aws

Developer Guide

Amazon Gamelift

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon GamelLift Developer Guide

Amazon Gamelift: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon GamelLift Developer Guide

Table of Contents

What is AMazon GAmMELIft?ccciiiiiiiiinicrrcnrsrssnnnenssnnennnnneeneeennntiiiiiiieisssesse 1
Uses Of AMAzZon GAMIELITE ..ottt sttt s et et s ssa s e e sansas 1
Get started with Amazon GameLift SOLULIONScocoveirinieririrereceeee ettt sees 1

Amazon GameLift hosting for CUSTOM SEIVErS ...ttt 2
Amazon GamelLift hosting with Realtime SErvers ... 2
Amazon GamelLift FleetlQ for hosting on AmMazon EC2 ... 3
Amazon GamelLift FlexMatch for matchmaking ... 3
Amazon GameLift Anywhere hardware hosting ..o 4
Accessing AMAzon GAMELITL ...ttt e et e ste st e s be s e sra e e e e eneneneans 4
Pricing for AMAzon GAmMELITL ...ttt e e et saeste s s s s e e s e e e e e saesaenaans 5
HOW AMAzon GAmMELITL WOTKScceeviriiirienieieenctcesesteteestet et sesae st et seste st e ssessesassesaesassassassesanas 5
KEY COMPONENTS ...ttt et s et essaee s s sae e s st e ssseesssseessssasssnsasssssesssssesssseesssseasssseessssesnns 5
HOSEING QAIME SEIVELS ..coneeiieeeieecteeteesteereesteseessre e s stessaeesstessaaesssessseesssesssessssessssesssesssassssessssesssesssesnn 6
RUNNING AIME SESSIONS ...eeiiiieiiicieeieerteestecstessteestesssesssessseesstesssessssessseesssessssssssesssessssessssesssessseesssessns 6
SCAliNG FlEEt CAPACITY wouveeeeeeceee ettt e e e e e e st et esaesaesaassasse e e ssaenaensanaans 7
Monitoring AMAazon GAMELITE ...ttt e et ae b saans 8
USING OtNEI AWS FESOUICTESveeveeeieieieiteeteceeteeeeeetestestessessessessessesssessassassessessassassessessssssesensessassansans 8
HOW Players CONNECE t0 GAMIES ...cuviriirieirieretrereestecsest et ee st et te sttt e st e e ste st e e ssesse e ssessesaesassassesasss 8
Game architecture with managed Amazon GameLift ... 9

SEELING UP cereriiiiiiiiiiiiiineenniiiiiiieeeiineesss 12

SEL UP QN QCCOUNT ..ttt et et e st s s e e s sae s st e s saesssaesseessaas s e essaessaesssesssaasssessseesssesssassssennns 12
Sign UP FOr @n AWS QCCOUNL ...ttt te et e s teste s e s e e e s s e e e s e ae st e ssesaassassessnennannans 13
Create an admMiNISEratiVe USEKo.coeviiirenieircntcteesent ettt sttt st s e st e sa s e sesa s e s sassesaesasees 13
Manage user permissions for Amazon GameLift ... 14
Set Up ProgrammatiC ACCESS FOI USEISccuivuieieeieeeeetecteteetes e e e et s saeste s e s e s e e s e s e saesaensansans 15
Set up programmatic access fOr YOUr QAMEc.coiiieciicieneeeceeeeeeeete et e s saesaessessens 16
[AM PErmiSSiON EXAMPLESccuiciicieeieeieceeieeete e ctesteste s e seee e s et e stesaessessesseessssaessassessassassassassaensansans 17
Set UP AN JAM SEIVICE TOLE ..ottt ettt s ae st e s te e e e s e e s et e st e saasaessessnenaennans 21

DEVELOPMENT SUPPOIT ...ttt ete e e et et et e st et et e s e s seesessa e s et estessassassassaessassensansansansanses 24
FOP CUSTOM QAIME SEIVELS ...ttt st st e s see e st e s saessseessaesssaessesssaesssasssnesssassssesssasssessssessnes 24
FOr CUSEOM CLIENT SEIVICESviveieieieieeeeeeceretet ettt ettt st et sa et s sae st e sse e e e ssans 26
FOI REALLIME SEIVELS ...ttt ettt sttt ettt e st e e s e sbe st e e saasa e e ssasbannenas 26

Manage your game hOStING COSES ...ttt e e e et et et estesse e e s e e e e aeaenean 27

Create billing alerts to MONITOr USAQEccueeeieieieeeceeee ettt e e s sa e sae b aens 27

Amazon GamelLift Developer Guide

Track costs per Amazon GameELift fleet ... 28
Set unused fleet CaPACItY t0 ZEIO ...ttt s 28
Amazon GameLift hosting LOCAtIONScc.eouieuieieeeeee et 28
Amazon GAMELIft NOSTING ..ottt a e s s s s a s 28
LOCAL ZONES ...ttt sttt sttt st sttt et st st e s s et et e b et e st e e s b et e st eae st et esassessaneesensanaens 30
Amazon GAMELIFt ANYWREIE ...ttt ettt st te st e e e e e st e saesaessesraesnennens 31
Amazon GAMELITt FLEXMACR ...ttt sttt ae st st aes 31
Amazon GAaMELITt iN ChiNQa ..ottt ettt st e s sae e s 32
Getting StArtedccciiiiiiiieeeericiiiiiieiiiiiiieeeeseeeiissiseetesss 33
CUStOM gamE SEIVEI EXAMPLE ..eceieeeeieieieteteseeee ettt ste st e s teste e e s e e e et e tesaesaessessassassaensensansansansansans 33
Realtime Servers eXamPle GAMIE ...ttt ste st e s te s e e e e s e s et e saesaestessassessesnnenean 33
Managed hosting roadmMap c...cciciiiiiiiiiieennniiiiiiiiiiiiiinsesssssssssnieeess 35
Cho0SE @ NOSEING OPLION ...ttt e s te st rs e e et st esae st e ssessaesaesneaansantans 35
Prepare YOUE QAIMIE ..ciiiiiieeieieteeeiteeereeessteeseneesssseessssesssseesssseesssseesssessesesssssasssssesssssesssseesssssassssasssnns 37
Prepare your CUSTOM QAIME SEIVEFccuiiiiiviereirterereeenterestesesstesesseesssseessssesssssesssssesssssesssssesssssesssnees 37
Prepare YOUr REALLIME SEIVEN ... ettt te e ae e e et ettt e s aassasse e e e s e aenaaaanes 38
TESt YOUF INTEGIATION ...eeiiiiieeeeteetretece ettt ettt e st e st e st e e s e e s sae s s e e s saeessaasssesssaesssaesssesssessseesssens 38
Plan and deploy YOUT FESOUICTEScceceeeeeeeeeeeeieeitestessessessessessesssessessessessessessessassessassasssessessassassassassans 39
DEPLOY YOUE FESOUICESeeueeereurereeteereeteereeeessestessessessessesseessessesessassessassessesssesssssensessassessessessasssessensans 39
Design YoUr DACKENA SEIVICE ...ttt ae s s a e e et e aasaa s 40
AUthenticating YOUr PLAYEIS ...ttt e s e s e e se e e s et esaesae s e s e s s ennennans 40
SErVErLESS DACKEN ...ttt b et sbe st st s s b s e s b e e e s e sae st sas 41
WebSocket-based Dackend ...ttt 42
Set Up MEtricS ANd LOGGING ..ottt steste e s se e e e e e e aesaesaessasaassassaenaaneans 44
LAUNCR CHECKLISES ..ottt sttt ettt ettt et e st s s aa st e e s sa b et esassassensns 45
ONDOAIAING .ttt ettt e ste st e st esteese e e s e e s et et et esbessassaesaessensentansassansansaeseesaensenaan 45
TOSTING ettt ettt e se e st e st e st e s s e e s e e e s st e st e s s e e e s ae e e s e e e b e e a e et e e e e e e e e st e e st e steeraesstaenraens 46
LAUNCR ettt ettt et sttt et e s e st et s s b et et e s e ae st e e s b et e e s aesae e enasaantenaes 47
POSE-LAUNCR .ttt ettt st ettt et a s et et e s s et e e s sasaansenas 47
Preparing games for Amazon GameLiftcccciiiiiiiiiiinennnnniiiiieiiiiinnneeessssssiisicccesssssssssssssssssssssses 48
Integrate games With CUStOM QAME SEIVELSc..cuieueeieieeeeeetecteste ettt saesaesse s e e e e e e e e nannens 48
Amazon GAMELITt iNTErACTIONScoiviiiieretcerescreee ettt sa e sb et aas 49
INTEGIrate @ QM@ SEIVEN ...ttt e st e s et e s s b e s s sanessssnessssnessssaassssasssssasssnsensnns 53
INtEgrate @ GAmE CLIENT ..ottt et e st e s b e s e e s e e s e s et e saabaneans 63
Game engines and AmMAzon GAMELITL ..o e 69
Test your integration (SENVEr SDK 5) ... iiieeeceeteictecteste e ste s e et e saesaesaessessessessee e s s eaesessanean 94

Amazon GamelLift Developer Guide

Test your integration (SErVEr SDK 4) ...ttt sve e e e e e e s saesaesaessessesse s e e aenens 102
Integrating games with REaltimE SEIVErS ...ttt 110
What are REAILIME SEIVEIS? ...ttt ettt e st st e sse st e e s sse st e e s e sse s e e ssassenees 110
MaNAGIiNG GAIME SESSIONS ...ccuverrriireeereeriterseesrteestesssessseesssesstesssessssesssessseesssessssesssessssesssesssassssesssaens 111
ClieNt SErVEr INTEIACION ...ocvvieiiireeeteeete ettt sttt et a e st e e saa b e e s s ses 111
CUSTOMUZING @ SEIVET ..cuviiieeeeeeeteecreeete et estessseessaeesseesssessseesssessssesssessseessssssseesssessssesssessssesssessssessses 112
Deploying and UPAAting ...ttt ettt ae e s e s e a e b et et aanns 112
INtegrating @ game CLIENT ...ttt a et sa e b s 113
Customizing @ REAItIME SCIIPT c.cveeeeeceeeeee ettt te e eaanens 118
Integrating games with the plugin for Unity ... 124
Plugin for Unity guide (Server SDK 5.X) ..cciiieicieieiesecieseceeeeeesestesaessessesse e s eeesesaessessessenes 125
Plugin for Unity guide (SErver SDK 4.X)ieieieieiesecieseeeee e sestesaessessesseeeesssssessessessessenes 142
Integrating games with the plugin for Unreal ... 168
ADOUL the PLUGIN ettt e et e st e s te e s e s e e e s s e sae st et e ssassassassneneanaans 169
PLUGIN WOTKFLOW ettt e et s et s e et et e st e s aesae s e s e e s e sa e e e aasantans 169
Install the PlUGIN FOr UNIEaL ...ttt et sa et st esae s nnens 170
Set UP aN AWS USEI PIrOFIle ..ottt st e st e s e ettt a e ae e 174
Set up your game With ANYWHREIE ...ttt ae e 175
Deploy your game with managed Amazon EC2 fleetscoerieciececececeeeceereeeeee e 188
GEL FLEBT At ettt sttt ettt a e b e ae e aan 192
Adding FlexMatch matchmaking ...ttt a e a e 193
Managing hOStiNg FESOUICESuueeeciiiiiiiiiiiiiinneennnniiiisieeeeesssanee 194
Uploading builds @nd SCHPES ..ottt ettt te e e a e e b s aeeans 195
UPLOAA @ DUIL .ttt ettt te st e e e e e et e b et e saessesaessnennenaaneans 195
UPLOGA @ SCIIPL woneeeeeeceeeee ettt re e e e e et et et e st e st e s s e s e e s e e et e b e tasaassassassassnensansans 204
SEEEING UP FLEELS ettt et e s e s e e st et e s ae st e sae e e se e e enn et entansanes 209
FLE@t d@SIGN GUIE ettt ettt st st e st s e e e s e e e e aesaesbesaessessaesassnansaneans 209
Create @ NEW FLEET ..ttt ettt st et e b e aesa e 217
MANAGE YOUE FLEELS ...ttt te e et e e e e sa e st st e b e basse s e e e esnenaanaaneans 233
Add an Alias t0 @ FLEEL ..ottt b et 236
DEDUG FLEET ISSUEBS ...ttt ettt tesae st e e e e e e s e st et et e sessasseesaennenaanes 238
Remotely connect to fleet iNSLANCEScucoveeeeeeieieeceeeeeeer e aenens 241
SCaling NOStING CAPACILY c.veeveeieieieeeeec ettt e st st et e tesaesse s e e se e e e e e s e ssebessaneans 249
To manage fleet capacity in the CONSOLE ... 250
Set hosting CapaCity LIMILS ..ceoeeeeeceeeeee ettt st st e e e e e aatens 250
Manually set fleet CAPACILY .ovcovicieeececeece ettt e ettt esae s s saennens 252

Amazon GamelLift Developer Guide

AULO SCAle FLEBT CAPACHLY oottt e e e a e e a e e s 254
SELLING UP QUEUES ...ttt sttt st st st essae e st e s aesssa e s saaesseesaesssaessaa s st asssesssaesssassseesssesssaensees 261
DESIGN @ QUEUE ..ottt csteettestesste e st e s saessaessaeessaessseesssessaesssasssassssessseesssessseesssessssessaesssnanns 261
BEST PraACLICES ..ottt et et ssr e e e s e s e e s e e e s e e s sae e st e s aa e s s b e e ae e saesraenaas 270
CrEATE @ QUEUE ..ttt ettt s e e s sae e s e e s te e e e s s b e e s b e s aaessaeesaaesssassaesssaesseesssasssaennees 271
Set up event NOLITICAtION ..ottt reaan 274
Tutorial: Queues for SPOt INSTANCES ...t aenan 278
Manage resources With AWS CloudFormationcoceeieciccenececesee ettt 286
BEST PraACLICES ..ttt ettt s st et s b s e e st e e e e e s ae e st e s e e e st e e ae e sae e raennns 287
Using AWS CloudFormation STACKScccceceeeeerericeceetetete e e et e e e ae s stesaesaesse s e e nens 288
(8]0 Te =] g T I o TUT1 (o L3OO USRS 292
VP PEEIING ettt et st e st e s te s s e e s ste e s e e s saesssaessaesssaesssesssaesssasssesssessseesssessssessaessseesssessssessaenns 294
To set up VPC peering for an existing fleet ... 295
To set up VPC peering With @ NEW flet ... 297
Troubleshooting VPC PEEIING ISSUESccuecueererrieeeieteriectestestestesseeseeseesessessessessessessesssessessessassassens 300
Viewing game data ...cciiiiieeeeecciiiiiiiiiiiiineeeessniiiiiiiiiiiiss 302
View your Amazon GameELITt STAtUScceceioeeeeeee ettt sa et aens 302
VIEW YOUE DUILAS .ttt et et et e e s s e e e e s e s et et e saasbesse e e ennensensansansans 304
BUILA ETAILS ..ottt sttt s a et sa et et a s s b et s saa b esnenans 305
VIBW YOULE SCHIPES weeriieiieiiirteeiieisteesttestessteeseeesaessstessaeesaessseesstessssesssessseasssessseesssessssesssessssesssessssesssesses 305
SCHPL AELAILS .ttt sa e st e s e e e s e e e et e st et e s b e s seesaeseesa e e ennentenaanes 306
VIBW YOULE FLEELS ...ttt ettt te st e e et te s ae b e s s e e e e e e e e e et et e bassassessnenaanns 306
VIEW FLEET AELAILS ..ottt ettt sa ettt s st e e s s s et e e ssasaessesansans 306
DELAILS .ttt sttt ettt e sttt e st e e s et e e e aente st esasaenteneen 307
IMBEFICS ettt ettt sttt s b st et e b e s e e e st s be st e st e b e st e st sasesat e e st esesntenees 308
EVENTS .ttt ettt et ettt e b e s sb e st a e st st a e e e e st e s e et e st e s se e aasatens 308
SCALING ettt et a ettt e st e st e e e e e e at et et et et e et et e eseeae e st et e tetetenseeseesaeraennans 308
LOCALTIONS ..ttt ettt et a et s s a e st st e ae et e et esbe s b e s st e ae e b essaesesanesnten 309
GAIMIE SESSIONS ...uviuieiirieeteete et e et st st et et e st e e st sbe st e s st et e st e e st s b e s st eeseebesstesesnsesntessesasessesssesnsannes 310
View game and Player iNTO ...ttt ettt sae s nens 310
DELAILS .ttt sttt s a et b et et e et e st e e e ae b e e e aente st esesaentenaen 310
PLAYEE SESSIONS ...ecueeereeietiiecieeteceeee e etestestestessestesseesse s et essessessassassassasssassassassassansansassasseessensassensensanes 311
Player iNFOIMAtiONc.eeeeeeeee ettt ettt e s ae st e e e e s e e e et estesaessessessaenaennans 312
VIBW YOUE QLIASES ..uveeieiieieietecteeeetes ettt et e te st et este s e s e s e e e s s et e ste st essassasseesaesaassesaansansassansassassnesesnsans 312
ALIAS ETAILS .ottt sttt et et b et e s s e b e e e sanaens 312
VIEW YOULE QUEUES ...ceviiieerreereeestteetessteesiseesseesssesssaesssessstasssesssessssessseesssessssesssessssesssessssesssessseesssesssessnens 313

Vi

Amazon GamelLift Developer Guide

VIEW QUEUE AETAILS ..ottt sttt et e st s et et e st e b e st e s ae s e seesn e e e s et eaanes 313
Monitoring AMazon GAMELIftcccciiiiiiimieemnniiiiiiiiiiiiinneenesessiiiiiieeeesssssssssssssssssssssssssssssssssssssss 316
MOoNItor With CLOUAWALCH ..ottt ettt st et st sa e e 316
MELFICS IMENSIONS ..ttt ettt et s et e e s s et et e e s se st e e ssesbestenessessensssassansenens 317
FLEEE MELIICS .eeveieieeteteeret ettt ettt e st ettt s ae st et s s et et e e be st e e ssessenssnassansenans 318
QUEUE IMEBLIICS coeeieeieeeeceeeeeeccteeeeecteeeeeerteeeeeesseeeessssaseeessssaseessssssseesssssseesssssasessssssssessssssseessssssssensnns 330
FLEXMAtCR MELIICS ettt ettt et et sae st et st e st e ssasaesaesaaas 333
Ty o [O 0 =] [337
LOGGING AP CALLS ettt e et et e st e ste st e st e e e e e et e b et e stesaesbessaesaesaensensansansans 339
Amazon GamelLift information in ClLOUdTrailcoeeeeiiinenieiceseeeeee et 339
Understanding Amazon GameLift log file entriescoeeveceieecececeeee e 340
LOQGQING SEIVEI MESSAGEScecuvieriereeerreenteeseeestessseesseessessssesssassssessssesssessssssssessssesssessssesssessssesssessssessees 343
LOGQIiNG fOr CUSTOM SEIVELS ...ttt ettt aeste s e e e e e e e et esaesae b e saeseesesnnennanes 343
LOgging fOr REALLIME SEIVEIS ...ttt st e e ettt saesse s aeaennennan 346
SECUNITY ceiiiiiiiieennniiiieiiiiitnnensessssssssssssecssesss 351
DAta PrOTECLION ...ttt re et e st s s e e s sae e s e e s aesssaessaaessnesssassssasssaesssasssaanns 352
ENCIYPLION @t FOST ..ttt e s e s re e s e s s ae e s b e s sa e s aeesaeesnessnnannnas 353
ENCryPLion N trANSIT ..coeeieeeeeeeeeeree ettt e s sre s e e s ae e s e e s sae s saessae s st assaessaassneas 353
INternetwork traffic PriVacy ettt 354
Identity and access MANAGEMENT ..ottt st e ae s e e e e e e e e e e esaesaaneans 354
AUAIENCE ..ttt sttt et s b et st s b et et s b et e e s s et et s sa b et e st ssa s e st esessansesessansensenanns 355
Authenticating With identities ...ttt ens 355
Managing access USING POLICIES ...coiceeieiiecieeecececeeeete et ste et te e e e e e e e s e e e stestessessesse e e esnennennan 359
How Amazon GameLift Works With TAM ...ttt sae e 361
Identity-based POliCY EXAMPLES ...ttt a et aesaenaens 369
TrOUBLESNOOTING .ottt sttt et et e st esae s be e e e sa e e e e e s e b entanean 374
Logging and monitoring with Amazon GameLift ... 376
ComPLiANCe ValiIdAtioN ...ttt e e e et aesae s e e be s b e s e e e e e e aenantans 376
RESILIEICE .ttt ettt et ettt s s b et et s s et et e e b et esa s s et e st ssassastesesanseneess 378
INFraStrUCTUIE SECUNILY cuviieieieeeceeee ettt ettt e st e st e e e se e e et este b e s aa s s e s seesne e esensensansans 378
Configuration and vulnerability @analysis ... 379
SECUNITY DEST PraCiCES ...ttt e et sa et e s tesae s e e re e e e e e e e et e stestassessesnnesaannans 380
Amazon GameLift reference guidesciiiiiiiiiiiiinneennnniiiiiiiiiiiiiieesssseiiiesssssssssssssssssses 381
Service API refer@nce (AWS SDK) ... iiieeiieeeeeieeeieteeeeeeeeseesesseeeesseesssseessssssssssssssssssssssesssssesssssessnne 381
Set up and manage Amazon GameLift hosting resSourcescooeececececececececee e 381
Start game sessions and JOIN PLAYEKS ...ttt sttt 385

vii

Amazon GamelLift Developer Guide

REALLIME SEIVEIS FEFEIENCE ...ttt et s b e ae s s e se e sn e e e aesaannan 386
Realtime client APl (CH) FEFEIENCEooeeeeeeieeeeeeeeeeeteeeete et eerteeesateeesaeesssseesssesssssesssssesssssessnns 387
Realtime Servers SCript refEreNCE ...t aens 401

SEIVEI SDK FEFEIENCE ...ttt et ettt e s te s e e e e e e e e e s et e stastessassaesnesaennansansans 409
Server SDK refere@nce fOr Ch ...ttt e saestesse s e s e s e e s e e e saesaenaans 409
Server SDK refer@nce fOr CH ...ttt sa et ste st e s e sse e e e e s e e et e aanaaaans 483
Server SDK refer@nCe fOr GO ...ttt et e st e ste s e s se e e e e e e e aesaeneans 546
Server SDK reference for UNreal ENGINE ... eieiicieceeeeeeeeete ettt ae s sae s eaas 572

Game SesSIoN PlaCEMENT EVENTS ..ottt e e sa et st e ae st e sae e e e e e ns 633
PlacemMeEnt VENT SYNTAX ..ccuiiieeiieieicicctectecteste et e et e saestesae s e s se e e e e s s e aesaestassassassassasseennensanes 633
Plac@mMENTFULTILLEA ...ttt se et st et e ae s b e s e e s e s et e aansaneans 634
PlacemMENtCANCELLEA ...ttt ettt a e et et aa st e b e e nn e ns 636
PlacemMentTimMEAOUL ...ttt te et e e e e et e st e st e s se s e s e s e e s e s e saassassassassnesassaans 637
PlaceMENTFQILEA ...ttt ettt st e st e s e e e et e s e st e st e s b e e saese e e enaennantans 638

EStIMAting PriCe ccceeueeeiiiiiiiiiiiiiiieennniiiiieeeeiiiineeessse 639

Estimate Amazon GameLift NOSTING ..ottt e a e aens 639
Amazon GAMELIFL INSLANCES ...coueeeeeeeeeeeeee ettt e s ae e s e nennan 639
Data tranSTer OUL (DTO) wueooueiieeeieeeeieeeeeeeeeeeeeeeeeteeeestesessteeesseesesseesssseesessesssssssssssssssssesssssesssssesssees 641

Estimate Amazon GamelLift standalone FLeXMatCh ... 642

Quotas and sUPPOrted REGIONSeuciiiiiiiiiiiieneeennensssisieciessesssasse 645
Release Notes and SDK VEISIONScceeceiiiiiiiiiiiieeeenennesssssseccsesss 646
SDK VEISIONS ...viiiiiiieictieeteesteeteseeeestesseesssessseessesssaesssesssaasssesssaesssessssesssessssesssessssesssessssessseessaessseessaenses 646
RELEASE NOLES ..ottt e et e et e st e st e te s e s te e e seess et e s et e tessasseesaeseessastansensassassaeseaseensansanes 652
AWS GLOSSANY .cceeernnnniiseecennneassesses 680

viii

Amazon GamelLift Developer Guide

What is Amazon GamelLift?

You can use Amazon GamelLift to deploy, operate, and scale dedicated, low-cost servers in the
cloud for session-based multiplayer games. Built on AWS global computing infrastructure, Amazon
GamelLift helps deliver high-performance, high-reliability game servers while dynamically scaling
your resource usage to meet worldwide player demand.

Uses of Amazon GamelLift

Amazon GamelLift supports these use cases and more:

« Use your own custom multiplayer game servers, or use ready-to-go Realtime servers to host your
games.

» Run low cost hosting resources using Amazon Elastic Compute Cloud (Amazon EC2) Spot
Instances.

» Automatically scale the amount of hosting resources that your game needs based on usage.

» Manage your Amazon EC2 compute resources all in one place using Amazon GamelLift FleetlQ.
« Match players in multiplayer games with Amazon GamelLift FlexMatch.

« lteratively test your game server and client builds with Amazon GameLift Anywhere.

« Use your own hardware while managing it all in one place with Amazon GamelLift Anywhere.

® Tip
To try out Amazon GamelLift game server hosting, see Getting started with Amazon
GamelLift.

Get started with Amazon Gamelift solutions

Amazon Gamelift solutions for game developers

o Amazon Gamelift hosting for custom servers

« Amazon Gamelift hosting with Realtime Servers

« Amazon Gamelift FleetlQ for hosting on Amazon EC2

Uses of Amazon GamelLift 1

https://aws.amazon.com/ec2/

Amazon GamelLift Developer Guide

« Amazon Gamelift FlexMatch for matchmaking

o Amazon GamelLift Anywhere hardware hosting

Amazon GamelLift hosting for custom servers

Amazon GamelLift replaces the work required to host your own custom game servers. Auto scaling
capabilities help you avoid paying for more resources than you need. Auto scaling also helps make
sure that you always have games available for new players to join with minimal waiting.

For more information about Amazon GamelLift hosting, see How Amazon GameLift works.

Key features

« Use Amazon GamelLift management features, including auto scaling, multi-location queues, and
game session placement.

» Deploy game servers to run on Amazon Linux or Windows Server operating systems.
« Manage game sessions and player sessions.

» Set up customized health tracking for server processes to detect problems and to resolve poor-
performing processes.

« Manage your game resources using AWS CloudFormation templates for Amazon GamelLift.

Amazon Gamelift hosting with Realtime Servers

Use Realtime Servers to stand up games that don't need custom-built game servers. This
lightweight server solution provides game servers that you can configure to fit your game.

For more information about Amazon GamelLift hosting with Realtime Servers, see Integrating
games with Amazon GamelLift Realtime Servers.

Key features

« Use Amazon GamelLift management features, including auto scaling, multi-location queues, and
game session placement.

« Use Amazon GamelLift hosting resources and choose the type of AWS computing hardware for
your fleets.

» Take advantage of a full network stack for game client and server interaction.

Amazon GamelLift hosting for custom servers 2

Amazon GamelLift Developer Guide

» Get core game server functionality with customizable server logic.

« Make live updates to Realtime configurations and server logic.

Amazon Gamelift FleetlQ for hosting on Amazon EC2

Use Amazon Gamelift FleetlQ to work directly with your hosting resources in Amazon EC2 and
Amazon EC2 Auto Scaling. This provides the benefit of Amazon GamelLift optimizations for
inexpensive, resilient game hosting. This solution is for game developers who need more flexibility
than what fully managed Amazon GamelLift solutions provide.

For information about how Amazon GamelLift FleetlQ works with Amazon EC2 and EC2 Auto
Scaling for game hosting, see the Amazon GamelLift FleetlQ Developer Guide.

Key features

» Get optimized Spot Instance balancing using the FleetlQ algorithm.

« Use player routing features to manage your game server resources efficiently, and provide a
better player experience for joining games.

« Automatically scale hosting capacity based on player usage.
« Directly manage Amazon EC2 instances in your own AWS account.

» Use any of the supported game server executable formats, including Windows, Linux, containers,
and Kubernetes.

Amazon Gamelift FlexMatch for matchmaking

Use FlexMatch to build custom rule sets to define multiplayer matches for your game. FlexMatch
uses rule sets to compare compatible players for each match and provide players with the ideal
multiplayer experience.

For more information about FlexMatch, see What is Amazon GamelLift FlexMatch?

Key features

« Balance match creation speed and match quality.
» Match players or teams based on defined characteristics.

» Define rules to place players into matches based on latency.

Amazon Gamelift FleetlQ for hosting on Amazon EC2 3

https://docs.aws.amazon.com/gamelift/latest/fleetiqguide/gsg-intro.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-intro.html

Amazon GamelLift Developer Guide

Amazon GamelLift Anywhere hardware hosting

Use Amazon GamelLift Anywhere to integrate hardware anywhere in your environment into your
Amazon GamelLift game hosting. You can integrate Anywhere fleets and EC2 fleets in matchmaker
and game session queues to manage matchmaking and game placement across your hardware.

For more information about testing with Anywhere, see Test your integration using Amazon

GamelLift Anywhere fleets. For more information about setting up an Anywhere fleet, see Setting

up Amazon GamelLift fleets.

Key features

o Perform fast, iterative testing of your game server and client builds.
» Use the set Amazon GamelLift tools to deploy games to your own hardware.

» Use hardware closest to your players, anywhere.

Accessing Amazon GamelLift

Use these tools to work with Amazon GamelLift.

Amazon Gamelift SDKs

The Amazon GamelLift SDKs contain the libraries needed to communicate with Amazon
Gamelift from your game clients, game servers, and game services. For more information, see
Development support with Amazon GamelLift.

Amazon Gamelift Realtime Client SDK

The Realtime Client SDK enables a game client to connect to the Realtime server, join game
sessions, and stay in sync with other players. Download the SDK and learn more about making
API calls with the Realtime Servers client API (C#).

Amazon Gamelift console

Use the AWS Management Console for Amazon Gamelift to manage your game deployments,

configure resources, and track player usage and performance metrics. The Amazon GamelLift
console provides a GUI alternative to managing resources programmatically with the AWS
Command Line Interface (AWS CLI).

Amazon GamelLift Anywhere hardware hosting 4

https://aws.amazon.com/gamelift/getting-started/
https://console.aws.amazon.com/gamelift

Amazon GamelLift Developer Guide

AWS CLI

Use this command line tool to make calls to the AWS SDK, including the Amazon GamelLift API.
For information about using the AWS CLI, see Getting started with the AWS CLI in the AWS
Command Line Interface User Guide.

Pricing for Amazon GamelLift

Amazon Gamelift charges for instances by duration of use, and for bandwidth by quantity of data
transferred. For a complete list of charges and prices for Amazon GamelLift, see Amazon GamelLift

Pricing.

For information about calculating the cost of hosting your games or matchmaking with Amazon
Gamelift, see Generating Amazon GamelLift pricing estimates, which describes how to use the AWS

Pricing Calculator.

How Amazon Gamelift works

This topic covers the core components for game hosting and describes how Amazon GamelLift
makes your multiplayer game servers available to players.

Ready to prepare your game for hosting on Amazon GameLift? Check out Amazon GamelLift

managed hosting roadmap.

Key components

Setting up Amazon GamelLift to host your game involves working with the following components.
The diagram in Game architecture with managed Amazon GamelLift visualizes the relationships

between these components.

« A game server is your game's server software running on a fleet. You upload your game server
build or script to Amazon GamelLift and tell Amazon GamelLift. When you use Amazon GamelLift
Anywhere or Amazon GamelLift FleetlQ, you upload your game server build directly to the
compute resource.

« A game session is an in progress game with players. You define the basic characteristics of a
game session, such as its life span and number of players. Players then connect to the game
server to join a game session.

Pricing for Amazon GamelLift 5

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://aws.amazon.com/gamelift/pricing
https://aws.amazon.com/gamelift/pricing
https://calculator.aws/#/createCalculator/GameLift
https://calculator.aws/#/createCalculator/GameLift

Amazon GamelLift Developer Guide

« A game client is your game's software running on a player's device. A game client connects to a
game server through backend services to join a game session, based on connection information
that it receives from Amazon GamelLift.

» Backend services are additional, custom services that handle tasks related to Amazon GamelLift.
As a best practice, your backend services should handle all game client communication with
Amazon GamelLift.

Hosting game servers

With Amazon GamelLift, you can host your game servers in three different ways: Managed Amazon
Gamelift, Amazon GamelLift FleetlQ, and Amazon GamelLift Anywhere. For more information about
Amazon GamelLift FleetlQ, see What is Amazon GamelLift FleetlQ?

You can design a fleet to fit your game's needs. For more information about designing a fleet, see
Amazon Gamelift fleet design guide.

Managed Amazon GamelLift

With managed Amazon Gamelift, you can host your game servers on Amazon GamelLift virtual
computing resources, called instances. Set up your hosting resources by creating a fleet of
instances and deploying them to run your game servers.

Amazon Gamelift Anywhere

With Amazon GamelLift Anywhere, you can host your game servers on compute that you manage.
Set up your hosting resources by creating an Anywhere fleet that references your compute.

Fleet aliases

An alias is a designation that you can transfer between fleets, making it a convenient way to have
a generic fleet location. You can use an alias to switch game clients from using one fleet to another
without changing your game client. You can also create a terminal alias that you point to content.

Running game sessions

After you deploy your game server build to a fleet and Amazon GamelLift launches game server
processes on each instance, the fleet can host game sessions. Amazon GamelLift starts new game
sessions when your game client service sends a placement request to the backend service or to
Amazon Gamelift.

Hosting game servers 6

https://docs.aws.amazon.com/gamelift/latest/fleetiqguide/gsg-intro.html

Amazon GamelLift Developer Guide

Game session placement and the FleetlQ algorithm

Queues use the FleetlQ algorithm to select an available game server to host a new game session.
The key component for game session placement is the Amazon GamelLift game session queue. You
assign a game session queue a list of fleets, which determines where the queue can place game
sessions. For more information about game session queues and how to design them for your game,
see Design a game session queue.

Player connections to games

As part of the game session placement process, the queue or game session prompts the selected
game server to start a new game session. The game server responds to the prompt and reports
back to Amazon GamelLift when it's ready to accept player connections. Amazon GamelLift then
delivers connection information to the backend service or game client service. Your game clients
use this information to connect directly to the game session and begin gameplay.

Scaling fleet capacity

When a fleet is active and ready to host game sessions, you can adjust your fleet capacity to meet
player demand. We recommend that you find a balance between all incoming players finding a
game quickly and overspending on resources that sit idle.

Amazon Gamelift provides a highly effective auto scaling tool, or you can manually set fleet
capacity. For more information, see Scaling Amazon GamelLift hosting capacity.

Auto scaling

Amazon Gamelift provides two methods of auto scaling:

» Target-based auto scaling

» Auto scale with rule-based policies

Additional scaling features

« Game session protection - Prevent Amazon GamelLift from ending game sessions that are
hosting active players during a scale-down event.

« Scaling limits — Control overall instance usage by setting minimum and maximum limits on the
number of instances in a fleet.

» Suspending auto scaling — Suspend auto scaling at the fleet location level without changing or
deleting your auto scaling policies.

Scaling fleet capacity 7

Amazon GamelLift Developer Guide

» Scaling metrics — Track a fleet's history of capacity and scaling events.

Monitoring Amazon GamelLift

When you have fleets up and running, Amazon GamelLift collects a variety of information to help
you monitor the performance of your deployed game servers. You can use this information to
optimize your use of resources, troubleshoot issues, and gain insight into how players are active in
your games. Amazon GamelLift collects the following:

Fleet, location, game session, and player session details

Usage metrics

Server process health

Game session logs

For more information about monitoring in Amazon GamelLift, see Monitoring Amazon GamelLift.

Using other AWS resources

Your game servers and applications can communicate with other AWS resources. For example,

you might use a set of web services for player authentication or social networking. For your game
servers to access AWS resources that your AWS account manages, explicitly allow Amazon GamelLift
to access your AWS resources.

Amazon Gamelift provides a couple of options for managing this type of access. For more
information, see Communicate with other AWS resources from your fleets.

How players connect to games

A game session is an instance of your game running on Amazon GamelLift. To play your game, a
player can either find and join an existing game session or create a new game session and join it.

A player joins by creating a player session for the game session. If the game session is open for
players, then Amazon GamelLift reserves a slot for the player and provides connection information.
The player can then connect to the game session and claim the reserved slot.

For detailed information about creating and managing game sessions and player sessions with
custom game servers, see Add Amazon GamelLift to your game client. For information about

connecting players to Realtime Servers, see Integrating a game client for Realtime Servers.

Monitoring Amazon GamelLift 8

Amazon GamelLift Developer Guide

Amazon GamelLift provides several features related to game and player sessions.

Host game sessions on best available resources across multiple locations

Choose from multiple options when configuring how Amazon GamelLift selects resources to
host new game sessions. If you're running fleets in multiple locations, then you can design
game session queues that place new game sessions on any fleet regardless of location.

Control player access to game sessions

Configure game sessions to allow or deny join requests from new players, regardless of the
number of players connected.

Use custom game and player data

Add custom data to game session objects and player session objects. Amazon GamelLift passes
game session data to a game server when starting a new game session. Amazon GamelLift
passes player session data to the game server when a player connects to the game session.

Filter and sort available game sessions

Use session search and sort to find the best possible match for a prospective player, or let
player choose from a list of available game sessions. Use session search and sort to find game
sessions based on session characteristics . You can also search and sort based on your own
custom game data.

Track game and player usage data

Automatically have logs stored for completed game sessions. You can set up log storage when
integrating Amazon GamelLift into your game servers. For more information, see Logging server

messages in Amazon Gamelift.

Use the Amazon Gamelift console to view detailed information about game sessions, including
session metadata, settings, and player session data. For more information, see View data on
game and player sessions and Metrics.

Game architecture with managed Amazon GamelLift

The following diagram illustrates the key components of a game architecture that's hosted using
the managed Amazon GamelLift solution.

Game architecture with managed Amazon GamelLift 9

Amazon GamelLift Developer Guide

] & A

QED }luoi }I?é

Game clients Backend services External services

Gamelift \
[+ —1

T
=
Ty

[10 —]
[T e |
f rn ! { }
Fleets with
game server GamelLift host
management
tools

The key components of this architecture include the following:

Game clients

To join a game hosted on Amazon Gamelift, your game client must first find an available
game session. The game client searches for existing game sessions, requests matchmaking,

or starts a new game session by communicating with Amazon GamelLift through a backend
service. The backend service makes requests to Amazon GamelLift, and in response, the service
receives game session information, which it relays back to the game client. The game client
then connects to the game server. For more information, see Preparing games for Amazon
GamelLift.

Game architecture with managed Amazon GamelLift 10

Amazon GamelLift Developer Guide

Backend services

A backend service handles communication between game clients and Amazon GamelLift

by calling the Amazon GamelLift service APl operations in the AWS SDK. You can also use
backend services for other game-specific tasks such as player authentication and authorization,
inventory, or currency control. For more information, see Design your game client service.

External services

Your game can rely on an external service, such as for validating a subscription membership.
An external service can pass information to your game servers through a backend service and
Amazon Gamelift.

Game servers

You upload your game server software to Amazon GamelLift, and Amazon GamelLift deploys

it onto hosting machines to host game sessions and accept player connections. Game servers
communicate with Amazon GamelLift to start game sessions, validate newly connected players,
and report the status of game sessions, player connections, and available resources.

Custom game servers communicate with Amazon GamelLift by using the Amazon GameLift
Server SDK. Game clients connect directly to a game server after receiving connection details
from Amazon GamelLift through a backend service. For more information, see Integrate games
with custom game servers.

Realtime servers are game servers that run your custom script. When joining a game, a
game client connects directly to a Realtime server using the Realtime Client SDK. For more
information, see Integrating games with Amazon GamelLift Realtime Servers.

Host management tools

When setting up and managing hosting resources, game owners use hosting management
tools to manage game server builds or scripts, fleets, matchmaking, and queues. The Amazon
GamelLift tool set in the AWS SDK and the console provides multiple ways for you to manage
your hosting resources. You can remotely access any individual game server for troubleshooting.

Game architecture with managed Amazon GamelLift 11

Amazon GamelLift Developer Guide

Setting up

Get help with setting up your AWS account to use Amazon GamelLift to host your multiplayer
games.

® Tip
To try out Amazon GameLift game server hosting, see Getting started with Amazon
GamelLift.

Topics

Set up an AWS account

Development support with Amazon GamelLift

Manage your game hosting costs

Amazon GamelLift hosting locations

Set up an AWS account

To start using Amazon GamelLift, create and set up your AWS account. There's no charge to create
an AWS account. This section walks you through creating your account, setting up your users, and
configuring permissions.

Topics

« Sign up for an AWS account

+ Create an administrative user

« Manage user permissions for Amazon GamelLift

+ Set up programmatic access for users

+ Set up programmatic access for your game

» |IAM permission examples for Amazon GamelLift

« Set up an IAM service role for Amazon GamelLift

Set up an account 12

Amazon GamelLift Developer Guide

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.
To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks

that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Ildentity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Signin to the AWS Management Console as the account owner by choosing Root user and

entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Sign up for an AWS account 13

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html

Amazon GamelLift Developer Guide

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. InIAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

« Tosign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Manage user permissions for Amazon GamelLift

Create additional users or extend access permissions to existing users as needed for your Amazon
Gamelift resources. As a best practice (Security best practices in IAM), apply least-privilege

permissions for all users. For guidance on permissions syntax, see IAM permission examples for

Amazon Gamelift.

Use following instructions to set user permissions based on how you manage the users in your AWS
account.

To provide access, add permissions to your users, groups, or roles:

« Users and groups in AWS IAM ldentity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

« Users managed in IAM through an identity provider:

Manage user permissions for Amazon GamelLift 14

https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html

Amazon GamelLift Developer Guide

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

e |AM users:

» Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

o (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

When working with IAM users, as a best practice always attach permissions to roles or user groups,
not individual users.

Set up programmatic access for users

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs To By
programmatic access?

Workforce identity Use temporary credentials to Following the instructions for
sign programmatic requests the interface that you want to

(Users managed in IAM to the AWS CLI, AWS SDKs, or use.

Identity Center) AWS APIs.

e For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

e For AWS SDKs, tools, and
AWS APIs, see |IAM Identity

Center authentication in

Set up programmatic access for users 15

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html

Amazon Gamelift

Developer Guide

Which user needs
programmatic access?

IAM

IAM

To

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

(Not recommended)

Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

By
the AWS SDKs and Tools

Reference Guide.

Following the instructions in
Using temporary credentia

s with AWS resources in the
IAM User Guide.

Following the instructions for
the interface that you want to
use.

« For the AWS CLI, see
Authenticating using IAM

user credentials in the AWS

Command Line Interface
User Guide.

« For AWS SDKs and tools,
see Authenticate using

long-term credentials in
the AWS SDKs and Tools
Reference Guide.

e For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

If you use access keys, see Best practices for managing AWS access keys.

Set up programmatic access for your game

Most games use backend services to communicate with Amazon GamelLift using the AWS SDKs. For
example, you use a backend service (acting on behalf of game clients) to request game sessions,

Set up programmatic access for your game

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/accounts/latest/reference/credentials-access-keys-best-practices.html

Amazon GamelLift Developer Guide

place players into games, and other tasks. These services need programmatic access and security
credentials to authenticate calls to Amazon Gamelift service APlIs.

For Amazon GamelLift, you manage this access by creating a player user in AWS Identity and Access
Management (IAM). Manage player user permissions through one of the following options:

» Create an IAM role with player user permissions and allow the player user to assume the role
when needed. The backend service must include code to assume this role before making requests
to Amazon Gamelift. In accordance with security best practices, roles provide limited, temporary
access. You can use roles for workloads running on AWS resources (1AM roles) or outside of AWS
(IAM Roles Anywhere).

» Create an IAM user group with player user permissions and add your player user to the group.
This option gives your player user long-term credentials, which the backend service must store
and use when communicating with Amazon GamelLift.

For permissions policy syntax, see Player user permission examples.

For more information on managing permissions for use by a workload, see IAM Identities:

Temporary credentials in IAM.,

IAM permission examples for Amazon GamelLift

Use the syntax in these examples to set AWS Identity and Access Management (IAM) permissions
for users that need access to Amazon Gamelift resources. For more information on managing user
permissions, see Manage user permissions for Amazon GameLift. When managing permissions for

users outside of the IAM Identity Center, as a best practice always attach permissions to IAM roles
or user groups, not individual users.

If you're using Amazon GamelLift FleetlQ as a standalone solution, see Set up your AWS account for
Amazon GamelLift FleetlQ.

Administrator permission examples
These examples give a user full access to manage Amazon GamelLift game hosting resources.
Example Syntax for Amazon GamelLift resource permissions

The following example extends access to all Amazon GamelLift resources.

IAM permission examples 17

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_non-aws.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_temp-creds
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_temp-creds
https://docs.aws.amazon.com/gamelift/latest/fleetiqguide/gsg-iam-permissions.html
https://docs.aws.amazon.com/gamelift/latest/fleetiqguide/gsg-iam-permissions.html

Amazon GamelLift Developer Guide

{
"Version": "2012-10-17",
"Statement": {
"Effect": "Allow",
"Action": "gamelift:*",
"Resource": "*"
}
}

Example Syntax for Amazon GamelLift resource permissions with support for Regions that
aren't enabled by default

The following example extends access to all Amazon GamelLift resources and AWS Regions that
aren't enabled by default. For more information about Regions that aren't enabled by default and
how to enable them, see Managing AWS Regions in the AWS General Reference.

{
"Version": "2012-10-17",
"Statement": {
"Effect": "Allow",
"Action": [
"ec2:DescribeRegions",
"gamelift:*"
1,
"Resource": "*"
}
}

Example Syntax for Amazon GamelLift resource and PassRole permissions

The following example extends access to all Amazon Gamelift resources and allows a user to pass
an IAM service role to Amazon GamelLift. A service role gives Amazon GamelLift limited ability

to access other resources and services on your behalf, as is described in Set up an IAM service

role for Amazon GamelLift. For example, when responding to a CreateBuild request, Amazon
GamelLift needs access to your build files in an Amazon S3 bucket. For more information about the
PassRole action, see IAM: Pass an IAM role to a specific AWS service in the IAM User Guide.

"Version": "2012-10-17",
"Statement": [

IAM permission examples 18

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_iam-passrole-service.html

Amazon GamelLift Developer Guide

{
"Effect": "Allow",
"Action": "gamelift:*",
"Resource": "*"
},
{
"Effect": "Allow",
"Action": "iam:PassRole",
"Resource": "*",
"Condition": {
"StringEquals": {
"iam:PassedToService": "gamelift.amazonaws.com"
}
}
}

Player user permission examples

These examples allow a backend service or other entity to make API calls to the Amazon GamelLift
API. They cover the common scenarios for managing game sessions, player sessions, and
matchmaking. For more details, see Set up programmatic access for your game.

Example Syntax for game session placement permissions

The following example extends access to the Amazon GamelLift APIs that use game session
placement queues to create game sessions and manage player sessions.

"Version": "2012-10-17",
"Statement": {

"Sid": "PlayerPermissionsForGameSessionPlacements",

"Effect": "Allow",

"Action": [
"gamelift:StartGameSessionPlacement",
"gamelift:DescribeGameSessionPlacement",
"gamelift:StopGameSessionPlacement",
"gamelift:CreatePlayerSession",
"gamelift:CreatePlayerSessions",
"gamelift:DescribeGameSessions"

1,

"Resource": "*"

IAM permission examples

19

Amazon GamelLift Developer Guide

}

Example Syntax for matchmaking permissions

The following example extends access to the Amazon GamelLift APIs that manage FlexMatch
matchmaking activities. FlexMatch matches players for new or existing game sessions and initiates
game session placement for games hosted on Amazon GamelLift. For more information about
FlexMatch, see What is Amazon GamelLift FlexMatch?

"Version": "2012-10-17",
"Statement": {

"Sid": "PlayerPermissionsForGameSessionMatchmaking",

"Effect": "Allow",

"Action": [
"gamelift:StartMatchmaking",
"gamelift:DescribeMatchmaking",
"gamelift:StopMatchmaking",
"gamelift:AcceptMatch",
"gamelift:StartMatchBackfill",
"gamelift:DescribeGameSessions"

]I

"Resource": "*"

Example Syntax for manual game session placement permissions

The following example extends access to the Amazon GamelLift APIs that manually create game
sessions and player sessions on specified fleets. This scenario supports games that don't use
placement queues, such as games that let players join by choosing from a list of available game
sessions (the "list-and-pick" method).

"Version": "2012-10-17",
"Statement": {

"Sid": "PlayerPermissionsForManualGameSessions",
"Effect": "Allow",
"Action": [

"gamelift:CreateGameSession",

IAM permission examples 20

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-intro.html

Amazon GamelLift Developer Guide

"gamelift:DescribeGameSessions",
"gamelift:SearchGameSessions",
"gamelift:CreatePlayerSession",
"gamelift:CreatePlayerSessions",
"gamelift:DescribePlayerSessions"

1,

"Resource": "*"

Set up an IAM service role for Amazon GamelLift

Some Amazon GamelLift features require you to extend limited access to AWS resources that you
own. You can do this by creating an AWS Identity and Access Management (IAM) role. An IAM role
is an IAM identity that you can create in your account that has specific permissions. An IAM role is
similar to an IAM user in that it is an AWS identity with permissions policies that determine what
the identity can and cannot do in AWS. However, instead of being uniquely associated with one
person, a role is intended to be assumable by anyone who needs it. Also, a role does not have
standard long-term credentials such as a password or access keys associated with it. Instead, when
you assume a role, it provides you with temporary security credentials for your role session.

This topic covers how to create a role that you can use with your Amazon GamelLift managed fleets.
If you use Amazon GamelLift FleetlQ to optimize game hosting on your Amazon Elastic Compute
Cloud (Amazon EC2) instances, see Set up your AWS account for Amazon Gamelift FleetlQ.

In the following procedure, create a role with a custom permissions policy and a trust policy that
allows Amazon GamelLift to assume the role.

Create a custom IAM role
Step 1: Create a permissions policy.

To use the JSON policy editor to create a policy

1. Signin to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

Set up an IAM service role 21

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/gamelift/latest/fleetiqguide/gsg-iam-permissions.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon GamelLift Developer Guide

10.

11.

At the top of the page, choose Create policy.
In the Policy editor section, choose the JSON option.

Enter or paste a JSON policy document. For details about the IAM policy language, see IAM
JSON policy reference.

Resolve any security warnings, errors, or general warnings generated during policy validation,
and then choose Next.

(® Note

You can switch between the Visual and JSON editor options anytime. However, if you
make changes or choose Next in the Visual editor, IAM might restructure your policy to
optimize it for the visual editor. For more information, see Policy restructuring in the
IAM User Guide.

(Optional) When you create or edit a policy in the AWS Management Console, you can
generate a JSON or YAML policy template that you can use in AWS CloudFormation templates.

To do this, in the Policy editor choose Actions, and then choose Generate CloudFormation
template. To learn more about AWS CloudFormation, see AWS Identity and Access
Management resource type reference in the AWS CloudFormation User Guide.

When you are finished adding permissions to the policy, choose Next.

On the Review and create page, enter a Policy name and a Description (optional) for the
policy that you are creating. Review Permissions defined in this policy to see the permissions
that are granted by your policy.

(Optional) Add metadata to the policy by attaching tags as key-value pairs. For more
information about using tags in 1AM, see Tagging IAM resources in the IAM User Guide.

Choose Create policy to save your new policy.

Step 2: Create a role that Amazon GamelLift can assume.

In the navigation pane of the IAM console, choose Roles, and then choose Create role.

On the Select trusted entity page, choose the Custom trust policy option. This selection
opens the Custom trust policy editor.

Replace the default JSON syntax with the following, and then choose Next to continue.

Set up an IAM service role 22

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_policy-validator.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_IAM.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_IAM.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html

Amazon GamelLift Developer Guide

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",

"Principal": {
"Service": "gamelift.amazonaws.com"

}I

"Action": "sts:AssumeRole"

4. On the Add permissions page, locate and select the permissions policy that you created in
Step 1. Choose Next to continue.

5. Onthe Name, review and create page, enter a Role name and a Description (optional) for the
role that you are creating. Review the Trust entities and Added permissions.

6. Choose Create role to save your new role.

Permission policy syntax

« Permissions for Amazon GamelLift to assume the service role

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Principal": {
"Service": "gamelift.amazonaws.com"

iy

"Action": "sts:AssumeRole"

« Permissions to access AWS Regions that aren't enabled by default

"Version": "2012-10-17",
"Statement": [

Set up an IAM service role 23

Amazon GamelLift Developer Guide

{
"Effect": "Allow",

"Principal": {
"Service": [
"gamelift.amazonaws.com",
"gamelift.ap-east-1.amazonaws.com",
"gamelift.me-south-1.amazonaws.com",

"gamelift.af-south-1.amazonaws.com",
"gamelift.eu-south-1.amazonaws.com"
]
1,

"Action": "sts:AssumeRole"

Development support with Amazon GamelLift

Amazon Gamelift provides a set of SDKs that you can use with your managed game hosting
solutions. Use Amazon GamelLift SDKs to add the necessary functionality to multiplayer game
servers, game clients, and game services that need to interact with the Amazon GamelLift hosting
service.

For the latest information about Amazon GamelLift SDK versions and SDK compatibility, see
Amazon Gamelift release notes.

For custom game servers

Create and deploy 64-bit custom game servers with the Amazon GamelLift server SDK. Game
servers that are integrated with the server SDK and deployed for hosting can communicate with
the Amazon GamelLift service to start and manage game sessions. For information on integrating
the server SDK, see the topics in Preparing games for Amazon GamelLift.

Development operating systems

+ Windows

e Linux

Supported programming languages

Development support 24

Amazon GamelLift Developer Guide

Amazon Gamelift provides the server SDK for the following languages. Download each server SDK
package at Download Server SDKs. For detailed version-specific information, see the included
Readme files in each package.

e C++ server SDK

e SDK reference

« SDK integration

o C# server SDK (versions may support .NET 4 and .NET 6)

o SDK reference

« SDK integration

« GO

« SDK reference

» SDK integration

Supported game engines

Use language-specific SDKs with any engines that support C++, C#, or Go libraries. In addition,
Amazon Gamelift provides these game engine plugins:

« Unity

« C# server SDK plugin for Unity is a lightweight plugin with pre-built libraries that you can
install using the Unity package manager. Use this plugin with the following Unity versions:
2020.3 LTS, 2021.3 LTS and 2022.3 LTS for Windows and Mac OS. It supports Unity's .NET
Framework and .NET Standard profiles, with .NET Standard 2.1 and .NET 4.x.

 Integrate Amazon Gamelift into a Unity project

« Standalone plugin for Unity 2021.3 LTS and 2022.3 LTS is a full-featured plugin with the C#
SDK libraries built for Unity and GUI elements for configuring and deploying Amazon GamelLift
resources for hosting.

o Amazon GamelLift plugin for Unity guide for server SDK 5.x

+« Amazon GamelLift server SDK reference for C#

» Unreal Engine

o C++ server SDK plugin for Unreal is a lightweight plugin consisting of C++ Unreal source code
that you can build into libraries for use with Unreal Engine versions 4, 5, and 5.1.

. Infpgrnfp Amazon Gamelift into an Unreal aninp prnjprf
For custorfrgame Servers 25

https://aws.amazon.com/gamelift/getting-started/#Amazon_GameLift_Server_SDKs

Amazon GamelLift Developer Guide

o Amazon GamelLift Unreal Engine server SDK 5.x reference

« Standalone plugin for Unreal Engine 5.0, 5.1, and 5.2 is a full-featured plugin with the C++ for
Unreal server SDK libraries and AWS SDK. The plugin is installed in the Unreal editor, with Ul
elements and supporting materials for configuring and deploying Amazon GamelLift resources
for hosting.

 Integrating games with the Amazon GamelLift plugin for Unreal Engine

« Amazon Gamelift Unreal Engine server SDK 5.x reference

Game server operating systems
Use the Amazon Gamelift Server SDK to build game servers to run on the following platforms:

Windows Server 2016

Amazon Linux 2023

Amazon Linux 2 (AL2)

Windows Server 2012 (see Amazon GamelLift FAQ for Windows 2012)
Amazon Linux (AL1) (see Amazon GamelLift FAQ for AL1)

For custom client services

Create 64-bit custom client services using the AWS SDK with the Amazon GameLift API. This SDK
enables client services to manage game sessions and join players to games that are hosted on
Amazon Gamelift. To get started, download the AWS SDK. For more information about using the
SDK with Amazon Gamelift, see the Amazon GamelLift APl Reference.

For Realtime Servers

Configure and deploy Realtime servers to host your multiplayer games. To allow your game clients
to connect to Realtime servers, use the Amazon GamelLift Realtime Client SDK. Game clients use
this SDK to exchange messages with a Realtime server and with other game clients that connect to
the server. To get started, download the Amazon GamelLift Realtime Client SDK. For configuration

information, see Integrating a game client for Realtime Servers.

SDK support

The Realtime Client SDK contains source for the following languages:

For custom client services 26

https://aws.amazon.com/windows/products/ec2/windows-server-2016/
https://aws.amazon.com/linux/amazon-linux-2023/
https://aws.amazon.com/amazon-linux-2/
https://aws.amazon.com/windows/products/ec2/server2012r2/
https://aws.amazon.com/gamelift/faq/win2012/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/gamelift/faq/al1/
https://aws.amazon.com/developer/tools/#SDKs
https://docs.aws.amazon.com/gamelift/latest/apireference/Welcome.html
https://aws.amazon.com/gamelift/getting-started/

Amazon GamelLift Developer Guide

o C# (.NET)

Development environments

Build the SDK from source as needed for the following supported development operating systems
and game engines:

« Operating systems — Windows, Linux, Android, iOS

« Game engines - Unity, engines that support C# libraries

Game server operating systems
You can deploy Realtime servers onto hosting resources that run on the following platforms:

« Amazon Linux

« Amazon Linux 2

Manage your game hosting costs

Your AWS bill reflects your game hosting costs. You can view estimated charges for the
current month, and final charges for previous months on the Billing console at https://
console.aws.amazon.com/billing/. For more information about tools and resources to help you
manage your AWS costs, see the AWS Billing User Guide. This guide can help you review your
resource consumption, establish future usage, and determine your scaling needs.

In particular, consider these tips to help you manage the cost of Amazon Gamelift services.

Create billing alerts to monitor usage

Set up an AWS Free Tier usage alert to notify you when your usage is nearing or exceeding the
Free Tier limits for Amazon GamelLift and other AWS services. You can configure the alerts to take
action based on your usage levels. For example, you can automatically set your budget to zero
when your reach a Free Tier limit.

You can also set Amazon CloudWatch billing alerts to get notifications when usage hits custom
thresholds.

For more information, see these topics in the AWS Billing User Guide:

Manage your game hosting costs 27

https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-2/
https://console.aws.amazon.com/billing/
https://console.aws.amazon.com/billing/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html

Amazon GamelLift Developer Guide

» Tracking your AWS Free Tier usage

« Billing alert preferences

Track costs per Amazon Gamelift fleet

Use AWS cost allocation tags to organize and track your game hosting costs based on Amazon
GamelLift Amazon EC2 fleets and other EC2 resources. By tagging your fleets, either individually or
by groups, you can create cost allocation reports that categorize costs based on the assigned tag.
You can use this type of report to identify how fleets are contributing to your hosting costs. You
can also use tags to filter views in AWS Cost Explorer.

For more information, see these topics:

« Using AWS cost allocation tags, AWS Billing User Guide

» Analyzing your costs with AWS Cost Explorer, AWS Cost Management User Guide

Set unused fleet capacity to zero

Fleets can continue to incur costs even when they're not in use hosting game sessions. To avoid
incurring unnecessary charges, scale your fleet down to zero when not in use. If you use auto
scaling, suspend this activity and manually set the fleet capacity.

Amazon GamelLift hosting locations

Amazon Gamelift is available in multiple AWS Regions and Local Zones. For a complete list of
locations, see Amazon GamelLift endpoints and quotas in the AWS General Reference.

Amazon Gamelift hosting

When you create a Amazon Gamelift fleet, Amazon GamelLift creates the fleet's resources in your
current AWS Region. Amazon Gamelift calls this Region the fleet's home Region. To manage a fleet,
access it from its home Region.

Multi-location fleets deploy instances to other locations in addition to the fleet's home Region.
With multi-location fleets, you can manage capacity for each location individually, and you can
place game sessions by location. Multi-location fleets can have remote locations in any Region or
Local Zone that Amazon GamelLift supports. The following diagram depicts a multi-location fleet

Track costs per Amazon GamelLift fleet 28

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/tracking-free-tier-usage.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-pref.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/cost-management/latest/userguide/ce-what-is.html
https://docs.aws.amazon.com/general/latest/gr/gamelift.html

Amazon GamelLift Developer Guide

with resources in two Regions. In the diagram, the us-west -2 Region includes two game servers,
and the us-east-2 Region has one game server.

Gamelift Fleet

Game server Game server Game server

If you choose to use a multi-location fleet with instances in Regions that aren't enabled by default,
you must enable those Regions in your AWS account. Also, your Amazon GameLift administrator
policy must allow the ec2:DescribeRegions action. For more information about Regions that

aren't enabled by default and how to enable them, see Managing AWS Regions in the AWS General

Reference. For a policy example with Regions that aren't enabled by default, see Administrator

permission examples.

/A Important

To use Regions that aren't enabled by default, enable them in your AWS account.
 Fleets with Regions that aren't enabled that you created before February 28, 2022 are
unaffected.

» To create new multi-location fleets or to update existing multi-location fleets, first
enable any Regions that you choose to use.

Amazon GamelLift hosting 29

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html

Amazon GamelLift Developer Guide

For game session placement, you can create game session queues in any location that Amazon
GamelLift supports. Amazon GamelLift places game sessions from the location where you created
the queue.

Local Zones

A Local Zone is an extension of an AWS Region in geographic proximity to your users. Local Zones
have their own connections to the internet. Local Zones also support AWS Direct Connect so that
resources created in a Local Zone can serve local users with low-latency communications. For more
information, see AWS Local Zones.

The code for a Local Zone is its Region code, followed by an identifier that indicates its physical
location. For example, the us-west-2-1ax-1 Local Zone is in Los Angeles. For a list of available
Local Zones, see Available Local Zones.

Amazon Gamelift hosts your games in each of the locations that you choose for your fleet. The
following diagram depicts a fleet with two game servers in the us-west-2 Region, one game
server in the us-east-2 Region, and one game server in the us-west-2-1ax-1 Local Zone.

Gamelift Fleet

Local Zone
us-west-2-lax-1

-
1
1
1
1
1
1
1
1
1 V) —
1
1
1
1
1
1
1
1
1
1

Game server Game server Game server Game server

Available Local Zones

The following table lists the available Local Zones and their physical locations.

Local Zone Location (metro area)

us-east-1-atl-1 Atlanta

Local Zones 30

https://aws.amazon.com/about-aws/global-infrastructure/localzones/

Amazon GamelLift Developer Guide

Local Zone Location (metro area)
us-east-1-chi-1 Chicago
us-east-1-dfw-1 Dallas
us-east-1-iah-1 Houston
us-east-1-mci-1 Kansas City
us-west-2-den-1 Denver
us-west-2-lax-1 Los Angeles
us-west-2-phx-1 Phoenix

Amazon GamelLift Anywhere

You can use Amazon GamelLift Anywhere to create fleets with your own hardware, and manage
your game builds, scripts, game servers, and clients using Amazon GamelLift. Amazon GamelLift
Anywhere is available in all Regions that Amazon GamelLift supports. For more information
about creating an Anywhere fleet and testing your game server integration, see Create a Amazon

Gamelift Anywhere fleet and Test your integration using Amazon GameLift Anywhere fleets.

With Amazon GamelLift Anywhere you create custom locations that represent the physical location
of the hardware you are using to host your Amazon GamelLift integrated game servers.

Amazon Gamelift FlexMatch

For FlexMatch, you can host match-generated game sessions in any location that Amazon GamelLift
supports. Actual matchmaking activity takes place in the AWS Region where you chose to create
your matchmaker resources. Amazon GamelLift routes match requests to the matchmaker and
processes them in that location. For more information about Amazon GamelLift FlexMatch, see
What is Amazon Gamelift FlexMatch?

AWS Regions that support FlexMatch resources

Amazon GamelLift Anywhere 31

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-intro.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-regions.html

Amazon GamelLift Developer Guide

Amazon GamelLift in China

When using Amazon GamelLift for resources in the China (Beijing) Region, operated by Sinnet, or
the China (Ningxia) Region, operated by NWCD, you must have a separate AWS (China) account.
Note that some features are unavailable in the China Regions. For more information about using
Amazon GamelLift in these Regions, see the following resources:

« Amazon Web Services in China

o Amazon GamelLift (Getting Started with Amazon Web Services in China)

Amazon Gamelift in China 32

https://www.amazonaws.cn/en/about-aws/china/
https://docs.amazonaws.cn/en_us/aws/latest/userguide/gamelift.html

Amazon GamelLift Developer Guide

Getting started with Amazon GamelLift

We recommend that you try the following examples before you use Amazon GamelLift for your own
game. The custom game server example gives you experience with game hosting in the Amazon
Gamelift console. The Realtime Servers example shows you how to prepare a game for hosting
using Realtime Servers.

To get started with Amazon GamelLift for your own game, see Amazon GamelLift managed hosting
roadmap.

Custom game server example

This example demonstrates a live custom game on Amazon GamelLift. The example walks you
through the following steps:

Creating an example game build.

Creating a fleet to run the game server.

Connecting to the game server from the example game client.

Reviewing fleet and game session metrics.

After these steps, you can start up multiple game clients and play the game to generate hosting
data. Then, you can explore the Amazon GamelLift console to view your hosting resources, track
metrics, and experiment with ways to scale hosting capacity.

To get started, sign in to the Amazon GamelLift console.

Realtime Servers example game

This example is a complete multiplayer game named Mega Frog Race, with source code included.
The example shows how to integrate your game client with Realtime Servers. You can also use this
example game as a starting point to experiment with other Amazon GamelLift features such as
FlexMatch.

For a hands-on tutorial, see Creating Servers for Multiplayer Mobile Games with Just a Few Lines of

JavaScript on the AWS for Games Blog.

For the source code of Mega Frog Race, see the GitHub repository.

Custom game server example 33

https://console.aws.amazon.com/gamelift/sample-game
https://aws.amazon.com/blogs/gametech/creating-servers-for-multiplayer-mobile-games-with-amazon-gamelift/
https://aws.amazon.com/blogs/gametech/creating-servers-for-multiplayer-mobile-games-with-amazon-gamelift/
https://github.com/aws-samples/megafrograce-gamelift-realtime-servers-sample

Amazon GamelLift Developer Guide

The source code includes the following parts:

o Game client — A source code for the C++ game client, created in Unity. The game client gets
game session connection information, connects to the server, and exchanges updates with other
players.

» Backend service — A source code for an AWS Lambda function that manages direct API calls to
Amazon Gamelift.

» Realtime script — A source script file that configures a fleet of Realtime Servers for the game. This
script includes the minimum configuration required for Realtime Servers to communicate with
Amazon GamelLift and to host games.

Realtime Servers example game 34

Amazon GamelLift Developer Guide

Amazon GamelLift managed hosting roadmap

This topic helps you choose from the different Amazon GamelLift hosting options for your session-
based multiplayer game. The rest of the topics in this section walk you through how to use Amazon
Gamelift for your managed hosting.

Before you start preparing to launch your game to production, fill out the launch questionnaire to
begin working with the Amazon GameLift team.

Topics

« Choose a hosting option

« Prepare your game for Amazon GamelLift

» Test your integration with Amazon GamelLift

« Plan and deploy your Amazon Gamelift resources

» Design your game client service

» Set up metrics and logging for Amazon GamelLift

e Game launch checklists

Choose a hosting option

The following flowchart asks questions to lead you to the correct Amazon Gamelift solution for
your use case.

1. Do you want a managed solution for game server management?

» Yes — Continue to step two.
« No - Consider self-managed game servers on Amazon EC2 instances.

2. Do you need full control of the instances hosting your game servers?

e Yes — Consider Amazon Gamelift FleetlQ.
« No - Continue to step 3.

3. Do you have existing infrastructure you want to use with Amazon GamelLift?

o Yes — Consider Amazon GameLift Anywhere.

» No - Continue to step four.

Choose a hosting option 35

Amazon GamelLift Developer Guide

4. Is your game lightweight without existing game server logic?

« Yes — Consider Realtime servers.

+ No - Consider custom servers.

Do you want a managed solution for
game server management?

No Yes

Do you need full management of instances
used to host your game servers?

No Yes

Do you have existing infrastructure and
don't want to migrate fully to GameLift?

Yes No

Is your game a lightweight game without
existing game server logic?

Self-Managed
on EC2

instances @:@

Gamelift FleetlQ

No Yes

79

Do you want a customizable GamelLift Anywhere
matchmaking solution?

A 9

Yes

GamelLift GamelLift
hosting with hosting with
Custom Realtime
@:@ servers servers
GamelLift
Flexmatch

Here's some more information about some of the Amazon GamelLift hosting options mentioned in

the flowchart:
Amazon Gamelift Anywhere

Use Amazon GamelLift Anywhere to host your games on your own hardware with the benefit
of Amazon GamelLift management tools. You can also use Anywhere fleets to test your game
servers iteratively. For more information, see Create a Amazon GameLift Anywhere fleet.

Choose a hosting option 36

Amazon GamelLift Developer Guide

Managed Amazon GamelLift
There are two options for managed Amazon GamelLift hosting:

Custom servers — Amazon GamelLift hosts your custom server that runs your game server
binary.

Realtime Servers — Amazon GamelLift hosts your lightweight game server.

Amazon Gamelift FleetlQ

In the flowchart, a lift and shift migration refers to a migration when you can't make changes to
the game architecture. Using Amazon GamelLift FleetlQ requires fewer changes to your existing

deployment and provides Amazon Gamelift tools for fleet management. For more information,
see the Amazon GamelLift FleetlQ Developer Guide.

If you decide to use Amazon GamelLift Anywhere or managed Amazon Gamelift, continue to
Prepare your game for Amazon GamelLift.

Prepare your game for Amazon GamelLift

This topic describes the steps for preparing your multiplayer game for integration with managed
Amazon GamelLift hosting. To prepare your game, you must activate communication between it
and Amazon Gamelift.

Prepare your custom game server

To start and stop game sessions, and to perform other tasks, a game server must be able to notify
Amazon GamelLift about its status. To activate communication with Amazon Gamelift, add code to
your game server project. For more information, see Integrate games with custom game servers.

1. Prepare your custom game server for hosting on Amazon GamelLift.

» Get the Amazon Gamelift Server SDK and build it for your preferred programming language
and game engine.

» Add code to your game server project to activate communication with Amazon GameLift.

2. Prepare your game client to connect to Amazon GamelLift hosted game sessions.

« Add the AWS SDK to your backend service and game client project. For more information,
see Download Amazon GamelLift SDKs for client services.

Prepare your game 37

https://docs.aws.amazon.com/gamelift/latest/fleetiqguide
https://aws.amazon.com/gamelift/getting-started/#Developer_Resources_and_Documentation

Amazon GamelLift Developer Guide

« Add functionality to retrieve information on game sessions, place new game sessions, and
reserve space for players on a game session.

» (Optional) Use FlexMatch for player matchmaking. For more information, see FlexMatch
integration with Amazon GamelLift hosting.

Prepare your Realtime server

Amazon Gamelift Realtime Servers provides a lightweight server solution that you can configure
to fit your game. A Realtime server provides the same benefits that Amazon GamelLift offers to
game servers, but with reduced game server customizability.

Create a Realtime script for hosting on Amazon GamelLift.

Realtime scripts contain your server configuration and optional custom game logic. Realtime
servers are built to start and stop game sessions, accept player connections, and manage
communication with Amazon GamelLift and between players in a game. There are also hooks for
you to add custom server logic for your game. Realtime servers use Node.js and JavaScript. For
more information, see Creating a Realtime script and Test your integration with Amazon GamelLift.

Test your integration with Amazon GamelLift

Amazon GamelLift supports fast iteration when testing your game servers. This topic guides you
through the types of testing available.

Custom game servers

Use Amazon Gamelift to integrate hardware anywhere in your environment into your Amazon
GamelLift game hosting architecture. Amazon GameLift Anywhere registers your hardware with
Amazon GamelLift in an Anywhere fleet, so that you can test using your own local development
computer. For more information about testing with Amazon GamelLift Anywhere, see Test your
integration using Amazon GamelLift Anywhere fleets. For more information about using Amazon

GamelLift Anywhere for hosting your games with on-premises solutions, see Choosing Amazon

GamelLift compute resources.

Realtime Servers

With Realtime Servers, you can update your scripts at any time. When you update a Realtime script,
Amazon Gamelift distributes the new version to your hosting resources within minutes. After

Prepare your Realtime server 38

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-tasks.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-tasks.html

Amazon GamelLift Developer Guide

Amazon GamelLift deploys the new script, all new game sessions use the new script version. After
Amazon GamelLift deploys the new script, you can begin testing immediately. For more information
about Realtime Servers see, Integrating games with Amazon GamelLift Realtime Servers

Plan and deploy your Amazon GamelLift resources

Use the following tips to help plan your global Amazon GamelLift resources deployment. For
information about where you can host your games with Amazon GamelLift, see Amazon GamelLift

hosting locations.

To deploy your Amazon GamelLift resources, complete the following tasks:

» Package and upload your game server to Amazon GamelLift or to your hardware. When
uploading your server to Amazon GamelLift, you upload it only to the home AWS Region of your
fleet. Amazon GamelLift automatically distributes the server to other locations in the fleet. For
more information, see Uploading builds and scripts to Amazon GamelLift.

» Design and deploy a Amazon Gamelift fleet for your game. Determine the type of computing
resources to use, which locations to deploy to, whether to use queues, and other options. For
more information, see Amazon GamelLift fleet design guide.

« Create queues to manage new game session placements and Spot Instance strategies. For
more information, see Design a game session queue.

» Use automatic scaling to manage your fleet's hosting capacity for expected player demand.
For more information, see Scaling Amazon GamelLift hosting capacity.

» Use FlexMatch matchmaking rules for your game. For more information, see FlexMatch
integration with Amazon GamelLift hosting.

Automatically deploy your Amazon GamelLift resources

To streamline the global deployment of your Amazon GamelLift resources, we recommend that you
use infrastructure as code (IaC) to define the resources. Because Amazon GamelLift supports AWS

CloudFormation templates, you can set parameters in the templates for any deployment-specific
configurations.

To manage the deployment of your AWS CloudFormation stacks, we also recommend using
continuous integration and continuous delivery (Cl/CD) tools and services such as AWS
CodePipeline. These help you deploy automatically or with approval whenever you build game
server binary.

Plan and deploy your resources 39

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-tasks.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-tasks.html
https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/infrastructure-as-code.html

Amazon GamelLift Developer Guide

The following are some common steps of Amazon GamelLift resources deployment for a new game
server version that you can automate using a Cl/CD tool or service:

 Building and testing your game server binary.
» Uploading the binary to Amazon GameLift or your hardware.
« Deploying new fleets in the new build.

« After you deploy the new fleets, removing the previous version fleets from your Amazon
Gamelift queue and replacing them with the new fleets.

« After the previous version fleets successfully end all game sessions, deleting the AWS
CloudFormation stacks of those fleets.

You can also use the AWS Cloud Development Kit (AWS CDK) to define your Amazon GamelLift
resources. For more information about the AWS CDK, see the AWS Cloud Development Kit (AWS
CDK) Developer Guide.

Design your game client service

We recommend that you implement a game client service that authenticates your players and
communicates with the Amazon GamelLift API. By implementing a custom game client service, you
can:

» Customize authentication for your players.
« Control how Amazon GamelLift matches and starts game sessions.

« Use your player database for player attributes such as skill rating for matchmaking instead of
trusting the client.

Using a game client service also reduces security risks introduced by game clients interacting
directly with your Amazon GamelLift API.

Authenticating your players

You can use Amazon Cognito and player session IDs to authenticate your game clients. To manage
the lifecycle and properties of your player identities, use Amazon Cognito user pools.

If you prefer, build a custom identity solution and host it on AWS. You can also use Lambda
authorizers for custom authorization logic with API Gateway.

Design your backend service 40

https://docs.aws.amazon.com/cdk/v2/guide/
https://docs.aws.amazon.com/cdk/v2/guide/

Amazon GamelLift Developer Guide

Additional resources:

» Using identity pools (federated identities) (Amazon Cognito Developer Guide)

» Getting started with user pools (Amazon Cognito Developer Guide)

« How to Set Up Player Authentication with Amazon Cognito (AWS for Games Blog)

Standalone game session servers with a serverless backend

Using a serverless client service architecture, the backend can view the status of matchmaking
tickets from a highly scalable database instead of by directly accessing the Amazon GamelLift API.

The following diagram shows a serverless backend built with AWS services that matches players

into games running on Amazon GamelLift fleets. The following list provides a description for each

numbered callout in the diagram. To try out this example, see Multiplayer Session-based Game
Sarverless backend

Hosting on AWS on GitHub.
ly%ﬂﬂml@l

Cognito DynamoDB Lambda SNS
User identites atchmaking ticket Process tickets Topic

APl Gateway Lambda DynamoDB
Backend logic Player data

=

Game client
@ e Uploadsabuld .
GameLIft 53 Developer
Matchmaking, queues, and Game builds

fleet management A
i Downloads a build
W

[
@ rif 11— })
[13] ittt —1] ... Pushesiogsandmemics
[110 —]
o
GameLift fleet CloudWatch

Metrics and logging

1. The game client requests an Amazon Cognito user identity from an Amazon Cognito identity
pool.

Serverless backend 41

https://docs.aws.amazon.com/cognito/latest/developerguide/identity-pools.html
https://docs.aws.amazon.com/cognito/latest/developerguide/getting-started-with-cognito-user-pools.html
https://aws.amazon.com/blogs/gametech/how-to-set-up-player-authentication-with-amazon-cognito/
https://github.com/aws-samples/aws-gamelift-and-serverless-backend-sample
https://github.com/aws-samples/aws-gamelift-and-serverless-backend-sample

Amazon GamelLift Developer Guide

2. The game client receives temporary access credentials and requests a game session through an
Amazon API Gateway API.

3. API Gateway invokes an AWS Lambda function.

4. The Lambda function requests player data from an Amazon DynamoDB NoSQL table. The
function provides the Amazon Cognito identity in the request context data.

5. The Lambda function requests a match through Amazon GamelLift FlexMatch matchmaking.

6. FlexMatch matches a group of players with suitable latency, and then requests a game session
placement through a Amazon Gamelift queue. The queue has fleets with one or more AWS
Region locations in it.

7. After Amazon GamelLift places the session on one of the fleet's locations, Amazon GamelLift
sends an event notification to an Amazon Simple Notification Service (Amazon SNS) topic.

8. A Lambda function receives the Amazon SNS event and processes it.

9. If the matchmaking ticket is a MatchmakingSucceeded event, then the Lambda function
writes the result, along with the port and IP address of the game server, to a DynamoDB table.

10The game client makes a signed request to APl Gateway to view the status of the matchmaking
ticket on a specific interval.

T11API Gateway uses a Lambda function that checks the matchmaking ticket status.

12The Lambda function checks the DynamoDB table to see if the ticket is successful. If it has
succeeded, the function sends the game server's port and IP address, along with the player
session ID, back to the client. If the ticket hasn't succeeded, the function sends a response
verifying that the match isn't ready yet.

13The game client connects to the game server using TCP or UDP by using the port and IP address
that the backend service provides. The game client then sends the player session ID to the game
server, which then validates the ID using the Amazon GamelLift Server SDK.

Standalone game session servers with a WebSocket-based backend

Using an Amazon APl Gateway WebSocket-based architecture, you can make matchmaking
requests with WebSockets and send push notifications for matchmaking completion using server-
initiated messages. This architecture improves performance by having two-way communication
between the client and the server.

For more information about using APl Gateway WebSock APIs, see Working with WebSocket APIs.

WebSocket-based backend 42

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api.html

Amazon GamelLift Developer Guide

The following diagram shows a WebSocket-based backend architecture that uses APl Gateway and
other AWS services to match players into games running on Amazon GamelLift fleets. The following
list provides a description for each humbered callout in the diagram.

WeSockets Backend
[I] E]
Cognito Lambda DynamoDB
User identities On connect/disconnect Player connections

2 8]
BE% a : o E @

Game Client Lambda SNS

Process tickets Topic

Lambda
Request session E]

o
L R >
GameLift s3 Developer
Matchmaking, gueues, and Game builds

fleet management A
1 Downloads a build
W

1Y —
E s 118 — | _
@] T PR Pushes logs and mairics | __ . -
(11} —]
O
GameLift fleet CloudWatch

Metrics and logging

1. The game client requests an Amazon Cognito user identity from an Amazon Cognito identity
pool.

2. The game client signs a WebSocket connection to an API Gateway API with the Amazon Cognito
credentials.

WebSocket-based backend 43

Amazon GamelLift Developer Guide

3. API Gateway calls an AWS Lambda function on the connection. The function stores the
connection information in an Amazon DynamoDB table.

4. The game client sends a message to a Lambda function, through the API Gateway API over the
WebSocket connection, to request a session.

5. A Lambda function receives the message and then requests a match through Amazon GameLift
FlexMatch matchmaking.

6. After FlexMatch matches a group of players, FlexMatch requests a game session placement
through a Amazon GamelLift queue.

7. After Amazon GamelLift places the session on one of the fleet's locations, Amazon GamelLift
sends an event notification to an Amazon Simple Notification Service (Amazon SNS) topic.

8. A Lambda function receives the Amazon SNS event and processes it.

9. If the matchmaking ticket is a MatchmakingSucceeded event, then the Lambda function
requests the correct player connection from DynamoDB. The function then sends a message
to the game client through the API Gateway API over the WebSocket connection. In this
architecture, the game client doesn't actively poll the status of matchmaking.

10The game client receives the port and IP address of the game server, along with the player
session ID, through the WebSocket connection.

11The game client connects to the game server using TCP or UDP using the port and IP address
that the backend service provides. The game client also sends the player session ID to the game
server, which then validates the ID using the Amazon GamelLift Server SDK.

Set up metrics and logging for Amazon GamelLift

You can use data collected from your Amazon GameLift game servers and resources to help
identify anomalies. You can also use metrics to help improve performance.

Key areas to observe for Amazon GamelLift include:

« Amazon Gamelift service metrics - Amazon GamelLift provides Amazon CloudWatch metrics
on your resources including game servers, fleets, queues, and FlexMatch. You can find these
metrics in the Amazon GamelLift console and the CloudWatch console. For more information
about Amazon GamelLift metrics in CloudWatch, see Monitor Amazon GamelLift with Amazon
CloudWatch.

« Game server metrics - Amazon Gamelift can't access your game server metrics. However, you
can send custom metrics to CloudWatch directly from your game server by using the CloudWatch

Set up metrics and logging 44

Amazon GamelLift Developer Guide

agent. You can also use the fleet AWS Identity and Access Management (IAM) role and the AWS
SDK to send metrics directly to CloudWatch. For an example of how to configure metrics, see
Multiplayer Session-based Game Hosting on AWS on GitHub. This repository includes an example
CloudWatch agent configuration and code for a C# StatsD client.

« Game server logs — To configure your game server log files on the game server, use the Amazon
GamelLift Server SDK configuration. You can also use Amazon CloudWatch Logs as a real-time
log management solution, and you can configure logs with the CloudWatch agent. For more
information, see Logging server messages in Amazon GamelLift.

Game launch checklists

You can use these checklists to validate the phases of deployment of your game. In the checklists,
items marked [Critical] are critical for your production launch.

Topics

Onboarding

Testing
Launch

Post-launch

Onboarding

Use the following checklist to track items for onboarding your game for Amazon Gamelift hosting.
Items marked [Critical] are critical for your production launch.

o [Critical] Fill out the Amazon GamelLift onboarding questionnaire in the Amazon GamelLift
console.

« [Critical] Design and implement a backend service for game clients to interact with your game
servers.

o [Critical] Create AWS Identity and Access Management (IAM) roles that you provide to Amazon
GamelLift server instances for access to other AWS resources.

o [Critical] Design and implement failover to other AWS Regions for FlexMatch and queues.

« Plan the rollout of fleets to your target locations, considering your game's queue and fleet
structure.

Launch checklists 45

https://github.com/aws-samples/aws-gamelift-and-serverless-backend-sample#multiplayer-session-based-game-hosting-on-aws
https://console.aws.amazon.com/gamelift/
https://console.aws.amazon.com/gamelift/

Amazon GamelLift Developer Guide

« Automate your deployment using infrastructure as code (laC) with AWS CloudFormation and the
AWS Cloud Development Kit (AWS CDK).

» Collect logs and analytics using Amazon CloudWatch and Amazon Simple Storage Service
(Amazon S3).

Testing

Use the following checklist to track testing items while developing your game with Amazon
GamelLift hosting. Items marked [Critical] are critical for your production launch.

o [Critical] Complete the launch questionnaire, and submit the completed questionnaire to the
Amazon GamelLift launch team. You can find the launch questionnaire in the Amazon GamelLift

console.

o [Critical] Request increases for Amazon Gamelift service quotas and other AWS service quotas

so that your live environment can scale up to production needs.

o [Critical] Verify that the open ports on live fleets match the range of ports that your servers
could use.

o [Critical] Close RDP port 3389 and SSH port 22.

» Develop a plan for the DevOps management of your game. If you're using Amazon CloudWatch
Logs or Amazon CloudWatch custom metrics, define alarms for severe or critical problems on the
server fleet. Simulate failures and test the runbooks.

« Verify that the number of servers running on an instance at full usage are within the capabilities
of the server instance type.

« Tune your scaling policy to be more conservative at first and provide more idle capacity than you

think you need. You can optimize for cost later. Consider the use of target-based scaling policy
with 20 percent idle capacity.

« Use FlexMatch latency rules to match players who are geographically near the same AWS Region.
Test how this behaves under load with synthetic latency data from your load test client.

» Load test your player authentication and game session infrastructure to see if it scales effectively
to meet demand.

« Verify that a server left running for several days can still accept connections.

» Raise your AWS Support plan level to Business or Enterprise so that AWS can respond to you
during problems or outages.

Testing 46

https://console.aws.amazon.com/gamelift/prepare-to-launch
https://console.aws.amazon.com/gamelift/prepare-to-launch
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-intro.html

Amazon GamelLift Developer Gui

de

Launch

Use the following checklist to track launch items for your game hosted on Amazon GamelLift. Items

marked [Critical] are critical for your production launch.

« [Critical] Set the fleet protection policy to full protection on all live fleets so that scaling down
doesn't stop active game sessions.

« [Critical] Set fleet maximum sizes high enough to accommodate peak anticipated demand, at
minimum. We recommend that you double your maximum size for unanticipated demand.

« Encourage your whole dev team to participate in the launch event and monitor your game
launch in a launch room.

« Monitor player latency and player experience.

Post-launch

Use the following checklist to track post-launch items for your game hosted on Amazon GamelLift

o Tune scaling rules to minimize idle capacity.

» Modify FlexMatch rules or add additional locations based on your latency requirements.

« Optimize the server executable, as its performance efficiency directly affects the fleet costs. To
run more game sessions with the same infrastructure, increase the number of server processes
per instance.

» Use your analytics data to drive continued development, improve player experience and game
longevity, and optimize monetization.

Launch

47

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-intro.html

Amazon GamelLift Developer Guide

Preparing games for Amazon GamelLift

To prepare your multiplayer game for hosting on Amazon Gamelift, set up communication
between your game and Amazon GamelLift. The topics in this section provide detailed help for
integrating your game with Amazon GamelLift, custom game servers, and Realtime Servers, and for
adding matchmaking with FlexMatch.

Topics

 Integrate games with custom game servers

 Integrating games with Amazon GamelLift Realtime Servers

 Integrating games with the Amazon GamelLift plugin for Unity

 Integrating games with the Amazon GamelLift plugin for Unreal Engine

o Get fleet data for a Amazon GamelLift instance

« Adding FlexMatch matchmaking

Integrate games with custom game servers

Amazon Gamelift provides a full tool set for preparing your multiplayer games and custom game
servers to run on Amazon GamelLift. The Amazon GamelLift SDKs contain libraries needed for game
clients and servers to communicate with Amazon GameLift. For more information about the SDKs
and where to get them, see Development support with Amazon GamelLift.

The topics in this section contain detailed instructions about how to add Amazon GamelLift
functionality to your game client and game server before deploying on Amazon GamelLift. For
a complete roadmap to getting your game up and running on Amazon GamelLift, see Amazon
GamelLift managed hosting roadmap.

Topics

« Amazon Gamelift and game client server interactions

 Integrate your game server with Amazon GamelLift

 Integrate your game client with Amazon GamelLift

« Game engines and Amazon GamelLift

« Test your integration using Amazon GamelLift Anywhere fleets

» Test your integration using Amazon GamelLift Local

Integrate games with custom game servers 48

Amazon GamelLift Developer Guide

Amazon GamelLift and game client server interactions

This topic describes the interactions between the game client, a backend service, a game server,
and Amazon Gamelift.

The following diagram illustrates interactions between the game client, backend service, Amazon
GamelLift SDK, managed EC2 game server, Amazon GamelLift server SDK, and Amazon GamelLift.
For a detailed description of the interactions shown, see the following sections on this page.

Amazon GamelLift interactions 49

Amazon Gamelift

Developer Guide

Game client |

Backend service | SDK | Game Server | ServerSDK |

GamelLift

Initialize game server

Initalize the GameLift Launch server executable

SDK.

Notify GameLift that the InitSDKC)

process is ready ProcessReady()
onHealthCheck()

Evaluate server health Health status (bool)

Start server process
using fleet runtime
configuration.

Set game server status
to ACTIVE

Start game server health
check

Create game session

Receives connection
information

¥

<—information and send It

StartGameSessionPlacement()

Initiates game session

placement

Request game session GameSessionPlacement ticket with status PENDING
Accepts GameSession onstartGameSession
status = ACTIVATING

object with session
settings and player data

Ready to accept game

clients

Receives connection
DescribeGameSessionPlacement()

Starts game session
placement

ActivateGameSession()_Sets game session status

to ACTIVE

to the game client

Connects to game server

Hosts game clients

Sends connection

information

Add player to game

Receive PlayerSession
object

CreatePlayerSession()

Request player session

Check GameSession
status

Status = ACTIVE

Receive

PlayerSession object PlayerSession object

and send object to game
client

Create player and set
PlayerSession status
to RESERVED

AcceptPlayerSession() Accepts the player and

Conencts to the server with the PlayerSession ID Validates and accepts

Request game session

player

PlayerSession object

sets PlayerSession to

ACTIVE

Remove player

RemovePlayerSession(), Sets PlayerSession

- Detects lost connection

Disconnect from game

status to COMPLETED

Reopen player slot in
game session

Shutdown game session

Shuts down game .
ProcessEnding()

Uploads game session

session and server
process

logs to S3

Sets GameSession status
to TERMINATED

Sets server process
status to TERMINATED

Recycles instance
resources

Initialize a game server

The following steps describe the interactions that occur when you prepare your game server to
host game sessions.

Amazon GamelLift interactions

Amazon GamelLift Developer Guide

1. Amazon Gamelift launches the server executable on an Amazon Elastic Compute Cloud
(Amazon EC2) instance.

2. The game server calls:

a. InitSDK() to initialize the server SDK.

b. ProcessReady() to communicate game session readiness, connection information, and
location of game session log files.

The server process then waits for a callback from Amazon GamelLift.

3. Amazon GamelLift updates the status of the server process to ACTIVE to enable game session
placement.

4. Amazon GamelLift begins calling the onHealthCheck callback and continues to call it
periodically while the server process is active. The server process can report healthy or not
healthy within one minute.

Create a game session

After you've initialized your game server, the following interactions occur when you create game
sessions to host your players.

1. The backend service calls the SDK operation StartGameSessionPlacement().

2. Amazon Gamelift creates a new GameSessionPlacement ticket with status PENDING and
returns it to the backend service.

3. The backend service obtains a placement ticket status from a queue. For more information, see
Set up event notification for game session placement.

4. Amazon GamelLift starts game session placement by selecting an appropriate fleet and
searching for an active server process in a fleet with @ game sessions. When Amazon GamelLift
locates a server process, Amazon GamelLift does the following:

a. Creates a GameSession object with the game session settings and player data from the
placement request with an ACTIVATING status.

b. Invokes the onStartGameSession callback on the server process. Amazon GameLift
passes information to the GameSession object indicating that the server process may set
up the game session.

c. Changes the server process's number of game sessions to 1.

Amazon Gamelift interactions 51

Amazon GamelLift Developer Guide

5.

The server process runs the onStartGameSession callback function. When the server process
is ready to accept player connections, it calls ActivateGameSession() and waits for player
connections.

Amazon GamelLift updates the GameSession object with connection information for
the server process. (This information includes the port setting that was reported with
ProcessReady().) Amazon GamelLift also changes the status to ACTIVE.

The backend service calls DescribeGameSessionPlacement () to detect the updated ticket
status. The backend service then uses the connection information to connect the game client
to the server process and join the game session.

Add a player to a game

This sequence describes the process of adding a player to an existing game session. Player sessions

can also be requested as part of a game session placement request.

1.

The backend service calls the client APl operation CreatePlayerSession() with a game
session ID.

Amazon GamelLift checks the game session status (must be ACTIVE), and looks for an open
player slot in the game session. If a slot is available, then Amazon GamelLift does the following:
a. Creates a new PlayerSession object and sets the status to RESERVED.

b. Responds to the backend service request with the PlayerSession object.

The backend service connects the game client directly to the server process with the player
session ID.

The server calls the server APl operation AcceptPlayerSession() to validate the player
session ID. If validated, then Amazon GamelLift passes the PlayerSession object to the
server process. The server process either accepts or rejects the connection.

Amazon Gamelift does one of the following:
a. If the connection is accepted, then Amazon GamelLift sets the PlayerSession status to
ACTIVE.

b. If no response is received within 60 seconds of the backend server's original
CreatePlayerSession() call, then Amazon GamelLift changes the PlayerSession
status to TIMEDOUT and reopens the player slot in the game session.

Amazon GamelLift interactions 52

Amazon GamelLift Developer Guide

Remove a player

When removing players from a game session to create space for new players to join, the following
interactions occur.

1. A player disconnects from the game.

2. The server detects the lost connection and calls the server API operation
RemovePlayerSession().

3. Amazon Gamelift changes the PlayerSession status to COMPLETED and reopens the player
slot in the game session.

Shut down the game session
This sequence of interactions occurs when a server process shuts down the current game session.

1. The server shuts down the game session and server.
2. Theserver calls ProcessEnding() to Amazon GamelLift.

3. Amazon GamelLift does the following:

a. Uploads game session logs to Amazon Simple Storage Service (Amazon S3).
b. Changes the GameSession status to TERMINATED.
c. Changes the server process status to TERMINATED.

d. Recycles instance resources.

Integrate your game server with Amazon GamelLift

After your custom game server is deployed and running on Amazon GamelLift instances, it must
be able to interact with Amazon GamelLift (and potentially other resources). This section describes
how to integrate your game server software with Amazon GamelLift.

(@ Note

These instructions assume that you've created an AWS account and that you have an
existing game server project.

The topics in this section describe how to handle the following integration tasks:

Integrate a game server 53

Amazon GamelLift Developer Guide

Establish communication between Amazon GamelLift and your game servers.

Generate and use a TLS certificate to establish a secure connection between game client and
game server.

Provide permissions for your game server software to interact with other AWS resources.

Allow game server processes to get information about the fleet that they're running on.

Topics

o Add Amazon Gamelift to your game server

o Communicate with other AWS resources from your fleets

Add Amazon GamelLift to your game server

Your custom game server must communicate with Amazon GamelLift, because each game server
process must be able to respond to events that Amazon GamelLift starts. Your game server must
also keep Amazon GamelLift informed about the server process status and player connections.
For more information about how your game server, backend service, game client, and Amazon
Gamelift work together to manage game hosting, see Amazon GamelLift and game client server
interactions.

To prepare your game server to interact with Amazon GamelLift, add the Amazon GamelLift Server
SDK to your game server project and build in the functionality described in this topic. The Server
SDK is available in several languages. For more information about the Amazon GamelLift Server
SDK, see Development support with Amazon GamelLift.

Server SDK API references:

« Amazon Gamelift server SDK 5.x reference for C++

« Amazon Gamelift server SDK 5.x reference for C# and Unity

o Amazon Gamelift Unreal Engine server SDK 5.x reference

Initialize the server process

Add code to establish communication with Amazon GamelLift and to report that the server process
is ready to host a game session. This code must run before any Amazon GamelLift code.

Integrate a game server 54

Amazon GamelLift Developer Guide

1. Initialize Amazon GamelLift API client by calling InitSdk(). To initialize a server process
on a Amazon GamelLift Anywhere compute resource, call InitSdk() with the following
ServerParameters:

The URL of the websocket used to connect to your game server.

The ID of the process used to host your game server.

The ID of the compute hosting your game server processes.

The ID of the GamelLift fleet containing your Amazon GameLift Anywhere compute.

The authorization token generated by the Amazon GamelLift operation
GetComputeAuthToken.

(@ Note

To initialize a game server on a Amazon GamelLift managed Amazon EC2 instance,
construct your ServerParameters using the default InitSDK() (C++) (C#) (Unreal)
constructor (without parameters). Amazon GamelLift sets up the compute environment
and automatically connects to Amazon Gamelift for you.

2. Notify Amazon GamelLift that a server process is ready to host a game session. Call
ProcessReady() (C++) (C#) (Unreal) with the following information. (Note that you should
call ProcessReady () only once per server process).

« The port number that the server process uses. The backend service provides the port
number and an IP address to game clients to connect to the server process and join a game
session.

« The location of files, such as game session logs, that you want Amazon GamelLift to retain.
The server process generates these files during a game session. They're temporarily stored
on the instance where the server process is running, and they're lost when the instance shuts
down. Any files that you list are uploaded to Amazon GamelLift. You can access these files
through the Amazon GamelLift console or by calling the Amazon GamelLift API operation
GetGameSessionLogUrl().

« The names of callback functions that Amazon GamelLift can call to your server process. Your
game server must implement these functions. For more information, see (C++) (C#) (Unreal)

Integrate a game server 55

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetComputeAuthToken.html
https://console.aws.amazon.com/gamelift
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetGameSessionLogUrl.html

Amazon GamelLift Developer Guide

» (Optional) onHealthCheck — Amazon GamelLift calls this function regularly to request a
health status report from the server.

« onStartGameSession - Amazon GamelLift calls this function in response to the client
request CreateGameSession().

« onProcessTerminate — Amazon GamelLift forces the server process to stop, letting it
shut down gracefully.

« (Optional) onUpdateGameSession — Amazon GamelLift delivers an updated game session
object to the game server or provides a status update on a match backfill request. The
FlexMatch backfill feature requires this callback.

You can also set up a game server to securely access AWS resources that you own or control.
For more information, see Communicate with other AWS resources from your fleets.

(Optional) Report server process health

Add code to your game server to implement the callback function onHealthCheck(). Amazon
Gamelift invokes this callback method periodically to collect health metrics. To implement this
callback function, do the following:

« Evaluate the health status of the server process. For example, you might report the server
process as unhealthy if any external dependencies have failed.

o Complete the health evaluation and respond to the callback within 60 seconds. If Amazon
Gamelift doesn't receive a response in that time, it automatically considers the server process to
be unhealthy.

» Return a Boolean value: true for healthy, false for unhealthy.

If you don't implement a health check callback, then Amazon GamelLift considers the server
process to be healthy unless the server doesn't respond.

Amazon Gamelift uses server process health to end unhealthy processes and clear up resources.
If a server process continues to report as unhealthy or doesn't respond for three consecutive
health checks, then Amazon GamelLift might shut down the process and start a new one. Amazon
GamelLift collects metrics on a fleet's server process health.

Integrate a game server 56

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-backfill.html

Amazon GamelLift Developer Guide

(Optional) Get a TLS certificate

If the server process is running on a fleet that has TLS certificate generation activated, then you
can retrieve the TLS certificate to establish a secure connection with a game client and to encrypt
client server communication. A copy of the certificate is stored on the instance. To get the file
location, call GetComputeCertificate() (C++) (C#) (Unreal).

Start a game session

Add code to implement the callback function onStartGameSession. Amazon Gamelift invokes
this callback to start a game session on the server.

The onStartGameSession function takes a GameSession object as an input parameter. This

object includes key game session information, such as maximum players. It can also include game
data and player data. The function implementation should do the following tasks:

« Initiate actions to create a new game session based on the GameSession properties. At
minimum, the game server must associate the game session ID, which game clients reference
when connecting to the server process.

» Process game data and player data as needed. This data is in the GameSession object.

» Notify Amazon GamelLift when a new game session is ready to accept players. Call the server
APl operation ActivateGameSession() (C++)(C#) (Unreal). In response to a successful call,
Amazon GamelLift changes the game session status to ACTIVE.

(Optional) Validate a new player

If you're tracking the status of player sessions, then add code to validate a new player when they
connect to a game server. Amazon GamelLift tracks current players and available game session
slots.

For validation, a game client requesting access to the game session must include a player session
ID. Amazon GamelLift automatically generates this ID when a player asks to join a game using
StartGameSessionPlacement() or StartMatchmaking(). The player session then reserves an open

slot in a game session.

When the game server process receives a game client connection request, it calls
AcceptPlayerSession() (C++) (C#) (Unreal) with the player session ID. In response, Amazon
Gamelift verifies that the player session ID corresponds to an open slot reserved in the game
session. After Amazon GamelLift validates the player session ID, the server process accepts the

Integrate a game server 57

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartGameSessionPlacement.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartMatchmaking.html

Amazon GamelLift Developer Guide

connection. The player can then join the game session. If Amazon GamelLift doesn't validate the
player session ID, then the server process denies the connection.

(Optional) Report a player session ending

If you're tracking the status of player sessions, then add code to notify Amazon GamelLift when

a player leaves the game session. This code should run whenever the server process detects a
dropped connection. Amazon GamelLift uses this notification to track current players and available
slots in the game session.

To handle dropped connections, in your code, add a call to the server APl operation
RemovePlayerSession() (C++) (C#) (Unreal) with the corresponding player session ID.

End a game session

Add code to the server process shutdown sequence to notify Amazon GameLift when a game
session is ending. To recycle and refresh hosting resources, Amazon GamelLift shuts down server
processes after the game session is complete.

At the start of the server process shutdown code, call the server API operation ProcessEnding()
(C++) (C#) (Unreal) . This call notifies Amazon GamelLift that the server process is shutting down.
Amazon GamelLift changes the game session status and server process status to TERMINATED.
After calling ProcessEnding(), it's safe for the process to shut down.

Respond to a server process shutdown notification

Add code to shut down the server process in response to a notification from Amazon GamelLift.
Amazon Gamelift sends this notification when the server process consistently reports unhealthy, or
if the instance where the server process is running is being terminated. Amazon GamelLift can stop
an instance as part of a capacity scale-down event, or in response to Spot Instance interruption.

To handle a shutdown notification, make the following changes to your game server code:

« Implement the callback function onProcessTerminate(). This function should call the
code that shuts down the server process. When Amazon GamelLift invokes this operation, Spot
Instance interruptions provide a two-minute notice. This notice gives the server process time to
disconnect players gracefully, preserve game state data, and perform other cleanup tasks.

« Call the server APl operation GetTerminationTime() (C++) (C#) (Unreal) from your game
server shutdown code. If Amazon GamelLift has issued a call to stop the server process, then
GetTerminationTime() returns the estimated termination time.

Integrate a game server 58

Amazon GamelLift Developer Guide

« At the start of your game server shutdown code, call the server APl operation
ProcessEnding() (C++) (C#) (Unreal) . This call notifies Amazon GamelLift that the server
process is shutting down, and Amazon GameLift then changes the server process status to
TERMINATED. After calling ProcessEnding(), it's safe for the process to shut down.

Communicate with other AWS resources from your fleets

When you're creating a game server build for deployment on Amazon GamelLift fleets, you might
want the applications in your game build to communicate directly and securely with other AWS
resources that you own. Because Amazon GamelLift manages your game hosting fleets, you must
give Amazon GamelLift limited access to these resources and services.

Some example scenarios include:

« Use an Amazon CloudWatch agent to collect metrics, logs, and traces from managed EC2 fleets
and Anywhere fleets

« Send instance log data to Amazon CloudWatch Logs.
« Obtain game files stored in an Amazon Simple Storage Service (Amazon S3) bucket.

« Read and write game data (such as game modes or inventory) stored in an Amazon DynamoDB
database or other data storage service.

« Send signals directly to an instance using Amazon Simple Queue Service (Amazon SQS).

» Access custom resources that are deployed and running on Amazon Elastic Compute Cloud
(Amazon EC2).

Amazon Gamelift supports these methods for establishing access:

o Access AWS resources with an IAM role

» Access AWS resources with VPC peering

Access AWS resources with an IAM role

Use an IAM role to specify who can access your resources and set limits on that access. Trusted
parties can "assume" a role and get temporary security credentials that authorize them to interact
with the resources. When the parties make API requests related to the resource, they must include
the credentials.

To set up access controlled by an IAM role, do the following tasks:

Integrate a game server 59

Amazon GamelLift Developer Guide

1. Create the IAM role

2. Modify applications to acquire credentials

3. Associate a fleet with the IAM role

Create the IAM role

In this step, you create an IAM role, with a set of permissions to control access to your AWS
resources and a trust policy that gives Amazon GamelLift rights to use the role's permissions.

For instructions on how to set up the IAM role, see Set up an IAM service role for Amazon

GamelLift. When creating the permissions policy, choose specific services, resources, and actions
that your applications need to work with. As a best practice, limit the scope of the permissions as
much as possible.

After you create the role, take note of the role's Amazon Resource Name (ARN). You need the role
ARN during fleet creation.

Modify applications to acquire credentials

In this step, you configure your applications to acquire security credentials for the IAM role and
use them when interacting with your AWS resources . See the following table to determine how to
modify your applications based on (1) the type of application, and (2) the server SDK version your
game uses to communicate with Amazon GamelLift.

Game server applications Other applications
Using server Call the server SDK method Add code to the application to pull
SDK version 5.x GetFleetRoleCredentials() credentials from a shared file on the
from your game server code. fleet instance.
Using server Call AWS Security Token Service Call AWS Security Token Service
SDK version 4 (AWS STS) AssumeRole with the (AWS STS) AssumeRole with the
or earlier role ARN. role ARN.

For games integrated with server SDK 5.x, this diagram illustrates how applications in your
deployed game build can acquire credentials for the IAM role.

Integrate a game server 60

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

Amazon GamelLift Developer Guide

@ Amazon GamelLift
20} service
r
Fleet setting

GetFleetRoleCredentials() InstanceRoleCredentialsProvider:
SHARED CREDENTIAL FILE

f N

r Server SDK 5.x

*

Game server app

Shared
"I credentials

Aucxiliary app

Game server build

\ J

kManaged EC2 instance

Call GetFleetRoleCredentials() (server SDK 5.x)

In your game server code, which should already be integrated with the Amazon GamelLift
server SDK 5.x, call GetFleetRoleCredentials (C++) (C#) (Unreal) to retrieve a set of
temporary credentials. When the credentials expire, you can refresh them with another call to
GetFleetRoleCredentials.

Use shared credentials (server SDK 5.x)

For non-server applications that are deployed with game server builds using server SDK 5.x, add
code to get and use credentials stored in a shared file. Amazon GamelLift generates a credentials
profile for each fleet instance. The credentials are available for use by all applications on the
instance. Amazon Gamelift continually refreshes the temporary credentials.

You must configure a fleet to generate the shared credentials file on fleet creation.

In each application that needs to use the shared credentials file, specify the file location and profile
name, as follows:

Windows:

[credentials]

Integrate a game server 61

Amazon GamelLift Developer Guide

shared_credential_profile= "FleetRoleCredentials"
shared_credential_file= "C:\\Credentials\\credentials"

Linux:

[credentials]
shared_credential_profile= "FleetRoleCredentials"
shared_credential_file= "/local/credentials/credentials"

Example: Set up a CloudWatch agent to collect metrics for Amazon GamelLift fleet instances

If you want to use an Amazon CloudWatch agent to collect metrics, logs, and traces from your
Amazon GamelLift fleets, use this method to authorize the agent to emit the data to your account.
In this scenario, take the following steps:

1. Retrieve or write the CloudWatch agent config. json file.

2. Update the common-config. toml file for the agent to identify the credentials file name and
profile name, as described above.

3. Set up your game server build install script to install and start the CloudWatch agent.

Use AssumeRole() (server SDK 4)

Add code to your applications to assume the IAM role and get credentials to interact with your AWS
resources. Any application that runs on an Amazon GamelLift fleet instance with server SDK 4 or
earlier can assume the IAM role.

In the application code, before accessing an AWS resource, the application must call the AWS
Security Token Service (AWS STS) AssumeRole API operation and specify the role ARN. This
operation returns a set of temporary credentials that authorizes the application to access to the
AWS resource. For more information, see Using temporary credentials with AWS resources in the
IAM User Guide.

Associate a fleet with the 1AM role

After you've created the IAM role and updated the applications in your game server build to get
and use the access credentials, you can deploy a fleet. When you configure the new fleet, set the
following parameters:

» InstanceRoleArn - Set this parameter to the ARN of the IAM role.

Integrate a game server 62

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_FleetAttributes.html#gamelift-Type-FleetAttributes-InstanceRoleArn

Amazon GamelLift Developer Guide

« InstanceRoleCredentialsProvider — To prompt Amazon GamelLift to generate a shared credentials
file for each fleet instance, set this parameter to SHARED_CREDENTIAL_FILE.

You must set these values when you create the fleet. They can't be updated later.
Access AWS resources with VPC peering

You can use Amazon Virtual Private Cloud (Amazon VPC) peering to communicate between
applications running on a Amazon GamelLift instance and another AWS resource. A VPC is a virtual
private network that you define that includes a set of resources managed through your AWS
account. Each Amazon GamelLift fleet has its own VPC. With VPC peering, you can establish a direct
network connection between the VPC for your fleet and for your other AWS resources.

Amazon Gamelift streamlines the process of setting up VPC peering connections for your game
servers. It handles peering requests, updates route tables, and configures the connections as
required. For instructions about how to set up VPC peering for your game servers, see VPC peering
for Amazon GamelLift.

Integrate your game client with Amazon GamelLift

The topics in this section describe the managed Amazon GamelLift functionality that you can add
to a backend service. A backend service handles the following tasks:

Requests information about active game sessions from Amazon GamelLift.

Joins a player to an existing game session.

Creates a new game session and joins players to it.

Changes metadata for an existing game session.

For more information about how game clients interact with Amazon GamelLift and game servers
running on Amazon Gamelift, see Amazon GameLift and game client server interactions.

Prerequisites

e An AWS account.
« A game server build uploaded to Amazon GamelLift.

A fleet for hosting your games.

Topics

Integrate a game client 63

https://docs.aws.amazon.com/gamelift/latest/apireference/API_FleetAttributes.html#gamelift-Type-FleetAttributes-InstanceRoleCredentialsProvider

Amazon GamelLift Developer Guide

o Add Amazon Gamelift to your game client

» Generate player IDs

Add Amazon GamelLift to your game client

Integrate Amazon GamelLift into game components that need game session information, create
new game sessions, and add players to games. Depending on your game architecture, this
functionality is in backend services that handle tasks such as player authentication, matchmaking,
or game session placement.

® Note

For detailed information about how to set up matchmaking for your Amazon GamelLift
hosted game, see the Amazon Gamelift FlexMatch Developer Guide.

Set up Amazon Gamelift on a backend service

Add code to initialize an Amazon GamelLift client and store key settings. This code must run before
any code dependent on Amazon GamelLift.

1. Set up a client configuration. Use the default client configuration or create a custom client
configuration object. For more information, see AWS::Client::ClientConfiguration (C++) or
AmazonGameliftConfig (C#).

A client configuration specifies a target region and endpoint to use when contacting Amazon
Gamelift. Region identifies the set of deployed resources (fleets, queues, and matchmakers)
to use. The default client configuration sets location to the US East (N. Virginia) Region. To use
any other Region, create a custom configuration.

2. Initialize an Amazon Gamelift client. Use Aws::GamelLift::GamelLiftClient() (C++) or
AmazonGamelLiftClient() (C#) with a default client configuration or a custom client

configuration.

3. Add a mechanism to generate a unique identifier for each player. For more information, see
Generate player IDs.

4. Collect and store the following information:

» Target fleet — Many Amazon GamelLift API requests must specify a fleet. To do so, use either
a fleet ID or an alias ID that points to the target fleet. As a best practice, use fleet aliases

Integrate a game client 64

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide
https://sdk.amazonaws.com/cpp/api/LATEST/aws-cpp-sdk-core/html/struct_aws_1_1_client_1_1_client_configuration.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/GameLift/TGameLiftConfig.html
https://sdk.amazonaws.com/cpp/api/LATEST/aws-cpp-sdk-gamelift/html/class_aws_1_1_game_lift_1_1_game_lift_client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/GameLift/TGameLiftClient.html

Amazon GamelLift Developer Guide

so that you can switch players from one fleet to another without having to update your
backend services.

» Target queue - For games that use multi-fleet queues to place new game sessions, specify
the name of the queue to use.

o AWS credentials — All calls to Amazon GameLift must provide credentials for the AWS
account that hosts the game. You acquire these credentials by creating a player user, as
described in Set up programmatic access for your game. Depending on how you manage

access for the player user, do the following:

« If you use a role to manage player user permissions, add code to assume the role
before calling an Amazon GamelLift API. The request to assume the role returns a set of
temporary security credentials. For more information, see Switching to an IAM role (AWS
API) in the IAM User Guide.

« If you have long-term security credentials, configure your code to locate and use stored
credentials. See Authenticate using long-term credentials in in the AWS SDKs and Tools
Reference Guide. For information on storing credentials, see theAWS API references for (C+
+) and (.NET).

« If you have temporary security credentials, add code to regularly refresh the credentials
using the AWS Security Token Service (AWS STS), as described in Using temporary
security credentials with the AWS SDKs in the IAM User Guide. The code must request new
credentials before the old ones expire.

Get game sessions
Add code to discover available game sessions and manage game session settings and metadata.
Search for active game sessions

Use SearchGameSessions to get information about a specific game session, all active sessions, or
sessions that meet a set of search criteria. This call returns a GameSession object for each active

game session that matches your search request.

Use search criteria to get a filtered list of active game sessions for players to join. For example, you
can filter sessions as follows:

» Exclude game sessions that are full: CurrentPlayerSessionCount =
MaximumPlayerSessionCount.

Integrate a game client 65

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-api.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-api.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://sdk.amazonaws.com/cpp/api/LATEST/aws-cpp-sdk-core/html/class_aws_1_1_auth_1_1_a_w_s_credentials.html
https://sdk.amazonaws.com/cpp/api/LATEST/aws-cpp-sdk-core/html/class_aws_1_1_auth_1_1_a_w_s_credentials.html
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/net-dg-config-creds.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html#using-temp-creds-sdk
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html#using-temp-creds-sdk
https://docs.aws.amazon.com/gamelift/latest/apireference/API_SearchGameSessions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GamelLift Developer Guide

« Choose game sessions based on length of time that the session has been running: Evaluate
CreationTime.

« Find game sessions based on a custom game property: gameSessionProperties.gameMode
= "brawl".

Manage game sessions

Use any of the following operations to retrieve or update game session information.

» DescribeGameSessionDetails() — Get a game session's protection status in addition to game
session information.

» UpdateGameSession() — Change a game session's metadata and settings as needed.

o GetGameSessionLogUrl — Access stored game session logs.

Create game sessions

Add code to start new game sessions on your deployed fleets and make them available to players.
There are two options for creating game sessions, depending on whether you're deploying your
game in multiple AWS Regions or in a single Region.

Create a game session in a multi-location queue

Use StartGameSessionPlacement to place a request for a new game session in a queue. To use this

operation, create a queue. This determines where Amazon GamelLift places the new game session.
For more information about queues and how to use them, see Setting up Amazon GamelLift queues

for game session placement.

When creating a game session placement, specify the name of the queue to use, a game session
name, a maximum number of concurrent players, and an optional set of game properties. You can
also optionally provide a list of players to automatically join the game session. If you include player
latency data for relevant Regions, then Amazon GamelLift uses this information to place the new
game session on a fleet that provides the ideal gameplay experience for the players.

Game session placement is an asynchronous process. After you've placed a request,
you can let it succeed or time out. You can also cancel the request at any time using
StopGameSessionPlacement. To check the status of your placement request, call

DescribeGameSessionPlacement.

Create a game session on a specific fleet

Integrate a game client 66

https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessionDetails.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetGameSessionLogUrl.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartGameSessionPlacement.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StopGameSessionPlacement.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessionPlacement.html

Amazon GamelLift Developer Guide

Use CreateGameSession to create a new session on a specified fleet. This synchronous operation
succeeds or fails depending on whether the fleet has resources available to host a new game
session. After Amazon Gamelift creates the new game session and returns a GameSession object,

you can join players to it.

When you use this operation, provide a fleet ID or alias ID, a session name, and the maximum
number of concurrent players for the game. Optionally, you can include a set of game properties.
Game properties are defined in an array of key-value pairs.

If you use the Amazon GamelLift resource protection feature to limit the number of game sessions
that one player can create, then provide the game session creator's player ID.

Join a player to a game session

Add code to reserve a player slot in an active game session and connect game clients to game
sessions.

1. Reserve a player slot in a game session

To reserve a player slot, create a new player session for the game session. For more
information about player sessions, see How players connect to games.

There are two ways to create new player sessions:

« Use StartGameSessionPlacement to reserve slots for one or more players in the new game

session.

» Reserve player slots for one or more players using CreatePlayerSession or
CreatePlayerSessions with a game session ID.

Amazon GamelLift first verifies that the game session is accepting new players and has
available player slots. If successful, Amazon GamelLift reserves a slot for the player, creates the
new player session, and returns a PlayerSession object. This object contains the DNS name, IP
address, and port that a game client needs to connect to the game session.

A player session request must include a unique ID for each player. For more information, see
Generate player IDs.

A player session can include a set of custom player data. This data is stored in the newly
created player session object, which you can retrieve by calling DescribePlayerSessions().
Amazon GamelLift also passes this object to the game server when the player connects directly

Integrate a game client 67

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartGameSessionPlacement.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreatePlayerSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreatePlayerSessions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_PlayerSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribePlayerSessions.html

Amazon GamelLift Developer Guide

to the game session. When requesting multiple player sessions, provide a string of player data
for each player that's mapped to the player ID in the request.

2. Connect to a game session

Add code to the game client to retrieve the PlayerSession object, which contains the game
session's connection information. Use this information to establish a direct connection to the
server.

» You can connect using the specified port and the DNS name or IP address assigned to the
server process.

« If your fleets have TLS certificate generation enabled, then connect using the DNS name and
port.

« If your game server validates incoming player connections, then reference the player session
ID.

After making the connection, the game client and server process communicate directly
without involving Amazon GamelLift. The server maintains communication with Amazon
Gamelift to report player connection status, health status, and more. If the game server
validates incoming players, then it verifies that the player session ID matches a reserved slot in
the game session, and accepts or denies the player connection. When the player disconnects,
the server process reports the dropped connection.

Use game session properties

Your game client can pass data into a game session by using a game property. Game properties
are key-value pairs that your game server can add, read, list, and change. You can pass in a game
property when you're creating a new game session, or later when the game session is active. A
game session can contain up to 16 game properties. You cannot delete game properties.

For example, your game offers these difficulty levels: Novice, Easy, Intermediate, and

Expert. A player chooses Easy, and then begins the game. Your game client requests new

game session from Amazon GamelLift by using either StartGameSessionPlacement or
CreateGameSession as explained in the preceding sections. In the request, the client passes this :
{"Key": "Difficulty", "Value":"Easy"}.

In response to the request, Amazon GamelLift creates a GameSession object that contains the
specified game property. Amazon GamelLift then instructs an available game server to start the

Integrate a game client 68

Amazon GamelLift Developer Guide

new game session and passes the GameSession object. The game server starts a game session
witha Difficulty of Easy.

Learn more

« GameProperty data type

» SearchGameSessions() examples

« UpdateGameSession() GameProperties parameter

Generate player IDs

Amazon Gamelift uses a player session to represent a player connected to a game session. Amazon
GamelLift creates a player session each time a player connects to a game session using a game
client integrated with Amazon GamelLift. When a player leaves a game, the player session ends.
Amazon GamelLift doesn't reuse player sessions.

The following code example randomly generates unique player IDs:

bool includeBrackets = false;

bool includeDashes = true;

string playerId = AZ::Uuid::CreateRandom().ToString<string>(includeBrackets,
includeDashes);

For more information about player sessions, see View data on game and player sessions.

Game engines and Amazon GamelLift

You can use the managed Amazon GamelLift service with most major game engines that support
C++ or C# libraries, including O3DE, Unreal Engine, and Unity. Build the version you need for your
game; see the README files with each version for build instructions and minimum requirements.
For more information on available Amazon GamelLift SDKs, supported development platforms and
operating systems, see Development support with Amazon GamelLift for game servers.

In addition to the engine-specific information provided in this topic, find additional help with
integrating Amazon GamelLift into your game servers, clients and services in the following topics:

« Amazon GamelLift managed hosting roadmap - A six-step workflow for successfully integrating

Amazon GamelLift into your game and setting up hosting resources.

Game engines and Amazon GamelLift 69

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameProperty.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_SearchGameSessions.html#API_SearchGameSessions_Examples
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateGameSession.html#gamelift-UpdateGameSession-request-GameProperties

Amazon GamelLift Developer Guide

« Add Amazon Gamelift to your game server — Detailed instructions on integrating Amazon
Gamelift into a game server.

« Add Amazon Gamelift to your game client — Detailed instructions on integrating into a game

client or service, including creating game sessions and joining players to games.

O3DE

Game servers

Prepare your game servers for hosting on Amazon GamelLift using the Amazon GamelLift Server

SDK for C++. See Add Amazon GamelLift to your game server to get help with integrating the

required functionality into your game server.
Game clients and services

Enable your game clients and/or game services to interact with Amazon GamelLift service, such
as to find available game sessions or create new ones, and add players to games. Core client
functionality is provided in the AWS SDK for C++. To integrate Amazon GamelLift into your O3DE
game project, see Add Amazon GamelLift to an O3DE game client and server and Add Amazon
Gamelift to your game client.

Unreal Engine
Game servers

Prepare your game servers for hosting on Amazon GamelLift by adding the Amazon GamelLift

Server SDK for Unreal Engine to your project and implementing the required server functionality.

For help setting up the Unreal Engine plugin and adding Amazon GamelLift code, see Integrate
Amazon GamelLift into an Unreal Engine project.

Game clients and services

Enable your game clients and/or game services to interact with Amazon GamelLift service, such
as to find available game sessions or create new ones, and add players to games. Core client
functionality is provided in the AWS SDK for C++. To integrate Amazon GamelLift into your Unreal

Engine game project, see Add Amazon Gamelift to your game client.

Unity

Game servers

Game engines and Amazon GamelLift 70

https://sdk.amazonaws.com/cpp/api/LATEST/namespace_aws_1_1_game_lift.html
https://sdk.amazonaws.com/cpp/api/LATEST/namespace_aws_1_1_game_lift.html

Amazon GamelLift Developer Guide

Prepare your game servers for hosting on Amazon GamelLift by adding the Amazon GamelLift
Server SDK for C# to your project and implementing the required server functionality. For help
setting up with Unity and adding Amazon GamelLift code, see Integrate Amazon GamelLift into a

Unity project.

Game clients and services

Enable your game clients and/or game services to interact with Amazon GamelLift service, such
as to find available game sessions or create new ones, and add players to games. Core client
functionality is provided in the AWS SDK for .NET. To integrate Amazon GamelLift into your Unity
game project, see Add Amazon GamelLift to your game client.

Other engines

For a full list of the Amazon GamelLift SDKs available for game servers and clients, see the section
called "Development support”.

Add Amazon GamelLift to an O3DE game client and server

You can use O3DE, an open-source, cross-platform, real time 3D engine to create high performance
interactive experiences, including games and simulations. The O3DE renderer and tools

are wrapped in a modular framework that you can modify and extend with your preferred
development tools.

The modular framework uses Gems that contain libraries with standard interfaces and assets.
Select your own Gems to choose what functionality to add based on your requirements.

The Amazon GamelLift Gem provides the following features:
Amazon Gamelift integration

A framework to extend the O3DE networking layer and to let the Multiplayer Gem work with
the Amazon GamelLift dedicated server solution. The Gem provides integrations with both the
Amazon Gamelift server SDK and the AWS SDK client (to call the Amazon GamelLift service
itself).

Build and package management

Instructions to package and optionally upload the dedicated server build and an AWS Cloud
Development Kit (AWS CDK) (AWS CDK) application to set up and update resources.

Game engines and Amazon GamelLift 71

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/

Amazon GamelLift Developer Guide

Amazon Gamelift Gem setup
Follow the procedures in this section to set up the Amazon GameLift Gem in O3DE.
Prerequisites

« Set up your AWS account for Amazon GamelLift. For more information, see Set up an AWS
account.

» Set up AWS credentials for O3DE. For more information see, Configuring AWS Credentials.

« Set up the AWS CLI and AWS CDK. For more information, AWS Command Line Interface and AWS
Cloud Development Kit (AWS CDK).

Turn on the Amazon GamelLift Gem and its dependencies

1. Open the Project Manager.

2. Open the menu under your project and choose Edit Project Setting....
3. Choose Configure Gems.
4

Turn on the Amazon GamelLift Gem and the following dependent Gems:

o AWS Core Gem - Provide the framework to use AWS services in O3DE.

« Multiplayer Gem - Provides multiplayer functionality by extending the networking
framework.

Include the Amazon GamelLift Gem static library

1. Include the Gem: : AWSGameLift.Server.Static as BUILD_DEPENDENCIES for your project
server target.

ly_add_target(
NAME YourProject.Server.Static STATIC

BUILD DEPENDCIES
PUBLIC

PRIVATE

Gem: : AWSGamelLift.Server.Static

Game engines and Amazon GamelLift 72

https://www.o3de.org/docs/user-guide/gems/reference/aws/aws-core/configuring-credentials/
https://aws.amazon.com/cli/
https://aws.amazon.com/cdk/
https://aws.amazon.com/cdk/
https://www.o3de.org/docs/user-guide/gems/reference/aws/aws-core/
https://www.o3de.org/docs/user-guide/gems/reference/multiplayer/multiplayer-gem/

Amazon GamelLift Developer Guide

2. Set AWSGamelLiftService to required for your project server system component.

void
YourProjectServerSystemComponent: :GetRequiredServices(AZ: :ComponentDescriptor: :DependencyA
required)

{

required.push_back(AZ_CRC_CE("AWSGameLiftServerService"));

}

3. (Optional) To make Amazon Gamelift service requests in C++, include
Gem: : AWSGameLift.Client.Static in the BUILD_DEPENDENCIES for your client target.

ly_add_target(
NAME YourProject.Client.Static STATIC

BUILD_DEPENDENCIES
PUBLIC

PRIVATE
Gem: : AWSCore.Static
Gem: :AWSGameLift.Client.Static

Integrate your game and dedicated server

Manage game sessions within your game and dedicated game server with the Session Management
Integration. To support FlexMatch, see FlexMatch Integration.

Integrate Amazon Gamelift into an Unreal Engine project

This topic explains how to set up the Amazon GamelLift C++ server SDK plugin for Unreal Engine
and integrate it into your game projects.

Additional resources:

» Server SDK plugin for Unreal download site

o Amazon Gamelift Unreal Engine server SDK 5.x reference

» the section called "Development support”

Game engines and Amazon GamelLift 73

https://www.o3de.org/docs/user-guide/gems/reference/aws/aws-gamelift/session-management/integration/
https://www.o3de.org/docs/user-guide/gems/reference/aws/aws-gamelift/session-management/integration/
https://www.o3de.org/docs/user-guide/gems/reference/aws/aws-gamelift/flexmatch/integration/
https://aws.amazon.com/gamelift/getting-started/

Amazon GamelLift Developer Guide

Prerequisites
Before you procced, make sure you have reviewed the following prerequisites:

Prerequisites

A computer capable of running Unreal Engine. For more information on Unreal Engine
requirements, see Unreal Engine's Hardware and Software Specifications documentation.

« Microsoft Visual Studio 2019 or newer version.
« CMake version 3.1 or later.

« Python version 3.6 or later.

« A Git client available on the PATH.

« An Epic games account. Sign up for an account at the official Unreal Engine website.

» A GitHub account associated with your Unreal Engine account. For more information, see
Accessing Unreal Engine source code on GitHub on the Unreal Engine website.

® Note

Amazon GamelLift currently supports the following versions of Unreal Engine:

o« 4.22
o 4.23
« 4.24
4.25
4.26
4.27
5.1.0
5.1.1

Build Unreal Engine from source

Standard versions of the Unreal Engine editor, downloaded through the Epic launcher, only
allow Unreal client application builds. In order to build an Unreal server application, you need
to download and build Unreal Engine from source, using the Unreal Engine Github repo. For

Game engines and Amazon GamelLift

74

https://docs.unrealengine.com/5.0/en-US/hardware-and-software-specifications-for-unreal-engine/
https://www.unrealengine.com
https://www.unrealengine.com/ue-on-github

Amazon GamelLift Developer Guide

more information, see the Building Unreal Engine from Source tutorial on the Unreal Engine

documentation website.

® Note

If you haven't already done so, follow the instructions at Accessing Unreal Engine source

code on GitHub to link your GitHub account to your Epic Games account.

To clone the Unreal Engine source to your development environment

1. Clone the Unreal Engine source to your development environment in a branch of your choice.

git clone https://github.com/EpicGames/UnrealEngine.git

2. Check out the tag of the version that you're using to develop your game. For example, the
following example checks out Unreal Engine version 5.1.1:

git checkout tags/5.1.l1-release -b 5.1.1-release
3. Navigate to the root folder of the local repository. When you're in the root folder, run the
following file: Setup.bat.
4. While in the root folder, also run the file: GenerateProjectFiles.bat.

5. After running the files from the previous steps, an Unreal Engine solution file, UE5.s1n, is
created. Open Visual Studio, and in the Visual Studio editor open the UE5. s1n file.

6. In Visual Studio, open the View menu and choose the Solution Explorer option. This opens
the context menu of the Unreal project node. In the Solution Explorer window, right-click the
UE5. s1n file (it can be listed as just UE5), then choose Build to build the Unreal project with
the Development Editor Win64 target.

® Note

The build can take over an hour to complete.

Once the build is complete, you are ready to open the Unreal Development Editor and create or
import a project.

Game engines and Amazon GamelLift 75

https://docs.unrealengine.com/5.1/building-unreal-engine-from-source/
https://www.unrealengine.com/ue-on-github
https://www.unrealengine.com/ue-on-github

Amazon GamelLift Developer Guide

Configure your Unreal project for the plugin

Follow these steps to get the Amazon GamelLift server SDK plugin for Unreal Engine ready for your
game server projects.

To configure your project for the plugin

1. With Visual Studio open, navigate to the Solution Explorer pane and choose the UE5 file to
open the context menu for the Unreal project. In the context menu, choose the Set as Startup
Project option.

2. At the top of your Visual Studio window, choose Start Debugging (green arrow).

This action starts your new source-built instance of Unreal Editor. For more information about
using the Unreal Editor, see Unreal Editor Interface on the Unreal Engine documentation

website.

3. Close the Visual Studio window you opened, since the Unreal Editor opens a another Visual
Studio window that contains the Unreal project and your game project.

4. In the Unreal editor, do one of the following:
o Choose an existing Unreal project that you want to integrate with Amazon GamelLift.

o Create a new project. To experiment with the Amazon GamelLift plugin for Unreal, try
using Unreal engine's Third Person template. For more information about this template,
see Third Person template on the Unreal Engine documentation website.

Alternatively, configure a new project with the following settings:

o C++

With starter content

Desktop

A project name. In the examples in this topic, we named our project
GameLiftUnrealApp.

5. InVisual Studio's Solution Explorer, navigate to the location of your Unreal project. In the
Unreal Source folder, find a file named Your-application-name.Target.cs.

For example: GameLiftUnrealApp.Target.cs.
6. Make a copy of this file and name the copy: Your-application-nameServer.Target.cs.

7. Open the new file and make the following changes:

Game engines and Amazon GamelLift 76

https://docs.unrealengine.com/5.1/en-US/unreal-editor-interface/
https://docs.unrealengine.com/5.1/en-US/third-person-template-in-unreal-engine/

Amazon GamelLift Developer Guide

« Change the class and constructor to match the filename.
e Change the Type from TargetType.Game to TargetType.Server.

» The final file will look like the following example:

public class GamelLiftUnrealAppServerTarget : TargetRules

{
public GamelLiftUnrealAppServerTarget(TargetInfo Target) : base(Target)
{
Type = TargetType.Server;
DefaultBuildSettings = BuildSettingsVersion.V2;
IncludeOrderVersion = EngineIncludeOrderVersion.Unreal5_1;
ExtraModuleNames.Add("GameLiftUnrealApp");
}
}

Your project is now configured to accept the Amazon GamelLift server SDK plugin.

The next task is to build the C++ server SDK libraries for Unreal so that you can import them into
your project.

To build the C++ server SDK libraries for Unreal

1. Download the Amazon GamelLift C++ server SDK plugin for Unreal.

(® Note

Putting the SDK in the default download directory can result in build failure due to
the path exceeding the 260 character limit. For example: C:\Users\Administrator
\Downloads\GameLift-SDK-Release-06_15_2023\GameLift-Cpp-
ServerSDK-5.0.4

We recommend that you move the SDK to another directory, for example C:
\GameLift-Cpp-ServerSDK-5.0.4.

2. Download and install OpenSSL. For more information on downloading OpenSSL, read the
Github OpenSSL build and install documentation.

For more information, read the OpenSSL Notes for Windows platforms documentation.

Game engines and Amazon GamelLift 77

https://aws.amazon.com/gamelift/getting-started/
https://github.com/openssl/openssl#build-and-install
https://github.com/openssl/openssl/blob/master/NOTES-WINDOWS.md

Amazon GamelLift Developer Guide

® Note

The version of OpenSSL that you use to build the Amazon GamelLift server SDK should
match the version of OpenSSL used by Unreal to package your game server. You can
find version information in the Unreal installation directory .. .Engine\Source
\ThirdParty\OpenSSL.

With the libraries downloaded, build the C++ server SDK libraries for Unreal Engine.

In the GameLift-Cpp-ServerSDK-<version> directory in the downloaded SDK, compile
with the -DBUILD_FOR_UNREAL=1 parameter and build the server SDK. The following
examples show how to compile using cmake.

Run the following commands in your terminal:

mkdir cmake-build

cmake.exe -G "Visual Studio 17 2022" -DCMAKE_BUILD_TYPE=Release -S . -B ./cmake-
build -DBUILD_FOR_UNREAL=1 -A x64

cmake.exe --build ./cmake-build --target ALL_BUILD --config Release

The Windows build creates the following binary files in the out\gamelift-server-sdk
\Release folder:

o cmake-build\prefix\bin\aws-cpp-sdk-gamelift-server.dll
o cmake-build\prefix\bin\aws-cpp-sdk-gamelift-server.lib

Copy the two library files to the ThirdParty\GameLiftServerSDK\Win64 folder in the
Amazon GamelLift Unreal Engine plugin package.

Use the following procedure to import the Amazon GamelLift plugin into your example project.

Import the Amazon GamelLift plugin

1.

Locate the GameLiftServerSDK folder that you extracted from the plugin in the earlier
procedure.

Locate the Plugins in your game project root folder. (If the folder does not exist, then create
it there.)

Game engines and Amazon GamelLift 78

Amazon GamelLift Developer Guide

3. Copy the GameLiftServerSDK folder into the Plugins.

This will allow the Unreal project to see the plugin.

4. Add the Amazon GamelLift server SDK plugin to the game's .uproject file.

In the example, the app is called GameLiftUnrealApp, so the file will be
GameLiftUnrealApp.uproject.

5. Edit the .uproject file to add the plugin to your game project.

"Plugins": [
{

"Name": "GameLiftServerSDK",
"Enabled": true

6. Make sure the game's ModuleRules takes a dependency on the plugin. Open the .Build.cs
file and add the Amazon GamelLiftServerSDK dependency. This file is found under Your-
application-name/Source//Your-application-name/.

For example, the tutorial filepath is . . /GameLiftUnrealApp/Source/
GameLiftUnrealApp/GamelLiftUnrealApp.Build.cs.

7. Add "GameLiftServerSDK" to the end of the list of PublicDependencyModuleNames.

using UnrealBuildTool;
using System.Collections.Generic;
public class GamelLiftUnrealApp : ModuleRules
{
public GameLiftUnrealApp(TargetInfo Target)
{
PublicDependencyModuleNames.AddRange(new string[] { "Core", "CoreUObject",
"Engine", "InputCore", "GameLiftServerSDK" });
bEnableExceptions = true;
}
}

The plugin should now be working for your application. Continue with the next section to integrate
Amazon GamelLift functionality into your game.

Game engines and Amazon GamelLift 79

Amazon GamelLift Developer Guide

Add Amazon Gamelift server code to your Unreal project

You've configured and set up your Unreal Engine environment, and you can now integrate a game
server with Amazon GamelLift. The code presented in this topic makes required calls to the Amazon
Gamelift service. It also implements a set of callback functions that respond to requests from the
Amazon Gamelift service. For more information on each function and what the code does, see
Initialize the server process. For more information on the SDK actions and datatypes uised in this

code, read Amazon GamelLift server SDK reference for Unreal Engine.

To initialize a game server with Amazon GamelLift, use the following procedure.

(® Note

The Amazon GamelLift-specific code provided in the following section depends on the
use of a WITH_GAMELIFT preprocessor flag. This flag is true only when both of these
conditions are met:

« Target.Type == TargetRules.TargetType.Server

» The plugins found the Amazon GamelLift server SDK binaries.

This ensures that only Unreal Server builds invoke Amazon GamelLift's backend API. It also
lets you to write code that will execute properly for all the different Unreal targets your
game might produce.

Integrate a game server with Amazon GamelLift

1. In Visual Studio, open the . s1n file for your application. For our example, the file
GameLiftUnrealApp.slnisfound in the root folder.

2. With the solution open, locate your application's Your-application-nameGameMode. h file.
Example: GameLiftUnrealAppGameMode. h.

3. Change the header file to align with the following example code. Be sure to replace
"GamelLiftUnrealApp" with your own application name.

#pragma once

#include "CoreMinimal.h"
#include "GameFramework/GameModeBase.h"

Game engines and Amazon GamelLift 80

https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-sdk-server-api.html#gamelift-sdk-server-initialize

Amazon GamelLift Developer Guide

#include "GameLiftServerSDK.h"
#include "GameLiftUnrealAppGameMode.generated.h"

DECLARE_LOG_CATEGORY_EXTERN(GameServerlLog, Log, All);

UCLASS(minimalapi)
class AGameLiftUnrealAppGameMode : public AGameModeBase

{
GENERATED_BODY ()

public:
AGameLiftUnrealAppGameMode();

protected:
virtual void BeginPlay() override;

private:
// Process Parameters needs to remain in scope for the lifetime of the app
FProcessParameters m_params;

void InitGameLift();
};

4. Open the related source file Your-application-nameGameMode. cpp file. In our Example:
GameLiftUnrealAppGameMode. cpp. and change the code to align with the following
example code. Be sure to replace "GameLiftUnrealApp" with your own application name.

This sample shows how to add all of the required elements for integration with Amazon
Gamelift, as described in Add Amazon GamelLift to your game server. This includes:

« Initializing an Amazon GamelLift API client.

« Implementing callback functions to respond to requests from the Amazon GamelLift service,
including OnStartGameSession, OnProcessTerminate, and onHealthCheck.

« Calling ProcessReady() with a designated port to notify the Amazon GamelLiftservice when
ready to host game sessions.

#include "GameLiftUnrealAppGameMode.h"
#include "GameLiftUnrealAppCharacter.h"

#include "UObject/ConstructorHelpers.h"

Game engines and Amazon GamelLift 81

https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-sdk-server-api.html

Amazon GamelLift Developer Guide

DEFINE_LOG_CATEGORY(GameServerlLog);

AGameLiftUnrealAppGameMode: :AGameLiftUnrealAppGameMode()
{

// set default pawn class to our Blueprinted character

static ConstructorHelpers::FClassFinder<APawn> PlayerPawnBPClass(TEXT("/Game/
ThirdPerson/Blueprints/BP_ThirdPersonCharacter"));

if (PlayerPawnBPClass.Class != NULL)

{

DefaultPawnClass = PlayerPawnBPClass.Class;

void AGamelLiftUnrealAppGameMode: :BeginPlay()
{
#if WITH_GAMELIFT
InitGameLift();
#endif
}

void AGameLiftUnrealAppGameMode: :InitGameLift()

{
UE_LOG(GameServerlLog, Log, TEXT("Initializing the GamelLift Server"));

//Getting the module first.
FGameLiftServerSDKModule* gamelLiftSdkModule =
&FModuleManager: :LoadModuleChecked<FGamelLiftServerSDKModule>(FName("GameLiftServerSDK"));

//Define the server parameters for a GameLift Anywhere fleet. These are not
needed for a GamelLift managed EC2 fleet.
FServerParameters serverParameters;

//AuthToken returned from the "aws gamelift get-compute-auth-token" API. Note
this will expire and require a new call to the API after 15 minutes.
if (FParse::Value(FCommandLine: :Get(), TEXT("-authtoken="),
serverParameters.m_authToken))
{
UE_LOG(GameServerLog, Log, TEXT("AUTH_TOKEN: %s"),
*serverParameters.m_authToken)

}

//The Host/compute-name of the GameLift Anywhere instance.
if (FParse::Value(FCommandLine::Get(), TEXT("-hostid="),
serverParameters.m_hostId))

Game engines and Amazon GamelLift 82

Amazon GamelLift Developer Guide

{

UE_LOG(GameServerLog, Log, TEXT("HOST_ID: %s"), *serverParameters.m_hostId)

//The Anywhere Fleet ID.
if (FParse::Value(FCommandLine::Get(), TEXT("-fleetid="),
serverParameters.m_fleetId))
{
UE_LOG(GameServerlLog, Log, TEXT("FLEET_ID: %s"),
*serverParameters.m_fleetId)

}

//The WebSocket URL (GameLiftServiceSdkEndpoint).
if (FParse::Value(FCommandLine::Get(), TEXT("-websocketurl="),
serverParameters.m_webSocketUrl))
{
UE_LOG(GameServerlLog, Log, TEXT("WEBSOCKET_URL: %s"),
*serverParameters.m_webSocketUrl)

}

//The PID of the running process

serverParameters.m_processId = FString::Printf(TEXT("%d"),
GetCurrentProcessId());

UE_LOG(GameServerlLog, Log, TEXT("PID: %s"), *serverParameters.m_processId);

//InitSDK establishes a local connection with GamelLift's agent to enable
further communication.

//Use InitSDK(serverParameters) for a GamelLift Anywhere fleet.

//Use InitSDK() for a GameLift managed EC2 fleet.

gameLiftSdkModule->InitSDK(serverParameters);

//Implement callback function onStartGameSession
//GameLift sends a game session activation request to the game server
//and passes a game session object with game properties and other settings.
//Here is where a game server takes action based on the game session object.
//When the game server is ready to receive incoming player connections,
//it invokes the server SDK call ActivateGameSession().
auto onGameSession = [=](Aws::GamelLift::Server::Model::GameSession gameSession)
{
FString gameSessionId = FString(gameSession.GetGameSessionId());
UE_LOG(GameServerlLog, Log, TEXT("GameSession Initializing: %s"),
*gameSessionId);
gameLiftSdkModule->ActivateGameSession();
I

Game engines and Amazon GamelLift 83

Amazon GamelLift Developer Guide

m_params.OnStartGameSession.BindLambda(onGameSession);

//Implement callback function OnProcessTerminate
//GameLift invokes this callback before shutting down the instance hosting this
game server.
//It gives the game server a chance to save its state, communicate with
services, etc.,
//and initiate shut down. When the game server is ready to shut down, it
invokes the
//server SDK call ProcessEnding() to tell GameLift it is shutting down.
auto onProcessTerminate = [=]()
{
UE_LOG(GameServerLog, Log, TEXT("Game Server Process is terminating"));
gameLiftSdkModule->ProcessEnding();

};
m_params.OnTerminate.BindLambda(onProcessTerminate);

//Implement callback function OnHealthCheck
//GameLift invokes this callback approximately every 6@ seconds.
//A game server might want to check the health of dependencies, etc.
//Then it returns health status true if healthy, false otherwise.
//The game server must respond within 60 seconds, or GamelLift records 'false'.
//In this example, the game server always reports healthy.
auto onHealthCheck = []()
{
UE_LOG(GameServerLog, Log, TEXT("Performing Health Check"));
return true;

};
m_params.OnHealthCheck.BindLambda(onHealthCheck);

//The game server gets ready to report that it is ready to host game sessions
//and that it will listen on port 7777 for incoming player connections.
m_params.port = 7777;

//Here, the game server tells GamelLift where to find game session log files.
//At the end of a game session, GamelLift uploads everything in the specified
//location and stores it in the cloud for access later.

TArray<FString> logfiles;
logfiles.Add(TEXT("GameLift426Test/Saved/Logs/GameLift426Test.log"));
m_params.logParameters = logfiles;

Game engines and Amazon GamelLift 84

Amazon GamelLift Developer Guide

5.

10.

11.

//The game server calls ProcessReady() to tell GameLift it's ready to host game
sessions.
UE_LOG(GameServerlLog, Log, TEXT("Calling Process Ready"));
gamelLiftSdkModule->ProcessReady(m_params);
}

Build game project for both of the following target types: Development Editor and
Development Server.

(@ Note

You don't need to rebuild the solution. Instead, build just the project under the Games
folder that matches the name of your app. Otherwise Visual Studio rebuilds the entire
UES project, which might take up to an hour.

Once both builds are complete, close Visual Studio and open your project's .uproject file to
open it in the Unreal Editor.

In Unreal Editor, package the server build of your game. To choose a target, go to Platforms,
Windows and select Your-application-nameServer.

To start the process of building the server application, go to Platforms, Windows and select
Package Project. When the build is complete, you should have an executable. In the case of
our example, the file name is GameLiftUnrealAppServer.exe.

Building a server application in Unreal Editor produces two executables. One is located in the
root of the game build folder and acts as a wrapper for the actual server executable.

When creating an Amazon GamelLift fleet with your server build, we recommend that you

pass in the actual server executable as the runtime configuration launch path. For example, in
your game build folder, you might have a GameLiftFPS. exe file at the root and another at
\GameLiftFPS\Binaries\Win64\GameLiftFPSServer.exe. When creating a fleet, we
recommend you use C:\GameLiftFPS\Binaries\Win64\GamelLiftFPSServer.exe asthe
launch path of the runtime configuration.

Make sure to open the necessary UDP ports on the Amazon GamelLift fleet, so that the game
server can communicate with game clients. By default, Unreal Engine uses port 7777. For more
information, see UpdateFleetPortSettings in the Amazon GamelLift service API reference guide.

Create an install.bat file for your game build. This install script runs whenever the game
build is deployed to a Amazon Gamelift fleet. Here's an example install.bat file:

Game engines and Amazon GamelLift 85

https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateFleetPortSettings.html

Amazon GamelLift Developer Guide

VC_redist.x64.exe /q
UESPrereqSetup_x64.exe /q

For some versions of Unreal Engine, the install.bat should instead be

VC_redist.x64.exe /q
UEPrereqSetup_x64.exe /q

(® Note
The file path to the <>PrereqSetup_x64.exe fileis Engine\Extras\Redist\en-

us.

12. Now you can package and upload your game build to Amazon GamelLift.

The version of OpenSSL you package with your game build needs to match the version that
the game engine used when building the game server. Make sure you package the correct
OpenSSL version with your game server build. For the Windows OS, the OpenSSL format is

.dll.

® Note

Package the OpenSSL DLLs in your game server build. Be sure to package the same
version of OpenSSL that you used when building the game server.

e libssl-1_1-x64.d11

libcrypto-1_1-x64.d11

Package your dependencies along with your game server executable in the root of a zip
file. For example, openssl-1ib dlls should be in the same directory as the . exe file.

Next steps

You've configured and set up your Unreal Engine environment, and you can now start integrating
Amazon GamelLift into your game.

Game engines and Amazon GamelLift 86

Amazon GamelLift Developer Guide

For more information about adding Amazon GamelLift to your game, see the following:

o Add Amazon Gamelift to your game server

o Amazon Gamelift server SDK reference for Unreal Engine

For instructions about testing your game, see Test your integration using Amazon GamelLift
Anywhere fleets .

Integrate Amazon GamelLift into a Unity project

This topic explains how to set up the Amazon GamelLift C# Server SDK plugin for Unity and
integrate it into your game projects.

Additional resources:

« Amazon GamelLift server SDK download site

« Amazon Gamelift server SDK 5.x reference for C# and Unity

« the section called “"Development support”

Prerequisites
To use the Amazon GamelLift C# server SDK plugin for Unity, you need the following components:

» A development environment and Unity Editor version that the plugin supports (see Development

support with Amazon GamelLift). For information on Unity versions, see System requirements for

Unity in the Unity documentation.

« The Amazon GamelLift server SDK plugin for Unity package. This package includes the server SDK
5+ for C#. You can download the package from this site: Getting Started with Amazon GamelLift.

« The third party scoped registry UnityNuGet. This tool manages third-party DLLs. For more
information, see the UnityNuGet Github repository.

Set up UnityNuGet

If you don't have UnityNuGet set up for your game project, use the following steps to install
the tool using the Unity package manager. Alternatively, you can use the NuGet CLI to manually
download the DLLs. For more information, see the Amazon GameLift C# server SDK for Unity
README.

Game engines and Amazon GamelLift 87

https://aws.amazon.com/gamelift/getting-started/
https://docs.unity3d.com/2023.1/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/2023.1/Documentation/Manual/system-requirements.html
https://aws.amazon.com/gamelift/getting-started/
https://github.com/xoofx/UnityNuGet

Amazon GamelLift Developer Guide

To integrate UnityNuGet into your game project

1. With your project open in the Unity Editor, go to the main menu and select Edit, Project
Settings. From the options, choose the Package Manager section and open the Scoped
Registries group.

2. Choose the + button and enter the following values for the UnityNuGet scoped registry:

Name: Unity NuGet
URL: https://unitynuget-registry.azurewebsites.net
Scope(s): org.nuget

3. For Unity 2021 version users:

After setting up UnityNuGet, check for Assembly Version Validation errors showing in
the Unity console. These errors occur if binding redirects for strongly named assemblies in the
NuGet packages are not resolving correctly to paths within your Unity project. To resolve this
issue, configure Unity's assembly version validation:

a. Inthe Unity Editor, go to the main menu and select Edit, Project Settings, and open the
Player section.

b. Deselect the Assembly Version Validation option.

Install the plugin

Use the following procedure to install the Amazon GamelLift C# server SDK plugin for Unity and
configure log4net logging.

To install the plugin

1. With your project open in the Unity Editor, go to the main menu and select Window, Package
Manager.

2. Choose the + button to add a new package. Choose the option Add package from tarball.

3. In Select packages on disk, locate the Amazon GamelLift C# Server SDK plugin for Unity
download files, and choose the Amazon GamelLift Server SDK . tgz file. Choose Open to
install the plugin.

The Amazon GamelLift server SDK uses the log4net framework to output log messages. It is
configured to output messages to the terminal of a server build by default, but Unity requires

Game engines and Amazon GamelLift 88

Amazon GamelLift Developer Guide

configuration to add file logging support. You can add this support to your project by importing
the provided sample inside the Amazon GamelLift Server SDK package. Use the following procedure
to add the sample and configure log4net:

To configure log4net for file output

1. With your project open in the Unity Editor, go to the main menu and select Window, Package
Manager.

2. From the dropdown menu, select Packages: In Project, and then select Amazon GamelLift
Server SDK from the list of packages. This opens the package details.

In the package details, select the Samples group option and press Import.

4. The log4net.config file and accompanying LoggingConfiguration.cs script
automatically executes the configuration, which is now set up in the project's Assets/
Samples folder.

(® Note

If you need to move your 1log4net.config file to a different folder in the
project, then you must also update the config file's filepath in the script
LoggingConfiguration.cs with the new path. For more information, see the
log4net manual on configuring log4net.

For more detailed instructions and testing guidance, see the README located in the plugin
download.

Set up an Amazon GamelLift Anywhere fleet for testing

You can set up your development workstation as an Amazon GamelLift Anywhere hosting fleet

to iteratively test your Amazon Gamelift integration. With this setup, you can start game server
processes on your workstation, send player join or matchmaking requests to Amazon GameLift to
start game sessions, and connect clients to the new game sessions. With your own workstation
set up as a hosting server, you can monitor all aspects of your game integration with Amazon
Gamelift.

For instructions on setting up your workstation, see Test your integration using Amazon GamelLift

Anywhere fleets to complete the following steps:

1. Create a custom location for your workstation.

Game engines and Amazon GamelLift 89

https://logging.apache.org/log4net/release/manual/configuration.html

Amazon GamelLift Developer Guide

2. Create an Amazon GamelLift Anywhere fleet with your new custom location. If successful, this
request returns a fleet ID. Make a note of this value, as you'll need it later.

3. Register your workstation as a compute in the new Anywhere fleet. Provide a unique compute
name and specify the IP address for your workstation. If successful, this request returns a service
SDK endpoint, in the form of a WebSocket URL. Make a note of this value, as you'll need it later.

4. Generate an authentication token for your workstation compute. This short-lived authentication
includes the token and an expiration date. Your game server uses it to authenticate
communication with the Amazon GamelLift service. Store the authentication on your workstation
compute so that your running game server processes can access it.

Add Amazon Gamelift server code to your Unity project

Your game server communicates with the Amazon GamelLift service to receive instructions and
report ongoing status. To accomplish this, you add game server code that uses the Amazon
Gamelift server SDK.

The provided code example illustrates the basic required integration elements. It uses a
MonoBehavior to illustrate a simple game server initialization with Amazon GamelLift. The
example assumes that the game server runs on an Amazon GamelLift Anywhere fleet for testing. It
includes code to:

« Initialize an Amazon GamelLift API client. The sample uses the version of InitSDK() with server
parameters for your Anywhere fleet and compute. Use the WebSocket URL, fleet ID, compute
name (host ID), and authentication token, as defined in the previous topic Set up an Amazon
Gamelift Anywhere fleet for testing.

« Implement callback functions to respond to requests from the Amazon GamelLift service,
including OnStartGameSession, OnProcessTerminate, and onHealthCheck.

« Call ProcessReady() with a designated port to notify the Amazon GamelLift service when the
process is ready to host game sessions.

The code presented in this topic establishes communication with the Amazon GamelLift service
and . It also implements a set of callback functions that respond to requests from the . For more
information on each function and what the code does, see Initialize the server process. For more
information on the SDK actions and data types used in this code, read Amazon GamelLift server
SDK reference for C#.

Game engines and Amazon GamelLift 90

https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-sdk-server-api.html#gamelift-sdk-server-initialize

Amazon GamelLift Developer Guide

This sample shows how to add all the required elements, as described in Add Amazon GamelLift to
your game server. It includes:

For more information on adding Amazon GamelLift functionality, see these topics:

o Add Amazon Gamelift to your game server

« Amazon GamelLift server SDK reference for C#

using System.Collections.Generic;
using Aws.GamelLift.Server;
using UnityEngine;

public class ServerSDKManualTest : MonoBehaviour
{
//This example is a simple integration that initializes a game server process
//that is running on an Amazon GamelLift Anywhere fleet.
void Start()
{
//Identify port number (hard coded here for simplicity) the game server is
listening on for player connections
var listeningPort = 7777;

//WebSocketUrl from RegisterHost call
var webSocketUrl = "wss://us-west-2.api.amazongamelift.com";

//Unique identifier for this process
var processId = "myProcess";

//Unique identifier for your host that this process belongs to
var hostId = "myHost";

//Unique identifier for your fleet that this host belongs to
var fleetId = "myFleet";

//Authorization token for this host process
var authToken = "myAuthToken";

//Server parameters are required for a GamelLift Anywhere fleet.
//They are not required for a GamelLift managed EC2 fleet.
ServerParameters serverParameters = new ServerParameters(
webSocketUrl,
processld,

Game engines and Amazon GamelLift 91

https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-sdk-server-api.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-sdk-server-api.html

Amazon GamelLift Developer Guide

hostId,
fleetId,
authToken);

//InitSDK establishes a local connection with an Amazon GamelLift agent
//to enable further communication.
var initSDKOutcome = GamelLiftServerAPI.InitSDK(serverParameters);
if (initSDKOutcome.Success)
{
//Implement callback functions
ProcessParameters processParameters = new ProcessParameters(
//Implement OnStartGameSession callback
(gameSession) => {
//GamelLift sends a game session activation request to the game
server
//with game session object containing game properties and other
settings.
//Here is where a game server takes action based on the game
session object.
//When the game server is ready to receive incoming player

connections,
//it invokes the server SDK call ActivateGameSession().
GameLiftServerAPI.ActivateGameSession();
I
(updateGameSession) => {
//GamelLift sends a request when a game session is updated (such as
for

//FlexMatch backfill) with an updated game session object.
//The game server can examine matchmakerData and handle new
incoming players.
//updateReason explains the purpose of the update.
I
O =>{
//Implement callback function OnProcessTerminate
//GameLift invokes this callback before shutting down the instance
hosting this game server.
//It gives the game server a chance to save its state, communicate
with services, etc.,
//and initiate shut down. When the game server is ready to shut
down, it invokes the
//server SDK call ProcessEnding() to tell GameLift it is shutting
down.
GameLiftServerAPI.ProcessEnding();

iy

Game engines and Amazon GamelLift 92

Amazon Gamelift

Developer Guide

etc.

0O ={

records 'false'.

sessions

log files.

specified

game sessio

ns.

}I

//Implement callback function OnHealthCheck
//GameLift invokes this callback approximately every 6@ seconds.
//A game server might want to check the health of dependencies,

//Then it returns health status true if healthy, false otherwise.
//The game server must respond within 60 seconds, or GameLift

//In this example, the game server always reports healthy.
return true;

//The game server gets ready to report that it is ready to host game

//and that it will listen on port 7777 for incoming player connections.
listeningPort,
new LogParameters(new List<string>()

{

)

//Here, the game server tells GamelLift where to find game session
//At the end of a game session, GamelLift uploads everything in the

//location and stores it in the cloud for access later.
"/local/game/logs/myserver.log"

//The game server calls ProcessReady() to tell GameLift it's ready to host

var processReadyOutcome =

GameLiftServerAPI.ProcessReady(processParameters);
if (processReadyOutcome.Success)

{
print("ProcessReady success.");
}
else
{
print("ProcessReady failure : " +
processReadyOutcome.Error.ToString());
}
}
else
{
print("InitSDK failure : " + initSDKOutcome.Error.ToString());
}

Game engines and Amazon GamelLift 93

Amazon GamelLift Developer Guide

void OnApplicationQuit()
{
//Make sure to call GamelLiftServerAPI.ProcessEnding() and
GameLiftServerAPI.Destroy() before terminating the server process.
//These actions notify Amazon GameLift that the process is terminating and
frees the API client from memory.
GenericOutcome processEndingOutcome = GamelLiftServerAPI.ProcessEnding();
GameLiftServerAPI.Destroy();
if (processEndingOutcome.Success)
{
Environment.Exit(0);
}
else
{
Console.WritelLine("ProcessEnding() failed. Error: " +
processEndingOutcome.Error.ToString());
Environment.Exit(-1);

Additional resources

Use the following resources to test your game server and expand the functionality:

» Set up your development machine as an Amazon GamelLift Anywhere fleet and use it for local
testing. See Test your custom server integration.

 Build your game server and upload the build to Amazon GamelLift. See Upload a custom server
build to Amazon GamelLift.

» Deploy your game server build to an Amazon GameLift managed EC2 fleet. See Create a new
Amazon Gamelift fleet.

Test your integration using Amazon GamelLift Anywhere fleets

You can use an Amazon GamelLift Anywhere fleet to iteratively build and test your game
integration with Amazon GamelLift. Set up your own hardware as an Anywhere fleet with a
connection to the Amazon GamelLift service, then install and run your game server on it. Use a test
app to run scenarios such as starting/stopping game sessions, tracking player connections, and

Test your integration (server SDK 5) 94

https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-testing.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-build-cli-uploading.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-build-cli-uploading.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/fleets-creating-all.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/fleets-creating-all.html

Amazon GamelLift Developer Guide

handling matchmaking backfills. With an Anywhere fleet, you can update your game server build
as needed and have full visibility into hosting activity.

You can Amazon GamelLift Anywhere fleets with games integrated with Amazon GamelLift Server
SDK version 5 or greater.

Topics

« Initial development

 Iterate on your game server

Initial development

You've developed your game and are integrating it with the Amazon GamelLift server SDK. To
test your integration, you could upload each new iteration of your game server build to Amazon
Gamelift and create a fleet. Alternatively, using an Anywhere fleet with your development laptop
gives you a more efficient way to do iterative development and testing.

Use the following procedures to create an Anywhere fleet and start a game session on your laptop
using the Amazon GamelLift console or the AWS Command Line Interface (AWS CLI).

Console

1. Open the Amazon GamelLift console.

In the navigation pane, under Hosting, choose Locations.

Choose Create location.

P WD

In the Create location dialog box, do the following:

a. Enter a Location name. This labels the location of your compute resources that
Amazon GamelLift uses to run your games in Anywhere fleets. Custom location names
must start with custom-.

b. Choose Create.

5. To create an Anywhere fleet, do the following:

a. Inthe navigation pane, under Hosting, choose Fleets.
b. On the Fleets page, choose Create fleet.

c. On the Choose compute type step, choose Anywhere, and then choose Next.

Test your integration (server SDK 5) 95

https://console.aws.amazon.com/gamelift

Amazon GamelLift Developer Guide

d. On the Define fleet details step, define your new fleet. For more information, see
Create a new Amazon Gamelift fleet.

e. On the Select locations step, select the custom location that you created.
f. Complete the remaining fleet creation steps to create your Anywhere fleet.

6. Register your laptop as a compute resource in the fleet that you created. Use the
register-compute command (or the RegisterCompute APl operation). Include the
fleet-id created in the previous step and add a compute-name and your laptop's ip-
address.

aws gamelift register-compute \
--compute-name DevLaptop \
--fleet-id fleet-1234 \
--ip-address 10.1.2.3 \
--location custom-location-1

Example output:

Compute {
FleetId = fleet-1234,
ComputeName = DevlLaptop,
Status = ACTIVE,
IpAddress = 10.1.2.3,
GameLiftServiceSdkEndpoint = wss://12345678.execute-api.amazonaws.com/,
Location = custom-location-1

7. Start a debug session of your game server.

a. Get the authorization token for your laptop in the fleet that you created. Use the get-
compute-auth-token command (or the GetComputeAuthToken API operation).

aws gamelift get-compute-auth-token \
--fleet-id fleet-1234 \
--compute-name DevlLaptop

Example output:

ComputeAuthToken {
FleetId = fleet-1234,

Test your integration (server SDK 5) 96

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/register-compute.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/get-compute-auth-token.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/get-compute-auth-token.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetComputeAuthToken.html

Amazon GamelLift Developer Guide

ComputeName = DevlLaptop,
AuthToken = abcdefgl23,
ExpirationTime = 1897492857.11

b. Run a debug instance of your game server executable. To run the debug instance, your
game server must call InitSDK(). After the process is ready to host a game session, the
game server calls ProcessReady().

8. Create a game session to test out your first integration with Amazon GamelLift Anywhere.
Use the create-game-session command (or the CreateGameSession APl operation).
Specify the fleet's custom location.

aws gamelift create-game-session \
--fleet-id fleet-1234 \
--name DebugSession \
--maximum-player-session-count 2 \
--location custom-location-1

Example output:

GameSession {
FleetId = fleet-1234,
GameSessionId = 1111-1111,
Name = DebugSession,
IpAddress = 10.1.2.3,
Port = 1024,

Amazon Gamelift sends an onStartGameSession() message to your registered server
process. The message contains the GameSession object from the previous step with game
properties, game sessions data, matchmaker data, and more about the game session.

9. Add logic to your game server so that your server process responds to the
onStartGameSession() message with ActivateGameSession(). The operation sends
an acknowledgement to Amazon GamelLift that your server received and accepted the
create game session message. For more information see, Amazon GamelLift server SDK
reference.

Test your integration (server SDK 5) 97

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/create-game-session.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html

Amazon GamelLift Developer Guide

Your game server is now running a game session for you to test out and use for iteration. To
learn how to iterate on your game server, continue to the next section.

AWS CLI

3.

Create a custom location using the create-location command (or the
CreatelLocation APl operation). A custom location labels the location of your hardware
that Amazon GamelLift uses to run your games in Anywhere fleets.

aws gamelift create-location \
--location-name custom-location-1

Example output:

Location {
LocationName = custom-location-1

Create an Anywhere fleet with your custom location using the create-fleet command
(or the CreateFleet API operation). Amazon GamelLift creates the fleet in your home
Region and the custom locations that you provide.

aws gamelift create-fleet \
--name LaptopFleet \
--compute-type ANYWHERE \
--locations "location=custom-location-1"

Example output:

Fleet {
Name = LaptopFleet,
ComputeType = ANYWHERE,
FleetId = fleet-1234,
Status = ACTIVE

Register your laptop as a compute resource in the fleet that you created. Use the
register-compute command (or the RegisterCompute APl operation). Include the

Test your integration (server SDK 5) 98

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/create-location.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateLocation.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/create-fleet.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateFleet.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/register-compute.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_RegisterCompute.html

Amazon GamelLift Developer Guide

fleet-id created in the previous step and add a compute-name and your laptop's public
ip-address.

aws gamelift register-compute \
--compute-name DevlLaptop \
--fleet-id fleet-1234 \
--ip-address 10.1.2.3 \
--location custom-location-1

Example output:

Compute {
FleetId = fleet-1234,
ComputeName = DevlLaptop,
Status = ACTIVE,
IpAddress = 10.1.2.3,
GamelLiftServiceSdkEndpoint = wss://12345678.execute-api.amazonaws.com/,
Location = custom-location-1

4. Start a debug session of your game server.

a. Get the authorization token for your laptop in the fleet that you created. Use the get -
compute-auth-token command (or the GetComputeAuthToken API operation).

aws gamelift get-compute-auth-token \
--fleet-id fleet-1234 \
--compute-name DevlLaptop

Example output:

ComputeAuthToken {
FleetId = fleet-1234,
ComputeName = DevLaptop,
AuthToken = abcdefgl23,
ExpirationTime = 1897492857.11

b. Run a debug instance of your game server executable. To run the debug instance, your
game server must call InitSDK(). After the process is ready to host a game session,
the game server calls ProcessReady ().

Test your integration (server SDK 5) 99

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/get-compute-auth-token.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/get-compute-auth-token.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetComputeAuthToken.html

Amazon GamelLift Developer Guide

5. Create a game session to test out your first integration with Amazon GamelLift Anywhere.
Use the create-game-session command (or the CreateGameSession API operation).

aws gamelift create-game-session \
--fleet-id fleet-1234 \
--name DebugSession \
--maximum-player-session-count 2

Example output:

GameSession {
FleetId = fleet-1234,
GameSessionId = 1111-1111,
Name = DebugSession,
IpAddress = 10.1.2.3,
Port = 1024,

Amazon Gamelift sends an onStartGameSession() message to your registered server
process. The message contains the GameSession object from the previous step with game
properties, game sessions data, matchmaker data, and more about the game session.

6. Add logic to your game server so that your server process responds to the
onStartGameSession() message with ActivateGameSession(). The operation sends
an acknowledgement to Amazon GamelLift that your server received and accepted the
create game session message. For more information see, Amazon GamelLift server SDK
reference.

Your game server is now running a game session for you to test out and use for iteration. To
learn how to iterate on your game server, continue to the next section.

Iterate on your game server

In this use case, consider a scenario where you've set up and tested your game server and found a
bug. With Amazon GamelLift Anywhere, you can iterate on your code and avoid the heavy setup of
using an Amazon EC2 fleet.

Test your integration (server SDK 5) 100

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/create-game-session.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html

Amazon GamelLift Developer Guide

1. Clean up your existing GameSession, if possible. If the game server crashes or it won't call
ProcessEnding(), Amazon GamelLift cleans up the GameSession after the game server
stops sending health checks.

2. Make the code changes to your game server, compile, and prepare for the next test.
3. Your previous Anywhere fleet is still active and your laptop is still registered as a compute

resource in the fleet. To begin testing again, create a new debug instance.

a. Retrieve the authorization token for your laptop in the fleet that you created. Use the

get-compute-auth-token command (or the GetComputeAuthToken APl operation).

aws gamelift get-compute-auth-token \
--fleet-id fleet-1234 \
--compute-name DevlLaptop

Example output:

ComputeAuthToken {
FleetId = fleet-1234,
ComputeName = DevlLaptop,
AuthToken = hijklmnop456,
ExpirationTime = 1897492857.11

b. Run a debug instance of your game server executable. To run the debug instance, your

game server must call InitSDK(). After the process is ready to host a game session, the

game server calls ProcessReady().

4. Your fleet now has an available server process. Create your game session and perform your
next tests. Use the create-game-session command (or the CreateGameSession API

operation).

aws gamelift create-game-session \
--fleet-id fleet-1234 \
--name SecondDebugSession \
--maximum-player-session-count 2

Amazon Gamelift sends an onStartGameSession() message to your registered server
process. The message contains the GameSession object from the previous step with game
properties, game session data, matchmaker data, and more about the game session.

Test your integration (server SDK 5)

101

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/get-compute-auth-token.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetComputeAuthToken.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/create-game-session.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html

Amazon GamelLift Developer Guide

5. Add logic to your game server so that your server process responds to the
onStartGameSession() message with ActivateGameSession(). The operation sends
an acknowledgement to Amazon GamelLift that your server received and accepted the create
game session message. For more information see, Amazon GamelLift server SDK reference.

After you finish testing your game server, you can continue to use Amazon GamelLift for your fleet
and game server management. For more information, see Create a Amazon GamelLift Anywhere

fleet.

Test your integration using Amazon GamelLift Local

(® Note

Use this testing procedure if you're using a version of the Amazon GamelLift server SDK that
is version 4.x or earlier. Your server SDK package includes a compatible version of Amazon
Gamelift Local. If you're using server SDK version 5.x, see Test your integration using
Amazon GamelLift Anywhere fleets for local testing with an Amazon GamelLift Anywhere
fleet.

Use Amazon GamelLift Local to run a limited version of the managed Amazon GamelLift service on
a local device and test your game integration against it. This tool is useful when doing iterative
development on your game integration. The alternative—uploading each new build to Amazon
GamelLift and configuring a fleet to host your game—can take 30 minutes or more each time.

With Amazon GamelLift Local, you can verify the following:

« Your game server is correctly integrated with the Server SDK and is properly communicating with
the Amazon GamelLift service to start new game sessions, accept new players, and report health
and status.

« Your game client is correctly integrated with the AWS SDK for Amazon GamelLift and is able to
retrieve information on existing game sessions, start new game sessions, join players to games
and connect to the game session.

Amazon GamelLift Local is a command-Lline tool that starts a self-contained version of the
managed Amazon GamelLift service. Amazon GamelLift Local also provides a running event log of
server process initialization, health checks, and API calls and responses. Amazon GamelLift Local

Test your integration (server SDK 4) 102

Amazon GamelLift Developer Guide

recognizes a subset of the AWS SDK actions for Amazon GamelLift. You can make calls from the
AWS CLI or from your game client. All API actions perform locally just as they do in the Amazon
Gamelift web service.

Each server process should only host a single game session. The game session is the executable
you use to connect to Amazon GamelLift Local. When the game session is completed, you should
call GameLiftServerSDK: :ProcessEndning and then exit the process. When testing locally
with Amazon GamelLift Local, you can start multiple server processes. Each process will connect to
Amazon Gamelift Local. You can then create one game session for each server process. When your
game session ends, your game server process should exit. You must then manually start another
server process.

Amazon Gamelift local supports the following APlIs:

» CreateGameSession

» CreatePlayerSession

« CreatePlayerSessions
» DescribeGameSessions

» DescribePlayerSessions

Set up Amazon GamelLift local

Amazon GamelLift Local is provided as an executable . jar file bundled with the Server SDK. It can
be run on Windows or Linux and used with any Amazon GamelLift-supported language.

Before running Local, you must also have the following installed.

o A build of the Amazon GamelLift Server SDK version 3.1.5 to 4.x.

e Java 8

Test a game server

If you want to test your game server only, you can use the AWS CLI to simulate game client calls to
the Amazon GamelLift Local service. This verifies that your game server is performing as expected
with the following:

« The game server launches properly and initializes the Amazon GamelLift Server SDK.

Test your integration (server SDK 4) 103

https://aws.amazon.com/gamelift/getting-started/

Amazon GamelLift Developer Guide

As part of the launch process, the game server notifies Amazon GamelLift that the server is ready
to host game sessions.

The game server sends health status to Amazon GamelLift every minute while running.

The game server responds to requests to start a new game session.

Start Amazon GamelLift Local.

Open a command prompt window, navigate to the directory containing the file
GamelLiftLocal. jar and run it. By default, Local listens for requests from game clients on
port 8080. To specify a different port number, use the -p parameter, as shown in the following
example:

java -jar GamelLiftlLocal.jar -p 9080

Once Local starts, you see logs indicating that two local servers were started, one listening
for your game server and one listening for your game client or the AWS CLI. Logs continue
to report activity on the two local servers, including communication to and from your game
components.

Start your game server.

Start your Amazon Gamelift-integrated game server locally. You don't need to change the
endpoint for the game server.

In the Local command prompt window, log messages indicate that your game server

has connected to the Amazon GamelLift Local service. This means that your game server
successfully initialized the Amazon GamelLift Server SDK (with InitSDK()). It has called
ProcessReady() with the log paths shown and, if successful, is ready to host a game session.
While the game server is running, Amazon GameLift logs each health status report from the
game server. The following log messaging example shows a successfully integrated game

server:
16:50:53,217 INFO || - [SDKListenerImpl] nioEventLoopGroup-3-1 - SDK
connected: /127.0.0.1:64247
16:50:53,217 INFO || - [SDKListenerImpl] nioEventLoopGroup-3-1 - SDK pid is 17040,
sdkVersion is 3.1.5 and sdkLanguage is CSharp
16:50:53,217 INFO || - [SDKListenerImpl] nioEventLoopGroup-3-1 - NOTE: Only SDK

versions 3.1.5 and above are supported in GamelLiftLocal!

Test your integration (server SDK 4) 104

Amazon GamelLift Developer Guide

16:50:53,451 INFO || - [SDKListenerImpl] nioEventLoopGroup-3-1 - onProcessReady
received from: /127.0.0.1:64247 and ackRequest requested? true
16:50:53,543 INFO || - [SDKListenerImpl] nioEventLoopGroup-3-1 - onProcessReady

data: logPathsToUpload: "C:\\game\\logs"
logPathsToUpload: "C:\\game\\error"

port: 1935

16:50:53,544 INFO || - [HostProcessManager] nioEventLoopGroup-3-1 - Registered new
process true, true,

16:50:53,558 INFO || - [SDKListenerImpl] nioEventLoopGroup-3-1 - onReportHealth

received from /127.0.0.1:64247 with health status: healthy

Potential error and warning messages include the following:

 Error: "ProcessReady did not find a process with pID: <process ID>!Was InitSDK()
invoked?"

« Warning: "Process state already exists for process with pID: <process ID>!ls
ProcessReady(...) invoked more than once?"

3. Start the AWS CLI.

Once your game server successfully calls ProcessReady(), you can start making client

calls. Open another command prompt window and start the AWS CLI tool. The AWS CLI by
default uses the Amazon GamelLift web service endpoint. You must override this with the Local
endpoint in every request using the --endpoint-url parameter, as shown in the following
example request.

AWS gamelift describe-game-sessions --endpoint-url http://localhost:9080 --fleet-
id fleet-123

In the AWS CLI command prompt window, AWS gamelift commands result in responses as
documented in the AWS CLI Command Reference.

4. Create a game session.

With the AWS CLI, submit a CreateGameSession() request. The request should follow the
expected syntax. For Local, the FleetId parameter can be set to any valid string (*"fleet-\S

+).

AWS gamelift create-game-session --endpoint-url http://localhost:9080 --maximum-
player-session-count 2 --fleet-id

Test your integration (server SDK 4) 105

https://docs.aws.amazon.com/cli/latest/reference/gamelift
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html

Amazon GamelLift Developer Guide

fleet-1a2b3c4d-5e6f-7a8b-9c@d-1e2f3a4b5c6d

In the Local command prompt window, log messages indicate that Amazon GamelLift Local has
sent your game server an onStartGameSession callback. If a game session is successfully
created, your game server responds by invoking ActivateGameSession.

13:57:36,129 INFO || - [SDKInvokerImpl]
Thread-2 - Finished sending event to game server to start a game session:
arn:aws:gamelift:local::gamesession/
fleet-1la2b3c4d-5e6f-7a8b-9c@d-1e2f3a4b5c6d/gsess-ab423a4b-b827-4765-
aea2-54b3fa0818b6.
Waiting for ack response.l13:57:36,143 INFO || - [SDKInvokerImpl]
Thread-2 - Received ack response: truel3:57:36,144 INFO || -
[CreateGameSessionDispatcher] Thread-2 - GameSession with id:
arn:aws:gamelift:local: :gamesession/
fleet-1la2b3c4d-5e6f-7a8b-9c@d-1e2f3a4b5c6d/gsess-ab423a4b-b827-4765-
aea2-54b3fa0818b6
createdl3:57:36,227 INFO || - [SDKListenerImpl]
nioEventLoopGroup-3-1 - onGameSessionActivate received
from: /127.0.0.1:60020 and ackRequest
requested? truel3:57:36,230 INFO || - [SDKListenerImpl]
nioEventLoopGroup-3-1 - onGameSessionActivate data: gameSessionId:
"arn:aws:gamelift:local::gamesession/
fleet-1la2b3c4d-5e6f-7a8b-9c@d-1e2f3a4b5c6d/gsess-abcdefl12-3456-7890-abcd-
ef1234567890"

In the AWS CLI window, Amazon GamelLift responds with a game session object including a
game session ID. Notice that the new game session's status is Activating. The status changes
to Active once your game server invokes ActivateGameSession. If you want to see the changed
status, use the AWS CLI to call DescribeGameSessions().

"GameSession": {

"Status": "ACTIVATING",

"MaximumPlayerSessionCount": 2,

"FleetId": "fleet-la2b3c4d-5e6f-7a8b-9c@d-1e2f3a4b5c6d",

"GameSessionId": "arn:aws:gamelift:local::gamesession/
fleet-1la2b3c4d-5e6f-7a8b-9c0d-1e2f3a4b5c6d/gsess-abcdefl2-3456-7890-abcd-
ef1234567890",

"IpAddress": "127.0.0.1",

"Port": 1935

Test your integration (server SDK 4) 106

Amazon GamelLift Developer Guide

}

Test a game server and client

To check your full game integration, including connecting players to games, you can run both your
game server and client locally. This allows you to test programmatic calls from your game client to
the Amazon GamelLift Local. You can verify the following actions:

« The game client is successfully making AWS SDK requests to the Amazon GamelLift Local service,
including to create game sessions, retrieve information on existing game sessions, and create
player sessions.

« The game server is correctly validating players when they try to join a game session. For
validated players, the game server may retrieve player data (if implemented).

» The game server reports a dropped connection when a player leaves the game.

« The game server reports ending a game session.

1. Start Amazon GamelLift Local.

Open a command prompt window, navigate to the directory containing the file
GamelLiftLocal. jar and run it. By default, Local listens for requests from game clients on
port 8080. To specify a different port number, use the -p parameter, as shown in the following
example.

./gamelift-local -p 9080

Once Local starts, you see logs showing that two local servers were started, one listening for
your game server and one listening for your game client or the AWS CLI.

2. Start your game server.

Start your Amazon Gamelift-integrated game server locally. See Test a game server for more
detail on message logs.

3. Configure your game client for Local and start it.

Test your integration (server SDK 4) 107

Amazon GamelLift Developer Guide

To use your game client with the Amazon GamelLift Local service, you must make the following
changes to your game client's setup, as described in Set up Amazon GamelLift on a backend

service:
« Change the ClientConfiguration object to point to your Local endpoint, such as
http://localhost:9080.

« Set a target fleet ID value. For Local, you do not need a real fleet
ID; set the target fleet to any valid string (*fleet-\S+), such as
fleet-1a2b3c4d-5e6f-7a8b-9c0Od-1e2f3a4b5c6d.

» Set AWS credentials. For Local, you do not need real AWS credentials; you can set the access
key and secret key to any string.

In the Local command prompt window, once you start the game client, log messages should
indicate that it has initialized the GameLiftClient and is successfully communicated with
the Amazon GamelLift service.

4. Test game client calls to the Amazon Gamelift service.

Verify that your game client is successfully making any or all of the following API calls:

o CreateGameSession()

DescribeGameSessions()

CreatePlayerSession()

CreatePlayerSessions()

DescribePlayerSessions()

In the Local command prompt window, only calls to CreateGameSession() result in

log messages. Log messages show when Amazon GamelLift Local prompts your game
server to start a game session (onStartGameSession callback) and gets a successful
ActivateGameSession when your game server invokes it. In the AWS CLI window, all API
calls result in responses or error messages as documented.

5. Verify that your game server is validating new player connections.

After creating a game session and a player session, establish a direct connection to the game
session.

Test your integration (server SDK 4) 108

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeGameSessions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreatePlayerSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreatePlayerSessions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribePlayerSessions.html

Amazon GamelLift Developer Guide

In the Local command prompt window, log messages should show that the game server has
sent an AcceptPlayerSession() request to validate the new player connection. If you use
the AWS CLI to call DescribePlayerSessions(), the player session status should change
from Reserved to Active.

6. Verify that your game server is reporting game and player status to the Amazon GamelLift
service.

For Amazon GamelLift to manage player demand and correctly report metrics, your game
server must report various statuses back to Amazon GamelLift. Verify that Local is logging
events related to following actions. You may also want to use the AWS CLI to track status
changes.

« Player disconnects from a game session - Amazon GamelLift Local log messages
should show that your game server calls RemovePlayerSession(). An AWS CLI call to
DescribePlayerSessions() should reflect a status change from Active to Completed.
You might also call DescribeGameSessions() to check that the game session's current
player count decreases by one.

« Game session ends - Amazon GamelLift Local log messages should show that your game
server calls TerminateGameSession().

(® Note

Previous guidance was to call TerminateGameSession() when ending a game
session. This method is deprecated with Amazon GamelLift Server SDK v4.0.1. See
End a game session.

« Server process is terminated - Amazon Gamelift Local log messages should show that
your game server calls ProcesseEnding(). An AWS CLI call to DescribeGameSessions()
should reflect a status change from Active to Terminated (or Terminating).

Variations with local

When using Amazon GamelLift Local, keep in mind the following:

« Unlike the Amazon GamelLift web service, Local does not track a server's health status and
initiate the onProcessTerminate callback. Local simply stops logging health reports for the
game server.

Test your integration (server SDK 4) 109

Amazon GamelLift Developer Guide

» For calls to the AWS SDK, fleet IDs are not validated, and can be any string value that meets the
parameter requirements (*fleet-\S+).

« Game session IDs created with Local have a different structure. They include the string 1ocal, as
shown here:

arn:aws:gamelift:local: :gamesession/fleet-123/gsess-56961f8e-
db9c-4173-97e7-270b82f0daab

Integrating games with Amazon GamelLift Realtime Servers

This topic provides an overview of the managed Amazon GamelLift with Realtime Servers solution.
The overview explains when this solution is a good fit for your game, and how Realtime Servers
supports multiplayer gaming.

For a complete roadmap to getting your game up and running, see Amazon GamelLift managed

hosting roadmap.

® Tip
To try out Amazon GamelLift game server hosting, see Getting started with Amazon
Gamelift.

What are Realtime servers?

Realtime servers are lightweight, ready-to-go game servers that Amazon GamelLift provides for
you to use with your multiplayer games. Realtime servers remove the development, testing, and
deployment process of a custom game server. This solution can help minimize the time and effort
required to complete your game.

Key features

 Full network stack for game client and server interaction
» Core game server functionality

» Customizable server logic

« Live updates to Realtime configurations and server logic

 FlexMatch matchmaking

Integrating games with Realtime Servers 110

Amazon GamelLift Developer Guide

 Flexible control of hosting resources

Set up Realtime servers by creating a fleet and providing a configuration script. For more
information about creating Realtime servers and how to prepare your game client, see Prepare
your Realtime server.

How Realtime Servers manages game sessions

You can add custom logic for game session management by building it into the Realtime script.
You can write code to access server-specific objects, add event-driven logic using callbacks, or add
logic based on non-event scenarios.

How Realtime clients and servers interact

During a game session, game clients interact by sending messages to the Realtime server through
a backend service. The backend service then relays the messages among game clients to exchange
activity, game state, and relevant game data.

In addition, you can customize how clients and servers interact by adding game logic to the
Realtime script. With custom game logic, a Realtime server might implement callbacks to start
event-driven responses.

Communication protocol

Realtime servers and connected game clients communicate through two channels: a TCP
connection for reliable delivery, and a UDP channel for fast delivery. When creating messages,
game clients choose which protocol to use depending on the nature of the message. Message
delivery is set to UDP by default. If a UDP channel isn't available, Amazon GamelLift sends
messages using TCP as a fallback.

Message content

Message content consists of two elements: a required operation code (opCode) and an optional
payload. A message's opCode identifies a particular player activity or game event, and the payload
provides additional data related to the operation code. Both of these elements are developer-
defined. Your game client acts based on the opCodes in the messages that it receives.

Player groups

Realtime Servers provides functionality to manage groups of players. By default, Amazon GamelLift
places all players who connect to a game in an "all players" group. In addition, developers can set

Managing game sessions 111

Amazon GamelLift Developer Guide

up other groups for their games, and players can be members of multiple groups simultaneously.
Group members can send messages and share game data with all players in the group. One
possible use for groups is to set up player teams and manage team communication.

Realtime Servers with TLS certificates

With Realtime Servers, server authentication and data packet encryption are built into the service.
These security features are enabled when you turn on TLS certificate generation. When a game
client tries to connect with a Realtime server, the server automatically responds with the TLS
certificate, which the client validates. Amazon GamelLift handles encryption using TLS for TCP
(WebSockets) communication and DTLS for UDP traffic.

Customizing a Realtime server

A Realtime server performs as a stateless relay server. The Realtime server relays packets of
messages and game data between the game clients connected to the game. However, the Realtime
server doesn't evaluate messages, process data, or perform any gameplay logic. Used in this way,
each game client maintains its own view of the game state and provides updates to other players
through the relay server. Each game client is responsible for incorporating these updates and
reconciling its own game state.

You can customize your servers by adding to the Realtime script functionality. With game logic, for
example, you can build a stateful game with a server-authoritative view of the game state.

Amazon GamelLift defines a set of server-side callbacks for Realtime scripts. Implement these
callbacks to add event-driven functionality to your server. For example, you can:

« Authenticate a player when a game client tries to connect to the server.
« Validate whether a player can join a group upon request.

« Determine when to deliver messages from a certain player or to a target player, or perform
additional processing in response.

» Notify all players when a player leaves a group or disconnects from the server.

 View the content of game session objects or message objects, and use the data.

Deploying and updating Realtime Servers

A key advantage of Realtime Servers is the ability to update your scripts at any time. When you
update a script, Amazon GamelLift distributes the new version to all hosting resources within

Customizing a server 112

Amazon GamelLift Developer Guide

minutes. After Amazon GamelLift deploys the new script, all new game sessions created after
that point will use the new script version. (Existing game sessions will continue to use the original
version.)

Get started integrating your game with Realtime Servers:

 Integrating a game client for Realtime Servers

» Creating a Realtime script

Integrating a game client for Realtime Servers

This topic describes how to prepare your game client to be able to join and participate in Amazon
GamelLift-hosted game sessions.

There are two sets of tasks needed to prepare your game client:

» Set up your game client to acquire information about existing games, request matchmaking,
start new game sessions, and reserve game session slots for a player.

« Enable your game client to join a game session hosted on a Realtime server and exchange
messages.

Find or create game sessions and player sessions

Set up your game client to find or start game sessions, request FlexMatch matchmaking, and
reserve space for players in a game by creating player sessions. As a best practice, create a backend
service and use it to make the direct requests to the Amazon Gamelift service when triggered by a
game client action. The backend service then relays relevant responses back to the game client.

1. Add the AWS SDK to your game client, initialize an Amazon GamelLift client, and configure it
to use the hosting resources in your fleets and queues. The AWS SDK is available in several
languages; see the Amazon GamelLift SDKs For custom client services.

2. Add Gamelift functionality to your backend service. For more detailed instructions, see Add
Amazon GamelLift to your game client and Adding FlexMatch matchmaking. The best practice

is to use game session placements to create new game sessions. This method lets you take full
advantage of GamelLift's ability to quickly and intelligently place new game sessions, as well as
use player latency data to minimize game lag. At a minimum, your backend service must be able
to request new game sessions and handle game session data in response. You may also want

Integrating a game client 113

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-intro.html

Amazon GamelLift Developer Guide

to add functionality to search for and get information on existing game sessions, and request
player sessions, which effectively reserve a player slot in an existing game session.

3. Convey connection information back to the game client. The backend service receives game
session and player session objects in response to requests to the Amazon GamelLift service.
These objects contain information, in particular connection details (IP address and port) and
player session ID, that the game client needs to connect to the game session running on a
Realtime Server.

Connect to games on Realtime Servers

Enable your game client to connect directly with a hosted game session on a Realtime server and
exchange messages with the server and with other players.

1. Get the Realtime Client SDK, build it, and add it to your game client project. See the README file
for more information on SDK requirements and instructions on how to build the client libraries.

2. Call Client() with a client configuration that specifies the type of client/server connection to use.

(® Note

If you're connecting to a Realtime server that is running on a secured fleet with a TLS
certificate, you must specify a secured connection type.

3. Add the following functionality to your game client. See the Realtime Servers client API (C#)

reference for more information.

« Connect to and disconnect from a game
o Connect()
 Disconnect()

« Send messages to target recipients

« SendMessage()

« Receive and process messages

» OnDataReceived()

 Join groups and leave player groups

« JoinGroup()
» RequestGroupMembership()

« LeaveGroup()

Integrating a game client 114

Amazon GamelLift Developer Guide

4. Set up event handlers for the client callbacks as needed. See Realtime Servers client API (C#)
reference: Asynchronous callbacks.

When working with Realtime fleets that have TLS certificate generation enabled, the server is
automatically authenticated using the TLS certificate. TCP and UDP traffic is encrypted in flight to
provide transport layer security. TCP traffic is encrypted using TLS 1.2, and UDP traffic is encrypted
using DTLS 1.2.

Game client examples

Basic realtime client (C#)

This example illustrates a basic game client integration with the Realtime Client SDK (C#). As
shown, the example initializes a Realtime client object, sets up event handlers and implements the
client-side callbacks, connects to a Realtime server, sends a message, and disconnects.

using System;

using System.Text;

using Aws.GamelLift.Realtime;

using Aws.GamelLift.Realtime.Event;
using Aws.GamelLift.Realtime.Types;

namespace Example
{
/**
* An example client that wraps the GameLift Realtime client SDK

* You can redirect logging from the SDK by setting up the LogHandler as such:
* ClientLogger.LogHandler = (x) => Console.WritelLine(x);

*/
class RealTimeClient

{
public Aws.GameLift.Realtime.Client Client { get; private set; }

// An opcode defined by client and your server script that represents a custom
message type
private const int MY_TEST_OP_CODE = 10;

/// Initialize a client for GameLift Realtime and connect to a player session.
/// <param name="endpoint">The DNS name that is assigned to Realtime server</
param>

Integrating a game client 115

Amazon GamelLift Developer Guide

/// <param name="remoteTcpPort">A TCP port for the Realtime server</param>

/// <param name="listeningUdpPort">A local port for listening to UDP traffic</
param>

/// <param name="connectionType">Type of connection to establish between client
and the Realtime server</param>

/// <param name="playerSessionId">The player session ID that is assigned to the
game client for a game session </param>

/// <param name="connectionPayload">Developer-defined data to be used during
client connection, such as for player authentication</param>

public RealTimeClient(string endpoint, int remoteTcpPort, int listeningUdpPort,
ConnectionType connectionType,

string playerSessionId, byte[] connectionPayload)

// Create a client configuration to specify a secure or unsecure connection
type

// Best practice is to set up a secure connection using the connection type
RT_OVER_WSS_DTLS_TLS12.

ClientConfiguration clientConfiguration = new ClientConfiguration()

// C# notation to set the field ConnectionType in the new instance of
ClientConfiguration
ConnectionType = connectionType

};
// Create a Realtime client with the client configuration
Client = new Client(clientConfiguration);
// Initialize event handlers for the Realtime client
Client.ConnectionOpen += OnOpenEvent;
Client.ConnectionClose += OnCloseEvent;
Client.GroupMembershipUpdated += OnGroupMembershipUpdate;
Client.DataReceived += OnDataReceived;
// Create a connection token to authenticate the client with the Realtime
server

// Player session IDs can be retrieved using AWS SDK for GamelLift
ConnectionToken connectionToken = new ConnectionToken(playerSessionld,
connectionPayload);

// Initiate a connection with the Realtime server with the given connection
information
Client.Connect(endpoint, remoteTcpPort, listeningUdpPort, connectionToken);

Integrating a game client 116

Amazon Gamelift

Developer Guide

param>

public void Disconnect()

{
if (Client.Connected)
{
Client.Disconnect();
}
}
public bool IsConnected()
{
return Client.Connected;
}

/// <summary>
/// Example of sending to a custom message to the server.

///
/// Server could be replaced by known peer Id etc.

/// </summary>

/// <param name="intent">Choice of delivery intent i.e. Reliable, Fast etc.

/// <param name="payload">Custom payload to send with message</param>
public void SendMessage(DeliveryIntent intent, string payload)
{

Client.SendMessage(Client.NewMessage(MY_TEST_OP_CODE)
.WithDeliveryIntent(intent)
.WithTargetPlayer(Constants.PLAYER_ID_SERVER)
.WithPayload(StringToBytes(payload)));

/**
* Handle connection open events
*/
public void OnOpenEvent(object sender, EventArgs e)

{
}

/**
* Handle connection close events
*/
public void OnCloseEvent(object sender, EventArgs e)
{
}

/**

</

Integrating a game client

Amazon GamelLift Developer Guide

* Handle Group membership update events

*/
public void OnGroupMembershipUpdate(object sender, GroupMembershipEventArgs e)
{
}
/**
* Handle data received from the Realtime server
*/
public virtual void OnDataReceived(object sender, DataReceivedEventArgs e)
{
switch (e.OpCode)
{
// handle message based on OpCode
default:
break;
}
}
/**
* Helper method to simplify task of sending/receiving payloads.
*/
public static byte[] StringToBytes(string str)
{
return Encoding.UTF8.GetBytes(str);
}
/**
* Helper method to simplify task of sending/receiving payloads.
*/
public static string BytesToString(byte[] bytes)
{
return Encoding.UTF8.GetString(bytes);
}

Creating a Realtime script

To use Realtime Servers for your game, you need to provide a script (in the form of some JavaScript
code) to configure and optionally customize a fleet of Realtime Servers. This topic covers the key
steps in creating a Realtime script. Once the script is ready, upload it to the Amazon GamelLift
service and use it to create a fleet (see Upload a Realtime Servers script to Amazon GamelLift).

Customizing a Realtime script 118

Amazon GamelLift Developer Guide

To prepare a script for use with Realtime Servers, add the following functionality to your Realtime
script.

Manage game session life-cycle (required)

At a minimum, a Realtime script must include the Init () function, which prepares the Realtime
server to start a game session. It is also highly recommended that you also provide a way to
terminate game sessions, to ensure that new game sessions can continue to be started on your
fleet.

The Init() callback function, when called, is passed a Realtime session object, which contains an
interface for the Realtime server. See Realtime Servers interface for more details on this interface.

To gracefully end a game session, the script must also call the Realtime server's
session.processEnding function. This requires some mechanism to determine when to end a
session. The script example code illustrates a simple mechanism that checks for player connections
and triggers game session termination when no players have been connected to the session for a
specified length of time.

Realtime Servers with the most basic configuration--server process initialization and termination--
essentially act as stateless relay servers. The Realtime server relays messages and game data
between game clients that are connected to the game, but takes no independent action to process
data or perform logic. You can optionally add game logic, triggered by game events or other
mechanisms, as needed for your game.

Add server-side game logic (optional)

You can optionally add game logic to your Realtime script. For example, you might do any or all
of the following. The script example code provides illustration. See Amazon GamelLift Realtime

Servers script reference.

« Add event-driven logic. Implement the callback functions to respond to client-server events.
See Script callbacks for Realtime Servers for a complete list of callbacks.

« Trigger logic by sending messages to the server. Create a set of special operation codes for
messages sent from game clients to the server, and add functions to handle receipt. Use the
callback onMessage, and parse the message content using the gameMessage interface (see
gameMessage.opcode).

« Enable game logic to access your other AWS resources. For details, see Communicate with other

AWS resources from your fleets.

Customizing a Realtime script 119

Amazon GamelLift Developer Guide

» Allow game logic to access fleet information for the instance it is running on. For details, see Get
fleet data for a Amazon GamelLift instance.

Realtime Servers script example

This example illustrates a basic script needed to deploy Realtime Servers plus some custom logic.
It contains the required Init () function, and uses a timer mechanism to trigger game session
termination based on length of time with no player connections. It also includes some hooks for
custom logic, including some callback implementations.

// Example Realtime Server Script
'use strict';

// Example override configuration

const configuration = {
pingIntervalTime: 30000,
maxPlayers: 32

i

// Timing mechanism used to trigger end of game session. Defines how long, in
milliseconds, between each tick in the example tick loop
const tickTime = 1000;

// Defines how to long to wait in Seconds before beginning early termination check in
the example tick loop
const minimumElapsedTime = 120;

var session; // The Realtime server session object
var logger; // Log at appropriate level
via .info(), .warn(), .error(), .debug()
var startTime; // Records the time the process started
var activePlayers = 0; // Records the number of connected players

var onProcessStartedCalled = false; // Record if onProcessStarted has been called

// Example custom op codes for user-defined messages

// Any positive op code number can be defined here. These should match your client
code.

const OP_CODE_CUSTOM_OP1 = 111;

const OP_CODE_CUSTOM_OP1_REPLY = 112;

const OP_CODE_PLAYER_ACCEPTED = 113;

const OP_CODE_DISCONNECT_NOTIFICATION = 114,

Customizing a Realtime script 120

Amazon GamelLift Developer Guide

// Example groups for user-defined groups

// Any positive group number can be defined here. These should match your client code.
// When referring to user-defined groups, "-1" represents all groups, "@" is reserved.
const RED_TEAM_GROUP = 1;

const BLUE_TEAM_GROUP = 2;

// Called when game server is initialized, passed server's object of current session
function init(rtSession) {

session = rtSession;

logger = session.getlLogger();

// On Process Started is called when the process has begun and we need to perform any
// bootstrapping. This is where the developer should insert any code to prepare
// the process to be able to host a game session, for example load some settings or set
state
//
// Return true if the process has been appropriately prepared and it is okay to invoke
the
// GamelLift ProcessReady() call.
function onProcessStarted(args) {
onProcessStartedCalled = true;
logger.info("Starting process with args: " + args);
logger.info("Ready to host games...");

return true;

// Called when a new game session is started on the process
function onStartGameSession(gameSession) {
// Complete any game session set-up

// Set up an example tick loop to perform server initiated actions
startTime = getTimeInS();
tickLoop();

// Handle process termination if the process is being terminated by GamelLift
// You do not need to call ProcessEnding here
function onProcessTerminate() {

// Perform any clean up

// Return true if the process is healthy

Customizing a Realtime script 121

Amazon GamelLift Developer Guide

function onHealthCheck() {
return true;

// On Player Connect is called when a player has passed initial validation

// Return true if player should connect, false to reject

function onPlayerConnect(connectMsg) {
// Perform any validation needed for connectMsg.payload, connectMsg.peerlId
return true;

// Called when a Player is accepted into the game
function onPlayerAccepted(player) {
// This player was accepted -- let's send them a message
const msg = session.newTextGameMessage(OP_CODE_PLAYER_ACCEPTED, player.peerld,
"Peer " + player.peerld + " accepted");
session.sendReliableMessage(msg, player.peerld);
activePlayers++;

// On Player Disconnect is called when a player has left or been forcibly terminated
// Is only called for players that actually connected to the server and not those
rejected by validation
// This is called before the player is removed from the player list
function onPlayerDisconnect(peerId) {
// send a message to each remaining player letting them know about the disconnect
const outMessage = session.newTextGameMessage(OP_CODE_DISCONNECT_NOTIFICATION,
session.getServerId(),
"Peer " + peerld + " disconnected");
session.getPlayers().forEach((player, playerId) => {
if (playerId != peerId) {
session.sendReliableMessage(outMessage, playerId);

1)

activePlayers--;

// Handle a message to the server
function onMessage(gameMessage) {
switch (gameMessage.opCode) {
case OP_CODE_CUSTOM_OP1: {
// do operation 1 with gameMessage.payload for example sendToGroup
const outMessage = session.newTextGameMessage(OP_CODE_CUSTOM_OP1_REPLY,
session.getServerId(), gameMessage.payload);

Customizing a Realtime script 122

Amazon GamelLift Developer Guide

session.sendGroupMessage(outMessage, RED_TEAM_GROUP);
break;

// Return true if the send should be allowed

function onSendToPlayer(gameMessage) {
// This example rejects any payloads containing "Reject"
return (!gameMessage.getPayloadAsText().includes("Reject"));

// Return true if the send to group should be allowed
// Use gameMessage.getPayloadAsText() to get the message contents
function onSendToGroup(gameMessage) {

return true;

// Return true if the player is allowed to join the group
function onPlayerJoinGroup(groupId, peerId) {
return true;

// Return true if the player is allowed to leave the group
function onPlayerlLeaveGroup(groupId, peerId) {
return true;

// A simple tick loop example
// Checks to see if a minimum amount of time has passed before seeing if the game has
ended
async function tickLoop() {
const elapsedTime = getTimeInS() - startTime;
logger.info("Tick... " + elapsedTime + " activePlayers: " + activePlayers);

// In Tick loop - see if all players have left early after a minimum period of time
has passed
// Call processEnding() to terminate the process and quit
if ((activePlayers == 0) && (elapsedTime > minimumElapsedTime)) {
logger.info("All players disconnected. Ending game");
const outcome = await session.processEnding();
logger.info("Completed process ending with: " + outcome);
process.exit(0);

Customizing a Realtime script 123

Amazon GamelLift Developer Guide

else {
setTimeout(tickLoop, tickTime);

// Calculates the current time in seconds
function getTimeInS() {
return Math.round(new Date().getTime()/1000);

exports.ssExports = {
configuration: configuration,
init: init,
onProcessStarted: onProcessStarted,
onMessage: onMessage,
onPlayerConnect: onPlayerConnect,
onPlayerAccepted: onPlayerAccepted,
onPlayerDisconnect: onPlayerDisconnect,
onSendToPlayer: onSendToPlayer,
onSendToGroup: onSendToGroup,
onPlayerJoinGroup: onPlayerJoinGroup,
onPlayerlLeaveGroup: onPlayerlLeaveGroup,
onStartGameSession: onStartGameSession,
onProcessTerminate: onProcessTerminate,
onHealthCheck: onHealthCheck

};

Integrating games with the Amazon GamelLift plugin for Unity

The topics in this section describe the Amazon GamelLift plugin for Unity and how to use it to
prepare your multiplayer game project for hosting with Amazon GamelLift. Work entirely in
your Unity development environment with the plugin's guided workflows to complete the basic
requirements for hosting with Amazon GamelLift.

Amazon Gamelift is a fully managed service that lets game developers manage and scale
dedicated game servers for session-based multiplayer games. For more information about Amazon
GamelLift hosting, see How Amazon GamelLift works.

« Amazon GamelLift plugin for Unity guide for server SDK 5.x, version 2.0.0, works with server SDK
5.x and supports Amazon GameLift Anywhere.

Integrating games with the plugin for Unity 124

Amazon GamelLift Developer Guide

o Amazon GamelLift plugin for Unity guide for server SDK 4.x, version 1.0.0, works with server SDK

4.x or earlier. This version uses Amazon GamelLift Local for integration testing.

Amazon Gamelift plugin for Unity guide for server SDK 5.x

Amazon GamelLift provides tools for preparing your multiplayer game servers to work with Amazon
GamelLift. The Amazon GamelLift plugin for Unity makes it easier to integrate Amazon GameLift
into your Unity game projects, test your integration with Amazon GameLift Anywhere, and deploy
Amazon GamelLift resources for cloud hosting.

This plugin uses AWS CloudFormation templates to deploy hosting solutions for common gaming
scenarios. Use these solutions as provided or customize them as needed for your games.

Topics

» About the plugin

Plugin workflow

Install the plugin for Unity

Set up an AWS user profile

Set up your game for local testing with Amazon GamelLift Anywhere

Deploy your game to cloud hosting with managed EC2 fleets

About the plugin

The plugin for Unity provides a streamlined getting started experience for integrating and
hosting your Unity multiplayer games with Amazon GameLift. You can take advantage of plugin
functionality and pre-built components to quickly get your games up and running.

The plugin adds tools and functionality to the Unity editor. Use the guided workflows to integrate
Amazon Gamelift into your game project, test it locally, and then deploy the game server to
Amazon Gamelift cloud hosting.

Use the plugin's pre-built hosting solutions to deploy your game. Set up an Amazon GameLift
Anywhere fleet with your local workstation as a host. For cloud hosting, choose from two common
deployment scenarios that balance player latency, game session availability, and cost in different
ways. One scenario includes a simple FlexMatch matchmaker and rule set. Use these scenarios

to put a basic production-ready hosting solution in place, and then optimize and customize as
needed.

Plugin for Unity guide (server SDK 5.x) 125

Amazon GamelLift Developer Guide

The plugin includes these components:

o Plugin modules for the Unity editor. When the plugin is installed, a new main menu item gives
you access to Amazon GamelLift functionality.

o C# libraries for the Amazon GamelLift service APl with client-side functionality.
o C#t libraries for the Amazon GamelLift server SDK (version 5.x).

« Sample game content, including assets and scenes, so you can try out Amazon GamelLift even if
you don't have a build-ready multiplayer game.

» Solution configurations, provided as AWS CloudFormation templates, that the plugin uses when
deploying your game server to the cloud for hosting.

Plugin workflow

The following steps describe a typical approach to integrating and deploying a game project with
the Amazon GamelLift plugin for Unity. You complete these steps by working in the Unity editor
and your game code.

1. Create a user profile that links to your AWS account and provides access credentials for a valid
account user with permissions to use Amazon GamelLift.

2. Add server code to your game project to establish communication between a running game
server and the with Amazon GamelLift service.

3. Add client code to your game project that lets game clients send requests to Amazon GamelLift
to start or join a game session and then connect to the game server.

4. Use the Anywhere workflow to set up your local workstation as an Anywhere host for your
game server. Launch your game server and client locally, connect to a game session, and test
your integration.

5. Use the EC2 hosting workflow to upload your integrated game server and deploy a cloud
hosting solution. When your game server is ready, launch your game client locally, connect to a
game session and log in, and play the game.

When working in the plugin, you'll create and use AWS resources, These actions might incur
charges to the AWS account in use. If you're new to AWS, actions may be covered under the AWS
Free Tier.

Plugin for Unity guide (server SDK 5.x) 126

https://aws.amazon.com/free/
https://aws.amazon.com/free/

Amazon GamelLift Developer Guide

Install the plugin for Unity

This section describes how to add the plugin to a Unity project. After the plugin is installed, plugin
functionality is available when you have the project open in the Unity editor.

Before you start

Here's what you need to use the Amazon Gamelift plugin for Unity:

« Unity for Windows 2022 LTS or Unity for MacOS

« Amazon Gamelift plugin for Unity download. [Download site] The download includes two
packages:

« Amazon GamelLift standalone plugin for Unity
« Amazon Gamelift C# server SDK for Unity

« Microsoft Visual Studio 2019 or newer.

« A multiplayer game project with C# game code.

» The third party scoped registry UnityNuGet. This tool manages third-party DLLs. For more
information, see the UnityNuGet Github repository.

Add the plugin to your game project
Complete the following tasks, working in the Unity editor and your game project files.
Step 1: Add UnityNuGet to your game project

If you don't have UnityNuGet set up for your game project, use the following steps to install
the tool using the Unity package manager. Alternatively, you can use the NuGet CLI to manually
download the DLLs. For more information, see the Amazon GameLift C# server SDK for Unity
README.

1. With your project open in the Unity editor, go to the main menu and select Edit, Project
Settings. From the options, choose the Package Manager section and open the Scoped
Registries group.

2. Choose the + button and enter the following values for the UnityNuGet scoped registry:

Name: Unity NuGet
URL: https://unitynuget-registry.azurewebsites.net

Plugin for Unity guide (server SDK 5.x) 127

https://github.com/aws/amazon-gamelift-plugin-unity
https://github.com/xoofx/UnityNuGet

Amazon GamelLift Developer Guide

Scope(s): org.nuget

For Unity 2021 version users:

After setting up UnityNuGet, check for Assembly Version Validation errors showingin

the Unity console. These errors occur if binding redirects for strongly named assemblies in the
NuGet packages are not resolving correctly to paths within your Unity project. To resolve this issue,
configure Unity's assembly version validation:

1. In the Unity editor, go to the main menu and select Edit, Project Settings, and open the Player
section.

2. Deselect the Assembly Version Validation option.

Step 2: Add the plugin and C# server SDK packages

1. Unzip the Amazon GamelLift plugin for Unity download, which contains both packages.

2. With your project open in the Unity Editor, go to the main menu and select Window, Package
Manager.

3. Choose the + button to add a new package. Choose the option Add package from tarball.

4. In Select packages on disk, locate the Amazon GamelLift C# Server SDK plugin for Unity
download files, and choose the com. amazonaws.gameliftserver.sdk-<version>.tgz
file. Choose Open to install the plugin.

5. In Select packages on disk, locate the Amazon GamelLift standalone plugin for Unity
download files, and choose the file com.amazonaws.gamelift-<version>.tgz. Choose
Open to install the plugin.

6. Verify that the standalone plugin is added to your project. Return to the Unity editor window.
Check the main menu for the new Amazon GamelLift menu button.

Step 3: Import the sample game (optional)

The plugin for Unity comes with a set of sample game assets, including scenes, that you can add
to your game project. Importing the sample game gives you a fast path to testing, building, and
deploying a simple multiplayer game with Amazon GameLift. The sample game is already fully
integrated with Amazon GamelLift SDKs, so you can skip the integration tasks and complete the
remaining workflow tasks.

Plugin for Unity guide (server SDK 5.x) 128

Amazon GamelLift Developer Guide

When using the sample game, you can set up and join a locally hosted Amazon GamelLift Anywhere
fleet in just a few minutes. You can deploy the game to Amazon Gamelift and join a live, cloud-
hosted game in under an hour.

To import the sample game:

1. With your game project open in the Unity Editor, go to the Amazon GamelLift menu and select
Sample Game, Import Sample Game.

2. After the files are imported, go to the Amazon GamelLift menu again and select Sample
Game, Initialize Settings. This step configures your project for building the game client and
server.

When installation is complete, you'll see two new scenes added to your game project. You'll also
see some additional project assets, including a GameLiftClientSettings asset.

For more details on the sample's Ul and gameplay, see the sample game readme.
Set up an AWS user profile

After installing the plugin, set up a profile and link it to a valid AWS account user. You can maintain
multiple profiles, but you can only have one profile active at a time. Whenever you work in the
plugin, select a profile to use.

Maintaining multiple profiles gives you the ability to switch between different hosting scenarios.
For example, you might set up profiles with the same AWS credentials but different AWS Regions.
Or you might set up profiles with different AWS accounts or with different users/permission sets.

(® Note

If you've installed the AWS CLI on your workstation and have a profile already configured,
the Amazon GamelLift plugin can detect it and will list it as an existing profile. The plugin
automatically selects any profile named [default]. You can use an existing profile or
create a new one.

To set up your AWS profile

1. In the Unity editor main menu, choose Amazon GamelLift and select Set AWS Account
Profiles. This action opens the plugin window. Open the page AWS User Profiles.

Plugin for Unity guide (server SDK 5.x) 129

Amazon GamelLift Developer Guide

2. If the plugin detects an existing profile, you won't be prompted to create one. Select an
existing profile or choose Add another profile to create a new one.

3. If the plugin doesn't detect an existing profile, it prompts you to create one. You can create a
new profile using either a new or existing AWS account.

(® Note

You need to use the AWS Management Console to create a new AWS account and
create or update a user with the proper permission set.

When setting up a profile, you need the following information:

o An AWS account. If you need to create a new AWS account, follow the prompts to create the
account. See Create an AWS account for more details.

o An AWS account user with permissions to use Amazon GamelLift and other required AWS
services. See Set up an AWS account for instructions on setting up an AWS Identity and

Access Management (IAM) user with Amazon GamelLift permissions.

« Credentials for your AWS user. This user also needs programmatic access with long-term
credentials. These credentials consist of an AWS access key ID and AWS secret key. See Get
your access keys for more details.

« AWS Region. This is a geographic location where you want to create your AWS resources for
hosting. During development, we recommend using a region close to your physical location
to minimize latency. See the list of supported AWS regions.

4. When you selected or created a profile, check the profile's bootstrap status and take action as
needed. All profiles must be bootstrapped to use Amazon GamelLift plugin functionality.

To bootstrap your profile:

Bootstrapping designates an Amazon S3 bucket for use with the selected user profile. Amazon S3
is a core AWS service for data and object storage. The bucket used to store project configurations,
build artifacts, and other dependencies. Buckets are not shared between other profiles.

(@ Note

Bootstrapping creates new AWS resources and might incur costs.

Plugin for Unity guide (server SDK 5.x) 130

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-creating.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html#cli-authentication-user-get
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html#cli-authentication-user-get
https://docs.aws.amazon.com/general/latest/gr/gamelift.html

Amazon GamelLift Developer Guide

1. When viewing your profiles in the plugin window AWS User Profiles, select the profile you
want to use. A warning message is displayed if the profile hasn’t been bootstrapped yet.

2. In the Bootstrap your profile section, select a profile from the dropdown list and check the
bootstrap status. If the status indicates that no bucket exists, choose the button Bootstrap
profile. You can set the bucket name to a new bucket name, enter an existing bucket that you
have access to, or keep the auto-generated name.

3. Wait for bootstrap status to change to "Active". This can take a few minutes. When the status is
“Active”, you can use the profile to work with plugin features

Set up your game for local testing with Amazon GamelLift Anywhere

In this workflow, you add client and server game code for Amazon GamelLift functionality and use
the plugin to designate your local workstation as a test game server host. When you've completed
integration tasks, use the plugin to build your game client and server components.

To start the Amazon GamelLift Anywhere workflow:

« Inthe Unity editor main menu, choose Amazon GamelLift and select Host with Anywhere.
This action opens the plugin page for setting up your game with an @Anywhere fleet. The
page presents a five-step process to integrate, build, and launch your game components.

Set your profile

Choose the profile you want to use when following this workflow. The profile you select impacts all
steps in the workflow. All resources you create are associated with the profile’'s AWS account and
are placed in the profile's default AWS Region. The profile user's permissions determine your access
to AWS resources and actions.

1. Select a profile from the dropdown list of available profiles. If you don't have a profile yet or
want to create a new one, go to the Amazon GamelLift menu and choose Set AWS Account
Profiles.

2. If bootstrap status is not “Active”, choose Bootstrap profile and wait for the status to change
to “Active”.

Plugin for Unity guide (server SDK 5.x) 131

Amazon GamelLift Developer Guide

Integrate your game with Amazon GamelLift

® Note

If you imported the sample game, you can skip this step. The sample game assets already
have the necessary server and client code in place.

For this step in the workflow, you make updates to the client and server code in your game project.

« * Game servers must be able to communicate with the Amazon GamelLift service to receive
prompts to start a game session, provide game session connection information, and report
status.

« Game clients must be able to get information about game sessions, join or start game sessions,
and get connection information to join a game.

Integrate your server code

If you're using your own game project with custom scenes, use provided sample code to add
required server code to your game project:

1. Inyour game project files, open the Assets/Scripts/Server folder. If it doesn't exist,
create it.

2. Go to the GitHub repo aws/amazon-gamelift-plugin-unity and open the path Samples~/
SampleGame/Assets/Scripts/Server.

3. Locate the file GamelLiftServer.cs. and copy it into your game project’s Server folder. When you
build a server executable, use this file as the build target.

The sample code includes these minimum required elements, which use Amazon GamelLift C#
server SDK (version 5):

« Initializes an Amazon GamelLift API client. The InitSDK() call with server parameters is required
for an Amazon GamelLift Anywhere fleet. These settings are automatically set for use in the
plugin.

« Implements required callback functions to respond to requests from the Amazon GameLift
service, including OnStartGameSession, OnProcessTerminate, and onHealthCheck.

Plugin for Unity guide (server SDK 5.x) 132

https://github.com/aws/amazon-gamelift-plugin-unity

Amazon GamelLift Developer Guide

» Calls ProcessReady() with a designated port to notify the Amazon GamelLift service when the
server process is ready to host game sessions.

If you want to customize the sample server code, see these resources:

« Add Amazon Gamelift to your game server

« Amazon Gamelift server SDK 5.x reference for C# and Unity

Integrate your client code

If you're using your own game project with custom scenes, then you need to integrate basic
functionality into your game client. You also need to add Ul elements so that players can sign in
and join a game session. Use the Amazon GamelLift service APIs (in the AWS SDK) to get game
session information, create new game sessions, or join existing game sessions,

When building a client for local testing with an Anywhere fleet, you can add direct calls to the
Amazon Gamelift service. When you develop your game for cloud hosting—or if you plan to use
Anywhere fleets for production hosting—you'll need to create a client-side backend service to
handle all communication between game clients and the Amazon GamelLift service.

To integrate Amazon GamelLift into your client code, use the following resources as a guide.

« Integrate the client with the GameLiftCoreApi class in the GitHub repo aws/amazon-gamelift-
plugin-unity. This class provides controls for player authentication and for retrieving game
session information.

» View sample game integrations, available in the GitHub repo aws/amazon-gamelift-plugin-unity,
Samples~/SampleGame/Assets/Scripts/Client/GameLiftClient.cs.

« Follow instructions in Add Amazon GamelLift to your Unity game client.

For game clients connecting to an Anywhere fleet, your game client needs the following
information. The plugin automatically updates your game project to use the resources that your
create in the plugin.

« Fleetld - The unique identifier for your Anywhere fleet.
» FleetLocation - The custom location of your Anywhere fleet.

« AwsRegion - The AWS region where your Anywhere fleet is hosted. This is the region you set in
your user profile.

Plugin for Unity guide (server SDK 5.x) 133

Amazon GamelLift Developer Guide

» ProfileName - An AWS credentials profile on your local machine that allows access to the
AWS SDK for GamelLift. The game client uses these credentials to authenticate requests to the
Amazon Gamelift service.

® Note

The credentials profile is generated by the plugin and stored on the local machine. As
a result, you must run the client on the local machine (or on a machine with the same
profile).

Connect to an Anywhere fleet

In this step, you designate an Anywhere fleet to use. An Anywhere fleet defines a collection of
compute resources, which can be located anywhere, for game server hosting.

« If the AWS account you're currently using has existing Anywhere fleets, open the Fleet name
dropdown field and choose a fleet. This dropdown only shows the Anywhere fleets in the AWS
Region for the currently active user profile.

« If there are no existing fleets—or you want to create a new one, choose Create new Anywhere
fleet and provide a fleet name.

After you've chosen an Anywhere fleet for your project, Amazon GamelLift verifies that fleet status
is active ad displays the fleet ID. You can track progress of this request in the Unity editor's output
log.

Register a compute
In this step, you register your local workstation as a compute resource in the new Anywhere fleet.

1. Enter a compute name for your local machine. If you add more than one compute in the fleet,
the names must be unique.

2. Choose Register compute. You can track progress of this request in the Unreal editor’'s output
log.

The plugin registers your local workstation with the IP address set to localhost (127.0.0.1). This
setting assumes that you'll run your game client and server on the same machine.

Plugin for Unity guide (server SDK 5.x) 134

Amazon GamelLift Developer Guide

In response to this action, Amazon GamelLift verifies that it can connect to the compute and returns
information about the newly registered compute.

Launch game

In this step you build your game components and launch them to play the game. Complete the
following tasks:

1. Configure your game client. In this step, you prompt the plugin to update a
GameLiftClientSettings asset for your game project. The plugin uses this asset to store
certain information that your game client needs to connect to the Amazon GamelLift service.

a. Ifyou didn't import and initialize the sample game, create a new
GameLiftClientSettings asset. In the Unity editor main menu, choose Assets, Create,
Gamelift, Client Settings. If you create multiple copies of GameLiftClientSettings in your
project, the plugin automatically detects this and notifies you which asset the plugin will
update.

b. In Launch Game, choose Configure Client: Apply Anywhere Settings. This action updates
your game client settings to use the Anywhere fleet that you just set up.

2. Build and run your game client.

a. Build a client executable using the standard Unity build process. In File, Build Settings,
switch the platform to Windows, Mac, Linux. If you imported the sample game and
initialized the settings, the build list and build target are automatically updated.

b. Launch one or more instances of the newly built game client executable.

3. Launch a game server in your Anywhere fleet. Choose Server: Launch Server in Editor. This
task starts a live server that your client can connect to as long as the Unity editor remains
open.

4. Start or join a game session. In your game client instances, use the Ul to join each client to a
game session. How you do this depends on how you added functionality to the client.

If you're using the sample game client, it has the following characteristics:

« A player login component. When connecting to a game server on an Anywhere fleet, there is no
player validation. You can enter any values to join the game session.

« Asimple join game Ul. When a client attempts to join a game, the client automatically looks
for an active game session with an available player slot. If no game session is available, the

Plugin for Unity guide (server SDK 5.x) 135

Amazon GamelLift Developer Guide

client requests a new game session. If a game session is available, the client requests to join the
available game session. When testing your game with multiple concurrent clients, the first client
starts the game session, and the remaining clients automatically join the existing game session.

« Game sessions with four player slots. You can launch up to four game client instances
concurrently and they will join the same game session.

Launch from a server executable (optional)

You can build and launch your game server executable for testing on an Anywhere fleet.

1. Build a server executable using the standard Unity build process. In File, Build Settings, switch
the platform to Dedicated Server and build.

2. Get a short-term authentication token by calling the AWS CLI command get-compute-auth-
token with your Anywhere fleet ID and AWS Region. The fleet ID is displayed in Connect to an
Anywhere Fleet when you create the fleet. The AWS Region is displayed in Set Your Profile

when you select your active profile.

aws gamelift get-compute-auth-token --fleet-id [your anywhere fleet ID] --region
[your AWS region]

3. Launch the newly built game server executable from a command line and pass in a valid auth
token.

my_project.exe --authToken [token]

Deploy your game to cloud hosting with managed EC2 fleets

In this workflow, you use the plugin to prepare your game for hosting on cloud-based compute
resources that are managed by Amazon GamelLift. You add client and server game code for
Amazon GamelLift functionality, then upload your server build to the Amazon GamelLift service
for hosting. When this workflow is complete, you'll have game servers running in the cloud and a
working game client that can connect to them.

To start the Amazon GamelLift managed Amazon EC2 workflow:

« In the Unity editor main menu, choose Amazon GamelLift and select Host with Managed EC2.
This workflow presents a six-step process to integrate, build, deploy, and launch your game
components.

Plugin for Unity guide (server SDK 5.x) 136

https://docs.aws.amazon.com/cli/latest/reference/gamelift/get-compute-auth-token.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/get-compute-auth-token.html

Amazon GamelLift Developer Guide

Set your profile

Choose the profile you want to use when following this workflow. The profile you select impacts all
steps in the workflow. All resources you create are associated with the profile’s AWS account and
are placed in the profile's default AWS Region. The profile user's permissions determine your access
to AWS resources and actions.

1. Select a profile from the dropdown list of available profiles. If you don't have a profile yet or
want to create a new one, go to the Amazon GameLift menu and choose Set AWS Account
Profiles.

2. If bootstrap status is not “Active”, choose Bootstrap profile and wait for the status to change
to “Active”.

Integrate your game with Amazon GamelLift

For this task, you make updates to the client and server code in your game project.

« Game servers must be able to communicate with the Amazon GamelLift service to receive
prompts to start a game session, provide game session connection information, and report
status.

« Game clients must be able to get information about game sessions, join or start game sessions,
and get connection information to join a game.

® Note

If you imported the sample game, you can skip this step. The sample game assets already
have the necessary server and client code in place.

Integrate your server code

When using your own game project with custom scenes, use the provided sample code to add
required server code to your game project. If you integrated your game project for testing with an
Anywhere fleet, you've already completed the instructions in this step.

1. Inyour game project files, open the Assets/Scripts/Server folder. If it doesn't exist,
create it.

Plugin for Unity guide (server SDK 5.x) 137

Amazon GamelLift Developer Guide

2. Go to the GitHub repo aws/amazon-gamelift-plugin-unity and open the path Samples~/

SampleGame/Assets/Scripts/Server.

3. Locate the file GameLiftServer.cs and copy it into your game project’'s Server folder.
When you build a server executable, use this file as the build target.

The sample code includes these minimum required elements, which use Amazon GamelLift C#
server SDK (version 5):

« Initializes an Amazon GamelLift API client. The InitSDK() call with server parameters is required
for an Amazon GamelLift Anywhere fleet. These settings are automatically set for use in the

plugin.
« Implements required callback functions to respond to requests from the Amazon GamelLift
service, including OnStartGameSession, OnProcessTerminate, and onHealthCheck.

» Calls ProcessReady() with a designated port to notify the Amazon GamelLift service when the
server process is ready to host game sessions.

If you want to customize the sample server code, see these resources:

o Add Amazon Gamelift to your game server

« Amazon Gamelift server SDK 5.x reference for C# and Unity

Integrate your client code

For game clients that connect to cloud-based game servers, it's a best practice to use a client-side
backend service to make calls to the Amazon GamelLift service, instead of making the calls directly
from the game client.

In the plugin workflow for hosting on a managed EC2 fleet, each deployment scenario includes a
pre-built backend service that includes the following components:

« A set of Lambda functions and DynamoDB tables that are used to request game sessions and
retrieve game session information. These components use an APl gateway as the proxy.

« An Amazon Cognito user pool that generates unique player IDs and authenticates player
connections.

Plugin for Unity guide (server SDK 5.x) 138

https://github.com/aws/amazon-gamelift-plugin-unity

Amazon GamelLift Developer Guide

To use these components, your game client needs functionality to send requests to the backend
service to do the following:

» Create a player user in the AWS Cognito user pool and authenticate.
« Join a game session and receive connection information.

 Join a game using matchmaking.

Use the following resources as a guide.

« Integrate the client with the GameLiftCoreApi class in the GitHub repo aws/amazon-gamelift-

plugin-unity. This class provides controls for player authentication and for retrieving game
session information.

» To view the sample game integrations go to the GitHub repo aws/amazon-gamelift-plugin-unity
, Samples~/SampleGame/Assets/Scripts/Client/GameLiftClient.cs.

o Add Amazon Gamelift to your Unity game client.

Select deployment scenario

In this step, you choose the game hosting solution that you want to deploy at this time. You can
have multiple deployments of your game, using any of the scenarios.

« Single-region fleet: Deploys your game server to a single fleet of hosting resources in the
active profile's default AWS region. This scenario is a good starting point for testing your server
integration with AWS and server build configuration. It deploys the following resources:

o AWS fleet (On-Demand) with your game server build installed and running.

« Amazon Cognito user pool and client to enable players to authenticate and start a game.
» API gateway authorizer that links user pool with APIs.

« WebACl for throttling excessive player calls to API gateway.

« API gateway + Lambda function for players to request a game slot. This function calls
CreateGameSession() if none are available.

» API gateway + Lambda function for players to get connection info for their game request.

« FlexMatch fleet: Deploys your game server to a set of fleets and sets up a FlexMatch
matchmaker with rules to create player matches. This scenario uses low-cost Spot hosting with a
multi-fleet, multi-location structure for durable availability. This approach is useful when you're
ready to start designing a matchmaker component for your hosting solution. In this scenario,

Plugin for Unity guide (server SDK 5.x) 139

https://github.com/aws/amazon-gamelift-plugin-unity/blob/main/Runtime/GameLiftCoreApi.cs
https://github.com/aws/amazon-gamelift-plugin-unity
https://github.com/aws/amazon-gamelift-plugin-unity
https://github.com/aws/amazon-gamelift-plugin-unity
https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-unity-client.html

Amazon GamelLift Developer Guide

you'll create the basic resources for this solution, which you can customize later as needed. It
deploys the following resources:

« FlexMatch matchmaking configuration and matchmaking rule set to accept player requests
and form matches.

o Three AWS fleets with your game server build installed and running in multiple locations.
Includes two Spot fleets and one On-Demand fleet as a backup.

« AWS game session placement queue that fulfills requests for proposed matches by finding
the best possible hosting resource (based on viability, cost, player latency, etc.) and starting a
game session.

« Amazon Cognito user pool and client to enable players to authenticate and start a game.
» API gateway authorizer that links user pool with APlIs.
« WebACl for throttling excessive player calls to API gateway.

« API gateway + Lambda function for players to request a game slot. This function calls
StartMatchmaking().

» API gateway + Lambda function for players to get connection info for their game request.

« Amazon DynamoDB tables to store matchmaking tickets for players and game session
information. .

« SNS topic + Lambda function to handle GameSessionQueue events.

Set game parameters

In this step, you describe your game for uploading to AWS .

Game name: Provide a meaningful name for your game project. This name is used within the
plugin.

Fleet name: Provide a meaningful name for your managed EC2 fleet. Amazon GamelLift uses this
name (along with the fleet ID) when listing resources in the AWS console.

Build name: Provide a meaningful name for your server build. AWS uses this name to refer to
the copy of your server build that's uploaded to Amazon GamelLift and used for deployments.

Launch parameters: Enter optional instructions to run when launching the server executable on
a managed EC2 fleet instance. Maximum length is 1024 characters.

Game server folder: Provide the path to a local folder containing your server build.

Game server file: Specify the server executable file name.

Plugin for Unity guide (server SDK 5.x) 140

Amazon GamelLift Developer Guide

Deploy scenario

In this step, you deploy your game to a cloud hosting solution based on the deployment scenario
you chose. This process can take as long as 40 minutes while AWS validates your server build,
provisions hosting resources, installs your game server, launches server processes, and gets them
ready to host game sessions.

To start deployment, choose Deploy CloudFormation. You can track the status of your game
hosting here. For more detailed information, you can sign in to the AWS Management console for
AWS and view event notifications. Be sure to sign in using the same account, user, and AWS Region
as the active user profile in the plugin.

When deployment is complete, you have your game server installed on an AWS EC2 instance. At
least one server process is running and ready to start a game session.

Launch game client

When your fleet is successfully deployed, you now have game servers running and available to host
game sessions. You can now build your client, launch it, connect to join the game session.

1. Configure your game client. In this step, you prompt the plugin to update a
GameLiftClientSettings asset for your game project. The plugin uses this asset to store
certain information that your game client needs to connect to the Amazon GamelLift service.

a. If you didn't import and initialize the sample game, create a new
GameLiftClientSettings asset. In the Unity editor main menu, choose Assets, Create,
Gamelift, Client Settings. If you create multiple copies of GamelLiftClientSettings in your
project, the plugin automatically detects this and notifies you which asset the plugin will
update.

b. In Launch Game, choose Configure Client: Apply Managed EC2 Settings. This action
updates your game client settings to use the managed EC2 fleet that you just deployed.

2. Build your game client. Build a client executable using the standard Unity build process. In File,
Build Settings, switch the platform to Windows, Mac, Linux. If you imported the sample game
and initialized the settings, the build list and build target are automatically updated.

3. Launch the newly build game client executable. To start playing the game, start two to four
client instances and use the Ul in each to join a game session.

If you're using the sample game client, it has the following characteristics:

Plugin for Unity guide (server SDK 5.x) 141

Amazon GamelLift Developer Guide

« A player login component. When connecting to a game server on an Anywhere fleet, there is no
player validation. You can enter any values to join the game session.

« A simple join game Ul. When a client attempts to join a game, the client automatically looks
for an active game session with an available player slot. If no game session is available, the
client requests a new game session. If a game session is available, the client requests to join the
available game session. When testing your game with multiple concurrent clients, the first client
starts the game session, and the remaining clients automatically join the existing game session.

« Game sessions with four player slots. You can launch up to four game client instances
concurrently and they will join the same game session.

Amazon GamelLift plugin for Unity guide for server SDK 4.x

(® Note

This topic provides information for an earlier version of the Amazon GamelLift plugin for
Unity. Version 1.0.0 (released in 2021) uses the Amazon GamelLift server SDK 4.x or earlier.
For documentation on the latest version of the plugin, which uses server SDK 5.x and
supports Amazon GamelLift Anywhere, see Amazon GamelLift plugin for Unity guide for

server SDK 5.x.

Amazon GamelLift provides tools for preparing your multiplayer game servers to run on Amazon
GamelLift. The Amazon GamelLift plugin for Unity makes it easier to integrate Amazon GameLift
into your Unity game projects and deploy Amazon GamelLift resources for cloud hosting. Use the
plugin for Unity to access Amazon GamelLift APIs and deploy AWS CloudFormation templates for
common gaming scenarios.

After you've set up the plugin, you can try out the Amazon GamelLift Unity sample on GitHub.

Topics

Integrate Amazon GamelLift with a Unity game server project

Integrate Amazon GamelLift with a Unity game client project

Install and set up the plugin

Test your game locally

Deploy a scenario

Plugin for Unity guide (server SDK 4.x) 142

https://github.com/aws-samples/amazon-gamelift-unity

Amazon GamelLift Developer Guide

 Integrate games with Amazon GamelLift in Unity

o Import and run a sample game

Integrate Amazon Gamelift with a Unity game server project

® Note

This topic provides information for an earlier version of the Amazon GamelLift plugin for
Unity. Version 1.0.0 (released in 2021) uses the Amazon GamelLift server SDK 4.x or earlier.
For documentation on the latest version of the plugin, which uses server SDK 5.x and
supports Amazon GamelLift Anywhere, see Amazon GamelLift plugin for Unity guide for
server SDK 5.x.

This topic helps you prepare your custom game server for hosting on Amazon GamelLift. The game
server must be able to notify Amazon GamelLift about its status, to start and stop game sessions
when prompted, and to perform other tasks. For more information, see Add Amazon GamelLift to

your game server.

Prerequisites
Before integrating your game server, complete the following tasks:

« Set up an IAM service role for Amazon GamelLift

o Install the plugin for Unity

Set up a new server process

(® Note

This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

Set up communication with Amazon GamelLift and report that the server process is ready to host a
game session.

1. Initialize the server SDK by calling InitSDK().

Plugin for Unity guide (server SDK 4.x) 143

Amazon GamelLift Developer Guide

2. To prepare the server to accept a game session, call ProcessReady () with the connection
port and game session location details. Include the names of callback functions that
Amazon GamelLift service invokes, such as OnGameSession(), OnGameSessionUpdate(),
OnProcessTerminate(), OnHealthCheck(). Amazon GameLift might take a few minutes
to provide a callback.

3. Amazon GamelLift updates the status of the server process to ACTIVE.

4. Amazon GamelLift calls onHealthCheck periodically.

The following code example shows how to set up a simple server process with Amazon GamelLift.

//initSDK
var initSDKOutcome = GamelLiftServerAPI.InitSDK();

//processReady
// Set parameters and call ProcessReady
var processParams = new ProcessParameters(
this.OnGameSession,
this.OnProcessTerminate,
this.OnHealthCheck,
this.OnGameSessionUpdate,
port,
// Examples of log and error files written by the game server
new LogParameters(new List<string>()
{
"C:\\game\\logs",
"C:\\game\\error"
)
e

var processReadyOutcome = GamelLiftServerAPI.ProcessReady(processParams);

// Implement callback functions
void OnGameSession(GameSession gameSession)

{
// game-specific tasks when starting a new game session, such as loading map
// When ready to receive players
var activateGameSessionOutcome = GamelLiftServerAPI.ActivateGameSession();

}

void OnProcessTerminate()

{

Plugin for Unity guide (server SDK 4.x) 144

Amazon GamelLift Developer Guide

// game-specific tasks required to gracefully shut down a game session,
// such as notifying players, preserving game state data, and other cleanup
var ProcessEndingOutcome = GamelLiftServerAPI.ProcessEnding();

}

bool OnHealthCheck()

{
bool isHealthy;
// complete health evaluation within 60 seconds and set health
return isHealthy;

}

Start a game session

(@ Note

This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

After game initialization is complete, you can start a game session.
1. Implement the callback function onStartGameSession. Amazon GamelLift invokes this
method to start a new game session on the server process and receive player connections.

2. To activate a game session, call ActivateGameSession(). For more information about the
SDK, see Amazon GamelLift server SDK (C#) reference: Actions.

The following code example illustrates how to start a game session with Amazon GamelLift.

void OnStartGameSession(GameSession gameSession)

{
// game-specific tasks when starting a new game session, such as loading map
// When ready to receive players
var activateGameSessionOutcome = GamelLiftServerAPI.ActivateGameSession();

}

Plugin for Unity guide (server SDK 4.x) 145

Amazon GamelLift Developer Guide

End a game session

® Note

This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

Notify Amazon GameLift when a game session is ending. As a best practice, shut down server
processes after game sessions complete to recycle and refresh hosting resources.

1. Set up a function named onProcessTerminate to receive requests from Amazon GamelLift
and call ProcessEnding().

2. The process status changes to TERMINATED.

The following example describes how to end a process for a game session.

var processEndingOutcome = GamelLiftServerAPI.ProcessEnding();

if (processReadyOutcome.Success)
Environment.Exit(0);

// otherwise, exit with error code
Environment.Exit(errorCode);

Create server build and upload to Amazon GamelLift

(® Note

This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

After you integrate your game server with Amazon Gamelift, upload the build files to a fleet so
that Amazon GamelLift can deploy it for game hosting. For more information on how to upload
your server to Amazon Gamelift, see Upload a custom server build to Amazon GamelLift.

Plugin for Unity guide (server SDK 4.x) 146

Amazon GamelLift Developer Guide

Integrate Amazon GamelLift with a Unity game client project

(® Note

This topic provides information for an earlier version of the Amazon GamelLift plugin for
Unity. Version 1.0.0 (released in 2021) uses the Amazon GamelLift server SDK 4.x or earlier.
For documentation on the latest version of the plugin, which uses server SDK 5.x and
supports Amazon GamelLift Anywhere, see Amazon GamelLift plugin for Unity guide for
server SDK 5.x.

This topic helps you set up a game client to connect to Amazon GamelLift hosted game sessions
through a backend service. Use Amazon GamelLift APIs to initiate matchmaking, request game
session placement, and more.

Add code to the backend service project to allow communication with the Amazon GamelLift
service. A backend service handles all game client communication with the GamelLift service. For
more information about backend services, see Design your game client service.

A backend server handles the following game client tasks:

Customize authentication for your players.

Request information about active game sessions from the Amazon GamelLift service.

Create a new game session.

Add a player to an existing game session.

Remove a player from an existing game session.

Topics

Prerequisites

Initialize a game client

Create game session on a specific fleet

Add players to game sessions

Remove a player from a game session

Plugin for Unity guide (server SDK 4.x) 147

Amazon GamelLift Developer Guide

Prerequisites

Before setting up game server communication with the Amazon GamelLift client, complete the
following tasks:

Set up an AWS account

Install the plugin for Unity

Integrate Amazon GamelLift with a Unity game server project

Setting up Amazon Gamelift fleets

Initialize a game client

(® Note

This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

Add code to initialize a game client. Run this code on launch, it's necessary for other Amazon
GamelLift functions.

1. Initialize AmazonGameLiftClient. Call AmazonGamelLiftClient with either a default client
configuration or a custom configuration. For more information on how to configure a client,
see Set up Amazon Gamelift on a backend service.

2. Generate a unique player id for each player to connect to a game session. For more
information see Generate player IDs.

The following examples shows how to set up a Amazon GamelLift client.

public class GamelLiftClient

{

private GamelLift gl;

//A sample way to generate random player IDs.

bool includeBrackets = false;

bool includeDashes = true;

string playerId = AZ::Uuid::CreateRandom().ToString<string>(includeBrackets,
includeDashes);

Plugin for Unity guide (server SDK 4.x) 148

Amazon GamelLift Developer Guide

private Amazon.GamelLift.Model.PlayerSession psession = null;
public AmazonGamelLiftClient aglc = null;

public void CreateGameLiftClient()
{
//Access Amazon GamelLift service by setting up a configuration.
//The default configuration specifies a location.
var config = new AmazonGamelLiftConfig();
config.RegionEndpoint = Amazon.RegionEndpoint.USEastl;

CredentialProfile profile = null;

var nscf = new SharedCredentialsFile();
nscf.TryGetProfile(profileName, out profile);

AWSCredentials credentials = profile.GetAWSCredentials(null);
//Initialize GameLift Client with default client configuration.
aglc = new AmazonGamelLiftClient(credentials, config);

Create game session on a specific fleet

(@ Note

This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

Add code to start new game sessions on your deployed fleets and make them available to players.
After Amazon Gamelift has created the new game session and returned a GameSession, you can
add players to it.

« Place a request for a new game session.

« If your game uses fleets, call CreateGameSession() with a fleet or alias ID, a session
name, and maximum number of concurrent players for the game.

« If your game uses queues, call StartGameSessionPlacement().

The following example shows how to create a game session.

Plugin for Unity guide (server SDK 4.x) 149

Amazon GamelLift Developer Guide

public Amazon.GamelLift.Model.GameSession()

{
var cgsreq = new Amazon.GamelLift.Model.CreateGameSessionRequest();
//A unique identifier for the alias with the fleet to create a game session in.
cgsreq.AliasId = aliasId;
//A unique identifier for a player or entity creating the game session
cgsreq.CreatorId = playerld;
//The maximum number of players that can be connected simultaneously to the game

session.

cgsreq.MaximumPlayerSessionCount = 4;

//Prompt an available server process to start a game session and retrieves
connection information for the new game session

Amazon.GameLift.Model.CreateGameSessionResponse cgsres =
aglc.CreateGameSession(cgsreq);

string gsid = cgsres.GameSession != null ? cgsres.GameSession.GameSessionId : "N/

A";
Debug.Log((int)cgsres.HttpStatusCode + " GAME SESSION CREATED: " + gsid);
return cgsres.GameSession;

Add players to game sessions

(@ Note

This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

After Amazon Gamelift has created the new game session and returned a GameSession object,
you can add players to it.

1. Reserve a player slot in a game session by creating a new player session. Use
CreatePlayerSessionor CreatePlayerSessions with the game session ID and a unique
ID for each player.

2. Connect to the game session. Retrieve the PlayerSession object to get the game session's
connection information. You can use this information to establish a direct connection to the
Server process:

a. Use the specified port and either the DNS name or IP address of the server process.

Plugin for Unity guide (server SDK 4.x) 150

Amazon GamelLift Developer Guide

b. Use the DNS name and port of your fleets. The DNS name and port are required if your
fleets have TLS certificate generation enabled.

c. Reference the player session ID. The player session ID is required if your game server
validates incoming player connections.

The following examples demonstrates how to reserve a player spot in a game session.

public Amazon.GamelLift.Model.PlayerSession
CreatePlayerSession(Amazon.GamelLift.Model.GameSession gsession)

{

var cpsreq = new Amazon.GamelLift.Model.CreatePlayerSessionRequest();
cpsreq.GameSessionId = gsession.GameSessionlId;

//Specify game session ID.

cpsreq.PlayerId = playerld;

//Specify player ID.
Amazon.GamelLift.Model.CreatePlayerSessionResponse cpsres =

aglc.CreatePlayerSession(cpsreq);
string psid = cpsres.PlayerSession != null ? cpsres.PlayerSession.PlayerSessionId :

IIN/AII;
return cpsres.PlayerSession;

The following code illustrates how to connect a player with the game session.

public bool ConnectPlayer(int playerIdx, string playerSessionId)

{
//Call ConnectPlayer with player ID and player session ID.

return server.ConnectPlayer(playerIdx, playerSessionld);

Remove a player from a game session

(® Note
This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK

4 x or earlier.

You can remove the players from the game session when they leave the game.

Plugin for Unity guide (server SDK 4.x) 151

Amazon GamelLift Developer Guide

1. Notify the Amazon Gamelift service that a player has disconnected from the server process.
Call RemovePlayerSession with the player's session ID.

2. Verify that RemovePlayerSession returns Success. Then, Amazon GamelLift changes the
player slot to be available, which Amazon GamelLift can assign to a new player.

The following example illustrates how to remove a player session.

public void DisconnectPlayer(int playerIdx)

{
//Receive the player session ID.
string playerSessionIld = playerSessions[playerIdx];
var outcome = GameLiftServerAPI.RemovePlayerSession(playerSessionld);
if (outcome.Success)
{
Debug.Log (":) PLAYER SESSION REMOVED");
}
else
{
Debug.Log(":(PLAYER SESSION REMOVE FAILED. RemovePlayerSession()
returned " + outcome.Error.ToString());
}
}

Install and set up the plugin

(® Note

This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

This section describes how to download, install, and set up the Amazon GamelLift plugin for Unity,
version 1.0.0.

Prerequisites

« Unity for Windows 2019.4 LTS, Windows 2020.3 LTS, or Unity for MacOS
o Current version of Java

e Current version of .NET 4.x

Plugin for Unity guide (server SDK 4.x) 152

Amazon GamelLift Developer Guide

To download and install the plugin for Unity

1. Download the Amazon GamelLift plugin for Unity. You can find the latest version on the
Amazon Gamelift plugin for Unity repository page. Under the latest release, choose Assets,
and then download the com. amazonaws.gamelift-version.tgz file.

2. Launch Unity and choose a project.

3. Inthe top navigation bar, under Window choose Package Manager:

Bl Gameoos - Sample5cene - PC, Mac & Linux Standalone - Unity 2020.3.17f1 Personal <DX11=

File Edit Assets GameObject Component Window Help

Panels >
= Hierarchy =3 Mext Window Ctrl+Tab
tr « Previous Window Ctrl+Shift+Tab

< SampleScene H
Aain Camera Layouts >
fr] Directional Light

Collaborate

Aszet Store

Package Manager

Asset Management ¥

TextMeshPro ¥

General >

Rendering ¥

Animatinn ¥

4. Under the Package Manager tab choose +, and then choose Add package from tarball...:
B Package Managet
<+ = Packages: In Project Sort: b
Add package from disk...
Add package from tarball...

Add package from git URL...

eshPro
Timeline

Linity LI

5. In the Select packages on disk window, navigate to the com.amazonaws.gamelift folder,
choose the file com.amazonaws.gamelift-version.tgz , and then choose Open:

Plugin for Unity guide (server SDK 4.x) 153

https://github.com/aws/amazon-gamelift-plugin-unity/releases
https://github.com/aws/amazon-gamelift-plugin-unity/releases

Amazon GamelLift Developer Guide

Bl select package on disk >
« M « Doc.. » PluginDownl... v |0 O Search PluginDownload
Organize * Mew folder =~ T @
Oxygen¥MLEditor A Name
PluginDownload |_] com.amazonaws.gamelift-1.0.0.tgz
Snagit

SCL Server Management Studic
Visual Studic 2013
Visual Studic 2019

LU S [P , [P e]|

LU 4 >

File name: | com.amazonaws.gamelift-1.0.0.tg | Package tarball (*tgz™" tar.gz)

Open Cancel

6. After Unity has loaded the plug-in, Amazon GamelLift appears as a new item in the Unity
menu. It may take a few minutes to install and recompile scripts. The Amazon GamelLift

Plugin Settings tab automatically opens.

= Hierarchy GamelLift Plugin Settings

Use MNET 4.x

Show SDK DLL Files

Open SDK Integration Guide

Open SOK AP| Reference

7. Inthe SDK pane, choose Use .NET 4.x.

When configured, the status changes from Not Configured to Configured.

Plugin for Unity guide (server SDK 4.x) 154

Amazon GamelLift Developer Guide

Test your game locally

(® Note

This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

Use Amazon GamelLift Local to run Amazon GamelLift on your local device. You can use Amazon
GamelLift Local to verify code changes in seconds, without a network connection.

Configure local testing

1. In the plugin for Unity window, choose the Test tab.

2. Inthe Test pane, choose Download Amazon Gamelift Local. The plugin for Unity opens a
browser window and downloads the GameLift_06_03_2021.zip file to your downloads
folder.

The download includes the C# Server SDK, .NET source files, and a .NET component
compatible with Unity.

Unzip the downloaded file GameLift_06_03_2021.zip.

4. In the Amazon Gamelift Plugin Settings window, choose Amazon GamelLift Local Path,
navigate to the unzipped folder, choose the file GameLiftLocal. jar, and then choose Open.

When configured, local testing status changes from Not Configured to Configured.

5. Verify the status of the JRE. If the status is Not Configured, choose Download JRE and install
the recommended Java version.

After you install and configure the Java environment, the status changes to Configured.

Run your local game

1. In the plugin for Unity tab, choose the Test tab.
2. In the Test pane, choose Open Local Test Ul.

3. Inthe Local Testing window, specify a Server executable path. Select ... to select the path and
executable name of your server application.

4. Inthe Local Testing window, specify a GL Local port.

Plugin for Unity guide (server SDK 4.x) 155

Amazon GamelLift Developer Guide

5. Choose Deploy & Run to deploy and run the server.

6. To stop your game server, choose Stop or close the game server windows.

Deploy a scenario

(® Note

This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

A scenario uses an AWS CloudFormation template to create the resources you need to deploy
a cloud hosting solution for your game. This section describes the scenarios Amazon GamelLift
provides and how to use them.

Prerequisites

To deploy the scenario, you need an IAM role for the Amazon GamelLift service. For information on
how to create a role for Amazon Gamelift, see Set up an AWS account.

Each scenario requires permissions to the following resources:

« Amazon Gamelift

« Amazon S3

« AWS CloudFormation
« API Gateway

« AWS Lambda

o« AWS WAFV2

« Amazon Cognito

Scenarios

(® Note

This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

Plugin for Unity guide (server SDK 4.x) 156

Amazon GamelLift Developer Guide

The Amazon GamelLift Plug-in for Unity includes the following scenarios:
Auth only

This scenario creates a game backend service that performs player authentication without game
server capability. The template creates the following resources in your account:

« An Amazon Cognito user pool to store player authentication information.

« An Amazon API Gateway REST endpoint-backed AWS Lambda handler that starts games and
views game connection information.

Single-Region fleet

This scenario creates a game backend service with a single Amazon Gamelift fleet. It creates the
following resources:

« An Amazon Cognito user pool for a player to authenticate and start a game.

« An AWS Lambda handler to search for an existing game session with an open player slot on the
fleet. If it can't find a open slot, it creates a new game session.

Multi-Region fleet with a queue and custom matchmaker

This scenario forms matches by using Amazon GamelLift queues and a custom matchmaker to
group together the oldest players in the waiting pool. It creates the following resources:

« An Amazon Simple Notification Service topic that Amazon GamelLift publishes messages to. For
more information on SNS topics and notifications, see Set up event notification for game session

placement.
« A Lambda function that's invoked by the message that communicates placement and game

connection details.

« An Amazon DynamoDB table to store placement and game connection details.
GetGameConnection calls read from this table and return the connection information to the
game client.

Spot fleets with a queue and custom matchmaker

This scenario forms matches by using Amazon GamelLift queues and a custom matchmaker and
configures three fleets. It creates the following resources:

Plugin for Unity guide (server SDK 4.x) 157

Amazon GamelLift Developer Guide

« Two Spot fleets that contain different instance types to provide durability for Spot unavailability.

» An On-Demand fleet that acts as a backup for the other Spot fleets. For more information on
designing your fleets, see Amazon GamelLift fleet design guide.

« A Amazon GamelLift queue to keep server availability high and cost low. For more information
and best practices about queues, see Design a game session queue.

FlexMatch

This scenario uses FlexMatch, a managed matchmaking service, to match game players together.
For more information about FlexMatch, see What is Amazon GamelLift FlexMatch. This scenario
creates the following resources:

« A Lambda function to create a matchmaking ticket after it receives StartGame requests.

« A separate Lambda function to listen to FlexMatch match events.
To avoid unnecessary charges on your AWS account, remove the resources created by each scenario
after you are done using them. Delete the corresponding AWS CloudFormation stack.

Update AWS credentials

(@ Note

This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

The Amazon GamelLift plugin for Unity requires security credentials to deploy a scenario. You can
either create new credentials or use existing credentials.

For more information about configuring credentials, see Understanding and getting your AWS
credentials.

To update AWS credentials

1. In Unity, in the plugin for Unity tab, choose the Deploy tab.
2. Inthe Deploy pane, choose AWS Credentials.

3. You can create new AWS credentials or choose existing credentials.

Plugin for Unity guide (server SDK 4.x) 158

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-intro.html
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html

Amazon GamelLift Developer Guide

« To create credentials, choose Create new credentials profile, and then specify the New
Profile Name, AWS Access Key ID, AWS Secret Key, and AWS Region.

« To choose existing credentials, choose Choose existing credentials profile and then select
a profile name and AWS Region.

4. Inthe Update AWS Credentials window, choose Update Credentials Profile.

Update account bootstrap

® Note

This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

The bootstrap location is an Amazon S3 bucket used during deployment. It's used to store game
server assets and other dependencies. The AWS Region you choose for the bucket must be the
same Region you will use for the scenario deployment.

For more information about Amazon S3 buckets, see Creating, configuring, and working with
Amazon Simple Storage Service buckets.

To update the account bootstrap location

1. In Unity, in the plugin for Unity tab, choose the Deploy tab.
2. Inthe Deploy pane, choose Update Account Bootstrap.

3. In the Account Bootstrapping window, you choose an existing Amazon S3 bucket or create a
new Amazon S3 bucket:

« To choose an existing bucket, choose Choose existing Amazon S3 bucket and Update to
save your selection.

o Choose Create new Amazon S3 bucket to create a new Amazon Simple Storage Service
bucket, then choose a Policy. The policy specifies when the Amazon S3 bucket will be
expire. Choose Create to create the bucket.

Plugin for Unity guide (server SDK 4.x) 159

https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-buckets-s3.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-buckets-s3.html

Amazon GamelLift Developer Guide

Deploy a game scenario

(® Note

This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

You can use a scenario to test your game with Amazon GamelLift. Each scenario uses a AWS
CloudFormation template to create a stack with the required resources. Most of the scenarios
require a game server executable and build path. When you deploy the scenario, Amazon GamelLift
copies game assets to the bootstrap location as part of deployment.

You must configure AWS credentials and an AWS account bootstrap to deploy a scenario.
To deploy a scenario

1. In Unity, in the plugin for Unity tab, choose the Deploy tab.
2. Inthe Deploy pane, choose Open Deployment Ul.

3. In the Deployment window, choose a scenario.
4

Enter a Game Name. It must be unique. The game name is part of the AWS CloudFormation
stack name when you deploy the scenario.

5. Choose the Game Server Build Folder Path. The build folder path points to the folder
containing the server executable and dependencies.

6. Choose the Game Server Build .exe File Path. The build executable file path points to the
game server executable.

7. Choose Start Deployment to begin deploying a scenario. You can follow the status of the
update in the Deployment window under Current State.Scenarios can take up to 30 minutes
to deploy.

Current State

Plugin for Unity guide (server SDK 4.x) 160

Amazon GamelLift Developer Guide

8.

10.
11.

When the scenario completes deployment, the Current State updates to include the Cognito
Client ID and APl Gateway Endpoint that you can copy and paste into the game.

Deployment Status

s-west-2 amazonaws.comfvl/

To update game settings, on the Unity menu, choose Go To Client Connection Settings. This
displays an Inspector tab on the right side of the Unity screen.

Deselect Local Testing Mode.

Enter the APl Gateway Endpoint and the Coginito Client ID. Choose the same AWS Region
you used for the scenario deployment. You can then rebuild and run the game client using the
deployed scenario resources.

Deleting resources created by the scenario

® Note

This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

To delete the resources created for the scenario, delete the corresponding AWS CloudFormation
stack.

To delete resources created by the scenario

1.

In the Amazon Gamelift plugin for Unity Deployment window, select View AWS
CloudFormation Console to open the AWS CloudFormation console.

In the AWS CloudFormation console, choose Stacks, and then choose the stack that includes
the game name specified during deployment.

Plugin for Unity guide (server SDK 4.x) 161

Amazon Gamelift

Developer Guide

3. Choose Delete to delete the stack. It may take a few minutes to delete a stack. After
AWS CloudFormation deletes the stack used by the scenario, its status changes to
ROLLBACK_COMPLETE.

Integrate games with Amazon GamelLift in Unity

(® Note
This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

Integrate your Unity game with Amazon GamelLift by completing the following tasks:

 Integrate Amazon GamelLift with a Unity game server project

 Integrate Amazon GamelLift with a Unity game client project

The following diagram shows an example flow of integrating a game. In the diagram, a fleet with
the game server is deployed to Amazon GamelLift. The game client communicates with the game
server, which communicates with Amazon GamelLift.

Plugin for Unity guide (server SDK 4.x)

162

Amazon GamelLift

Developer Guide

&

!
SR

GameLift host
management
tools

GameLift server SDK

Fleets with game
SErver

nnection=

Import and run a sample game

(® Note

Game clients

This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK

4 x or earlier.

The Amazon Gamelift plugin for Unity includes a sample game you can use to explore the basics of
integrating your game with Amazon GamelLift. In this section, you build the game client and game

server and then test locally using Amazon GamelLift Local.

Prerequisites

e Set up an AWS account

« Install and set up the plugin

Plugin for Unity guide (server SDK 4.x)

163

Amazon GamelLift Developer Guide

Build and run the sample game server

(@ Note

This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

Set up the game server files of the sample game.

In Unity, on the menu, choose Amazon Gamelift, and then choose Import Sample Game.
In the Import Sample Game window, choose Import to import the game, its assets and
dependencies.

Build the game server. In Unity, on the menu, choose Amazon GamelLift, and then choose
Apply Windows Sample Server Build Settings or Apply MacOS Sample Server Build
Settings. After you configure the game server settings, Unity recompiles the assets.

In Unity, on the menu, choose File, and then choose Build. Choose Server Build, choose Build,
and then choose a build folder specifically for server files.

Unity builds the sample game server, placing the executable and required assets in the
specified build folder.

Build and run the sample game client

(® Note

This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

Set up the game client files of the sample game.

1.

In Unity, on the menu, choose Amazon GamelLift, and then choose Apply Windows Sample
Client Build Settings or Apply MacOS Sample Client Build Settings. After the game client
settings are configured, Unity will recompile assets.

In Unity, on the menu, select Go To Client Settings. This will display an Inspector tab on
the right side of the Unity screen. In the Amazon GamelLift Client Settings tab, select Local
Testing Mode.

Plugin for Unity guide (server SDK 4.x) 164

Amazon GamelLift Developer Guide

3.

Build the game client. In Unity, on the menu, choose File. Confirm Server Build is not checked,
choose Build, and then select a build folder specifically for client files.

Unity builds the sample game client, placing the executable and required assets in the
specified client build folder.

You've no built the game server and client. In the next steps, you run the game and see how it
interacts with Amazon GamelLift.

Test the sample game locally

(@ Note

This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

Run the sample game you imported using Amazon GamelLift Local.

—

Launch the game server. In Unity, in the plugin for Unity tab, choose the Deploy tab.
In the Test pane, choose Open Local Test Ul.

In the Local Testing window, specify a Game Server .exe File Path. The path must include the
executable name. For example, C: /MyGame/GameServer/MyGameServer.exe.

Choose Deploy and Run. The plugin for Unity launches the game server and opens a Amazon
Gamelift Local log window. The windows contains log messages including messages sent
between the game server and Amazon GamelLift Local.

Launch the game client. Find the build location with the sample game client and choose the
executable file .

In the Amazon GamelLift Sample Game, provide an email and password and then choose Log
In. The email and password aren't validated or used.

In the Amazon GamelLift Sample Game, choose Start. The game client looks for a game
session. If it can't find a session, it creates one. The game client then starts the game session.
You can see game activity in the logs.

Sample game server logs

Plugin for Unity guide (server SDK 4.x) 165

Amazon Gamelift

Developer Guide

2021-09-15T19:
2021-09-15T19:
2021-09-15T19:
2021-09-15T19:
2021-09-15T19:
2021-09-15T19:
2021-09-15T19:

2021-09-15T19:
2021-09-15T19:
2021-09-15T19:
2021-09-15T19:

2021-09-15T19:
2021-09-15T19:
2021-09-15T19:
2021-09-15T19:
2021-09-15T19:

@ joined

2021-09-15T19:

1 joined

2021-09-15T19:

CONNECT:

2021-09-15T19:

55:
55:
55:
55:
55:
55:
55:

55

55:
55:
55:

56:
56:
56:
57:
58:

58:

58

server

58

3495
3512
3514
3514
3556
3577
3577

13634
3635
3636
3636

2464
2468
3578
3584
0334

0335

10338

PID:
PID:
PID:
PID:
PID:
PID:
PID:

PID

PID:
PID:
PID:
PID:
PID:

PID:

PID:

20728
20728
20728
20728
20728
20728
20728

120728
PID:
PID:
PID:

20728
20728
20728

20728
20728
20728
20728
20728

20728

20728

IP localhost
:0338 PID:20728
server IP localhost

2021-09-15T19:58:0339 PID:20728
2021-09-15T19:58:0339 PID:20728
CONNECT: server IP localhost
2021-09-15T19:58:0339 PID:20728
server IP localhost
2021-09-15T19:58:0339 PID:20728

Log :
Log :
Log :
Log :
Log :
Log :
Log :

Log
Log
Log
Log

Log
Log
Log
Log
Log
Log
Log

Log

Log
Log

Log

Log

Sample Amazon GamelLift Local logs

12:55:26,000

GAMELIFT AWAKE

I AM SERVER

GAMELIFT StartServer at port 33430.

SDK VERSION: 4.0.2

SERVER IS IN A GAMELIFT FLEET
PROCESSREADY SUCCESS.

GAMELIFT HEALTH CHECK REQUESTED (HEALTHY)

N N N N N N N

:) GAMELOGIC AWAKE

:) GAMELOGIC START

:) LISTENING ON PORT 33430
SERVER: Frame: @ HELLO WORLD!

:) GAMELIFT SESSION REQUESTED

:) GAME SESSION ACTIVATED

:) GAMELIFT HEALTH CHECK REQUESTED (HEALTHY)

:) GAMELIFT HEALTH CHECK REQUESTED (HEALTHY)
SERVER: Frame: 8695 Connection accepted: playerIdx

SERVER: Frame: 8696 Connection accepted: playerIdx

SERVER: Frame: 8697 Msg rcvd from playerIdx @ Msg:

SERVER: Frame: 8697 Msg rcvd from player ©:CONNECT:

SERVER:
SERVER:

SERVER:

SERVER:

Frame:
Frame:

Frame:

Frame:

MemoryStoreFactory (local session store only)
12:55:28,092 WARN || - [ServerBootstrap] main - Unknown channel option 'SO_LINGER' for

channel '[id: @0xe23d0als4]’
12:55:28,101
started at port: 5757
12:55:28,101

8697
8697

8697

8697

INFO || - [SocketIOServer] main - Session

your game server) has started on http://localhost:5757

CONNECT: player index 0
Msg rcvd from playerIdx 1 Msg:

Msg rcvd from player 1:CONNECT:

CONNECT: player index 1

store / pubsub factory used:

INFO || - [SocketIOServer] nioEventLoopGroup-2-1 - SocketIO server

INFO || - [SDKConnection] main - GamelLift SDK server (communicates with

Plugin for Unity guide (server SDK 4.x)

166

Amazon GamelLift Developer Guide

12:55:28,120 INFO || - [SdkWebSocketServer] WebSocketSelector-20 - WebSocket Server
started on address localhost/127.0.0.1:5759

12:55:28,166 INFO || - [StandAloneServer] main - GamelLift Client server (listens for
GameLift client APIs) has started on http://localhost:8080

12:55:28,179 INFO || - [StandAloneServer] main - GamelLift server sdk http listener has
started on http://localhost:5758

12:55:35,453 INFO || - [SdkWebSocketServer] WebSocketWorker-12 - onOpen

socket: /?pID=20728&sdkVersion=4.0.2&sdklLanguage=CSharp and handshake /?
pID=20728&sdkVersion=4.0.2&sdkLanguage=CSharp

12:55:35,551 INFO || - [HostProcessManager] WebSocketWorker-12 - client connected with
pID 20728

12:55:35,718 INFO || - [GameLiftSdkHttpHandler] GamelLiftSdkHttpHandler-thread-0 -
GameLift API to use: ProcessReady for pId 20728

12:55:35,718 INFO || - [ProcessReadyHandler] GamelLiftSdkHttpHandler-thread-0 -
Received API call for processReady from 20728

12:55:35,738 INFO || - [ProcessReadyHandler] GameLiftSdkHttpHandler-thread-0 -
onProcessReady data: port: 33430

12:55:35,739 INFO || - [HostProcessManager] GameLiftSdkHttpHandler-thread-0 -
Registered new process with pId 20728

12:55:35,789 INFO || - [GameLiftSdkHttpHandler] GamelLiftSdkHttpHandler-thread-0 -
GameLift API to use: ReportHealth for pId 20728

12:55:35,790 INFO || - [ReportHealthHandler] GamelLiftSdkHttpHandler-thread-0 -
Received API call for ReportHealth from 20728

12:55:35,794 INFO || - [ReportHealthHandler] GamelLiftSdkHttpHandler-thread-0 -
ReportHealth data: healthStatus: true

12:56:24,098 1INFO || - [GameLiftHttpHandler] Thread-12 - API to use:
GameLift.DescribeGameSessions

12:56:24,119 INFO || - [DescribeGameSessionsDispatcher] Thread-12 - Received API call
to describe game sessions with input: {"FleetId":"fleet-123"}

12:56:24,241 INFO || - [GameLiftHttpHandler] Thread-12 - API to use:
GameLift.CreateGameSession

12:56:24,242 INFO || - [CreateGameSessionDispatcher] Thread-12 - Received API call to
create game session with input: {"FleetId":"fleet-123","MaximumPlayerSessionCount":4}
12:56:24,265 INFO || - [HostProcessManager] Thread-12 - Reserved process:

20728 for gameSession: arn:aws:gamelift:local::gamesession/fleet-123/
gsess-59f6cc44-4361-42f5-95b5-Fdb5825¢c0f3d

12:56:24,266 INFO || - [WebSocketInvoker] Thread-12 - StartGameSessionRequest:
gameSessionId=arn:aws:gamelift:local::gamesession/fleet-123/
gsess-59f6cc44-4361-42Ff5-95b5-fdb5825c0f3d, fleetId=fleet-123, gameSessionName=null,
maxPlayers=4, properties=[], ipAddress=127.0.0.1, port=33430, gameSessionData?=false,
matchmakerData?=false, dnsName=localhost

12:56:24,564 INFO || - [CreateGameSessionDispatcher] Thread-12 - GameSession with

id: arn:aws:gamelift:local::gamesession/fleet-123/gsess-59f6cc44-4361-42f5-95b5-
fdb5825c0f3d created

Plugin for Unity guide (server SDK 4.x) 167

Amazon GamelLift Developer Guide

12:56:24,585 1INFO || - [GameLiftHttpHandler] Thread-12 - API to use:
GamelLift.DescribeGameSessions

12:56:24,585 1INFO || - [DescribeGameSessionsDispatcher] Thread-12 - Received API call
to describe game sessions with input: {"FleetId":"fleet-123"}

12:56:24,660 INFO || - [GameLiftSdkHttpHandler] GamelLiftSdkHttpHandler-thread-0 -
GameLift API to use: GameSessionActivate for pId 20728

12:56:24,661 INFO || - [GameSessionActivateHandler] GamelLiftSdkHttpHandler-thread-0 -
Received API call for GameSessionActivate from 20728

12:56:24,678 INFO || - [GameSessionActivateHandler] GamelLiftSdkHttpHandler-thread-0

- GameSessionActivate data: gameSessionId: "arn:aws:gamelift:local::gamesession/
fleet-123/gsess-59f6cc44-4361-42F5-95b5-Fdb5825c0f3d"

Shut down server process

® Note

This topic refers to Amazon GamelLift plugin for Unity version 1.0.0, which uses server SDK
4.x or earlier.

After you're done with your sample game, shut down the server in Unity.

1. In the game client, choose Quit or close the window to stop the game client.

2. In Unity, in the Local Testing window, choose Stop or close the game server windows to stop
the server.

Integrating games with the Amazon GamelLift plugin for Unreal
Engine

The topics in this section describe the Amazon GamelLift plugin for Unreal Engine (UE) and how to
use it to prepare your multiplayer game project for hosting with Amazon GamelLift. Work entirely
in your UE development environment with the plugin's guided workflows to complete the basic
requirements for hosting with Amazon GamelLift.

Amazon Gamelift is a fully managed service that lets game developers manage and scale
dedicated game servers for session-based multiplayer games. For more information about Amazon
Gamelift hosting, see How Amazon GamelLift works.

Topics

Integrating games with the plugin for Unreal 168

Amazon GamelLift Developer Guide

« About the plugin

Plugin workflow

Install the plugin for Unreal

Set up an AWS user profile

Set up your game for testing with Amazon GamelLift Anywhere

Deploy your game to cloud hosting with managed EC2 fleets

About the plugin

The plugin adds Amazon GamelLift tools and functionality to the UE editor. The plugin's guided
workflows to integrate Amazon GamelLift into your game project, designate a workstation as a
local host for testing, and deploy the game server to Amazon GamelLift cloud hosting.

Use the plugin's pre-built hosting solutions to deploy your game. Set up an Amazon GameLift
Anywhere fleet with your local workstation as a host. For cloud hosting, choose from two common
deployment scenarios that balance player latency, game session availability, and cost in different
ways. One scenario includes a simple FlexMatch matchmaker and rule set. Use these solutions

to get started quickly with a production-ready hosting structure in place, and then optimize and
customize as needed.

The plugin includes these components:

o Plugin modules for the UE editor. When the plugin is installed, a new main menu button gives
you access to Amazon GamelLift functionality.

o C++ libraries for the Amazon GamelLift service API with client-side functionality.
o Unreal libraries for the Amazon GamelLift server SDK (version 5).

« Content for testing, including a startup game map and two testing maps with basic blueprints
and Ul elements for use with testing a server integration.

 Editable configurations, in the form of AWS CloudFormation templates, that the plugin uses
when deploying your game server for hosting.

Plugin workflow

The following steps describe a typical approach to integrating and deploying a game project with
the Amazon GamelLift plugin for Unreal Engine. You complete these steps by working in the UE
editor and your game code.

About the plugin 169

Amazon GamelLift Developer Guide

1. Create a user profile that links to your AWS account and provides access credentials for valid
account user with permissions to use Amazon GamelLift.

2. Add server code to your game project to establish communication between a running game
server and the with Amazon GamelLift service.

3. Add client code to your game project that lets game clients send requests to Amazon GamelLift
to start new game sessions and then connect to them.

4. Use the Anywhere workflow to set up your local workstation as an Anywhere host for your
game server. Launch your game server and client locally through the plugin, connect to a game
session, and test your integration.

5. Use the EC2 hosting workflow to upload your integrated game server and deploy a cloud
hosting solution, When your game server is ready, launch your game client locally through the
plugin, connect to a game session and play the game.

When working in the plugin, you'll create and use AWS resources, These actions might incur
charges to the AWS account in use. If you're new to AWS, these actions might be covered under the
AWS Free Tier.

Install the plugin for Unreal

This section describes the initial installation tasks to add the plugin to an Unreal Engine project.
The plugin functionality is available when you have the project open in the Unreal editor.

® Note

You can use the Amazon GamelLift plugin with a standard version of the UE editor, but you
need to use a source-built version when you package your game server build.

Before you start
Here's what you need to use the Amazon GamelLift plugin for Unreal Engine:

« Amazon Gamelift plugin for Unreal Engine release package. [Download site].

« Microsoft Visual Studio 2019 or newer.

» A source-built version of the Unreal Engine editor. You need a source-built version to package
the server components for a multiplayer game. For more details, including additional
prerequisites, see the Unreal Engine documentation:

Install the plugin for Unreal 170

https://aws.amazon.com/free/
https://github.com/aws/amazon-gamelift-plugin-unreal

Amazon GamelLift Developer Guide

» Accessing Unreal Engine source code on GitHub You'll need GitHub and Epic Games accounts.

 Building Unreal Engine from Source tutorial.

« A multiplayer game project with C++ game code. If you're working with a Blueprint project, see
Unreal documentation on how to generate C++ source code for your project.

Add the plugin to your game project

Complete the following tasks to add the plugin to your game project.
Build the Amazon GamelLift C++ server SDK
1. Unzip the Amazon Gamelift plugin for Unreal Engine release package to extract two zip files:

e amazon-gamelift-plugin-unreal-<>-sdk-<>.zip

e GamelLift-Cpp-ServerSDK-<>.zip.

Unzip these files.

2. Openthe GameLift-Cpp-ServerSDK-<> folder, and then complete the following
instructions for your platform: Linux or Microsoft Windows.

Linux

1. Run the following commands:

mkdir out

cd out

cmake -DBUILD_FOR_UNREAL=1 ..
make

These commands build the /1ib/aws-cpp-sdk-gamelift-server.so file.

2. Copy/lib/aws-cpp-sdk-gamelift-server.so tothe amazon-gamelift-
plugin-unreal/GameLiftPlugin/Source/GameliftServer/ThirdParty/
GameLiftServerSDK/Linux/x86_64-unknown-1linux-gnu/ directory.

Install the plugin for Unreal 171

https://www.unrealengine.com/ue-on-github
https://docs.unrealengine.com/5.1/building-unreal-engine-from-source/

Amazon GamelLift Developer Guide

Microsoft Windows

1. Run the following commands:

mkdir out

cd out

cmake -G "Visual Studio 17 2022" -DBUILD_FOR_UNREAL=1 ..
msbuild ALL_BUILD.vcxproj /p:Configuration=Release

These commands build the following binary files.

o prefix\bin\aws-cpp-sdk-gamelift-server.dll

o prefix\lib\aws-cpp-sdk-gamelift-server.lib

2. Copy the files to the amazon-gamelift-plugin-unreal\GamelLiftPlugin\Source
\GameliftServer\ThirdParty\GameLiftServerSDK\Win64\ directory.

Complete the following tasks, working in your game project files.

1. Install the plugin files.

a.

Locate your game project root folder, suchas ... > Unreal Projects/[project-
name]/. If the Plugins folder doesn't exist there, then create it.

Go to the amazon-gamelift-plugin-unreal folder unzipped from amazon-
gamelift-plugin-unreal-<>-sdk-<>.zip. Copy the GameLiftPlugin folder
from the gamelift-plugin-unreal folder to the Plugins folder in the game project
directory.

2. Add the plugin to the .uproject file.

a.

b.

In your game project root folder, open the .uproject file.

Update the file to add "GamelLiftPlugin" and "WebBrowserWidget" to the P1ugins section
and enable them. The following code shows the updated .uproject file for a game
called "MyGame".

UnrealProjects > MyGame > MyGame.uproject

"Plugins": [

Install the plugin for Unreal 172

Amazon GamelLift Developer Guide

{
"Name": "ModelingToolsEditorMode",
"Enabled": true,
"TargetAllowlList": ["Editor"]

},

{
"Name": "GameLiftPlugin",
"Enabled": true

},

{
"Name": "WebBrowserWidget",
"Enabled": true

}

]
}

3. Change the UE editor version for your project.

If you created a project for one editor version and now want to change to another version
(such as a source-build version), you need to update the project.

In your game project root folder, select the .uproject file and choose the option Switch
Unreal Engine Version. Select a new editor version.

4. Rebuild the project solution with your updates.

a. Inthe project root folder, look for a solution (*. s1n) file. If none exists, select the
.uproject file and choose the option Generate Visual Studio project files.

b. Open the solution file and build or rebuild the project.
5. Verify that the plugin is enabled in the UE editor.

® Note

If you If you already have the editor open, you might need to restart the editor before
it recognizes the new plugin.

a. Open the project in your chosen UE editor.
b. Check the main editor toolbar for the new Amazon GameLift menu button [need image].

c. Look in the Content Browser for the Amazon GamelLift plugin assets. Make sure that your
View Options setting has the Show Plugin Content option selected.

Install the plugin for Unreal 173

Amazon GamelLift Developer Guide

Set up an AWS user profile

After installing the plugin, set up a profile and link it to a valid AWS account user. You can maintain
multiple profiles, but you can only have one profile active at a time. Whenever you work in the
plugin, select a profile to use.

Maintaining multiple profiles gives you the ability to switch between different hosting scenarios.
For example, you might set up profiles with the same AWS credentials but different AWS Regions.
Or you might set up profiles with different AWS accounts or with different users/permission sets.

(@ Note

If you've installed the AWS CLI on your workstation and have a profile already configured,
the Amazon GamelLift plugin can detect it and will list it as an existing profile. The plugin
automatically selects any profile named [default]. You can use an existing profile or
create a new one.

To manage your AWS profiles

1. In the Unreal editor main toolbar, choose the Amazon GamelLift menu, and select Set AWS
User Profiles. This action opens Project Settings for the plugin. Expand the section AWS User
Profiles.

2. If the plugin doesn't detect an existing profile, it prompts you to create one. You can create a
new profile using either a new or existing AWS account.

(@ Note

You need to use the AWS Management Console to create a new AWS account and
create or update a user with the proper permission set.

When setting up a profile, you need the following information:

« An AWS account. If you need to create a new AWS account, follow the prompts to create the
account. See Create an AWS account for more details.

o An AWS user with permissions to use Amazon GamelLift and other required AWS services.
See Set up an AWS account for instructions on setting up an AWS Identity and Access

Set up an AWS user profile 174

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-creating.html

Amazon GamelLift Developer Guide

Management (IAM) user with Amazon GamelLift permissions and programmatic access with
long-term credentials.

» Credentials for your AWS user. These credentials consist of an AWS access key ID and AWS
secret key. See Get your access keys for more details.

« AWS region. This is a geographic location where you want to create your AWS resources for
hosting. During development, we recommend using a region close to your physical location.
See the list of supported AWS regions.

3. If the plugin detects an existing profile, you aren't prompted to create one. If you want to
update a profile or create a new one, choose Manage your profile.

To bootstrap your profile:

All profiles must be bootstrapped to use with the Amazon GamelLift plugin. Bootstrapping creates
an Amazon S3 bucket specific to the profile. It's used to store project configurations, build artifacts,
and other dependencies. Buckets are not shared between other profiles.

Bootstrapping involves creating new AWS resources and might incur costs.

1. In the Unreal editor main toolbar, choose the Amazon GamelLift icon, and select Set AWS
User Profiles. This action opens Project Settings for the plugin. Expand the section AWS User
Profiles.

2. Inthe Bootstrap your profile section, select a profile from the dropdown list and check the
bootstrap status. If the status indicates that no bucket exists, choose the button Bootstrap
and create profile to create an Amazon S3 bucket for the selected profile.

3. Wait for bootstrap status to change to "Active". This can take a few minutes.

Set up your game for testing with Amazon GameLift Anywhere

In this workflow, you add client and server game code for Amazon GamelLift functionality, and use
the plugin to designate your local workstation as a test game server host. When you've completed
integration tasks, use the plugin to build your game client and server components.

To start the Amazon GamelLift Anywhere workflow:

e In the Unreal editor main toolbar, choose the Amazon GamelLift menu, and select Host with
Anywhere. This action opens the plugin page Deploy Anywhere, which presents a six-step
process to integrate, build, and launch your game components.

Set up your game with Anywhere 175

https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html#cli-authentication-user-get
https://docs.aws.amazon.com/general/latest/gr/gamelift.html

Amazon GamelLift Developer Guide

Step 1: Set your profile

Choose the profile you want to use when following this workflow. The profile you select impacts all
steps in the workflow. All resources you create are associated with the profile's AWS account and
are placed in the profile's default AWS Region. The profile user's permissions determine your access
to AWS resources and actions.

1. Select a profile from the dropdown list of available profiles. If you don't have a profile yet or
want to create a new one, go to the Amazon GameLift menu and choose Set AWS User Profiles.

2. If bootstrap status is not "Active", choose Bootstrap profile and wait for the status to change to
"Active".

Step 2: Set up your game code

In this step, you make a series of updates to your client and server code to add hosting
functionality. If you haven't already set up a source-built version of the Unreal editor, the plugin
provides links to instructions and source code.

With the plugin, can take advantage of some conveniences when integrating your game code. You
can do a minimal integration to set up basic hosting functionality. You can also do a more extensive
custom integration. The information in this section describes the minimal integration option. Use
the test maps included with the plugin to add client Amazon GamelLift functionality to your game
project. For server integration, use the provided code sample to update your project's game mode.

Integrate your server game mode

Add server code to your game that enables communication between your game server and the
Amazon Gamelift service. Your game server must be able to respond to requests from Amazon
Gamelift, such as to start a new game session, and also report status on game server health and
player connections.

1. Inyour code editor, open the solution (. s1n) file for your game project, usually found in the
project root folder. For example: GameLiftUnrealApp.sln.

2. With the solution open, locate the project game mode header file: [project-
name]GameMode. h file. For example: GameLiftUnrealAppGameMode. h.

3. Change the header file to align with the following example code. Be sure to replace
"GamelLiftServer" with your own project name. These updates are specific to the game server;

Set up your game with Anywhere 176

Amazon GamelLift Developer Guide

we recommend that you make a backup copy of the original game mode files for use with your
client.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

#pragma once

#include "CoreMinimal.h"
#include "GameFramework/GameModeBase.h"
#include "GamelLiftServerGameMode.generated.h"

struct FProcessParameters;
DECLARE_LOG_CATEGORY_EXTERN(GameServerLog, Log, All);

UCLASS(minimalapi)
class AGameLiftServerGameMode : public AGameModeBase

{
GENERATED_BODY ()

public:
AGameLiftServerGameMode();

protected:
virtual void BeginPlay() override;

private:
void InitGameLift();

private:
TSharedPtr<FProcessParameters> ProcessParameters;

I

4. Open the related source file [project-name]GameMode. cpp file (for example
GameLiftUnrealAppGameMode. cpp). Change the code to align with the following example
code. Be sure to replace "GamelLiftUnrealApp" with your own project name. These updates are
specific to the game server; we recommend that you make a backup copy of the original file
for use with your client.

The following example code shows how to add the minimum required elements for server
integration with Amazon GamelLift:

Set up your game with Anywhere 177

Amazon GamelLift Developer Guide

« Initialize an Amazon GamelLift API client. The InitSDK() call with server parameters is
required for an Amazon GamelLift Anywhere fleet. When you connect to an Anywhere fleet,
the plugin stores the server parameters as console arguments The sample code can access
the values at runtime.

« Implement required callback functions to respond to requests from the Amazon GamelLift
service, including OnStartGameSession, OnProcessTerminate, and onHealthCheck.

» Call ProcessReady() with a designated port to notify the Amazon GameLift service when
ready to host game sessions.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

#include "GameLiftServerGameMode.h"

#include "UObject/ConstructorHelpers.h"
#include "Kismet/GameplayStatics.h"

#if WITH_GAMELIFT

#include "GameLiftServerSDK.h"
#include "GamelLiftServerSDKModels.h"
#endif

#include "GenericPlatform/GenericPlatformOutputDevices.h"
DEFINE_LOG_CATEGORY(GameServerlLog);

AGameLiftServerGameMode: :AGamelLiftServerGameMode()
ProcessParameters(nullptr)

// Set default pawn class to our Blueprinted character
static ConstructorHelpers::FClassFinder<APawn> PlayerPawnBPClass(TEXT("/Game/
ThirdPerson/Blueprints/BP_ThirdPersonCharacter"));

if (PlayerPawnBPClass.Class != NULL)

{
DefaultPawnClass = PlayerPawnBPClass.Class;

UE_LOG(GameServerLog, Log, TEXT("Initializing AGameLiftServerGameMode..."));

Set up your game with Anywhere 178

Amazon Gamelift

Developer Guide

void AGamelLiftServerGameMode

{
Super: :BeginPlay();

#if WITH_GAMELIFT
InitGameLift();

#endif

}

void AGamelLiftServerGameMode

{
#if WITH_GAMELIFT

::BeginPlay()

::InitGameLift()

UE_LOG(GameServerLog, Log, TEXT("Calling InitGameLift..."));

// Getting the module first.
FGameLiftServerSDKModule* GameLiftSdkModule =
&FModuleManager: :LoadModuleChecked<FGameLiftServerSDKModule>(FName("GameLiftServerSDK"));

//Define the server parameters for a GameLift Anywhere fleet. These are not
needed for a GamelLift managed EC2 fleet.
FServerParameters ServerParametersForAnywhere;

bool bIsAnywhereActive =

false;

if (FParse::Param(FCommandLine::Get(), TEXT("glAnywhere")))

{

bIsAnywhereActive =

if (bIsAnywhereActive)
{

true;

UE_LOG(GameServerlLog, Log, TEXT("Configuring server parameters for

Anywhere..."));

// If GameLift Anywhere is enabled, parse command line arguments and pass
them in the ServerParameters object.

FString glAnywhereWebSocketUrl = "";

if (FParse::Value(FCommandLine::Get(), TEXT("glAnywhereWebSocketUrl="),

glAnywhereWebSocketUrl))
{

ServerParametersForAnywhere.m_webSocketUrl =
TCHAR_TO_UTF8(*glAnywhereWebSocketUrl);

}

Set up your game with Anywhere

179

Amazon GamelLift Developer Guide

FString glAnywhereFleetId = "";
if (FParse::Value(FCommandLine::Get(), TEXT("glAnywhereFleetId="),
glAnywhereFleetId))
{
ServerParametersForAnywhere.m_fleetId =
TCHAR_TO_UTF8(*glAnywhereFleetId);
}

FString glAnywhereProcessId = "";
if (FParse::Value(FCommandLine::Get(), TEXT("glAnywhereProcessId="),
glAnywhereProcessId))
{
ServerParametersForAnywhere.m_processId =
TCHAR_TO_UTF8(*glAnywhereProcessId);
}
else
{
// If no ProcessIld is passed as a command line argument, generate a
randomized unique string.
ServerParametersForAnywhere.m_processId =
TCHAR_TO_UTF8(
*FText::Format(
FText::FromString("ProcessId_{0}"),
FText::AsNumber(std::time(nullptr))
).ToString()

);
}
FString glAnywhereHostId = "";
if (FParse::Value(FCommandLine::Get(), TEXT("glAnywhereHostId="),
glAnywhereHostId))
{

ServerParametersForAnywhere.m_hostId =
TCHAR_TO_UTF8(*glAnywhereHostId);
}

FString glAnywhereAuthToken = "";
if (FParse::Value(FCommandLine::Get(), TEXT("glAnywhereAuthToken="),
glAnywhereAuthToken))
{
ServerParametersForAnywhere.m_authToken =
TCHAR_TO_UTF8(*glAnywhereAuthToken);
}

Set up your game with Anywhere 180

Amazon GamelLift Developer Guide

UE_LOG(GameServerLog, SetColor, TEXT("%s"), COLOR_YELLOW);

UE_LOG(GameServerlLog, Log, TEXT(">>>> Web Socket URL: %s"),
*ServerParametersForAnywhere.m_webSocketUrl);

UE_LOG(GameServerlLog, Log, TEXT(">>>> Fleet ID: %s"),
*ServerParametersForAnywhere.m_fleetId);

UE_LOG(GameServerlLog, Log, TEXT(">>>> Process ID: %s"),
*ServerParametersForAnywhere.m_processId);

UE_LOG(GameServerlLog, Log, TEXT(">>>> Host ID (Compute Name): %s"),
*ServerParametersForAnywhere.m_hostId);

UE_LOG(GameServerlLog, Log, TEXT(">>>> Auth Token: %s"),
*ServerParametersForAnywhere.m_authToken);

UE_LOG(GameServerLog, SetColor, TEXT("%s"), COLOR_NONE);

UE_LOG(GameServerLog, Log, TEXT("Initializing the GameLift Server..."));

//InitSDK will establish a local connection with GamelLift's agent to enable
further communication.

FGameLiftGenericOutcome InitSdkOutcome = GamelLiftSdkModule-
>InitSDK(ServerParametersForAnywhere);

if (InitSdkOutcome.IsSuccess())

{
UE_LOG(GameServerLog, SetColor, TEXT("%s"), COLOR_GREEN);
UE_LOG(GameServerLog, Log, TEXT("GameLift InitSDK succeeded!"));
UE_LOG(GameServerLog, SetColor, TEXT("%s"), COLOR_NONE);

}

else

{

UE_LOG(GameServerLog, SetColor, TEXT("%s"), COLOR_RED);

UE_LOG(GameServerLog, Log, TEXT("ERROR: InitSDK failed : ("));

FGameLiftError GamelLiftError = InitSdkOutcome.GetError();

UE_LOG(GameServerLog, Log, TEXT("ERROR: %s"),
*GameLiftError.m_errorMessage);

UE_LOG(GameServerLog, SetColor, TEXT("%s"), COLOR_NONE);

retuzrn;

ProcessParameters = MakeShared<FProcessParameters>();

//When a game session is created, GamelLift sends an activation request to the
game server and passes along the game session object containing game properties
and other settings.

//Here is where a game server should take action based on the game session
object.

Set up your game with Anywhere 181

Amazon GamelLift Developer Guide

//0nce the game server is ready to receive incoming player connections, it
should invoke GamelLiftServerAPI.ActivateGameSession()
ProcessParameters->0nStartGameSession.BindLambda([=]
(Aws: :GameLift::Server: :Model: :GameSession InGameSession)

{
FString GameSessionId = FString(InGameSession.GetGameSessionId());
UE_LOG(GameServerlLog, Log, TEXT("GameSession Initializing: %s"),

*GameSessionId);

GameLiftSdkModule->ActivateGameSession();

1)

//0nProcessTerminate callback. GameLift will invoke this callback before
shutting down an instance hosting this game server.

//It gives this game server a chance to save its state, communicate with
services, etc., before being shut down.

//In this case, we simply tell GamelLift we are indeed going to shutdown.

ProcessParameters->0OnTerminate.BindLambda([=]()

{

UE_LOG(GameServerLog, Log, TEXT("Game Server Process is terminating"));
GamelLiftSdkModule->ProcessEnding();

1)

//This is the HealthCheck callback.
//GameLift will invoke this callback every 60 seconds or so.

//Here, a game server might want to check the health of dependencies and such.

//Simply return true if healthy, false otherwise.

//The game server has 60 seconds to respond with its health status. GamelLift
will default to 'false' if the game server doesn't respond in time.

//In this case, we're always healthy!

ProcessParameters->0nHealthCheck.BindLambda([]()

{
UE_LOG(GameServerLog, Log, TEXT("Performing Health Check"));

return true;

1)

//GameServer.exe -port=7777 LOG=server.mylog
ProcessParameters->port = FURL::UrlConfig.DefaultPort;
TArray<FString> CommandLineTokens;

TArray<FString> CommandLineSwitches;

FCommandLine: :Parse(FCommandLine: :Get(), CommandLineTokens,
CommandLineSwitches);

for (FString SwitchStr : CommandLineSwitches)

Set up your game with Anywhere

182

Amazon GamelLift Developer Guide

{
FString Key;
FString Value;
if (SwitchStr.Split("=", &Key, &Value))
{
if (Key.Equals("port"))
{
ProcessParameters->port = FCString::Atoi(*Value);
}
}
}

//Here, the game server tells GamelLift where to find game session log files.
//At the end of a game session, GamelLift uploads everything in the specified
//location and stores it in the cloud for access later.

TArray<FString> Logfiles;
Logfiles.Add(TEXT("GameServerlLog/Saved/Logs/GameServerLog.log"));
ProcessParameters->logParameters = Logfiles;

//The game server calls ProcessReady() to tell GameLift it's ready to host game
sessions.

UE_LOG(GameServerlLog, Log, TEXT("Calling Process Ready..."));

FGameLiftGenericOutcome ProcessReadyOutcome = GamelLiftSdkModule-
>ProcessReady(*ProcessParameters);

if (ProcessReadyOutcome.IsSuccess())

{
UE_LOG(GameServerlLog, SetColor, TEXT("%s"), COLOR_GREEN);
UE_LOG(GameServerlLog, Log, TEXT("Process Ready!"));
UE_LOG(GameServerLog, SetColor, TEXT("%s"), COLOR_NONE);

}

else

{

UE_LOG(GameServerlLog, SetColor, TEXT("%s"), COLOR_RED);

UE_LOG(GameServerLog, Log, TEXT("ERROR: Process Ready Failed!"));

FGameLiftError ProcessReadyError = ProcessReadyOutcome.GetError();

UE_LOG(GameServerLog, Log, TEXT("ERROR: %s"),
*ProcessReadyError.m_errorMessage);

UE_LOG(GameServerLog, SetColor, TEXT("%s"), COLOR_NONE);

UE_LOG(GameServerlLog, Log, TEXT("InitGamelLift completed!"));
#tendif

Set up your game with Anywhere 183

Amazon GamelLift Developer Guide

}

Integrate your client game map

The startup game map contains blueprint logic and Ul elements that already include basic code
to request game sessions and use connection information to connect to a game session. You can
use the map as is or modify these as needed. Use the startup game map with other game assets,
such as the Third Person template project provided by Unreal Engine. These assets are available
in Content Browser. You can use them to test the plugin's deployment workflows, or as a guide to
create a custom backend service for your game.

The startup map has the following characteristics:

o Itincludes logic for both an Anywhere fleet and a managed EC2 fleet. When you run your client,
you can choose to connect to either fleet.

« Client functionality includes find a game session (SearchGameSessions()), create a new game
session (CreateGameSession()), and join a game session directly.

« It gets a unique player ID from your project's Amazon Cognito user pool (this is part of a
deployed Anywhere solution).

To use the startup game map

1. In the UE editor, open the Project Settings, Maps & Modes page, and expand the Default
Maps section.

2. For Editor Startup Map, select "StartupMap" from the dropdown list. You might need to
search for the file, which is located in ... > Unreal Projects/[project-name]/
Plugins/Amazon GameLift Plugin Content/Maps.

For Game Default Map, select the same "StartupMap" from the dropdown list.

4. For Server Default Map, select "ThirdPersonMap". This is a default map included in your game
project. This map is designed for two players in the game.

5. Open the details panel for the server default map. Set GameMode Override to "None".

6. Expand the Default Modes section, and set Global Default Server Game Mode to the game
mode you updated for your server integration.

After you've made these changes to your project, you're ready to build your game components.

Set up your game with Anywhere 184

Amazon GamelLift Developer Guide

Build your game components
1. Create new server and client target files

a. Inyour game project folder, go to the Source folder and find the Target. cs files.

b. Copy the file [project-name]Editor.Target.cs to two new files named [project-
name]Client.Target.cs and [project-name]Server.Target.cs.

c. Edit each of the new files to update the class name and target type values, as shown:

UnrealProjects > MyGame > Source > MyGameClient.Target.cs
// Copyright Epic Games, Inc. All Rights Reserved.

using UnrealBuildTool;
using System.Collections.Generic;

public class MyGameClientTarget : TargetRules
{
public MyGameClientTarget(TargetInfo Target) : base(Target)
{
Type = TargetType.Client;
DefaultBuildSettings = BuildSettingsVersion.V2;
IncludeOrderVersion = EngineIncludeOrderVersion.Unreal5_1;
ExtraModuleNames.Add("MyGame");

UnrealProjects > MyGame > Source > MyGameServer.Target.cs
// Copyright Epic Games, Inc. All Rights Reserved.

using UnrealBuildTool;
using System.Collections.Generic;

public class MyGameServerTarget : TargetRules

{
public MyGameServerTarget(TargetInfo Target) : base(Target)
{
Type = TargetType.Server;
DefaultBuildSettings = BuildSettingsVersion.V2;
IncludeOrderVersion = EngineIncludeOrderVersion.Unreal5_1;
ExtraModuleNames.Add("MyGame");

Set up your game with Anywhere 185

Amazon GamelLift Developer Guide

}

2. Update the .Build.cs file.

a. Openthe .Build.cs file for your project. This file is located in UnrealProjects/
[project name]/Source/[project name]/[project name].Build.cs.

b. Update the ModuleRules class as shown in the following code sample.

public class MyGame : ModuleRules

{
public GameLiftUnrealApp(TargetInfo Target)

{
PublicDependencyModuleNames.AddRange(new string[] { "Core", "CoreUObject",

"Engine", "InputCore" });
bEnableExceptions = true;

if (Target.Type == TargetRules.TargetType.Server)

{
PublicDependencyModuleNames.AddRange(new string[]
{ "GameLiftServerSDK" 1});
PublicDefinitions.Add("WITH_GAMELIFT=1");
}

else

{
PublicDefinitions.Add("WITH_GAMELIFT=0");

3. Rebuild your game project solution.
4. Open your game project in a source-built version of the Unreal Engine editor.

5. Do the following for both your client and server:
a. Choose a target. Go to Platforms, Windows and select one of the following:

« Server: [your-application-name]Server
e Client: [your-application-name]Client

b. Start the build. Go to Platform, Windows, Package Project.

Set up your game with Anywhere 186

Amazon GamelLift Developer Guide

Each packaging process generates an executable: [your-application-name]Client.exe or
[your-application-name]Server.exe.

In the plugin, set the paths to the client and server build executables on your local workstation.

Step 3: Connect to an Anywhere fleet

In this step, you designate an Anywhere fleet to use. An Anywhere fleet defines a collection of
compute resources, which can be located anywhere, for game server hosting.

« If the AWS account you're currently using has existing Anywhere fleets, open the Fleet name
dropdown field and choose a fleet. This dropdown only shows the Anywhere fleets in the AWS
Region for the currently active user profile.

« If there are no existing fleets—or you want to create a new one, choose Create new Anywhere
fleet and provide a fleet name.

After you've chosen an Anywhere fleet for your project, Amazon GamelLift verifies that fleet status
is active ad displays the fleet ID. You can track progress of this request in the Unreal editor's output
log.

Step 4: Register your workstation

In this step, you register your local workstation as a compute resource in the new Anywhere fleet.

1. Enter a compute name for your local machine. If you add more than one compute in the fleet,
the names must be unique.

2. Provide an IP address for your local machine. This field defaults to your machine's public IP
address. You can also use localhost (127.0.0.1) as long as you're running your game client and
server on the same machine.

3. Choose Register compute. You can track progress of this request in the Unreal editor's output
log.

In response to this action, Amazon GamelLift verifies that it can connect to the compute and returns
information about the newly registered compute. It also creates the console arguments that your
game executables need when initializing communication with the Amazon GamelLift service.

Set up your game with Anywhere 187

Amazon GamelLift Developer Guide

Step 5: Generate auth token

Game server processes that are running on your Anywhere compute need an authentication token
to make calls to the GamelLift service. The plugin automatically generates and stores an auth token
for the Anywhere fleet whenever you launch the game server from the plugin. The auth token
value is stored as a command line argument, which your server code can retrieve at runtime.

You do not have to take any action in this step.
Step 6: Launch game

At this point, you've completed all of the tasks needed to launch and play your multiplayer game
on a local workstation using Amazon GamelLift.

1. Launch your game server. The game server will notify Amazon GameLift when it is ready to host
game sessions.

2. Launch your game client and use the new functionality to start a new game session. This request
is sent to Amazon GamelLift via the new backend service. In response, Amazon GamelLift, calls
the game server, running on your local machine, to start a new game session. When the game
session is ready to accept players, Amazon GamelLift provides connection information for the
game client to join the game session.

Deploy your game to cloud hosting with managed EC2 fleets

In this workflow, you use the plugin to modify your game for hosting on cloud-based compute
resources managed by Amazon GamelLift. You add client and server game code for Amazon
GamelLift functionality, then upload your server build to the Amazon GamelLift service for
deployment to the cloud-based resources. When this workflow is complete, you'll have a working
game client that can connect to your game servers in the cloud.

To start the Amazon GamelLift managed Amazon EC2 workflow:

e In the Unreal editor main toolbar, choose the Amazon GamelLift menu, and select Host with
Managed EC2. This action opens the plugin page Deploy Amazon EC2 Fleet, which presents a
six-step process to integrate, build, deploy, and launch your game components.

Deploy your game with managed Amazon EC2 fleets 188

Amazon GamelLift Developer Guide

Step 1: Set your profile

Choose the profile you want to use when following this workflow. The profile you select impacts all
steps in the workflow. All resources you create are associated with the profile's AWS account and
are placed in the profile's default AWS Region. The profile user's permissions determine your access
to AWS resources and actions.

1. Select a profile from the dropdown list of available profiles. If you don't have a profile yet or
want to create a new one, go to the Amazon GameLift menu and choose Set AWS User Profiles.

2. If bootstrap status is not "Active", choose Bootstrap profile and wait for the status to change to
"Active".

Step 2: Set up your game code

In this step, you make a series of updates to your client and server code to add hosting
functionality. If you haven't already set up a source-built version of the Unreal editor, the plugin
provides links to instructions and source code.

If you integrated your game for use with an Anywhere fleet, you don't need to make any changes
to your game code. If you're using the startup game map, this works with EC2 deployments also.

» Set up your game code (Anywhere)

 Build your game components

After building your game server, complete the following tasks to prepare it for uploading to
Amazon Gamelift.

To package your server build for cloud deployment

In the WindowsServer folder, where the Unreal editor packages your server build files by default,
make the following additions

1. Copy the install script, included in the plugin download, into the root of the WindowsServer
folder. Look for the file [project-name]/Plugins/Resources/CloudFormation/
extra_server_resources/install.bat. Amazon GamelLift uses this file to install the
server build on each EC2 hosting resource.

Deploy your game with managed Amazon EC2 fleets 189

Amazon GamelLift Developer Guide

2.

Copy the VC_redist.x64.exe file, included in your Visual Studio installation, into the root
of the WindowsSexrver folder. This file is commonly located at C: /Program Files (x86)/
Microsoft Visual Studio/2019/Professional/VC/Redist/MSVC/v142.

Copy the OpenSSL DLLs for your game server build into the folder WindowsServer/MyGame/
Binaries/Win64. Make sure the DLLs are for same version used in the server build. Copy the
following files:

e libssl-3-x64.d11
e« libcrypto-3-x64.dl1

Step 3: Select deployment scenario

In this step, you choose the game hosting solution that you want to deploy at this time. You can

have multiple deployments of your game, using any of the scenarios.

 Single-region fleet: Deploys your game server to a single fleet of hosting resources in the

active profile's default AWS region. This scenario is a good starting point for testing your server

integration with AWS and server build configuration. It deploys the following resources:

AWS fleet (On-Demand) with your game server build installed and running.

Amazon Cognito user pool and client to enable players to authenticate and start a game.
API gateway authorizer that links user pool with APIs.

WebACl for throttling excessive player calls to API gateway.

API gateway + Lambda function for players to request a game slot. This function calls
CreateGameSession() if none are available.

API gateway + Lambda function for players to get connection info for their game request.

« FlexMatch fleet: Deploys your game server to a set of fleets and sets up a FlexMatch matchmaker

with rules to create player matches. This scenario uses low-cost Spot hosting with a multi-fleet,

multi-location structure for durable availability. This approach is useful when you're ready to

start designing a matchmaker component for your hosting solution. In this scenario, you'll create

the basic resources for this solution, which you can customize later as needed. It deploys the

following resources:

FlexMatch matchmaking configuration and matchmaking rule set to accept player requests
and form matches.

Three AWS fleets with your game server build installed and running in multiple locations.
Includes two Spot fleets and one On-Demand fleet as a backup.

Deploy your game with managed Amazon EC2 fleets 190

Amazon GamelLift Developer Guide

AWS game session placement queue that fulfills requests for proposed matches by finding
the best possible hosting resource (based on viability, cost, player latency, etc.) and starting a
game session.

Amazon Cognito user pool and client to enable players to authenticate and start a game.
API gateway authorizer that links user pool with APIs.
WebACl for throttling excessive player calls to API gateway.

API gateway + Lambda function for players to request a game slot. This function calls
StartMatchmaking().

API gateway + Lambda function for players to get connection info for their game request.

Amazon DynamoDB tables to store matchmaking tickets for players and game session
information. .

SNS topic + Lambda function to handle GameSessionQueue events.

Step 4: Set game parameters

In this step, you describe your game for uploading to AWS .

» Server build name: Provide a meaningful name for your game server build. AWS uses this name

to refer to the copy of your server build that's uploaded and used for deployments.

« Server build OS: Enter the operating system that your server is built to run on. This tells AWS

what type of compute resources to use to host your game.

« Game server folder: Identify the path to your local server build folder.

« Game server build: Identify the path to the game server executable.

« Game client path: Identify the path to the game client executable.

 Client configuration output: This field needs to point to a folder in your client build that contains
your AWS configuration. Look for it in the following location: [client-build]/[project-
name]/Content/CloudFormation.

Step 5: Deploy scenario

In this step, you deploy your game to a cloud hosting solution based on the deployment scenario

you chose. This process can take as long as 40 minutes while AWS validates your server build,

provisions hosting resources, installs your game server, launches server processes, and gets them

ready to host game sessions.

Deploy your game with managed Amazon EC2 fleets 191

Amazon GamelLift Developer Guide

To start deployment, choose Deploy CloudFormation. You can track the status of your game
hosting here. For more detailed information, you can sign in to the AWS Management console for
AWS and view event notifications. Be sure to sign in using the same account, user, and AWS Region
as the active user profile in the plugin.

When deployment is complete, you have your game server installed on an AWS EC2 instance. At
least one server process is running and ready to start a game session.

Step 6: Launch client

At this point, you've completed all of the tasks needed to launch and play your multiplayer game
hosted with Amazon GamelLift. To play the game, launch an instance of you game client.

If you deployed the single fleet scenario, you can open a single client instance with one player,
enter the server map and move around. Open additional instances of the game client to add a
second player to the same server game map.

If you deployed the FlexMatch scenario, the solution waits for at least two clients to be queued for

game session placement before the players can enter the server map.

Get fleet data for a Amazon GamelLift instance

There are some situations where your custom game build or Realtime Servers script may require
information about the Amazon GamelLift fleet. For example, your game build or script might
include code to:

» Monitor activity based on fleet data.
« Roll up metrics to track activity by fleet data. (Many games use this data for LiveOps activities.)

» Provide relevant data to custom game services, such as for matchmaking, additional capacity
scaling, or testing.

Fleet information is available as a JSON file on each instance in the following locations:

e Windows: C:\GameMetadata\gamelift-metadata. json

e Linux: /local/gamemetadata/gamelift-metadata.json

The gamelift-metadata. json file includes the attributes of a Amazon Gamelift fleet resource.

Get fleet data 192

https://docs.aws.amazon.com/gamelift/latest/apireference/API_FleetAttributes.html

Amazon GamelLift Developer Guide

Example JSON file:

"buildArn":"arn:aws:gamelift:us-west-2:123456789012:build/
build-111l1aaaa-22bb-33cc-44dd-5555eeeeb6ff",
"buildId":"build-1111laaaa-22bb-33cc-44dd-5555eeeeb66ff",
"fleetArn":"arn:aws:gamelift:us-west-2:123456789012:fleet/
fleet-2222bbbb-33cc-44dd-55ee-6666ffff77aa",
"fleetDescription":"Test fleet for Really Fun Game v0.8",
"fleetId":"fleet-2222bbbb-33cc-44dd-55ee-6666Fffff77aa",
"fleetName":"ReallyFunGameTestFleet08",
"fleetType":"ON_DEMAND",
"instanceRoleArn":"arn:aws:iam: :123456789012:role/S3AccessForGameLift",
"instanceType":"c5.large",
"serverLaunchPath":"/local/game/reallyfungame.exe"

Adding FlexMatch matchmaking

Use Amazon GamelLift FlexMatch to add player matchmaking functionality to your Amazon
GamelLift hosted games. You can use FlexMatch with either custom game servers or Realtime
Servers.

FlexMatch pairs the matchmaking service with a customizable rules engine. You design how to
match players together based on player attributes and game modes that make sense for your
game. FlexMatch manages the nuts and bolts of evaluating players who are looking for a game,
forming matches with one or more teams, and starting game sessions to host the matches.

To use the full FlexMatch service, you must have your hosting resources set up with queues.
Amazon GamelLift uses queues to locate the best possible hosting locations for games across
multiple regions and computing types. In particular, Amazon GameLift queues can use latency
data, when provided by game clients, to place game sessions so that players experience the lowest
possible latency when playing.

For more information on FlexMatch including detailed help with integrating matchmaking into
your games, see these Amazon GamelLift FlexMatch Developer Guide topics:

« How Amazon GamelLift FlexMatch works

« FlexMatch integration steps

Adding FlexMatch matchmaking 193

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-intro.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-tasks.html

Amazon GamelLift Developer Guide

Managing Amazon GamelLift hosting resources

This section provides detailed information about setting up Amazon GameLift managed resources
to run your game servers and host game sessions for players. You must configure and deploy
resources, scale capacity to meet player demand, and locate available resources to host game
sessions.

The following diagram illustrates how Amazon GamelLift resource objects relate to each other.
Use a build or script to create a fleet, give a fleet an alias, and add fleets to a game session queue
using their alias. For games that use FlexMatch matchmaking, use the game session queue and a
matchmaking rule set to create a matchmaking configuration.

iy
'r Amazon Gamelift

+ | Matchmaking Configuration E E Matchmaking Configuration :

' — ' — '
I Matchmaking Rule Set | ++ Matchmaking Rule Set

Game Session Queue Game Session Queue

’ | E: — 1 :
Alias E ' Alias Alias i

| ¥ [| E

: Fleet E' Fleet Fleet E
E | ' | E
: Build or Script i Build or Script :

Game server code

 Build - Your custom-built game server software that runs on Amazon GamelLift and hosts
game sessions for your players. A game build represents the set of files that run your game
server on a particular operating system, and that you must integrate with Amazon GamelLift.
Upload game build files to Amazon GamelLift in the AWS Regions where you plan to set up
fleets. For more information, see Upload a custom server build to Amazon GamelLift.

 Script - Your configuration and custom game logic for use with Realtime Servers. Configure
Realtime Servers for your game clients by creating a script using JavaScript, and add custom
game logic to host game sessions for your players. For more information, see Upload a
Realtime Servers script to Amazon GamelLift.

194

Amazon GamelLift Developer Guide

Fleet

A collection of compute resources that run your game servers and host game sessions for your
players. For information about where you can deploy fleets, see Amazon GamelLift hosting

locations. For information about creating fleets, see Setting up Amazon GamelLift fleets.

Alias

An abstract identifier for a fleet that you can use to change the fleet that your players are
connected to at any time. For more information, see Add an alias to a Amazon GamelLift fleet.

Game session queue

A game session placement mechanism that receives requests for new game sessions and
searches for available game servers to host the new sessions. For more information about game
session queues, see Setting up Amazon GamelLift queues for game session placement.

Uploading builds and scripts to Amazon GamelLift

Before deploying your multiplayer game servers for hosting with Amazon GamelLift, you need
to upload your game server files. The topics in this section provide guidance on preparing and
uploading custom game server build files or Realtime Servers server script files.

Topics

« Upload a custom server build to Amazon GamelLift

« Upload a Realtime Servers script to Amazon GamelLift

Upload a custom server build to Amazon GamelLift

After you integrate your game server with Amazon GamelLift, upload the build files to Amazon
Gamelift. This topic covers how to package your game's build files, create an optional build install
script, and then upload the files using the AWS Command Line Interface (AWS CLI) or an AWS SDK.

Topics

» Package your game build files

e Create a Amazon GamelLift build

» Update your build files

« Add a build install script

Uploading builds and scripts 195

https://aws.amazon.com/cli/

Amazon GamelLift Developer Guide

Package your game build files

Before uploading your configured game server to Amazon GamelLift, package the game build
files into a build directory. This directory must include all components required to run your game
servers and host game sessions, including the following:

« Game server binaries — The binary files required to run the game server. A build can include
binaries for multiple game servers built to run on the same platform. For a list of supported
platforms, see Development support with Amazon GamelLift.

« Dependencies — Any dependent files that your game server executables require to run. Examples
include assets, configuration files, and dependent libraries.

(® Note

For game builds created with the Amazon GamelLift server SDK for C++ (including
those created with the Unreal plugin), include the OpenSSL DLL for the same version of
OpenSSL that you built the server SDK with. See the server SDK README file for more
details.

« Install script (Optional) — A script file to handle tasks that install your game build on Amazon
Gamelift hosting servers. Place this file at the root of the build directory. Amazon GamelLift runs
the install script as part of fleet creation.

You can set up any application in your build, including your install script, to access your resources
securely on other AWS services. For information about ways to do this, see Communicate with

other AWS resources from your fleets.

After you've packaged your build files, make sure that your game server can run on a clean
installation of your target OS. This verifies that you include all required dependencies in your
package and that your install script is accurate.

Create a Amazon Gamelift build

When creating a build and uploading your files, you have a couple of options:

» Create a build from a file directory. This is the simplest and most commonly used option.

« Create a build with files in Amazon Simple Storage Service (Amazon S3). With this option, you

can manage your build versions in Amazon S3.

Upload a build 196

Amazon GamelLift Developer Guide

With both methods, Amazon GamelLift creates a new build resource with a unique build ID and
other metadata. The build starts in the Initialized status. After Amazon GamelLift acquires the
game server files, the build moves to Ready status.

When the build is ready, you can deploy it to a new Amazon Gamelift fleet. For more information,
see Create a Amazon GamelLift managed fleet. When Amazon GamelLift sets up the new fleet, it
downloads the build files to each fleet instance and installs the build files.

Create a build from a file directory

To create a game build stored in any location, including a local directory, use the upload-build
AWS CLI command. This command creates a new build record in Amazon GameLift and uploads
files from a location that you specify.

Send an upload request. In a command line window, enter the following upload-build command
and parameters.

aws gamelift upload-build \
--name user-defined name of build \
--operating-system supported 0S \
--server-sdk-version Amazon Gamelift server SDK version \
--build-root build path \
--build-version user-defined build number \
--region region name

» operating-system — The game server build's runtime environment. You must specify an OS
value. You can't update this later.

- server-sdk-version - The version of the Amazon GamelLift server SDK that your game server is
integrated with. If you don't provide a value, Amazon GamelLift uses the default value 4.0. 2.
If you specify an incorrect server SDK version, the game server build might fail when calling
InitSdk to establish a connection to the Amazon GamelLift service.

 build-root — The directory path of your build files.
« name - A descriptive name for the new build.
« build-version — The version details for the build files.

» region — The AWS Region where you want to create your build. Create the build in the Region
where you plan to deploy fleets. If you're deploying your game in multiple Regions, create a build
in each Region.

Upload a build 197

https://docs.aws.amazon.com/cli/latest/reference/gamelift/upload-build.html

Amazon GamelLift Developer Guide

® Note

View your current default Region using the aws configure get region. To change your

default Region, use the aws configure set region region name command.

Examples

aws gamelift upload-build \
--operating-system AMAZON_LINUX_2023 \

--server-sdk-version "5.0.0" \
--build-root "~/mygame" \

--name "My Game Nightly Build" \
--build-version "build 255" \
--region us-west-2

aws gamelift upload-build \
--operating-system WINDOWS_2016 \
--server-sdk-version "5.0.0" \
--build-root "C:\mygame" \
--name "My Game Nightly Build" \
--build-version "build 255" \
--region us-west-2

In response to your upload request, Amazon GameLift provides upload progress. On a successful
upload, Amazon GamelLift returns the new build record ID. Upload time depends on the size of your
game files and the connection speed.

Create a build with files in Amazon S3

You can store your build files in Amazon S3 and upload them to Amazon GamelLift from there.
When you create you build, you specify the S3 bucket location, and Amazon GameLift retrieves the
build files directly from Amazon S3.

To create a build resource

1. Store your build files in Amazon S3. Create a .zip file containing the packaged build files
and upload it to an S3 bucket in your AWS account. Take note of the bucket label and the file
name, you'll need these when creating a Amazon GamelLift build.

Upload a build 198

https://docs.aws.amazon.com/cli/latest/reference/configure/get.html
https://docs.aws.amazon.com/cli/latest/reference/configure/set.html

Amazon GamelLift Developer Guide

2. Give Amazon Gamelift access to your build files. Create an IAM role by following the
instructions in Access a game build file in Amazon S3. After you've created the role, take note
of the new role's Amazon Resource Name (ARN), you'll need this when creating a build.

3. Create a build. Use the Amazon GamelLift console or the AWS CLI to create a new build
record. You must have the PassRole permission, as described in IAM permission examples for
Amazon GamelLift.

Console

1. Inthe Amazon GamelLift console, in the navigation pane, choose Hosting, Builds.

2. On the Builds page, choose Create build.
3. On the Create build page, under Build settings, do the following:

a. For Name, enter a script name.

b. For Version, enter a version. Because you can update the content of a build, version
data can help you track updates.

c. For Operating system (OS), choose the OS of your game server build. You can't update
this value later.

d. For Game server build, enter the S3 URI of the build object that you uploaded to
Amazon S3, and choose the Object version. If you don't remember the Amazon S3 URI
and object version, choose Browse S3 and search for the build object.

e. ForIAM role, choose the role that you created that gives Amazon GamelLift access to
your S3 bucket and build object.

4. (Optional) Under Tags, add tags to the build by entering Key and Value pairs.

5. Choose Create.

Amazon GamelLift assigns an ID to the new build and uploads the designated .zip file. You can
view the new build, including the status, on the Builds page.

AWS CLI

To define the new build and upload your server build files, use the create-build command.

1. Open a command line window and switch to a directory where you can use the AWS CLI.

2. Enter the following create-build command:

Upload a build 199

https://console.aws.amazon.com/gamelift/
https://docs.aws.amazon.com/cli/latest/reference/gamelift/create-build.html

Amazon GamelLift Developer Guide

aws gamelift create-build \

--name user-defined name of build \

--server-sdk-version Amazon Gamelift server SDK version \

--operating-system supported 0S \

--build-version user-defined build number \

--storage-location "Bucket"=S3 bucket label,"Key"=Build .zip file
name, "RoleArn"=Access role ARN} \

--region region name

« name - A descriptive name for the new build.

» server-sdk-version — The version of the Amazon GamelLift server SDK you used to
integrate your game server with Amazon Gamelift. If you don't provide a value, Amazon
Gamelift uses the default value 4.0. 2.

» operating-system — The game server build's runtime environment. You must specify an
OS value. You can't update this later.

« build-version — The version details for the build files. This information can be useful
because each new version of your game server requires a new build resource.

» storage-location

» Bucket — The name of the S3 bucket that contains your build. For example,
"my_build_files".

» Key - The name of the .zip file that contains your build files. For example,

"my_game_build_7.0.1, 7.0.2".

» RoleARN - The ARN assigned to the IAM role that you created. For example,
"arn:aws:iam::111122223333:role/GameLiftAccess". For an example policy, see Access
a game build file in Amazon S3.

» region — Create the build in the AWS Region where you plan to deploy fleets. If you're
deploying your game in multiple Regions, create a build in each Region.

(® Note

We recommend checking your current default Region using the configure get

command. To change your default Region, use the configure set command.

Example

Upload a build 200

https://docs.aws.amazon.com/cli/latest/reference/configure/get.html
https://docs.aws.amazon.com/cli/latest/reference/configure/set.html

Amazon GamelLift Developer Guide

aws gamelift create-build \
--operating-system WINDOWS_2016 \
--storage-location
"Bucket"="my_game_build_files", "Key"="mygame_build_101.zip", "RoleArn
gamelift" \
--name "My Game Nightly Build" \
--build-version "build 101" \
--region us-west-2

3. To view the new build, use the describe-build command.

Update your build files

You can update the metadata for a build resource using the Amazon GamelLift console or the
update-build AWS CLI command.

After you've created a Amazon GamelLift build, you can't update the build files associated with
it. For each new set of files, create a new Amazon GamelLift build. Using the upload-build

command, Amazon GamelLift automatically creates a new build record for each request. If you
provide build files using the create-build command, upload a new build .zip file with a different
name to Amazon S3 and create a build by referencing the new file name.

Try these tips for deploying updated builds:

« Use queues and swap out fleets as needed. When setting up your game client with Amazon
Gamelift, specify a queue instead of a fleet. With queues, you can add the new fleets with
the new build to your queue and remove the old fleets. For more information, see Setting up
Amazon GamelLift queues for game session placement.

« Use aliases to transfer players to a new game build. When integrating your game client with
Amazon Game