Statistic, Sum.

5. For Period, choose a value, for example 5 minutes. Choose Next.

6. Under Alarm Threshold, for Name, type a unique name for the alarm, for example
myFailedRules. For Description, type a description of the alarm, for example Rules aren't
delivering events to targets.

7. For is, choose >= and 1. For for, enter 10.

8. Under Actions, for Whenever this alarm, choose State is ALARM.

9. For Send notification to, select an existing Amazon SNS topic or create a new one. To create
a new topic, choose New list. Type a name for the new Amazon SNS topic, for example:
myFailedRules.

10. For Email list, type a comma-separated list of email addresses to be notified when the alarm
changes to the ALARM state.

11. Choose Create Alarm.

Which IAM condition keys can I use with EventBridge? 693

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html
https://console.aws.amazon.com/cloudwatch/

Amazon EventBridge User Guide

Amazon EventBridge quotas

There are quotas for most aspects of EventBridge.

Topics

• EventBridge quotas

• PutPartnerEvents quotas by Region

• EventBridge Schema Registry quotas

• EventBridge Pipes quotas

Note

For a list of the quotas for EventBridge Scheduler, see Quotas for EventBridge Scheduler in
the EventBridge Scheduler User Guide.

EventBridge quotas

EventBridge has the following quotas.

The Service Quotas console provides information about EventBridge quotas. Along with viewing
the default quotas, you can use the Service Quotas console to request quota increases for
adjustable quotas.

Name Default Adjustabl
e

Description

Api destinations Each supported
Region: 3,000

Yes The maximum number
of API destinations per
account per Region.

Connections Each supported
Region: 3,000

Yes The maximum number of
connections per account
per Region.

EventBridge quotas 694

https://docs.aws.amazon.com/scheduler/latest/UserGuide/scheduler-quotas.html
https://console.aws.amazon.com/servicequotas/home?region=us-east-1#!/services/events/quotas
https://console.aws.amazon.com/servicequotas/home/services/events/quotas/L-FB1C3A6D
https://console.aws.amazon.com/servicequotas/home/services/events/quotas/L-595D6D42

Amazon EventBridge User Guide

Name Default Adjustabl
e

Description

CreateEndpoint throttle limit in
transactions per second

Each supported
Region: 5 per
second

No The maximum number
of requests per second
for CreateEndpoint API.
Additional requests are
throttled.

DeleteEndpoint throttle limit in
transactions per second

Each supported
Region: 5 per
second

No The maximum number
of requests per second
for DeleteEndpoint API.
Additional requests are
throttled.

Endpoints Each supported
Region: 100

Yes The maximum number
of endpoints per account
per Region.

Event bus policy size Each supported
Region: 10,240

Yes Maximum policy size, in
characters. This policy
size increases each time
you grant access to
another account. You can
see your current policy
and its size by using the
DescribeEventBus API.

Event buses Each supported
Region: 100

Yes Maximum event buses
per account.

Event pattern size Each supported
Region: 2,048

Yes Maximum size of
an event pattern, in
characters.

EventBridge quotas 695

https://console.aws.amazon.com/servicequotas/home/services/events/quotas/L-EAC9A2AC
https://console.aws.amazon.com/servicequotas/home/services/events/quotas/L-FC354966
https://console.aws.amazon.com/servicequotas/home/services/events/quotas/L-658A4FD9
https://console.aws.amazon.com/servicequotas/home/services/events/quotas/L-664C5505

Amazon EventBridge User Guide

Name Default Adjustabl
e

Description

Invocations throttle limit in transacti
ons per second

us-east-1: 18,750
per second

us-east-2: 4,500
per second

us-west-1: 2,250
per second

us-west-2: 18,750
per second

af-south-1: 750
per second

ap-northeast-1:
2,250 per second

ap-northeast-3:
750 per second

ap-southeast-1:
2,250 per second

ap-southeast-2:
2,250 per second

ap-southeast-3:
750 per second

eu-central-1:
4,500 per second

eu-south-1: 750
per second

Yes An invocation is an event
matching a rule and
being sent on to the
rules targets. After the
limit is reached, the
invocations are throttled
; that is, they still happen
but they are delayed.

EventBridge quotas 696

https://console.aws.amazon.com/servicequotas/home/services/events/quotas/L-5540C5E3

Amazon EventBridge User Guide

Name Default Adjustabl
e

Description

eu-west-1: 18,750
per second

eu-west-2: 2,250
per second

Each of the
other supported
Regions: 1,100
per second

Number of rules af-south-1: 100

eu-south-1: 100

Each of the
other supported
Regions: 300

Yes Maximum number of
rules an account can
have per event bus

EventBridge quotas 697

https://console.aws.amazon.com/servicequotas/home/services/events/quotas/L-244521F2

Amazon EventBridge User Guide

Name Default Adjustabl
e

Description

PutEvents throttle limit in transactions
per second

us-east-1: 10,000
per second

us-east-2: 2,400
per second

us-west-1: 1,200
per second

us-west-2: 10,000
per second

af-south-1: 400
per second

ap-northeast-1:
1,200 per second

ap-northeast-3:
400 per second

ap-southeast-1:
1,200 per second

ap-southeast-2:
1,200 per second

ap-southeast-3:
400 per second

eu-central-1:
2,400 per second

eu-south-1: 400
per second

Yes Maximum number of
requests per second for
PutEvents API. Additional
requests are throttled.

EventBridge quotas 698

https://console.aws.amazon.com/servicequotas/home/services/events/quotas/L-9B653E91

Amazon EventBridge User Guide

Name Default Adjustabl
e

Description

eu-west-1: 10,000
per second

eu-west-2: 1,200
per second

Each of the
other supported
Regions: 600 per
second

Rate of invocations per API destination Each supported
Region: 300 per
second

Yes The maximum number of
invocations per second
to send to each API
destination endpoint per
account per Region. Once
the quota is met, future
invocations to that API
endpoint are throttled.
The invocations will still
occur, but are delayed.

Targets per rule Each supported
Region: 5

No Maximum number of
targets that can be
associated with a rule

Throttle limit in transactions per
second

Each supported
Region: 50 per
second

Yes Maximum number of
requests per second
for all EventBridge
API operations except
PutEvents. Additional
requests are throttled

EventBridge quotas 699

https://console.aws.amazon.com/servicequotas/home/services/events/quotas/L-755FD01C
https://console.aws.amazon.com/servicequotas/home/services/events/quotas/L-3C47459F

Amazon EventBridge User Guide

Name Default Adjustabl
e

Description

UpdateEndpoint throttle limit in
transactions per second

Each supported
Region: 5 per
second

No The maximum number
of requests per second
for UpdateEndpoint API.
Additional requests are
throttled.

In addition, EventBridge has the following quotas that are not managed through the Service
Quotas console.

Name Default Description

Event buses Each
supported
Region: 100

Maximum event buses per account.

Event bus policy size Each
supported
Region:
10240

Maximum policy size, in characters. This policy
size increases each time you grant access to
another account. You can see your current
policy and its size by using the DescribeE
ventBus API.

Event pattern size Each
supported
Region: 2048

Maximum size of an event pattern, in
characters.

This is adjustable up to 4096 characters. If you
have requirements for the higher maximum
limit, contact support.

Rules containing wildcards Each
supported
Region: 30
rules per
event bus

Maximum number of rules, per event bus
per account, that can contain event filters
that include wildcards. This quota cannot be
adjusted.

EventBridge quotas 700

https://console.aws.amazon.com/support/home?#/case/create?issueType=technical

Amazon EventBridge User Guide

Name Default Description

For more information on using wildcards in
event patterns, see ???.

Schema discovery levels Each
supported
Region: 255
levels

Maximum number of levels schema discovery
will infer events that are nested. Any events
past 255 levels are ignored.

PutPartnerEvents quotas by Region

If you have requirements for higher maximum limits, contact support.

Regions Transactions per second

• AWS GovCloud (US-West)

• AWS GovCloud (US-East)

• US East (N. Virginia)

• US East (Ohio)

• US West (N. California)

• US West (Oregon)

• Africa (Cape Town)

• Asia Pacific (Hong Kong)

• Asia Pacific (Mumbai)

• Asia Pacific (Osaka)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Canada (Central)

• Europe (Frankfurt)

• Europe (Ireland)

PutPartnerEvents has a soft limit of 1,400 throughpu
t requests per second and 3,600 burst requests per
second by default in all Regions.

PutPartnerEvents quotas 701

https://console.aws.amazon.com/support/home?#/case/create?issueType=technical
https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutPartnerEvents.html

Amazon EventBridge User Guide

Regions Transactions per second

• Europe (London)

• Europe (Milan)

• Europe (Paris)

• Europe (Stockholm)

• Europe (Milan)

• South America (São Paulo)

• China (Ningxia)

• China (Beijing)

EventBridge Schema Registry quotas

EventBridge Schema Registry has the following quotas.

The Service Quotas console provides information about EventBridge quotas. Along with viewing
the default quotas, you can use the Service Quotas console to request quota increases for
adjustable quotas.

Name Default Adjustabl
e

Description

DiscoveredSchemas Each supported
Region: 200

Yes The maximum number of
schemas for a discovered
schema registry that you
can create in the current
region

Discoverers Each supported
Region: 10

Yes The maximum number
of discoverers that you
can create in the current
region.

Registries Each supported
Region: 10

Yes The maximum number
of registries that you

Schema Registry quotas 702

https://console.aws.amazon.com/servicequotas/home?region=us-east-1#!/services/events/quotas
https://console.aws.amazon.com/servicequotas/home/services/schemas/quotas/L-1738102F
https://console.aws.amazon.com/servicequotas/home/services/schemas/quotas/L-037FC7C4
https://console.aws.amazon.com/servicequotas/home/services/schemas/quotas/L-85663EFB

Amazon EventBridge User Guide

Name Default Adjustabl
e

Description

can create in the current
region.

SchemaVersions Each supported
Region: 100

Yes The maximum number
of versions per schema
that you can create in the
current region.

Schemas Each supported
Region: 100

Yes The maximum number
of schemas per registry
that you can create in the
current region. (Except
Discovered Schema
Registry)

EventBridge Pipes quotas

EventBridge Pipes has the following quotas. If you have requirements for higher maximum limits,
contact support.

Resource Regions Default limit

Concurrent pipe executions
per account

• AWS GovCloud (US-West)

• AWS GovCloud (US-East)

• China (Ningxia)

• China (Beijing)

• Asia Pacific (Osaka)

• Africa (Cape Town)

• Europe (Milan)

• US East (Ohio)

• Europe (Frankfurt)

• US West (N. California)

1000

Pipes quotas 703

https://console.aws.amazon.com/servicequotas/home/services/schemas/quotas/L-3C443A2A
https://console.aws.amazon.com/servicequotas/home/services/schemas/quotas/L-EE9E5FA9
https://console.aws.amazon.com/support/home?#/case/create?issueType=technical

Amazon EventBridge User Guide

Resource Regions Default limit

• Europe (London)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Asia Pacific (Singapore)

• Canada (Central)

• Europe (Paris)

• Europe (Stockholm)

• South America (São Paulo)

• Asia Pacific (Seoul)

• Asia Pacific (Mumbai)

• Asia Pacific (Hong Kong)

• Middle East (Bahrain)

• China (Ningxia)

• China (Beijing)

• Asia Pacific (Osaka)

• Africa (Cape Town)

• Europe (Milan)

Concurrent pipe executions
per account

• US East (N. Virginia)

• US West (Oregon)

• Europe (Ireland)

3000

Pipes per account All 1000

Pipes quotas 704

Amazon EventBridge User Guide

Amazon EventBridge tags

A tag is a custom attribute label that you or AWS assigns to an AWS resource. In EventBridge, you
can assign tags to rule and event buses. Each resource can have a maximum of 50 tags.

You use tags to identify and organize your AWS resources. Many AWS services support tagging, so
you can assign the same tag to resources from different services to indicate that the resources are
related. For example, you could assign the same tag to an EventBridge rule that you assign to an
EC2 instance.

A tag has two parts:

• A tag key, for example, CostCenter, Environment, or Project.

• Tag keys are case sensitive.

• The maximum tag key length is 128 Unicode characters in UTF-8.

• For each resource, each tag key must be unique.

• Allowed characters are letters, numbers, spaces representable in UTF-8, and the following
characters: . : + = @ _ / - (hyphen).

• The aws: prefix is prohibited for tags because it's reserved for AWS use. You can't edit or
delete tag keys or values with this prefix. Tags with this prefix don't count against your tags
per resource limit.

• An optional tag value field, for example, 111122223333 or Production.

• Each tag key can have only one value.

• Tag values are case sensitive.

• Omitting the tag value is the same as using an empty string.

• The maximum tag value length is 256 Unicode characters in UTF-8.

• Allowed characters are letters, numbers, spaces representable in UTF-8, and the following
characters: . : + = @ _ / - (hyphen).

Tip

As a best practice, decide on a strategy for capitalizing tags and consistently implement
that strategy across all resource types. For example, decide whether to use Costcenter,
costcenter, or CostCenter and then use the same convention for all tags.

705

Amazon EventBridge User Guide

You can use the EventBridge console, the EventBridge API, or the AWS CLI to add, edit, or delete
tags. For more information, see the following:

• TagResource, UntagResource, and ListTagsForResource in the Amazon EventBridge API Reference

• tag-resource, untag-resource, and list-tags-for-resource in the AWS CLI Reference

• Working with Tag Editor in the Resource Groups User Guide

706

https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_UntagResource.html
https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/cli/latest/reference/events/tag-resource.html
https://docs.aws.amazon.com/cli/latest/reference/events/untag-resource.html
https://docs.aws.amazon.com/cli/latest/reference/events/list-tags-for-resource.html
https://docs.aws.amazon.com/ARG/latest/userguide/tag-editor.html

Amazon EventBridge User Guide

Document History
The following table describes important changes in each release of the Amazon EventBridge User
Guide, beginning in July 2019. For notification about updates to this documentation, you can
subscribe to an RSS feed.

Change Description Release Date

Generate AWS
CloudFormation
templates from
event buses and
rules.

You can now generate AWS CloudFormation
templates from your existing Amazon EventBrid
ge event buses and rules.

• Generate an AWS CloudFormation template
from an Amazon EventBridge event bus

November 18, 2022

Launched
EventBrid
ge Pipes
documentation.

You can now create pipes to connect sources to
targets, with optional filtering and enrichment.

• Pipes

December 1, 2022

Generate AWS
CloudFormation
templates from
event buses and
rules.

You can now generate AWS CloudFormation
templates from your existing Amazon EventBrid
ge event buses and rules.

• Generate an AWS CloudFormation template
from an Amazon EventBridge event bus

November 18, 2022

Added the
AmazonEve
ntBridgeP
ipesFullAccess
policy.

Provides full access to Amazon EventBridge Pipes.

• EventBridge Pipes-specific managed policies

December 1, 2022

Added the
AmazonEve
ntBridgeP
ipesReadO
nlyAccess policy.

Provides read-only access to Amazon EventBridge
Pipes.

• EventBridge Pipes-specific managed policies

December 1, 2022

707

Amazon EventBridge User Guide

Change Description Release Date

Added the
AmazonEve
ntBridgeP
ipesOpera
torAccess policy.

Provides read-only and operator (that is, the
ability to stop and start running Pipes) access to
Amazon EventBridge Pipes.

• EventBridge Pipes-specific managed policies

December 1, 2022

Updated the
CloudWatc
hEventsFu
llAccess policy.

Updated to match AmazonEventBridgeF
ullAccess .

• AmazonEventBridgeFullAccess policy

December 1, 2022

Updated the
CloudWatc
hEventsRe
adOnlyAccess
policy.

Updated to match AmazonEventBridgeR
eadOnlyAccess .

• AmazonEventBridgeReadOnlyAccess policy

December 1, 2022

Updated content
filtering in event
patterns.

You can now use suffix, equals-ignore-
case , and $or filtering options to create event
patterns.

• Content filtering in Amazon EventBridge event
patterns

November 14, 2022

Updated the
AmazonEve
ntBridgeF
ullAccess policy.

Added permissions necessary for using EventBrid
ge Schema Registry and EventBridge Scheduler.

• AmazonEventBridgeFullAccess policy

November 10, 2022

Updated the
AmazonEve
ntBridgeR
eadOnlyAccess
policy.

You can now view EventBridge Schema Registry
and EventBridge Scheduler information.

• AmazonEventBridgeReadOnlyAccess policy

November 10, 2022

708

Amazon EventBridge User Guide

Change Description Release Date

Updated content
filtering in event
patterns.

You can now use suffix, equals-ignore-
case , and $or filtering options to create event
patterns.

• Content filtering in Amazon EventBridge event
patterns

November 14, 2022

Updated the
AmazonEve
ntBridgeF
ullAccess policy.

Added permissions necessary for using EventBrid
ge Schema Registry and EventBridge Scheduler.

• AmazonEventBridgeFullAccess policy

November 10, 2022

Updated the
AmazonEve
ntBridgeR
eadOnlyAccess
policy.

You can now view EventBridge Schema Registry
and EventBridge Scheduler information.

• AmazonEventBridgeReadOnlyAccess policy

November 10, 2022

Updated the
AmazonEve
ntBridgeR
eadOnlyAccess
policy.

You can now view endpoint information.

• AmazonEventBridgeReadOnlyAccess policy

April 07, 2022

Added support
for global
endpoints.

Amazon EventBridge now supports using global
endpoints to help make your application regional-
fault tolerant at no additional cost. To learn more,
see the following:

• Making applications Regional-fault tolerant
with global endpoints and event replication

• CreateEndpoint

April 07, 2022

709

https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_CreateEndpoint.html

Amazon EventBridge User Guide

Change Description Release Date

Added support
for archives and
event replays.

Amazon EventBridge now supports using archives
to store events, and event replays to replay the
events from an archive. To learn more, see the
following:

• Archiving Amazon EventBridge events.

• CreateArchive

• StartReplay

November 05, 2020

Added support
for dead-lett
er queues and
retry policy for
targets.

Amazon EventBridge now supports using dead-
letter queues and defining a retry policy for
targets. To learn more, see the following:

• Event retry policy and using dead-letter
queues.

• PutTargets

October 12, 2020

Added support
for JSONSchem
a Draft4 format
schemas.

Amazon EventBridge now supports schemas in
JSONSchema Draft 4 format. You can also now
export schemas using the EventBridge API. To
learn more, see the following.

• Amazon EventBridge schemas

• Export in the EventBridge Schema Registry
API Reference.

September 28, 2020

710

https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_CreateArchive.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_StartReplay.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutTargets.html
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname-export.html#ExportSchema

Amazon EventBridge User Guide

Change Description Release Date

Resource-based
policies for the
EventBridge
Schema Registry

The Amazon EventBridge Schema Registry now
supports resource-based policies. For more
information, see the following.

• Resource-based policies for Amazon EventBrid
ge schemas

• Policy in the EventBridge Schema Registry
API Reference

• RegistryPolicy Resource Type in the AWS
CloudFormation User Guide

April 30, 2020

Tags for Event
Buses

This release allows you to create and manage tags
for event buses. You can add tags when creating
an event bus, and add or manage existing tags by
calling the related API. For more information, see
the following.

• Amazon EventBridge tags

• Tag-based policies

• TagResource

• UntagResource

• ListTagsForResource

February 24, 2020

Increased service
quotas

Amazon EventBridge has increased quotas for
invocations and for PutEvents . Quotas vary by
region, and can be increased if necessary.

February 11, 2020

711

https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-policy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_EventSchemas.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_UntagResource.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_ListTagsForResource.html

Amazon EventBridge User Guide

Change Description Release Date

Added a
new topic on
transforming
target input, and
added a link to
Application Auto
Scaling Events.

Improved documentation on the input transform
er.

• Amazon EventBridge input transformation

• Use Input Transformer to extract data from an
event and input that data to the target

• Tutorial: Use input transformer to customize
 what EventBridge passes to the event target

Added a link to Application Auto Scaling Events.

• Application Auto Scaling Events and EventBrid
ge

• Events from AWS services

December 20, 2019

Content-based
filtering

December 19, 2019

Added links
to Amazon
Augmented AI
event examples.

Added a link to the Amazon Augmented AI topic
in the Amazon SageMaker Developer Guide that
provides example events for Amazon Augmented
AI. For more information, see the following.

• Use Events in Amazon Augmented AI

• Events from AWS services

December 13, 2019

Added links to
Amazon Chime
event examples.

Added a link to the Amazon Chime topic that
provides example events for that service. For
more information, see the following.

• Automating Amazon Chime with EventBridge

• Events from AWS services

December 12, 2019

712

https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutTargets.html#API_PutTargets_Example_2
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutTargets.html#API_PutTargets_Example_2
https://docs.aws.amazon.com/autoscaling/application/userguide/monitoring-eventbridge.html
https://docs.aws.amazon.com/autoscaling/application/userguide/monitoring-eventbridge.html
https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-ai-cloudwatch-events.html
https://docs.aws.amazon.com/chime/latest/ag/automating-chime-with-cloudwatch-events.html

Amazon EventBridge User Guide

Change Description Release Date

Amazon
EventBridge
Schemas

You can now manage schemas and generate code
bindings for events in Amazon EventBridge. For
more information, see the following.

• Amazon EventBridge schemas

• EventBridge Schemas API Reference

• EventSchemas Resource Type Reference in AWS
CloudFormation

December 1, 2019

AWS CloudForm
ation support
for Event Buses

AWS CloudFormation now supports the EventBus
resource. It also supports the EventBusName
parameter in both the EventBusPolicy and Rule
resources. For more information, see Amazon
EventBridge Resource Type Reference .

October 7, 2019

New service Initial release of Amazon EventBridge. July 11, 2019

713

https://docs.aws.amazon.com/eventbridge/latest/schema-reference/index.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_EventSchemas.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_Events.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_Events.html

	Amazon EventBridge
	Table of Contents
	What Is Amazon EventBridge?
	EventBridge is the evolution of Amazon CloudWatch Events

	Amazon EventBridge setup and prerequisites
	Sign up for an AWS account
	Create an administrative user
	Sign in to the Amazon EventBridge console
	Account credentials
	Set up the AWS Command Line Interface
	Regional Endpoints

	Getting started with Amazon EventBridge
	Create a rule in Amazon EventBridge

	Amazon EventBridge Event Bus
	How event buses work
	Amazon EventBridge Event Bus concepts
	Event buses
	Events
	Event sources
	Rules
	Targets
	Advanced features for event buses

	Creating an Amazon EventBridge event bus
	Updating an Amazon EventBridge event bus
	Updating permissions on an event bus
	Adding or removing archives on event buses
	Starting or stopping schema discovery on event buses
	Adding or removing tags on event buses

	Deleting an Amazon EventBridge event bus
	Permissions for Amazon EventBridge event buses
	Managing event bus permissions
	Example policy: Send events to the default bus in a different account
	Example policy: Send events to a custom bus in a different account
	Example policy: Send events to an event bus in the same account
	Example policy: Send events to the same account and restrict updates
	Example policy: Send events only from a specific rule to the bus in a different Region
	Example policy: Send events only from a specific Region to a different Region
	Example policy: Deny sending events from specific Regions

	Generate an AWS CloudFormation template from an Amazon EventBridge event bus
	Considerations when using CloudFormation templates generated from Amazon EventBridge

	Amazon EventBridge events
	Event structure reference
	Minimum information needed for a valid custom event

	Adding Amazon EventBridge events with PutEvents
	Handling failures with PutEvents
	Sending events using the AWS CLI
	Calculating Amazon EventBridge PutEvents event entry size

	Events from AWS services
	Event delivery from AWS services
	Accessing AWS service events via AWS CloudTrail
	Receiving read-only management events from AWS services

	AWS services that generate events
	Management events generated by AWS services
	Management events that don't start with Describe, Get, or List

	EventBridge events detail reference
	Scheduled Event
	Schema Created
	Schema Version Created

	Receiving events from a SaaS partner with Amazon EventBridge
	Supported SaaS partner integrations
	Configuring Amazon EventBridge to receive events from a SaaS integration
	Creating a rule that matches SaaS partner events
	Receiving events using AWS Lambda function URLs
	Set up a connection to GitHub
	Step 1: Create the AWS CloudFormation stack
	Step 2: Create a GitHub webhook
	Set up a connection to a Stripe
	Step 1: Create a Stripe endpoint
	Step 2: Create the AWS CloudFormation stack
	Step 3: Update the Stripe endpoint

	Set up a connection to a Twilio
	Step 1: Find your Twilio auth token
	Step 2: Create the AWS CloudFormation stack
	Step 3: Create a Twilio webhook

	Update webhook secret or auth token
	Update GitHub secret
	Update Stripe secret
	Update Twilio secret

	Update Lambda function
	Available event types
	Quotas, error codes, and retrying delivery
	Quotas
	Error codes
	Event redelivery
	GitHub
	Stripe
	Twilio

	Receiving events from Salesforce
	Receiving events from Salesforce using Event Bus Relay
	Step 1: Set up Salesforce Event Bus Relay and an EventBridge partner event source
	Step 2: Activate Salesforce partner event source in the EventBridge console and start the event relay

	Receiving events from Salesforce using Amazon AppFlow
	Step 1: Configure Amazon AppFlow to use Salesforce as a partner event source
	Step 2: Configure EventBridge to receive Salesforce events

	Debugging Amazon EventBridge event delivery
	Event retry policy and using dead-letter queues
	Considerations for using a dead-letter queue
	Granting permissions to the dead-letter queue
	How to resend events from a dead-letter queue

	Amazon EventBridge event patterns
	Creating event patterns
	Matching event values
	Considerations when creating event patterns
	Comparison operations for use in event patterns

	Example events and event patterns
	Field matching
	Value matching

	Matching null values and empty strings in Amazon EventBridge event patterns
	Arrays in Amazon EventBridge event patterns
	Content filtering in Amazon EventBridge event patterns
	Prefix matching
	Prefix matching while ignoring case

	Suffix matching
	Suffix matching while ignoring case

	Anything-but matching
	Anything-but matching while ignoring case
	Anything-but matching on prefixes
	Anything-but matching on suffixes

	Numeric matching
	IP address matching
	Exists matching
	Equals-ignore-case matching
	Matching using wildcards
	Wildcards and event pattern complexity

	Complex example with multiple matching
	Complex example with $or matching

	Testing an event pattern using the EventBridge Sandbox
	Best practices when defining Amazon EventBridge event patterns
	Avoid writing infinite loops
	Make event patterns precise as possible
	Specify event source and detail type as filters
	Specify account and region as filters
	Specify content filters

	Scope your event patterns to account for event source updates
	Validate event patterns

	Amazon EventBridge rules
	Amazon EventBridge managed rules
	Creating Amazon EventBridge rules that react to events
	Create a rule that reacts to events
	Define the rule
	Build the event pattern
	Select targets
	Configure tags and review rule

	Using Amazon EventBridge Scheduler with Amazon EventBridge
	Set up the execution role
	Create a schedule
	Related resources

	Creating an Amazon EventBridge rule that runs on a schedule
	Create a rule that runs on a schedule
	Define the rule
	Define the schedule
	Select targets
	Configure tags and review rule

	Cron expressions reference
	Rate expressions reference

	Disabling or deleting an Amazon EventBridge rule
	Best practices when defining Amazon EventBridge rules
	Set a single target for each rule
	Set rule permissions
	Monitor rule performance

	Using Amazon EventBridge and AWS Serverless Application Model templates
	Combined template
	Separated template

	Generate an AWS CloudFormation template from Amazon EventBridge rules
	Considerations when using CloudFormation templates generated from Amazon EventBridge

	Amazon EventBridge targets
	Targets available in the EventBridge console
	Target parameters
	Dynamic path parameters

	Permissions
	EventBridge target specifics
	AWS Batch job queues
	CloudWatch Logs group
	CodeBuild project
	Amazon ECS task
	Incident Manager Response Plan

	Configure targets
	API destinations
	Create an API destination
	Creating rules that send events to an API destination
	Service-linked role for API destinations
	Headers in requests to API destinations
	Headers included in requests to API destinations
	Headers that cannot be overridden in requests to API destinations
	Headers EventBridge removes from requests to API destinations

	API destination error codes
	How invocation rate affects event delivery
	Sending CloudEvents events to API destinations
	API destination partners
	Coralogix
	Datadog
	Freshworks
	MongoDB
	New Relic
	Operata
	Salesforce
	Slack
	Shopify
	Splunk
	Sumo Logic
	TriggerMesh
	Zendesk

	Amazon EventBridge targets for Amazon API Gateway
	Dynamic Parameters
	Invocation Retries
	Timeout

	AWS AppSync targets for Amazon EventBridge
	Example: AWS AppSync targets for Amazon EventBridge

	Connections for HTTP endpoint targets
	Authorization methods for connections
	Creating connections for HTTP endpoint targets
	Editing connections using the EventBridge console
	De-authorizing connections using the EventBridge console

	Sending and receiving Amazon EventBridge events between AWS accounts
	Grant permissions to allow events from other AWS accounts
	Rules for events between AWS accounts
	Creating rules that send events between AWS accounts

	Sending and receiving Amazon EventBridge events between AWS Regions
	Creating rules that send events to a different AWS Region

	Sending and receiving Amazon EventBridge events between event buses in the same account and Region
	Creating rules that send events to a different event bus in the same AWS account and Region

	Amazon EventBridge input transformation
	Predefined variables
	Input transform examples
	Transforming input by using the EventBridge API
	Transforming input by using AWS CloudFormation
	Common Issues with transforming input
	Configuring an input transformer as part of creating a rule
	Testing a target input transformer using the EventBridge Sandbox

	Amazon EventBridge archive and replay
	Archiving Amazon EventBridge events
	Replaying archived Amazon EventBridge events

	Amazon EventBridge Pipes
	How EventBridge Pipes work
	EventBridge Pipes concepts
	Pipe
	Source
	Filters
	Enrichment
	Target

	Permissions for Amazon EventBridge Pipes
	DynamoDB execution role permissions
	Kinesis execution role permissions
	Amazon MQ execution role permissions
	Amazon MSK execution role permissions
	Self managed Apache Kafka execution role permissions
	Required permissions
	Optional permissions
	Secrets Manager and AWS KMS permissions
	VPC permissions

	Amazon SQS execution role permissions
	Enrichment and target permissions

	Creating an Amazon EventBridge pipe
	Specifying a source
	Configuring event filtering (optional)
	Defining event enrichment (optional)
	Configuring a target
	Configuring the pipe settings
	Validating configuration parameters

	Starting or stopping a pipe
	Amazon EventBridge Pipes sources
	Amazon DynamoDB stream as a source
	Polling and batching streams
	Polling and stream starting position
	Reporting batch item failures
	Success and failure conditions

	Amazon Kinesis stream as a source
	Polling and batching streams
	Polling and stream starting position
	Reporting batch item failures
	Success and failure conditions

	Amazon MQ message broker as a source
	Consumer group
	Network configuration

	Amazon Managed Streaming for Apache Kafka topic as a source
	Polling and stream starting position
	MSK cluster authentication
	Unauthenticated access
	SASL/SCRAM authentication
	IAM role-based authentication
	Mutual TLS authentication
	Configuring the mTLS secret
	How EventBridge chooses a bootstrap broker

	Network configuration
	Customizable consumer group ID
	Auto scaling of the Amazon MSK source

	Self managed Apache Kafka stream as a source
	Apache Kafka cluster authentication
	VPC access
	SASL/SCRAM authentication
	Mutual TLS authentication
	Configuring the client certificate secret
	Configuring the server root CA certificate secret

	Network configuration
	Auto scaling of the Apache Kafka source

	Amazon Simple Queue Service as a source
	Scaling and processing
	Configuring a queue to use with EventBridge Pipes
	Reporting batch item failures
	Success and failure conditions

	Amazon EventBridge Pipes filtering
	Message and data fields
	Properly filtering Amazon SQS messages
	Properly filtering Kinesis and DynamoDB messages
	Properly filtering Amazon Managed Streaming for Apache Kafka, self managed Apache Kafka, and Amazon MQ messages
	Differences between Lambda ESM and EventBridge Pipes

	Amazon EventBridge Pipes event enrichment
	Filtering events using enrichment
	Invoking enrichments

	Amazon EventBridge Pipes targets
	Target parameters
	Dynamic path parameters

	Permissions
	Invoking targets
	EventBridge Pipes target specifics
	AWS Batch job queues
	CloudWatch Logs group
	Amazon ECS task
	Lambda functions and Step Functions workflows

	Amazon EventBridge Pipes batching and concurrency
	Batching behavior
	Supported batchable targets
	Partial batch failure

	Throughput and concurrency behavior

	Amazon EventBridge Pipes input transformation
	Reserved variables
	Input transform example
	Implicit body data parsing
	Common issues with transforming input

	Log Amazon EventBridge Pipes
	How Amazon EventBridge Pipes logging works
	Specifying EventBridge Pipes log level
	Including execution data in EventBridge Pipes logs
	Truncating execution data in EventBridge Pipes log records

	Error reporting in EventBridge Pipes log records
	EventBridge Pipes execution steps
	EventBridge Pipes log schema reference
	Logging and monitoring Amazon EventBridge Pipes using AWS CloudTrail and Amazon CloudWatch Logs
	CloudWatch metrics
	Dimensions for CloudWatch metrics

	Amazon EventBridge Pipes error handling and troubleshooting
	Retry behavior and error handling
	Pipe invocation errors and retry behavior
	Pipe internal errors
	Customer invocation errors

	Pipe DLQ behavior
	Pipe failure states
	Custom encryption failures

	Tutorial: Create an EventBridge pipe that filters source events
	Prerequisites: Create the source and target
	Step 1: Create the pipe
	Step 2: Confirm the pipe filters events
	Step 3: Clean up your resources
	AWS CloudFormation template for generating prerequisites

	Generate an AWS CloudFormation template from EventBridge Pipes
	EventBridge resources in pipe templates
	Generating a CloudFormation template from EventBridge Pipes
	Considerations when using CloudFormation templates generated from EventBridge Pipes

	Making applications Regional-fault tolerant with global endpoints and event replication
	Recovery Time & Recovery Point Objectives
	Event replication
	Replicated event payload

	Create a global endpoint
	To create a global endpoint by using the console
	To create a global endpoint by using the API
	To create a global endpoint by using AWS CloudFormation

	Working with global endpoints by using an AWS SDK
	Available Regions
	Best practices for working with Amazon EventBridge global endpoints
	Enabling event replication
	Preventing event throttling
	Using subscriber metrics in Amazon Route 53 health checks

	AWS CloudFormation template for setting up the Route 53 health check
	AWS CloudFormation template for defining a Route 53 health check
	CloudWatch alarm template properties
	Route 53 health check template properties

	Amazon EventBridge schemas
	Schema registry API property value masking
	Finding an Amazon EventBridge schema
	Amazon EventBridge schema registries
	Creating an Amazon EventBridge schema
	Create a schema by using a template
	Edit a schema template directly in the console
	Create a schema from the JSON of an event
	Create a schema from events on an event bus

	Amazon EventBridge code bindings

	Amazon EventBridge related services and tools
	Using Amazon EventBridge with Interface VPC Endpoints
	Availability
	Creating a VPC Endpoint for EventBridge
	EventBridge Pipes specifics

	Amazon EventBridge integration with AWS X-Ray
	Using EventBridge with AWS Integrated Application Test Kit
	EventBridge integration with AWS IATK

	Including Amazon EventBridge resources in AWS CloudFormation stacks
	Amazon EventBridge resources available in AWS CloudFormation
	Generating Amazon EventBridge resource definitions for AWS CloudFormation templates
	Managing AWS CloudFormation stack events using EventBridge

	Amazon EventBridge tutorials
	Amazon EventBridge get started tutorials
	Archive and replay Amazon EventBridge events
	Step 1: Create a Lambda function
	Step 2: Create archive
	Step 3: Create rule
	Step 4: Send test events
	Step 5: Replay events
	Step 6: Clean up your resources

	Create an Amazon EventBridge sample application
	Prerequisites
	Step 1: Create application
	Step 2: Run application
	Step 3: Check the logs and verify the application works
	Step 4: Clean up your resources

	Tutorial: Download code bindings for events using the EventBridge schema registry
	Tutorial: Use input transformer to customize what EventBridge passes to the event target
	Step 1: Create an Amazon SNS topic
	Step 2: Create an Amazon SNS subscription
	Step 3: Create a rule
	Step 4: Send test events
	Step 5: Confirm success
	Step 6: Clean up your resources

	Amazon EventBridge tutorials for integrating with other AWS services
	Tutorial: Log the state of an Auto Scaling group using EventBridge
	Prerequisites
	Step 1: Create a Lambda function
	Step 2: Create a rule
	Step 3: Test the rule
	Step 4: Confirm success
	Step 5: Clean up your resources

	Tutorial: Log AWS API calls using EventBridge
	Step 1: Create an AWS CloudTrail trail
	Step 2: Create an AWS Lambda function
	Step 3: Create a rule
	Step 4: Test the rule
	Step 5: Confirm success
	Step 6: Clean up your resources

	Tutorial: Log the state of an Amazon EC2 instance using EventBridge
	Step 1: Create an AWS Lambda function
	Step 2: Create a rule
	Step 3: Test the rule
	Step 4: Confirm success
	Step 5: Clean up your resources

	Tutorial: Log Amazon S3 object-level operations using EventBridge
	Step 1: Configure your AWS CloudTrail trail
	Step 2: Create an AWS Lambda function
	Step 3: Create a Rule
	Step 4: Test the Rule
	Step 5: Confirm success
	Step 6: Clean up your resources

	Tutorial: Send events to an Amazon Kinesis stream using EventBridge and the aws.events schema
	Prerequisites
	Step 1: Create an Amazon Kinesis stream
	Step 2: Create a rule
	Step 3: Test the rule
	Step 4: Verify that the event was sent
	Step 5: Clean up your resources

	Tutorial: Schedule automated Amazon EBS snapshots using EventBridge
	Step 1: Create the rule
	Step 2: Test the rule
	Step 3: Confirm success
	Step 4: Clean up your resources

	Tutorial: Send a notification when an Amazon S3 object is created
	Prerequisites
	Step 1: Create an Amazon SNS topic
	Step 2: Create an Amazon SNS subscription
	Step 3: Create a rule
	Step 4: Test the rule
	Step 5: Clean up your resources

	Tutorial: Schedule AWS Lambda functions using EventBridge
	Step 1: Create a Lambda function
	Step 2: Create a Rule
	Step 3: Verify the rule
	Step 4: Confirm success
	Step 5: Clean up your resources

	Amazon EventBridge tutorials for integrating with SaaS providers
	Tutorial: Create a connection to Datadog as an API destination
	Prerequisites
	Step 1: Create connection
	Step 2: Create API destination
	Step 3: Create rule
	Step 4: Test the rule
	Step 5: Clean up your resources

	Tutorial: Create a connection to Salesforce as an API destination
	Prerequisites
	Step 1: Create connection
	Step 2: Create API destination
	Step 3: Create rule
	Step 4: Test the rule
	Step 5: Clean up your resources

	Tutorial: Create a connection to Zendesk as an API destination
	Prerequisites
	Step 1: Create connection
	Step 2: Create API destination
	Step 3: Create rule
	Step 4: Test the rule
	Step 5: Clean up your resources

	Using EventBridge with an AWS SDK
	Code examples for EventBridge using AWS SDKs
	Hello EventBridge
	Actions for EventBridge using AWS SDKs
	Add a target using an AWS SDK
	Create an EventBridge rule using an AWS SDK
	Delete an EventBridge rule using an AWS SDK
	Describe an EventBridge rule using an AWS SDK
	Disable an EventBridge rule using an AWS SDK
	Enable an EventBridge rule using an AWS SDK
	List EventBridge rule names for a target using an AWS SDK
	List EventBridge rules using an AWS SDK
	List EventBridge targets for a rule using an AWS SDK
	Remove EventBridge targets from a rule using an AWS SDK
	Send EventBridge events using an AWS SDK

	Scenarios for EventBridge using AWS SDKs
	Create and trigger a rule in Amazon EventBridge using an AWS SDK
	Get started with EventBridge rules and targets using an AWS SDK

	Cross-service examples for EventBridge using AWS SDKs
	Use scheduled events to invoke a Lambda function

	Amazon EventBridge security
	Data protection in Amazon EventBridge
	Encryption at rest
	Encryption in transit

	Tag-based policies
	Amazon EventBridge and AWS Identity and Access Management
	Authentication
	Access control
	Managing access permissions to your Amazon EventBridge resources
	EventBridge resources
	Resource ownership
	Managing access to resources
	Identity-based policies (IAM policies)
	Resource-based policies (IAM policies)

	Specifying policy elements: actions, effects, and principals
	Specifying conditions in a policy

	Using identity-based policies (IAM policies) for Amazon EventBridge
	AWS managed policies for EventBridge
	AmazonEventBridgeFullAccess policy
	AmazonEventBridgeReadOnlyAccess policy
	EventBridge Schema-specific managed policies
	EventBridge Scheduler-specific managed policies
	EventBridge Pipes-specific managed policies
	IAM roles for sending events

	Permissions required for EventBridge to access targets using IAM roles
	Customer-managed policy example: Using tagging to control access to rules
	Amazon EventBridge updates to AWS managed policies

	Using resource-based policies for Amazon EventBridge
	Amazon API Gateway permissions
	CloudWatch Logs permissions
	AWS Lambda permissions
	Amazon SNS permissions
	Amazon SQS permissions
	EventBridge Pipes specifics

	Cross-service confused deputy prevention
	Event buses
	EventBridge Pipes

	Resource-based policies for Amazon EventBridge schemas
	Supported APIs for resource-based policies
	Example policy granting all supported actions to an AWS account
	Example policy granting read-only actions to an AWS account
	Example policy granting all actions to an organization

	Amazon EventBridge permissions reference
	Using IAM policy conditions for fine-grained access control
	EventBridge condition keys
	EventBridge Pipes specifics
	Example: Using the creatorAccount condition
	Example: Using the eventBusInvocation condition
	Example: Limiting access to a specific source
	Example: Defining multiple sources that can be used in an event pattern individually
	Example: Defining a source and a DetailType that can be used in an event pattern
	Example: Ensuring that the source is defined in the event pattern
	Example: Defining a list of allowed sources in an event pattern with multiple sources
	Example: Limiting PutRule access by detail.service
	Example: Limiting PutRule access by detail.eventTypeCode
	Example: Ensuring that only AWS CloudTrail events for API calls from a certain PrincipalId are allowed
	Example: Limiting access to targets

	Using service-linked roles for EventBridge
	Using roles for creating secrets for API destinations
	Service-linked role permissions for EventBridge
	Creating a service-linked role for EventBridge
	Editing a service-linked role for EventBridge
	Deleting a service-linked role for EventBridge
	Cleaning up a service-linked role
	Manually delete the service-linked role

	Supported Regions for EventBridge service-linked roles

	Using roles for schema discovery
	Service-linked role permissions for EventBridge
	Creating a service-linked role for EventBridge
	Editing a service-linked role for EventBridge
	Deleting a service-linked role for EventBridge
	Cleaning up a service-linked role
	Manually delete the service-linked role

	Supported Regions for EventBridge service-linked roles

	Logging Amazon EventBridge API calls using AWS CloudTrail
	EventBridge data events in CloudTrail
	EventBridge management events in CloudTrail
	EventBridge event examples
	CloudTrail log entries for actions taken by EventBridge Pipes

	Compliance validation in Amazon EventBridge
	Amazon EventBridge resilience
	Infrastructure security in Amazon EventBridge
	Configuration and vulnerability analysis in Amazon EventBridge

	Monitoring Amazon EventBridge
	EventBridge metrics
	EventBridge PutEvents metrics
	EventBridge PutPartnerEvents metrics

	Dimensions for EventBridge metrics

	Troubleshooting Amazon EventBridge
	My rule ran but my Lambda function wasn't invoked
	I just created or modified a rule, but it didn't match a test event
	My rule didn't run at the time I specified in the ScheduleExpression
	My rule didn't run at the time that I expected
	My rule matches AWS global service API calls but it didn't run
	The IAM role associated with my rule is being ignored when the rule runs
	My rule has an event pattern that is supposed to match a resource, but no events match
	My event's delivery to the target was delayed
	Some events were never delivered to my target
	My rule ran more than once in response to one event
	Preventing infinite loops
	My events are not delivered to the target Amazon SQS queue
	My rule runs, but I don't see any messages published into my Amazon SNS topic
	My Amazon SNS topic still has permissions for EventBridge even after I deleted the rule associated with the Amazon SNS topic
	Which IAM condition keys can I use with EventBridge?
	How can I tell when EventBridge rules are broken?

	Amazon EventBridge quotas
	EventBridge quotas
	PutPartnerEvents quotas by Region
	EventBridge Schema Registry quotas
	EventBridge Pipes quotas

	Amazon EventBridge tags
	Document History

