aws

SQL Developer Guide

Amazon Kinesis Data Analytics for SQL
Applications Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Amazon Kinesis Data Analytics for SQL Applications Developer
Guide: SQL Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Table of Contents

.. X
What Is Amazon Kinesis Data Analytics for SQL Applications?cccciiiiiiiiinnenennenecsssecccseennsneees 1
When Should | Use Amazon Kinesis Data ANalyticS?oieieiicecececeeeeeeeete et a e 1
Are You a First-Time User of Amazon Kinesis Data AnalyticS?coooeeeecieveeiieneceseseeeee e 2
HOW If WOKKS cociiiiiiiiinnnninnnnnnnnnnneseemsensssssssesesssssssnessnestmneesiseessens 3
INPDUT ettt et e s it e e s ae e st e s s sa e e b e e s b e e s b e s aa e e b e e s R e e e b e e s e e e b e e Rt e e b e e s e e e b e e st e s s eeesaesraennaans 6
Configuring @ StreamiNg SOUICEocveieeieeieteeeceeee ettt ste e e e e e e e e s e saestesaesaessessessaesaesensansansans 7
Configuring @ REFErENCE SOUICEueuieeeeeeeeee ettt et sae st e st e e e e e n et nes 10
Working With JSONPQtH ...ttt sttt a et et aan 13
Mapping Streaming Source Elements to SQL Input Columnsccocvecieeiececenenieereeceeeeeenene 18
Using the Schema Discovery Feature on Streaming Dataccccceeeeeveeeeceeceecieceecececeeeeeeeenan 24
Using the Schema Discovery Feature on Static Datacceceeeeeeecececcecceeeeecee e 26
Preprocessing Data Using @ Lambda FUNCLION ..ot 31
Parallelizing Input Streams for Increased Throughput ... 42
APPLICALION COUE ittt sttt e st e st e s e s e s e e e e e e st et et e aestassassaesaesaenaansanes 47
OULPUL ettt et et re e st e e st e s b e s s sa e e b e e s st e s b e s sa e s b e e saessse s saesssaestesssesssaessseesseesssesssaessens 49
Creating an Output USiNg the AWS CLI ...ttt ettt a s 50
Using a Lambda FUNCLION @S OULPULc.eevieeeeeeeeteeeter ettt st te st saeaenan 52
Application Output DeLliVEry MOEL ...ttt 60
EFTOr HANALUING .ttt ettt et e s e e e e e e et e s ae st e st e s s e e e e se e e et et esbansassessaeseeneensanean 61
Reporting Errors Using an In-Application Error Streamoeceeeceeeceeeeeeeeeeceecee e saeenens 61
AUtO SCaliNg APPLICALIONS ..ot ettt e s e e e e s e e e et e st e stesaasseesaennennens 63
TAGGING ettt ettt et e st e e st e st e s sae e s e e s s a e e st e e bt e e e e b e e st e e e e et e e s e e s e e et e e st e e s e e st eesaeeereesaeessaans 63
Adding Tags when an Application is Created ... ececiceceeececeeeeee et 64
Adding or Updating Tags for an Existing Applicationccceeeeeeeeeeeeceececececececeeee e 64
Listing Tags for an APPLICAtION ...ttt a e et e eas 65
Removing Tags from an APPLICAtioN ...ttt a e et saesrees 65
[CT=1 4 T 1o) = =T« [P PUP N 66
SigN UP FOr AN AWS QCCOUNT ...ttt ettt testestesse s e e e s s e s e e e stesestessassessasseensensanean 66
Create an admMiNISErAtiVE USEN ...c.civerieriiiricrteteeretet ettt ettt st se s sae st s st s s e b et e e ssasaesassanns 67
Step 1: Set UP @n ACCOUNT ...ttt ettt s st s sae e e e s sae s sae e s sae e se e s sse s saessaaessaasssasssaasnns 68
SIGN UP TOr AWS ..ottt e e e et et e st st e st et e st e s se e e e sa e e et et ebe st e sassaeseessensensansansanes 68
Create AN TAM USEE ..ttt ettt s e a st s e at s b e st e st s sbe st e e st s sse st e st s ssesanenneen 69

NEXE STOP cetiiiiictieeecterre ettt st s st e st e s sae e st e s se e s e e e saeessae s ae e sbesssaesssesssaesssassseesssessseenssessseesssensnes 69

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

SigN UP FOr AN AWS QCCOUNT ..ottt et ettt et estesse s e s e e s e s e e este st essessassessassaessensanean 66
Create an admMiNISErAtiVE USEN ...c.civerieriiirerieteeretet ettt sttt se s sae st s st s s e b et e e sbessesassanns 67
StEP 2: SEL UP the AWS CLI ..ttt ettt saestesae s e e se e e e e e e e s e st e saesaassasaessnennannans 71
INEXE STOP cetiiieicieeecctertertee ettt s et s e e s sae e st e s ae s s e e s saeessbessse e sbassseesssesssaesssasssaesssesssaesssessseesssensses 72
Step 3: Create Your Starter Analytics AppliCation ... 72
Step 3.71: Create an APPLICAtION ...ttt te e e et et sae b ns 75
Step 3.2: CONFIGUIE INPUL ...ttt et st e s e e e e e e e et et e saasbessassassesnnennan 77
Step 3.3: Add Real-Time Analytics (Add Application Code)oevierrceciecereeeeeeeceereee e 80
Step 3.4: (Optional) Update the Application Code ... 84
Step 4 (Optional) Edit the Schema and SQL Code Using the Consolecccecveeecevecececeeieennnne 86
Working with the SChema EditOr ...ttt st aesaens 87
Working With the SQL EdITOr ...ttt a et sae e e ae s s e e snnens 96
Streaming SQL CONCEPLS ..cciiiieeeeeeeeciiiiieecinieeaness 100
INn-Application Streams anNd PUMIPS ...ttt see e e e st saestesaesse s e e e e s e s e saesaanaaneans 100
Timestamps and the ROWTIME COLUMN ...ttt saesteste e se s e e s e s e saesaennans 102
Understanding Various Times in Streaming ANalyticscccoeeeeieviecieceececesesecesee e 102
CONTINUOUS QUETIESeeeeeeeeeeeeeeeeteeeccctteeeeeetteeeeessaseeeeesseeesesssasesessssssesssssssessssssssssssssssessssssssesssssssessnnns 105
WiINAOWEA QUETIES ...ttt cere et tecaeesve e ssesaseessessseesseesssesssessseessseessssssesssesssessseesssesnnes 106
StAGGEI WINAOWS ...ttt et te st e stestesteste e e e e e e e s e sae st e st essessaesasssessastessansansassassaeseessenean 107
TUMDBLUING WINAOWS ...ttt ettt et e e e s et e sae st e b e sa e e e saeaea e e anaastansansan 112
SUHAING WINAOWS ...ttt sttt este st et e s e e e s e esa et e st e st e b e sassessaesaesaessensansansansen 114
SEFEAM JOINS ettt st et a et a e st s s b et e e st s b e st e s st s se et e st e ssesnnanten 119
Example 1: Report Orders Where There Are Trades Within One Minute of the Order Being
PLACE ...ttt ettt et st et s b et e bt be b e e Rt et e e b et e e e s e ae st esaeaanes 120
Migrating to Managed Service for Apache FLinKccccciiiiiimrnnnnneiciiiciiiiininnnnennneessnisiccceeeeeaseens 122
Replicating Kinesis Data Analytics for SQL Queries in Managed Service for Apache Flink
STUAIO ettt ettt st et s et t s s b et e s b e st et e s e st et esesse b et ese s et eseesestentesessanteneens 122
Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink
STUAIO ottt ettt ettt s s s et et s e s b et s e b et esa e e s be st e e sbe b e st esessentenassansenaens 123
Migrating Random Cut Forest WOrkloadsc.coeoeeeeeeieieiciececeesec ettt sve e nnens 153
Replacing Kinesis Data Firehose as a source with Kinesis Data Streamsccccocevvevvecveceeceenenee. 153
Amazon Kinesis Data Analytics-SQL and Amazon Kinesis Data Firehosecccccoeeeeveenenen. 153
Amazon Managed Service for Apache FLink StUdiOcocueieeineeeeeeeeeeeeeee e 156
Leveraging user-defined fuNCtions (UDFS)ccuooueoereeieieeceiectectesese ettt stestesve e e aeaenan 162
User-defined fUNCLIONS (UDFS) cooueiieeiieiieeeieeeeeeeeeeeeeteeestteeesatesesseessseessssesssssesssssesssssessssesssssesens 163
ENVIFONMENT SELUP oottt ettt te st s te s sre e e e s sae s s s e s saa e saassaeessaessaaessnasssaasssesanes 164

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Working with Managed Service for Apache Flink Studio notebookcoeeeeeeeevereeceecnenene 165
Promoting notebook as an ApPLICAtion ... 168
CLEANUP ettt et e e et e st et e st e s ae st e st e st e e e e s et et e tassassasseeseessessessassantansassassessaensassensansansansans 169
Kinesis Data Analytics for SQL eXamPplescccueeeeeciiiiiiiieiiininnnnnnnnesssssscceessesssssssssssssssssssssssssssns 170
TranSTOrMING DAt c...ocvcieeeeeecee ettt ettt s e st e e s e e e s e et et e st e aesbesseesaeseereenaansansansan 170
Preprocessing Streams With Lambda ...ttt 170
TransformMing STrNG VALUES ...ttt sa et aesaesse s aea e aeneens 171
Transforming DAteTimeE VALUES ...ttt a et st e st e sae s s seenaens 192
Transforming MULtiple Data TYPES ...ttt re e e se et sae st e saesse s e s e esnennens 196
WiINdoWs and AGQregationcccceeeeeeiciciectesteseses e re et saestestestesse s e e e e e s s e e e aessessessassessnenasnnans 204
SEAGGET WINAOW ...ttt ettt e stestesteste et e e e e e s et e st e st e s b asses e e seessesaantensasansassessaenasnsanean 204
Tumbling Window UsiNng ROWTIMEuiiiicieieteieteseeee e e s steaesaesaessesessessneaessessenaanns 209
Tumbling Window Using an Event TiMeStamipPcccceiieiiecececeseceeeeeeee et sve e sve e e esnennas 212
Most Frequently Occurring Values (TOP_K_ITEMS_TUMBLING)ccccceeerereeerrerreeecreceecnenens 217
Aggregating Partial RESULLS ...ttt ettt s s sa e e aan 220
JOINS ettt et sttt a e b et et s b et e et sb et e bt s b e et e st et e et e ese s be et esaeebannt 223
Example: Add Reference Data SOUIMCE ...ttt a et aesae s 224
MACHINE LEAIMMING oottt ettt te st e st e s aeste s e e et et e st e st e aessassesseesaasaessensansansansassessassanneans 228
Detecting ANOMALIESocviieieeeeceeeeeee ettt et et e s e s e e e e e e e et e tesaasbasseesaesaenaennan 228
Example: Detect Anomalies and Get an EXplanationeecececesececeeeeeeeecee e 236
Example: Detect HOtSPOLS ...ttt ettt et s e e aeaenan 242
ALEIES QN EFTOTS .uviuiiiiieieierieteteestesteestest et e e ste st s e sseste e ssesse st ssessestesessassessesassessesessensessssansensesessassessesens 255
SIMPLE ALBIES .ttt ettt et e s e st e e e e e e e e e e st e st e sbesbassessaeseessessentensessassassassnensantans 256
TREOTELEA ALEILS .ottt ettt b ettt e s e st et e e s s e b et sassesenane 257
IN-APPLICAtION ErrOr STrEAM ..ottt ettt teete e e e e s et esaesbesaesse s e e e enennannans 259
SOLULION ACCELEIATONS ...ttt ettt st s e ae st e e s se st et esessestenassassensesasans 261
Real-time insights on AWS account actiVityccooceeveeecieeeceeeceeeeeeec e 261
Real-time AWS loT device monitoring with Kinesis Data Analyticscccoceveeveeveecveceeceeceenennee. 261
Real-time web analytics with Kinesis Data ANalyticsccoeeeeieviecieciececececee e, 261
Amazon Connected Vehicle SOLULION ...ttt sttt sae e 261
SECUNITY ceiiiiiiiiennnneniiieieeiiiinensessssssssssssessssssssssssssssssssssssess 262
DAta Prot@CLION ..c.eoiiieee ettt ettt st s b et s b st e st s b e st e sesnesnteanes 263
DAta ENCIYPLION ettt et e s re s st e e e e e st e s sae s s e e s saeessaessesssaesssassssesssassseesssessseens 263
Identity and Access ManNAgQEIMENTccuecieieeiieieieteteste ettt e e aesaestestesaesse s e e e e e e s e s e aensessensanes 264
TEUSE POLICY ettt ettt e s e e e et et et e st e st e b e e e s e e s et et esbassasseesaesasnsensansanes 264
PErMISSIONS POLICY ..ottt ettt st te s e e et e s b e st e b e ba s s e s e e sa e e et e aansansansan 265

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Cross-service confused deputy PreveNtion ...t saesaeeens 268
Authentication and ACCESS CONTIOLciiirieriiiienieireretetreretee et ste sttt sae s e e s e sae s esasaens 270
ACCESS CONTIOL 1euiiiiiiieirierieteeriest ettt e st ettt et s e s te st et s e st et s e s e s s e s s e sesassassestesassansessssansensenanes 270
Authenticating With identities ...t 270
Overview Of ManAging ACCESScccveciecierereeeeeeeeeereestestestessesaesessee e e saessesaessessessassessassssssensensanes 274
Using Identity-Based Policies (IAM POLICIES)cvieeiecieciecieeeceeeeeete ettt sae e aas 279
AP| Permissions REFEIENCEcovviriirieirireireretc ettt sttt se s e sbe st e e sseste s ssassassenees 286
MORNIEOTING «eviiviiiieiteeieeet ettt es e st s et e e et e st e s s seessaeesaeesssesssaesssesssaesstessseesssessssasssessseesssessstesssenssaensees 288
ComMPLIANCE Valid@tion ...ttt te e e e s et e st e saesbesse s e eseennesaaneans 288
RESILIEICE .ottt sttt sttt ettt s st et et e b et et e e b et esa s s et e e esassastesaesanseneans 288
DISQSTEI RECOVETY ..ottt cste st te st sstessaeessaessseessnesssaesaesssaasssessssesssasssessssessseesssassseesssesnes 289
INFrAaStrUCTUIE SECUIILY oottt sttt e st et e s e e e e e e e s et e stesaassessasnnesaanaans 289
SECUNITY BESE PraCliCeS ...uuiiiiieieeeetete ettt sttt ettt e s sve st e s st s s sae s sse e st e s saesssaessaessnassanesssenans 289
Use IAM roles to access other AMAzOon SEIVICEScoceevirereriirirenienieesesteesessesssessesseessessesees 290
Implement Server-Side Encryption in Dependent ReSOUICEScccevuecveciececececeseeeeeeeene. 290
Use CloudTrail to Monitor AP Calls ...ttt srest et esse e e ssessesessesaesessens 290
MONIEOKFING ceveiiiiiiiiiiiiiiiennnnniiiiiieceiitieesessssssssssssssesss 291
MORNTEOIING TOOLS ettt e e e et et e st e st e s se s s e e e e e e s e s e aetesassassassessaensensansansansansans 292
AULOMALEA TOOLS ..ottt ettt ettt e sa et e s b et e e s e be e s sessessenessassensesans 292
MANUAL TOOLS .ttt sttt et s e st et s st et e sbe st et saesae st e e s sassesaesasansensssanes 293
Monitoring with Amazon CloUdWaAtCh ...ttt 293
Metrics aNd DIMENSIONScoeviiirieriiirentetresete e se st s e ste st e sse st et s e te st esessestesassessesessassensessssessenaen 294
Viewing Metrics and DIMENSIONScccceeeeereeirieieietestestesese e e e e s e e saesaesaessessessessassassaensessanes 296
ALGIINS ottt ettt sttt et e st et e e s e st et s s e s b et e e e s et et e se s b et et s R et et e R e s et et e s et et eseesenbentenanee 297
OGS ettt st et e sttt e st e st et e st e st e e st e e a e e et e e st e e e e h e e e e e e r e et e e bt e s e e e b e et e e seeesteeaeensaeesaaanns 298
USING AWS CLOUATIQIL oottt ettt stestesse st e e e e e s e s s et e st e be s e sassae e esaensansensanean 305
INfOrmMation iN CLOUATIAIL .oeiiieieieeereeteete ettt ettt e s st sa s s ae e enens 305
Understanding LOg File ENTFES ..ottt a e a et sa e ae s 306
LIMIES veveeeeeennnennnemnminiiiiiiiiiiiiiiiiieeseess 309
BESt PracCliCes cuceeeeeeeiiiiiiiiiiiiiiiiiiiieiniess 312
Managing APPLICALIONS ...ttt s e e e e e e e et et esaesaesse e e e e e e et e e e banaansans 312
SCAlING APPLICALIONS ...ttt ettt et st e s e e e s e e e e e et et e st e saessasseeseenaensensansanes 313
MONItOrING APPLICAIONS ..ottt e e e st et e st e s ae s be s e s s e e e s e e aeaanaenean 314
Defining INPUL SCREMIA ...ttt e ra et st e st ae s eese s e e s e b e stentan 314
CoNNECEING 1O OULPULS ..ottt st see et e s ste s se e s sae s s e e s saesssaessbeessaasssasssaesssassnnens 316
Authoring APPLICAtION COUE ...ttt e e s e e e s e e s et e st e saassesseesnenaennennan 316

Vi

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

TESEING APPLICATIONS ..ttt ettt e st e st s e s e e et et e bessesseesa e e e e ensansanes 317
Setting Up @ TeSt APPLICALION ...ttt st a e et nes 317
Testing SChemMa CRHANGES ...ttt et e te s s e e e e e et e a et e bessassans 318
TeStiNg COAE CRANGES ..ottt te e e e st e e e e e st e sae st e st et essesseeses e ensenaessensansansans 318

TrouDBLESHOOTING ..cciiiiiieeeiiiiiiiciiiiiiiiteeneniiiiiieeettttesassssssssssssssesesssanns 319

StOPPEA APPLICATIONS ettt st e s te st e s st e e e e e s e st e besaasbesseeseenaennenean 319

UNable t0 RUN SQL COE ..ttt et recas e st e eass e asessse e st e sasesssesaseenssesnsesnses 320

Unable to Detect or DiScover My SChEMA ...ttt 320

Reference Data iS OUL OF DAt ...ttt sttt st ss e s e e saa s e e ssens 321

Application Not Writing to Destination ...ttt nenenens 321

Important Application Health Parameters to MONItorccccoeoeeeeeeeeeecceeceecee e 322

Invalid Code Errors When Running an AppLICationccoeeeeeeeccececeeeeee e e e 322

Application is Writing Errors to the Error Streamceceeeceececeeeseceeeeee ettt 323

Insufficient Throughput or High MillisBehindLatestccecieieeenecereeeeeeeeeeeee e 323

SQL REFEIENCE ..ceueeeeeneereeneceeeneeeeeeeceereseceeessecsssssesssssessssssssssssesssnsssssns 325
APl REFEIEONCE auvvevvvervreeennnnnnnnnenniiiiiiiiiiiiiieiieesessses 326

ACTIONS ettt ettt st a et e s b e st a e e et e e st s b e et e st e b e et e bt st e et e e ae et e et e enesbesnees 326
AddApplicationCloudWatchLoggingOPption ...t eae s 328
AdAAPPLICALIONINPUL ..ottt ste st e s e s e re e s e s et e saesae s b esseesaesaesnesaansansans 331
AddApplicationIinputProcessingConfigurationcccooeoeeeecenceecceeees e 335
AddAPPLICALIONOULPUL ...ttt ae st e e e e et e st e st e s s e se s e e e e s eneaenean 339
AddApplicationRefereNCeDAtASOUICEcceceeeeieeeeetetetecteee et saesteste e s e e e e e enenannens 343
Creat@APPLICALION .ottt te st s e et e s e e e e st e st e be st e s se e e e sa e s ennenentans 347
DElEtEAPPLICALION et ettt e st et e s e e e e et et e aesae s e e aeenaenaens 355
DeleteApplicationCloudWatchLoggingOPLion ...t nens 358
DeleteApplicationInputProcessingConfigurationccoeeeeieciececececececeeee e 361
Delete AppPliCAtiONOULPUL ...ttt stesaeste e e e e s e e a e e e aesaaaans 364
DeleteApplicationReferenceDAtaSOUICEcueeieieieeeeececec ettt sr e sae s ae s 367
DESCHDEAPPLICALION ..ottt te st e e e et e aesae s basba e e e e enneaenes 370
DiSCOVEIINPULSCREIMA ...ttt et s e et sa e st e st e s ae s sesseesa e s e aenteaanes 375
LISEAPPLICATIONS ettt ettt e ae st st e s s e e e e e e et et etesaa s e saennenaanes 381
LiStTAGSFOIRESOUICEcetieiiiieeieccteectt ettt et es e e s saess e e s saeesaaessaesssaesssesssaesssessseesssessssesssessseessnens 384
SEAMtAPPLICALION ettt ettt st e st e s te s e e e e e e et e aesaesbesseeseeseesaennansantans 387
STOPAPPLICALION .ttt ve s te et e e a et e st e st e st e s s e e saesaesa et esentansansassesseenean 390
TAGRESOUICE ..ttt ettt et e et e st e s ste s s e e s sae e st e s sse e st e s saeesssasssaesssessstesssesssesssessseessaesssaennnes 393
UNTAGRESOUICE ..ottt sttt s te s sae e s ae s et sssae s sae e st e s aeesssessaeessaesssassssesssassssesssesssaennses 396

vii

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

UPAatEAPPLICAtION ..ottt st te e e e e e e e a et st e st e b e s se e s e e e s snesaesaansanean 399
DAt TYPES ettt sttt et e st s e et e st e st e st e e a e e e e e st e e a e e b e e aa e e b e e s e e et e e st e e teesraeeraentans 404
APPLICALIONDELAIL ...ttt e st esae e e e e et t e be b e et e se e e e e e e e aenaenaan 407
APPLICAIONSUMMAIY ..ottt ettt et e s se s se e e e e e s et e b e st e saassasseennennans 411
APPLICALIONUPAALE ..ttt e s e e e e e sa e st e st e s b e s s e s se s e e e e e e aeaeneans 413
CloudWatchLogginGOPLionecuieieieeceeee ettt ste et e e e s e e e sa e st e saessessesse e e e e e nennanaans 415
CloudWatchLoggingOptionDeSCriPtioNc.cccceeeeereeieieeetectecte et saeste e e e nesae s 417
CloudWatchLoggingOptioNUPAAteceeeeieieeieeceeeceeeee ettt saesae e e e snennens 419
CSVMaAPPINGPAramMELErs ...ttt ettt ettt essae e st e s st s ssaesssaesaessaeassaesssaesssassseesssasans 421
DeEStiNATIONSCREIMA ...ttt ettt st st e b et e e s sa e e e e sesaeaenas 423
IIPUL ettt ettt e st s e e st e st e s s e e s s e s b e e s b e e bt e s b e e s e e e b e e s e e e b e e s e et e e aa e et e e reennteeaaans 424
INPUECONTIGUIALION ettt e e e st et e st e aessa e e e e nenaanes 427
INPUEDESCIIPLION ..ottt ettt s st s ae e sae e st e s s e e s b e s sseessbesssaessaesssaasssessseesssesssennnes 428
INPUELAMBDAAPIOCESSON ...ttt e ettt e stestestesse e e e s e e et e saestessassassesssensensansanean 431
INpUtLaMbdaProcessorDeSCrIPLIONccccicieieieiceeete et saestesaesre e a e e e e e snesaenes 433
INPUtLAMbAaProcesSOrUPAALEcc.ccveieeieieeeeceeeetete ettt sesaesaestesbesse s e s e eanennannens 435
INPUEPAIALLELISIT ..ttt s b et e st e s s e s e e e et et e stessessessaesasnnenean 437
INPULPAralleliSMUPAALE ..ottt et te st e aesae e e s e e e e s e s e aansasans 438
INPUtProcessingCoNTIGUIAtioNcccccveieiecieececeeeceeee ettt e e e sae st e s tesae s e se e e e e annens 439
InputProcessingConfigurationDeSCriPtioNcccoeeeeiriecieiececee ettt re e e e e e saeeens 440
InputProcessingConfiguratioNUPAteccueieieeeeieeeeeeceeee ettt st nnens 441
INPUESCREMAUPAALE ..ottt ettt e et e e sa et e st e st e stessasse e e e snennennans 442
INputStartingPositioNConfigUIration ... 444
INPUEUPAALE .ttt et teste s e e e e s e e e st e sae st e be st e s sessaeseeseenaensensensansansans 445
JSONMaAPPINGPAramMIELErS ...ttt ettt e s sae s s e e s se s s e e s aesssaessnesssaessnesssaesnans 447
KiNESISFIr€@NOSEINPUL ...ttt et et ae s e s e e e e e e besbesaenas 448
KinesisFirehoselNpUEDESCHPLIONccui ittt s e e aenenens 450
KinesisFirehoseINPUEUPAALEcuovieeeeeeeeeeeee ettt ettt s ns 451
KineSiSFIr@NOSEOULPUL ...ttt ettt ettt e ste s ae e se e e e s e aesaestassessessessaesnansansans 453
KinesisFirehoseOutpUtDESCHIPLIONccuccueeuieiieeeecectetete ettt sae st a e a et et ae s 455
KinesisFirehoSeOULPULUPAALEc.ocveiieeeeeeceetctete ettt sae s te st a s 456
KiN@SISSTrEaMSINPUL ...ttt ettt st e st e s e e s sae e s e e s saesssaesssaessnesssassssasssasssnanns 458
KinesisStreamsINpUtDESCHIPLIONc..iiviiiiiiieiecteeeccteete et ssre e sae e s e e ssesssaessaesssnessnesnns 460
KinesisStreamSINPUEUPAALE ...ttt st e e sa et saens 461
KineSisSTreamMSOULPULooviiecectectcert ettt st s e s ae e s ae e s e e s sbe s saessbeessnasssessaesnnas 463
KinesisStreamsOULPULDESCHIPLIONoiviiiviiiiieteectcrrecct ettt re st e s sre e saeessaesssaessnassneens 465

viii

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

KinesisStreamSOULPULUPAALEcveouiieieieeeeee ettt e ettt esaesaa s se e aens 466
LamMbBAAOULPUL ..ttt te e e e e e e sa e st e st e s ae e ae s e e e e s e s et et essassassessnenaanaans 468
LambdaOutputDESCrIPLION ...ccueeeieieeeeeeteec ettt ettt e e ae et a e s e st e sae s e se e e e s e e e nenanes 470
LambdaOULPULUPAALE ..ottt ettt te e e e e et e st st esta e s aessnenans 471
MaPPINGPAraMIELELSeeieeeeeeeeerterter ettt st r e s st e st e s sse e s stessseessaesssaessessssesssessaesssesssaans 473
OULPUL ettt sttt e st s e e s s et s s e e s st e e st e s saeessae s se e st assseasssassseenstessseesssessseessaessseessaennns 474
OULPULDESCIIPTION ..ottt ettt s st s e s e e s ste e st e s ae s s st e s sae e saasssasssnesssaesssesssesssaesnses 476
OULPULUPAALE ...ttt et et e st et esae s s b e e s e e e e e e s et assassassassessassaensansansans 478
RECOTACOLUMIN ettt sttt ettt ettt s b et et s et et e e ssa st e e esesaentesasansensons 480
RECOFAFOIMAL ...ttt ettt st ettt et s b et e e s se st et s st s s et e e s sassestesasansenssanes 482
REFErENCEDALASOUICE ..ottt ettt sttt et et sttt et et e st e e be st e e ssase e saessansenaen 483
ReferenceDataSourcEDESCIIPLIONcvc ettt te st e sae e s e e e e s e saesaenaan 485
ReferenceDataSoUrCEUPAALE ... ettt st a et es 487
SBCONTIGUIALION ettt e s ae e e e e e e e s b e st et e b e se s s e e e e se e e e saetasansanes 489
S3REfErENCEDAtASOUICE ...cuveuiiiieieteerietetrertet ettt et et s sae st e sse st et s e se st e e ssessensesassenes 491
S3ReferenceDataSourceDESCrIPLION ...ttt sae e s e e e e e et e saesaassaeas 493
S3ReferenceDataSoUrCEUPAALE ...ttt ettt a et a e aa s 495
SOUICESTREMA ...ttt ettt ettt b et e e s b e st et s e be st e e ssesbenaenessessanasans 497
TG ittt ettt e s e sttt e st e e ae s bt e e e e s b e e et e e a e e e b e e b e e et e e st e e ae e s e e e ae e st e s be e raessteesntessraaan 499
(0T oYal 1Ty 1 L= 31 o 1T o oV UPPTT 500
AWS GLOSSANY .ccevvrennniiseeeennnransess 505

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

For new projects, we recommend that you use the new Managed Service for Apache Flink Studio
over Kinesis Data Analytics for SQL Applications. Managed Service for Apache Flink Studio
combines ease of use with advanced analytical capabilities, enabling you to build sophisticated
stream processing applications in minutes.

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

What Is Amazon Kinesis Data Analytics for SQL
Applications?

With Amazon Kinesis Data Analytics for SQL Applications, you can process and analyze streaming
data using standard SQL. The service enables you to quickly author and run powerful SQL code
against streaming sources to perform time series analytics, feed real-time dashboards, and create
real-time metrics.

To get started with Kinesis Data Analytics, you create a Kinesis Data Analytics application that
continuously reads and processes streaming data. The service supports ingesting data from
Amazon Kinesis Data Streams and Amazon Data Firehose streaming sources. Then, you author your
SQL code using the interactive editor and test it with live streaming data. You can also configure
destinations where you want Kinesis Data Analytics to send the results.

Kinesis Data Analytics supports Amazon Data Firehose (Amazon S3, Amazon Redshift, Amazon
OpenSearch Service, and Splunk), AWS Lambda, and Amazon Kinesis Data Streams as destinations.

When Should | Use Amazon Kinesis Data Analytics?

Amazon Kinesis Data Analytics enables you to quickly author SQL code that continuously reads,
processes, and stores data in near real time. Using standard SQL queries on the streaming data, you
can construct applications that transform and provide insights into your data. Following are some
of example scenarios for using Kinesis Data Analytics:

« Generate time-series analytics — You can calculate metrics over time windows, and then stream
values to Amazon S3 or Amazon Redshift through a Kinesis data delivery stream.

» Feed real-time dashboards - You can send aggregated and processed streaming data results
downstream to feed real-time dashboards.

 Create real-time metrics — You can create custom metrics and triggers for use in real-time
monitoring, notifications, and alarms.

For information about the SQL language elements that are supported by Kinesis Data Analytics,
see Amazon Kinesis Data Analytics SQL Reference.

When Should | Use Amazon Kinesis Data Analytics? 1

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Are You a First-Time User of Amazon Kinesis Data Analytics?

If you are a first-time user of Amazon Kinesis Data Analytics, we recommend that you read the
following sections in order:

1. Read the How It Works section of this guide. This section introduces various Kinesis Data
Analytics components that you work with to create an end-to-end experience. For more
information, see Amazon Kinesis Data Analytics for SQL Applications: How It Works.

2. Try the Getting Started exercises. For more information, see Getting Started with Amazon

Kinesis Data Analytics for SQL Applications.

3. Explore the streaming SQL concepts. For more information, see Streaming SQL Concepts.

4. Try additional examples. For more information, see Kinesis Data Analytics for SQL examples.

Are You a First-Time User of Amazon Kinesis Data Analytics? 2

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Amazon Kinesis Data Analytics for SQL Applications:
How It Works

® Note

After September 12, 2023, you will not able to create new applications using Kinesis Data
Firehose as a source if you do not already use Kinesis Data Analytics for SQL. For more
information, see Limits.

An application is the primary resource in Amazon Kinesis Data Analytics that you can create in
your account. You can create and manage applications using the AWS Management Console or the
Kinesis Data Analytics API. Kinesis Data Analytics provides API operations to manage applications.
For a list of APl operations, see Actions.

Kinesis Data Analytics applications continuously read and process streaming data in real time. You
write application code using SQL to process the incoming streaming data and produce output.
Then, Kinesis Data Analytics writes the output to a configured destination. The following diagram
illustrates a typical application architecture.

i
——
- Amazon
Kinesis stream .
or H—* —_——
k
— - Amazon
Kinesis stream
—3 and/for
L1 Application In-applicatiocn ’,
Firehose In-application | code ouEpUt streams el T
delivery stream b T e ¥ _
nNpUt streams 1 --______l.-. 11
Streaming Input e =, "'-_—'l-—- Amazan 53
- fi \\I Firehose hucket
- J delivery stream P
[- | ¥ - Redshift table
}
| Application
\ Beforamma b In-application | putput
E Reference table SrTOF stream _

53 object

| Referemce data |

Amazon Kinesis Analytics application
=

A
]
&J

Each application has a name, description, version ID, and status. Amazon Kinesis Data Analytics
assigns a version ID when you first create an application. This version ID is updated when you

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

update any application configuration. For example, if you add an input configuration, add or delete
a reference data source, add or delete an output configuration, or update application code, Kinesis
Data Analytics updates the current application version ID. Kinesis Data Analytics also maintains
timestamps for when an application was created and last updated.

In addition to these basic properties, each application consists of the following:

» Input - The streaming source for your application. You can select either a Kinesis data stream
or a Firehose data delivery stream as the streaming source. In the input configuration, you
map the streaming source to an in-application input stream. The in-application stream is like
a continuously updating table upon which you can perform the SELECT and INSERT SQL
operations. In your application code, you can create additional in-application streams to store
intermediate query results.

You can optionally partition a single streaming source in multiple in-application input streams to
improve the throughput. For more information, see Limits and Configuring Application Input.

Amazon Kinesis Data Analytics provides a timestamp column in each application stream called
Timestamps and the ROWTIME Column. You can use this column in time-based windowed
queries. For more information, see Windowed Queries.

You can optionally configure a reference data source to enrich your input data stream within the
application. It results in an in-application reference table. You must store your reference data as
an object in your S3 bucket. When the application starts, Amazon Kinesis Data Analytics reads
the Amazon S3 object and creates an in-application table. For more information, see Configuring
Application Input.

« Application code — A series of SQL statements that process input and produce output. You can
write SQL statements against in-application streams and reference tables. You can also write
JOIN queries to combine data from both of these sources.

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

For information about the SQL language elements that are supported by Kinesis Data Analytics,
see Amazon Kinesis Data Analytics SQL Reference.

In its simplest form, application code can be a single SQL statement that selects from a
streaming input and inserts results into a streaming output. It can also be a series of SQL
statements where output of one feeds into the input of the next SQL statement. Further, you
can write application code to split an input stream into multiple streams. You can then apply
additional queries to process these streams. For more information, see Application Code.

o Output - In application code, query results go to in-application streams. In your application
code, you can create one or more in-application streams to hold intermediate results. You can
then optionally configure the application output to persist data in the in-application streams
that hold your application output (also referred to as in-application output streams) to external
destinations. External destinations can be a Firehose delivery stream or a Kinesis data stream.
Note the following about these destinations:

» You can configure a Firehose delivery stream to write results to Amazon S3, Amazon Redshift,
or Amazon OpenSearch Service (OpenSearch Service).

» You can also write application output to a custom destination instead of Amazon S3 or
Amazon Redshift. To do that, you specify a Kinesis data stream as the destination in your
output configuration. Then, you configure AWS Lambda to poll the stream and invoke
your Lambda function. Your Lambda function code receives stream data as input. In your
Lambda function code, you can write the incoming data to your custom destination. For more
information, see Using AWS Lambda with Amazon Kinesis Data Analytics.

For more information, see Configuring Application Output.

In addition, note the following:

« Amazon Kinesis Data Analytics needs permissions to read records from a streaming source
and write application output to the external destinations. You use IAM roles to grant these
permissions.

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Kinesis Data Analytics automatically provides an in-application error stream for each application.
If your application has issues while processing certain records (for example, because of a type
mismatch or late arrival), that record is written to the error stream. You can configure application
output to direct Kinesis Data Analytics to persist the error stream data to an external destination
for further evaluation. For more information, see Error Handling.

Amazon Kinesis Data Analytics ensures that your application output records are written to the
configured destination. It uses an "at least once" processing and delivery model, even if you
experience an application interruption. For more information, see Delivery Model for Persisting

Application Output to an External Destination.

Topics

Configuring Application Input

Application Code

Configuring Application Output

Error Handling

Automatically Scaling Applications to Increase Throughput

Using Tagging

Configuring Application Input

Your Amazon Kinesis Data Analytics application can receive input from a single streaming source

and, optionally, use one reference data source. For more information, see Amazon Kinesis Data

Analytics for SQL Applications: How It Works. The sections in this topic describe the application

input sources.

Topics

Configuring a Streaming Source

Configuring a Reference Source

Working with JSONPath

Mapping Streaming Source Elements to SQL Input Columns

Input 6

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Using the Schema Discovery Feature on Streaming Data

Using the Schema Discovery Feature on Static Data

Preprocessing Data Using a Lambda Function

Parallelizing Input Streams for Increased Throughput

Configuring a Streaming Source

At the time that you create an application, you specify a streaming source. You can also modify
an input after you create the application. Amazon Kinesis Data Analytics supports the following
streaming sources for your application:

« A Kinesis data stream

» A Firehose delivery stream

® Note

After September 12, 2023, you will not able to create new applications using Kinesis Data
Firehose as a source if you do not already use Kinesis Data Analytics for SQL. Existing
customers using Kinesis Data Analytics for SQL applications with KinesisFirehoselInput
can continue to add applications with KinesisFirehoseInput within an existing account
using Kinesis Data Analytics. If you are an existing customer and wish to create a new
account with Kinesis Data Analytics for SQL applications with KinesisFirehoseInput,
you can create a case via the service limit increase form. For more information, see the AWS
Support Center. We recommend always testing any new applications before promoting to

production.

(® Note

If the Kinesis data stream is encrypted, Kinesis Data Analytics accesses the data in the
encrypted stream seamlessly with no further configuration needed. Kinesis Data Analytics
does not store unencrypted data read from Kinesis Data Streams. For more information,
see What Is Server-Side Encryption For Kinesis Data Streams?.

Configuring a Streaming Source 7

https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/
https://docs.aws.amazon.com/streams/latest/dev/what-is-sse.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Kinesis Data Analytics continuously polls the streaming source for new data and ingests it in in-
application streams according to the input configuration.

® Note

Adding a Kinesis Stream as your application's input does not affect the data in the stream.
If another resource such as a Firehose delivery stream also accessed the same Kinesis
stream, both the Firehose delivery stream and the Kinesis Data Analytics application would
receive the same data. Throughput and throttling might be affected, however.

Your application code can query the in-application stream. As part of input configuration you
provide the following:

« Streaming source — You provide the Amazon Resource Name (ARN) of the stream and an IAM
role that Kinesis Data Analytics can assume to access the stream on your behalf.

« In-application stream name prefix — When you start the application, Kinesis Data Analytics
creates the specified in-application stream. In your application code, you access the in-
application stream using this name.

You can optionally map a streaming source to multiple in-application streams. For more
information, see Limits. In this case, Amazon Kinesis Data Analytics creates the specified number
of in-application streams with names as follows: prefix_001, prefix_002, and prefix_003.
By default, Kinesis Data Analytics maps the streaming source to one in-application stream named

prefix_001.

There is a limit on the rate that you can insert rows in an in-application stream. Therefore,
Kinesis Data Analytics supports multiple such in-application streams so that you can bring
records into your application at a much faster rate. If you find that your application is not
keeping up with the data in the streaming source, you can add units of parallelism to improve
performance.

« Mapping schema - You describe the record format (JSON, CSV) on the streaming source. You
also describe how each record on the stream maps to columns in the in-application stream that is
created. This is where you provide column names and data types.

Configuring a Streaming Source 8

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

® Note

Kinesis Data Analytics adds quotation marks around the identifiers (stream name and
column names) when creating the input in-application stream. When querying this stream
and the columns, you must specify them in quotation marks using the same casing
(matching lowercase and uppercase letters exactly). For more information about identifiers,
see Identifiers in the Amazon Managed Service for Apache Flink SQL Reference.

You can create an application and configure inputs in the Amazon Kinesis Data Analytics console.
The console then makes the necessary API calls. You can configure application input when

you create a new application APl or add input configuration to an existing application. For

more information, see CreateApplication and AddApplicationinput. The following is the input
configuration part of the Createapplication API request body:

"Inputs": [
{
"InputSchema": {
"RecordColumns": [

{
"Mapping": "string",
"Name": "string",
"SqlType": "string"
}
1,
"RecordEncoding": "string",

"RecordFormat": {
"MappingParameters": {
"CSVMappingParameters": {

"RecordColumnDelimiter": "string",
"RecordRowDelimiter": "string"
.
"JSONMappingParameters": {
"RecordRowPath": "string"
}
.
"RecordFormatType": "string"
}
},
"KinesisFirehoseInput": {
"ResourceARN": "string",

Configuring a Streaming Source 9

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-identifiers.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

"RoleARN": "string"
1,

"KinesisStreamsInput": {
"ResourceARN": "string",
"RoleARN": "string"

iy

"Name": "string"

Configuring a Reference Source

You can also optionally add a reference data source to an existing application to enrich the data
coming in from streaming sources. You must store reference data as an object in your Amazon S3
bucket. When the application starts, Amazon Kinesis Data Analytics reads the Amazon S3 object
and creates an in-application reference table. Your application code can then join it with an in-
application stream.

You store reference data in the Amazon S3 object using supported formats (CSV, JSON). For
example, suppose that your application performs analytics on stock orders. Assume the following
record format on the streaming source:

Ticker, SalePrice, OrderId

AMZN $700 1003
XYZ $250 1004

In this case, you might then consider maintaining a reference data source to provide details for
each stock ticker, such as company name.

Ticker, Company
AMZN, Amazon
XYZ, SomeCompany

You can add an application reference data source either with the API or with the console. Amazon
Kinesis Data Analytics provides the following API actions to manage reference data sources:

» AddApplicationReferenceDataSource

Configuring a Reference Source 10

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

» UpdateApplication

For information about adding reference data using the console, see Example: Adding Reference

Data to a Kinesis Data Analytics Application.

Note the following:

o If the application is running, Kinesis Data Analytics creates an in-application reference table, and
then loads the reference data immediately.

o If the application is not running (for example, it's in the ready state), Kinesis Data Analytics
saves only the updated input configuration. When the application starts running, Kinesis Data
Analytics loads the reference data in your application as a table.

Suppose that you want to refresh the data after Kinesis Data Analytics creates the in-application
reference table. Perhaps you updated the Amazon S3 object, or you want to use a different
Amazon S3 obiject. In this case, you can either explicitly call UpdateApplication, or choose Actions,

Synchronize reference data table in the console. Kinesis Data Analytics does not refresh the in-
application reference table automatically.

There is a limit on the size of the Amazon S3 object that you can create as a reference data source.
For more information, see Limits. If the object size exceeds the limit, Kinesis Data Analytics can't
load the data. The application state appears as running, but the data is not being read.

When you add a reference data source, you provide the following information:

» S3 bucket and object key name - In addition to the bucket name and object key, you also
provide an IAM role that Kinesis Data Analytics can assume to read the object on your behalf.

» In-application reference table name - Kinesis Data Analytics creates this in-application table
and populates it by reading the Amazon S3 object. This is the table name you specify in your
application code.

« Mapping schema - You describe the record format (JSON, CSV), encoding of data stored in
the Amazon S3 object. You also describe how each data element maps to columns in the in-
application reference table.

The following shows the request body in the AddApplicationReferenceDataSource API
request.

Configuring a Reference Source 11

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

SQL Developer Guide

"applicationName": "string",
"CurrentapplicationVersionId": number,
"ReferenceDataSource": {
"ReferenceSchema": {
"RecordColumns": [
{
"IsDropped": boolean,
"Mapping": "string",
"Name": "string",
"SqlType": "string"

1,
"RecordEncoding": "string",
"RecordFormat": {
"MappingParameters": {
"CSVMappingParameters": {

"RecordColumnDelimiter": "string",

"RecordRowDelimiter": "string"
1,
"JSONMappingParameters": {
"RecordRowPath": "string"

+

"RecordFormatType": "string"

3,

"S3ReferenceDataSource": {
"BucketARN": "string",
"FileKey": "string",
"ReferenceRoleARN": "string"

1,

"TableName": "string"

Configuring a Reference Source

12

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Working with JSONPath

(® Note

After September 12, 2023, you will not able to create new applications using Kinesis Data
Firehose as a source if you do not already use Kinesis Data Analytics for SQL. For more
information, see Limits.

JSONPath is a standardized way to query elements of a JSON object. JSONPath uses path
expressions to navigate elements, nested elements, and arrays in a JSON document. For more
information about JSON, see Introducing JSON.

Amazon Kinesis Data Analytics uses JSONPath expressions in the application's source schema to
identify data elements in a streaming source that contains JSON-format data.

For more information about how to map streaming data to your application's input stream, see the
section called "Mapping Streaming Source Elements to SQL Input Columns”.

Accessing JSON Elements with JSONPath

Following, you can find how to use JSONPath expressions to access various elements in JSON-
formatted data. For the examples in this section, assume that the source stream contains the
following JSON record:

{
"customerName":"John Doe",
"address":
{
"streetAddress":
[
"number":"123",
"street":"AnyStreet"
1,
"city":"Anytown"
}
"orders":
[

{ "orderId":"23284", "itemName":"Widget", "itemPrice":"33.99" },
{ "orderId":"63122", "itemName":"Gadget", "itemPrice":"22.50" },
{ "orderId":"77284", "itemName":"Sprocket", "itemPrice":"12.00" }

Working with JSONPath 13

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html
http://www.json.org/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

]
}

Accessing JSON Elements

To query an element in JSON data using JSONPath, use the following syntax. Here, $ represents

the root of the data hierarchy and elementName is the name of the element node to query.

$.elementName

The following expression queries the customerName element in the preceding JSON example.

$.customerName

The preceding expression returns the following from the preceding JSON record.

John Doe

® Note

Path expressions are case sensitive. The expression $. customername returns null from
the preceding JSON example.

(® Note

If no element appears at the location where the path expression specifies, the expression
returns null. The following expression returns null from the preceding JSON example,
because there is no matching element.

$.customerId

Accessing Nested JSON Elements

To query a nested JSON element, use the following syntax.

Working with JSONPath

14

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

$.parentElement.element

The following expression queries the city element in the preceding JSON example.
$.address.city

The preceding expression returns the following from the preceding JSON record.

Anytown

You can query further levels of subelements using the following syntax.

$.parentElement.element.subElement

The following expression queries the street element in the preceding JSON example.

$.address.streetAddress.street

The preceding expression returns the following from the preceding JSON record.
AnyStreet
Accessing Arrays

You can access the data in a JSON array in the following ways:

» Retrieve all the elements in the array as a single row.

» Retrieve each element in the array as a separate row.

Retrieve All Elements in an Array in a Single Row

To query the entire contents of an array as a single row, use the following syntax.

$.arrayObject[0:]

The following expression queries the entire contents of the orders element in the preceding JSON
example used in this section. It returns the array contents in a single column in a single row.

Working with JSONPath 15

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

$.orders[0:]

The preceding expression returns the following from the example JSON record used in this section.

[{"orderId":"23284","itemName":"Widget", "itemPrice":"33.99"},
{"orderId":"61322","itemName":"Gadget", "itemPrice":"22.50"},
{"orderId":"77284","itemName":"Sprocket","itemPrice":"12.00"}]

Retrieve All Elements in an Array in Separate Rows

To query the individual elements in an array as separate rows, use the following syntax.

$.arrayObject[0:].element

The following expression queries the orderId elements in the preceding JSON example, and
returns each array element as a separate row.

$.orders[@:].orderId

The preceding expression returns the following from the preceding JSON record, with each data
item returned as a separate row.

23284
63122

77284

(® Note

If expressions that query nonarray elements are included in a schema that queries
individual array elements, the nonarray elements are repeated for each element in the
array. For example, suppose that a schema for the preceding JSON example includes the
following expressions:

o $.customerName

« $.orders[0:].orderld

Working with JSONPath 16

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

In this case, the returned data rows from the sample input stream element resemble the
following, with the name element repeated for every orderId element.

John Doe 23284

John Doe 63122

John Doe 77284
(® Note

The following limitations apply to array expressions in Amazon Kinesis Data Analytics:

« Only one level of dereferencing is supported in an array expression. The following
expression format is not supported.

$.arrayObject[@:].element[0:].subElement

« Only one array can be flattened in a schema. Multiple arrays can be referenced—returned
as one row containing all of the elements in the array. However, only one array can have
each of its elements returned as individual rows.

A schema containing elements in the following format is valid. This format returns the
contents of the second array as a single column, repeated for every element in the first
array.

$.arrayObjectOne[@:].element
$.arrayObjectTwo[0:]

A schema containing elements in the following format is not valid.

$.arrayObjectOnel[@:].element
$.arrayObjectTwo[@:].element

Working with JSONPath 17

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Other Considerations
Additional considerations for working with JSONPath are as follows:

« If no arrays are accessed by an individual element in the JSONPath expressions in the application
schema, then a single row is created in the application's input stream for each JSON record
processed.

« When an array is flattened (that is, its elements are returned as individual rows), any missing
elements result in a null value being created in the in-application stream.

« An array is always flattened to at least one row. If no values would be returned (that is, the array
is empty or none of its elements are queried), a single row with all null values is returned.

The following expression returns records with null values from the preceding JSON example,
because there is no matching element at the specified path.

$.orders[0:].itemId
The preceding expression returns the following from the preceding JSON example record.
null

null

null

Related Topics

e Introducing JSON

Mapping Streaming Source Elements to SQL Input Columns

(® Note

After September 12, 2023, you will not able to create new applications using Kinesis Data
Firehose as a source if you do not already use Kinesis Data Analytics for SQL. For more
information, see Limits.

Mapping Streaming Source Elements to SQL Input Columns 18

http://www.json.org/
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

With Amazon Kinesis Data Analytics, you can process and analyze streaming data in either JSON or
CSV formats using standard SQL.

» To process and analyze streaming CSV data, you assign column names and data types for the
columns of the input stream. Your application imports one column from the input stream per
column definition, in order.

You don't have to include all of the columns in the application input stream, but you cannot skip
columns from the source stream. For example, you can import the first three columns from an
input stream containing five elements, but you cannot import only columns 1, 2, and 4.

» To process and analyze streaming JSON data, you use JSONPath expressions to map JSON
elements from a streaming source to SQL columns in an input stream. For more information
about using JSONPath with Amazon Kinesis Data Analytics, see Working with JSONPath. The
columns in the SQL table have data types that are mapped from JSON types. For supported data

types, see Data Types. For details about converting JSON data to SQL data, see Mapping JSON
Data Types to SQL Data Types.

For more information about how to configure input streams, see Configuring Application Input.

Mapping JSON Data to SQL Columns

You can map JSON elements to input columns using the AWS Management Console or the Kinesis
Data Analytics API.

« To map elements to columns using the console, see Working with the Schema Editor.

« To map elements to columns using the Kinesis Data Analytics API, see the following section.

To map JSON elements to columns in the in-application input stream, you need a schema with the
following information for each column:

» Source Expression: The JSONPath expression that identifies the location of the data for the
column.
o Column Name: The name that your SQL queries use to reference the data.

» Data Type: The SQL data type for the column.

Mapping Streaming Source Elements to SQL Input Columns 19

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-data-types.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Using the API

To map elements from a streaming source to input columns, you can use the Kinesis Data Analytics

API CreateApplication action. To create the in-application stream, specify a schema to transform

your data into a schematized version used in SQL. The CreateApplication action configures your

application to receive input from a single streaming source. To map JSON elements or CSV columns

to SQL columns, you create a RecordColumn object in the SourceSchema RecordColumns array.

The RecordColumn object has the following schema:

{
"Mapping": "String",
"Name": "String",
"SqlType": "String"
}

The fields in the RecordColumn object have the following values:

« Mapping: The JSONPath expression that identifies the location of the data in the input stream
record. This value is not present for an input schema for a source stream in CSV format.

« Name: The column name in the in-application SQL data stream.

e SqlType: The data type of the data in the in-application SQL data stream.

JSON Input Schema Example

The following example demonstrates the format of the InputSchema value for a JSON schema.

"InputSchema": {
"RecordColumns": [

{
"SqlType": "VARCHAR(4)",
"Name": "TICKER_SYMBOL",
"Mapping": "$.TICKER_SYMBOL"
iy
{
"SqlType": "VARCHAR(16)",
"Name": "SECTOR",
"Mapping": "$.SECTOR"
},

Mapping Streaming Source Elements to SQL Input Columns

20

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

SQL Developer Guide

{
"SqlType": "TINYINT",
"Name": "CHANGE",
"Mapping": "$.CHANGE"

},

{
"SqlType": "DECIMAL(5,2)",
"Name": "PRICE",
"Mapping": "$.PRICE"

}

]I

"RecordFormat": {
"MappingParameters": {

"JSONMappingParameters": {

"RecordRowPath": "$"

1,
"RecordFormatType": "JSON"

iy
"RecordEncoding": "UTF-8"

CSV Input Schema Example

The following example demonstrates the format of the InputSchema value for a schema in

comma-separated value (CSV) format.

"InputSchema": {
"RecordColumns": [

{
"SqlType": "VARCHAR(16)",
"Name": "LastName"

.

{
"SqlType": "VARCHAR(16)",
"Name": "FirstName"

.

{
"SqlType": "INTEGER",

"Name": "CustomerId"
}

]I

Mapping Streaming Source Elements to SQL Input Columns

21

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

"RecordFormat": {
"MappingParameters": {
"CSVMappingParameters": {
"RecordColumnDelimiter": ",",
"RecordRowDelimiter": "\n"

1,
"RecordFormatType": "CSV"

},
"RecordEncoding": "UTF-8"

Mapping JSON Data Types to SQL Data Types

JSON data types are converted to corresponding SQL data types according to the application's
input schema. For information about supported SQL data types, see Data Types. Amazon Kinesis
Data Analytics converts JSON data types to SQL data types according to the following rules.

Null Literal

A null literal in the JSON input stream (that is, "City" :null) converts to a SQL null regardless of
destination data type.

Boolean Literal

A Boolean literal in the JSON input stream (that is, "Contacted" : true) converts to SQL data as
follows:
« Numeric (DECIMAL, INT, and so on): true converts to 1; false converts to O.
« Binary (BINARY or VARBINARY):
« true: Result has lowest bit set and remaining bits cleared.

o false: Result has all bits cleared.

Conversion to VARBINARY results in a value 1 byte in length.
« BOOLEAN: Converts to the corresponding SQL BOOLEAN value.

« Character (CHAR or VARCHAR): Converts to the corresponding string value (true or false). The
value is truncated to fit the length of the field.

Mapping Streaming Source Elements to SQL Input Columns 22

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-data-types.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

o Datetime (DATE, TIME, or TIMESTAMP): Conversion fails and a coercion error is written to the
error stream.

Number

A number literal in the JSON input stream (that is, "CustomerId" :67321) converts to SQL data
as follows:

« Numeric (DECIMAL, INT, and so on): Converts directly. If the converted value exceeds the size
or precision of the target data type (that is, converting 123. 4 to INT), conversion fails and a
coercion error is written to the error stream.

« Binary (BINARY or VARBINARY): Conversion fails and a coercion error is written to the error
stream.

« BOOLEAN:
« 0: Converts to false.
« All other numbers: Converts to true.
o Character (CHAR or VARCHAR): Converts to a string representation of the number.

« Datetime (DATE, TIME, or TIMESTAMP): Conversion fails and a coercion error is written to the
error stream.

String

A string value in the JSON input stream (that is, "CustomerName" : "John Doe") converts to SQL
data as follows:

o Numeric (DECIMAL, INT, and so on): Amazon Kinesis Data Analytics attempts to convert the value
to the target data type. If the value cannot be converted, conversion fails and a coercion error is
written to the error stream.

« Binary (BINARY or VARBINARY): If the source string is a valid binary literal (that is, X' 3F67A23A",
with an even number of f), the value is converted to the target data type. Otherwise, conversion
fails and a coercion error is written to the error stream.

« BOOLEAN: If the source string is "true", converts to true. This comparison is case-insensitive.
Otherwise, converts to false.

o Character (CHAR or VARCHAR): Converts to the string value in the input. If the value is longer
than the target data type, it is truncated and no error is written to the error stream.

Mapping Streaming Source Elements to SQL Input Columns 23

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

» Datetime (DATE, TIME, or TIMESTAMP): If the source string is in a format that can be converted
to the target value, the value is converted. Otherwise, conversion fails and a coercion error is
written to the error stream.

Valid datetime formats include:
e "1992-02-14"
e "1992-02-14 18:35:44.0"

Array or Object

An array or object in the JSON input stream converts to SQL data as follows:

« Character (CHAR or VARCHAR): Converts to the source text of the array or object. See Accessing
Arrays.

« All other data types: Conversion fails and a coercion error is written to the error stream.

For an example of a JSON array, see Working with JSONPath.

Related Topics

« Configuring Application Input

« Data Types
« Working with the Schema Editor

o CreateApplication

¢ RecordColumn

e SourceSchema

Using the Schema Discovery Feature on Streaming Data

(® Note

After September 12, 2023, you will not able to create new applications using Kinesis Data
Firehose as a source if you do not already use Kinesis Data Analytics for SQL. For more
information, see Limits.

Using the Schema Discovery Feature on Streaming Data 24

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-data-types.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Providing an input schema that describes how records on the streaming input map to an in-
application stream can be cumbersome and error prone. You can use the DiscoverlnputSchema API
(called the discovery API) to infer a schema. Using random samples of records on the streaming
source, the API can infer a schema (that is, column names, data types, and position of the data
element in the incoming data).

(® Note

To use the Discovery API to generate a schema from a file stored in Amazon S3, see Using
the Schema Discovery Feature on Static Data.

The console uses the Discovery API to generate a schema for a specified streaming source. Using
the console, you can also update the schema, including adding or removing columns, changing
column names or data types, and so on. However, make changes carefully to ensure that you do
not create an invalid schema.

After you finalize a schema for your in-application stream, there are functions you can use to
manipulate string and datetime values. You can use these functions in your application code when
working with rows in the resulting in-application stream. For more information, see Example:
Transforming DateTime Values.

Column Naming During Schema Discovery

During schema discovery, Amazon Kinesis Data Analytics tries to retain as much of the original
column name as possible from the streaming input source, except in the following cases:

« The source stream column name is a reserved SQL keyword, such as TIMESTAMP, USER, VALUES,
or YEAR.

» The source stream column name contains unsupported characters. Only letters, numbers, and
the underscore character (_) are supported.

» The source stream column name begins with a number.

» The source stream column name is longer than 100 characters.

If a column is renamed, the renamed schema column name begins with COL_. In some cases, none
of the original column name can be retained—for example, if the entire name is unsupported
characters. In such a case, the column is named COL_#, with # being a number indicating the
column's place in the column order.

Using the Schema Discovery Feature on Streaming Data 25

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

After discovery completes, you can update the schema using the console to add or remove
columns, or change column names, data types, or data size.

Examples of Discovery-Suggested Column Names

Source Stream Column Name Discovery-Suggested Column Name
USER COL_USER

USER@DOMAIN COL_USERDOMAIN

@@ COL_O

Schema Discovery Issues
What happens if Kinesis Data Analytics does not infer a schema for a given streaming source?

Kinesis Data Analytics infers your schema for common formats, such as CSV and JSON, which are
UTF-8 encoded. Kinesis Data Analytics supports any UTF-8 encoded records (including raw text
like application logs and records) with a custom column and row delimiter. If Kinesis Data Analytics
doesn't infer a schema, you can define a schema manually using the schema editor on the console
(or using the API).

If your data does not follow a pattern (which you can specify using the schema editor), you
can define a schema as a single column of type VARCHAR(N), where N is the largest number
of characters you expect your record to include. From there, you can use string and date-time
manipulation to structure your data after it is in an in-application stream. For examples, see
Example: Transforming DateTime Values.

Using the Schema Discovery Feature on Static Data

(@ Note

After September 12, 2023, you will not able to create new applications using Kinesis Data
Firehose as a source if you do not already use Kinesis Data Analytics for SQL. For more
information, see Limits.

Using the Schema Discovery Feature on Static Data 26

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

The schema discovery feature can generate a schema from either the data in a stream or data in

a static file that is stored in an Amazon S3 bucket. Suppose that you want to generate a schema
for a Kinesis Data Analytics application for reference purposes or when live streaming data isn't
available. You can use the schema discovery feature on a static file that contains a sample of the
data in the expected format of your streaming or reference data. Kinesis Data Analytics can run
schema discovery on sample data from a JSON or CSV file that's stored in an Amazon S3 bucket.
Using schema discovery on a data file uses either the console, or the DiscoverlnputSchema API with

the S3Configuration parameter specified.
Running Schema Discovery Using the Console

To run discovery on a static file using the console, do the following:

1. Add a reference data object to an S3 bucket.

2. Choose Connect reference data in the application's main page in the Kinesis Data Analytics
console.

3. Provide the bucket, path and IAM role data for accessing the Amazon S3 object containing the
reference data.

4. Choose Discover schema.

For more information on how to add reference data and discover schema in the console, see
Example: Adding Reference Data to a Kinesis Data Analytics Application.

Running Schema Discovery Using the API

To run discovery on a static file using the API, you provide the API with an S3Configuration
structure with the following information:

e BucketARN: The Amazon Resource Name (ARN) of the Amazon S3 bucket that contains the file.
For the format of an Amazon S3 bucket ARN, see Amazon Resource Names (ARNs) and Amazon
Service Namespaces: Amazon Simple Storage Service (Amazon S3).

« RoleARN: The ARN of an IAM role with the AmazonS3ReadOnlyAccess policy. For information
about how to add a policy to a role, see Modifying a Role.

« FileKey: The file name of the object.

Using the Schema Discovery Feature on Static Data 27

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-s3
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-s3
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

To generate a schema from an Amazon S3 object using the DiscovexInputSchema API

1. Make sure that you have the AWS CLI set up. For more information, see Step 2: Set Up the AWS
Command Line Interface (AWS CLI) in the Getting Started section.

2. Create a file named data. csv with the following contents:

year,month,state, producer_type, energy_source,units, consumption
2001,1,AK,TotalElectricPowerIndustry, Coal,ShortTons, 47615
2001,1,AK,ElectricGeneratorsElectricUtilities,Coal,ShortTons, 16535
2001,1,AK,CombinedHeatandPowerElectricPower, Coal,ShortTons, 22890
2001,1,AL,TotalElectricPowerIndustry, Coal,ShortTons, 3020601
2001,1,AL,ElectricGeneratorsElectricUtilities,Coal, ShortTons, 2987681

Sign in to the Amazon S3 console at https://console.aws.amazon.com/s3/.

4. Create an Amazon S3 bucket and upload the data. csv file you created. Note the ARN of the
created bucket. For information about creating an Amazon S3 bucket and uploading a file, see
Getting Started with Amazon Simple Storage Service.

5. Open the IAM console at https://console.aws.amazon.com/iam/. Create a role with the
AmazonS3ReadOnlyAccess policy. Note the ARN of the new role. For information about
creating a role, see Creating a Role to Delegate Permissions to an Amazon Service. For

information about how to add a policy to a role, see Modifying a Role.

6. Run the following DiscoverInputSchema command in the AWS CLI, substituting the ARNs
for your Amazon S3 bucket and IAM role:

$aws kinesisanalytics discover-input-schema --s3-configuration '{ "RoleARN":
"arn:aws:iam::123456789012:role/service-role/your-IAM-role", "BucketARN":

"arn:aws:s3:::your-bucket-name", "FileKey": "data.csv" }

7. The response looks similar to the following:

"InputSchema": {
"RecordEncoding": "UTF-8",
"RecordColumns": [

{
"SqlType": "INTEGER",
"Name": "COL_year"

},

{

"SqlType": "INTEGER",

Using the Schema Discovery Feature on Static Data 28

https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

SQL Developer Guide

]I

"Name": "COL_month"

"SqlType": "VARCHAR(&)",
"Name": "state"

"SqlType": "VARCHAR(64)",
"Name": "producer_type"

"SqlType": "VARCHAR(4)",
"Name": "energy_source"

"SqlType": "VARCHAR(16)",
"Name": "units"

"SqlType": "INTEGER",
"Name": "consumption"

"RecordFormat": {
"RecordFormatType": "CSV",
"MappingParameters": {

}I

"CSVMappingParameters": {
"RecordRowDelimiter": "\r\n",

"RecordColumnDelimiter": ",

"RawInputRecords": [

"year,month,state, producer_type,energy_source,units,consumption
\r\n2001,1,AK,TotalElectricPowerIndustry,Coal,ShortTons, 47615\t
\n2001,1,AK,ElectricGeneratorsElectricUtilities,Coal,ShortTons, 16535\
\n2001,1,AK,CombinedHeatandPowerElectricPower, Coal, ShortTons, 22890\r
\n2001,1,AL,TotalElectricPowerIndustry,Coal,ShortTons, 3020601\r
\n2001,1,AL,ElectricGeneratorsElectricUtilities,Coal, ShortTons,2987681"

]I

"ParsedInputRecords": [

L

null,

Using the Schema Discovery Feature on Static Data

29

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

SQL Developer Guide

null,

"state",
"producer_type",
"energy_source",
"units",

null

"2001",

nyr

"AK",
"TotalElectricPowerIndustry",
"Coal",

"ShortTons",

"47615"

Il2®®1ll ,
Illll ,
IIAKII ,

"ElectricGeneratorsElectricUtilities",

Ilcoalll ,
"ShortTons",
"16535"

Il2®®1ll ,
Illll ,
IIAKII ,

"CombinedHeatandPowerElectricPower",

"Coal",
"ShortTons",
"22890"

"2001",

nyr

"AL",
"TotalElectricPowerIndustry",
"Coal",

"ShortTons",

"3020601"

Using the Schema Discovery Feature on Static Data

30

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

"2001",

nyr

"AL",
"ElectricGeneratorsElectricUtilities",
"Coal",

"ShortTons",

''2987681"

Preprocessing Data Using a Lambda Function

(® Note

After September 12, 2023, you will not able to create new applications using Kinesis Data
Firehose as a source if you do not already use Kinesis Data Analytics for SQL. For more
information, see Limits.

If the data in your stream needs format conversion, transformation, enrichment, or filtering, you
can preprocess the data using an AWS Lambda function. You can do this before your application
SQL code executes or before your application creates a schema from your data stream.

Using a Lambda function for preprocessing records is useful in the following scenarios:
» Transforming records from other formats (such as KPL or GZIP) into formats that Kinesis Data
Analytics can analyze. Kinesis Data Analytics currently supports JSON or CSV data formats.

« Expanding data into a format that is more accessible for operations such as aggregation or
anomaly detection. For instance, if several data values are stored together in a string, you can
expand the data into separate columns.

« Data enrichment with other Amazon services, such as extrapolation or error correction.
« Applying complex string transformation to record fields.

« Data filtering for cleaning up the data.

Preprocessing Data Using a Lambda Function 31

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Using a Lambda Function for Preprocessing Records

When creating your Kinesis Data Analytics application, you enable Lambda preprocessing in the
Connect to a Source page.

To use a Lambda function to preprocess records in a Kinesis Data Analytics application

1. Signin to the AWS Management Console and open the Managed Service for Apache Flink
console at https://console.aws.amazon.com/kinesisanalytics.

2. Onthe Connect to a Source page for your application, choose Enabled in the Record pre-
processing with AWS Lambda section.

3. To use a Lambda function that you have already created, choose the function in the Lambda
function drop-down list.

4. To create a new Lambda function from one of the Lambda preprocessing templates, choose
the template from the drop-down list. Then choose View <template name> in Lambda to edit
the function.

5. To create a new Lambda function, choose Create new. For information about creating a
Lambda function, see Create a HelloWorld Lambda Function and Explore the Console in the
AWS Lambda Developer Guide.

6. Choose the version of the Lambda function to use. To use the latest version, choose $LATEST.

When you choose or create a Lambda function for record preprocessing, the records are
preprocessed before your application SQL code executes or your application generates a schema
from the records.

Lambda Preprocessing Permissions

To use Lambda preprocessing, the application's IAM role requires the following permissions policy:

"Sid": "UseLambdaFunction",

"Effect": "Allow",

"Action": [
"lambda:InvokeFunction",
"lambda:GetFunctionConfiguration"

1,

"Resource": "<FunctionARN>"

Preprocessing Data Using a Lambda Function 32

https://console.aws.amazon.com/kinesisanalytics
https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Lambda Preprocessing Metrics

You can use Amazon CloudWatch to monitor the number of Lambda invocations, bytes processed,
successes and failures, and so on. For information about CloudWatch metrics that are emitted by
Kinesis Data Analytics Lambda preprocessing, see Amazon Kinesis Analytics Metrics.

Using AWS Lambda with the Kinesis Producer Library

The Kinesis Producer Library (KPL) aggregates small user-formatted records into larger records up
to 1 MB to make better use of Amazon Kinesis Data Streams throughput. The Kinesis Client Library
(KCL) for Java supports deaggregating these records. However, you must use a special module to
deaggregate the records when you use AWS Lambda as the consumer of your streams.

To get the necessary project code and instructions, see the Kinesis Producer Library Deaggregation

Modules for AWS Lambda on GitHub. You can use the components in this project to process
KPL serialized data within AWS Lambda in Java, Node.js, and Python. You can also use these
components as part of a multi-lang KCL application.

Data Preprocessing Event Input Data Model/Record Response Model

To preprocess records, your Lambda function must be compliant with the required event input data
and record response models.

Event Input Data Model

Kinesis Data Analytics continuously reads data from your Kinesis data stream or Firehose delivery
stream. For each batch of records it retrieves, the service manages how each batch gets passed
to your Lambda function. Your function receives a list of records as input. Within your function,
you iterate through the list and apply your business logic to accomplish your preprocessing
requirements (such as data format conversion or enrichment).

The input model to your preprocessing function varies slightly, depending on whether the data was
received from a Kinesis data stream or a Firehose delivery stream.

If the source is a Firehose delivery stream, the event input data model is as follows:

Kinesis Data Firehose Request Data Model

Field Description

invocationId The Lambda invocation Id (random GUID).

Preprocessing Data Using a Lambda Function 33

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aka-metricscollected.html
http://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://github.com/awslabs/kinesis-deaggregation
https://github.com/awslabs/kinesis-deaggregation
https://github.com/awslabs/amazon-kinesis-client/blob/master/amazon-kinesis-client-multilang/src/main/java/software/amazon/kinesis/multilang/package-info.java

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Field Description
applicationAzrn Kinesis Data Analytics application Amazon Resource Name
(ARN)
streamArn Delivery stream ARN
records
Field Description
recordId record ID (random GUID)
kinesisFi
rehoseRec Field Description
ordMetadata

approxin Delivery stream
teArriv: record approximate
Timestan arrival time

data Base64-encoded source record payload

The following example shows input from a Firehose delivery stream:

"invocationId":"@0540a87-5050-496a-84e4-e7d92bbaf5e2",
"applicationArn":"arn:aws:kinesisanalytics:us-east-1:12345678911:application/lambda-

test",
"streamArn":"arn:aws:firehose:us-east-1:AAAAAAAAAAAA:deliverystream/lambda-test",
"records": [

{
"recordId":"49572672223665514422805246926656954630972486059535892482",
"data":"aGVsbG8gd29ybGQ="",
"kinesisFirehoseRecordMetadata":{
"approximateArrivalTimestamp":1520280173
}
}

Preprocessing Data Using a Lambda Function 34

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

SQL Developer Guide

}

If the source is a Kinesis data stream, the event input data model is as follows:

Kinesis Streams Request Data Model

Field Description
invocationlId The Lambda invocation Id (random GUID).
applicationArn Kinesis Data Analytics application ARN
streamArn Delivery stream ARN
records

Field Description

recordId record ID based off of Kinesis record

sequence number

kinesisSt
reamRecor Field

dMetadata
sequence

umber

partitic
Key

shardId

approxin
teArriv:

Description

Sequence number
from the Kinesis
stream record

Partition key from
the Kinesis stream
record

ShardId from
the Kinesis stream
record

Delivery stream
record approximate
arrival time

Preprocessing Data Using a Lambda Function

35

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Field Description
Field Description
Field Description
Timestan
data Base64-encoded source record payload

The following example shows input from a Kinesis data stream:

"invocationId": "00540a87-5050-496a-84e4-e7d92bbaf5e2",

"applicationArn": "arn:aws:kinesisanalytics:us-east-1:12345678911:application/lambda-
test",

"streamArn": "arn:aws:kinesis:us-east-1:AAAAAAAAAAAA:stream/lambda-test",

"records": [

{
"recordId": "49572672223665514422805246926656954630972486059535892482",
"data": "aGVsbG8gd29ybGQ=",
"kinesisStreamRecordMetadata":{
"shardId" :"shardId-000000000003",
"partitionKey":"7400791606",

"sequenceNumber" :"49572672223665514422805246926656954630972486059535892482",
"approximateArrivalTimestamp":1520280173

Record Response Model

All records returned from your Lambda preprocessing function (with record IDs) that are sent to the
Lambda function must be returned. They must contain the following parameters, or Kinesis Data
Analytics rejects them and treats it as a data preprocessing failure. The data payload part of the
record can be transformed to accomplish preprocessing requirements.

Preprocessing Data Using a Lambda Function 36

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

SQL Developer Guide

Response Data Model

records

Field

recordId

result

data

Description

The record ID is passed from Kinesis Data Analytics to
Lambda during the invocation. The transformed record must
contain the same record ID. Any mismatch between the ID of
the original record and the ID of the transformed record is
treated as a data preprocessing failure.

The status of the data transformation of the record. The
possible values are:

« Ok: The record was transformed successfully. Kinesis Data
Analytics ingests the record for SQL processing.

» Dropped: The record was dropped intentionally by your
processing logic. Kinesis Data Analytics drops the record
from SQL processing. The data payload field is optional for
a Dropped record.

e ProcessingFailed : The record could not be transform
ed. Kinesis Data Analytics considers it unsuccessfully
processed by your Lambda function and writes an error
to the error stream. For more information about the error
stream, see Error Handling. The data payload field is

optional for a ProcessingFailed record.

The transformed data payload, after base64-encoding.

Each data payload can contain multiple JSON documents if
the application ingestion data format is JSON. Or each can
contain multiple CSV rows (with a row delimiter specified

in each row) if the application ingestion data format is CSV.
The Kinesis Data Analytics service successfully parses and
processes data with either multiple JSON documents or CSV
rows within the same data payload.

Preprocessing Data Using a Lambda Function

37

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

The following example shows output from a Lambda function:

{
"records": [
{
"recordId": "49572672223665514422805246926656954630972486059535892482",
"result": "Ok",
"data": "SEVMTE8gV@9STEQ="
}
]
}

Common Data Preprocessing Failures

The following are common reasons why preprocessing can fail.
« Not all records (with record IDs) in a batch that are sent to the Lambda function are returned
back to the Kinesis Data Analytics service.

« The response is missing either the record ID, status, or data payload field. The data payload field
is optional for a Dropped or ProcessingFailed record.

» The Lambda function timeouts are not sufficient to preprocess the data.

« The Lambda function response exceeds the response limits imposed by the AWS Lambda service.

For data preprocessing failures, Kinesis Data Analytics continues to retry Lambda invocations on
the same set of records until successful. You can monitor the following CloudWatch metrics to gain
insight into failures.

 Kinesis Data Analytics application MillisBehindLatest: Indicates how far behind an
application is reading from the streaming source.

» Kinesis Data Analytics application InputPreprocessing CloudWatch metrics: Indicates the
number of successes and failures, among other statistics. For more information, see Amazon
Kinesis Analytics Metrics.

« AWS Lambda function CloudWatch metrics and logs.

Preprocessing Data Using a Lambda Function 38

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aka-metricscollected.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aka-metricscollected.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Creating Lambda Functions for Preprocessing

Your Amazon Kinesis Data Analytics application can use Lambda functions for preprocessing
records as they are ingested into the application. Kinesis Data Analytics provides the following
templates on the console to use as a starting point for preprocessing your data.

Topics

Creating a Preprocessing Lambda Function in Node.js

Creating a Preprocessing Lambda Function in Python

Creating a Preprocessing Lambda Function in Java

Creating a Preprocessing Lambda Function in .NET

Creating a Preprocessing Lambda Function in Node.js

The following templates for creating preprocessing Lambda function in Node.js are available on the
Kinesis Data Analytics console:

Lambda Blueprint Language and Description

version
General Kinesis Node.js 6.10 A Kinesis Data Analytics record preprocessor
Data Analytics Input that receives JSON or CSV records as input
Processing and then returns them with a processing

status. Use this processor as a starting point
for custom transformation logic.

Compressed Input Node.js 6.10 A Kinesis Data Analytics record processor

Processing that receives compressed (GZIP or Deflate
compressed) JSON or CSV records as input and
returns decompressed records with a processin
g status.

Creating a Preprocessing Lambda Function in Python

The following templates for creating preprocessing Lambda function in Python are available on the
console:

Preprocessing Data Using a Lambda Function 39

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Lambda Blueprint Language and Description

version
General Kinesis Python 2.7 A Kinesis Data Analytics record preprocessor
Analytics Input that receives JSON or CSV records as input
Processing and then returns them with a processing

status. Use this processor as a starting point
for custom transformation logic.

KPL Input Processing Python 2.7 A Kinesis Data Analytics record processor
that receives Kinesis Producer Library (KPL)
aggregates of JSON or CSV records as input
and returns disaggregated records with a
processing status.

Creating a Preprocessing Lambda Function in Java
To create a Lambda function in Java for preprocessing records, use the Java events classes.

The following code demonstrates a sample Lambda function that preprocesses records using Java:

public class LambdaFunctionHandler implements
RequestHandler<KinesisAnalyticsStreamsInputPreprocessingEvent,
KinesisAnalyticsInputPreprocessingResponse> {

@Override
public KinesisAnalyticsInputPreprocessingResponse handleRequest(
KinesisAnalyticsStreamsInputPreprocessingEvent event, Context context) {

context.getLogger().log("InvocatonId is : " + event.invocationId);
context.getlLogger().log("StreamArn is : " + event.streamArn);
context.getLogger().log("ApplicationArn is : " + event.applicationAzn);

List<KinesisAnalyticsInputPreprocessingResponse.Record> records = new
ArraylList<KinesisAnalyticsInputPreprocessingResponse.Record>();

KinesisAnalyticsInputPreprocessingResponse response = new
KinesisAnalyticsInputPreprocessingResponse(records);

event.records.stream().forEach(record -> {
context.getlLogger().log("recordId is : " + record.recordId);

Preprocessing Data Using a Lambda Function 40

https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-events/src/main/java/com/amazonaws/services/lambda/runtime/events

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

SQL Developer Guide

context.getLogger().log("record aat is :" +
record.kinesisStreamRecordMetadata.approximateArrivalTimestamp);
// Add your record.data pre-processing logic here.

// response.records.add(new Record(record.recordId,
KinesisAnalyticsInputPreprocessingResult.Ok, <preprocessedrecordData>));

1)

return response;

Creating a Preprocessing Lambda Function in .NET

To create a Lambda function in .NET for preprocessing records, use the .NET events classes.

The following code demonstrates a sample Lambda function that preprocesses records using C#:

public class Function

{

public KinesisAnalyticsInputPreprocessingResponse

FunctionHandler(KinesisAnalyticsStreamsInputPreprocessingEvent evnt, ILambdaContext

context)
{
context.Logger.LogLine($"InvocationId: {evnt.InvocationId}");
context.Logger.LogLine($"StreamArn: {evnt.StreamArn}");

context.Logger.LogLine($"ApplicationArn: {evnt.ApplicationArn}");

var response = new KinesisAnalyticsInputPreprocessingResponse

{

Records = new List<KinesisAnalyticsInputPreprocessingResponse.Record>()

};

foreach (var record in evnt.Records)

{
context.Logger.LogLine($"\tRecordId: {record.RecordId}");

context.Logger.LogLine($"\tShardId: {record.RecordMetadata.ShardId}");

context.Logger.LogLine($"\tPartitionKey:
{record.RecordMetadata.PartitionKey}");

context.Logger.LogLine($"\tRecord ApproximateArrivalTime:
{record.RecordMetadata.ApproximateArrivalTimestamp}");

context.Logger.LogLine($"\tData: {record.DecodeData()}");

Preprocessing Data Using a Lambda Function

41

https://github.com/aws/aws-lambda-dotnet/tree/master/Libraries/src/Amazon.Lambda.KinesisAnalyticsEvents

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

// Add your record preprocessig logic here.

var preprocessedRecord = new
KinesisAnalyticsInputPreprocessingResponse.Record

{

RecordId = record.RecordId,

Result = KinesisAnalyticsInputPreprocessingResponse.OK
I
preprocessedRecord.EncodeData(record.DecodeData().ToUpperInvariant());
response.Records.Add(preprocessedRecord);

}

return response;

For more information about creating Lambda functions for preprocessing and destinations in .NET,
see Amazon.Lambda.KinesisAnalyticsEvents.

Parallelizing Input Streams for Increased Throughput

(® Note

After September 12, 2023, you will not able to create new applications using Kinesis Data
Firehose as a source if you do not already use Kinesis Data Analytics for SQL. For more
information, see Limits.

Amazon Kinesis Data Analytics applications can support multiple in-application input streams,
to scale an application beyond the throughput of a single in-application input stream. For
more information on in-application input streams, see Amazon Kinesis Data Analytics for SQL
Applications: How It Works.

In almost all cases, Amazon Kinesis Data Analytics scales your application to handle the capacity

of the Kinesis streams or Firehose source streams that feed into your application. However, if your
source stream's throughput exceeds the throughput of a single in-application input stream, you can
explicitly increase the number of in-application input streams that your application uses. You do so
with the InputParallelism parameter.

When the InputParallelism parameter is greater than one, Amazon Kinesis Data Analytics
evenly splits the partitions of your source stream among the in-application streams. For instance, if

Parallelizing Input Streams for Increased Throughput 42

https://github.com/aws/aws-lambda-dotnet/tree/master/Libraries/src/Amazon.Lambda.KinesisAnalyticsEvents
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

your source stream has 50 shards, and you set InputParallelism to 2, each in-application input
stream receives the input from 25 source stream shards.

When you increase the number of in-application streams, your application must access the data
in each stream explicitly. For information about accessing multiple in-application streams in
your code, see Accessing Separate In-Application Streams in Your Amazon Kinesis Data Analytics

Application.

Although Kinesis Data Streams and Firehose stream shards are both divided among in-application
streams in the same way, they differ in the way they appear to your application:

» The records from a Kinesis data stream include a shard_id field that can be used to identify the
source shard for the record.

» The records from a Firehose delivery stream don't include a field that identifies the record's
source shard or partition. This is because Firehose abstracts this information away from your
application.

Evaluating Whether to Increase Your Number of In-Application Input Streams

In most cases, a single in-application input stream can handle the throughput of a single source
stream, depending on the complexity and data size of the input streams. To determine if you need
to increase the number of in-application input streams, you can monitor the InputBytes and
MillisBehindLatest metrics in Amazon CloudWatch.

If the InputBytes metric is greater that 100 MB/sec (or you anticipate that it will be greater

than this rate), this can cause an increase in MillisBehindLatest and increase the impact of
application issues. To address this, we recommend making the following language choices for your
application:

« Use multiple streams and Kinesis Data Analytics for SQL applications if your application has
scaling needs beyond 100 MB/second.

» Use Kinesis Data Analytics for Java Applications if you want to use a single stream and
application.

If the MillisBehindLatest metric has either of the following characteristics, you should
increase your application's InputParallelism setting:

Parallelizing Input Streams for Increased Throughput 43

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

« TheMillisBehindLatest metric is gradually increasing, indicating that your application is
falling behind the latest data in the stream.

« TheMillisBehindLatest metric is consistently above 1000 (one second).

You don't need to increase your application's InputParallelism setting if the following are true:

« TheMillisBehindLatest metric is gradually decreasing, indicating that your application is
catching up to the latest data in the stream.

e TheMillisBehindLatest metric is below 1000 (one second).

For more information on using CloudWatch, see the CloudWatch User Guide.

Implementing Multiple In-Application Input Streams

You can set the number of in-application input streams when an application is created using
CreateApplication. You set this number after an application is created using UpdateApplication.

(® Note

You can only set the InputParallelism setting using the Amazon Kinesis Data Analytics
API or the AWS CLI. You cannot set this setting using the AWS Management Console.

For information on setting up the AWS CLI, see Step 2: Set Up the AWS Command Line
Interface (AWS CLI).

Setting a New Application's Input Stream Count

The following example demonstrates how to use the CreateApplication API action to set a new
application's input stream count to 2.

For more information about CreateApplication, see CreateApplication.

{
"ApplicationCode": "<The SQL code the new application will run on the input
stream>",
"ApplicationDescription": "<A friendly description for the new application>",
"ApplicationName": "<The name for the new application>",
"Inputs": [

Parallelizing Input Streams for Increased Throughput 44

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

{
"InputId": "ID for the new input stream",
"InputParallelism": {

"Count": 2
1,
"OQutputs": [...],
1]
}

Setting an Existing Application's Input Stream Count

The following example demonstrates how to use the UpdateApplication API action to set an
existing application's input stream count to 2.

For more information about Update_Application, see UpdateApplication.

{
"InputUpdates": [
{
"InputId": "yourInputId",
"InputParallelismUpdate": {
"CountUpdate": 2
}
}
1,
}

Accessing Separate In-Application Streams in Your Amazon Kinesis Data Analytics
Application

To use multiple in-application input streams in your application, you must explicitly select from the
different streams. The following code example demonstrates how to query multiple input streams
in the application created in the Getting Started tutorial.

In the following example, each source stream is first aggregated using COUNT before being
combined into a single in-application stream called in_application_stream@@l. Aggregating
the source streams beforehand helps make sure that the combined in-application stream can
handle the traffic from multiple streams without being overloaded.

Parallelizing Input Streams for Increased Throughput 45

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-count.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

® Note

To run this example and get results from both in-application input streams, update both
the number of shards in your source stream and the InputParallelism parameter in
your application.

CREATE OR REPLACE STREAM in_application_stream_001 (
ticker VARCHAR(64),
ticker_count INTEGER

);

CREATE OR REPLACE PUMP pump@@1 AS

INSERT INTO in_application_stream_001

SELECT STREAM ticker_symbol, COUNT(ticker_symbol)

FROM source_sql_stream_001

GROUP BY STEP(source_sql_stream_001.rowtime BY INTERVAL '6@' SECOND),
ticker_symbol;

CREATE OR REPLACE PUMP pump@02 AS

INSERT INTO in_application_stream_001

SELECT STREAM ticker_symbol, COUNT(ticker_symbol)

FROM source_sql_stream_002

GROUP BY STEP(source_sql_stream_002.rowtime BY INTERVAL '6@0' SECOND),
ticker_symbol;

The preceding code example produces output in in_application_stream@01 similar to the
following:

h 4
~
ROWTIME TICKER TICKER_COUNT
2017-05-17 22:05:00.0 QAZ 15
2017-05-17 22:06:00.0 SAC 16
2017-05-17 22:06:00.0 PLM 10
2017-05-17 22:06:00.0 AMZN 15

Parallelizing Input Streams for Increased Throughput 46

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Additional Considerations
When using multiple input streams, be aware of the following:

o The maximum number of in-application input streams is 64.

« The in-application input streams are distributed evenly among the shards of the application's
input stream.

» The performance gains from adding in-application streams don't scale linearly. That is, doubling
the number of in-application streams doesn't double throughput. With a typical row size, each
in-application stream can achieve throughput of about 5,000 to 15,000 rows per second. By
increasing the in-application stream count to 10, you can achieve a throughput of 20,000 to
30,000 rows per second. Throughput speed is dependent on the count, data types, and data size
of the fields in the input stream.

« Some aggregate functions (such as AVG) can produce unexpected results when applied to input
streams partitioned into different shards. Because you need to run the aggregate operation
on individual shards before combining them into an aggregate stream, the results might be
weighted toward whichever stream contains more records.

« If your application continues to experience poor performance (reflected by a high
MillisBehindLatest metric) after you increase your number of input streams, you might have
reached your limit of Kinesis Processing Units (KPUs). For more information, see Automatically
Scaling Applications to Increase Throughput.

Application Code

Application code is a series of SQL statements that process input and produce output. These SQL
statements operate on in-application streams and reference tables. For more information, see
Amazon Kinesis Data Analytics for SQL Applications: How It Works.

For information about the SQL language elements that are supported by Kinesis Data Analytics,
see Amazon Kinesis Data Analytics SQL Reference.

In relational databases, you work with tables, using INSERT statements to add records and the
SELECT statement to query the data. In Amazon Kinesis Data Analytics, you work with streams.
You can write a SQL statement to query these streams. The results of querying one in-application
stream are always sent to another in-application stream. When performing complex analytics, you
might create several in-application streams to hold the results of intermediate analytics. And then
finally, you configure application output to persist results of the final analytics (from one or more

Application Code 47

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-avg.html
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

in-application streams) to external destinations. In summary, the following is a typical pattern for
writing application code:

o The SELECT statement is always used in the context of an INSERT statement. That is, when you
select rows, you insert results into another in-application stream.

« The INSERT statement is always used in the context of a pump. That is, you use pumps to write
to an in-application stream.

The following example application code reads records from one in-application
(SOURCE_SQL_STREAM_001) stream and write it to another in-application stream
(DESTINATION_SQL_STREAM). You can insert records to in-application streams using pumps, as
shown following:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ticker_symbol VARCHAR(4),
change DOUBLE,
price DOUBLE);

-- Create a pump and insert into output stream.

CREATE OR REPLACE PUMP "STREAM_PUMP" AS

INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol, change,price
FROM "SOURCE_SQL_STREAM_001";

(® Note

The identifiers that you specify for stream names and column names follow standard
SQL conventions. For example, if you put quotation marks around an identifier, it makes
the identifier case sensitive. If you don't, the identifier defaults to uppercase. For more
information about identifiers, see Identifiers in the Amazon Managed Service for Apache
Flink SQL Reference.

Your application code can consist of many SQL statements. For example:

» You can write SQL queries in a sequential manner where the result of one SQL statement feeds
into the next SQL statement.

» You can also write SQL queries that run independent of each other. For example, you can
write two SQL statements that query the same in-application stream, but send output into

Application Code 48

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-identifiers.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

different in-applications streams. You can then query the newly created in-application streams
independently.

You can create in-application streams to save intermediate results. You insert data in in-application
streams using pumps. For more information, see In-Application Streams and Pumps.

If you add an in-application reference table, you can write SQL to join data in in-application
streams and reference tables. For more information, see Example: Adding Reference Data to a

Kinesis Data Analytics Application.

According to the application's output configuration, Amazon Kinesis Data Analytics writes data
from specific in-application streams to the external destination according to the application's
output configuration. Make sure that your application code writes to the in-application streams
specified in the output configuration.

For more information, see the following topics:

« Streaming SQL Concepts

« Amazon Kinesis Data Analytics SQL Reference

Configuring Application Output

In your application code, you write the output of SQL statements to one or more in-application
streams. You can optionally add an output configuration to your application. to persist everything
written to an in-application stream to an external destination such as an Amazon Kinesis data
stream, a Firehose delivery stream, or an AWS Lambda function.

There is a limit on the number of external destinations you can use to persist an application output.

For more information, see Limits.

® Note

We recommend that you use one external destination to persist in-application error stream
data so that you can investigate the errors.

In each of these output configurations, you provide the following:

Output 49

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 In-application stream name - The stream that you want to persist to an external destination.

Kinesis Data Analytics looks for the in-application stream that you specified in the output
configuration. (The stream name is case sensitive and must match exactly.) Make sure that your
application code creates this in-application stream.

« External destination — You can persist data to a Kinesis data stream, a Firehose delivery stream,
or a Lambda function. You provide the Amazon Resource Name (ARN) of the stream or function.
You also provide an IAM role that Kinesis Data Analytics can assume to write to the stream or
function on your behalf. You describe the record format (JSON, CSV) to Kinesis Data Analytics to
use when writing to the external destination.

If Kinesis Data Analytics can't write to the streaming or Lambda destination, the service continues
to try indefinitely. This creates back pressure, causing your application to fall behind. If this issue is
not resolved, your application eventually stops processing new data. You can monitor Kinesis Data
Analytics Metrics and set alarms for failures. For more information about metrics and alarms, see
Using Amazon CloudWatch Metrics and Creating Amazon CloudWatch Alarms.

You can configure the application output using the AWS Management Console. The console makes
the API call to save the configuration.

Creating an Output Using the AWS CLI

This section describes how to create the Outputs section of the request body for a
CreateApplication or AddApplicationOutput operation.

Creating a Kinesis Stream Output

The following JSON fragment shows the Qutputs section in the CreateApplication request
body for creating an Amazon Kinesis data stream destination.

"Outputs": [
{

"DestinationSchema": {
"RecordFormatType": "string"

1,

"KinesisStreamsOutput": {
"ResourceARN": "string",
"RoleARN": "string"

1,

Creating an Output Using the AWS CLI 50

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aka-metricscollected.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aka-metricscollected.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

"Name": "string"

Creating a Firehose Delivery Stream Output

The following JSON fragment shows the Outputs section in the CreateApplication request
body for creating an Amazon Data Firehose delivery stream destination.

"Outputs": [
{

"DestinationSchema": {
"RecordFormatType": "string"

},

"KinesisFirehoseOutput": {
"ResourceARN": "string",
"RoleARN": "string"

},

"Name": "string"

Creating a Lambda Function Output

The following JSON fragment shows the Outputs section in the CreateApplication request
body for creating an AWS Lambda function destination.

"Outputs": [
{

"DestinationSchema": {
"RecordFormatType": "string"

1

"LambdaOutput": {
"ResourceARN": "string",
"RoleARN": "string"

1

"Name": "string"

Creating an Output Using the AWS CLI 51

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Using a Lambda Function as Output

Using AWS Lambda as a destination allows you to more easily perform post-processing of your
SQL results before sending them to a final destination. Common post-processing tasks include the
following:

« Aggregating multiple rows into a single record

« Combining current results with past results to address late-arriving data

« Delivering to different destinations based on the type of information

» Record format translation (such as translating to Protobuf)

 String manipulation or transformation

» Data enrichment after analytical processing

» Custom processing for geospatial use cases

« Data encryption

Lambda functions can deliver analytic information to a variety of AWS services and other
destinations, including the following:

« Amazon Simple Storage Service (Amazon S3)

e Custom APIs

« Amazon DynamoDB

» Apache Aurora

« Amazon Redshift

« Amazon Simple Notification Service (Amazon SNS)

« Amazon Simple Queue Service (Amazon SQS)

« Amazon CloudWatch

For more information about creating Lambda applications, see Getting Started with AWS Lambda.

Topics

« Lambda as Output Permissions

o Lambda as Output Metrics

Using a Lambda Function as Output 52

https://docs.aws.amazon.com/AmazonS3/latest/dev/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
http://aurora.apache.org/
https://docs.aws.amazon.com/redshift/latest/dg/
https://docs.aws.amazon.com/sns/latest/dg/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Lambda as Output Event Input Data Model and Record Response Model

Lambda Output Invocation Frequency

Adding a Lambda Function for Use as an Output

Common Lambda as Output Failures

Creating Lambda Functions for Application Destinations

Lambda as Output Permissions

To use Lambda as output, the application’s Lambda output IAM role requires the following
permissions policy:

{
"Sid": "UselLambdaFunction",
"Effect": "Allow",
"Action": [
"lambda:InvokeFunction",
"lambda:GetFunctionConfiguration"
1,
"Resource": "FunctionARN"
}

Lambda as Output Metrics

You use Amazon CloudWatch to monitor the number of bytes sent, successes and failures, and so
on. For information about CloudWatch metrics that are emitted by Kinesis Data Analytics using
Lambda as output, see Amazon Kinesis Analytics Metrics.

Lambda as Output Event Input Data Model and Record Response Model

To send Kinesis Data Analytics output records, your Lambda function must be compliant with the
required event input data and record response models.

Event Input Data Model

Kinesis Data Analytics continuously sends the output records from the application to the Lambda
as an output function with the following request model. Within your function, you iterate through
the list and apply your business logic to accomplish your output requirements (such as data
transformation before sending to a final destination).

Using a Lambda Function as Output 53

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aka-metricscollected.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Field Description
invocationlId The Lambda invocation ID (random GUID).
applicationArn The Kinesis Data Analytics application Amazon Resource Name
(ARN).

records

Field Description

recordId record ID (random GUID)

lambdaDel

iveryReco Field Description

el retryHir Number of delivery

retries
data Base64-encoded output record payload

(® Note

The retryHint is a value that increases for every delivery failure. This value is not durably
persisted, and resets if the application is disrupted.

Record Response Model

Each record sent to your Lambda as an output function (with record 1Ds) must be acknowledged
with either Ok or DeliveryFailed, and it must contain the following parameters. Otherwise,
Kinesis Data Analytics treats them as a delivery failure.

records

Using a Lambda Function as Output 54

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Field Description

recordId The record ID is passed from Kinesis Data Analytics to
Lambda during the invocation. Any mismatch between the ID
of the original record and the ID of the acknowledged record
is treated as a delivery failure.

result The status of the delivery of the record. The following are
possible values:

« Ok: The record was transformed successfully and sent to
the final destination. Kinesis Data Analytics ingests the
record for SQL processing.

e DeliveryFailed : The record was not delivered
successfully to the final destination by the Lambda as
output function. Kinesis Data Analytics continuously retries
sending the delivery failed records to the Lambda as
output function.

Lambda Output Invocation Frequency

A Kinesis Data Analytics application buffers the output records and invokes the AWS Lambda
destination function frequently.

« If records are emitted to the destination in-application stream within the data analytics

application as a tumbling window, the AWS Lambda destination function is invoked per tumbling

window trigger. For example, if a tumbling window of 60 seconds is used to emit the records to
the destination in-application stream, the Lambda function is invoked once every 60 seconds.

« If records are emitted to the destination in-application stream within the application as a
continuous query or a sliding window, the Lambda destination function is invoked about once
per second.

Using a Lambda Function as Output

55

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

® Note

Per-Lambda function invoke request payload size limits apply. Exceeding those limits
results in output records being split and sent across multiple Lambda function calls.

Adding a Lambda Function for Use as an Output

The following procedure demonstrates how to add a Lambda function as an output for a Kinesis

Data Analytics application.

1.

i A W

Sign in to the AWS Management Console and open the Managed Service for Apache Flink
console at https://console.aws.amazon.com/kinesisanalytics.

Choose the application in the list, and then choose Application details.
In the Destination section, choose Connect new destination.
For the Destination item, choose AWS Lambda function.

In the Deliver records to AWS Lambda section, either choose an existing Lambda function and
version, or choose Create new.

If you are creating a new Lambda function, do the following:

a. Choose one of the templates provided. For more information, Creating Lambda Functions

for Application Destinations.

b. The Create Function page opens in a new browser tab. In the Name box, give the function
a meaningful name (for example, myLambdaFunction).

c. Update the template with post-processing functionality for your application. For
information about creating a Lambda function, see Getting Started in the AWS Lambda

Developer Guide.

d. On the Kinesis Data Analytics console, in the Lambda function list, choose the Lambda
function that you just created. Choose $LATEST for the Lambda function version.

In the In-application stream section, choose Choose an existing in-application stream. For
In-application stream name, choose your application's output stream. The results from the
selected output stream are sent to the Lambda output function.

Leave the rest of the form with the default values, and choose Save and continue.

Using a Lambda Function as Output 56

https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://console.aws.amazon.com/kinesisanalytics
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Your application now sends records from the in-application stream to your Lambda function. You
can see the results of the default template in the Amazon CloudWatch console. Monitor the AWS/
KinesisAnalytics/LambdaDelivery.0OkRecords metric to see the number of records being
delivered to the Lambda function.

Common Lambda as Output Failures
The following are common reasons why delivery to a Lambda function can fail.

« Not all records (with record IDs) in a batch that are sent to the Lambda function are returned to
the Kinesis Data Analytics service.

« The response is missing either the record ID or the status field.

« The Lambda function timeouts are not sufficient to accomplish the business logic within the
Lambda function.

» The business logic within the Lambda function does not catch all the errors, resulting in a
timeout and backpressure due to unhandled exceptions. These are often referred as “poison pill”
messages.

For data delivery failures, Kinesis Data Analytics continues to retry Lambda invocations on the
same set of records until successful. To gain insight into failures, you can monitor the following
CloudWatch metrics:

 Kinesis Data Analytics application Lambda as Output CloudWatch metrics: Indicates the number
of successes and failures, among other statistics. For more information, see Amazon Kinesis

Analytics Metrics.
o AWS Lambda function CloudWatch metrics and logs.

Creating Lambda Functions for Application Destinations

Your Kinesis Data Analytics application can use AWS Lambda functions as an output. Kinesis
Data Analytics provides templates for creating Lambda functions to use as a destination for
your applications. Use these templates as a starting point for post-processing output from your
application.

Topics

» Creating a Lambda Function Destination in Node.js

« Creating a Lambda Function Destination in Python

Using a Lambda Function as Output 57

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aka-metricscollected.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aka-metricscollected.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

« Creating a Lambda Function Destination in Java

» Creating a Lambda Function Destination in .NET

Creating a Lambda Function Destination in Node.js

The following template for creating a destination Lambda function in Node.js is available on the

console:
Lambda as Output Blueprint Language and Version Description
kinesis-analytics- Node.js 12.x Deliver output records from
output a Kinesis Data Analytics
application to a custom
destination.

Creating a Lambda Function Destination in Python

The following templates for creating a destination Lambda function in Python are available on the

console:
Lambda as Output Blueprint Language and Version Description
kinesis-analytics- Python 2.7 Deliver output records from
output-sns a Kinesis Data Analytics
application to Amazon SNS.
kinesis-analytics- Python 2.7 Deliver output records from
output-ddb a Kinesis Data Analytics

application to Amazon
DynamoDB.

Creating a Lambda Function Destination in Java
To create a destination Lambda function in Java, use the Java events classes.

The following code demonstrates a sample destination Lambda function using Java:

Using a Lambda Function as Output

58

https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-events/src/main/java/com/amazonaws/services/lambda/runtime/events

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

public class LambdaFunctionHandler
implements RequestHandler<KinesisAnalyticsOutputDeliveryEvent,
KinesisAnalyticsOutputDeliveryResponse> {

@Override
public KinesisAnalyticsOutputDeliveryResponse
handleRequest(KinesisAnalyticsOutputDeliveryEvent event,
Context context) {
context.getlLogger().log("InvocatonId is : " + event.invocationId);
context.getLogger().log("ApplicationArn is : " + event.applicationArn);

List<KinesisAnalyticsOutputDeliveryResponse.Record> records = new
ArraylList<KinesisAnalyticsOutputDeliveryResponse.Record>();

KinesisAnalyticsOutputDeliveryResponse response = new
KinesisAnalyticsOutputDeliveryResponse(records);

event.records.stream().forEach(record -> {
context.getlLogger().log("recordId is : " + record.recordId);
context.getLogger().log("record retryHint is :" +
record.lambdaDeliveryRecordMetadata.retryHint);
// Add logic here to transform and send the record to final destination of
your choice.
response.records.add(new Record(record.recordId,
KinesisAnalyticsOutputDeliveryResponse.Result.0k));
)8

return response;

Creating a Lambda Function Destination in .NET
To create a destination Lambda function in .NET, use the .NET events classes.

The following code demonstrates a sample destination Lambda function using C#:

public class Function
{
public KinesisAnalyticsOutputDeliveryResponse
FunctionHandler(KinesisAnalyticsOutputDeliveryEvent evnt, ILambdaContext context)
{
context.Logger.LogLine($"InvocationId: {evnt.InvocationId}");
context.Logger.LogLine($"ApplicationArn: {evnt.ApplicationArn}");

Using a Lambda Function as Output 59

https://github.com/aws/aws-lambda-dotnet/tree/master/Libraries/src/Amazon.Lambda.KinesisAnalyticsEvents

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

var response = new KinesisAnalyticsOutputDeliveryResponse

{

Records = new List<KinesisAnalyticsOutputDeliveryResponse.Record>()

i

foreach (var record in evnt.Records)
{
context.Logger.LogLine($"\tRecordId: {record.RecordId}");
context.Logger.LogLine($"\tRetryHint:
{record.RecordMetadata.RetryHint}");
context.Logger.LogLine($"\tData: {record.DecodeData()}");

// Add logic here to send to the record to final destination of your

choice.
var deliveredRecord = new KinesisAnalyticsOutputDeliveryResponse.Record
{
RecordId = record.RecordId,
Result = KinesisAnalyticsOutputDeliveryResponse.OK
};
response.Records.Add(deliveredRecord);
}
return response;
}
}

For more information about creating Lambda functions for pre-processing and destinations in .NET,
see Amazon.Lambda.KinesisAnalyticsEvents.

Delivery Model for Persisting Application Output to an External
Destination

Amazon Kinesis Data Analytics uses an "at least once" delivery model for application output to
the configured destinations. When an application is running, Kinesis Data Analytics takes internal
checkpoints. These checkpoints are points in time when output records have been delivered to
the destinations without data loss. The service uses the checkpoints as needed to ensure that your
application output is delivered at least once to the configured destinations.

In a normal situation, your application processes incoming data continuously. Kinesis Data Analytics
writes the output to the configured destinations, such as a Kinesis data stream or a Firehose
delivery stream. However, your application can be interrupted occasionally, for example:

Application Output Delivery Model 60

https://github.com/aws/aws-lambda-dotnet/tree/master/Libraries/src/Amazon.Lambda.KinesisAnalyticsEvents

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

» You choose to stop your application and restart it later.

» You delete the IAM role that Kinesis Data Analytics needs to write your application output
to the configured destination. Without the IAM role, Kinesis Data Analytics doesn't have any
permissions to write to the external destination on your behalf.

« A network outage or other internal service failure causes your application to stop running
momentarily.

When your application restarts, Kinesis Data Analytics ensures that it continues to process and
write output from a point before or equal to when the failure occurred. This helps ensure that it
doesn't miss delivering any application output to the configured destinations.

Suppose that you configured multiple destinations from the same in-application stream. After

the application recovers from failure, Kinesis Data Analytics resumes persisting output to the
configured destinations from the last record that was delivered to the slowest destination. This
might result in the same output record delivered more than once to other destinations. In this case,
you must handle potential duplications in the destination externally.

Error Handling

Amazon Kinesis Data Analytics returns APl or SQL errors directly to you. For more information
about API operations, see Actions. For more information about handling SQL errors, see Amazon
Kinesis Data Analytics SQL Reference.

Amazon Kinesis Data Analytics reports runtime errors using an in-application error stream called
error_stream.

Reporting Errors Using an In-Application Error Stream

Amazon Kinesis Data Analytics reports runtime errors to the in-application error stream called
error_stream. The following are examples of errors that might occur:

» A record read from the streaming source does not conform to the input schema.

» Your application code specifies division by zero.

» The rows are out of order (for example, a record appears on the stream with a ROWTIME value
that a user modified that causes a record to go out of order).

Error Handling 61

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

SQL Developer Guide

» The data in the source stream can't be converted to the data type specified in the schema
(Coercion error). For information about what data types can be converted, see Mapping JSON

Data Types to SQL Data Types.

We recommend that you handle these errors programmatically in your SQL code or persist the data
on the error stream to an external destination. This requires that you add an output configuration
(see Configuring Application Output) to your application. For an example of how the in-application

error stream works, see Example: Exploring the In-Application Error Stream.

(® Note

Your Kinesis Data Analytics application can't access or modify the error stream

programmatically because the error stream is created using the system account. You must

use the error output to determine what errors your application might encounter. You then
write your application's SQL code to handle anticipated error conditions.

Error Stream Schema

The error stream has the following schema:

Field

ERROR_TIME

ERROR_LEVEL
ERROR_NAME
MESSAGE

DATA_ROWTIME

DATA_ROW

Data Type

TIMESTAMP

VARCHAR(10)
VARCHAR(32)
VARCHAR(4096)

TIMESTAMP

VARCHAR(49152)

Notes

The time when the error
occurred

The row time of the incoming
record

The hex-encoded data in

the original row. You can

use standard libraries to hex
decode this value, or use web

Reporting Errors Using an In-Application Error Stream

62

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

resources such as this Hex to
String Converter.

PUMP_NAME VARCHAR(128) The originating pump, as
defined with CREATE PUMP

Automatically Scaling Applications to Increase Throughput

Amazon Kinesis Data Analytics elastically scales your application to accommodate the data
throughput of your source stream and your query complexity for most scenarios. Kinesis Data
Analytics provisions capacity in the form of Kinesis Processing Units (KPU). A single KPU provides
you with the memory (4 GB) and corresponding computing and networking.

The default limit for KPUs for your application is 64. For instructions on how to request an increase
to this limit, see To request a limit increase in Amazon Service Limits.

Using Tagging

This section describes how to add key-value metadata tags to Kinesis Data Analytics applications.
These tags can be used for the following purposes:

» Determining billing for individual Kinesis Data Analytics applications. For more information, see
Using Cost Allocation Tags in the AWS Billing and Cost Management Guide.

« Controlling access to application resources based on tags. For more information, see Controlling
Access Using Tags in the User Guide.

» User-defined purposes. You can define application functionality based on the presence of user
tags.

Note the following information about tagging:

« The maximum number of application tags includes system tags. The maximum number of user-
defined application tags is 50.

« If an action includes a tag list that has duplicate Key values, the service throws an
InvalidArgumentException.

This topic contains the following sections:

Auto Scaling Applications 63

http://string-functions.com/hex-string.aspx
http://string-functions.com/hex-string.aspx
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

» Adding Tags when an Application is Created

« Adding or Updating Tags for an Existing Application

« Listing Tags for an Application

» Removing Tags from an Application

Adding Tags when an Application is Created

You add tags when creating an application using the tags parameter of the CreateApplication
action.

The following example request shows the Tags node for a CreateApplication request:

"Tags": [
{
"Key": "Keyl",
"Value": "Valuel"

},
{
"Key": "Key2",
"Value": "Value2"
}

Adding or Updating Tags for an Existing Application

You add tags to an application using the TagResource action. You cannot add tags to an application
using the UpdateApplication action.

To update an existing tag, add a tag with the same key of the existing tag.

The following example request for the TagResource action adds new tags or updates existing
tags:

{
"ResourceARN": "string",
"Tags": [
{

"Key": "NewTagKey",
"Value": "NewTagValue"

}I

Adding Tags when an Application is Created 64

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_CreateApplication.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_TagResource.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_UpdateApplication.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

{

"Key": "ExistingKeyOfTagToUpdate",
"Value": "NewValueForExistingTag"

Listing Tags for an Application

To list existing tags, you use the ListTagsForResource action.

The following example request for the ListTagsForResource action lists tags for an application:

{

"ResourceARN": "arn:aws:kinesisanalytics:us-west-2:012345678901:application/
MyApplication"
}

Removing Tags from an Application

To remove tags from an application, you use the UntagResource action.

The following example request for the UntagResource action removes tags from an application:

"ResourceARN": "arn:aws:kinesisanalytics:us-west-2:012345678901:application/
MyApplication",
"TagKeys": ["KeyOfFirstTagToRemove", "KeyOfSecondTagToRemove"]

Listing Tags for an Application 65

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_ListTagsForResource.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_UntagResource.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Getting Started with Amazon Kinesis Data Analytics for
SQL Applications

Following, you can find topics to help get you started using Amazon Kinesis Data Analytics for
SQL Applications. If you are new to Kinesis Data Analytics for SQL Applications, we recommend
that you review the concepts and terminology presented in Amazon Kinesis Data Analytics for SQL

Applications: How It Works before performing the steps in the Getting Started section.

Topics

« Sign up for an AWS account

+ Create an administrative user

» Step 1: Set Up an Account and Create an Administrator User

 Sign up for an AWS account

+ Create an administrative user

o Step 2: Set Up the AWS Command Line Interface (AWS CLI)

» Step 3: Create Your Starter Amazon Kinesis Data Analytics Application

» Step 4 (Optional) Edit the Schema and SQL Code Using the Console

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.
To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks

that require root user access.

Sign up for an AWS account 66

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Signin to the AWS Management Console as the account owner by choosing Root user and

entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. InIAM lIdentity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

o Tosign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

Create an administrative user 67

https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Step 1: Set Up an Account and Create an Administrator User

Before you use Amazon Kinesis Data Analytics for the first time, complete the following tasks:

1. Sign Up for AWS
2. Create an IAM User

Sign Up for AWS

When you sign up for Amazon Web Services, your AWS account is automatically signed up for all
services in AWS, including Amazon Kinesis Data Analytics. You are charged only for the services
that you use.

With Kinesis Data Analytics, you pay only for the resources you use. If you are a new AWS customer,
you can get started with Kinesis Data Analytics for free. For more information, see AWS Free Usage
Tier.

If you already have an AWS account, skip to the next task. If you don't have an AWS account,
perform the steps in the following procedure to create one.

To create an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks

that require root user access.

Note your AWS account ID because you'll need it for the next task.

Step 1: Set Up an Account 68

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Create an IAM User

Services in AWS, such as Amazon Kinesis Data Analytics, require that you provide credentials
when you access them so that the service can determine whether you have permissions to access
the resources owned by that service. The console requires your password. You can create access
keys for your AWS account to access the AWS CLI or API. However, we don't recommend that you
access AWS using the credentials for your AWS account. Instead, we recommend that you use AWS
Identity and Access Management (IAM). Create an IAM user, add the user to an IAM group with
administrative permissions, and then grant administrative permissions to the IAM user that you
created. You can then access AWS using a special URL and that IAM user's credentials.

If you signed up for AWS, but you haven't created an IAM user for yourself, you can create one
using the IAM console.

The Getting Started exercises in this guide assume that you have a user (adminuser) with
administrator privileges. Follow the procedure to create adminuser in your account.

To create an administrator user and sign in to the console

1. Create an administrator user called adminuser in your AWS account. For instructions, see
Creating Your First IAM User and Administrators Group in the IAM User Guide.

2. Auser can sign in to the AWS Management Console using a special URL. For more information,
How Users Sign In to Your Account in the IAM User Guide.

For more information about IAM, see the following:

o AWS Identity and Access Management (IAM)

» Getting started

+ |AM User Guide

Next Step

Step 2: Set Up the AWS Command Line Interface (AWS CLI)

Create an IAM User 69

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.
To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks

that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/

and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Ildentity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Signin to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Sign up for an AWS account 70

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. InIAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see

Configure user access with the default IAM Identity Center directory in the AWS IAM Identity

Center User Guide.

Sign in as the administrative user

« Tosign in with your IAM Identity Center user, use the sign-in URL that was sent to your email

address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in

the AWS Sign-In User Guide.

Step 2: Set Up the AWS Command Line Interface (AWS CLI)

Follow the steps to download and configure the AWS Command Line Interface (AWS CLI).

/A Important

You don't need the AWS CLI to perform the steps in the Getting Started exercise. However,
some of the exercises in this guide use the AWS CLI. You can skip this step and go to Step
3: Create Your Starter Amazon Kinesis Data Analytics Application, and then set up the AWS
CLI later when you need it.

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide:

o Getting Set Up with the AWS Command Line Interface

Step 2: Set Up the AWS CLI

71

https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

» Configuring the AWS Command Line Interface

2. Add a named profile for the administrator user in the AWS CLI config file. You use this profile
when executing the AWS CLI commands. For more information about named profiles, see
Named Profiles in the AWS Command Line Interface User Guide.

[profile adminuser]

aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

For a list of available AWS Regions, see Regions and Endpoints in the Amazon Web Services

General Reference.

3. Verify the setup by entering the following help command at the command prompt:

aws help

Next Step

Step 3: Create Your Starter Amazon Kinesis Data Analytics Application

Step 3: Create Your Starter Amazon Kinesis Data Analytics
Application

By following the steps in this section, you can create your first Kinesis Data Analytics application
using the console.

® Note

We suggest that you review Amazon Kinesis Data Analytics for SQL Applications: How It
Works before trying the Getting Started exercise.

For this Getting Started exercise, you can use the console to work with either the demo stream or
templates with application code.

Next Step 72

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-multiple-profiles
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

« If you choose to use the demo stream, the console creates a Kinesis data stream in your account
that is called kinesis-analytics-demo-stream.

A Kinesis Data Analytics application requires a streaming source. For this source, several SQL
examples in this guide use the demo stream kinesis-analytics-demo-stream. The console
also runs a script that continuously adds sample data (simulated stock trade records) to this
stream, as shown following.

Raw Formatted

Filter by column name or column type

TICKER_SYMBOL SECTOR CHANGE PRICE
VARCHAR(4) WARCHAR(16) REAL REAL
J¥B HEALTHCARE -2.05 4317
DFT RETAIL 017 §5.85000000000001
JvB HEALTHCARE 1.8900000000000001 4522
WFC FINANCLAL 0.05 47.51
SED HEALTHCARE 0.11 23
QAZ FINANCLAL -1 194.02
QxZ FINANCLAL -4.38 219.21
TGT RETAIL 1.51 69.9
AAPL TECHNOLOGY -0.27 101.37
DFT RETAIL -0 7000000000000001 95.79

You can use kinesis-analytics-demo-stream as the streaming source for your application
in this exercise.

(® Note

The demo stream remains in your account. You can use it to test other examples in

this guide. However, when you leave the console, the script that the console uses stops
populating the data. When needed, the console provides the option to start populating
the stream again.

« If you choose to use the templates with example application code, you use template code that
the console provides to perform simple analytics on the demo stream.

Step 3: Create Your Starter Analytics Application 73

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

You use these features to quickly set up your first application as follows:

1. Create an application - You only need to provide a name. The console creates the application
and the service sets the application state to READY.

2. Configure input - First, you add a streaming source, the demo stream. You must create a demo
stream in the console before you can use it. Then, the console takes a random sample of records
on the demo stream and infers a schema for the in-application input stream that is created. The
console names the in-application stream SOURCE_SQL_STREAM_001.

The console uses the discovery API to infer the schema. If necessary, you can edit the inferred
schema. For more information, see DiscoverlnputSchema. Kinesis Data Analytics uses this

schema to create an in-application stream.

When you start the application, Kinesis Data Analytics reads the demo stream continuously on
your behalf and inserts rows in the SOURCE_SQL_STREAM_001 in-application input stream.

3. Specify application code - You use a template (called Continuous filter) that provides the
following code:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM"
(symbol VARCHAR(4), sector VARCHAR(12), CHANGE DOUBLE, price DOUBLE);

-- Create pump to insert into output.
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol, sector, CHANGE, price
FROM "SOURCE_SQL_STREAM_0@1"
WHERE sector SIMILAR TO '%TECH%';

The application code queries the in-application stream SOURCE_SQL_STREAM_Q@1. The code
then inserts the resulting rows in another in-application stream DESTINATION_SQL_STREAM,
using pumps. For more information about this coding pattern, see Application Code.

For information about the SQL language elements that are supported by Kinesis Data Analytics,
see Amazon Kinesis Data Analytics SQL Reference.

Step 3: Create Your Starter Analytics Application 74

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

4. Configuring output - In this exercise, you don't configure any output. That is, you don't persist
data in the in-application stream that your application creates to any external destination.
Instead, you verify query results in the console. Additional examples in this guide show how to
configure output. For one example, see Example: Creating Simple Alerts.

/A Important

The exercise uses the US East (N. Virginia) Region (us-east-1) to set up the application. You
can use any of the supported AWS Regions.

Next Step

Step 3.1: Create an Application

Step 3.1: Create an Application

In this section, you create an Amazon Kinesis Data Analytics application. You configure application
input in the next step.

To create a data analytics application

1. Signin to the AWS Management Console and open the Managed Service for Apache Flink
console at https://console.aws.amazon.com/kinesisanalytics.

2. Choose Create application.

3. On the Create application page, type an application name, type a description, choose SQL for
the application's Runtime setting, and then choose Create application.

Step 3.1: Create an Application 75

https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Kinesis Analytics - Create application

Kineszis Analytics applications continuoushy read and analyze data from a connected streaming source in reaktime. To enable interactivity with your data during
configuration you will be prompted to run your application. Kinesis Analytics resources are not covered under the AWS Free Tier, and usage-based charges
apply. For more information, see Kineszis Analytics pricing.

Application name* Examplefpp

Description Kinezis Analytics Getting Started exercise

Runtime © saL
Apache Flink 1.6

* Required Cancel Create application

Doing this creates a Kinesis Data Analytics application with a status of READY. The console
shows the application hub where you can configure input and output.

(® Note

To create an application, the CreateApplication operation requires only the application
name. You can add input and output configuration after you create an application in
the console.

In the next step, you configure input for the application. In the input configuration, you add
a streaming data source to the application and discover a schema for an in-application input
stream by sampling data on the streaming source.

Next Step

Step 3.2: Configure Input

Step 3.1: Create an Application 76

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Step 3.2: Configure Input

Your application needs a streaming source. To help you get started, the console can create a
demo stream (called kinesis-analytics-demo-stream). The console also runs a script that
populates records in the stream.

To add a streaming source to your application

1. On the application hub page in the console, choose Connect streaming data.

ExampleApp

Description: Kinesis Anahtics Getting Started exercizse
Application ARN: arn:aws:kinesisanalytics:us-west-2:083251321484 application/Examplespp
Application version 1D: 1 €9

oV Source

i | Streaming data

Connect to an existing Kinesis stream or Firehose delivery stream, or easily create and connect to a new demo Kinesis stream. Each
application can connect to one streaming data source. Learn more

Connect streaming data

Exit to Kinesis Analytics applications

2. On the page that appears, review the following:

Step 3.2: Configure Input 77

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

» Source section, where you specify a streaming source for your application. You can select
an existing stream source or create one. In this exercise, you create a new stream, the demo
stream.

By default the console names the in-application input stream that is created as
INPUT_SQL_STREAM_@@1. For this exercise, keep this name as it appears.

« Stream reference name - This option shows the name of the in-application input stream
that is created, SOURCE_SQL_STREAM_@01. You can change the name, but for this
exercise, keep this name.

In the input configuration, you map the demo stream to an in-application input

stream that is created. When you start the application, Amazon Kinesis Data Analytics
continuously reads the demo stream and insert rows in the in-application input stream.
You query this in-application input stream in your application code.

» Record pre-processing with AWS Lambda: This option is where you specify an AWS
Lambda expression that modifies the records in the input stream before your application
code executes. In this exercise, leave the Disabled option selected. For more information
about Lambda preprocessing, see Preprocessing Data Using a Lambda Function.

After you provide all the information on this page, the console sends an update request (see
UpdateApplication) to add the input configuration the application.

3. On the Source page, choose Configure a new stream.

4. Choose Create demo stream. The console configures the application input by doing the
following:
» The console creates a Kinesis data stream called kinesis-analytics-demo-stream.

» The console populates the stream with sample stock ticker data.

Step 3.2: Configure Input 78

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

» Using the DiscoverlnputSchema input action, the console infers a schema by reading sample
records on the stream. The schema that is inferred is the schema for the in-application input
stream that is created. For more information, see Configuring Application Input.

« The console shows the inferred schema and the sample data it read from the streaming
source to infer the schema.

The console displays the sample records on the streaming source.

Raww Formatted

Filter by column name or column type

TICKER_SYMBOL SECTOR CHANGE PRICE
WVARCHAR(4) VARCHAR(18) REAL REAL
J¥B HEALTHCARE -2.05 43.17
DFT RETAIL 017 §5.56000000000001
J¥B HEALTHCARE 1.8500000000000001 45.22
WFC FINANCLAL 0.05 47.51
SED HEALTHCARE 0.1 2.3
oAz FINANCLAL -1.01 184.02
QxZ FINANCLAL -4.36 218.21
TGT RETAIL 1.51 69.9
AAPL TECHNOLOGY -0.27 101.37
DFT RETAIL -0.7000000000000001 §5.79

The following appear on the Stream sample console page:

« The Raw stream sample tab shows the raw stream records sampled by the
DiscoverlnputSchema API action to infer the schema.

« The Formatted stream sample tab shows the tabular version of the data in the Raw stream
sample tab.

« If you choose Edit schema, you can edit the inferred schema. For this exercise, don't change
the inferred schema. For more information about editing a schema, see Working with the
Schema Editor.

If you choose Rediscover schema, you can request the console to run DiscoverlnputSchema
again and infer the schema.

Step 3.2: Configure Input 79

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

5. Choose Save and continue.

You now have an application with input configuration added to it. In the next step, you add
SQL code to perform some analytics on the data in-application input stream.

Next Step

Step 3.3: Add Real-Time Analytics (Add Application Code)

Step 3.3: Add Real-Time Analytics (Add Application Code)

You can write your own SQL queries against the in-application stream, but for the following step
you use one of the templates that provides sample code.

1. On the application hub page, choose Go to SQL editor.

Step 3.3: Add Real-Time Analytics (Add Application Code) 80

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

SQL Developer Guide

4.

ExampleApp

Description: Kinesis Analtics Getting Started exercize
Application ARN: arn:aws:kinesisanalytics us-west-2:083251321484:application/Examplespp
Application version 1D: 2 €

+¥e

1

Source

Streaming data

Connect to an existing Kinesis stream or Firehose delivery stream, or easily create and connect to a new demo Kinesis stream. Each
application can connect to one streaming data scurce. Learn more

Source In-application stream name ID€Y Record pre-processing €

ra Kinesis stream kinesiz-analytice-demo-stream SOURCE_SQL_STREAM_001 21 Disabled

Reference data (optional)

Enrich data from your streaming data source with JSON or C5V data stored as an object in Amazon 53. Each application can connect to one
reference data source. Learn more

Connect reference data

Real time analytics

Author your own SCOL queries or add SQL from templates to easily analyze your source data. Learn more

Go to 5QL editor

Exit to Kinesis Analytics applications

In the Would you like to start running "ExampleApp"? dialog box, choose Yes, start
application.

The console sends a request to start the application (see StartApplication), and then the SQL
editor page appears.

The console opens the SQL editor page. Review the page, including the buttons (Add SQL
from templates, Save and run SQL) and various tabs.

In the SQL editor, choose Add SQL from templates.

Application status: READY

Step 3.3: Add Real-Time Analytics (Add Application Code)

81

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

5.

From the available template list, choose Continuous filter. The sample code reads data from
one in-application stream (the WHERE clause filters the rows) and inserts it in another in-
application stream as follows:

« It creates the in-application stream DESTINATION_SQL_STREAM.

« It creates a pump STREAM_PUMP, and uses it to select rows from SOURCE_SQL_STREAM_001
and insert them in the DESTINATION_SQL_STREAM.

Choose Add this SQL to editor.

Test the application code as follows:

Remember, you already started the application (status is RUNNING). Therefore, Amazon Kinesis
Data Analytics is already continuously reading from the streaming source and adding rows to
the in-application stream SOURCE_SQL_STREAM_001.

a. Inthe SQL Editor, choose Save and run SQL. The console first sends update request to
save the application code. Then, the code continuously executes.

b. You can see the results in the Real-time analytics tab.

Step 3.3: Add Real-Time Analytics (Add Application Code) 82

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Real-time analytics

Save and run 5QL Add S0L from templates Download SQL SQL reference guide [

Kinesis data generator tool

s |- - o
13 ed entity that you can SELECT from and INSERT into like a TABLE n
11 t ROM® @ source STREAM, and INSERT SQL results into an output STREAM

12 | -- Create output stream, can be used to send to a destination

13 | CREATE OR REPLACE STREAM "DESTINATION SQL_STREAM™ (ticker symbol VBRCOHR(4), sector MBRCHAR(12), change REAL, price REAL};

14 | -- Create pump to insert output

15 |CREATE OR REPLACE PUMP "STREAM PUMP™ AS INSERT INTO “DESTIMATION SQU_STREAM™

16 |-- Select all columns from scurce stream

17 | SELECT STREAM ticker symbol, sector, change, price

18 | FROM “SOURCE_SQL_STREAM @81”

19 | -- LIKE compares a str o a string pattern (_ metches all char, % matches substring)
28 |-- SIMILAR TO compares string to @ regex, may use ESCAPE

21 |WHFRE sector SIMEILAR TO "RTECHE'

Application status: RUNNING

Source data Real-time analytics Destination

St ing data
Oreélé:II;E?E_:QL_STREAM_D M The streaming data below iz a sample from Kinesis data stream kinesiz-analytice-demo-gtream &
Reference data (optional) €9 Actions ¥

Connect reference data i
Q, Filter by column name

ROWTIME TICKER_SYMBOL SECTOR CHANGE PRICE PARTITION_KEY SEC »
TIMESTAMP VARCHAR(4) VARCHAR(16) REAL REAL VARCHAR(S12) VA
2015-03-06 21:21:35.408 WSB RETAIL 0.3 56 PartitionKey 452
2018-03-06 21:21.35.408 ASD FINANCIAL 1.24 67.64 PartitionKey 442
2019-03-06 21:21:35.408 DFT RETAIL 25 7285 ParttionKey 452
2018-03-08 21:21:35.408 AMZN TECHNOLOGY 5.08 78148 PartitionKey 452

The SQL editor has the following tabs:

» The Source data tab shows an in-application input stream that is mapped to the
streaming source. Choose the in-application stream, and you can see data coming in.

Note the additional columns in the in-application input stream that weren't specified in

the input configuration. These include the following timestamp columns:

« ROWTIME - Each row in an in-application stream has a special column called

ROWTIME. This column is the timestamp when Amazon Kinesis Data Analytics inserted

the row in the first in-application stream (the in-application input stream that is

mapped to the streaming source).

Step 3.3: Add Real-Time Analytics (Add Application Code)

83

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Next Step

« Approximate_Arrival_Time - Each Kinesis Data Analytics record includes a value
called Approximate_Arrival_Time. This value is the approximate arrival
timestamp that is set when the streaming source successfully receives and stores the
record. When Kinesis Data Analytics reads records from a streaming source, it fetches
this column into the in-application input stream.

These timestamp values are useful in windowed queries that are time-based. For more
information, see Windowed Queries.

The Real-time analytics tab shows all the other in-application streams created by your
application code. It also includes the error stream. Kinesis Data Analytics sends any rows
it cannot process to the error stream. For more information, see Error Handling.

Choose DESTINATION_SQL_STREAM to view the rows your application code inserted.
Note the additional columns that your application code didn't create. These columns
include the ROWTIME timestamp column. Kinesis Data Analytics simply copies these
values from the source (SOURCE_SQL_STREAM_001).

The Destination tab shows the external destination where Kinesis Data Analytics writes
the query results. You haven't configured any external destination for your application
output yet.

Step 3.4: (Optional) Update the Application Code

Step 3.4: (Optional) Update the Application Code

In this step, you explore how to update the application code.

To update application code

1.

Create another in-application stream as follows:

Step 3.4: (Optional) Update the Application Code 84

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

» Create another in-application stream called DESTINATION_SQL_STREAM_2.

« Create a pump, and then use it to insert rows in the newly created stream by selecting rows
from the DESTINATION_SQL_STREAM.

In the SQL editor, append the following code to the existing application code:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM_2"
(ticker_symbol VARCHAR(4),
change DOUBLE,
price DOUBLE);

CREATE OR REPLACE PUMP "STREAM_PUMP_2" AS
INSERT INTO "DESTINATION_SQL_STREAM_2"
SELECT STREAM ticker_symbol, change, price
FROM "DESTINATION_SQL_STREAM";

Save and run the code. Additional in-application streams appear on the Real-time analytics
tab.

2. Create two in-application streams. Filter rows in the SOURCE_SQL_STREAM_001 based on the
stock ticker, and then insert them in to these separate streams.

Append the following SQL statements to your application code:

CREATE OR REPLACE STREAM "AMZN_STREAM"
(ticker_symbol VARCHAR(4),
change DOUBLE,
price DOUBLE);

CREATE OR REPLACE PUMP "AMZN_PUMP" AS
INSERT INTO "AMZN_STREAM"
SELECT STREAM ticker_symbol, change, price
FROM "SOURCE_SQL_STREAM_00Q1"
WHERE ticker_symbol SIMILAR TO '%AMZN%';

CREATE OR REPLACE STREAM "TGT_STREAM"
(ticker_symbol VARCHAR(4),
change DOUBLE,
price DOUBLE);

CREATE OR REPLACE PUMP "TGT_PUMP" AS

Step 3.4: (Optional) Update the Application Code 85

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

INSERT INTO "TGT_STREAM"
SELECT STREAM ticker_symbol, change, price
FROM "SOURCE_SQL_STREAM_001"
WHERE ticker_symbol SIMILAR TO '&TGT%';

Save and run the code. Notice additional in-application streams on the Real-time analytics
tab.

You now have your first working Amazon Kinesis Data Analytics application. In this exercise, you did
the following:

 Created your first Kinesis Data Analytics application.

» Configured application input that identified the demo stream as the streaming source and
mapped it to an in-application stream (SOURCE_SQL_STREAM_00@1) that is created. Kinesis Data
Analytics continuously reads the demo stream and inserts records in the in-application stream.

» Your application code queried the SOURCE_SQL_STREAM_001 and wrote output to another in-
application stream called DESTINATION_SQL_STREAM.

Now you can optionally configure application output to write the application output to an
external destination. That is, you can configure the application output to write records in the
DESTINATION_SQL_STREAM to an external destination. For this exercise, this is an optional step.
To learn how to configure the destination, go to the next step.

Next Step

Step 4 (Optional) Edit the Schema and SQL Code Using the Console.

Step 4 (Optional) Edit the Schema and SQL Code Using the
Console

Following, you can find information about how to edit an inferred schema and how to edit SQL
code for Amazon Kinesis Data Analytics. You do so by working with the schema editor and SQL
editor that are part of the Kinesis Data Analytics console.

Step 4 (Optional) Edit the Schema and SQL Code Using the Console 86

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

® Note

To access or sample data in the console, your login user's role must have the
kinesisanalytics:GetApplicationState permission. For more information about
Kinesis Data Analytics application permissions, see Overview of Managing Access.

Topics
» Working with the Schema Editor
» Working with the SQL Editor

Working with the Schema Editor

The schema for an Amazon Kinesis Data Analytics application's input stream defines how data from
the stream is made available to SQL queries in the application.

— -
] ..,' C——CaCacC3a
— o —) —
Amazon e
Kinesis stream Source Schema
or Configuration /
i 1
. -
Firehose
delivery stream
n- application
Streaming input nput streams

The schema contains selection criteria for determining what part of the streaming input is
transformed into a data column in the in-application input stream. This input can be one of the
following:

o A JSONPath expression for JSON input streams. JSONPath is a tool for querying JSON data.

Working with the Schema Editor 87

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

o A column number for input streams in comma-separated values (CSV) format.

« A column name and a SQL data type for presenting the data in the in-application data stream.
The data type also contains a length for character or binary data.

The console attempts to generate the schema using DiscoverlnputSchema. If schema discovery

fails or returns an incorrect or incomplete schema, you must edit the schema manually by using the
schema editor.

Schema Editor Main Screen

The following screenshot shows the main screen for the Schema Editor.

Kinesis Analytics dashboard > DemoApplication > Source »* Edit schema (2]

Format: Record encoding: Row path:
JSON v UTF-8 %
Y Filte C0 ame
Column order Column name Column type Row path

1 |+ Add column

oot e b Al g, s, oty e ik e, L ity ks it

2 E 4 TICKER_SYMBOL VARCHAR w | Length:| 4 $ TICKER_SYMBO
> 16
» . 2 SECTOR VARCHAR - Length: | 16 % SECTOR
v
» . 3 CHANGE REAL - % .CHANGE
v
» . 4 PRICE REAL - %.PRICE
v
Exit Save schema and update stream samples
Formatted stream sample Raw stream sample Error stream Application Status: Running
i, = —— . . A A S B B e e

You can apply the following edits to the schema:

Working with the Schema Editor 88

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

o Add a column (1): You might need to add a data column if a data item is not detected
automatically.

o Delete a column (2): You can exclude data from the source stream if your application doesn't
require it. This exclusion doesn't affect the data in the source stream. If data is excluded, that
data simply isn't made available to the application.

« Rename a column (3). A column name can't be blank, must be longer than a single character,
and must not contain reserved SQL keywords. The name must also meet naming criteria for
SQL ordinary identifiers: The name must start with a letter and contain only letters, underscore
characters, and digits.

« Change the data type (4) or length (5) of a column: You can specify a compatible data type for a
column. If you specify an incompatible data type, the column is either populated with NULL or
the in-application stream is not populated at all. In the latter case, errors are written to the error
stream. If you specify a length for a column that is too small, the incoming data is truncated.

« Change the selection criteria of a column (6): You can edit the JSONPath expression or CSV
column order used to determine the source of the data in a column. To change the selection
criteria for a JSON schema, enter a new value for the row path expression. A CSV schema uses
the column order as selection criteria. To change the selection criteria for a CSV schema, change
the order of the columns.

Editing the Schema for a Streaming Source

If you need to edit a schema for a streaming source, follow these steps.
To edit the schema for a streaming source

1. On the Source page, choose Edit schema.

Working with the Schema Editor 89

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

SQL Developer Guide

2.

Formatted stream sample

T Filter b

4]
L

3
=]
=

o
141]

ROWTIME
TIMESTAMP

2017-03-02 19:48:10.508
2017-03-02 19:48:10.508
2017-03-02 19:48:10.508
2017-03-02 19:48:10.508
2017-03-02 19:48:10.508
2017-03-02 19:48:10.508
2017-03-02 19:48:10.508
2017-03-02 19:48:10.508
2017-03-02 19:48:10.508
2017-03-02 19:48:10.508

201 7-03-02 194810 508

Raw stream sample

TICKER_SYMBOL
VARCHAR(4)

JKL
DFT
TGT
AAPL
QX2
MM
PLM
QxZ

PLM

WAS

' m

e e e e e el Ty Lt ey P

Refresh stream sample

| # Edit schema \

SECTOR CHANGE

VARCHAR(16) REAL

TECHNOLOGY -0.28

RETAIL
RETAIL

-0.46

-0.01

TECHNOLOGY 1.81

RETAIL 0.4

RETAIL -3.83
FINAMNCIAL -0.24
FINANCIAL 4.64

HEALTHCARE -0.76

FINANCIAL 0.05

RFETAIN

YT

003

AT e e, i,

PRICE
REAL

14.82
96.03
68.38
103.45
91.75
148.85
19.14
223.55
16.91
19.19

12 74

ES

m

-

On the Edit schema page, edit the source schema.

Working with the Schema Editor

90

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Kinesis Analytics dashboard > DemoApplication > Source > Edit schema 9

Al b

Format: JSON A Record encoding: UTF-& Row path: 3 j

h

F

T 3

Column order Column name Column type Row path 1

4 Add column i

3

x = TICKER_SYMBOL VARCHAR v Length: 4 3. TICKER_SYMBOL ;
-

x * 2 SECTOR VARCHAR * | Length: 16 $.SECTOR g
-

x N CHANGE REAL hd $.CHANGE i

X i

x * 4 PRICE REAL - $.PRICE 1

v ;

Exit Save schema and update stream samples P

1'

I T T T R W T N T P S

3. For Format, choose JSON or CSV. For JSON or CSV format, the supported encoding is ISO
8859-1.

For further information on editing the schema for JSON or CSV format, see the procedures in the
next sections.

Editing a JSON Schema

You can edit a JSON schema by using the following steps.

To edit a JSON schema

1. In the schema editor, choose Add column to add a column.

A new column appears in the first column position. To change the column order, choose the up
and down arrows next to the column name.

For a new column, provide the following information:

« For Column name, type a name.

Working with the Schema Editor 91

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

A column name cannot be blank, must be longer than a single character, and must not
contain reserved SQL keywords. It must also meet naming criteria for SQL ordinary
identifiers: It must start with a letter and contain only letters, underscore characters, and
digits.

» For Column type, type an SQL data type.

A column type can be any supported SQL data type. If the new data type is CHAR,
VARBINARY, or VARCHAR, specify a data length for Length. For more information, see Data

Types.

» For Row path, provide a row path. A row path is a valid JSONPath expression that maps to a
JSON element.

® Note

The base Row path value is the path to the top-level parent that contains
the data to be imported. This value is $ by default. For more information, see
RecordRowPath in JSONMappingParameters.

2. To delete a column, choose the x icon next to the column number.

T

Column order Column nam:
<4 Add column
X : 1 TICKER_SY
x 2 CHANGE

3. To rename a column, enter a new name for Column name. The new column name cannot be
blank, must be longer than a single character, and must not contain reserved SQL keywords.
It must also meet naming criteria for SQL ordinary identifiers: It must start with a letter and
contain only letters, underscore characters, and digits.

Working with the Schema Editor 92

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-data-types.html
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-data-types.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_JSONMappingParameters.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

SQL Developer Guide

4. To change the data type of a column, choose a new data type for Column type. If the new
data type is CHAR, VARBINARY, or VARCHAR, specify a data length for Length. For more

information,

see Data Types.

5. Choose Save schema and update stream to save your changes.

The modified schema appears in the editor and looks similar to the following.

If your schema has many rows, you can filter the rows using Filter by column name. For example,
to edit column names that start with P, such as a Price column, enter P in the Filter by column

name box.

Kinesis Analytics dashboard > SlidingWindows > Source > Edit schema

Format: JSON v Record encoding: UTF-8

T

Column order Column name Column type

4 Add column

x TICKER_SYMBOL VARCHAR ¥ Length
x : 2 SECTOR VARCHAR ¥ Length:
x : 3 CHANGE REAL v

x : 4 PRICE REAL -

Exit Save schema and update stream samples

L . SN o - i,

Row path:

Row path

3. TICKER_SYMBOL

3.SECTOR

3.CHANGE

3.PRICE

Editing a CSV Schema

You can edit a CSV schema by using the following steps.

A b S—

Working with the Schema

Editor

93

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-data-types.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

To edit a CSV schema

1. In the schema editor, for Row delimiter, choose the delimiter used by your incoming data
stream. This is the delimiter between records of data in your stream, such as a newline
character.

2. For Column delimiter, choose the delimiter used by your incoming data stream. This is the
delimiter between fields of data in your stream, such as a comma.

3. To add a column, choose Add column.

A new column appears in the first column position. To change the column order, choose the up
and down arrows next to the column name.

For a new column, provide the following information:

« For Column name, enter a name.

A column name cannot be blank, must be longer than a single character, and must not
contain reserved SQL keywords. It must also meet naming criteria for SQL ordinary
identifiers: It must start with a letter and contain only letters, underscore characters, and
digits.

» For Column type, enter a SQL data type.

A column type can be any supported SQL data type. If the new data type is CHAR,
VARBINARY, or VARCHAR, specify a data length for Length. For more information, see Data

Types.

4. To delete a column, choose the x icon next to the column number.

Y

Column order Column nam-
< Add column
X : 1 TICKER_SY
x 2 CHANGE

Working with the Schema Editor 94

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-data-types.html
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-data-types.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

5. Torename a column, enter a new name in Column name. The new column name cannot be
blank, must be longer than a single character, and must not contain reserved SQL keywords.
It must also meet naming criteria for SQL ordinary identifiers: It must start with a letter and
contain only letters, underscore characters, and digits.

6. To change the data type of a column, choose a new data type for Column type. If the new
data type is CHAR, VARBINARY, or VARCHAR, specify a data length for Length. For more
information, see Data Types.

7. Choose Save schema and update stream to save your changes.

The modified schema appears in the editor and looks similar to the following.

Kinesis Analytics dashboard > SlidingWindows > Source > Edit schema (2]
Format: Record encoding: Row delimiter: Column delimiter:
CsvV - UTF-8
Y
Column order Column name Column type

= Add column

w : 1 testtest BIGINT -

» : 2 TICKER_SYMBOL VARCHAR % Length 4

» : 3 SECTOR VARCHAR hd Length 16

x 4 CHANGE REAL v

If your schema has many rows, you can filter the rows using Filter by column name. For example,
to edit column names that start with P, such as a Price column, enter P in the Filter by column
name box.

Working with the Schema Editor 95

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-data-types.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Working with the SQL Editor

Following, you can find information about sections of the SQL editor and how each works. In the
SQL editor, you can either author your own code yourself or choose Add SQL from templates. A
SQL template gives you example SQL code that can help you write common Amazon Kinesis Data
Analytics applications. The example applications in this guide use some of these templates. For
more information, see Kinesis Data Analytics for SQL examples.

Real-time analytics

Save and run SQL Add SQL from templates Download SQL S0L reference guide [

Kinesis data generator tool &

=] _— e T

18 |-- STREAM (in-application): a comtinuously updated emtity that wou can SELECT from and INSERT into like a TABLE -
11 |-- PUMP: an entity used to comtinuously "SELECT ... FROM® @ source STRE&M, and INSERT SQL results into an output STREAM

12 | -- Creste cutput stream, which can be used to =end to 2 destination

13 |CREATE CR REPLACE STREAM "DESTIMATION QU STREAM™ (ticker symbol VARCHAR{2), sector VGRCHAR(12), change REAL, price REAL);

14 | -- Create pump to insert into output

15 |CREATE OR REPLACE PUMP “STREAM PUMP™ AS INSERT INTO “DESTIMATION SQL_STREAM™

16 |-- Select all columns from scurce stream

17 | SELECT STRE&M ticker symbol, sector, change, price

15 | FROM "SOURCE SOQUL_STREAM 8817

19 |-- LIKE compares 2 string to a string pettern (_ metches =211 char, % matches substring)
28 |-- SIMILAR TO compares string to 2 regex, may use ESCAPE

21 [wHERE sector SIMILAR TD 'XTECHK':

Application status: RUNNING

Source data Real-time analytics Destination

5t ing data
OreSaE;.rL.III:SE_EQL_STREAM_DEI'I The streaming data below is a sample from Kinesis data stream kineziz-anahytics-demo-stream
Reference data (optional) €9 Actions %

Connect reference data i
Q, Fiiter by column name

ROWTIME TICKER_SYMBOL SECTOR CHANGE PRICE PARTITION_KEY SE(”
TIMESTAMP WVARCHAR(4) WARCHAR(18) REAL REAL WVARCHARIS12) WA
2019-03-06 21:21:35.408 WSB RETAIL 0.3 5.6 Partitionkey 48¢
2019-03-06 21:21:35.409 ASD FINAMCLAL 1.24 67.64 Partitionkey 43¢
2019-03-06 21:21:35.409 DFT RETAIL 25 7285 Partitionkey 43¢
2019-03-06 21:21:35.409 AMZN TECHNOLOGY 9.08 781.46 Partitionkey 43¢

Source Data Tab

The Source data tab identifies a streaming source. It also identifies the in-application input stream
that this source maps to and that provides the application input configuration.

Working with the SQL Editor 96

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Real-time analytics

Save and run SQL Add 5QL from templates Download SGQL 50L reference guide [

Kinesis data generator tool &

1 |F- ** Comtinuocus Filter ** .
2 |-- performs a continuous filter based on a WHERE condition.
3 |- am——————— ——— _——— - _———
4 - SOURCE
5 |-- Source--»| STREAM -->Destination
6
i e
8 |-- STRE&M (1 lication): a comtinu emtity that you can SELECT from and ING imto like a TABLE
9 |-- PWP: an entity used to comtinuously ... FROM' 3 source STRE&M, and IMSERT SQL results into an output STREAM
18 |-- Create output stream, which can be used to send to a destination
11 |CREATE OR REPLACE STREAM "DESTIMATION SQL_STREAM™ (ticker symbol VARCHAR(4), sector WARCHAR(12), change REAL, price REAL);
12 |-- Create pump to insert into output
13 | CREATE CR REPLACE PUMP "STREAHM PUMP™ AS INSERT INTO "DESTIMATION SOL STREAM™ e
-e W
Application status: RUNNING
Source data Real-time analytics Destination

5t ing data
ﬁre;E;.TJIESE_:.-DL_STREAM_DE|1 The streaming data below is a sample from Kinesis data stream kinesis-analytice-demo-stream [
Reference data (optional) €) Actions ¥

Connect reference data .)
Q, Filter by column name

~
ROWTIME TICKER_SYMBOL = SECTOR CHANGE PRICE PARTITION_KEY 5E(
TIMESTAMP VARCHAR(4) VARCHAR(18) REAL REAL VARCHAR({31Z) WA
2019-03-06 21.32:56.882 BAC FINANCLAL 0.43 15.37 Partitionkey 43¢
2019-03-06 21.32:58.882 VWY HEALTHCARE -0.78 23.84 Partitionkey 45%
2019-03-06 21:32:56.882 WNT RETAIL -0.87 62.68 Partitionkey 45

2019-03-06 21.:32:56.882 BNM TECHNOLOGY -1.64 188.72 PartitionKey

458

Amazon Kinesis Data Analytics provides the following timestamp columns, so that you don't need
to provide explicit mapping in your input configuration:

« ROWTIME - Each row in an in-application stream has a special column called ROWTIME. This
column is the timestamp for the point when Kinesis Data Analytics inserted the row in the first
in-application stream.

« Approximate_Arrival_Time — Records on your streaming source include the
Approximate_Arrival_Timestamp column. It is the approximate arrival timestamp
that is set when the streaming source successfully receives and stores the related record.
Kinesis Data Analytics fetches this column into the in-application input stream as
Approximate_Arrival_Time. Amazon Kinesis Data Analytics provides this column only in the
in-application input stream that is mapped to the streaming source.

Working with the SQL Editor 97

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

These timestamp values are useful in windowed queries that are time-based. For more information,

see Windowed Queries.

Real-Time Analytics Tab

The Real-time analytics tab shows all the in-application streams that your application code
creates. This group of streams includes the error stream (error_stream) that Amazon Kinesis
Data Analytics provides for all applications.

Real-time analytics

Save and run 5QL Add 5QL from templates Download SQL 5QL reference guide [

Kinesis data generator tool &

1 |- ** Corntinuous Filter ** s

2 | -- Performs a continucus Tilter based on a WHERE condition.

3 |=-- L eeeseseess, essscscse-, eeeeee————

4 SOURCE INSERT DESTIN

5 Source--»| STREQ & SELECT STREA --zDestingtion

6 [(PLMP

7 - mmmmmmmees” | Tdmmmmmmeer’ | Tddmmeee e

8 |-- STREaM (in-application): a comtinuously updated entity that you can SELECT from and INSERT imto like a TABLE

9 |-- PLMP: an entity used to comtinuously "SELECT ... FROM® a source STREAM, and INSERT SQL results inmto an output STREAM

18 |-- Creste output stream, which can be used to send to a destinztion

11 |CREATE OR REPLACE STREAM "DESTINATION SQL_STREAM™ (ticker symbol VARCHAR(4), sector WARCHAR(12), change REAL, price REAL);

12 | -- Cregte pump to insert imbo output

13 | CREATE OR REPLACE PUMP "STREAM PUMP™ AS INSERT INTO “DESTIMATION SOL STREAM™ ¥
L

Application status: RUNNING

Source data Real-time analytics Destination

In-application streams: Pause results New results are added every 2-10 seconds. The results below are sampled. €

© DESTINATION_SQL_STREAM

Scroll to bottom when new results arrive.
error_stream

Q, Filter by column name

~
ROWTIME TICKER_SYMBOL SECTOR CHANGE PRICE
2019-03-06 21:36:01.961 AAPL TECHNOLOGY =115 9464
2019-03-06 21:36:01.961 NFLX TECHNOLOGY 0.26 106.64
2018-03-06 21:35:06.932 ANMZN TECHNOLOGY 523 836.9
2018-03-06 21:35:06.932 DFG TECHNOLOGY 1.84 10713

Destination Tab

The Destination tab enables you to configure the application output to persist in-application
streams to external destinations. You can configure output to persist data in any of the in-

Working with the SQL Editor

98

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

application streams to external destinations. For more information, see Configuring Application
Output.

Working with the SQL Editor 99

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Streaming SQL Concepts

Amazon Kinesis Data Analytics implements the ANSI 2008 SQL standard with extensions. These
extensions enable you to process streaming data. The following topics cover key streaming SQL
concepts.

Topics
 In-Application Streams and Pumps

Timestamps and the ROWTIME Column

Continuous Queries

Windowed Queries

Streaming Data Operations: Stream Joins

In-Application Streams and Pumps

When you configure application input, you map a streaming source to an in-application stream that

is created. Data continuously flows from the streaming source into the in-application stream. An
in-application stream works like a table that you can query using SQL statements, but it's called a
stream because it represents continuous data flow.

(® Note

Do not confuse in-application streams with Amazon Kinesis data streams and Firehose
delivery streams. In-application streams exist only in the context of an Amazon Kinesis Data
Analytics application. Kinesis data streams and Firehose delivery streams exist independent
of your application. You can configure them as a streaming source in your application input
configuration or as a destination in output configuration.

You can also create more in-application streams as needed to store intermediate query results.
Creating an in-application stream is a two-step process. First, you create an in-application stream,
and then you pump data into it. For example, suppose that the input configuration of your
application creates an in-application stream named INPUTSTREAM. In the following example, you
create another stream (TEMPSTREAM), and then you pump data from INPUTSTREAM into it.

In-Application Streams and Pumps 100

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

1. Create an in-application stream (TEMPSTREAM) with three columns, as shown following:

CREATE OR REPLACE STREAM "TEMPSTREAM" (
"columnl" BIGINT NOT NULL,
"column2" INTEGER,
"column3" VARCHAR(64));

The column names are specified in quotes, making them case sensitive. For more information,
see |dentifiers in the Amazon Kinesis Data Analytics SQL Reference.

2. Insert data into the stream using a pump. A pump is a continuous insert query running that
inserts data from one in-application stream to another in-application stream. The following
statement creates a pump (SAMPLEPUMP) and inserts data into the TEMPSTREAM by selecting
records from another stream (INPUTSTREAM).

CREATE OR REPLACE PUMP "SAMPLEPUMP" AS
INSERT INTO "TEMPSTREAM" ("columnl",
"column2",
"column3")
SELECT STREAM inputcolumnl,
inputcolumn2,
inputcolumn3
FROM "INPUTSTREAM";

You can have multiple writers insert into an in-application stream, and there can be multiple
readers selected from the stream. Think of an in-application stream as implementing a publish/
subscribe messaging paradigm. In this paradigm, the data row, including the time of creation
and time of receipt, can be processed, interpreted, and forwarded by a cascade of streaming SQL
statements, without having to be stored in a traditional RDBMS.

After an in-application stream is created, you can perform normal SQL queries.

® Note

When you query streams, most SQL statements are bound using a row-based or time-based
window. For more information, see Windowed Queries.

In-Application Streams and Pumps 101

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-identifiers.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

You can also join streams. For examples of joining streams, see Streaming Data Operations: Stream

Joins.

Timestamps and the ROWTIME Column

In-application streams include a special column called ROWTIME. It stores a timestamp when
Amazon Kinesis Data Analytics inserts a row in the first in-application stream. ROWTIME reflects the
timestamp at which Amazon Kinesis Data Analytics inserted a record into the first in-application
stream after reading from the streaming source. This ROWTIME value is then maintained
throughout your application.

(@ Note

When you pump records from one in-application stream into another, you don't need to
explicitly copy the ROWTIME column, Amazon Kinesis Data Analytics copies this column for
you.

Amazon Kinesis Data Analytics guarantees that the ROWTIME values are monotonically increased.
You use this timestamp in time-based windowed queries. For more information, see Windowed
Queries.

You can access the ROWTIME column in your SELECT statement like any other columns in your in-
application stream. For example:

SELECT STREAM ROWTIME,
some_col_1,
some_col_2

FROM SOURCE_SQL_STREAM_001

Understanding Various Times in Streaming Analytics

In addition to ROWTIME, there are other types of times in real-time streaming applications. These
are:

« Event time - The timestamp when the event occurred. This is also sometimes called the client-
side time. It is often desirable to use this time in analytics because it is the time when an event
occurred. However, many event sources, such as mobile phones and web clients, do not have

Timestamps and the ROWTIME Column 102

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

reliable clocks, which can lead to inaccurate times. In addition, connectivity issues can lead to
records appearing on a stream not in the same order the events occurred.

 Ingest time — The timestamp of when record was added to the streaming source. Amazon Kinesis
Data Streams includes a field called APPROXIMATE_ARRIVAL_TIME in every record that provides
this timestamp. This is also sometimes referred to as the server-side time. This ingest time is
often the close approximation of event time. If there is any kind of delay in the record ingestion
to the stream, this can lead to inaccuracies, which are typically rare. Also, the ingest time is rarely
out of order, but it can occur due to the distributed nature of streaming data. Therefore, Ingest
time is a mostly accurate and in-order reflection of the event time.

« Processing time — The timestamp when Amazon Kinesis Data Analytics inserts a row in the first
in-application stream. Amazon Kinesis Data Analytics provides this timestamp in the ROWTIME
column that exists in each in-application stream. The processing time is always monotonically
increasing. But it will not be accurate if your application falls behind. (If an application falls
behind, the processing time does not accurately reflect the event time.) This ROWTIME is accurate
in relation to the wall clock, but it might not be the time when the event actually occurred.

Using each of these times in windowed queries that are time-based has advantages and
disadvantages. We recommend that you choose one or more of these times, and a strategy to deal
with the relevant disadvantages based on your use case scenario.

(® Note

If you are using row-based windows, time is not an issue and you can ignore this section.

We recommend a two-window strategy that uses two time-based, both ROWTIME and one of the
other times (ingest or event time).

« Use ROWTIME as the first window, which controls how frequently the query emits the results, as
shown in the following example. It is not used as a logical time.

« Use one of the other times that is the logical time that you want to associate with your analytics.
This time represents when the event occurred. In the following example, the analytics goal is to
group the records and return count by ticker.

Understanding Various Times in Streaming Analytics 103

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

The advantage of this strategy is that it can use a time that represents when the event occurred.

It can gracefully handle when your application falls behind or when events arrive out of order. If
the application falls behind when bringing records into the in-application stream, they are still
grouped by the logical time in the second window. The query uses ROWTIME to guarantee the order
of processing. Any records that are late (the ingest timestamp shows an earlier value compared to
the ROWTIME value) are also processed successfully.

Consider the following query against the demo stream used in the Getting Started Exercise. The

query uses the GROUP BY clause and emits a ticker count in a one-minute tumbling window.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM"
("ingest_time" timestamp,
"APPROXIMATE_ARRIVAL_TIME" timestamp,
"ticker_symbol" VARCHAR(12),

"symbol_count" integer);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM STEP("SOURCE_SQL_STREAM_00@1".ROWTIME BY INTERVAL '60' SECOND) AS
"ingest_time",
STEP("SOURCE_SQL_STREAM_00@1" .APPROXIMATE_ARRIVAL_TIME BY INTERVAL '6@' SECOND)
AS "APPROXIMATE_ARRIVAL_TIME",

"TICKER_SYMBOL",
COUNT(*) AS "symbol_count"

FROM "SOURCE_SQL_STREAM_001"

GROUP BY "TICKER_SYMBOL",
STEP("SOURCE_SQL_STREAM_001".ROWTIME BY INTERVAL '60' SECOND),
STEP("SOURCE_SQL_STREAM_@@1" .APPROXIMATE_ARRIVAL_TIME BY INTERVAL '6@' SECOND);

In GROUP BY, you first group the records based on ROWTIME in a one-minute window and then by
APPROXIMATE_ARRIVAL_TIME.

The timestamp values in the result are rounded down to the nearest 60-second interval. The first
group result emitted by the query shows records in the first minute. The second group of results

emitted shows records in the next minutes based on ROWTIME. The last record indicates that the

application was late in bringing the record in the in-application stream (it shows a late ROWTIME

value compared to the ingest timestamp).

ROWTIME INGEST_TIME TICKER_SYMBOL SYMBOL_COUNT

Understanding Various Times in Streaming Analytics 104

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

--First one minute window.

2016-07-19 17:05:00.0 2016-07-19 17:05:00.0 ABC 10
2016-07-19 17:05:00.0 2016-07-19 17:05:00.0 DEF 15
2016-07-19 17:05:00.0 2016-07-19 17:05:00.0 XYZ 6
--Second one minute window.

2016-07-19 17:06:00.0 2016-07-19 17:06:00.0 ABC 11
2016-07-19 17:06:00.0 2016-07-19 17:06:00.0 DEF 11
2016-07-19 17:06:00.0 2016-07-19 17:05:00.0 XYZ il Gws

***]ate-arriving record, instead of appearing in the result of the
first 1-minute windows (based on ingest_time, it is in the result
of the second 1-minute window.

You can combine the results for a final accurate count per minute by pushing the results to a
downstream database. For example, you can configure the application output to persist the
results to a Firehose delivery stream that can write to an Amazon Redshift table. After results

are in an Amazon Redshift table, you can query the table to compute the total count group by
Ticker_Symbol. In the case of XYZ, the total is accurate (6+1) even though a record arrived late.

Continuous Queries

A query over a stream executes continuously over streaming data. This continuous execution
enables scenarios, such as the ability for applications to continuously query a stream and generate
alerts.

In the Getting Started exercise, you have an in-application stream named
SOURCE_SQL_STREAM_0@1. It continuously receives stock prices from a demo stream (a Kinesis
data stream). The schema is as follows:

(TICKER_SYMBOL VARCHAR(4),
SECTOR varchar(16),
CHANGE REAL,

PRICE REAL)

Suppose that you are interested in stock price changes greater than 15 percent. You can use the
following query in your application code. This query runs continuously and emits records when a
stock price change greater than 15 percent is detected.

SELECT STREAM TICKER_SYMBOL, PRICE

Continuous Queries 105

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

FROM "SOURCE_SQL_STREAM_001"
WHERE (ABS((CHANGE / (PRICE-CHANGE)) * 100)) > 15

Use the following procedure to set up an Amazon Kinesis Data Analytics application and test this
query.

To test the query

1. Create an application by following the Getting Started Exercise.

2. Replace the SELECT statement in the application code with the preceding SELECT query. The
resulting application code is shown following:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ticker_symbol VARCHAR(4),
price DOUBLE);
-- CREATE OR REPLACE PUMP to insert into output
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM TICKER_SYMBOL,
PRICE
FROM "SOURCE_SQL_STREAM_00@1"
WHERE (ABS((CHANGE / (PRICE-CHANGE)) * 100)) > 15;

Windowed Queries

SQL queries in your application code execute continuously over in-application streams. An in-
application stream represents unbounded data that flows continuously through your application.
Therefore, to get result sets from this continuously updating input, you often bound queries using
a window defined in terms of time or rows. These are also called windowed SQL.

For a time-based windowed query, you specify the window size in terms of time (for example,

a one-minute window). This requires a timestamp column in your in-application stream that is
monotonically increasing. (The timestamp for a new row is greater than or equal to the previous
row.) Amazon Kinesis Data Analytics provides such a timestamp column called ROWTIME for
each in-application stream. You can use this column when specifying time-based queries. For
your application, you might choose some other timestamp option. For more information, see
Timestamps and the ROWTIME Column.

For a row-based windowed query, you specify the window size in terms of the number of rows.

Windowed Queries 106

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

You can specify a query to process records in a tumbling window, sliding window, or stagger
window manner, depending on your application needs. Kinesis Data Analytics supports the
following window types:

» Stagger Windows: A query that aggregates data using keyed time-based windows that open as

data arrives. The keys allow for multiple overlapping windows. This is the recommended way to
aggregate data using time-based windows, because Stagger Windows reduce late or out-of-order
data compared to Tumbling windows.

« Tumbling Windows: A query that aggregates data using distinct time-based windows that open
and close at regular intervals.

« Sliding Windows: A query that aggregates data continuously, using a fixed time or rowcount

interval.

Stagger Windows

Using stagger windows is a windowing method that is suited for analyzing groups of data that
arrive at inconsistent times. It is well suited for any time-series analytics use case, such as a set of
related sales or log records.

For example, VPC Flow Logs have a capture window of approximately 10 minutes. But they can

have a capture window of up to 15 minutes if you're aggregating data on the client. Stagger
windows are ideal for aggregating these logs for analysis.

Stagger windows address the issue of related records not falling into the same time-restricted
window, such as when tumbling windows were used.

Partial Results with Tumbling Windows

There are certain limitations with using Tumbling Windows for aggregating late or out-of-order
data.

If tumbling windows are used to analyze groups of time-related data, the individual records might
fall into separate windows. So then the partial results from each window must be combined later
to yield complete results for each group of records.

In the following tumbling window query, records are grouped into windows by row time, event
time, and ticker symbol:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (

Stagger Windows 107

https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html#flow-logs-limitations

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

TICKER_SYMBOL VARCHAR(4),
EVENT_TIME timestamp,
TICKER_COUNT DOUBLE);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM
TICKER_SYMBOL,
FLOOR(EVENT_TIME TO MINUTE),
COUNT(TICKER_SYMBOL) AS TICKER_COUNT
FROM "SOURCE_SQL_STREAM_001"
GROUP BY ticker_symbol, FLOOR(EVENT_TIME TO MINUTE),
STEP("SOURCE_SQL_STREAM_00@1" .ROWTIME BY INTERVAL '1l' MINUTE);

In the following diagram, an application is counting the number of trades it receives, based on
when the trades happened (event time) with one minute of granularity. The application can use a
tumbling window for grouping data based on row time and event time. The application receives
four records that all arrive within one minute of each other. It groups the records by row time,
event time, and ticker symbol. Because some of the records arrive after the first tumbling window
ends, the records do not all fall within the same one-minute tumbling window.

1-rdinute
. . Rowtime | Event Time | Ticker
Tumbling Windows

11:00
11:00:20 | 11:00:10 | AMZIN
1170030 | 110020 | AMZIN
1101 EMIT RESULT [11:01): 1 record
4
g 1120105 | 110055 | AMZN
Q
O
% 11:0115 | 110105 | AMZN
1102 EMIT RESULT [11:02): 2 records

The preceding diagram has the following events.

ROWTIME EVENT_TIME TICKER_SYMBOL
11:00:20 11:00:10 AMZN
11:00:30 11:00:20 AMZN

Stagger Windows 108

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

ROWTIME EVENT_TIME TICKER_SYMBOL
11:01:05 11:00:55 AMZN
11:01:15 11:01:05 AMZN

The result set from the tumbling window application looks similar to the following.

ROWTIME EVENT_TIME TICKER_SYMBOL COUNT
11:01:00 11:00:00 AMZN 2
11:02:00 11:00:00 AMZN 1
11:02:00 11:01:00 AMZN 1

In the result set preceding, three results are returned:

« Arecord with a ROWTIME of 11:01:00 that aggregates the first two records.

« Arecord at 11:02:00 that aggregates just the third record. This record has a ROWTIME within the
second window, but an EVENT_TIME within the first window.

» Arecord at 11:02:00 that aggregates just the fourth record.

To analyze the complete result set, the records must be aggregated in the persistence store. This
adds complexity and processing requirements to the application.

Complete Results with Stagger Windows

To improve the accuracy of analyzing time-related data records, Kinesis Data Analytics offers a
new window type called stagger windows. In this window type, windows open when the first event
matching the partition key arrives, and not on a fixed time interval. The windows close based on
the age specified, which is measured from the time when the window opened.

A stagger window is a separate time-restricted window for each key grouping in a window clause.
The application aggregates each result of the window clause inside its own time window, rather
than using a single window for all results.

Stagger Windows 109

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

In the following stagger window query, records are grouped into windows by event time and ticker

symbol:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
event_time TIMESTAMP,
ticker_count DOUBLE);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"

SELECT STREAM
TICKER_SYMBOL,
FLOOR(EVENT_TIME TO MINUTE),
COUNT(TICKER_SYMBOL) AS ticker_count

FROM "SOURCE_SQL_STREAM_001"

WINDOWED BY STAGGER (

PARTITION BY FLOOR(EVENT_TIME TO MINUTE), TICKER_SYMBOL RANGE INTERVAL '1'

MINUTE);

In the following diagram, events are aggregated by event time and ticker symbol into stagger
windows.

1-Minute
) Rowtime | Event Time | Ticker
Stagzer Windows

1100:20 | 11:00:10 | AMZN

11:00:30 | 110:00:20 | AMZN

1101

110105 | 11:00:55 | AMEZN

11:01:15 | 11:0L:05 | AMZN

EMIT RESULT [11:01:20): Z records

1ixo2

The preceding diagram has the following events, which are the same events as the tumbling
window application analyzed:

Stagger Windows 110

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

ROWTIME EVENT_TIME TICKER_SYMBOL
11:00:20 11:00:10 AMZN
11:00:30 11:00:20 AMZN
11:01:05 11:00:55 AMZN
11:01:15 11:01:05 AMZN

The result set from the stagger window application looks similar to the following.

ROWTIME EVENT_TIME TICKER_SYMBOL Count
11:01:20 11:00:00 AMZN 3
11:02:15 11:01:00 AMZN 1

The returned record aggregates the first three input records. The records are grouped by one-
minute stagger windows. The stagger window starts when the application receives the first AMZN
record (with a ROWTIME of 11:00:20). When the 1-minute stagger window expires (at 11:01:20), a
record with the results that fall within the stagger window (based on ROWTIME and EVENT_TIME)
is written to the output stream. Using a stagger window, all of the records with a ROWTIME and
EVENT_TIME within a one-minute window are emitted in a single result.

The last record (with an EVENT_TIME outside the one-minute aggregation) is aggregated
separately. This is because EVENT_TIME is one of the partition keys that is used to separate the
records into result sets, and the partition key for EVENT_TIME for the first window is 11:00.

The syntax for a stagger window is defined in a special clause, WINDOWED BY. This clause is used
instead of the GROUP BY clause for streaming aggregations. The clause appears immediately after
the optional WHERE clause and before the HAVING clause.

The stagger window is defined in the WINDOWED BY clause and takes two parameters: partition
keys and window length. The partition keys partition the incoming data stream and define when
the window opens. A stagger window opens when the first event with a unique partition key

Stagger Windows 111

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

appears on the stream. The stagger window closes after a fixed time period defined by the window
length. The syntax is shown in the following code example:

FROM <stream-name>
WHERE <... optional statements...>
WINDOWED BY STAGGER(

PARTITION BY <partition key(s)>

RANGE INTERVAL <window length, interval>
);

Tumbling Windows (Aggregations Using GROUP BY)

When a windowed query processes each window in a non-overlapping manner, the window is
referred to as a tumbling window. In this case, each record on an in-application stream belongs to
a specific window. It is processed only once (when the query processes the window to which the
record belongs).

Y

For example, an aggregation query using a GROUP BY clause processes rows in a tumbling window.
The demo stream in the getting started exercise receives stock price data that is mapped to the in-
application stream SOURCE_SQL_STREAM_001 in your application. This stream has the following
schema.

(TICKER_SYMBOL VARCHAR(4),
SECTOR varchar(16),
CHANGE REAL,

PRICE REAL)

In your application code, suppose that you want to find aggregate (min, max) prices for each ticker
over a one-minute window. You can use the following query.

Tumbling Windows 112

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

SELECT STREAM ROWTIME,
Ticker_Symbol,
MIN(Price) AS Price,
MAX(Price) AS Price
FROM "SOURCE_SQL_STREAM_00@1"
GROUP BY Ticker_Symbol,
STEP("SOURCE_SQL_STREAM_001" .ROWTIME BY INTERVAL '6Q' SECOND);

The preceding is an example of a windowed query that is time-based. The query groups records
by ROWTIME values. For reporting on a per-minute basis, the STEP function rounds down the
ROWTIME values to the nearest minute.

® Note

You can also use the FLOOR function to group records into windows. However, FLOOR can

only round time values down to a whole time unit (hour, minute, second, and so on). STEP
is recommended for grouping records into tumbling windows because it can round values
down to an arbitrary interval, for example, 30 seconds.

This query is an example of a nonoverlapping (tumbling) window. The GROUP BY clause groups
records in a one-minute window, and each record belongs to a specific window (no overlapping).
The query emits one output record per minute, providing the min/max ticker price recorded at the
specific minute. This type of query is useful for generating periodic reports from the input data
stream. In this example, reports are generated each minute.

To test the query

1. Set up an application by following the getting started exercise.

2. Replace the SELECT statement in the application code by the preceding SELECT query. The
resulting application code is shown following:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
Min_Price DOUBLE,
Max_Price DOUBLE);
-- CREATE OR REPLACE PUMP to insert into output
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"

Tumbling Windows 113

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

SELECT STREAM Ticker_Symbol,
MIN(Price) AS Min_Price,
MAX(Price) AS Max_Price
FROM "SOURCE_SQL_STREAM_00@1"
GROUP BY Ticker_Symbol,
STEP("SOURCE_SQL_STREAM_001" .ROWTIME BY INTERVAL '6Q' SECOND);

Sliding Windows

Instead of grouping records using GROUP BY, you can define a time-based or row-based window.
You do this by adding an explicit WINDOW clause.

In this case, as the window slides with time, Amazon Kinesis Data Analytics emits an output when
new records appear on the stream. Kinesis Data Analytics emits this output by processing rows in
the window. Windows can overlap in this type of processing, and a record can be part of multiple
windows and be processed with each window. The following example illustrates a sliding window.

Consider a simple query that counts records on the stream. This example assumes a 5-second
window. In the following example stream, new records arrive at time t4, t, tg, and t7, and three
records arrive at time tg seconds.

\J

Keep the following in mind:

« The example assumes a 5-second window. The 5-second window slides continuously with time.

 For every row that enters a window, an output row is emitted by the sliding window. Soon after
the application starts, you see the query emit output for every new record that appears on the
stream, even though a 5-second window hasn't passed yet. For example, the query emits output
when a record appears in the first second and second second. Later, the query processes records
in the 5-second window.

« The windows slide with time. If an old record on the stream falls out of the window, the query
doesn't emit output unless there is also a new record on the stream that falls within that 5-
second window.

Sliding Windows 114

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Suppose that the query starts executing at tp. Then the following occurs:

1. At the time tg, the query starts. The query doesn't emit output (count value) because there are
no records at this time.

Streames = = -ee

Time (to) » T T T T =

2. At time t4, a new record appears on the stream, and the query emits count value 1.

Stream mmm -

Time (i) L T T T T T -

3. At time t,, another record appears, and the query emits count 2.
C

S5tream m - - -- -

Time (t;) » I I I T T =

4. The 5-second window slides with time:
» At t3, the sliding window t3 to tg
o At t4 (sliding window t4 to tg)
« At ts5 the sliding window ts—tg

At all of these times, the 5-second window has the same records—there are no new records.
Therefore, the query doesn't emit any output.

Stream mm = - -

\J

5. At time tg, the 5-second window is (tg to tq). The query detects one new record at tg so it emits
output 2. The record at t; is no longer in the window and doesn't count.
™ ™

":‘1|II_'._'1 TI = = - - . .

Time (t;)

Y

Sliding Windows 115

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

6. At time t;, the 5-second window is t; to t,. The query detects one new record at t; so it emits
output 2. The record at t; is no longer in the 5-second window, and therefore isn't counted.

| D

7. At time tg, the 5-second window is tg to tz. The query detects three new records, and therefore
emits record count 5.

In summary, the window is a fixed size and slides with time. The query emits output when new
records appear.

(@ Note
We recommend that you use a sliding window no longer than one hour. If you use a longer
window, the application takes longer to restart after regular system maintenance. This is
because the source data must be read from the stream again.

The following example queries use the WINDOW clause to define windows and perform aggregates.
Because the queries don't specify GROUP BY, the query uses the sliding window approach to
process records on the stream.

Example 1: Process a Stream Using a 1-Minute Sliding Window

Consider the demo stream in the Getting Started exercise that populates the in-application stream,
SOURCE_SQL_STREAM_00@1. The following is the schema.

(TICKER_SYMBOL VARCHAR(4),
SECTOR varchar(16),
CHANGE REAL,

PRICE REAL)

Sliding Windows 116

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Suppose that you want your application to compute aggregates using a sliding 1-minute window.
That is, for each new record that appears on the stream, you want the application to emit an
output by applying aggregates on records in the preceding 1-minute window.

You can use the following time-based windowed query. The query uses the WINDOW clause to
define the 1-minute range interval. The PARTITION BY in the WINDOW clause groups records by
ticker values within the sliding window.

SELECT STREAM ticker_symbol,
MIN(Price) OVER W1 AS Min_Price,
MAX(Price) OVER W1 AS Max_Price,
AVG(Price) OVER W1 AS Avg_Price
FROM "SOURCE_SQL_STREAM_001"
WINDOW W1 AS (
PARTITION BY ticker_symbol
RANGE INTERVAL '1' MINUTE PRECEDING);

To test the query

1. Set up an application by following the Getting Started Exercise.

2. Replace the SELECT statement in the application code with the preceding SELECT query. The
resulting application code is the following.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(10),

Min_Price double,
Max_Price double,
Avg_Price double);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol,
MIN(Price) OVER W1l AS Min_Price,
MAX(Price) OVER W1 AS Max_Price,
AVG(Price) OVER W1 AS Avg_Price
FROM "SOURCE_SQL_STREAM_001"
WINDOW W1 AS (
PARTITION BY ticker_symbol
RANGE INTERVAL '1' MINUTE PRECEDING);

Sliding Windows 117

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Example 2: Query Applying Aggregates on a Sliding Window

The following query on the demo stream returns the average of the percent change in the price of
each ticker in a 10-second window.

SELECT STREAM Ticker_Symbol,
AVG(Change / (Price - Change)) over W1l as Avg_Percent_Change
FROM "SOURCE_SQL_STREAM_001"
WINDOW W1 AS (
PARTITION BY ticker_symbol
RANGE INTERVAL '1@' SECOND PRECEDING);

To test the query

1. Set up an application by following the Getting Started Exercise.

2. Replace the SELECT statement in the application code with the preceding SELECT query. The
resulting application code is the following.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(10),
Avg_Percent_Change double);
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM Ticker_Symbol,
AVG(Change / (Price - Change)) over W1l as Avg_Percent_Change
FROM "SOURCE_SQL_STREAM_001"
WINDOW W1 AS (
PARTITION BY ticker_symbol
RANGE INTERVAL '10@' SECOND PRECEDING);

Example 3: Query Data from Multiple Sliding Windows on the Same Stream

You can write queries to emit output in which each column value is calculated using different
sliding windows defined over the same stream.

In the following example, the query emits the output ticker, price, a2, and a10. It emits output for
ticker symbols whose two-row moving average crosses the ten-row moving average. The a2 and
a10 column values are derived from two-row and ten-row sliding windows.

Sliding Windows 118

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(12),
price double,
average_last2rows double,
average_lastl@rows double);

CREATE OR REPLACE PUMP "myPump'" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol,
price,
avg(price) over last2rows,
avg(price) over lastl@rows
FROM SOURCE_SQL_STREAM_001
WINDOW
last2rows AS (PARTITION BY ticker_symbol ROWS 2 PRECEDING),
lastl@rows AS (PARTITION BY ticker_symbol ROWS 10 PRECEDING);

To test this query against the demo stream, follow the test procedure described in Example 1.

Streaming Data Operations: Stream Joins

You can have multiple in-application streams in your application. You can write JOIN queries to
correlate data arriving on these streams. For example, suppose that you have the following in-
application streams:

« OrderStream - Receives stock orders being placed.

(orderId SqlType, ticker SqlType, amount SqlType, ROWTIME TimeStamp)

» TradeStream - Receives resulting stock trades for those orders.

(tradeld SqlType, orderId SqlType, ticker SqlType, amount SqlType, ticker SqlType,
amount SqlType, ROWTIME TimeStamp)

The following are JOIN query examples that correlate data on these streams.

Stream Joins 119

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Example 1: Report Orders Where There Are Trades Within One Minute
of the Order Being Placed
In this example, your query joins both the OrderStream and TradeStream. However, because we

want only trades placed one minute after the orders, the query defines the 1-minute window over
the TradeStream. For information about windowed queries, see Sliding Windows.

SELECT STREAM
ROWTIME,
o.orderId, o.ticker, o.amount AS orderAmount,
t.amount AS tradeAmount
FROM OrderStream AS o
JOIN TradeStream OVER (RANGE INTERVAL '1' MINUTE PRECEDING) AS t
ON o.orderId = t.orderld;

You can define the windows explicitly using the WINDOW clause and writing the preceding query as
follows:

SELECT STREAM
ROWTIME,
o.orderId, o.ticker, o.amount AS orderAmount,
t.amount AS tradeAmount
FROM OrderStream AS o
JOIN TradeStream OVER t
ON o.orderId = t.orderId
WINDOW t AS
(RANGE INTERVAL '1l' MINUTE PRECEDING)

When you include this query in your application code, the application code runs continuously.
For each arriving record on the OrdexrStream, the application emits an output if there are trades
within the 1-minute window following the order being placed.

The join in the preceding query is an inner join where the query emits records in OrderStream

for which there is a matching record in TradeStream (and vice versa). Using an outer join you can
create another interesting scenario. Suppose that you want stock orders for which there are no
trades within one minute of stock order being placed, and trades reported within the same window
but for some other orders. This is example of an outer join.

SELECT STREAM
ROWTIME,

Example 1: Report Orders Where There Are Trades Within One Minute of the Order Being Placed 120

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

o.orderId, o.ticker, o.amount AS orderAmount,

t.ticker, t.tradeld, t.amount AS tradeAmount,
FROM OrderStream AS o
LEFT OUTER JOIN TradeStream OVER (RANGE INTERVAL '1' MINUTE PRECEDING) AS t
ON o.orderId = t.orderld;

Example 1: Report Orders Where There Are Trades Within One Minute of the Order Being Placed 121

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Migrating to Managed Service for Apache Flink Studio
Examples

The following examples demonstrate how to migrate Kinesis Data Analytics for SQL applications to
Managed Service for Apache Flink Studio.

Replicating Kinesis Data Analytics for SQL Queries in Managed
Service for Apache Flink Studio

/A Warning

For new projects, we recommend that you use Managed Service for Apache Flink Studio
over Kinesis Data Analytics for SQL Applications. Managed Service for Apache Flink
Studio combines ease of use with advanced analytical capabilities, enabling you to build
sophisticated stream processing applications in minutes.

To migrate your workloads to Managed Service for Apache Flink Studio or Managed Service for
Apache Flink, this section provides query translations you can use for common use cases.

(® Note

Managed Service for Apache Flink and Managed Service for Apache Flink Studio offer
advanced data stream processing features not available in SQL-based Kinesis Data Analytics
applications. These include exactly-once processing semantics, event-time windows,
extensibility using user defined functions and custom integrations, imperative language
support, durable application state, horizontal scaling, support for multiple data sources,
extensible integrations, and more. These are critical for ensuring accuracy, completeness,
consistency, and reliability of data stream processing.

Before you explore these examples we recommend you first review Using a Studio notebook with a
Managed Service for Apache Flink.

Topics

Replicating Kinesis Data Analytics for SQL Queries in Managed Service for Apache Flink Studio 122

https://docs.aws.amazon.com/managed-flink/latest/java/how-notebook.html
https://docs.aws.amazon.com/managed-flink/latest/java/how-notebook.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

» Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio

Re-creating Kinesis Data Analytics for SQL queries in Managed Service
for Apache Flink Studio

The following table provides translations of common SQL-based Kinesis Data Analytics application
queries to Managed Service for Apache Flink Studio.

Multi-Step application

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "IN_APP_STREAM_001" (
ingest_time TIMESTAMP,
ticker_symbol VARCHAR(4),
sector VARCHAR(16), price REAL, change REAL);
CREATE
OR REPLACE PUMP "STREAM_PUMP_0@1" AS
INSERT INTO
"IN_APP_STREAM_00Q1"
SELECT
STREAM APPROXIMATE_ARRIVAL_TIME,
ticker_symbol,
sector,
price,
change FROM "SOURCE_SQL_STREAM_001";
-- Second in-app stream and pump
CREATE
OR REPLACE STREAM "IN_APP_STREAM_02" (ingest_time TIMESTAMP,
ticker_symbol VARCHAR(4),
sector VARCHAR(16),
price REAL,
change REAL);
CREATE
OR REPLACE PUMP "STREAM_PUMP_02" AS
INSERT INTO
"IN_APP_STREAM_02"
SELECT
STREAM ingest_time,
ticker_symbol,
sector,

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 123

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

price,
change FROM "IN_APP_STREAM_001";
-- Destination in-app stream and third pump
CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ingest_time TIMESTAMP,
ticker_symbol VARCHAR(4),
sector VARCHAR(16),
price REAL,
change REAL);
CREATE
OR REPLACE PUMP "STREAM_PUMP_03" AS
INSERT INTO
"DESTINATION_SQL_STREAM"
SELECT
STREAM ingest_time,
ticker_symbol,
sector,
price,
change FROM "IN_APP_STREAM_02";

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql DROP TABLE IF EXISTS SOURCE_SQL_STREAM_001;

CREATE TABLE SOURCE_SQL_STREAM_0@1 (TICKER_SYMBOL VARCHAR(4),
SECTOR VARCHAR(16),
PRICE DOUBLE,
CHANGE DOUBLE,
APPROXIMATE_ARRIVAL_TIME TIMESTAMP(3) METADATA

FROM
'timestamp' VIRTUAL,
WATERMARK FOR APPROXIMATE_ARRIVAL_TIME AS APPROXIMATE_ARRIVAL_TIME - INTERVAL '1'
SECOND)
PARTITIONED BY (TICKER_SYMBOL) WITH (
'connector' = 'kinesis',
'stream' = 'kinesis-analytics-demo-stream',
'aws.region' = 'us-east-1',
'scan.stream.initpos' = 'LATEST',
'format' = 'json',
'json.timestamp-format.standard' = 'IS0-8601"');
DROP TABLE IF EXISTS IN_APP_STREAM_001;

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 124

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

CREATE TABLE IN_APP_STREAM_001 (
INGEST_TIME TIMESTAMP,
TICKER_SYMBOL VARCHAR(4),
SECTOR VARCHAR(16),
PRICE DOUBLE,
CHANGE DOUBLE)
PARTITIONED BY (TICKER_SYMBOL) WITH (
'connector' = 'kinesis',
'stream' = 'IN_APP_STREAM_001',
'aws.region' = 'us-east-1',
'scan.stream.initpos' = 'LATEST',
'format' = 'json',
'json.timestamp-format.standard' = 'IS0-8601"');

DROP TABLE IF EXISTS IN_APP_STREAM_02;

CREATE TABLE IN_APP_STREAM_02 (
INGEST_TIME TIMESTAMP,
TICKER_SYMBOL VARCHAR(4),

SECTOR VARCHAR(16),
PRICE DOUBLE,
CHANGE DOUBLE)

PARTITIONED BY (TICKER_SYMBOL) WITH (

'connector' = 'kinesis',

'stream' = 'IN_APP_STREAM_02',

'aws.region' = 'us-east-1',
'scan.stream.initpos' = 'LATEST',

'format' = 'json',
'json.timestamp-format.standard' = 'IS0-8601"');

DROP TABLE IF EXISTS DESTINATION_SQL_STREAM;

CREATE TABLE DESTINATION_SQL_STREAM (
INGEST_TIME TIMESTAMP, TICKER_SYMBOL VARCHAR(4), SECTOR VARCHAR(16),
PRICE DOUBLE, CHANGE DOUBLE)
PARTITIONED BY (TICKER_SYMBOL) WITH (
'connector' = 'kinesis’',
'stream' = 'DESTINATION_SQL_STREAM',
'aws.region' = 'us-east-1',
'scan.stream.initpos' = 'LATEST',
'format' = 'json',
'json.timestamp-format.standard' = 'IS0-8601');

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 125

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

SQL Developer Guide

Query 2 - % flink.ssql(type =
update
)
INSERT INTO
IN_APP_STREAM_001
SELECT
APPROXIMATE_ARRIVAL_TIME AS INGEST_TIME,
TICKER_SYMBOL,
SECTOR,
PRICE,
CHANGE
FROM
SOURCE_SQL_STREAM_001;

Query 3 - % flink.ssql(type =
update
)
INSERT INTO
IN_APP_STREAM_02
SELECT
INGEST_TIME,
TICKER_SYMBOL,
SECTOR,
PRICE,
CHANGE

FROM
IN_APP_STREAM_001;

Query 4 - % flink.ssql(type =
update
)
INSERT INTO
DESTINATION_SQL_STREAM
SELECT
INGEST_TIME,
TICKER_SYMBOL,
SECTOR,
PRICE,
CHANGE

FROM
IN_APP_STREAM_02;

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio

126

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Transforming DateTime values

SQL-based Kinesis Data Analytics application

CREATE

OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
TICKER VARCHAR(4),
event_time TIMESTAMP,
five_minutes_before TIMESTAMP,
event_unix_timestamp BIGINT,
event_timestamp_as_char VARCHAR(50),
event_second INTEGER);

CREATE
OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO
"DESTINATION_SQL_STREAM"
SELECT
STREAM TICKER,
EVENT_TIME,
EVENT_TIME - INTERVAL '5' MINUTE,
UNIX_TIMESTAMP(EVENT_TIME),
TIMESTAMP_TO_CHAR('yyyy-MM-dd hh:mm:ss', EVENT_TIME),
EXTRACT (SECOND
FROM
EVENT_TIME)
FROM
"SOURCE_SQL_STREAM_001"

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =

update

) CREATE TABLE DESTINATION_SQL_STREAM (
TICKER VARCHAR(4),
EVENT_TIME TIMESTAMP(3),
FIVE_MINUTES_BEFORE TIMESTAMP(3),
EVENT_UNIX_TIMESTAMP INT,
EVENT_TIMESTAMP_AS_CHAR VARCHAR(50),
EVENT_SECOND INT)

PARTITIONED BY (TICKER) WITH (
'connector' = 'kinesis', 'stream' = 'kinesis-analytics-demo-stream',

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 127

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

'aws.region' = 'us-east-1',
'scan.stream.initpos' = 'LATEST',

'format' = 'json',
'json.timestamp-format.standard' = 'IS0-8601')

Query 2 - % flink.ssql(type =
update

SELECT
TICKER,
EVENT_TIME,
EVENT_TIME - INTERVAL '5' MINUTE AS FIVE_MINUTES_BEFORE,
UNIX_TIMESTAMP() AS EVENT_UNIX_TIMESTAMP,
DATE_FORMAT(EVENT_TIME, 'yyyy-MM-dd hh:mm:ss') AS EVENT_TIMESTAMP_AS_CHAR,
EXTRACT (SECOND

FROM
EVENT_TIME) AS EVENT_SECOND

FROM
DESTINATION_SQL_STREAM;

Simple alerts

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM"(
ticker_symbol VARCHAR(4),
sector VARCHAR(12),
change DOUBLE,
price DOUBLE);

CREATE
OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT
STREAM ticker_symbol,
sector,
change,
price
FROM
"SOURCE_SQL_STREAM_00@1"
WHERE
(

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 128

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

SQL Developer Guide

ABS(Change / (Price - Change)) * 100

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =
update
) DROP TABLE IF EXISTS DESTINATION_SQL_STREAM;

CREATE TABLE DESTINATION_SQL_STREAM (
TICKER_SYMBOL VARCHAR(4),
SECTOR VARCHAR(4),
CHANGE DOUBLE,
PRICE DOUBLE)

PARTITIONED BY (TICKER_SYMBOL) WITH (
'connector' = 'kinesis',
'stream' = 'kinesis-analytics-demo-stream’,
'aws.region' = 'us-east-1',
'scan.stream.initpos' = 'LATEST',
'format' = 'json',
'json.timestamp-format.standard' = 'IS0-8601"');

Query 2 - % flink.ssql(type =
update
)
SELECT
TICKER_SYMBOL,
SECTOR,
CHANGE,
PRICE
FROM
DESTINATION_SQL_STREAM
WHERE
(
ABS(CHANGE / (PRICE - CHANGE)) * 100
)
> 1,

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio

129

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Throttled alerts

SQL-based Kinesis Data Analytics application

CREATE

OR REPLACE STREAM "CHANGE_STREAM"(
ticker_symbol VARCHAR(4),
sector VARCHAR(12),
change DOUBLE,
price DOUBLE);

CREATE
OR REPLACE PUMP "change_pump" AS INSERT INTO "CHANGE_STREAM"
SELECT
STREAM ticker_symbol,
sector,
change,
price
FROM "SOURCE_SQL_STREAM_001"
WHERE
(
ABS(Change / (Price - Change)) * 100
)
> 1;
-- ** Trigger Count and Limit **
-- Counts "triggers" or those values that evaluated true against the previous where
clause
-- Then provides its own limit on the number of triggers per hour per ticker symbol
to what is specified in the WHERE clause

CREATE

OR REPLACE STREAM TRIGGER_COUNT_STREAM (
ticker_symbol VARCHAR(4),
change REAL,
trigger_count INTEGER);

CREATE
OR REPLACE PUMP trigger_count_pump AS
INSERT INTO
TRIGGER_COUNT_STREAMSELECT STREAM ticker_symbol,
change,
trigger_count
FROM
(

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 130

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

SELECT
STREAM ticker_symbol,
change,
COUNT(*) OVER W1l as trigger_countFROM "CHANGE_STREAM" --window to perform
aggregations over last minute to keep track of triggers
WINDOW W1 AS
(
PARTITION BY ticker_symbol RANGE INTERVAL '1' MINUTE PRECEDING

)
WHERE

trigger_count >= 1;

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =
update
) DROP TABLE IF EXISTS DESTINATION_SQL_STREAM;

CREATE TABLE DESTINATION_SQL_STREAM (
TICKER_SYMBOL VARCHAR(4),
SECTOR VARCHAR(4),
CHANGE DOUBLE, PRICE DOUBLE,
EVENT_TIME AS PROCTIME())
PARTITIONED BY (TICKER_SYMBOL)

WITH (
'connector' = 'kinesis',
'stream' = 'kinesis-analytics-demo-stream',
'aws.region' = 'us-east-1',
'scan.stream.initpos' = 'LATEST',
'format' = 'json',
'json.timestamp-format.standard' = 'IS0-8601"');

DROP TABLE IF EXISTS TRIGGER_COUNT_STREAM;
CREATE TABLE TRIGGER_COUNT_STREAM (
TICKER_SYMBOL VARCHAR(4),
CHANGE DOUBLE,
TRIGGER_COUNT INT)
PARTITIONED BY (TICKER_SYMBOL);

Query 2 - % flink.ssql(type =
update

)
SELECT

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 131

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

SQL Developer Guide

TICKER_SYMBOL,
SECTOR,
CHANGE,
PRICE
FROM
DESTINATION_SQL_STREAM
WHERE
(
ABS(CHANGE / (PRICE - CHANGE)) * 100

)
> 1;

Query 3 - % flink.ssql(type =

update
)
SELECT *
FROM(
SELECT
TICKER_SYMBOL,
CHANGE,
COUNT(*) AS TRIGGER_COUNT
FROM
DESTINATION_SQL_STREAM
GROUP BY
TUMBLE(EVENT_TIME, INTERVAL '1' MINUTE),
TICKER_SYMBOL,
CHANGE
)
WHERE

TRIGGER_COUNT > 1;

Aggregating Partial Results from a Query

SQL-based Kinesis Data Analytics application

CREATE

OR REPLACE STREAM "CALC_COUNT_SQL_STREAM"(
TICKER VARCHAR(4),
TRADETIME TIMESTAMP,
TICKERCOUNT DOUBLE);

CREATE

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio

132

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

OR REPLACE STREAM "DESTINATION_SQL_STREAM"(
TICKER VARCHAR(4),
TRADETIME TIMESTAMP,
TICKERCOUNT DOUBLE);

CREATE PUMP "CALC_COUNT_SQL_PUMP_001" AS
INSERT INTO
"CALC_COUNT_SQL_STREAM" (
"TICKER",
"TRADETIME",
"TICKERCOUNT")
SELECT
STREAM "TICKER_SYMBOL",
STEP("SOURCE_SQL_STREAM_001",
"ROWTIME" BY INTERVAL '1' MINUTE) as "TradeTime",
COUNT(*) AS "TickerCount "
FROM
"SOURCE_SQL_STREAM_001"
GROUP BY
STEP("SOURCE_SQL_STREAM_001". ROWTIME BY INTERVAL '1' MINUTE),

STEP("SOURCE_SQL_STREAM_001"." APPROXIMATE_ARRIVAL_TIME" BY INTERVAL '1'

MINUTE),
TICKER_SYMBOL;
CREATE PUMP "AGGREGATED_SQL_PUMP" AS
INSERT INTO
"DESTINATION_SQL_STREAM" (
"TICKER",
"TRADETIME",
"TICKERCOUNT")
SELECT
STREAM "TICKER",
"TRADETIME",
SUM("TICKERCOUNT") OVER W1l AS "TICKERCOUNT"
FROM
"CALC_COUNT_SQL_STREAM" WINDOW W1 AS

(
PARTITION BY "TRADETIME"™ RANGE INTERVAL '10' MINUTE PRECEDING

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio

133

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

update
) DROP TABLE IF EXISTS SOURCE_SQL_STREAM_001;
CREATE TABLE SOURCE_SQL_STREAM_001 (
TICKER_SYMBOL VARCHAR(4),
TRADETIME AS PROCTIME(),
APPROXIMATE_ARRIVAL_TIME TIMESTAMP(3) METADATA
FROM
'timestamp' VIRTUAL,
WATERMARK FOR APPROXIMATE_ARRIVAL_TIME AS APPROXIMATE_ARRIVAL_TIME - INTERVAL '1'
SECOND)
PARTITIONED BY (TICKER_SYMBOL) WITH (
'connector' = 'kinesis',
'stream' = 'kinesis-analytics-demo-stream',
'aws.region' = 'us-east-1',
'scan.stream.initpos' = 'LATEST',
'format' = 'json',
'json.timestamp-format.standard' = 'IS0-8601"');
DROP TABLE IF EXISTS CALC_COUNT_SQL_STREAM;
CREATE TABLE CALC_COUNT_SQL_STREAM (
TICKER VARCHAR(4),
TRADETIME TIMESTAMP(3),
WATERMARK FOR TRADETIME AS TRADETIME - INTERVAL '1' SECOND,
TICKERCOUNT BIGINT NOT NULL) PARTITIONED BY (TICKER) WITH (
'connector' = 'kinesis',
'stream' = 'CALC_COUNT_SQL_STREAM',
'aws.region' = 'us-east-1',
'scan.stream.initpos' = 'LATEST',
'format' = 'csv');
DROP TABLE IF EXISTS DESTINATION_SQL_STREAM;
CREATE TABLE DESTINATION_SQL_STREAM (
TICKER VARCHAR(4),
TRADETIME TIMESTAMP(3),
WATERMARK FOR TRADETIME AS TRADETIME - INTERVAL '1' SECOND,
TICKERCOUNT BIGINT NOT NULL)
PARTITIONED BY (TICKER) WITH ('connector' = 'kinesis',
'stream' = 'DESTINATION_SQL_STREAM',
'aws.region' = 'us-east-1',
'scan.stream.initpos' = 'LATEST',
'format' = 'csv');

Query 2 - % flink.ssql(type
update

)
INSERT INTO

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 134

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

SQL Developer Guide

CALC_COUNT_SQL_STREAM
SELECT
TICKER,

TO_TIMESTAMP(TRADETIME, 'yyyy-MM-dd HH:mm:ss') AS TRADETIME,

TICKERCOUNT
FROM
(
SELECT
TICKER_SYMBOL AS TICKER,

DATE_FORMAT(TRADETIME, 'yyyy-MM-dd HH:mm:0@') AS TRADETIME,

COUNT(*) AS TICKERCOUNT
FROM
SOURCE_SQL_STREAM_001
GROUP BY
TUMBLE(TRADETIME, INTERVAL '1' MINUTE),

DATE_FORMAT(TRADETIME, 'yyyy-MM-dd HH:mm:00'),

DATE_FORMAT (APPROXIMATE_ARRIVAL_TIME, 'yyyy-MM-dd HH:mm:00'),

TICKER_SYMBOL

Query 3 - % flink.ssql(type =

update
)
SELECT
*
FROM

CALC_COUNT_SQL_STREAM;

Query 4 - % flink.ssql(type =
update
)
INSERT INTO
DESTINATION_SQL_STREAM
SELECT
TICKER,
TRADETIME,
SUM(TICKERCOUNT) OVER W1 AS TICKERCOUNT
FROM
CALC_COUNT_SQL_STREAM WINDOW W1 AS
(
PARTITION BY TICKER
ORDER BY
TRADETIME RANGE INTERVAL '1@' MINUTE PRECEDING

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio

135

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

SQL Developer Guide

)

Query 5 - % flink.ssql(type =

update
)
SELECT
*
FROM

DESTINATION_SQL_STREAM;

Transforming string values

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM for cleaned up referrerCREATE

OR REPLACE STREAM "DESTINATION_SQL_STREAM" ("ingest_time" TIMESTAMP, "re
VARCHAR(32));

CREATE

OR REPLACE PUMP "myPUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"

SELECT

STREAM "APPROXIMATE_ARRIVAL_TIME",
SUBSTRING("referrer", 12,

(
POSITION('.com' IN "referrer") - POSITION('www.' IN "referrer") - 4
)
)
FROM

"SOURCE_SQL_STREAM_001";

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =
update
) CREATE TABLE DESTINATION_SQL_STREAM (
referrer VARCHAR(32),
ingest_time AS PROCTIME()) PARTITIONED BY (referrer)

WITH (
'connector' = 'kinesis',
'stream' = 'kinesis-analytics-demo-stream’,
'aws.region' = 'us-east-1',

ferrer"

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio

136

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

'scan.stream.initpos' = 'LATEST',
'format' = 'json',
'json.timestamp-format.standard' = 'IS0-8601"')

Query 2 - % flink.ssql(type =
update

SELECT

ingest_time,

substring(referrer, 12, 6) as referrer
FROM

DESTINATION_SQL_STREAM;

Replacing a substring using Regex

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM for cleaned up referrerCREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM" ("ingest_time" TIMESTAMP, "referrer"
VARCHAR(32));
CREATE
OR REPLACE PUMP "myPUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT
STREAM "APPROXIMATE_ARRIVAL_TIME",
REGEX_REPLACE("REFERRER", 'http://', 'https://', 1, 0)
FROM
"SOURCE_SQL_STREAM_001";

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =

update

) CREATE TABLE DESTINATION_SQL_STREAM (
referrer VARCHAR(32),
ingest_time AS PROCTIME())

PARTITIONED BY (referrer) WITH (
'connector' = 'kinesis',
'stream' = 'kinesis-analytics-demo-stream’,
'aws.region' = 'us-east-1',
'scan.stream.initpos' = 'LATEST',
'format' = 'json',

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 137

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

'json.timestamp-format.standard' = 'IS0-8601"')

Query 2 - % flink.ssql(type =
update

SELECT

ingest_time,

REGEXP_REPLACE(referrer, 'http', 'https') as referrer
FROM

DESTINATION_SQL_STREAM;

Regex log parse

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM"(
sector VARCHAR(24),
matchl VARCHAR(24),
match2 VARCHAR(24));
CREATE
OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO
"DESTINATION_SQL_STREAM"
SELECT
STREAM T.SECTOR,
T.REC.COLUMN1,
T.REC.COLUMN2
FROM
(
SELECT
STREAM SECTOR,
REGEX_LOG_PARSE(SECTOR, '.*([EJ].).*([R].*)') AS REC
FROM
SOURCE_SQL_STREAM_001
)
AS T;

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =
update

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 138

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

SQL Developer Guide

) CREATE TABLE DESTINATION_SQL_STREAM (
CHANGE DOUBLE, PRICE DOUBLE,
TICKER_SYMBOL VARCHAR(4),
SECTOR VARCHAR(16))

PARTITIONED BY (SECTOR) WITH (
'connector' = 'kinesis',
'stream' = 'kinesis-analytics-demo-stream',
'aws.region' = 'us-east-1',
'scan.stream.initpos' = 'LATEST',
'format' = 'json',
'json.timestamp-format.standard' = 'IS0-8601"')

Query 2 - % flink.ssql(type =
update

)
SELECT

*
FROM
(
SELECT
SECTOR,

REGEXP_EXTRACT(SECTOR, '.([EJ.).([RJ.)', 1) AS MATCH1,
REGEXP_EXTRACT(SECTOR, '.([EJ.).([R].)', 2) AS MATCH2

FROM
DESTINATION_SQL_STREAM
)
WHERE
MATCH1 IS NOT NULL
AND MATCH2 IS NOT NULL;

Transforming DateTime values

SQL-based Kinesis Data Analytics application

CREATE

OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
TICKER VARCHAR(4),
event_time TIMESTAMP,
five_minutes_before TIMESTAMP,
event_unix_timestamp BIGINT,
event_timestamp_as_char VARCHAR(50),
event_second INTEGER);

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio

139

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

CREATE
OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO
"DESTINATION_SQL_STREAM"
SELECT
STREAM TICKER,
EVENT_TIME,
EVENT_TIME - INTERVAL '5' MINUTE,
UNIX_TIMESTAMP(EVENT_TIME),
TIMESTAMP_TO_CHAR('yyyy-MM-dd hh:mm:ss', EVENT_TIME),
EXTRACT (SECOND
FROM
EVENT_TIME)
FROM
"SOURCE_SQL_STREAM_001"

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =

update

) CREATE TABLE DESTINATION_SQL_STREAM (
TICKER VARCHAR(4),
EVENT_TIME TIMESTAMP(3),
FIVE_MINUTES_BEFORE TIMESTAMP(3),
EVENT_UNIX_TIMESTAMP INT,
EVENT_TIMESTAMP_AS_CHAR VARCHAR(50),
EVENT_SECOND INT) PARTITIONED BY (TICKER)

WITH (
'connector' = 'kinesis',
'stream' = 'kinesis-analytics-demo-stream’,
'aws.region' = 'us-east-1',
'scan.stream.initpos' = 'LATEST',
'format' = 'json',
'json.timestamp-format.standard' = 'IS0-8601"')

Query 2 - % flink.ssql(type =
update

SELECT
TICKER,
EVENT_TIME,
EVENT_TIME - INTERVAL '5' MINUTE AS FIVE_MINUTES_BEFORE,
UNIX_TIMESTAMP() AS EVENT_UNIX_TIMESTAMP,

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 140

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

DATE_FORMAT(EVENT_TIME, 'yyyy-MM-dd hh:mm:ss') AS EVENT_TIMESTAMP_AS_CHAR,
EXTRACT (SECOND

FROM

EVENT_TIME) AS EVENT_SECOND
FROM

DESTINATION_SQL_STREAM;

Windows and aggregation

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
event_time TIMESTAMP,
ticker_symbol VARCHAR(4),
ticker_count INTEGER);
CREATE
OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO
"DESTINATION_SQL_STREAM"
SELECT
STREAM EVENT_TIME,
TICKER,
COUNT(TICKER) AS ticker_count
FROM
"SOURCE_SQL_STREAM_0@1" WINDOWED BY STAGGER (PARTITION BY
TICKER,
EVENT_TIME RANGE INTERVAL '1' MINUTE);

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =
update
) CREATE TABLE DESTINATION_SQL_STREAM (
EVENT_TIME TIMESTAMP(3),
WATERMARK FOR EVENT_TIME AS EVENT_TIME - INTERVAL '60' SECOND,
TICKER VARCHAR(4),
TICKER_COUNT INT) PARTITIONED BY (TICKER)

WITH (
'connector' = 'kinesis',
'stream' = 'kinesis-analytics-demo-stream’,
'aws.region' = 'us-east-1',

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 141

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

SQL Developer Guide

'scan.stream.initpos' = 'LATEST',
'format' = 'json'

Query 2 - % flink.ssql(type =
update

SELECT

EVENT_TIME,

TICKER, COUNT(TICKER) AS ticker_count
FROM

DESTINATION_SQL_STREAM
GROUP BY

TUMBLE(EVENT_TIME,

INTERVAL '60' second),

EVENT_TIME, TICKER;

Tumbling Window using Rowtime

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM"(
TICKER VARCHAR(4),
MIN_PRICE REAL,
MAX_PRICE REAL);
CREATE
OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO
"DESTINATION_SQL_STREAM"
SELECT
STREAM TICKER,
MIN(PRICE),
MAX (PRICE)
FROM
"SOURCE_SQL_STREAM_001"
GROUP BY
TICKER,
STEP("SOURCE_SQL_STREAM_001".
ROWTIME BY INTERVAL '6@' SECOND);

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio

142

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

SQL Developer Guide

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =

update

) CREATE TABLE DESTINATION_SQL_STREAM (
ticker VARCHAR(4),
price DOUBLE,
event_time VARCHAR(32),
processing_time AS PROCTIME())

PARTITIONED BY (ticker) WITH (
'connector' = 'kinesis',
'stream' = 'kinesis-analytics-demo-stream',
'aws.region' = 'us-east-1',
'scan.stream.initpos' = 'LATEST',
'format' = 'json',
'json.timestamp-format.standard' = 'IS0-8601"')

Query 2 - % flink.ssql(type =
update

SELECT
ticker,
min(price) AS MIN_PRICE,
max(price) AS MAX_PRICE
FROM
DESTINATION_SQL_STREAM
GROUP BY

TUMBLE(processing_time, INTERVAL '60' second),
ticker;

Retrieving the most frequently occuring values (TOP_K_ITEMS_TUMBLING)

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "CALC_COUNT_SQL_STREAM"(TICKER VARCHAR(4),
TRADETIME TIMESTAMP,
TICKERCOUNT DOUBLE);
CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM"(
TICKER VARCHAR(4),
TRADETIME TIMESTAMP,

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio

143

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

TICKERCOUNT DOUBLE);
CREATE PUMP "CALC_COUNT_SQL_PUMP_001" AS INSERT INTO "CALC_COUNT_SQL_STREAM" (
"TICKER",
"TRADETIME",
"TICKERCOUNT")
SELECT
STREAM"TICKER_SYMBOL",
STEP("SOURCE_SQL_STREAM_@@1"."ROWTIME"™ BY INTERVAL '1' MINUTE) as "TradeTime",
COUNT(*) AS "TickerCount"
FROM
"SOURCE_SQL_STREAM_001"
GROUP BY STEP("SOURCE_SQL_STREAM_001".
ROWTIME BY INTERVAL '1' MINUTE),
STEP("SOURCE_SQL_STREAM_001".
"APPROXIMATE_ARRIVAL_TIME" BY INTERVAL '1' MINUTE),
TICKER_SYMBOL;
CREATE PUMP "AGGREGATED_SQL_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM" (
"TICKER",
"TRADETIME",
"TICKERCOUNT")
SELECT
STREAM "TICKER",
"TRADETIME",
SUM("TICKERCOUNT") OVER W1l AS "TICKERCOUNT"

FROM
"CALC_COUNT_SQL_STREAM" WINDOW W1 AS
(
PARTITION BY "TRADETIME" RANGE INTERVAL '1@' MINUTE PRECEDING
)

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =
update
) DROP TABLE IF EXISTS DESTINATION_SQL_STREAM;
CREATE TABLE DESTINATION_SQL_STREAM (
TICKER VARCHAR(4),
EVENT_TIME TIMESTAMP(3),
WATERMARK FOR EVENT_TIME AS EVENT_TIME - INTERVAL '1' SECONDS)
PARTITIONED BY (TICKER) WITH (
'connector' = 'kinesis', 'stream' = 'kinesis-analytics-demo-stream',
'aws.region' = 'us-east-1',

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 144

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

SQL Developer Guide

'scan.stream.initpos' = 'LATEST',
'format' = 'json',
'json.timestamp-format.standard' = 'IS0-8601"');

Query 2 - % flink.ssql(type =

update
)
SELECT
*
FROM
(
SELECT
TICKER,
COUNT(*) as MOST_FREQUENT_VALUES,
ROW_NUMBER() OVER (PARTITION BY TICKER
ORDER BY
TICKER DESC) AS row_num
FROM
DESTINATION_SQL_STREAM
GROUP BY
TUMBLE(EVENT_TIME, INTERVAL '1' MINUTE),
TICKER
)
WHERE

row_num <= 5;

Approximate Top-K items

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ITEM VARCHAR(1024),
CREATE
OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO
"DESTINATION_SQL_STREAM"
SELECT
STREAM ITEM,
ITEM_COUNT
FROM
TABLE(TOP_K_ITEMS_TUMBLING(CURSOR(
SELECT

ITEM_COUNT DOUBLE);

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio

145

SQL Developer Guide

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

STREAM *

FROM
"SOURCE_SQL_STREAM_001"),

'columnl', -- name of column in single quoteslO,
-- number of top items6@ -- tumbling window size in seconds));

Managed Service for Apache Flink Studio

%flinkssql
DROP TABLE IF EXISTS SOURCE_SQL_STREAM_001
CREATE TABLE SOURCE_SQL_STREAM_0@1 (TS TIMESTAMP(3), WATERMARK FOR TS as TS -

INTERVAL '5' SECOND, ITEM VARCHAR(1024),

PRICE DOUBLE)

WITH ('connector' = 'kinesis', 'stream' = 'SOURCE_SQL_STREAM_001',
'aws.region' = 'us-east-1', 'scan.stream.initpos' = 'LATEST', 'format' = 'json',
'json.timestamp-format.standard' = 'IS0-8601"');

%flink.ssql(type=update)
SELECT
*
FROM
(
SELECT
*I
ROW_NUMBER() OVER (PARTITION BY AGG_WINDOW
ORDER BY
ITEM_COUNT DESC) as rownum
FROM
(
select
AGG_WINDOW,
ITEM,
ITEM_COUNT
from
(
select
TUMBLE_ROWTIME(TS, INTERVAL '6@' SECONDS) as AGG_WINDOW,
ITEM,
count(*) as ITEM_COUNT
FROM
SOURCE_SQL_STREAM_001
GROUP BY

146

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

TUMBLE(TS, INTERVAL '6@' SECONDS),
ITEM

)
where
rownum <= 3

Parsing Web Logs (W3C_LOG_PARSE Function)

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM" (columnl VARCHAR(16),
column2 VARCHAR(16),
column3 VARCHAR(16),
column4 VARCHAR(16),
column5 VARCHAR(16),
column6 VARCHAR(16),
column7 VARCHAR(16));
CREATE
OR REPLACE PUMP "myPUMP" ASINSERT INTO "DESTINATION_SQL_STREAM"
SELECT
STREAM 1.r.COLUMN1,
.r.COLUMN2Z,
.COLUMNS3,
.COLUMN4%,
.COLUMNS,
.COLUMN®G,
.COLUMN7

o
H H H H H

FROM

SELECT

STREAM W3C_LOG_PARSE("1log", 'COMMON')
FROM

"SOURCE_SQL_STREAM_001"

)
AS 1(x);

Managed Service for Apache Flink Studio

%flink.ssql(type=update)

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 147

Amazon Kinesis Data Analytics for SQL Applications Developer Guide

SQL Developer Guide

DROP TABLE IF EXISTS SOURCE_SQL_STREAM_001 CREATE TABLE SOURCE_SQL_STREAM_001 (log

VARCHAR(1024))
WITH ('connector' = 'kinesis',
'stream' = 'SOURCE_SQL_STREAM_001',
'aws.region' = 'us-east-1',
'scan.stream.initpos' = 'LATEST',
'format' = 'json',
'json.timestamp-format.standard' = 'IS0-8601');

% flink.ssql(type=update)

select
SPLIT_INDEX(log, ' ',
SPLIT_INDEX(log, ' ',
SPLIT_INDEX(log, ' ',
SPLIT_INDEX(log, ' ',
SPLIT_INDEX(log, ' ',
SPLIT_INDEX(log, ' ',
SPLIT_INDEX(log, ' ',

from
SOURCE_SQL_STREAM_001;

Split Strings into Multiple Fields (VARIABLE_COLUMN_LOG_PARSE Function)

SQL-based Kinesis Data Analytics application

CREATE

OR REPLACE STREAM "DESTINATION_SQL_STREAM"("column_A" VARCHAR(16),

"column_B" VARCHAR(16),

"column_C" VARCHAR(16),

"COL_1" VARCHAR(16),

"COL_2" VARCHAR(16),

"COL_3" VARCHAR(16));
CREATE

2),
1),
2),
3),
4),
5),
6)

OR REPLACE PUMP "SECOND_STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"

SELECT
STREAM t."Col_A",
t."Col_B",
t."Col_C",
t.r."coL_1",
t.r."coL_2",
t.r."CcoL_3"

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio

148

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

(

SELECT
STREAM "Col_A",
"Col_B",
"Col_C",
VARIABLE_COLUMN_LOG_PARSE ("Col_E_Unstructured",
'COL_1 TYPE VARCHAR(16),
COL_2 TYPE VARCHAR(16),
COL_3 TYPE VARCHAR(16)', ',"') AS 1
FROM
"SOURCE_SQL_STREAM_001"
)

as t;

Managed Service for Apache Flink Studio

%flink.ssql(type=update)
DROP TABLE IF EXISTS SOURCE_SQL_STREAM_001 CREATE TABLE SOURCE_SQL_STREAM_001 (log

VARCHAR(1024))
WITH ('connector' = 'kinesis',
'stream' = 'SOURCE_SQL_STREAM_001',
'aws.region' = 'us-east-1',
'scan.stream.initpos' = 'LATEST',
'format' = 'json',
'json.timestamp-format.standard' = 'IS0-8601"');

% flink.ssqgl(type=update)
select
SPLIT_INDEX(log, ' ', 0),
SPLIT_INDEX(log, ' ', 1),
SPLIT_INDEX(log, ' ', 2),
SPLIT_INDEX(log, ' ', 3),
SPLIT_INDEX(log, ' ', 4),
SPLIT_INDEX(log, ' ', 5)
)
from
SOURCE_SQL_STREAM_001;

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 149

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Joins

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
"Company" varchar(20),
sector VARCHAR(12),
change DOUBLE,
price DOUBLE);
CREATE
OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO
"DESTINATION_SQL_STREAM"
SELECT
STREAM ticker_symbol,
"c"."Company",
sector,
change,
priceFROM "SOURCE_SQL_STREAM_001"
LEFT JOIN
"CompanyName" as "c"
ON "SOURCE_SQL_STREAM_00@1".ticker_symbol = "c"."Ticker";

’

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =

update

) CREATE TABLE DESTINATION_SQL_STREAM (
TICKER_SYMBOL VARCHAR(4),
SECTOR VARCHAR(12),
CHANGE INT,
PRICE DOUBLE)

PARTITIONED BY (TICKER_SYMBOL) WITH (
'connector' = 'kinesis',
'stream' = 'kinesis-analytics-demo-stream',
'aws.region' = 'us-east-1',
'scan.stream.initpos' = 'LATEST',
'format' = 'json',
'json.timestamp-format.standard' = 'IS0-8601"');

Query 2 - CREATE TABLE CompanyName (

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 150

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Ticker VARCHAR(4),
Company VARCHAR(4)) WITH (

'connector' = 'filesystem',
'path' = 's3://kda-demo-sample/TickerReference.csv',
'format' = 'csv');

Query 3 - % flink.ssql(type =
update
)
SELECT
TICKER_SYMBOL,
c.Company,
SECTOR,
CHANGE,
PRICE
FROM
DESTINATION_SQL_STREAM
LEFT JOIN
CompanyName as c
ON DESTINATION_SQL_STREAM.TICKER_SYMBOL = c.Ticker;

Errors

SQL-based Kinesis Data Analytics application

SELECT
STREAM ticker_symbol,
sector,
change,
(
price / 0
)

as ProblemColumnFROM "SOURCE_SQL_STREAM_001"
WHERE

sector SIMILAR TO 'STECH%';
Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =

update

) DROP TABLE IF EXISTS DESTINATION_SQL_STREAM;
CREATE TABLE DESTINATION_SQL_STREAM (

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 151

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

TICKER_SYMBOL VARCHAR(4),
SECTOR VARCHAR(16),
CHANGE DOUBLE,
PRICE DOUBLE)

PARTITIONED BY (TICKER_SYMBOL) WITH (
'connector' = 'kinesis',
'stream' = 'kinesis-analytics-demo-stream',
'aws.region' = 'us-east-1',
'scan.stream.initpos' = 'LATEST',
'format' = 'json',
'json.timestamp-format.standard' = 'IS0-8601"');

Query 2 - % flink.pyflink eudf(input_types = [DataTypes.BIGINT()],
result_type = DataTypes.BIGINT()) def DivideByZero(price): try: price / 0

except
: return - 1 st_env.register_function("DivideByZero",
DivideByZero)

Query 3 - % flink.ssql(type =
update
)
SELECT
CURRENT_TIMESTAMP AS ERROR_TIME,
*
FROM
(
SELECT
TICKER_SYMBOL,
SECTOR,
CHANGE,
DivideByZero(PRICE) as ErrorColumn
FROM
DESTINATION_SQL_STREAM
WHERE
SECTOR SIMILAR TO '%TECHS'
)
AS ERROR_STREAM;

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 152

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Migrating Random Cut Forest workloads

If you are looking to move workloads that use Random Cut Forest from Kinesis Analytics for SQL to
Managed Service for Apache Flink, this AWS blog post demonstrates how to use Managed Service

for Apache Flink to run an online RCF algorithm for anomaly detection.

Replacing Kinesis Data Firehose as a source with Kinesis Data
Streams

See Converting-KDASQL-KDAStudio/ for a full tutorial.

In the following exercise, you will change your data flow to use Amazon Managed Service for
Apache Flink Studio. This will also mean switching from Amazon Kinesis Data Firehose to Amazon
Kinesis Data Streams.

First we share a typical KDA-SQL architecture, before showing how you can replace this using
Amazon Managed Service for Apache Flink Studio and Amazon Kinesis Data Streams. Alternatively
you can launch the AWS CloudFormation template here:

Amazon Kinesis Data Analytics-SQL and Amazon Kinesis Data Firehose

Here is the Amazon Kinesis Data Analytics SQL architectural flow:

Amazon Kinesis Data Analytics SQL Architecture

Producer H H |] E
oy = = =
@m
Streams
Amazon Kinesis Data Firehose Amazon Kinesis Data Anal

ytics $0L Amazon Kinesis Data Firehose Amazon 53

We first examine the setup of a legacy Amazon Kinesis Data Analytics-SQL and Amazon Kinesis
Data Firehose. The use case is a trading market where trading data, including stock ticker and
price, streams from external sources to Amazon Kinesis systems. Amazon Kinesis Data Analytics for
SQL uses the input stream to execute Windowed queries like Tumbling window to determine the
trade volume and the min, max and average trade price over a one-minute window for each stock
ticker.

Amazon Kinesis Data Analytics-SQL is set up to ingest data from the Amazon Kinesis Data Firehose
API. After processing, Amazon Kinesis Data Analytics-SQL sends the processed data to another
Amazon Kinesis Data Firehose, which then saves the output in an Amazon S3 bucket.

Migrating Random Cut Forest workloads 153

https://aws.amazon.com/blogs/big-data/real-time-anomaly-detection-via-random-cut-forest-in-amazon-kinesis-data-analytics/
https://github.com/aws-samples/amazon-kinesis-data-analytics-examples/tree/master/Converting-KDASQL-KDAStudio
https://github.com/aws-samples/amazon-kinesis-data-analytics-examples/blob/master/Converting-KDASQL-KDAStudio/environmentStackCfn/KdaStudioStack.template.yaml

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

In this case, you use Amazon Kinesis Data Generator. Amazon Kinesis Data Generator allows you
to send test data to your Amazon Kinesis Data Streams or Amazon Kinesis Data Firehose delivery
streams. To get started, please follow the instructions here. Use the AWS CloudFormation template

here in place of the one provided in the instructions:..

Once you run the AWS CloudFormation template, the output section will provide the Amazon
Kinesis Data Generator url. Log in to the portal using the Cognito user id and password you set

up here. Select the Region and the target stream name. For current state, choose the Amazon
Kinesis Data Firehose Delivery streams. For the new state, choose the Amazon Kinesis Data Firehose
Streams name. You can create multiple templates, depending on your requirements, and test the
template using the Test template button before sending it to the target stream.

Following is a sample payload using Amazon Kinesis Data Generator. The data generator targets
the input Amazon Kinesis Firehose Streams to stream the data continuously. The Amazon Kin