
SQL Developer Guide

Amazon Kinesis Data Analytics for SQL
Applications Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Amazon Kinesis Data Analytics for SQL Applications Developer
Guide: SQL Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Table of Contents

.. x
What Is Amazon Kinesis Data Analytics for SQL Applications? .. 1

When Should I Use Amazon Kinesis Data Analytics? .. 1
Are You a First-Time User of Amazon Kinesis Data Analytics? ... 2

How It Works ... 3
Input .. 6

Configuring a Streaming Source .. 7
Configuring a Reference Source .. 10
Working with JSONPath .. 13
Mapping Streaming Source Elements to SQL Input Columns ... 18
Using the Schema Discovery Feature on Streaming Data .. 24
Using the Schema Discovery Feature on Static Data .. 26
Preprocessing Data Using a Lambda Function ... 31
Parallelizing Input Streams for Increased Throughput ... 42

Application Code .. 47
Output .. 49

Creating an Output Using the AWS CLI ... 50
Using a Lambda Function as Output .. 52
Application Output Delivery Model .. 60

Error Handling .. 61
Reporting Errors Using an In-Application Error Stream .. 61

Auto Scaling Applications .. 63
Tagging ... 63

Adding Tags when an Application is Created ... 64
Adding or Updating Tags for an Existing Application ... 64
Listing Tags for an Application .. 65
Removing Tags from an Application .. 65

Getting Started .. 66
Sign up for an AWS account ... 66
Create an administrative user ... 67
Step 1: Set Up an Account ... 68

Sign Up for AWS ... 68
Create an IAM User .. 69
Next Step .. 69

iii

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Sign up for an AWS account ... 66
Create an administrative user ... 67
Step 2: Set Up the AWS CLI .. 71

Next Step .. 72
Step 3: Create Your Starter Analytics Application ... 72

Step 3.1: Create an Application ... 75
Step 3.2: Configure Input ... 77
Step 3.3: Add Real-Time Analytics (Add Application Code) ... 80
Step 3.4: (Optional) Update the Application Code .. 84

Step 4 (Optional) Edit the Schema and SQL Code Using the Console .. 86
Working with the Schema Editor .. 87
Working with the SQL Editor ... 96

Streaming SQL Concepts .. 100
In-Application Streams and Pumps ... 100
Timestamps and the ROWTIME Column ... 102

Understanding Various Times in Streaming Analytics .. 102
Continuous Queries ... 105
Windowed Queries ... 106

Stagger Windows .. 107
Tumbling Windows ... 112
Sliding Windows ... 114

Stream Joins ... 119
Example 1: Report Orders Where There Are Trades Within One Minute of the Order Being
Placed .. 120

Migrating to Managed Service for Apache Flink ... 122
Replicating Kinesis Data Analytics for SQL Queries in Managed Service for Apache Flink
Studio ... 122

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink
Studio .. 123

Migrating Random Cut Forest workloads ... 153
Replacing Kinesis Data Firehose as a source with Kinesis Data Streams 153

Amazon Kinesis Data Analytics-SQL and Amazon Kinesis Data Firehose 153
Amazon Managed Service for Apache Flink Studio ... 156

Leveraging user-defined functions (UDFs) ... 162
User-defined functions (UDFs) ... 163
Environment setup ... 164

iv

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Working with Managed Service for Apache Flink Studio notebook ... 165
Promoting notebook as an Application ... 168
Cleanup ... 169

Kinesis Data Analytics for SQL examples .. 170
Transforming Data ... 170

Preprocessing Streams with Lambda ... 170
Transforming String Values .. 171
Transforming DateTime Values ... 192
Transforming Multiple Data Types .. 196

Windows and Aggregation ... 204
Stagger Window ... 204
Tumbling Window Using ROWTIME ... 209
Tumbling Window Using an Event Timestamp .. 212
Most Frequently Occurring Values (TOP_K_ITEMS_TUMBLING) ... 217
Aggregating Partial Results .. 220

Joins .. 223
Example: Add Reference Data Source .. 224

Machine Learning ... 228
Detecting Anomalies .. 228
Example: Detect Anomalies and Get an Explanation .. 236
Example: Detect Hotspots .. 242

Alerts and Errors .. 255
Simple Alerts ... 256
Throttled Alerts .. 257
In-Application Error Stream ... 259

Solution Accelerators .. 261
Real-time insights on AWS account activity ... 261
Real-time AWS IoT device monitoring with Kinesis Data Analytics .. 261
Real-time web analytics with Kinesis Data Analytics .. 261
Amazon Connected Vehicle Solution ... 261

Security .. 262
Data Protection .. 263

Data Encryption .. 263
Identity and Access Management .. 264

Trust Policy .. 264
Permissions Policy .. 265

v

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Cross-service confused deputy prevention ... 268
Authentication and Access Control .. 270

Access Control ... 270
Authenticating with identities ... 270
Overview of Managing Access ... 274
Using Identity-Based Policies (IAM Policies) ... 279
API Permissions Reference .. 286

Monitoring ... 288
Compliance Validation .. 288
Resilience ... 288

Disaster Recovery ... 289
Infrastructure Security .. 289
Security Best Practices .. 289

Use IAM roles to access other Amazon services .. 290
Implement Server-Side Encryption in Dependent Resources .. 290
Use CloudTrail to Monitor API Calls ... 290

Monitoring ... 291
Monitoring Tools .. 292

Automated Tools .. 292
Manual Tools ... 293

Monitoring with Amazon CloudWatch .. 293
Metrics and Dimensions .. 294
Viewing Metrics and Dimensions .. 296
Alarms ... 297
Logs ... 298

Using AWS CloudTrail ... 305
Information in CloudTrail .. 305
Understanding Log File Entries ... 306

Limits .. 309
Best Practices ... 312

Managing Applications ... 312
Scaling Applications .. 313
Monitoring Applications ... 314
Defining Input Schema ... 314
Connecting to Outputs ... 316
Authoring Application Code .. 316

vi

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Testing Applications .. 317
Setting up a Test Application .. 317
Testing Schema Changes .. 318
Testing Code Changes ... 318

Troubleshooting ... 319
Stopped applications .. 319
Unable to Run SQL Code ... 320
Unable to Detect or Discover My Schema .. 320
Reference Data is Out of Date .. 321
Application Not Writing to Destination .. 321
Important Application Health Parameters to Monitor ... 322
Invalid Code Errors When Running an Application ... 322
Application is Writing Errors to the Error Stream ... 323
Insufficient Throughput or High MillisBehindLatest ... 323

SQL Reference .. 325
API Reference ... 326

Actions .. 326
AddApplicationCloudWatchLoggingOption .. 328
AddApplicationInput .. 331
AddApplicationInputProcessingConfiguration .. 335
AddApplicationOutput ... 339
AddApplicationReferenceDataSource ... 343
CreateApplication ... 347
DeleteApplication ... 355
DeleteApplicationCloudWatchLoggingOption .. 358
DeleteApplicationInputProcessingConfiguration ... 361
DeleteApplicationOutput .. 364
DeleteApplicationReferenceDataSource ... 367
DescribeApplication .. 370
DiscoverInputSchema ... 375
ListApplications ... 381
ListTagsForResource ... 384
StartApplication .. 387
StopApplication ... 390
TagResource ... 393
UntagResource .. 396

vii

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

UpdateApplication .. 399
Data Types ... 404

ApplicationDetail .. 407
ApplicationSummary .. 411
ApplicationUpdate .. 413
CloudWatchLoggingOption .. 415
CloudWatchLoggingOptionDescription .. 417
CloudWatchLoggingOptionUpdate ... 419
CSVMappingParameters .. 421
DestinationSchema ... 423
Input .. 424
InputConfiguration ... 427
InputDescription .. 428
InputLambdaProcessor .. 431
InputLambdaProcessorDescription .. 433
InputLambdaProcessorUpdate ... 435
InputParallelism .. 437
InputParallelismUpdate ... 438
InputProcessingConfiguration .. 439
InputProcessingConfigurationDescription ... 440
InputProcessingConfigurationUpdate ... 441
InputSchemaUpdate ... 442
InputStartingPositionConfiguration .. 444
InputUpdate ... 445
JSONMappingParameters ... 447
KinesisFirehoseInput ... 448
KinesisFirehoseInputDescription .. 450
KinesisFirehoseInputUpdate ... 451
KinesisFirehoseOutput ... 453
KinesisFirehoseOutputDescription .. 455
KinesisFirehoseOutputUpdate .. 456
KinesisStreamsInput ... 458
KinesisStreamsInputDescription .. 460
KinesisStreamsInputUpdate .. 461
KinesisStreamsOutput ... 463
KinesisStreamsOutputDescription ... 465

viii

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

KinesisStreamsOutputUpdate .. 466
LambdaOutput .. 468
LambdaOutputDescription ... 470
LambdaOutputUpdate ... 471
MappingParameters ... 473
Output ... 474
OutputDescription .. 476
OutputUpdate ... 478
RecordColumn ... 480
RecordFormat .. 482
ReferenceDataSource ... 483
ReferenceDataSourceDescription ... 485
ReferenceDataSourceUpdate .. 487
S3Configuration .. 489
S3ReferenceDataSource .. 491
S3ReferenceDataSourceDescription .. 493
S3ReferenceDataSourceUpdate ... 495
SourceSchema ... 497
Tag ... 499

Document History .. 500
AWS Glossary ... 505

ix

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

For new projects, we recommend that you use the new Managed Service for Apache Flink Studio
over Kinesis Data Analytics for SQL Applications. Managed Service for Apache Flink Studio
combines ease of use with advanced analytical capabilities, enabling you to build sophisticated
stream processing applications in minutes.

x

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

What Is Amazon Kinesis Data Analytics for SQL
Applications?

With Amazon Kinesis Data Analytics for SQL Applications, you can process and analyze streaming
data using standard SQL. The service enables you to quickly author and run powerful SQL code
against streaming sources to perform time series analytics, feed real-time dashboards, and create
real-time metrics.

To get started with Kinesis Data Analytics, you create a Kinesis Data Analytics application that
continuously reads and processes streaming data. The service supports ingesting data from
Amazon Kinesis Data Streams and Amazon Data Firehose streaming sources. Then, you author your
SQL code using the interactive editor and test it with live streaming data. You can also configure
destinations where you want Kinesis Data Analytics to send the results.

Kinesis Data Analytics supports Amazon Data Firehose (Amazon S3, Amazon Redshift, Amazon
OpenSearch Service, and Splunk), AWS Lambda, and Amazon Kinesis Data Streams as destinations.

When Should I Use Amazon Kinesis Data Analytics?

Amazon Kinesis Data Analytics enables you to quickly author SQL code that continuously reads,
processes, and stores data in near real time. Using standard SQL queries on the streaming data, you
can construct applications that transform and provide insights into your data. Following are some
of example scenarios for using Kinesis Data Analytics:

• Generate time-series analytics – You can calculate metrics over time windows, and then stream
values to Amazon S3 or Amazon Redshift through a Kinesis data delivery stream.

• Feed real-time dashboards – You can send aggregated and processed streaming data results
downstream to feed real-time dashboards.

• Create real-time metrics – You can create custom metrics and triggers for use in real-time
monitoring, notifications, and alarms.

For information about the SQL language elements that are supported by Kinesis Data Analytics,
see Amazon Kinesis Data Analytics SQL Reference.

When Should I Use Amazon Kinesis Data Analytics? 1

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Are You a First-Time User of Amazon Kinesis Data Analytics?

If you are a first-time user of Amazon Kinesis Data Analytics, we recommend that you read the
following sections in order:

1. Read the How It Works section of this guide. This section introduces various Kinesis Data
Analytics components that you work with to create an end-to-end experience. For more
information, see Amazon Kinesis Data Analytics for SQL Applications: How It Works.

2. Try the Getting Started exercises. For more information, see Getting Started with Amazon
Kinesis Data Analytics for SQL Applications.

3. Explore the streaming SQL concepts. For more information, see Streaming SQL Concepts.

4. Try additional examples. For more information, see Kinesis Data Analytics for SQL examples.

Are You a First-Time User of Amazon Kinesis Data Analytics? 2

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Amazon Kinesis Data Analytics for SQL Applications:
How It Works

Note

After September 12, 2023, you will not able to create new applications using Kinesis Data
Firehose as a source if you do not already use Kinesis Data Analytics for SQL. For more
information, see Limits.

An application is the primary resource in Amazon Kinesis Data Analytics that you can create in
your account. You can create and manage applications using the AWS Management Console or the
Kinesis Data Analytics API. Kinesis Data Analytics provides API operations to manage applications.
For a list of API operations, see Actions.

Kinesis Data Analytics applications continuously read and process streaming data in real time. You
write application code using SQL to process the incoming streaming data and produce output.
Then, Kinesis Data Analytics writes the output to a configured destination. The following diagram
illustrates a typical application architecture.

Each application has a name, description, version ID, and status. Amazon Kinesis Data Analytics
assigns a version ID when you first create an application. This version ID is updated when you

3

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

update any application configuration. For example, if you add an input configuration, add or delete
a reference data source, add or delete an output configuration, or update application code, Kinesis
Data Analytics updates the current application version ID. Kinesis Data Analytics also maintains
timestamps for when an application was created and last updated.

In addition to these basic properties, each application consists of the following:

• Input – The streaming source for your application. You can select either a Kinesis data stream
or a Firehose data delivery stream as the streaming source. In the input configuration, you
map the streaming source to an in-application input stream. The in-application stream is like
a continuously updating table upon which you can perform the SELECT and INSERT SQL
operations. In your application code, you can create additional in-application streams to store
intermediate query results.

You can optionally partition a single streaming source in multiple in-application input streams to
improve the throughput. For more information, see Limits and Configuring Application Input.

Amazon Kinesis Data Analytics provides a timestamp column in each application stream called
Timestamps and the ROWTIME Column. You can use this column in time-based windowed
queries. For more information, see Windowed Queries.

You can optionally configure a reference data source to enrich your input data stream within the
application. It results in an in-application reference table. You must store your reference data as
an object in your S3 bucket. When the application starts, Amazon Kinesis Data Analytics reads
the Amazon S3 object and creates an in-application table. For more information, see Configuring
Application Input.

• Application code – A series of SQL statements that process input and produce output. You can
write SQL statements against in-application streams and reference tables. You can also write
JOIN queries to combine data from both of these sources.

4

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

For information about the SQL language elements that are supported by Kinesis Data Analytics,
see Amazon Kinesis Data Analytics SQL Reference.

In its simplest form, application code can be a single SQL statement that selects from a
streaming input and inserts results into a streaming output. It can also be a series of SQL
statements where output of one feeds into the input of the next SQL statement. Further, you
can write application code to split an input stream into multiple streams. You can then apply
additional queries to process these streams. For more information, see Application Code.

• Output – In application code, query results go to in-application streams. In your application
code, you can create one or more in-application streams to hold intermediate results. You can
then optionally configure the application output to persist data in the in-application streams
that hold your application output (also referred to as in-application output streams) to external
destinations. External destinations can be a Firehose delivery stream or a Kinesis data stream.
Note the following about these destinations:

• You can configure a Firehose delivery stream to write results to Amazon S3, Amazon Redshift,
or Amazon OpenSearch Service (OpenSearch Service).

• You can also write application output to a custom destination instead of Amazon S3 or
Amazon Redshift. To do that, you specify a Kinesis data stream as the destination in your
output configuration. Then, you configure AWS Lambda to poll the stream and invoke
your Lambda function. Your Lambda function code receives stream data as input. In your
Lambda function code, you can write the incoming data to your custom destination. For more
information, see Using AWS Lambda with Amazon Kinesis Data Analytics.

For more information, see Configuring Application Output.

In addition, note the following:

• Amazon Kinesis Data Analytics needs permissions to read records from a streaming source
and write application output to the external destinations. You use IAM roles to grant these
permissions.

5

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Kinesis Data Analytics automatically provides an in-application error stream for each application.
If your application has issues while processing certain records (for example, because of a type
mismatch or late arrival), that record is written to the error stream. You can configure application
output to direct Kinesis Data Analytics to persist the error stream data to an external destination
for further evaluation. For more information, see Error Handling.

• Amazon Kinesis Data Analytics ensures that your application output records are written to the
configured destination. It uses an "at least once" processing and delivery model, even if you
experience an application interruption. For more information, see Delivery Model for Persisting
Application Output to an External Destination.

Topics

• Configuring Application Input

• Application Code

• Configuring Application Output

• Error Handling

• Automatically Scaling Applications to Increase Throughput

• Using Tagging

Configuring Application Input

Your Amazon Kinesis Data Analytics application can receive input from a single streaming source
and, optionally, use one reference data source. For more information, see Amazon Kinesis Data
Analytics for SQL Applications: How It Works. The sections in this topic describe the application
input sources.

Topics

• Configuring a Streaming Source

• Configuring a Reference Source

• Working with JSONPath

• Mapping Streaming Source Elements to SQL Input Columns

Input 6

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Using the Schema Discovery Feature on Streaming Data

• Using the Schema Discovery Feature on Static Data

• Preprocessing Data Using a Lambda Function

• Parallelizing Input Streams for Increased Throughput

Configuring a Streaming Source

At the time that you create an application, you specify a streaming source. You can also modify
an input after you create the application. Amazon Kinesis Data Analytics supports the following
streaming sources for your application:

• A Kinesis data stream

• A Firehose delivery stream

Note

After September 12, 2023, you will not able to create new applications using Kinesis Data
Firehose as a source if you do not already use Kinesis Data Analytics for SQL. Existing
customers using Kinesis Data Analytics for SQL applications with KinesisFirehoseInput
can continue to add applications with KinesisFirehoseInput within an existing account
using Kinesis Data Analytics. If you are an existing customer and wish to create a new
account with Kinesis Data Analytics for SQL applications with KinesisFirehoseInput,
you can create a case via the service limit increase form. For more information, see the AWS
Support Center. We recommend always testing any new applications before promoting to
production.

Note

If the Kinesis data stream is encrypted, Kinesis Data Analytics accesses the data in the
encrypted stream seamlessly with no further configuration needed. Kinesis Data Analytics
does not store unencrypted data read from Kinesis Data Streams. For more information,
see What Is Server-Side Encryption For Kinesis Data Streams?.

Configuring a Streaming Source 7

https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/
https://docs.aws.amazon.com/streams/latest/dev/what-is-sse.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Kinesis Data Analytics continuously polls the streaming source for new data and ingests it in in-
application streams according to the input configuration.

Note

Adding a Kinesis Stream as your application's input does not affect the data in the stream.
If another resource such as a Firehose delivery stream also accessed the same Kinesis
stream, both the Firehose delivery stream and the Kinesis Data Analytics application would
receive the same data. Throughput and throttling might be affected, however.

Your application code can query the in-application stream. As part of input configuration you
provide the following:

• Streaming source – You provide the Amazon Resource Name (ARN) of the stream and an IAM
role that Kinesis Data Analytics can assume to access the stream on your behalf.

• In-application stream name prefix – When you start the application, Kinesis Data Analytics
creates the specified in-application stream. In your application code, you access the in-
application stream using this name.

You can optionally map a streaming source to multiple in-application streams. For more
information, see Limits. In this case, Amazon Kinesis Data Analytics creates the specified number
of in-application streams with names as follows: prefix_001, prefix_002, and prefix_003.
By default, Kinesis Data Analytics maps the streaming source to one in-application stream named
prefix_001.

There is a limit on the rate that you can insert rows in an in-application stream. Therefore,
Kinesis Data Analytics supports multiple such in-application streams so that you can bring
records into your application at a much faster rate. If you find that your application is not
keeping up with the data in the streaming source, you can add units of parallelism to improve
performance.

• Mapping schema – You describe the record format (JSON, CSV) on the streaming source. You
also describe how each record on the stream maps to columns in the in-application stream that is
created. This is where you provide column names and data types.

Configuring a Streaming Source 8

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Note

Kinesis Data Analytics adds quotation marks around the identifiers (stream name and
column names) when creating the input in-application stream. When querying this stream
and the columns, you must specify them in quotation marks using the same casing
(matching lowercase and uppercase letters exactly). For more information about identifiers,
see Identifiers in the Amazon Managed Service for Apache Flink SQL Reference.

You can create an application and configure inputs in the Amazon Kinesis Data Analytics console.
The console then makes the necessary API calls. You can configure application input when
you create a new application API or add input configuration to an existing application. For
more information, see CreateApplication and AddApplicationInput. The following is the input
configuration part of the Createapplication API request body:

 "Inputs": [
 {
 "InputSchema": {
 "RecordColumns": [
 {
 "Mapping": "string",
 "Name": "string",
 "SqlType": "string"
 }
],
 "RecordEncoding": "string",
 "RecordFormat": {
 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordColumnDelimiter": "string",
 "RecordRowDelimiter": "string"
 },
 "JSONMappingParameters": {
 "RecordRowPath": "string"
 }
 },
 "RecordFormatType": "string"
 }
 },
 "KinesisFirehoseInput": {
 "ResourceARN": "string",

Configuring a Streaming Source 9

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-identifiers.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "RoleARN": "string"
 },
 "KinesisStreamsInput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "Name": "string"
 }
]

Configuring a Reference Source

You can also optionally add a reference data source to an existing application to enrich the data
coming in from streaming sources. You must store reference data as an object in your Amazon S3
bucket. When the application starts, Amazon Kinesis Data Analytics reads the Amazon S3 object
and creates an in-application reference table. Your application code can then join it with an in-
application stream.

You store reference data in the Amazon S3 object using supported formats (CSV, JSON). For
example, suppose that your application performs analytics on stock orders. Assume the following
record format on the streaming source:

Ticker, SalePrice, OrderId

AMZN $700 1003
XYZ $250 1004
...

In this case, you might then consider maintaining a reference data source to provide details for
each stock ticker, such as company name.

Ticker, Company
AMZN, Amazon
XYZ, SomeCompany
...

You can add an application reference data source either with the API or with the console. Amazon
Kinesis Data Analytics provides the following API actions to manage reference data sources:

• AddApplicationReferenceDataSource

Configuring a Reference Source 10

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• UpdateApplication

For information about adding reference data using the console, see Example: Adding Reference
Data to a Kinesis Data Analytics Application.

Note the following:

• If the application is running, Kinesis Data Analytics creates an in-application reference table, and
then loads the reference data immediately.

• If the application is not running (for example, it's in the ready state), Kinesis Data Analytics
saves only the updated input configuration. When the application starts running, Kinesis Data
Analytics loads the reference data in your application as a table.

Suppose that you want to refresh the data after Kinesis Data Analytics creates the in-application
reference table. Perhaps you updated the Amazon S3 object, or you want to use a different
Amazon S3 object. In this case, you can either explicitly call UpdateApplication, or choose Actions,
Synchronize reference data table in the console. Kinesis Data Analytics does not refresh the in-
application reference table automatically.

There is a limit on the size of the Amazon S3 object that you can create as a reference data source.
For more information, see Limits. If the object size exceeds the limit, Kinesis Data Analytics can't
load the data. The application state appears as running, but the data is not being read.

When you add a reference data source, you provide the following information:

• S3 bucket and object key name – In addition to the bucket name and object key, you also
provide an IAM role that Kinesis Data Analytics can assume to read the object on your behalf.

• In-application reference table name – Kinesis Data Analytics creates this in-application table
and populates it by reading the Amazon S3 object. This is the table name you specify in your
application code.

• Mapping schema – You describe the record format (JSON, CSV), encoding of data stored in
the Amazon S3 object. You also describe how each data element maps to columns in the in-
application reference table.

The following shows the request body in the AddApplicationReferenceDataSource API
request.

Configuring a Reference Source 11

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

{
 "applicationName": "string",
 "CurrentapplicationVersionId": number,
 "ReferenceDataSource": {
 "ReferenceSchema": {
 "RecordColumns": [
 {
 "IsDropped": boolean,
 "Mapping": "string",
 "Name": "string",
 "SqlType": "string"
 }
],
 "RecordEncoding": "string",
 "RecordFormat": {
 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordColumnDelimiter": "string",
 "RecordRowDelimiter": "string"
 },
 "JSONMappingParameters": {
 "RecordRowPath": "string"
 }
 },
 "RecordFormatType": "string"
 }
 },
 "S3ReferenceDataSource": {
 "BucketARN": "string",
 "FileKey": "string",
 "ReferenceRoleARN": "string"
 },
 "TableName": "string"
 }
}

Configuring a Reference Source 12

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Working with JSONPath

Note

After September 12, 2023, you will not able to create new applications using Kinesis Data
Firehose as a source if you do not already use Kinesis Data Analytics for SQL. For more
information, see Limits.

JSONPath is a standardized way to query elements of a JSON object. JSONPath uses path
expressions to navigate elements, nested elements, and arrays in a JSON document. For more
information about JSON, see Introducing JSON.

Amazon Kinesis Data Analytics uses JSONPath expressions in the application's source schema to
identify data elements in a streaming source that contains JSON-format data.

For more information about how to map streaming data to your application's input stream, see the
section called “Mapping Streaming Source Elements to SQL Input Columns”.

Accessing JSON Elements with JSONPath

Following, you can find how to use JSONPath expressions to access various elements in JSON-
formatted data. For the examples in this section, assume that the source stream contains the
following JSON record:

{
 "customerName":"John Doe",
 "address":
 {
 "streetAddress":
 [
 "number":"123",
 "street":"AnyStreet"
],
 "city":"Anytown"
 }
 "orders":
 [
 { "orderId":"23284", "itemName":"Widget", "itemPrice":"33.99" },
 { "orderId":"63122", "itemName":"Gadget", "itemPrice":"22.50" },
 { "orderId":"77284", "itemName":"Sprocket", "itemPrice":"12.00" }

Working with JSONPath 13

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html
http://www.json.org/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

]
}

Accessing JSON Elements

To query an element in JSON data using JSONPath, use the following syntax. Here, $ represents
the root of the data hierarchy and elementName is the name of the element node to query.

$.elementName

The following expression queries the customerName element in the preceding JSON example.

$.customerName

The preceding expression returns the following from the preceding JSON record.

John Doe

Note

Path expressions are case sensitive. The expression $.customername returns null from
the preceding JSON example.

Note

If no element appears at the location where the path expression specifies, the expression
returns null. The following expression returns null from the preceding JSON example,
because there is no matching element.

$.customerId

Accessing Nested JSON Elements

To query a nested JSON element, use the following syntax.

Working with JSONPath 14

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

$.parentElement.element

The following expression queries the city element in the preceding JSON example.

$.address.city

The preceding expression returns the following from the preceding JSON record.

Anytown

You can query further levels of subelements using the following syntax.

$.parentElement.element.subElement

The following expression queries the street element in the preceding JSON example.

$.address.streetAddress.street

The preceding expression returns the following from the preceding JSON record.

AnyStreet

Accessing Arrays

You can access the data in a JSON array in the following ways:

• Retrieve all the elements in the array as a single row.

• Retrieve each element in the array as a separate row.

Retrieve All Elements in an Array in a Single Row

To query the entire contents of an array as a single row, use the following syntax.

$.arrayObject[0:]

The following expression queries the entire contents of the orders element in the preceding JSON
example used in this section. It returns the array contents in a single column in a single row.

Working with JSONPath 15

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

$.orders[0:]

The preceding expression returns the following from the example JSON record used in this section.

[{"orderId":"23284","itemName":"Widget","itemPrice":"33.99"},
{"orderId":"61322","itemName":"Gadget","itemPrice":"22.50"},
{"orderId":"77284","itemName":"Sprocket","itemPrice":"12.00"}]

Retrieve All Elements in an Array in Separate Rows

To query the individual elements in an array as separate rows, use the following syntax.

$.arrayObject[0:].element

The following expression queries the orderId elements in the preceding JSON example, and
returns each array element as a separate row.

$.orders[0:].orderId

The preceding expression returns the following from the preceding JSON record, with each data
item returned as a separate row.

23284

63122

77284

Note

If expressions that query nonarray elements are included in a schema that queries
individual array elements, the nonarray elements are repeated for each element in the
array. For example, suppose that a schema for the preceding JSON example includes the
following expressions:

• $.customerName

• $.orders[0:].orderId

Working with JSONPath 16

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

In this case, the returned data rows from the sample input stream element resemble the
following, with the name element repeated for every orderId element.

John Doe 23284

John Doe 63122

John Doe 77284

Note

The following limitations apply to array expressions in Amazon Kinesis Data Analytics:

• Only one level of dereferencing is supported in an array expression. The following
expression format is not supported.

$.arrayObject[0:].element[0:].subElement

• Only one array can be flattened in a schema. Multiple arrays can be referenced—returned
as one row containing all of the elements in the array. However, only one array can have
each of its elements returned as individual rows.

A schema containing elements in the following format is valid. This format returns the
contents of the second array as a single column, repeated for every element in the first
array.

$.arrayObjectOne[0:].element
$.arrayObjectTwo[0:]

A schema containing elements in the following format is not valid.

$.arrayObjectOne[0:].element
$.arrayObjectTwo[0:].element

Working with JSONPath 17

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Other Considerations

Additional considerations for working with JSONPath are as follows:

• If no arrays are accessed by an individual element in the JSONPath expressions in the application
schema, then a single row is created in the application's input stream for each JSON record
processed.

• When an array is flattened (that is, its elements are returned as individual rows), any missing
elements result in a null value being created in the in-application stream.

• An array is always flattened to at least one row. If no values would be returned (that is, the array
is empty or none of its elements are queried), a single row with all null values is returned.

The following expression returns records with null values from the preceding JSON example,
because there is no matching element at the specified path.

$.orders[0:].itemId

The preceding expression returns the following from the preceding JSON example record.

null

null

null

Related Topics

• Introducing JSON

Mapping Streaming Source Elements to SQL Input Columns

Note

After September 12, 2023, you will not able to create new applications using Kinesis Data
Firehose as a source if you do not already use Kinesis Data Analytics for SQL. For more
information, see Limits.

Mapping Streaming Source Elements to SQL Input Columns 18

http://www.json.org/
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

With Amazon Kinesis Data Analytics, you can process and analyze streaming data in either JSON or
CSV formats using standard SQL.

• To process and analyze streaming CSV data, you assign column names and data types for the
columns of the input stream. Your application imports one column from the input stream per
column definition, in order.

You don't have to include all of the columns in the application input stream, but you cannot skip
columns from the source stream. For example, you can import the first three columns from an
input stream containing five elements, but you cannot import only columns 1, 2, and 4.

• To process and analyze streaming JSON data, you use JSONPath expressions to map JSON
elements from a streaming source to SQL columns in an input stream. For more information
about using JSONPath with Amazon Kinesis Data Analytics, see Working with JSONPath. The
columns in the SQL table have data types that are mapped from JSON types. For supported data
types, see Data Types. For details about converting JSON data to SQL data, see Mapping JSON
Data Types to SQL Data Types.

For more information about how to configure input streams, see Configuring Application Input.

Mapping JSON Data to SQL Columns

You can map JSON elements to input columns using the AWS Management Console or the Kinesis
Data Analytics API.

• To map elements to columns using the console, see Working with the Schema Editor.

• To map elements to columns using the Kinesis Data Analytics API, see the following section.

To map JSON elements to columns in the in-application input stream, you need a schema with the
following information for each column:

• Source Expression: The JSONPath expression that identifies the location of the data for the
column.

• Column Name: The name that your SQL queries use to reference the data.

• Data Type: The SQL data type for the column.

Mapping Streaming Source Elements to SQL Input Columns 19

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-data-types.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Using the API

To map elements from a streaming source to input columns, you can use the Kinesis Data Analytics
API CreateApplication action. To create the in-application stream, specify a schema to transform
your data into a schematized version used in SQL. The CreateApplication action configures your
application to receive input from a single streaming source. To map JSON elements or CSV columns
to SQL columns, you create a RecordColumn object in the SourceSchema RecordColumns array.
The RecordColumn object has the following schema:

{
 "Mapping": "String",
 "Name": "String",
 "SqlType": "String"
}

The fields in the RecordColumn object have the following values:

• Mapping: The JSONPath expression that identifies the location of the data in the input stream
record. This value is not present for an input schema for a source stream in CSV format.

• Name: The column name in the in-application SQL data stream.

• SqlType: The data type of the data in the in-application SQL data stream.

JSON Input Schema Example

The following example demonstrates the format of the InputSchema value for a JSON schema.

"InputSchema": {
 "RecordColumns": [
 {
 "SqlType": "VARCHAR(4)",
 "Name": "TICKER_SYMBOL",
 "Mapping": "$.TICKER_SYMBOL"
 },
 {
 "SqlType": "VARCHAR(16)",
 "Name": "SECTOR",
 "Mapping": "$.SECTOR"
 },

Mapping Streaming Source Elements to SQL Input Columns 20

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 {
 "SqlType": "TINYINT",
 "Name": "CHANGE",
 "Mapping": "$.CHANGE"
 },
 {
 "SqlType": "DECIMAL(5,2)",
 "Name": "PRICE",
 "Mapping": "$.PRICE"
 }
],
 "RecordFormat": {
 "MappingParameters": {
 "JSONMappingParameters": {
 "RecordRowPath": "$"
 }
 },
 "RecordFormatType": "JSON"
 },
 "RecordEncoding": "UTF-8"
}

CSV Input Schema Example

The following example demonstrates the format of the InputSchema value for a schema in
comma-separated value (CSV) format.

"InputSchema": {
 "RecordColumns": [
 {
 "SqlType": "VARCHAR(16)",
 "Name": "LastName"
 },
 {
 "SqlType": "VARCHAR(16)",
 "Name": "FirstName"
 },
 {
 "SqlType": "INTEGER",
 "Name": "CustomerId"
 }
],

Mapping Streaming Source Elements to SQL Input Columns 21

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "RecordFormat": {
 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordColumnDelimiter": ",",
 "RecordRowDelimiter": "\n"
 }
 },
 "RecordFormatType": "CSV"
 },
 "RecordEncoding": "UTF-8"
}

Mapping JSON Data Types to SQL Data Types

JSON data types are converted to corresponding SQL data types according to the application's
input schema. For information about supported SQL data types, see Data Types. Amazon Kinesis
Data Analytics converts JSON data types to SQL data types according to the following rules.

Null Literal

A null literal in the JSON input stream (that is, "City":null) converts to a SQL null regardless of
destination data type.

Boolean Literal

A Boolean literal in the JSON input stream (that is, "Contacted":true) converts to SQL data as
follows:

• Numeric (DECIMAL, INT, and so on): true converts to 1; false converts to 0.

• Binary (BINARY or VARBINARY):

• true: Result has lowest bit set and remaining bits cleared.

• false: Result has all bits cleared.

Conversion to VARBINARY results in a value 1 byte in length.

• BOOLEAN: Converts to the corresponding SQL BOOLEAN value.

• Character (CHAR or VARCHAR): Converts to the corresponding string value (true or false). The
value is truncated to fit the length of the field.

Mapping Streaming Source Elements to SQL Input Columns 22

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-data-types.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Datetime (DATE, TIME, or TIMESTAMP): Conversion fails and a coercion error is written to the
error stream.

Number

A number literal in the JSON input stream (that is, "CustomerId":67321) converts to SQL data
as follows:

• Numeric (DECIMAL, INT, and so on): Converts directly. If the converted value exceeds the size
or precision of the target data type (that is, converting 123.4 to INT), conversion fails and a
coercion error is written to the error stream.

• Binary (BINARY or VARBINARY): Conversion fails and a coercion error is written to the error
stream.

• BOOLEAN:

• 0: Converts to false.

• All other numbers: Converts to true.

• Character (CHAR or VARCHAR): Converts to a string representation of the number.

• Datetime (DATE, TIME, or TIMESTAMP): Conversion fails and a coercion error is written to the
error stream.

String

A string value in the JSON input stream (that is, "CustomerName":"John Doe") converts to SQL
data as follows:

• Numeric (DECIMAL, INT, and so on): Amazon Kinesis Data Analytics attempts to convert the value
to the target data type. If the value cannot be converted, conversion fails and a coercion error is
written to the error stream.

• Binary (BINARY or VARBINARY): If the source string is a valid binary literal (that is, X'3F67A23A',
with an even number of f), the value is converted to the target data type. Otherwise, conversion
fails and a coercion error is written to the error stream.

• BOOLEAN: If the source string is "true", converts to true. This comparison is case-insensitive.
Otherwise, converts to false.

• Character (CHAR or VARCHAR): Converts to the string value in the input. If the value is longer
than the target data type, it is truncated and no error is written to the error stream.

Mapping Streaming Source Elements to SQL Input Columns 23

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Datetime (DATE, TIME, or TIMESTAMP): If the source string is in a format that can be converted
to the target value, the value is converted. Otherwise, conversion fails and a coercion error is
written to the error stream.

Valid datetime formats include:

• "1992-02-14"

• "1992-02-14 18:35:44.0"

Array or Object

An array or object in the JSON input stream converts to SQL data as follows:

• Character (CHAR or VARCHAR): Converts to the source text of the array or object. See Accessing
Arrays.

• All other data types: Conversion fails and a coercion error is written to the error stream.

For an example of a JSON array, see Working with JSONPath.

Related Topics

• Configuring Application Input

• Data Types

• Working with the Schema Editor

• CreateApplication

• RecordColumn

• SourceSchema

Using the Schema Discovery Feature on Streaming Data

Note

After September 12, 2023, you will not able to create new applications using Kinesis Data
Firehose as a source if you do not already use Kinesis Data Analytics for SQL. For more
information, see Limits.

Using the Schema Discovery Feature on Streaming Data 24

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-data-types.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Providing an input schema that describes how records on the streaming input map to an in-
application stream can be cumbersome and error prone. You can use the DiscoverInputSchema API
(called the discovery API) to infer a schema. Using random samples of records on the streaming
source, the API can infer a schema (that is, column names, data types, and position of the data
element in the incoming data).

Note

To use the Discovery API to generate a schema from a file stored in Amazon S3, see Using
the Schema Discovery Feature on Static Data.

The console uses the Discovery API to generate a schema for a specified streaming source. Using
the console, you can also update the schema, including adding or removing columns, changing
column names or data types, and so on. However, make changes carefully to ensure that you do
not create an invalid schema.

After you finalize a schema for your in-application stream, there are functions you can use to
manipulate string and datetime values. You can use these functions in your application code when
working with rows in the resulting in-application stream. For more information, see Example:
Transforming DateTime Values.

Column Naming During Schema Discovery

During schema discovery, Amazon Kinesis Data Analytics tries to retain as much of the original
column name as possible from the streaming input source, except in the following cases:

• The source stream column name is a reserved SQL keyword, such as TIMESTAMP, USER, VALUES,
or YEAR.

• The source stream column name contains unsupported characters. Only letters, numbers, and
the underscore character (_) are supported.

• The source stream column name begins with a number.

• The source stream column name is longer than 100 characters.

If a column is renamed, the renamed schema column name begins with COL_. In some cases, none
of the original column name can be retained—for example, if the entire name is unsupported
characters. In such a case, the column is named COL_#, with # being a number indicating the
column's place in the column order.

Using the Schema Discovery Feature on Streaming Data 25

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

After discovery completes, you can update the schema using the console to add or remove
columns, or change column names, data types, or data size.

Examples of Discovery-Suggested Column Names

Source Stream Column Name Discovery-Suggested Column Name

USER COL_USER

USER@DOMAIN COL_USERDOMAIN

@@ COL_0

Schema Discovery Issues

What happens if Kinesis Data Analytics does not infer a schema for a given streaming source?

Kinesis Data Analytics infers your schema for common formats, such as CSV and JSON, which are
UTF-8 encoded. Kinesis Data Analytics supports any UTF-8 encoded records (including raw text
like application logs and records) with a custom column and row delimiter. If Kinesis Data Analytics
doesn't infer a schema, you can define a schema manually using the schema editor on the console
(or using the API).

If your data does not follow a pattern (which you can specify using the schema editor), you
can define a schema as a single column of type VARCHAR(N), where N is the largest number
of characters you expect your record to include. From there, you can use string and date-time
manipulation to structure your data after it is in an in-application stream. For examples, see
Example: Transforming DateTime Values.

Using the Schema Discovery Feature on Static Data

Note

After September 12, 2023, you will not able to create new applications using Kinesis Data
Firehose as a source if you do not already use Kinesis Data Analytics for SQL. For more
information, see Limits.

Using the Schema Discovery Feature on Static Data 26

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

The schema discovery feature can generate a schema from either the data in a stream or data in
a static file that is stored in an Amazon S3 bucket. Suppose that you want to generate a schema
for a Kinesis Data Analytics application for reference purposes or when live streaming data isn't
available. You can use the schema discovery feature on a static file that contains a sample of the
data in the expected format of your streaming or reference data. Kinesis Data Analytics can run
schema discovery on sample data from a JSON or CSV file that's stored in an Amazon S3 bucket.
Using schema discovery on a data file uses either the console, or the DiscoverInputSchema API with
the S3Configuration parameter specified.

Running Schema Discovery Using the Console

To run discovery on a static file using the console, do the following:

1. Add a reference data object to an S3 bucket.

2. Choose Connect reference data in the application's main page in the Kinesis Data Analytics
console.

3. Provide the bucket, path and IAM role data for accessing the Amazon S3 object containing the
reference data.

4. Choose Discover schema.

For more information on how to add reference data and discover schema in the console, see
Example: Adding Reference Data to a Kinesis Data Analytics Application.

Running Schema Discovery Using the API

To run discovery on a static file using the API, you provide the API with an S3Configuration
structure with the following information:

• BucketARN: The Amazon Resource Name (ARN) of the Amazon S3 bucket that contains the file.
For the format of an Amazon S3 bucket ARN, see Amazon Resource Names (ARNs) and Amazon
Service Namespaces: Amazon Simple Storage Service (Amazon S3).

• RoleARN: The ARN of an IAM role with the AmazonS3ReadOnlyAccess policy. For information
about how to add a policy to a role, see Modifying a Role.

• FileKey: The file name of the object.

Using the Schema Discovery Feature on Static Data 27

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-s3
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-s3
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

To generate a schema from an Amazon S3 object using the DiscoverInputSchema API

1. Make sure that you have the AWS CLI set up. For more information, see Step 2: Set Up the AWS
Command Line Interface (AWS CLI) in the Getting Started section.

2. Create a file named data.csv with the following contents:

year,month,state,producer_type,energy_source,units,consumption
2001,1,AK,TotalElectricPowerIndustry,Coal,ShortTons,47615
2001,1,AK,ElectricGeneratorsElectricUtilities,Coal,ShortTons,16535
2001,1,AK,CombinedHeatandPowerElectricPower,Coal,ShortTons,22890
2001,1,AL,TotalElectricPowerIndustry,Coal,ShortTons,3020601
2001,1,AL,ElectricGeneratorsElectricUtilities,Coal,ShortTons,2987681

3. Sign in to the Amazon S3 console at https://console.aws.amazon.com/s3/.

4. Create an Amazon S3 bucket and upload the data.csv file you created. Note the ARN of the
created bucket. For information about creating an Amazon S3 bucket and uploading a file, see
Getting Started with Amazon Simple Storage Service.

5. Open the IAM console at https://console.aws.amazon.com/iam/. Create a role with the
AmazonS3ReadOnlyAccess policy. Note the ARN of the new role. For information about
creating a role, see Creating a Role to Delegate Permissions to an Amazon Service. For
information about how to add a policy to a role, see Modifying a Role.

6. Run the following DiscoverInputSchema command in the AWS CLI, substituting the ARNs
for your Amazon S3 bucket and IAM role:

$aws kinesisanalytics discover-input-schema --s3-configuration '{ "RoleARN":
 "arn:aws:iam::123456789012:role/service-role/your-IAM-role", "BucketARN":
 "arn:aws:s3:::your-bucket-name", "FileKey": "data.csv" }'

7. The response looks similar to the following:

{
 "InputSchema": {
 "RecordEncoding": "UTF-8",
 "RecordColumns": [
 {
 "SqlType": "INTEGER",
 "Name": "COL_year"
 },
 {
 "SqlType": "INTEGER",

Using the Schema Discovery Feature on Static Data 28

https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "Name": "COL_month"
 },
 {
 "SqlType": "VARCHAR(4)",
 "Name": "state"
 },
 {
 "SqlType": "VARCHAR(64)",
 "Name": "producer_type"
 },
 {
 "SqlType": "VARCHAR(4)",
 "Name": "energy_source"
 },
 {
 "SqlType": "VARCHAR(16)",
 "Name": "units"
 },
 {
 "SqlType": "INTEGER",
 "Name": "consumption"
 }
],
 "RecordFormat": {
 "RecordFormatType": "CSV",
 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordRowDelimiter": "\r\n",
 "RecordColumnDelimiter": ","
 }
 }
 }
 },
 "RawInputRecords": [
 "year,month,state,producer_type,energy_source,units,consumption
\r\n2001,1,AK,TotalElectricPowerIndustry,Coal,ShortTons,47615\r
\n2001,1,AK,ElectricGeneratorsElectricUtilities,Coal,ShortTons,16535\r
\n2001,1,AK,CombinedHeatandPowerElectricPower,Coal,ShortTons,22890\r
\n2001,1,AL,TotalElectricPowerIndustry,Coal,ShortTons,3020601\r
\n2001,1,AL,ElectricGeneratorsElectricUtilities,Coal,ShortTons,2987681"
],
 "ParsedInputRecords": [
 [
 null,

Using the Schema Discovery Feature on Static Data 29

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 null,
 "state",
 "producer_type",
 "energy_source",
 "units",
 null
],
 [
 "2001",
 "1",
 "AK",
 "TotalElectricPowerIndustry",
 "Coal",
 "ShortTons",
 "47615"
],
 [
 "2001",
 "1",
 "AK",
 "ElectricGeneratorsElectricUtilities",
 "Coal",
 "ShortTons",
 "16535"
],
 [
 "2001",
 "1",
 "AK",
 "CombinedHeatandPowerElectricPower",
 "Coal",
 "ShortTons",
 "22890"
],
 [
 "2001",
 "1",
 "AL",
 "TotalElectricPowerIndustry",
 "Coal",
 "ShortTons",
 "3020601"
],
 [

Using the Schema Discovery Feature on Static Data 30

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "2001",
 "1",
 "AL",
 "ElectricGeneratorsElectricUtilities",
 "Coal",
 "ShortTons",
 "2987681"
]
]
}

Preprocessing Data Using a Lambda Function

Note

After September 12, 2023, you will not able to create new applications using Kinesis Data
Firehose as a source if you do not already use Kinesis Data Analytics for SQL. For more
information, see Limits.

If the data in your stream needs format conversion, transformation, enrichment, or filtering, you
can preprocess the data using an AWS Lambda function. You can do this before your application
SQL code executes or before your application creates a schema from your data stream.

Using a Lambda function for preprocessing records is useful in the following scenarios:

• Transforming records from other formats (such as KPL or GZIP) into formats that Kinesis Data
Analytics can analyze. Kinesis Data Analytics currently supports JSON or CSV data formats.

• Expanding data into a format that is more accessible for operations such as aggregation or
anomaly detection. For instance, if several data values are stored together in a string, you can
expand the data into separate columns.

• Data enrichment with other Amazon services, such as extrapolation or error correction.

• Applying complex string transformation to record fields.

• Data filtering for cleaning up the data.

Preprocessing Data Using a Lambda Function 31

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Using a Lambda Function for Preprocessing Records

When creating your Kinesis Data Analytics application, you enable Lambda preprocessing in the
Connect to a Source page.

To use a Lambda function to preprocess records in a Kinesis Data Analytics application

1. Sign in to the AWS Management Console and open the Managed Service for Apache Flink
console at https://console.aws.amazon.com/kinesisanalytics.

2. On the Connect to a Source page for your application, choose Enabled in the Record pre-
processing with AWS Lambda section.

3. To use a Lambda function that you have already created, choose the function in the Lambda
function drop-down list.

4. To create a new Lambda function from one of the Lambda preprocessing templates, choose
the template from the drop-down list. Then choose View <template name> in Lambda to edit
the function.

5. To create a new Lambda function, choose Create new. For information about creating a
Lambda function, see Create a HelloWorld Lambda Function and Explore the Console in the
AWS Lambda Developer Guide.

6. Choose the version of the Lambda function to use. To use the latest version, choose $LATEST.

When you choose or create a Lambda function for record preprocessing, the records are
preprocessed before your application SQL code executes or your application generates a schema
from the records.

Lambda Preprocessing Permissions

To use Lambda preprocessing, the application's IAM role requires the following permissions policy:

 {
 "Sid": "UseLambdaFunction",
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunctionConfiguration"
],
 "Resource": "<FunctionARN>"
 }

Preprocessing Data Using a Lambda Function 32

https://console.aws.amazon.com/kinesisanalytics
https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Lambda Preprocessing Metrics

You can use Amazon CloudWatch to monitor the number of Lambda invocations, bytes processed,
successes and failures, and so on. For information about CloudWatch metrics that are emitted by
Kinesis Data Analytics Lambda preprocessing, see Amazon Kinesis Analytics Metrics.

Using AWS Lambda with the Kinesis Producer Library

The Kinesis Producer Library (KPL) aggregates small user-formatted records into larger records up
to 1 MB to make better use of Amazon Kinesis Data Streams throughput. The Kinesis Client Library
(KCL) for Java supports deaggregating these records. However, you must use a special module to
deaggregate the records when you use AWS Lambda as the consumer of your streams.

To get the necessary project code and instructions, see the Kinesis Producer Library Deaggregation
Modules for AWS Lambda on GitHub. You can use the components in this project to process
KPL serialized data within AWS Lambda in Java, Node.js, and Python. You can also use these
components as part of a multi-lang KCL application.

Data Preprocessing Event Input Data Model/Record Response Model

To preprocess records, your Lambda function must be compliant with the required event input data
and record response models.

Event Input Data Model

Kinesis Data Analytics continuously reads data from your Kinesis data stream or Firehose delivery
stream. For each batch of records it retrieves, the service manages how each batch gets passed
to your Lambda function. Your function receives a list of records as input. Within your function,
you iterate through the list and apply your business logic to accomplish your preprocessing
requirements (such as data format conversion or enrichment).

The input model to your preprocessing function varies slightly, depending on whether the data was
received from a Kinesis data stream or a Firehose delivery stream.

If the source is a Firehose delivery stream, the event input data model is as follows:

Kinesis Data Firehose Request Data Model

Field Description

invocationId The Lambda invocation Id (random GUID).

Preprocessing Data Using a Lambda Function 33

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aka-metricscollected.html
http://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://github.com/awslabs/kinesis-deaggregation
https://github.com/awslabs/kinesis-deaggregation
https://github.com/awslabs/amazon-kinesis-client/blob/master/amazon-kinesis-client-multilang/src/main/java/software/amazon/kinesis/multilang/package-info.java

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Field Description

applicationArn Kinesis Data Analytics application Amazon Resource Name
(ARN)

streamArn Delivery stream ARN

records

Field Description

recordId record ID (random GUID)

kinesisFi
rehoseRec
ordMetadata

Field Description

approxima
teArrival
Timestamp

Delivery stream
record approximate
arrival time

data Base64-encoded source record payload

The following example shows input from a Firehose delivery stream:

{
 "invocationId":"00540a87-5050-496a-84e4-e7d92bbaf5e2",
 "applicationArn":"arn:aws:kinesisanalytics:us-east-1:12345678911:application/lambda-
test",
 "streamArn":"arn:aws:firehose:us-east-1:AAAAAAAAAAAA:deliverystream/lambda-test",
 "records":[
 {
 "recordId":"49572672223665514422805246926656954630972486059535892482",
 "data":"aGVsbG8gd29ybGQ=",
 "kinesisFirehoseRecordMetadata":{
 "approximateArrivalTimestamp":1520280173
 }
 }
]

Preprocessing Data Using a Lambda Function 34

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

}

If the source is a Kinesis data stream, the event input data model is as follows:

Kinesis Streams Request Data Model

Field Description

invocationId The Lambda invocation Id (random GUID).

applicationArn Kinesis Data Analytics application ARN

streamArn Delivery stream ARN

records

Field Description

recordId record ID based off of Kinesis record
sequence number

kinesisSt
reamRecor
dMetadata

Field Description

sequenceN
umber

Sequence number
from the Kinesis
stream record

partition
Key

Partition key from
the Kinesis stream
record

shardId ShardId from
the Kinesis stream
record

approxima
teArrival

Delivery stream
record approximate
arrival time

Preprocessing Data Using a Lambda Function 35

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Field Description

Field Description

Field Description

Timestamp

data Base64-encoded source record payload

The following example shows input from a Kinesis data stream:

{
 "invocationId": "00540a87-5050-496a-84e4-e7d92bbaf5e2",
 "applicationArn": "arn:aws:kinesisanalytics:us-east-1:12345678911:application/lambda-
test",
 "streamArn": "arn:aws:kinesis:us-east-1:AAAAAAAAAAAA:stream/lambda-test",
 "records": [
 {
 "recordId": "49572672223665514422805246926656954630972486059535892482",
 "data": "aGVsbG8gd29ybGQ=",
 "kinesisStreamRecordMetadata":{
 "shardId" :"shardId-000000000003",
 "partitionKey":"7400791606",

 "sequenceNumber":"49572672223665514422805246926656954630972486059535892482",
 "approximateArrivalTimestamp":1520280173
 }
 }
]
}

Record Response Model

All records returned from your Lambda preprocessing function (with record IDs) that are sent to the
Lambda function must be returned. They must contain the following parameters, or Kinesis Data
Analytics rejects them and treats it as a data preprocessing failure. The data payload part of the
record can be transformed to accomplish preprocessing requirements.

Preprocessing Data Using a Lambda Function 36

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Response Data Model

records

Field Description

recordId The record ID is passed from Kinesis Data Analytics to
Lambda during the invocation. The transformed record must
contain the same record ID. Any mismatch between the ID of
the original record and the ID of the transformed record is
treated as a data preprocessing failure.

result The status of the data transformation of the record. The
possible values are:

• Ok: The record was transformed successfully. Kinesis Data
Analytics ingests the record for SQL processing.

• Dropped: The record was dropped intentionally by your
processing logic. Kinesis Data Analytics drops the record
from SQL processing. The data payload field is optional for
a Dropped record.

• ProcessingFailed : The record could not be transform
ed. Kinesis Data Analytics considers it unsuccessfully
processed by your Lambda function and writes an error
to the error stream. For more information about the error
stream, see Error Handling. The data payload field is
optional for a ProcessingFailed record.

data The transformed data payload, after base64-encoding.
Each data payload can contain multiple JSON documents if
the application ingestion data format is JSON. Or each can
contain multiple CSV rows (with a row delimiter specified
 in each row) if the application ingestion data format is CSV.
The Kinesis Data Analytics service successfully parses and
processes data with either multiple JSON documents or CSV
rows within the same data payload.

Preprocessing Data Using a Lambda Function 37

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

The following example shows output from a Lambda function:

{
 "records": [
 {
 "recordId": "49572672223665514422805246926656954630972486059535892482",
 "result": "Ok",
 "data": "SEVMTE8gV09STEQ="
 }
]
}

Common Data Preprocessing Failures

The following are common reasons why preprocessing can fail.

• Not all records (with record IDs) in a batch that are sent to the Lambda function are returned
back to the Kinesis Data Analytics service.

• The response is missing either the record ID, status, or data payload field. The data payload field
is optional for a Dropped or ProcessingFailed record.

• The Lambda function timeouts are not sufficient to preprocess the data.

• The Lambda function response exceeds the response limits imposed by the AWS Lambda service.

For data preprocessing failures, Kinesis Data Analytics continues to retry Lambda invocations on
the same set of records until successful. You can monitor the following CloudWatch metrics to gain
insight into failures.

• Kinesis Data Analytics application MillisBehindLatest: Indicates how far behind an
application is reading from the streaming source.

• Kinesis Data Analytics application InputPreprocessing CloudWatch metrics: Indicates the
number of successes and failures, among other statistics. For more information, see Amazon
Kinesis Analytics Metrics.

• AWS Lambda function CloudWatch metrics and logs.

Preprocessing Data Using a Lambda Function 38

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aka-metricscollected.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aka-metricscollected.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Creating Lambda Functions for Preprocessing

Your Amazon Kinesis Data Analytics application can use Lambda functions for preprocessing
records as they are ingested into the application. Kinesis Data Analytics provides the following
templates on the console to use as a starting point for preprocessing your data.

Topics

• Creating a Preprocessing Lambda Function in Node.js

• Creating a Preprocessing Lambda Function in Python

• Creating a Preprocessing Lambda Function in Java

• Creating a Preprocessing Lambda Function in .NET

Creating a Preprocessing Lambda Function in Node.js

The following templates for creating preprocessing Lambda function in Node.js are available on the
Kinesis Data Analytics console:

Lambda Blueprint Language and
version

Description

General Kinesis
Data Analytics Input
Processing

Node.js 6.10 A Kinesis Data Analytics record preprocessor
that receives JSON or CSV records as input
and then returns them with a processing
status. Use this processor as a starting point
for custom transformation logic.

Compressed Input
Processing

Node.js 6.10 A Kinesis Data Analytics record processor
that receives compressed (GZIP or Deflate
compressed) JSON or CSV records as input and
returns decompressed records with a processin
g status.

Creating a Preprocessing Lambda Function in Python

The following templates for creating preprocessing Lambda function in Python are available on the
console:

Preprocessing Data Using a Lambda Function 39

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Lambda Blueprint Language and
version

Description

General Kinesis
Analytics Input
Processing

Python 2.7 A Kinesis Data Analytics record preprocessor
that receives JSON or CSV records as input
and then returns them with a processing
status. Use this processor as a starting point
for custom transformation logic.

KPL Input Processing Python 2.7 A Kinesis Data Analytics record processor
that receives Kinesis Producer Library (KPL)
aggregates of JSON or CSV records as input
and returns disaggregated records with a
processing status.

Creating a Preprocessing Lambda Function in Java

To create a Lambda function in Java for preprocessing records, use the Java events classes.

The following code demonstrates a sample Lambda function that preprocesses records using Java:

public class LambdaFunctionHandler implements
 RequestHandler<KinesisAnalyticsStreamsInputPreprocessingEvent,
 KinesisAnalyticsInputPreprocessingResponse> {

 @Override
 public KinesisAnalyticsInputPreprocessingResponse handleRequest(
 KinesisAnalyticsStreamsInputPreprocessingEvent event, Context context) {
 context.getLogger().log("InvocatonId is : " + event.invocationId);
 context.getLogger().log("StreamArn is : " + event.streamArn);
 context.getLogger().log("ApplicationArn is : " + event.applicationArn);

 List<KinesisAnalyticsInputPreprocessingResponse.Record> records = new
 ArrayList<KinesisAnalyticsInputPreprocessingResponse.Record>();
 KinesisAnalyticsInputPreprocessingResponse response = new
 KinesisAnalyticsInputPreprocessingResponse(records);

 event.records.stream().forEach(record -> {
 context.getLogger().log("recordId is : " + record.recordId);

Preprocessing Data Using a Lambda Function 40

https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-events/src/main/java/com/amazonaws/services/lambda/runtime/events

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 context.getLogger().log("record aat is :" +
 record.kinesisStreamRecordMetadata.approximateArrivalTimestamp);
 // Add your record.data pre-processing logic here.

 // response.records.add(new Record(record.recordId,
 KinesisAnalyticsInputPreprocessingResult.Ok, <preprocessedrecordData>));
 });
 return response;
 }

}

Creating a Preprocessing Lambda Function in .NET

To create a Lambda function in .NET for preprocessing records, use the .NET events classes.

The following code demonstrates a sample Lambda function that preprocesses records using C#:

public class Function
 {
 public KinesisAnalyticsInputPreprocessingResponse
 FunctionHandler(KinesisAnalyticsStreamsInputPreprocessingEvent evnt, ILambdaContext
 context)
 {
 context.Logger.LogLine($"InvocationId: {evnt.InvocationId}");
 context.Logger.LogLine($"StreamArn: {evnt.StreamArn}");
 context.Logger.LogLine($"ApplicationArn: {evnt.ApplicationArn}");

 var response = new KinesisAnalyticsInputPreprocessingResponse
 {
 Records = new List<KinesisAnalyticsInputPreprocessingResponse.Record>()
 };

 foreach (var record in evnt.Records)
 {
 context.Logger.LogLine($"\tRecordId: {record.RecordId}");
 context.Logger.LogLine($"\tShardId: {record.RecordMetadata.ShardId}");
 context.Logger.LogLine($"\tPartitionKey:
 {record.RecordMetadata.PartitionKey}");
 context.Logger.LogLine($"\tRecord ApproximateArrivalTime:
 {record.RecordMetadata.ApproximateArrivalTimestamp}");
 context.Logger.LogLine($"\tData: {record.DecodeData()}");

Preprocessing Data Using a Lambda Function 41

https://github.com/aws/aws-lambda-dotnet/tree/master/Libraries/src/Amazon.Lambda.KinesisAnalyticsEvents

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 // Add your record preprocessig logic here.

 var preprocessedRecord = new
 KinesisAnalyticsInputPreprocessingResponse.Record
 {
 RecordId = record.RecordId,
 Result = KinesisAnalyticsInputPreprocessingResponse.OK
 };
 preprocessedRecord.EncodeData(record.DecodeData().ToUpperInvariant());
 response.Records.Add(preprocessedRecord);
 }
 return response;
 }
 }

For more information about creating Lambda functions for preprocessing and destinations in .NET,
see Amazon.Lambda.KinesisAnalyticsEvents.

Parallelizing Input Streams for Increased Throughput

Note

After September 12, 2023, you will not able to create new applications using Kinesis Data
Firehose as a source if you do not already use Kinesis Data Analytics for SQL. For more
information, see Limits.

Amazon Kinesis Data Analytics applications can support multiple in-application input streams,
to scale an application beyond the throughput of a single in-application input stream. For
more information on in-application input streams, see Amazon Kinesis Data Analytics for SQL
Applications: How It Works.

In almost all cases, Amazon Kinesis Data Analytics scales your application to handle the capacity
of the Kinesis streams or Firehose source streams that feed into your application. However, if your
source stream's throughput exceeds the throughput of a single in-application input stream, you can
explicitly increase the number of in-application input streams that your application uses. You do so
with the InputParallelism parameter.

When the InputParallelism parameter is greater than one, Amazon Kinesis Data Analytics
evenly splits the partitions of your source stream among the in-application streams. For instance, if

Parallelizing Input Streams for Increased Throughput 42

https://github.com/aws/aws-lambda-dotnet/tree/master/Libraries/src/Amazon.Lambda.KinesisAnalyticsEvents
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

your source stream has 50 shards, and you set InputParallelism to 2, each in-application input
stream receives the input from 25 source stream shards.

When you increase the number of in-application streams, your application must access the data
in each stream explicitly. For information about accessing multiple in-application streams in
your code, see Accessing Separate In-Application Streams in Your Amazon Kinesis Data Analytics
Application.

Although Kinesis Data Streams and Firehose stream shards are both divided among in-application
streams in the same way, they differ in the way they appear to your application:

• The records from a Kinesis data stream include a shard_id field that can be used to identify the
source shard for the record.

• The records from a Firehose delivery stream don't include a field that identifies the record's
source shard or partition. This is because Firehose abstracts this information away from your
application.

Evaluating Whether to Increase Your Number of In-Application Input Streams

In most cases, a single in-application input stream can handle the throughput of a single source
stream, depending on the complexity and data size of the input streams. To determine if you need
to increase the number of in-application input streams, you can monitor the InputBytes and
MillisBehindLatest metrics in Amazon CloudWatch.

If the InputBytes metric is greater that 100 MB/sec (or you anticipate that it will be greater
than this rate), this can cause an increase in MillisBehindLatest and increase the impact of
application issues. To address this, we recommend making the following language choices for your
application:

• Use multiple streams and Kinesis Data Analytics for SQL applications if your application has
scaling needs beyond 100 MB/second.

• Use Kinesis Data Analytics for Java Applications if you want to use a single stream and
application.

If the MillisBehindLatest metric has either of the following characteristics, you should
increase your application's InputParallelism setting:

Parallelizing Input Streams for Increased Throughput 43

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• The MillisBehindLatest metric is gradually increasing, indicating that your application is
falling behind the latest data in the stream.

• The MillisBehindLatest metric is consistently above 1000 (one second).

You don't need to increase your application's InputParallelism setting if the following are true:

• The MillisBehindLatest metric is gradually decreasing, indicating that your application is
catching up to the latest data in the stream.

• The MillisBehindLatest metric is below 1000 (one second).

For more information on using CloudWatch, see the CloudWatch User Guide.

Implementing Multiple In-Application Input Streams

You can set the number of in-application input streams when an application is created using
CreateApplication. You set this number after an application is created using UpdateApplication.

Note

You can only set the InputParallelism setting using the Amazon Kinesis Data Analytics
API or the AWS CLI. You cannot set this setting using the AWS Management Console.
For information on setting up the AWS CLI, see Step 2: Set Up the AWS Command Line
Interface (AWS CLI).

Setting a New Application's Input Stream Count

The following example demonstrates how to use the CreateApplication API action to set a new
application's input stream count to 2.

For more information about CreateApplication, see CreateApplication.

{
 "ApplicationCode": "<The SQL code the new application will run on the input
 stream>",
 "ApplicationDescription": "<A friendly description for the new application>",
 "ApplicationName": "<The name for the new application>",
 "Inputs": [

Parallelizing Input Streams for Increased Throughput 44

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 {
 "InputId": "ID for the new input stream",
 "InputParallelism": {
 "Count": 2
 }],
 "Outputs": [...],
 }]
}

Setting an Existing Application's Input Stream Count

The following example demonstrates how to use the UpdateApplication API action to set an
existing application's input stream count to 2.

For more information about Update_Application, see UpdateApplication.

{
 "InputUpdates": [
 {
 "InputId": "yourInputId",
 "InputParallelismUpdate": {
 "CountUpdate": 2
 }
 }
],
}

Accessing Separate In-Application Streams in Your Amazon Kinesis Data Analytics
Application

To use multiple in-application input streams in your application, you must explicitly select from the
different streams. The following code example demonstrates how to query multiple input streams
in the application created in the Getting Started tutorial.

In the following example, each source stream is first aggregated using COUNT before being
combined into a single in-application stream called in_application_stream001. Aggregating
the source streams beforehand helps make sure that the combined in-application stream can
handle the traffic from multiple streams without being overloaded.

Parallelizing Input Streams for Increased Throughput 45

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-count.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Note

To run this example and get results from both in-application input streams, update both
the number of shards in your source stream and the InputParallelism parameter in
your application.

CREATE OR REPLACE STREAM in_application_stream_001 (
 ticker VARCHAR(64),
 ticker_count INTEGER
);

CREATE OR REPLACE PUMP pump001 AS
INSERT INTO in_application_stream_001
SELECT STREAM ticker_symbol, COUNT(ticker_symbol)
FROM source_sql_stream_001
GROUP BY STEP(source_sql_stream_001.rowtime BY INTERVAL '60' SECOND),
 ticker_symbol;

CREATE OR REPLACE PUMP pump002 AS
INSERT INTO in_application_stream_001
SELECT STREAM ticker_symbol, COUNT(ticker_symbol)
FROM source_sql_stream_002
GROUP BY STEP(source_sql_stream_002.rowtime BY INTERVAL '60' SECOND),
 ticker_symbol;

The preceding code example produces output in in_application_stream001 similar to the
following:

Parallelizing Input Streams for Increased Throughput 46

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Additional Considerations

When using multiple input streams, be aware of the following:

• The maximum number of in-application input streams is 64.

• The in-application input streams are distributed evenly among the shards of the application's
input stream.

• The performance gains from adding in-application streams don't scale linearly. That is, doubling
the number of in-application streams doesn't double throughput. With a typical row size, each
in-application stream can achieve throughput of about 5,000 to 15,000 rows per second. By
increasing the in-application stream count to 10, you can achieve a throughput of 20,000 to
30,000 rows per second. Throughput speed is dependent on the count, data types, and data size
of the fields in the input stream.

• Some aggregate functions (such as AVG) can produce unexpected results when applied to input
streams partitioned into different shards. Because you need to run the aggregate operation
on individual shards before combining them into an aggregate stream, the results might be
weighted toward whichever stream contains more records.

• If your application continues to experience poor performance (reflected by a high
MillisBehindLatest metric) after you increase your number of input streams, you might have
reached your limit of Kinesis Processing Units (KPUs). For more information, see Automatically
Scaling Applications to Increase Throughput.

Application Code

Application code is a series of SQL statements that process input and produce output. These SQL
statements operate on in-application streams and reference tables. For more information, see
Amazon Kinesis Data Analytics for SQL Applications: How It Works.

For information about the SQL language elements that are supported by Kinesis Data Analytics,
see Amazon Kinesis Data Analytics SQL Reference.

In relational databases, you work with tables, using INSERT statements to add records and the
SELECT statement to query the data. In Amazon Kinesis Data Analytics, you work with streams.
You can write a SQL statement to query these streams. The results of querying one in-application
stream are always sent to another in-application stream. When performing complex analytics, you
might create several in-application streams to hold the results of intermediate analytics. And then
finally, you configure application output to persist results of the final analytics (from one or more

Application Code 47

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-avg.html
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

in-application streams) to external destinations. In summary, the following is a typical pattern for
writing application code:

• The SELECT statement is always used in the context of an INSERT statement. That is, when you
select rows, you insert results into another in-application stream.

• The INSERT statement is always used in the context of a pump. That is, you use pumps to write
to an in-application stream.

The following example application code reads records from one in-application
(SOURCE_SQL_STREAM_001) stream and write it to another in-application stream
(DESTINATION_SQL_STREAM). You can insert records to in-application streams using pumps, as
shown following:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ticker_symbol VARCHAR(4),
 change DOUBLE,
 price DOUBLE);
-- Create a pump and insert into output stream.
CREATE OR REPLACE PUMP "STREAM_PUMP" AS

 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM ticker_symbol, change,price
 FROM "SOURCE_SQL_STREAM_001";

Note

The identifiers that you specify for stream names and column names follow standard
SQL conventions. For example, if you put quotation marks around an identifier, it makes
the identifier case sensitive. If you don't, the identifier defaults to uppercase. For more
information about identifiers, see Identifiers in the Amazon Managed Service for Apache
Flink SQL Reference.

Your application code can consist of many SQL statements. For example:

• You can write SQL queries in a sequential manner where the result of one SQL statement feeds
into the next SQL statement.

• You can also write SQL queries that run independent of each other. For example, you can
write two SQL statements that query the same in-application stream, but send output into

Application Code 48

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-identifiers.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

different in-applications streams. You can then query the newly created in-application streams
independently.

You can create in-application streams to save intermediate results. You insert data in in-application
streams using pumps. For more information, see In-Application Streams and Pumps.

If you add an in-application reference table, you can write SQL to join data in in-application
streams and reference tables. For more information, see Example: Adding Reference Data to a
Kinesis Data Analytics Application.

According to the application's output configuration, Amazon Kinesis Data Analytics writes data
from specific in-application streams to the external destination according to the application's
output configuration. Make sure that your application code writes to the in-application streams
specified in the output configuration.

For more information, see the following topics:

• Streaming SQL Concepts

• Amazon Kinesis Data Analytics SQL Reference

Configuring Application Output

In your application code, you write the output of SQL statements to one or more in-application
streams. You can optionally add an output configuration to your application. to persist everything
written to an in-application stream to an external destination such as an Amazon Kinesis data
stream, a Firehose delivery stream, or an AWS Lambda function.

There is a limit on the number of external destinations you can use to persist an application output.
For more information, see Limits.

Note

We recommend that you use one external destination to persist in-application error stream
data so that you can investigate the errors.

In each of these output configurations, you provide the following:

Output 49

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• In-application stream name – The stream that you want to persist to an external destination.

Kinesis Data Analytics looks for the in-application stream that you specified in the output
configuration. (The stream name is case sensitive and must match exactly.) Make sure that your
application code creates this in-application stream.

• External destination – You can persist data to a Kinesis data stream, a Firehose delivery stream,
or a Lambda function. You provide the Amazon Resource Name (ARN) of the stream or function.
You also provide an IAM role that Kinesis Data Analytics can assume to write to the stream or
function on your behalf. You describe the record format (JSON, CSV) to Kinesis Data Analytics to
use when writing to the external destination.

If Kinesis Data Analytics can't write to the streaming or Lambda destination, the service continues
to try indefinitely. This creates back pressure, causing your application to fall behind. If this issue is
not resolved, your application eventually stops processing new data. You can monitor Kinesis Data
Analytics Metrics and set alarms for failures. For more information about metrics and alarms, see
Using Amazon CloudWatch Metrics and Creating Amazon CloudWatch Alarms.

You can configure the application output using the AWS Management Console. The console makes
the API call to save the configuration.

Creating an Output Using the AWS CLI

This section describes how to create the Outputs section of the request body for a
CreateApplication or AddApplicationOutput operation.

Creating a Kinesis Stream Output

The following JSON fragment shows the Outputs section in the CreateApplication request
body for creating an Amazon Kinesis data stream destination.

"Outputs": [
 {
 "DestinationSchema": {
 "RecordFormatType": "string"
 },
 "KinesisStreamsOutput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },

Creating an Output Using the AWS CLI 50

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aka-metricscollected.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aka-metricscollected.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "Name": "string"
 }

]

Creating a Firehose Delivery Stream Output

The following JSON fragment shows the Outputs section in the CreateApplication request
body for creating an Amazon Data Firehose delivery stream destination.

"Outputs": [
 {
 "DestinationSchema": {
 "RecordFormatType": "string"
 },
 "KinesisFirehoseOutput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "Name": "string"
 }
]

Creating a Lambda Function Output

The following JSON fragment shows the Outputs section in the CreateApplication request
body for creating an AWS Lambda function destination.

"Outputs": [
 {
 "DestinationSchema": {
 "RecordFormatType": "string"
 },
 "LambdaOutput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "Name": "string"
 }
]

Creating an Output Using the AWS CLI 51

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Using a Lambda Function as Output

Using AWS Lambda as a destination allows you to more easily perform post-processing of your
SQL results before sending them to a final destination. Common post-processing tasks include the
following:

• Aggregating multiple rows into a single record

• Combining current results with past results to address late-arriving data

• Delivering to different destinations based on the type of information

• Record format translation (such as translating to Protobuf)

• String manipulation or transformation

• Data enrichment after analytical processing

• Custom processing for geospatial use cases

• Data encryption

Lambda functions can deliver analytic information to a variety of AWS services and other
destinations, including the following:

• Amazon Simple Storage Service (Amazon S3)

• Custom APIs

• Amazon DynamoDB

• Apache Aurora

• Amazon Redshift

• Amazon Simple Notification Service (Amazon SNS)

• Amazon Simple Queue Service (Amazon SQS)

• Amazon CloudWatch

For more information about creating Lambda applications, see Getting Started with AWS Lambda.

Topics

• Lambda as Output Permissions

• Lambda as Output Metrics

Using a Lambda Function as Output 52

https://docs.aws.amazon.com/AmazonS3/latest/dev/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
http://aurora.apache.org/
https://docs.aws.amazon.com/redshift/latest/dg/
https://docs.aws.amazon.com/sns/latest/dg/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Lambda as Output Event Input Data Model and Record Response Model

• Lambda Output Invocation Frequency

• Adding a Lambda Function for Use as an Output

• Common Lambda as Output Failures

• Creating Lambda Functions for Application Destinations

Lambda as Output Permissions

To use Lambda as output, the application’s Lambda output IAM role requires the following
permissions policy:

{
 "Sid": "UseLambdaFunction",
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunctionConfiguration"
],
 "Resource": "FunctionARN"
}

Lambda as Output Metrics

You use Amazon CloudWatch to monitor the number of bytes sent, successes and failures, and so
on. For information about CloudWatch metrics that are emitted by Kinesis Data Analytics using
Lambda as output, see Amazon Kinesis Analytics Metrics.

Lambda as Output Event Input Data Model and Record Response Model

To send Kinesis Data Analytics output records, your Lambda function must be compliant with the
required event input data and record response models.

Event Input Data Model

Kinesis Data Analytics continuously sends the output records from the application to the Lambda
as an output function with the following request model. Within your function, you iterate through
the list and apply your business logic to accomplish your output requirements (such as data
transformation before sending to a final destination).

Using a Lambda Function as Output 53

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aka-metricscollected.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Field Description

invocationId The Lambda invocation ID (random GUID).

applicationArn The Kinesis Data Analytics application Amazon Resource Name
(ARN).

records

Field Description

recordId record ID (random GUID)

lambdaDel
iveryReco
rdMetadata

Field Description

retryHintNumber of delivery
retries

data Base64-encoded output record payload

Note

The retryHint is a value that increases for every delivery failure. This value is not durably
persisted, and resets if the application is disrupted.

Record Response Model

Each record sent to your Lambda as an output function (with record IDs) must be acknowledged
with either Ok or DeliveryFailed, and it must contain the following parameters. Otherwise,
Kinesis Data Analytics treats them as a delivery failure.

records

Using a Lambda Function as Output 54

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Field Description

recordId The record ID is passed from Kinesis Data Analytics to
Lambda during the invocation. Any mismatch between the ID
of the original record and the ID of the acknowledged record
is treated as a delivery failure.

result The status of the delivery of the record. The following are
possible values:

• Ok: The record was transformed successfully and sent to
the final destination. Kinesis Data Analytics ingests the
record for SQL processing.

• DeliveryFailed : The record was not delivered
successfully to the final destination by the Lambda as
output function. Kinesis Data Analytics continuously retries
sending the delivery failed records to the Lambda as
output function.

Lambda Output Invocation Frequency

A Kinesis Data Analytics application buffers the output records and invokes the AWS Lambda
destination function frequently.

• If records are emitted to the destination in-application stream within the data analytics
application as a tumbling window, the AWS Lambda destination function is invoked per tumbling
window trigger. For example, if a tumbling window of 60 seconds is used to emit the records to
the destination in-application stream, the Lambda function is invoked once every 60 seconds.

• If records are emitted to the destination in-application stream within the application as a
continuous query or a sliding window, the Lambda destination function is invoked about once
per second.

Using a Lambda Function as Output 55

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Note

Per-Lambda function invoke request payload size limits apply. Exceeding those limits
results in output records being split and sent across multiple Lambda function calls.

Adding a Lambda Function for Use as an Output

The following procedure demonstrates how to add a Lambda function as an output for a Kinesis
Data Analytics application.

1. Sign in to the AWS Management Console and open the Managed Service for Apache Flink
console at https://console.aws.amazon.com/kinesisanalytics.

2. Choose the application in the list, and then choose Application details.

3. In the Destination section, choose Connect new destination.

4. For the Destination item, choose AWS Lambda function.

5. In the Deliver records to AWS Lambda section, either choose an existing Lambda function and
version, or choose Create new.

6. If you are creating a new Lambda function, do the following:

a. Choose one of the templates provided. For more information, Creating Lambda Functions
for Application Destinations.

b. The Create Function page opens in a new browser tab. In the Name box, give the function
a meaningful name (for example, myLambdaFunction).

c. Update the template with post-processing functionality for your application. For
information about creating a Lambda function, see Getting Started in the AWS Lambda
Developer Guide.

d. On the Kinesis Data Analytics console, in the Lambda function list, choose the Lambda
function that you just created. Choose $LATEST for the Lambda function version.

7. In the In-application stream section, choose Choose an existing in-application stream. For
In-application stream name, choose your application's output stream. The results from the
selected output stream are sent to the Lambda output function.

8. Leave the rest of the form with the default values, and choose Save and continue.

Using a Lambda Function as Output 56

https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://console.aws.amazon.com/kinesisanalytics
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Your application now sends records from the in-application stream to your Lambda function. You
can see the results of the default template in the Amazon CloudWatch console. Monitor the AWS/
KinesisAnalytics/LambdaDelivery.OkRecords metric to see the number of records being
delivered to the Lambda function.

Common Lambda as Output Failures

The following are common reasons why delivery to a Lambda function can fail.

• Not all records (with record IDs) in a batch that are sent to the Lambda function are returned to
the Kinesis Data Analytics service.

• The response is missing either the record ID or the status field.

• The Lambda function timeouts are not sufficient to accomplish the business logic within the
Lambda function.

• The business logic within the Lambda function does not catch all the errors, resulting in a
timeout and backpressure due to unhandled exceptions. These are often referred as “poison pill”
messages.

For data delivery failures, Kinesis Data Analytics continues to retry Lambda invocations on the
same set of records until successful. To gain insight into failures, you can monitor the following
CloudWatch metrics:

• Kinesis Data Analytics application Lambda as Output CloudWatch metrics: Indicates the number
of successes and failures, among other statistics. For more information, see Amazon Kinesis
Analytics Metrics.

• AWS Lambda function CloudWatch metrics and logs.

Creating Lambda Functions for Application Destinations

Your Kinesis Data Analytics application can use AWS Lambda functions as an output. Kinesis
Data Analytics provides templates for creating Lambda functions to use as a destination for
your applications. Use these templates as a starting point for post-processing output from your
application.

Topics

• Creating a Lambda Function Destination in Node.js

• Creating a Lambda Function Destination in Python

Using a Lambda Function as Output 57

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aka-metricscollected.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aka-metricscollected.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Creating a Lambda Function Destination in Java

• Creating a Lambda Function Destination in .NET

Creating a Lambda Function Destination in Node.js

The following template for creating a destination Lambda function in Node.js is available on the
console:

Lambda as Output Blueprint Language and Version Description

kinesis-analytics-
output

Node.js 12.x Deliver output records from
a Kinesis Data Analytics
application to a custom
destination.

Creating a Lambda Function Destination in Python

The following templates for creating a destination Lambda function in Python are available on the
console:

Lambda as Output Blueprint Language and Version Description

kinesis-analytics-
output-sns

Python 2.7 Deliver output records from
a Kinesis Data Analytics
application to Amazon SNS.

kinesis-analytics-
output-ddb

Python 2.7 Deliver output records from
a Kinesis Data Analytics
application to Amazon
DynamoDB.

Creating a Lambda Function Destination in Java

To create a destination Lambda function in Java, use the Java events classes.

The following code demonstrates a sample destination Lambda function using Java:

Using a Lambda Function as Output 58

https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-events/src/main/java/com/amazonaws/services/lambda/runtime/events

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

public class LambdaFunctionHandler
 implements RequestHandler<KinesisAnalyticsOutputDeliveryEvent,
 KinesisAnalyticsOutputDeliveryResponse> {

 @Override
 public KinesisAnalyticsOutputDeliveryResponse
 handleRequest(KinesisAnalyticsOutputDeliveryEvent event,
 Context context) {
 context.getLogger().log("InvocatonId is : " + event.invocationId);
 context.getLogger().log("ApplicationArn is : " + event.applicationArn);

 List<KinesisAnalyticsOutputDeliveryResponse.Record> records = new
 ArrayList<KinesisAnalyticsOutputDeliveryResponse.Record>();
 KinesisAnalyticsOutputDeliveryResponse response = new
 KinesisAnalyticsOutputDeliveryResponse(records);

 event.records.stream().forEach(record -> {
 context.getLogger().log("recordId is : " + record.recordId);
 context.getLogger().log("record retryHint is :" +
 record.lambdaDeliveryRecordMetadata.retryHint);
 // Add logic here to transform and send the record to final destination of
 your choice.
 response.records.add(new Record(record.recordId,
 KinesisAnalyticsOutputDeliveryResponse.Result.Ok));
 });
 return response;
 }

}

Creating a Lambda Function Destination in .NET

To create a destination Lambda function in .NET, use the .NET events classes.

The following code demonstrates a sample destination Lambda function using C#:

public class Function
 {
 public KinesisAnalyticsOutputDeliveryResponse
 FunctionHandler(KinesisAnalyticsOutputDeliveryEvent evnt, ILambdaContext context)
 {
 context.Logger.LogLine($"InvocationId: {evnt.InvocationId}");
 context.Logger.LogLine($"ApplicationArn: {evnt.ApplicationArn}");

Using a Lambda Function as Output 59

https://github.com/aws/aws-lambda-dotnet/tree/master/Libraries/src/Amazon.Lambda.KinesisAnalyticsEvents

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 var response = new KinesisAnalyticsOutputDeliveryResponse
 {
 Records = new List<KinesisAnalyticsOutputDeliveryResponse.Record>()
 };

 foreach (var record in evnt.Records)
 {
 context.Logger.LogLine($"\tRecordId: {record.RecordId}");
 context.Logger.LogLine($"\tRetryHint:
 {record.RecordMetadata.RetryHint}");
 context.Logger.LogLine($"\tData: {record.DecodeData()}");

 // Add logic here to send to the record to final destination of your
 choice.

 var deliveredRecord = new KinesisAnalyticsOutputDeliveryResponse.Record
 {
 RecordId = record.RecordId,
 Result = KinesisAnalyticsOutputDeliveryResponse.OK
 };
 response.Records.Add(deliveredRecord);
 }
 return response;
 }
 }

For more information about creating Lambda functions for pre-processing and destinations in .NET,
see Amazon.Lambda.KinesisAnalyticsEvents.

Delivery Model for Persisting Application Output to an External
Destination

Amazon Kinesis Data Analytics uses an "at least once" delivery model for application output to
the configured destinations. When an application is running, Kinesis Data Analytics takes internal
checkpoints. These checkpoints are points in time when output records have been delivered to
the destinations without data loss. The service uses the checkpoints as needed to ensure that your
application output is delivered at least once to the configured destinations.

In a normal situation, your application processes incoming data continuously. Kinesis Data Analytics
writes the output to the configured destinations, such as a Kinesis data stream or a Firehose
delivery stream. However, your application can be interrupted occasionally, for example:

Application Output Delivery Model 60

https://github.com/aws/aws-lambda-dotnet/tree/master/Libraries/src/Amazon.Lambda.KinesisAnalyticsEvents

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• You choose to stop your application and restart it later.

• You delete the IAM role that Kinesis Data Analytics needs to write your application output
to the configured destination. Without the IAM role, Kinesis Data Analytics doesn't have any
permissions to write to the external destination on your behalf.

• A network outage or other internal service failure causes your application to stop running
momentarily.

When your application restarts, Kinesis Data Analytics ensures that it continues to process and
write output from a point before or equal to when the failure occurred. This helps ensure that it
doesn't miss delivering any application output to the configured destinations.

Suppose that you configured multiple destinations from the same in-application stream. After
the application recovers from failure, Kinesis Data Analytics resumes persisting output to the
configured destinations from the last record that was delivered to the slowest destination. This
might result in the same output record delivered more than once to other destinations. In this case,
you must handle potential duplications in the destination externally.

Error Handling

Amazon Kinesis Data Analytics returns API or SQL errors directly to you. For more information
about API operations, see Actions. For more information about handling SQL errors, see Amazon
Kinesis Data Analytics SQL Reference.

Amazon Kinesis Data Analytics reports runtime errors using an in-application error stream called
error_stream.

Reporting Errors Using an In-Application Error Stream

Amazon Kinesis Data Analytics reports runtime errors to the in-application error stream called
error_stream. The following are examples of errors that might occur:

• A record read from the streaming source does not conform to the input schema.

• Your application code specifies division by zero.

• The rows are out of order (for example, a record appears on the stream with a ROWTIME value
that a user modified that causes a record to go out of order).

Error Handling 61

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• The data in the source stream can't be converted to the data type specified in the schema
(Coercion error). For information about what data types can be converted, see Mapping JSON
Data Types to SQL Data Types.

We recommend that you handle these errors programmatically in your SQL code or persist the data
on the error stream to an external destination. This requires that you add an output configuration
(see Configuring Application Output) to your application. For an example of how the in-application
error stream works, see Example: Exploring the In-Application Error Stream.

Note

Your Kinesis Data Analytics application can't access or modify the error stream
programmatically because the error stream is created using the system account. You must
use the error output to determine what errors your application might encounter. You then
write your application's SQL code to handle anticipated error conditions.

Error Stream Schema

The error stream has the following schema:

Field Data Type Notes

ERROR_TIME TIMESTAMP The time when the error
occurred

ERROR_LEVEL VARCHAR(10)

ERROR_NAME VARCHAR(32)

MESSAGE VARCHAR(4096)

DATA_ROWTIME TIMESTAMP The row time of the incoming
record

DATA_ROW VARCHAR(49152) The hex-encoded data in
the original row. You can
use standard libraries to hex
decode this value, or use web

Reporting Errors Using an In-Application Error Stream 62

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

resources such as this Hex to
String Converter.

PUMP_NAME VARCHAR(128) The originating pump, as
defined with CREATE PUMP

Automatically Scaling Applications to Increase Throughput

Amazon Kinesis Data Analytics elastically scales your application to accommodate the data
throughput of your source stream and your query complexity for most scenarios. Kinesis Data
Analytics provisions capacity in the form of Kinesis Processing Units (KPU). A single KPU provides
you with the memory (4 GB) and corresponding computing and networking.

The default limit for KPUs for your application is 64. For instructions on how to request an increase
to this limit, see To request a limit increase in Amazon Service Limits.

Using Tagging

This section describes how to add key-value metadata tags to Kinesis Data Analytics applications.
These tags can be used for the following purposes:

• Determining billing for individual Kinesis Data Analytics applications. For more information, see
Using Cost Allocation Tags in the AWS Billing and Cost Management Guide.

• Controlling access to application resources based on tags. For more information, see Controlling
Access Using Tags in the User Guide.

• User-defined purposes. You can define application functionality based on the presence of user
tags.

Note the following information about tagging:

• The maximum number of application tags includes system tags. The maximum number of user-
defined application tags is 50.

• If an action includes a tag list that has duplicate Key values, the service throws an
InvalidArgumentException.

This topic contains the following sections:

Auto Scaling Applications 63

http://string-functions.com/hex-string.aspx
http://string-functions.com/hex-string.aspx
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Adding Tags when an Application is Created

• Adding or Updating Tags for an Existing Application

• Listing Tags for an Application

• Removing Tags from an Application

Adding Tags when an Application is Created

You add tags when creating an application using the tags parameter of the CreateApplication
action.

The following example request shows the Tags node for a CreateApplication request:

"Tags": [
 {
 "Key": "Key1",
 "Value": "Value1"
 },
 {
 "Key": "Key2",
 "Value": "Value2"
 }
]

Adding or Updating Tags for an Existing Application

You add tags to an application using the TagResource action. You cannot add tags to an application
using the UpdateApplication action.

To update an existing tag, add a tag with the same key of the existing tag.

The following example request for the TagResource action adds new tags or updates existing
tags:

{
 "ResourceARN": "string",
 "Tags": [
 {
 "Key": "NewTagKey",
 "Value": "NewTagValue"
 },

Adding Tags when an Application is Created 64

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_CreateApplication.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_TagResource.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_UpdateApplication.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 {
 "Key": "ExistingKeyOfTagToUpdate",
 "Value": "NewValueForExistingTag"
 }
]
}

Listing Tags for an Application

To list existing tags, you use the ListTagsForResource action.

The following example request for the ListTagsForResource action lists tags for an application:

{
 "ResourceARN": "arn:aws:kinesisanalytics:us-west-2:012345678901:application/
MyApplication"
}

Removing Tags from an Application

To remove tags from an application, you use the UntagResource action.

The following example request for the UntagResource action removes tags from an application:

{
 "ResourceARN": "arn:aws:kinesisanalytics:us-west-2:012345678901:application/
MyApplication",
 "TagKeys": ["KeyOfFirstTagToRemove", "KeyOfSecondTagToRemove"]
}

Listing Tags for an Application 65

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_ListTagsForResource.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_UntagResource.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Getting Started with Amazon Kinesis Data Analytics for
SQL Applications

Following, you can find topics to help get you started using Amazon Kinesis Data Analytics for
SQL Applications. If you are new to Kinesis Data Analytics for SQL Applications, we recommend
that you review the concepts and terminology presented in Amazon Kinesis Data Analytics for SQL
Applications: How It Works before performing the steps in the Getting Started section.

Topics

• Sign up for an AWS account

• Create an administrative user

• Step 1: Set Up an Account and Create an Administrator User

• Sign up for an AWS account

• Create an administrative user

• Step 2: Set Up the AWS Command Line Interface (AWS CLI)

• Step 3: Create Your Starter Amazon Kinesis Data Analytics Application

• Step 4 (Optional) Edit the Schema and SQL Code Using the Console

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

Sign up for an AWS account 66

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

Create an administrative user 67

https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Step 1: Set Up an Account and Create an Administrator User

Before you use Amazon Kinesis Data Analytics for the first time, complete the following tasks:

1. Sign Up for AWS

2. Create an IAM User

Sign Up for AWS

When you sign up for Amazon Web Services, your AWS account is automatically signed up for all
services in AWS, including Amazon Kinesis Data Analytics. You are charged only for the services
that you use.

With Kinesis Data Analytics, you pay only for the resources you use. If you are a new AWS customer,
you can get started with Kinesis Data Analytics for free. For more information, see AWS Free Usage
Tier.

If you already have an AWS account, skip to the next task. If you don't have an AWS account,
perform the steps in the following procedure to create one.

To create an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

Note your AWS account ID because you'll need it for the next task.

Step 1: Set Up an Account 68

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Create an IAM User

Services in AWS, such as Amazon Kinesis Data Analytics, require that you provide credentials
when you access them so that the service can determine whether you have permissions to access
the resources owned by that service. The console requires your password. You can create access
keys for your AWS account to access the AWS CLI or API. However, we don't recommend that you
access AWS using the credentials for your AWS account. Instead, we recommend that you use AWS
Identity and Access Management (IAM). Create an IAM user, add the user to an IAM group with
administrative permissions, and then grant administrative permissions to the IAM user that you
created. You can then access AWS using a special URL and that IAM user's credentials.

If you signed up for AWS, but you haven't created an IAM user for yourself, you can create one
using the IAM console.

The Getting Started exercises in this guide assume that you have a user (adminuser) with
administrator privileges. Follow the procedure to create adminuser in your account.

To create an administrator user and sign in to the console

1. Create an administrator user called adminuser in your AWS account. For instructions, see
Creating Your First IAM User and Administrators Group in the IAM User Guide.

2. A user can sign in to the AWS Management Console using a special URL. For more information,
How Users Sign In to Your Account in the IAM User Guide.

For more information about IAM, see the following:

• AWS Identity and Access Management (IAM)

• Getting started

• IAM User Guide

Next Step

Step 2: Set Up the AWS Command Line Interface (AWS CLI)

Create an IAM User 69

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Sign up for an AWS account 70

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Step 2: Set Up the AWS Command Line Interface (AWS CLI)

Follow the steps to download and configure the AWS Command Line Interface (AWS CLI).

Important

You don't need the AWS CLI to perform the steps in the Getting Started exercise. However,
some of the exercises in this guide use the AWS CLI. You can skip this step and go to Step
3: Create Your Starter Amazon Kinesis Data Analytics Application, and then set up the AWS
CLI later when you need it.

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide:

• Getting Set Up with the AWS Command Line Interface

Step 2: Set Up the AWS CLI 71

https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Configuring the AWS Command Line Interface

2. Add a named profile for the administrator user in the AWS CLI config file. You use this profile
when executing the AWS CLI commands. For more information about named profiles, see
Named Profiles in the AWS Command Line Interface User Guide.

[profile adminuser]
aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

For a list of available AWS Regions, see Regions and Endpoints in the Amazon Web Services
General Reference.

3. Verify the setup by entering the following help command at the command prompt:

aws help

Next Step

Step 3: Create Your Starter Amazon Kinesis Data Analytics Application

Step 3: Create Your Starter Amazon Kinesis Data Analytics
Application

By following the steps in this section, you can create your first Kinesis Data Analytics application
using the console.

Note

We suggest that you review Amazon Kinesis Data Analytics for SQL Applications: How It
Works before trying the Getting Started exercise.

For this Getting Started exercise, you can use the console to work with either the demo stream or
templates with application code.

Next Step 72

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-multiple-profiles
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• If you choose to use the demo stream, the console creates a Kinesis data stream in your account
that is called kinesis-analytics-demo-stream.

A Kinesis Data Analytics application requires a streaming source. For this source, several SQL
examples in this guide use the demo stream kinesis-analytics-demo-stream. The console
also runs a script that continuously adds sample data (simulated stock trade records) to this
stream, as shown following.

You can use kinesis-analytics-demo-stream as the streaming source for your application
in this exercise.

Note

The demo stream remains in your account. You can use it to test other examples in
this guide. However, when you leave the console, the script that the console uses stops
populating the data. When needed, the console provides the option to start populating
the stream again.

• If you choose to use the templates with example application code, you use template code that
the console provides to perform simple analytics on the demo stream.

Step 3: Create Your Starter Analytics Application 73

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

You use these features to quickly set up your first application as follows:

1. Create an application – You only need to provide a name. The console creates the application
and the service sets the application state to READY.

2. Configure input – First, you add a streaming source, the demo stream. You must create a demo
stream in the console before you can use it. Then, the console takes a random sample of records
on the demo stream and infers a schema for the in-application input stream that is created. The
console names the in-application stream SOURCE_SQL_STREAM_001.

The console uses the discovery API to infer the schema. If necessary, you can edit the inferred
schema. For more information, see DiscoverInputSchema. Kinesis Data Analytics uses this
schema to create an in-application stream.

When you start the application, Kinesis Data Analytics reads the demo stream continuously on
your behalf and inserts rows in the SOURCE_SQL_STREAM_001 in-application input stream.

3. Specify application code – You use a template (called Continuous filter) that provides the
following code:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM"
 (symbol VARCHAR(4), sector VARCHAR(12), CHANGE DOUBLE, price DOUBLE);

-- Create pump to insert into output.
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM ticker_symbol, sector, CHANGE, price
 FROM "SOURCE_SQL_STREAM_001"
 WHERE sector SIMILAR TO '%TECH%';

The application code queries the in-application stream SOURCE_SQL_STREAM_001. The code
then inserts the resulting rows in another in-application stream DESTINATION_SQL_STREAM,
using pumps. For more information about this coding pattern, see Application Code.

For information about the SQL language elements that are supported by Kinesis Data Analytics,
see Amazon Kinesis Data Analytics SQL Reference.

Step 3: Create Your Starter Analytics Application 74

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

4. Configuring output – In this exercise, you don't configure any output. That is, you don't persist
data in the in-application stream that your application creates to any external destination.
Instead, you verify query results in the console. Additional examples in this guide show how to
configure output. For one example, see Example: Creating Simple Alerts.

Important

The exercise uses the US East (N. Virginia) Region (us-east-1) to set up the application. You
can use any of the supported AWS Regions.

Next Step

Step 3.1: Create an Application

Step 3.1: Create an Application

In this section, you create an Amazon Kinesis Data Analytics application. You configure application
input in the next step.

To create a data analytics application

1. Sign in to the AWS Management Console and open the Managed Service for Apache Flink
console at https://console.aws.amazon.com/kinesisanalytics.

2. Choose Create application.

3. On the Create application page, type an application name, type a description, choose SQL for
the application's Runtime setting, and then choose Create application.

Step 3.1: Create an Application 75

https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Doing this creates a Kinesis Data Analytics application with a status of READY. The console
shows the application hub where you can configure input and output.

Note

To create an application, the CreateApplication operation requires only the application
name. You can add input and output configuration after you create an application in
the console.

In the next step, you configure input for the application. In the input configuration, you add
a streaming data source to the application and discover a schema for an in-application input
stream by sampling data on the streaming source.

Next Step

Step 3.2: Configure Input

Step 3.1: Create an Application 76

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Step 3.2: Configure Input

Your application needs a streaming source. To help you get started, the console can create a
demo stream (called kinesis-analytics-demo-stream). The console also runs a script that
populates records in the stream.

To add a streaming source to your application

1. On the application hub page in the console, choose Connect streaming data.

2. On the page that appears, review the following:

Step 3.2: Configure Input 77

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Source section, where you specify a streaming source for your application. You can select
an existing stream source or create one. In this exercise, you create a new stream, the demo
stream.

By default the console names the in-application input stream that is created as
INPUT_SQL_STREAM_001. For this exercise, keep this name as it appears.

• Stream reference name – This option shows the name of the in-application input stream
that is created, SOURCE_SQL_STREAM_001. You can change the name, but for this
exercise, keep this name.

In the input configuration, you map the demo stream to an in-application input
stream that is created. When you start the application, Amazon Kinesis Data Analytics
continuously reads the demo stream and insert rows in the in-application input stream.
You query this in-application input stream in your application code.

• Record pre-processing with AWS Lambda: This option is where you specify an AWS
Lambda expression that modifies the records in the input stream before your application
code executes. In this exercise, leave the Disabled option selected. For more information
about Lambda preprocessing, see Preprocessing Data Using a Lambda Function.

After you provide all the information on this page, the console sends an update request (see
UpdateApplication) to add the input configuration the application.

3. On the Source page, choose Configure a new stream.

4. Choose Create demo stream. The console configures the application input by doing the
following:

• The console creates a Kinesis data stream called kinesis-analytics-demo-stream.

• The console populates the stream with sample stock ticker data.

Step 3.2: Configure Input 78

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Using the DiscoverInputSchema input action, the console infers a schema by reading sample
records on the stream. The schema that is inferred is the schema for the in-application input
stream that is created. For more information, see Configuring Application Input.

• The console shows the inferred schema and the sample data it read from the streaming
source to infer the schema.

The console displays the sample records on the streaming source.

The following appear on the Stream sample console page:

• The Raw stream sample tab shows the raw stream records sampled by the
DiscoverInputSchema API action to infer the schema.

• The Formatted stream sample tab shows the tabular version of the data in the Raw stream
sample tab.

• If you choose Edit schema, you can edit the inferred schema. For this exercise, don't change
the inferred schema. For more information about editing a schema, see Working with the
Schema Editor.

If you choose Rediscover schema, you can request the console to run DiscoverInputSchema
again and infer the schema.

Step 3.2: Configure Input 79

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

5. Choose Save and continue.

You now have an application with input configuration added to it. In the next step, you add
SQL code to perform some analytics on the data in-application input stream.

Next Step

Step 3.3: Add Real-Time Analytics (Add Application Code)

Step 3.3: Add Real-Time Analytics (Add Application Code)

You can write your own SQL queries against the in-application stream, but for the following step
you use one of the templates that provides sample code.

1. On the application hub page, choose Go to SQL editor.

Step 3.3: Add Real-Time Analytics (Add Application Code) 80

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

2. In the Would you like to start running "ExampleApp"? dialog box, choose Yes, start
application.

The console sends a request to start the application (see StartApplication), and then the SQL
editor page appears.

3. The console opens the SQL editor page. Review the page, including the buttons (Add SQL
from templates, Save and run SQL) and various tabs.

4. In the SQL editor, choose Add SQL from templates.

Step 3.3: Add Real-Time Analytics (Add Application Code) 81

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

5. From the available template list, choose Continuous filter. The sample code reads data from
one in-application stream (the WHERE clause filters the rows) and inserts it in another in-
application stream as follows:

• It creates the in-application stream DESTINATION_SQL_STREAM.

• It creates a pump STREAM_PUMP, and uses it to select rows from SOURCE_SQL_STREAM_001
and insert them in the DESTINATION_SQL_STREAM.

6. Choose Add this SQL to editor.

7. Test the application code as follows:

Remember, you already started the application (status is RUNNING). Therefore, Amazon Kinesis
Data Analytics is already continuously reading from the streaming source and adding rows to
the in-application stream SOURCE_SQL_STREAM_001.

a. In the SQL Editor, choose Save and run SQL. The console first sends update request to
save the application code. Then, the code continuously executes.

b. You can see the results in the Real-time analytics tab.

Step 3.3: Add Real-Time Analytics (Add Application Code) 82

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

The SQL editor has the following tabs:

• The Source data tab shows an in-application input stream that is mapped to the
streaming source. Choose the in-application stream, and you can see data coming in.
Note the additional columns in the in-application input stream that weren't specified in
the input configuration. These include the following timestamp columns:

• ROWTIME – Each row in an in-application stream has a special column called
ROWTIME. This column is the timestamp when Amazon Kinesis Data Analytics inserted
the row in the first in-application stream (the in-application input stream that is
mapped to the streaming source).

Step 3.3: Add Real-Time Analytics (Add Application Code) 83

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Approximate_Arrival_Time – Each Kinesis Data Analytics record includes a value
called Approximate_Arrival_Time. This value is the approximate arrival
timestamp that is set when the streaming source successfully receives and stores the
record. When Kinesis Data Analytics reads records from a streaming source, it fetches
this column into the in-application input stream.

These timestamp values are useful in windowed queries that are time-based. For more
information, see Windowed Queries.

• The Real-time analytics tab shows all the other in-application streams created by your
application code. It also includes the error stream. Kinesis Data Analytics sends any rows
it cannot process to the error stream. For more information, see Error Handling.

Choose DESTINATION_SQL_STREAM to view the rows your application code inserted.
Note the additional columns that your application code didn't create. These columns
include the ROWTIME timestamp column. Kinesis Data Analytics simply copies these
values from the source (SOURCE_SQL_STREAM_001).

• The Destination tab shows the external destination where Kinesis Data Analytics writes
the query results. You haven't configured any external destination for your application
output yet.

Next Step

Step 3.4: (Optional) Update the Application Code

Step 3.4: (Optional) Update the Application Code

In this step, you explore how to update the application code.

To update application code

1. Create another in-application stream as follows:

Step 3.4: (Optional) Update the Application Code 84

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Create another in-application stream called DESTINATION_SQL_STREAM_2.

• Create a pump, and then use it to insert rows in the newly created stream by selecting rows
from the DESTINATION_SQL_STREAM.

In the SQL editor, append the following code to the existing application code:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM_2"
 (ticker_symbol VARCHAR(4),
 change DOUBLE,
 price DOUBLE);

CREATE OR REPLACE PUMP "STREAM_PUMP_2" AS
 INSERT INTO "DESTINATION_SQL_STREAM_2"
 SELECT STREAM ticker_symbol, change, price
 FROM "DESTINATION_SQL_STREAM";

Save and run the code. Additional in-application streams appear on the Real-time analytics
tab.

2. Create two in-application streams. Filter rows in the SOURCE_SQL_STREAM_001 based on the
stock ticker, and then insert them in to these separate streams.

Append the following SQL statements to your application code:

CREATE OR REPLACE STREAM "AMZN_STREAM"
 (ticker_symbol VARCHAR(4),
 change DOUBLE,
 price DOUBLE);

CREATE OR REPLACE PUMP "AMZN_PUMP" AS
 INSERT INTO "AMZN_STREAM"
 SELECT STREAM ticker_symbol, change, price
 FROM "SOURCE_SQL_STREAM_001"
 WHERE ticker_symbol SIMILAR TO '%AMZN%';

CREATE OR REPLACE STREAM "TGT_STREAM"
 (ticker_symbol VARCHAR(4),
 change DOUBLE,
 price DOUBLE);

CREATE OR REPLACE PUMP "TGT_PUMP" AS

Step 3.4: (Optional) Update the Application Code 85

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 INSERT INTO "TGT_STREAM"
 SELECT STREAM ticker_symbol, change, price
 FROM "SOURCE_SQL_STREAM_001"
 WHERE ticker_symbol SIMILAR TO '%TGT%';

Save and run the code. Notice additional in-application streams on the Real-time analytics
tab.

You now have your first working Amazon Kinesis Data Analytics application. In this exercise, you did
the following:

• Created your first Kinesis Data Analytics application.

• Configured application input that identified the demo stream as the streaming source and
mapped it to an in-application stream (SOURCE_SQL_STREAM_001) that is created. Kinesis Data
Analytics continuously reads the demo stream and inserts records in the in-application stream.

• Your application code queried the SOURCE_SQL_STREAM_001 and wrote output to another in-
application stream called DESTINATION_SQL_STREAM.

Now you can optionally configure application output to write the application output to an
external destination. That is, you can configure the application output to write records in the
DESTINATION_SQL_STREAM to an external destination. For this exercise, this is an optional step.
To learn how to configure the destination, go to the next step.

Next Step

Step 4 (Optional) Edit the Schema and SQL Code Using the Console.

Step 4 (Optional) Edit the Schema and SQL Code Using the
Console

Following, you can find information about how to edit an inferred schema and how to edit SQL
code for Amazon Kinesis Data Analytics. You do so by working with the schema editor and SQL
editor that are part of the Kinesis Data Analytics console.

Step 4 (Optional) Edit the Schema and SQL Code Using the Console 86

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Note

To access or sample data in the console, your login user's role must have the
kinesisanalytics:GetApplicationState permission. For more information about
Kinesis Data Analytics application permissions, see Overview of Managing Access.

Topics

• Working with the Schema Editor

• Working with the SQL Editor

Working with the Schema Editor

The schema for an Amazon Kinesis Data Analytics application's input stream defines how data from
the stream is made available to SQL queries in the application.

The schema contains selection criteria for determining what part of the streaming input is
transformed into a data column in the in-application input stream. This input can be one of the
following:

• A JSONPath expression for JSON input streams. JSONPath is a tool for querying JSON data.

Working with the Schema Editor 87

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• A column number for input streams in comma-separated values (CSV) format.

• A column name and a SQL data type for presenting the data in the in-application data stream.
The data type also contains a length for character or binary data.

The console attempts to generate the schema using DiscoverInputSchema. If schema discovery
fails or returns an incorrect or incomplete schema, you must edit the schema manually by using the
schema editor.

Schema Editor Main Screen

The following screenshot shows the main screen for the Schema Editor.

You can apply the following edits to the schema:

Working with the Schema Editor 88

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Add a column (1): You might need to add a data column if a data item is not detected
automatically.

• Delete a column (2): You can exclude data from the source stream if your application doesn't
require it. This exclusion doesn't affect the data in the source stream. If data is excluded, that
data simply isn't made available to the application.

• Rename a column (3). A column name can't be blank, must be longer than a single character,
and must not contain reserved SQL keywords. The name must also meet naming criteria for
SQL ordinary identifiers: The name must start with a letter and contain only letters, underscore
characters, and digits.

• Change the data type (4) or length (5) of a column: You can specify a compatible data type for a
column. If you specify an incompatible data type, the column is either populated with NULL or
the in-application stream is not populated at all. In the latter case, errors are written to the error
stream. If you specify a length for a column that is too small, the incoming data is truncated.

• Change the selection criteria of a column (6): You can edit the JSONPath expression or CSV
column order used to determine the source of the data in a column. To change the selection
criteria for a JSON schema, enter a new value for the row path expression. A CSV schema uses
the column order as selection criteria. To change the selection criteria for a CSV schema, change
the order of the columns.

Editing the Schema for a Streaming Source

If you need to edit a schema for a streaming source, follow these steps.

To edit the schema for a streaming source

1. On the Source page, choose Edit schema.

Working with the Schema Editor 89

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

2. On the Edit schema page, edit the source schema.

Working with the Schema Editor 90

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

3. For Format, choose JSON or CSV. For JSON or CSV format, the supported encoding is ISO
8859-1.

For further information on editing the schema for JSON or CSV format, see the procedures in the
next sections.

Editing a JSON Schema

You can edit a JSON schema by using the following steps.

To edit a JSON schema

1. In the schema editor, choose Add column to add a column.

A new column appears in the first column position. To change the column order, choose the up
and down arrows next to the column name.

For a new column, provide the following information:

• For Column name, type a name.

Working with the Schema Editor 91

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

A column name cannot be blank, must be longer than a single character, and must not
contain reserved SQL keywords. It must also meet naming criteria for SQL ordinary
identifiers: It must start with a letter and contain only letters, underscore characters, and
digits.

• For Column type, type an SQL data type.

A column type can be any supported SQL data type. If the new data type is CHAR,
VARBINARY, or VARCHAR, specify a data length for Length. For more information, see Data
Types.

• For Row path, provide a row path. A row path is a valid JSONPath expression that maps to a
JSON element.

Note

The base Row path value is the path to the top-level parent that contains
the data to be imported. This value is $ by default. For more information, see
RecordRowPath in JSONMappingParameters.

2. To delete a column, choose the x icon next to the column number.

3. To rename a column, enter a new name for Column name. The new column name cannot be
blank, must be longer than a single character, and must not contain reserved SQL keywords.
It must also meet naming criteria for SQL ordinary identifiers: It must start with a letter and
contain only letters, underscore characters, and digits.

Working with the Schema Editor 92

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-data-types.html
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-data-types.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_JSONMappingParameters.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

4. To change the data type of a column, choose a new data type for Column type. If the new
data type is CHAR, VARBINARY, or VARCHAR, specify a data length for Length. For more
information, see Data Types.

5. Choose Save schema and update stream to save your changes.

The modified schema appears in the editor and looks similar to the following.

If your schema has many rows, you can filter the rows using Filter by column name. For example,
to edit column names that start with P, such as a Price column, enter P in the Filter by column
name box.

Editing a CSV Schema

You can edit a CSV schema by using the following steps.

Working with the Schema Editor 93

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-data-types.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

To edit a CSV schema

1. In the schema editor, for Row delimiter, choose the delimiter used by your incoming data
stream. This is the delimiter between records of data in your stream, such as a newline
character.

2. For Column delimiter, choose the delimiter used by your incoming data stream. This is the
delimiter between fields of data in your stream, such as a comma.

3. To add a column, choose Add column.

A new column appears in the first column position. To change the column order, choose the up
and down arrows next to the column name.

For a new column, provide the following information:

• For Column name, enter a name.

A column name cannot be blank, must be longer than a single character, and must not
contain reserved SQL keywords. It must also meet naming criteria for SQL ordinary
identifiers: It must start with a letter and contain only letters, underscore characters, and
digits.

• For Column type, enter a SQL data type.

A column type can be any supported SQL data type. If the new data type is CHAR,
VARBINARY, or VARCHAR, specify a data length for Length. For more information, see Data
Types.

4. To delete a column, choose the x icon next to the column number.

Working with the Schema Editor 94

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-data-types.html
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-data-types.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

5. To rename a column, enter a new name in Column name. The new column name cannot be
blank, must be longer than a single character, and must not contain reserved SQL keywords.
It must also meet naming criteria for SQL ordinary identifiers: It must start with a letter and
contain only letters, underscore characters, and digits.

6. To change the data type of a column, choose a new data type for Column type. If the new
data type is CHAR, VARBINARY, or VARCHAR, specify a data length for Length. For more
information, see Data Types.

7. Choose Save schema and update stream to save your changes.

The modified schema appears in the editor and looks similar to the following.

If your schema has many rows, you can filter the rows using Filter by column name. For example,
to edit column names that start with P, such as a Price column, enter P in the Filter by column
name box.

Working with the Schema Editor 95

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-data-types.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Working with the SQL Editor

Following, you can find information about sections of the SQL editor and how each works. In the
SQL editor, you can either author your own code yourself or choose Add SQL from templates. A
SQL template gives you example SQL code that can help you write common Amazon Kinesis Data
Analytics applications. The example applications in this guide use some of these templates. For
more information, see Kinesis Data Analytics for SQL examples.

Source Data Tab

The Source data tab identifies a streaming source. It also identifies the in-application input stream
that this source maps to and that provides the application input configuration.

Working with the SQL Editor 96

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Amazon Kinesis Data Analytics provides the following timestamp columns, so that you don't need
to provide explicit mapping in your input configuration:

• ROWTIME – Each row in an in-application stream has a special column called ROWTIME. This
column is the timestamp for the point when Kinesis Data Analytics inserted the row in the first
in-application stream.

• Approximate_Arrival_Time – Records on your streaming source include the
Approximate_Arrival_Timestamp column. It is the approximate arrival timestamp
that is set when the streaming source successfully receives and stores the related record.
Kinesis Data Analytics fetches this column into the in-application input stream as
Approximate_Arrival_Time. Amazon Kinesis Data Analytics provides this column only in the
in-application input stream that is mapped to the streaming source.

Working with the SQL Editor 97

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

These timestamp values are useful in windowed queries that are time-based. For more information,
see Windowed Queries.

Real-Time Analytics Tab

The Real-time analytics tab shows all the in-application streams that your application code
creates. This group of streams includes the error stream (error_stream) that Amazon Kinesis
Data Analytics provides for all applications.

Destination Tab

The Destination tab enables you to configure the application output to persist in-application
streams to external destinations. You can configure output to persist data in any of the in-

Working with the SQL Editor 98

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

application streams to external destinations. For more information, see Configuring Application
Output.

Working with the SQL Editor 99

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Streaming SQL Concepts

Amazon Kinesis Data Analytics implements the ANSI 2008 SQL standard with extensions. These
extensions enable you to process streaming data. The following topics cover key streaming SQL
concepts.

Topics

• In-Application Streams and Pumps

• Timestamps and the ROWTIME Column

• Continuous Queries

• Windowed Queries

• Streaming Data Operations: Stream Joins

In-Application Streams and Pumps

When you configure application input, you map a streaming source to an in-application stream that
is created. Data continuously flows from the streaming source into the in-application stream. An
in-application stream works like a table that you can query using SQL statements, but it's called a
stream because it represents continuous data flow.

Note

Do not confuse in-application streams with Amazon Kinesis data streams and Firehose
delivery streams. In-application streams exist only in the context of an Amazon Kinesis Data
Analytics application. Kinesis data streams and Firehose delivery streams exist independent
of your application. You can configure them as a streaming source in your application input
configuration or as a destination in output configuration.

You can also create more in-application streams as needed to store intermediate query results.
Creating an in-application stream is a two-step process. First, you create an in-application stream,
and then you pump data into it. For example, suppose that the input configuration of your
application creates an in-application stream named INPUTSTREAM. In the following example, you
create another stream (TEMPSTREAM), and then you pump data from INPUTSTREAM into it.

In-Application Streams and Pumps 100

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

1. Create an in-application stream (TEMPSTREAM) with three columns, as shown following:

CREATE OR REPLACE STREAM "TEMPSTREAM" (
 "column1" BIGINT NOT NULL,
 "column2" INTEGER,
 "column3" VARCHAR(64));

The column names are specified in quotes, making them case sensitive. For more information,
see Identifiers in the Amazon Kinesis Data Analytics SQL Reference.

2. Insert data into the stream using a pump. A pump is a continuous insert query running that
inserts data from one in-application stream to another in-application stream. The following
statement creates a pump (SAMPLEPUMP) and inserts data into the TEMPSTREAM by selecting
records from another stream (INPUTSTREAM).

CREATE OR REPLACE PUMP "SAMPLEPUMP" AS
INSERT INTO "TEMPSTREAM" ("column1",
 "column2",
 "column3")
SELECT STREAM inputcolumn1,
 inputcolumn2,
 inputcolumn3
FROM "INPUTSTREAM";

You can have multiple writers insert into an in-application stream, and there can be multiple
readers selected from the stream. Think of an in-application stream as implementing a publish/
subscribe messaging paradigm. In this paradigm, the data row, including the time of creation
and time of receipt, can be processed, interpreted, and forwarded by a cascade of streaming SQL
statements, without having to be stored in a traditional RDBMS.

After an in-application stream is created, you can perform normal SQL queries.

Note

When you query streams, most SQL statements are bound using a row-based or time-based
window. For more information, see Windowed Queries.

In-Application Streams and Pumps 101

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-identifiers.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

You can also join streams. For examples of joining streams, see Streaming Data Operations: Stream
Joins.

Timestamps and the ROWTIME Column

In-application streams include a special column called ROWTIME. It stores a timestamp when
Amazon Kinesis Data Analytics inserts a row in the first in-application stream. ROWTIME reflects the
timestamp at which Amazon Kinesis Data Analytics inserted a record into the first in-application
stream after reading from the streaming source. This ROWTIME value is then maintained
throughout your application.

Note

When you pump records from one in-application stream into another, you don't need to
explicitly copy the ROWTIME column, Amazon Kinesis Data Analytics copies this column for
you.

Amazon Kinesis Data Analytics guarantees that the ROWTIME values are monotonically increased.
You use this timestamp in time-based windowed queries. For more information, see Windowed
Queries.

You can access the ROWTIME column in your SELECT statement like any other columns in your in-
application stream. For example:

SELECT STREAM ROWTIME,
 some_col_1,
 some_col_2
FROM SOURCE_SQL_STREAM_001

Understanding Various Times in Streaming Analytics

In addition to ROWTIME, there are other types of times in real-time streaming applications. These
are:

• Event time – The timestamp when the event occurred. This is also sometimes called the client-
side time. It is often desirable to use this time in analytics because it is the time when an event
occurred. However, many event sources, such as mobile phones and web clients, do not have

Timestamps and the ROWTIME Column 102

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

reliable clocks, which can lead to inaccurate times. In addition, connectivity issues can lead to
records appearing on a stream not in the same order the events occurred.

• Ingest time – The timestamp of when record was added to the streaming source. Amazon Kinesis
Data Streams includes a field called APPROXIMATE_ARRIVAL_TIME in every record that provides
this timestamp. This is also sometimes referred to as the server-side time. This ingest time is
often the close approximation of event time. If there is any kind of delay in the record ingestion
to the stream, this can lead to inaccuracies, which are typically rare. Also, the ingest time is rarely
out of order, but it can occur due to the distributed nature of streaming data. Therefore, Ingest
time is a mostly accurate and in-order reflection of the event time.

• Processing time – The timestamp when Amazon Kinesis Data Analytics inserts a row in the first
in-application stream. Amazon Kinesis Data Analytics provides this timestamp in the ROWTIME
column that exists in each in-application stream. The processing time is always monotonically
increasing. But it will not be accurate if your application falls behind. (If an application falls
behind, the processing time does not accurately reflect the event time.) This ROWTIME is accurate
in relation to the wall clock, but it might not be the time when the event actually occurred.

Using each of these times in windowed queries that are time-based has advantages and
disadvantages. We recommend that you choose one or more of these times, and a strategy to deal
with the relevant disadvantages based on your use case scenario.

Note

If you are using row-based windows, time is not an issue and you can ignore this section.

We recommend a two-window strategy that uses two time-based, both ROWTIME and one of the
other times (ingest or event time).

• Use ROWTIME as the first window, which controls how frequently the query emits the results, as
shown in the following example. It is not used as a logical time.

• Use one of the other times that is the logical time that you want to associate with your analytics.
This time represents when the event occurred. In the following example, the analytics goal is to
group the records and return count by ticker.

Understanding Various Times in Streaming Analytics 103

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

The advantage of this strategy is that it can use a time that represents when the event occurred.
It can gracefully handle when your application falls behind or when events arrive out of order. If
the application falls behind when bringing records into the in-application stream, they are still
grouped by the logical time in the second window. The query uses ROWTIME to guarantee the order
of processing. Any records that are late (the ingest timestamp shows an earlier value compared to
the ROWTIME value) are also processed successfully.

Consider the following query against the demo stream used in the Getting Started Exercise. The
query uses the GROUP BY clause and emits a ticker count in a one-minute tumbling window.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM"
 ("ingest_time" timestamp,
 "APPROXIMATE_ARRIVAL_TIME" timestamp,
 "ticker_symbol" VARCHAR(12),
 "symbol_count" integer);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM STEP("SOURCE_SQL_STREAM_001".ROWTIME BY INTERVAL '60' SECOND) AS
 "ingest_time",
 STEP("SOURCE_SQL_STREAM_001".APPROXIMATE_ARRIVAL_TIME BY INTERVAL '60' SECOND)
 AS "APPROXIMATE_ARRIVAL_TIME",
 "TICKER_SYMBOL",
 COUNT(*) AS "symbol_count"
 FROM "SOURCE_SQL_STREAM_001"
 GROUP BY "TICKER_SYMBOL",
 STEP("SOURCE_SQL_STREAM_001".ROWTIME BY INTERVAL '60' SECOND),
 STEP("SOURCE_SQL_STREAM_001".APPROXIMATE_ARRIVAL_TIME BY INTERVAL '60' SECOND);

In GROUP BY, you first group the records based on ROWTIME in a one-minute window and then by
APPROXIMATE_ARRIVAL_TIME.

The timestamp values in the result are rounded down to the nearest 60-second interval. The first
group result emitted by the query shows records in the first minute. The second group of results
emitted shows records in the next minutes based on ROWTIME. The last record indicates that the
application was late in bringing the record in the in-application stream (it shows a late ROWTIME
value compared to the ingest timestamp).

ROWTIME INGEST_TIME TICKER_SYMBOL SYMBOL_COUNT

Understanding Various Times in Streaming Analytics 104

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

--First one minute window.
2016-07-19 17:05:00.0 2016-07-19 17:05:00.0 ABC 10
2016-07-19 17:05:00.0 2016-07-19 17:05:00.0 DEF 15
2016-07-19 17:05:00.0 2016-07-19 17:05:00.0 XYZ 6
–-Second one minute window.
2016-07-19 17:06:00.0 2016-07-19 17:06:00.0 ABC 11
2016-07-19 17:06:00.0 2016-07-19 17:06:00.0 DEF 11
2016-07-19 17:06:00.0 2016-07-19 17:05:00.0 XYZ 1 ***

***late-arriving record, instead of appearing in the result of the
first 1-minute windows (based on ingest_time, it is in the result
of the second 1-minute window.

You can combine the results for a final accurate count per minute by pushing the results to a
downstream database. For example, you can configure the application output to persist the
results to a Firehose delivery stream that can write to an Amazon Redshift table. After results
are in an Amazon Redshift table, you can query the table to compute the total count group by
Ticker_Symbol. In the case of XYZ, the total is accurate (6+1) even though a record arrived late.

Continuous Queries

A query over a stream executes continuously over streaming data. This continuous execution
enables scenarios, such as the ability for applications to continuously query a stream and generate
alerts.

In the Getting Started exercise, you have an in-application stream named
SOURCE_SQL_STREAM_001. It continuously receives stock prices from a demo stream (a Kinesis
data stream). The schema is as follows:

(TICKER_SYMBOL VARCHAR(4),
 SECTOR varchar(16),
 CHANGE REAL,
 PRICE REAL)

Suppose that you are interested in stock price changes greater than 15 percent. You can use the
following query in your application code. This query runs continuously and emits records when a
stock price change greater than 15 percent is detected.

SELECT STREAM TICKER_SYMBOL, PRICE

Continuous Queries 105

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 FROM "SOURCE_SQL_STREAM_001"
 WHERE (ABS((CHANGE / (PRICE-CHANGE)) * 100)) > 15

Use the following procedure to set up an Amazon Kinesis Data Analytics application and test this
query.

To test the query

1. Create an application by following the Getting Started Exercise.

2. Replace the SELECT statement in the application code with the preceding SELECT query. The
resulting application code is shown following:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ticker_symbol VARCHAR(4),
 price DOUBLE);
-- CREATE OR REPLACE PUMP to insert into output
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM TICKER_SYMBOL,
 PRICE
 FROM "SOURCE_SQL_STREAM_001"
 WHERE (ABS((CHANGE / (PRICE-CHANGE)) * 100)) > 15;

Windowed Queries

SQL queries in your application code execute continuously over in-application streams. An in-
application stream represents unbounded data that flows continuously through your application.
Therefore, to get result sets from this continuously updating input, you often bound queries using
a window defined in terms of time or rows. These are also called windowed SQL.

For a time-based windowed query, you specify the window size in terms of time (for example,
a one-minute window). This requires a timestamp column in your in-application stream that is
monotonically increasing. (The timestamp for a new row is greater than or equal to the previous
row.) Amazon Kinesis Data Analytics provides such a timestamp column called ROWTIME for
each in-application stream. You can use this column when specifying time-based queries. For
your application, you might choose some other timestamp option. For more information, see
Timestamps and the ROWTIME Column.

For a row-based windowed query, you specify the window size in terms of the number of rows.

Windowed Queries 106

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

You can specify a query to process records in a tumbling window, sliding window, or stagger
window manner, depending on your application needs. Kinesis Data Analytics supports the
following window types:

• Stagger Windows: A query that aggregates data using keyed time-based windows that open as
data arrives. The keys allow for multiple overlapping windows. This is the recommended way to
aggregate data using time-based windows, because Stagger Windows reduce late or out-of-order
data compared to Tumbling windows.

• Tumbling Windows: A query that aggregates data using distinct time-based windows that open
and close at regular intervals.

• Sliding Windows: A query that aggregates data continuously, using a fixed time or rowcount
interval.

Stagger Windows

Using stagger windows is a windowing method that is suited for analyzing groups of data that
arrive at inconsistent times. It is well suited for any time-series analytics use case, such as a set of
related sales or log records.

For example, VPC Flow Logs have a capture window of approximately 10 minutes. But they can
have a capture window of up to 15 minutes if you're aggregating data on the client. Stagger
windows are ideal for aggregating these logs for analysis.

Stagger windows address the issue of related records not falling into the same time-restricted
window, such as when tumbling windows were used.

Partial Results with Tumbling Windows

There are certain limitations with using Tumbling Windows for aggregating late or out-of-order
data.

If tumbling windows are used to analyze groups of time-related data, the individual records might
fall into separate windows. So then the partial results from each window must be combined later
to yield complete results for each group of records.

In the following tumbling window query, records are grouped into windows by row time, event
time, and ticker symbol:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (

Stagger Windows 107

https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html#flow-logs-limitations

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 TICKER_SYMBOL VARCHAR(4),
 EVENT_TIME timestamp,
 TICKER_COUNT DOUBLE);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM
 TICKER_SYMBOL,
 FLOOR(EVENT_TIME TO MINUTE),
 COUNT(TICKER_SYMBOL) AS TICKER_COUNT
 FROM "SOURCE_SQL_STREAM_001"
 GROUP BY ticker_symbol, FLOOR(EVENT_TIME TO MINUTE),
 STEP("SOURCE_SQL_STREAM_001".ROWTIME BY INTERVAL '1' MINUTE);

In the following diagram, an application is counting the number of trades it receives, based on
when the trades happened (event time) with one minute of granularity. The application can use a
tumbling window for grouping data based on row time and event time. The application receives
four records that all arrive within one minute of each other. It groups the records by row time,
event time, and ticker symbol. Because some of the records arrive after the first tumbling window
ends, the records do not all fall within the same one-minute tumbling window.

The preceding diagram has the following events.

ROWTIME EVENT_TIME TICKER_SYMBOL

11:00:20 11:00:10 AMZN

11:00:30 11:00:20 AMZN

Stagger Windows 108

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

ROWTIME EVENT_TIME TICKER_SYMBOL

11:01:05 11:00:55 AMZN

11:01:15 11:01:05 AMZN

The result set from the tumbling window application looks similar to the following.

ROWTIME EVENT_TIME TICKER_SYMBOL COUNT

11:01:00 11:00:00 AMZN 2

11:02:00 11:00:00 AMZN 1

11:02:00 11:01:00 AMZN 1

In the result set preceding, three results are returned:

• A record with a ROWTIME of 11:01:00 that aggregates the first two records.

• A record at 11:02:00 that aggregates just the third record. This record has a ROWTIME within the
second window, but an EVENT_TIME within the first window.

• A record at 11:02:00 that aggregates just the fourth record.

To analyze the complete result set, the records must be aggregated in the persistence store. This
adds complexity and processing requirements to the application.

Complete Results with Stagger Windows

To improve the accuracy of analyzing time-related data records, Kinesis Data Analytics offers a
new window type called stagger windows. In this window type, windows open when the first event
matching the partition key arrives, and not on a fixed time interval. The windows close based on
the age specified, which is measured from the time when the window opened.

A stagger window is a separate time-restricted window for each key grouping in a window clause.
The application aggregates each result of the window clause inside its own time window, rather
than using a single window for all results.

Stagger Windows 109

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

In the following stagger window query, records are grouped into windows by event time and ticker
symbol:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 ticker_symbol VARCHAR(4),
 event_time TIMESTAMP,
 ticker_count DOUBLE);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM
 TICKER_SYMBOL,
 FLOOR(EVENT_TIME TO MINUTE),
 COUNT(TICKER_SYMBOL) AS ticker_count
 FROM "SOURCE_SQL_STREAM_001"
 WINDOWED BY STAGGER (
 PARTITION BY FLOOR(EVENT_TIME TO MINUTE), TICKER_SYMBOL RANGE INTERVAL '1'
 MINUTE);

In the following diagram, events are aggregated by event time and ticker symbol into stagger
windows.

The preceding diagram has the following events, which are the same events as the tumbling
window application analyzed:

Stagger Windows 110

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

ROWTIME EVENT_TIME TICKER_SYMBOL

11:00:20 11:00:10 AMZN

11:00:30 11:00:20 AMZN

11:01:05 11:00:55 AMZN

11:01:15 11:01:05 AMZN

The result set from the stagger window application looks similar to the following.

ROWTIME EVENT_TIME TICKER_SYMBOL Count

11:01:20 11:00:00 AMZN 3

11:02:15 11:01:00 AMZN 1

The returned record aggregates the first three input records. The records are grouped by one-
minute stagger windows. The stagger window starts when the application receives the first AMZN
record (with a ROWTIME of 11:00:20). When the 1-minute stagger window expires (at 11:01:20), a
record with the results that fall within the stagger window (based on ROWTIME and EVENT_TIME)
is written to the output stream. Using a stagger window, all of the records with a ROWTIME and
EVENT_TIME within a one-minute window are emitted in a single result.

The last record (with an EVENT_TIME outside the one-minute aggregation) is aggregated
separately. This is because EVENT_TIME is one of the partition keys that is used to separate the
records into result sets, and the partition key for EVENT_TIME for the first window is 11:00.

The syntax for a stagger window is defined in a special clause, WINDOWED BY. This clause is used
instead of the GROUP BY clause for streaming aggregations. The clause appears immediately after
the optional WHERE clause and before the HAVING clause.

The stagger window is defined in the WINDOWED BY clause and takes two parameters: partition
keys and window length. The partition keys partition the incoming data stream and define when
the window opens. A stagger window opens when the first event with a unique partition key

Stagger Windows 111

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

appears on the stream. The stagger window closes after a fixed time period defined by the window
length. The syntax is shown in the following code example:

...
FROM <stream-name>
WHERE <... optional statements...>
WINDOWED BY STAGGER(
 PARTITION BY <partition key(s)>
 RANGE INTERVAL <window length, interval>
);

Tumbling Windows (Aggregations Using GROUP BY)

When a windowed query processes each window in a non-overlapping manner, the window is
referred to as a tumbling window. In this case, each record on an in-application stream belongs to
a specific window. It is processed only once (when the query processes the window to which the
record belongs).

For example, an aggregation query using a GROUP BY clause processes rows in a tumbling window.
The demo stream in the getting started exercise receives stock price data that is mapped to the in-
application stream SOURCE_SQL_STREAM_001 in your application. This stream has the following
schema.

(TICKER_SYMBOL VARCHAR(4),
 SECTOR varchar(16),
 CHANGE REAL,
 PRICE REAL)

In your application code, suppose that you want to find aggregate (min, max) prices for each ticker
over a one-minute window. You can use the following query.

Tumbling Windows 112

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

SELECT STREAM ROWTIME,
 Ticker_Symbol,
 MIN(Price) AS Price,
 MAX(Price) AS Price
FROM "SOURCE_SQL_STREAM_001"
GROUP BY Ticker_Symbol,
 STEP("SOURCE_SQL_STREAM_001".ROWTIME BY INTERVAL '60' SECOND);

The preceding is an example of a windowed query that is time-based. The query groups records
by ROWTIME values. For reporting on a per-minute basis, the STEP function rounds down the
ROWTIME values to the nearest minute.

Note

You can also use the FLOOR function to group records into windows. However, FLOOR can
only round time values down to a whole time unit (hour, minute, second, and so on). STEP
is recommended for grouping records into tumbling windows because it can round values
down to an arbitrary interval, for example, 30 seconds.

This query is an example of a nonoverlapping (tumbling) window. The GROUP BY clause groups
records in a one-minute window, and each record belongs to a specific window (no overlapping).
The query emits one output record per minute, providing the min/max ticker price recorded at the
specific minute. This type of query is useful for generating periodic reports from the input data
stream. In this example, reports are generated each minute.

To test the query

1. Set up an application by following the getting started exercise.

2. Replace the SELECT statement in the application code by the preceding SELECT query. The
resulting application code is shown following:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 ticker_symbol VARCHAR(4),
 Min_Price DOUBLE,
 Max_Price DOUBLE);
-- CREATE OR REPLACE PUMP to insert into output
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"

Tumbling Windows 113

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 SELECT STREAM Ticker_Symbol,
 MIN(Price) AS Min_Price,
 MAX(Price) AS Max_Price
 FROM "SOURCE_SQL_STREAM_001"
 GROUP BY Ticker_Symbol,
 STEP("SOURCE_SQL_STREAM_001".ROWTIME BY INTERVAL '60' SECOND);

Sliding Windows

Instead of grouping records using GROUP BY, you can define a time-based or row-based window.
You do this by adding an explicit WINDOW clause.

In this case, as the window slides with time, Amazon Kinesis Data Analytics emits an output when
new records appear on the stream. Kinesis Data Analytics emits this output by processing rows in
the window. Windows can overlap in this type of processing, and a record can be part of multiple
windows and be processed with each window. The following example illustrates a sliding window.

Consider a simple query that counts records on the stream. This example assumes a 5-second
window. In the following example stream, new records arrive at time t1, t2, t6, and t7, and three
records arrive at time t8 seconds.

Keep the following in mind:

• The example assumes a 5-second window. The 5-second window slides continuously with time.

• For every row that enters a window, an output row is emitted by the sliding window. Soon after
the application starts, you see the query emit output for every new record that appears on the
stream, even though a 5-second window hasn't passed yet. For example, the query emits output
when a record appears in the first second and second second. Later, the query processes records
in the 5-second window.

• The windows slide with time. If an old record on the stream falls out of the window, the query
doesn't emit output unless there is also a new record on the stream that falls within that 5-
second window.

Sliding Windows 114

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Suppose that the query starts executing at t0. Then the following occurs:

1. At the time t0, the query starts. The query doesn't emit output (count value) because there are
no records at this time.

2. At time t1, a new record appears on the stream, and the query emits count value 1.

3. At time t2, another record appears, and the query emits count 2.

4. The 5-second window slides with time:

• At t3, the sliding window t3 to t0

• At t4 (sliding window t4 to t0)

• At t5 the sliding window t5–t0

At all of these times, the 5-second window has the same records—there are no new records.
Therefore, the query doesn't emit any output.

5. At time t6, the 5-second window is (t6 to t1). The query detects one new record at t6 so it emits
output 2. The record at t1 is no longer in the window and doesn't count.

Sliding Windows 115

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

6. At time t7, the 5-second window is t7 to t2. The query detects one new record at t7 so it emits
output 2. The record at t2 is no longer in the 5-second window, and therefore isn't counted.

7. At time t8, the 5-second window is t8 to t3. The query detects three new records, and therefore
emits record count 5.

In summary, the window is a fixed size and slides with time. The query emits output when new
records appear.

Note

We recommend that you use a sliding window no longer than one hour. If you use a longer
window, the application takes longer to restart after regular system maintenance. This is
because the source data must be read from the stream again.

The following example queries use the WINDOW clause to define windows and perform aggregates.
Because the queries don't specify GROUP BY, the query uses the sliding window approach to
process records on the stream.

Example 1: Process a Stream Using a 1-Minute Sliding Window

Consider the demo stream in the Getting Started exercise that populates the in-application stream,
SOURCE_SQL_STREAM_001. The following is the schema.

(TICKER_SYMBOL VARCHAR(4),
 SECTOR varchar(16),
 CHANGE REAL,
 PRICE REAL)

Sliding Windows 116

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Suppose that you want your application to compute aggregates using a sliding 1-minute window.
That is, for each new record that appears on the stream, you want the application to emit an
output by applying aggregates on records in the preceding 1-minute window.

You can use the following time-based windowed query. The query uses the WINDOW clause to
define the 1-minute range interval. The PARTITION BY in the WINDOW clause groups records by
ticker values within the sliding window.

SELECT STREAM ticker_symbol,
 MIN(Price) OVER W1 AS Min_Price,
 MAX(Price) OVER W1 AS Max_Price,
 AVG(Price) OVER W1 AS Avg_Price
FROM "SOURCE_SQL_STREAM_001"
WINDOW W1 AS (
 PARTITION BY ticker_symbol
 RANGE INTERVAL '1' MINUTE PRECEDING);

To test the query

1. Set up an application by following the Getting Started Exercise.

2. Replace the SELECT statement in the application code with the preceding SELECT query. The
resulting application code is the following.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 ticker_symbol VARCHAR(10),
 Min_Price double,
 Max_Price double,
 Avg_Price double);
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM ticker_symbol,
 MIN(Price) OVER W1 AS Min_Price,
 MAX(Price) OVER W1 AS Max_Price,
 AVG(Price) OVER W1 AS Avg_Price
 FROM "SOURCE_SQL_STREAM_001"
 WINDOW W1 AS (
 PARTITION BY ticker_symbol
 RANGE INTERVAL '1' MINUTE PRECEDING);

Sliding Windows 117

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Example 2: Query Applying Aggregates on a Sliding Window

The following query on the demo stream returns the average of the percent change in the price of
each ticker in a 10-second window.

SELECT STREAM Ticker_Symbol,
 AVG(Change / (Price - Change)) over W1 as Avg_Percent_Change
FROM "SOURCE_SQL_STREAM_001"
WINDOW W1 AS (
 PARTITION BY ticker_symbol
 RANGE INTERVAL '10' SECOND PRECEDING);

To test the query

1. Set up an application by following the Getting Started Exercise.

2. Replace the SELECT statement in the application code with the preceding SELECT query. The
resulting application code is the following.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 ticker_symbol VARCHAR(10),
 Avg_Percent_Change double);
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM Ticker_Symbol,
 AVG(Change / (Price - Change)) over W1 as Avg_Percent_Change
 FROM "SOURCE_SQL_STREAM_001"
 WINDOW W1 AS (
 PARTITION BY ticker_symbol
 RANGE INTERVAL '10' SECOND PRECEDING);

Example 3: Query Data from Multiple Sliding Windows on the Same Stream

You can write queries to emit output in which each column value is calculated using different
sliding windows defined over the same stream.

In the following example, the query emits the output ticker, price, a2, and a10. It emits output for
ticker symbols whose two-row moving average crosses the ten-row moving average. The a2 and
a10 column values are derived from two-row and ten-row sliding windows.

Sliding Windows 118

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 ticker_symbol VARCHAR(12),
 price double,
 average_last2rows double,
 average_last10rows double);

CREATE OR REPLACE PUMP "myPump" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol,
 price,
 avg(price) over last2rows,
 avg(price) over last10rows
FROM SOURCE_SQL_STREAM_001
WINDOW
 last2rows AS (PARTITION BY ticker_symbol ROWS 2 PRECEDING),
 last10rows AS (PARTITION BY ticker_symbol ROWS 10 PRECEDING);

To test this query against the demo stream, follow the test procedure described in Example 1.

Streaming Data Operations: Stream Joins

You can have multiple in-application streams in your application. You can write JOIN queries to
correlate data arriving on these streams. For example, suppose that you have the following in-
application streams:

• OrderStream – Receives stock orders being placed.

(orderId SqlType, ticker SqlType, amount SqlType, ROWTIME TimeStamp)

• TradeStream – Receives resulting stock trades for those orders.

(tradeId SqlType, orderId SqlType, ticker SqlType, amount SqlType, ticker SqlType,
 amount SqlType, ROWTIME TimeStamp)

The following are JOIN query examples that correlate data on these streams.

Stream Joins 119

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Example 1: Report Orders Where There Are Trades Within One Minute
of the Order Being Placed

In this example, your query joins both the OrderStream and TradeStream. However, because we
want only trades placed one minute after the orders, the query defines the 1-minute window over
the TradeStream. For information about windowed queries, see Sliding Windows.

SELECT STREAM
 ROWTIME,
 o.orderId, o.ticker, o.amount AS orderAmount,
 t.amount AS tradeAmount
FROM OrderStream AS o
JOIN TradeStream OVER (RANGE INTERVAL '1' MINUTE PRECEDING) AS t
ON o.orderId = t.orderId;

You can define the windows explicitly using the WINDOW clause and writing the preceding query as
follows:

SELECT STREAM
 ROWTIME,
 o.orderId, o.ticker, o.amount AS orderAmount,
 t.amount AS tradeAmount
FROM OrderStream AS o
JOIN TradeStream OVER t
ON o.orderId = t.orderId
WINDOW t AS
 (RANGE INTERVAL '1' MINUTE PRECEDING)

When you include this query in your application code, the application code runs continuously.
For each arriving record on the OrderStream, the application emits an output if there are trades
within the 1-minute window following the order being placed.

The join in the preceding query is an inner join where the query emits records in OrderStream
for which there is a matching record in TradeStream (and vice versa). Using an outer join you can
create another interesting scenario. Suppose that you want stock orders for which there are no
trades within one minute of stock order being placed, and trades reported within the same window
but for some other orders. This is example of an outer join.

SELECT STREAM
 ROWTIME,

Example 1: Report Orders Where There Are Trades Within One Minute of the Order Being Placed 120

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 o.orderId, o.ticker, o.amount AS orderAmount,
 t.ticker, t.tradeId, t.amount AS tradeAmount,
FROM OrderStream AS o
LEFT OUTER JOIN TradeStream OVER (RANGE INTERVAL '1' MINUTE PRECEDING) AS t
ON o.orderId = t.orderId;

Example 1: Report Orders Where There Are Trades Within One Minute of the Order Being Placed 121

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Migrating to Managed Service for Apache Flink Studio
Examples

The following examples demonstrate how to migrate Kinesis Data Analytics for SQL applications to
Managed Service for Apache Flink Studio.

Replicating Kinesis Data Analytics for SQL Queries in Managed
Service for Apache Flink Studio

Warning

For new projects, we recommend that you use Managed Service for Apache Flink Studio
over Kinesis Data Analytics for SQL Applications. Managed Service for Apache Flink
Studio combines ease of use with advanced analytical capabilities, enabling you to build
sophisticated stream processing applications in minutes.

To migrate your workloads to Managed Service for Apache Flink Studio or Managed Service for
Apache Flink, this section provides query translations you can use for common use cases.

Note

Managed Service for Apache Flink and Managed Service for Apache Flink Studio offer
advanced data stream processing features not available in SQL-based Kinesis Data Analytics
applications. These include exactly-once processing semantics, event-time windows,
extensibility using user defined functions and custom integrations, imperative language
support, durable application state, horizontal scaling, support for multiple data sources,
extensible integrations, and more. These are critical for ensuring accuracy, completeness,
consistency, and reliability of data stream processing.

Before you explore these examples we recommend you first review Using a Studio notebook with a
Managed Service for Apache Flink.

Topics

Replicating Kinesis Data Analytics for SQL Queries in Managed Service for Apache Flink Studio 122

https://docs.aws.amazon.com/managed-flink/latest/java/how-notebook.html
https://docs.aws.amazon.com/managed-flink/latest/java/how-notebook.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio

Re-creating Kinesis Data Analytics for SQL queries in Managed Service
for Apache Flink Studio

The following table provides translations of common SQL-based Kinesis Data Analytics application
queries to Managed Service for Apache Flink Studio.

Multi-Step application

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "IN_APP_STREAM_001" (
 ingest_time TIMESTAMP,
 ticker_symbol VARCHAR(4),
 sector VARCHAR(16), price REAL, change REAL);
CREATE
OR REPLACE PUMP "STREAM_PUMP_001" AS
INSERT INTO
 "IN_APP_STREAM_001"
 SELECT
 STREAM APPROXIMATE_ARRIVAL_TIME,
 ticker_symbol,
 sector,
 price,
 change FROM "SOURCE_SQL_STREAM_001";
-- Second in-app stream and pump
CREATE
OR REPLACE STREAM "IN_APP_STREAM_02" (ingest_time TIMESTAMP,
 ticker_symbol VARCHAR(4),
 sector VARCHAR(16),
 price REAL,
 change REAL);
CREATE
OR REPLACE PUMP "STREAM_PUMP_02" AS
INSERT INTO
 "IN_APP_STREAM_02"
 SELECT
 STREAM ingest_time,
 ticker_symbol,
 sector,

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 123

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 price,
 change FROM "IN_APP_STREAM_001";
-- Destination in-app stream and third pump
CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ingest_time TIMESTAMP,
 ticker_symbol VARCHAR(4),
 sector VARCHAR(16),
 price REAL,
 change REAL);
CREATE
OR REPLACE PUMP "STREAM_PUMP_03" AS
INSERT INTO
 "DESTINATION_SQL_STREAM"
 SELECT
 STREAM ingest_time,
 ticker_symbol,
 sector,
 price,
 change FROM "IN_APP_STREAM_02";

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql DROP TABLE IF EXISTS SOURCE_SQL_STREAM_001;

CREATE TABLE SOURCE_SQL_STREAM_001 (TICKER_SYMBOL VARCHAR(4),
 SECTOR VARCHAR(16),
 PRICE DOUBLE,
 CHANGE DOUBLE,
 APPROXIMATE_ARRIVAL_TIME TIMESTAMP(3) METADATA

FROM
 'timestamp' VIRTUAL,
 WATERMARK FOR APPROXIMATE_ARRIVAL_TIME AS APPROXIMATE_ARRIVAL_TIME - INTERVAL '1'
 SECOND)
 PARTITIONED BY (TICKER_SYMBOL) WITH (
 'connector' = 'kinesis',
 'stream' = 'kinesis-analytics-demo-stream',
 'aws.region' = 'us-east-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601');
DROP TABLE IF EXISTS IN_APP_STREAM_001;

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 124

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

CREATE TABLE IN_APP_STREAM_001 (
 INGEST_TIME TIMESTAMP,
 TICKER_SYMBOL VARCHAR(4),
 SECTOR VARCHAR(16),
 PRICE DOUBLE,
 CHANGE DOUBLE)
PARTITIONED BY (TICKER_SYMBOL) WITH (
 'connector' = 'kinesis',
 'stream' = 'IN_APP_STREAM_001',
 'aws.region' = 'us-east-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601');

DROP TABLE IF EXISTS IN_APP_STREAM_02;

CREATE TABLE IN_APP_STREAM_02 (
 INGEST_TIME TIMESTAMP,
 TICKER_SYMBOL VARCHAR(4),
 SECTOR VARCHAR(16),
 PRICE DOUBLE,
 CHANGE DOUBLE)
PARTITIONED BY (TICKER_SYMBOL) WITH (
 'connector' = 'kinesis',
 'stream' = 'IN_APP_STREAM_02',
 'aws.region' = 'us-east-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601');

DROP TABLE IF EXISTS DESTINATION_SQL_STREAM;

CREATE TABLE DESTINATION_SQL_STREAM (
 INGEST_TIME TIMESTAMP, TICKER_SYMBOL VARCHAR(4), SECTOR VARCHAR(16),
 PRICE DOUBLE, CHANGE DOUBLE)
PARTITIONED BY (TICKER_SYMBOL) WITH (
 'connector' = 'kinesis',
 'stream' = 'DESTINATION_SQL_STREAM',
 'aws.region' = 'us-east-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601');

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 125

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Query 2 - % flink.ssql(type =
update
)
 INSERT INTO
 IN_APP_STREAM_001
 SELECT
 APPROXIMATE_ARRIVAL_TIME AS INGEST_TIME,
 TICKER_SYMBOL,
 SECTOR,
 PRICE,
 CHANGE
 FROM
 SOURCE_SQL_STREAM_001;

Query 3 - % flink.ssql(type =
update
)
 INSERT INTO
 IN_APP_STREAM_02
 SELECT
 INGEST_TIME,
 TICKER_SYMBOL,
 SECTOR,
 PRICE,
 CHANGE
 FROM
 IN_APP_STREAM_001;

Query 4 - % flink.ssql(type =
update
)
 INSERT INTO
 DESTINATION_SQL_STREAM
 SELECT
 INGEST_TIME,
 TICKER_SYMBOL,
 SECTOR,
 PRICE,
 CHANGE
 FROM
 IN_APP_STREAM_02;

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 126

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Transforming DateTime values

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 TICKER VARCHAR(4),
 event_time TIMESTAMP,
 five_minutes_before TIMESTAMP,
 event_unix_timestamp BIGINT,
 event_timestamp_as_char VARCHAR(50),
 event_second INTEGER);

CREATE
OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO
 "DESTINATION_SQL_STREAM"
 SELECT
 STREAM TICKER,
 EVENT_TIME,
 EVENT_TIME - INTERVAL '5' MINUTE,
 UNIX_TIMESTAMP(EVENT_TIME),
 TIMESTAMP_TO_CHAR('yyyy-MM-dd hh:mm:ss', EVENT_TIME),
 EXTRACT(SECOND
 FROM
 EVENT_TIME)
 FROM
 "SOURCE_SQL_STREAM_001"

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =
update
) CREATE TABLE DESTINATION_SQL_STREAM (
 TICKER VARCHAR(4),
 EVENT_TIME TIMESTAMP(3),
 FIVE_MINUTES_BEFORE TIMESTAMP(3),
 EVENT_UNIX_TIMESTAMP INT,
 EVENT_TIMESTAMP_AS_CHAR VARCHAR(50),
 EVENT_SECOND INT)

PARTITIONED BY (TICKER) WITH (
 'connector' = 'kinesis', 'stream' = 'kinesis-analytics-demo-stream',

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 127

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 'aws.region' = 'us-east-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601')

Query 2 - % flink.ssql(type =
 update
)
 SELECT
 TICKER,
 EVENT_TIME,
 EVENT_TIME - INTERVAL '5' MINUTE AS FIVE_MINUTES_BEFORE,
 UNIX_TIMESTAMP() AS EVENT_UNIX_TIMESTAMP,
 DATE_FORMAT(EVENT_TIME, 'yyyy-MM-dd hh:mm:ss') AS EVENT_TIMESTAMP_AS_CHAR,
 EXTRACT(SECOND
 FROM
 EVENT_TIME) AS EVENT_SECOND
 FROM
 DESTINATION_SQL_STREAM;

Simple alerts

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM"(
 ticker_symbol VARCHAR(4),
 sector VARCHAR(12),
 change DOUBLE,
 price DOUBLE);

CREATE
OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT
 STREAM ticker_symbol,
 sector,
 change,
 price
FROM
 "SOURCE_SQL_STREAM_001"
WHERE
 (

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 128

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 ABS(Change / (Price - Change)) * 100
)
 > 1

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =
update
) DROP TABLE IF EXISTS DESTINATION_SQL_STREAM;

CREATE TABLE DESTINATION_SQL_STREAM (
 TICKER_SYMBOL VARCHAR(4),
 SECTOR VARCHAR(4),
 CHANGE DOUBLE,
 PRICE DOUBLE)
PARTITIONED BY (TICKER_SYMBOL) WITH (
 'connector' = 'kinesis',
 'stream' = 'kinesis-analytics-demo-stream',
 'aws.region' = 'us-east-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601');

Query 2 - % flink.ssql(type =
update
)
 SELECT
 TICKER_SYMBOL,
 SECTOR,
 CHANGE,
 PRICE
 FROM
 DESTINATION_SQL_STREAM
 WHERE
 (
 ABS(CHANGE / (PRICE - CHANGE)) * 100
)
 > 1;

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 129

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Throttled alerts

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "CHANGE_STREAM"(
 ticker_symbol VARCHAR(4),
 sector VARCHAR(12),
 change DOUBLE,
 price DOUBLE);

CREATE
OR REPLACE PUMP "change_pump" AS INSERT INTO "CHANGE_STREAM"
SELECT
 STREAM ticker_symbol,
 sector,
 change,
 price
FROM "SOURCE_SQL_STREAM_001"
WHERE
 (
 ABS(Change / (Price - Change)) * 100
)
 > 1;
-- ** Trigger Count and Limit **
-- Counts "triggers" or those values that evaluated true against the previous where
 clause
-- Then provides its own limit on the number of triggers per hour per ticker symbol
 to what is specified in the WHERE clause

CREATE
OR REPLACE STREAM TRIGGER_COUNT_STREAM (
 ticker_symbol VARCHAR(4),
 change REAL,
 trigger_count INTEGER);

CREATE
OR REPLACE PUMP trigger_count_pump AS
INSERT INTO
 TRIGGER_COUNT_STREAMSELECT STREAM ticker_symbol,
 change,
 trigger_count
FROM
 (

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 130

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 SELECT
 STREAM ticker_symbol,
 change,
 COUNT(*) OVER W1 as trigger_countFROM "CHANGE_STREAM" --window to perform
 aggregations over last minute to keep track of triggers
 WINDOW W1 AS
 (
 PARTITION BY ticker_symbol RANGE INTERVAL '1' MINUTE PRECEDING
)
)
WHERE
 trigger_count >= 1;

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =
update
) DROP TABLE IF EXISTS DESTINATION_SQL_STREAM;

CREATE TABLE DESTINATION_SQL_STREAM (
 TICKER_SYMBOL VARCHAR(4),
 SECTOR VARCHAR(4),
 CHANGE DOUBLE, PRICE DOUBLE,
 EVENT_TIME AS PROCTIME())
PARTITIONED BY (TICKER_SYMBOL)
WITH (
 'connector' = 'kinesis',
 'stream' = 'kinesis-analytics-demo-stream',
 'aws.region' = 'us-east-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601');
DROP TABLE IF EXISTS TRIGGER_COUNT_STREAM;
CREATE TABLE TRIGGER_COUNT_STREAM (
 TICKER_SYMBOL VARCHAR(4),
 CHANGE DOUBLE,
 TRIGGER_COUNT INT)
PARTITIONED BY (TICKER_SYMBOL);

Query 2 - % flink.ssql(type =
update
)
 SELECT

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 131

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 TICKER_SYMBOL,
 SECTOR,
 CHANGE,
 PRICE
 FROM
 DESTINATION_SQL_STREAM
 WHERE
 (
 ABS(CHANGE / (PRICE - CHANGE)) * 100
)
 > 1;

Query 3 - % flink.ssql(type =
update
)
 SELECT *
 FROM(
 SELECT
 TICKER_SYMBOL,
 CHANGE,
 COUNT(*) AS TRIGGER_COUNT
 FROM
 DESTINATION_SQL_STREAM
 GROUP BY
 TUMBLE(EVENT_TIME, INTERVAL '1' MINUTE),
 TICKER_SYMBOL,
 CHANGE
)
 WHERE
 TRIGGER_COUNT > 1;

Aggregating Partial Results from a Query

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "CALC_COUNT_SQL_STREAM"(
 TICKER VARCHAR(4),
 TRADETIME TIMESTAMP,
 TICKERCOUNT DOUBLE);

CREATE

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 132

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

OR REPLACE STREAM "DESTINATION_SQL_STREAM"(
 TICKER VARCHAR(4),
 TRADETIME TIMESTAMP,
 TICKERCOUNT DOUBLE);

CREATE PUMP "CALC_COUNT_SQL_PUMP_001" AS
INSERT INTO
 "CALC_COUNT_SQL_STREAM"(
 "TICKER",
 "TRADETIME",
 "TICKERCOUNT")
 SELECT
 STREAM "TICKER_SYMBOL",
 STEP("SOURCE_SQL_STREAM_001",
 "ROWTIME" BY INTERVAL '1' MINUTE) as "TradeTime",
 COUNT(*) AS "TickerCount "
 FROM
 "SOURCE_SQL_STREAM_001"
 GROUP BY
 STEP("SOURCE_SQL_STREAM_001". ROWTIME BY INTERVAL '1' MINUTE),
 STEP("SOURCE_SQL_STREAM_001"." APPROXIMATE_ARRIVAL_TIME" BY INTERVAL '1'
 MINUTE),
 TICKER_SYMBOL;
CREATE PUMP "AGGREGATED_SQL_PUMP" AS
INSERT INTO
 "DESTINATION_SQL_STREAM" (
 "TICKER",
 "TRADETIME",
 "TICKERCOUNT")
 SELECT
 STREAM "TICKER",
 "TRADETIME",
 SUM("TICKERCOUNT") OVER W1 AS "TICKERCOUNT"
 FROM
 "CALC_COUNT_SQL_STREAM" WINDOW W1 AS
 (
 PARTITION BY "TRADETIME" RANGE INTERVAL '10' MINUTE PRECEDING
)
;

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 133

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

update
) DROP TABLE IF EXISTS SOURCE_SQL_STREAM_001;
CREATE TABLE SOURCE_SQL_STREAM_001 (
 TICKER_SYMBOL VARCHAR(4),
 TRADETIME AS PROCTIME(),
 APPROXIMATE_ARRIVAL_TIME TIMESTAMP(3) METADATA
FROM
 'timestamp' VIRTUAL,
 WATERMARK FOR APPROXIMATE_ARRIVAL_TIME AS APPROXIMATE_ARRIVAL_TIME - INTERVAL '1'
 SECOND)
PARTITIONED BY (TICKER_SYMBOL) WITH (
 'connector' = 'kinesis',
 'stream' = 'kinesis-analytics-demo-stream',
 'aws.region' = 'us-east-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601');
DROP TABLE IF EXISTS CALC_COUNT_SQL_STREAM;
CREATE TABLE CALC_COUNT_SQL_STREAM (
 TICKER VARCHAR(4),
 TRADETIME TIMESTAMP(3),
 WATERMARK FOR TRADETIME AS TRADETIME - INTERVAL '1' SECOND,
 TICKERCOUNT BIGINT NOT NULL) PARTITIONED BY (TICKER) WITH (
 'connector' = 'kinesis',
 'stream' = 'CALC_COUNT_SQL_STREAM',
 'aws.region' = 'us-east-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'csv');
DROP TABLE IF EXISTS DESTINATION_SQL_STREAM;
CREATE TABLE DESTINATION_SQL_STREAM (
 TICKER VARCHAR(4),
 TRADETIME TIMESTAMP(3),
 WATERMARK FOR TRADETIME AS TRADETIME - INTERVAL '1' SECOND,
 TICKERCOUNT BIGINT NOT NULL)
 PARTITIONED BY (TICKER) WITH ('connector' = 'kinesis',
 'stream' = 'DESTINATION_SQL_STREAM',
 'aws.region' = 'us-east-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'csv');

Query 2 - % flink.ssql(type =
update
)
 INSERT INTO

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 134

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 CALC_COUNT_SQL_STREAM
 SELECT
 TICKER,
 TO_TIMESTAMP(TRADETIME, 'yyyy-MM-dd HH:mm:ss') AS TRADETIME,
 TICKERCOUNT
 FROM
 (
 SELECT
 TICKER_SYMBOL AS TICKER,
 DATE_FORMAT(TRADETIME, 'yyyy-MM-dd HH:mm:00') AS TRADETIME,
 COUNT(*) AS TICKERCOUNT
 FROM
 SOURCE_SQL_STREAM_001
 GROUP BY
 TUMBLE(TRADETIME, INTERVAL '1' MINUTE),
 DATE_FORMAT(TRADETIME, 'yyyy-MM-dd HH:mm:00'),
 DATE_FORMAT(APPROXIMATE_ARRIVAL_TIME, 'yyyy-MM-dd HH:mm:00'),
 TICKER_SYMBOL
)
;

Query 3 - % flink.ssql(type =
update
)
 SELECT
 *
 FROM
 CALC_COUNT_SQL_STREAM;

Query 4 - % flink.ssql(type =
update
)
 INSERT INTO
 DESTINATION_SQL_STREAM
 SELECT
 TICKER,
 TRADETIME,
 SUM(TICKERCOUNT) OVER W1 AS TICKERCOUNT
 FROM
 CALC_COUNT_SQL_STREAM WINDOW W1 AS
 (
 PARTITION BY TICKER
 ORDER BY
 TRADETIME RANGE INTERVAL '10' MINUTE PRECEDING

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 135

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

)
;

Query 5 - % flink.ssql(type =
update
)
 SELECT
 *
 FROM
 DESTINATION_SQL_STREAM;

Transforming string values

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM for cleaned up referrerCREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM" ("ingest_time" TIMESTAMP, "referrer"
 VARCHAR(32));
CREATE
OR REPLACE PUMP "myPUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT
 STREAM "APPROXIMATE_ARRIVAL_TIME",
 SUBSTRING("referrer", 12,
 (
 POSITION('.com' IN "referrer") - POSITION('www.' IN "referrer") - 4
)
)
FROM
 "SOURCE_SQL_STREAM_001";

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =
update
) CREATE TABLE DESTINATION_SQL_STREAM (
 referrer VARCHAR(32),
 ingest_time AS PROCTIME()) PARTITIONED BY (referrer)
WITH (
 'connector' = 'kinesis',
 'stream' = 'kinesis-analytics-demo-stream',
 'aws.region' = 'us-east-1',

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 136

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601')

Query 2 - % flink.ssql(type =
 update
)
 SELECT
 ingest_time,
 substring(referrer, 12, 6) as referrer
 FROM
 DESTINATION_SQL_STREAM;

Replacing a substring using Regex

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM for cleaned up referrerCREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM" ("ingest_time" TIMESTAMP, "referrer"
 VARCHAR(32));
CREATE
OR REPLACE PUMP "myPUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT
 STREAM "APPROXIMATE_ARRIVAL_TIME",
 REGEX_REPLACE("REFERRER", 'http://', 'https://', 1, 0)
FROM
 "SOURCE_SQL_STREAM_001";

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =
update
) CREATE TABLE DESTINATION_SQL_STREAM (
 referrer VARCHAR(32),
 ingest_time AS PROCTIME())
PARTITIONED BY (referrer) WITH (
 'connector' = 'kinesis',
 'stream' = 'kinesis-analytics-demo-stream',
 'aws.region' = 'us-east-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 137

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 'json.timestamp-format.standard' = 'ISO-8601')

Query 2 - % flink.ssql(type =
 update
)
 SELECT
 ingest_time,
 REGEXP_REPLACE(referrer, 'http', 'https') as referrer
 FROM
 DESTINATION_SQL_STREAM;

Regex log parse

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM"(
 sector VARCHAR(24),
 match1 VARCHAR(24),
 match2 VARCHAR(24));
CREATE
OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO
 "DESTINATION_SQL_STREAM"
 SELECT
 STREAM T.SECTOR,
 T.REC.COLUMN1,
 T.REC.COLUMN2
 FROM
 (
 SELECT
 STREAM SECTOR,
 REGEX_LOG_PARSE(SECTOR, '.*([E].).*([R].*)') AS REC
 FROM
 SOURCE_SQL_STREAM_001
)
 AS T;

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =
update

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 138

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

) CREATE TABLE DESTINATION_SQL_STREAM (
 CHANGE DOUBLE, PRICE DOUBLE,
 TICKER_SYMBOL VARCHAR(4),
 SECTOR VARCHAR(16))
PARTITIONED BY (SECTOR) WITH (
 'connector' = 'kinesis',
 'stream' = 'kinesis-analytics-demo-stream',
 'aws.region' = 'us-east-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601')

Query 2 - % flink.ssql(type =
 update
)
SELECT
 *
FROM
 (
 SELECT
 SECTOR,
 REGEXP_EXTRACT(SECTOR, '.([E].).([R].)', 1) AS MATCH1,
 REGEXP_EXTRACT(SECTOR, '.([E].).([R].)', 2) AS MATCH2
 FROM
 DESTINATION_SQL_STREAM
)
WHERE
 MATCH1 IS NOT NULL
 AND MATCH2 IS NOT NULL;

Transforming DateTime values

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 TICKER VARCHAR(4),
 event_time TIMESTAMP,
 five_minutes_before TIMESTAMP,
 event_unix_timestamp BIGINT,
 event_timestamp_as_char VARCHAR(50),
 event_second INTEGER);

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 139

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

CREATE
OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO
 "DESTINATION_SQL_STREAM"
 SELECT
 STREAM TICKER,
 EVENT_TIME,
 EVENT_TIME - INTERVAL '5' MINUTE,
 UNIX_TIMESTAMP(EVENT_TIME),
 TIMESTAMP_TO_CHAR('yyyy-MM-dd hh:mm:ss', EVENT_TIME),
 EXTRACT(SECOND
 FROM
 EVENT_TIME)
 FROM
 "SOURCE_SQL_STREAM_001"

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =
update
) CREATE TABLE DESTINATION_SQL_STREAM (
 TICKER VARCHAR(4),
 EVENT_TIME TIMESTAMP(3),
 FIVE_MINUTES_BEFORE TIMESTAMP(3),
 EVENT_UNIX_TIMESTAMP INT,
 EVENT_TIMESTAMP_AS_CHAR VARCHAR(50),
 EVENT_SECOND INT) PARTITIONED BY (TICKER)
WITH (
 'connector' = 'kinesis',
 'stream' = 'kinesis-analytics-demo-stream',
 'aws.region' = 'us-east-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601')

Query 2 - % flink.ssql(type =
 update
)
 SELECT
 TICKER,
 EVENT_TIME,
 EVENT_TIME - INTERVAL '5' MINUTE AS FIVE_MINUTES_BEFORE,
 UNIX_TIMESTAMP() AS EVENT_UNIX_TIMESTAMP,

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 140

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 DATE_FORMAT(EVENT_TIME, 'yyyy-MM-dd hh:mm:ss') AS EVENT_TIMESTAMP_AS_CHAR,
 EXTRACT(SECOND
 FROM
 EVENT_TIME) AS EVENT_SECOND
 FROM
 DESTINATION_SQL_STREAM;

Windows and aggregation

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 event_time TIMESTAMP,
 ticker_symbol VARCHAR(4),
 ticker_count INTEGER);
CREATE
OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO
 "DESTINATION_SQL_STREAM"
 SELECT
 STREAM EVENT_TIME,
 TICKER,
 COUNT(TICKER) AS ticker_count
 FROM
 "SOURCE_SQL_STREAM_001" WINDOWED BY STAGGER (PARTITION BY
 TICKER,
 EVENT_TIME RANGE INTERVAL '1' MINUTE);

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =
update
) CREATE TABLE DESTINATION_SQL_STREAM (
 EVENT_TIME TIMESTAMP(3),
 WATERMARK FOR EVENT_TIME AS EVENT_TIME - INTERVAL '60' SECOND,
 TICKER VARCHAR(4),
 TICKER_COUNT INT) PARTITIONED BY (TICKER)
WITH (
 'connector' = 'kinesis',
 'stream' = 'kinesis-analytics-demo-stream',
 'aws.region' = 'us-east-1',

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 141

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 'scan.stream.initpos' = 'LATEST',
 'format' = 'json'

Query 2 - % flink.ssql(type =
 update
)
 SELECT
 EVENT_TIME,
 TICKER, COUNT(TICKER) AS ticker_count
 FROM
 DESTINATION_SQL_STREAM
 GROUP BY
 TUMBLE(EVENT_TIME,
 INTERVAL '60' second),
 EVENT_TIME, TICKER;

Tumbling Window using Rowtime

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM"(
 TICKER VARCHAR(4),
 MIN_PRICE REAL,
 MAX_PRICE REAL);
CREATE
OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO
 "DESTINATION_SQL_STREAM"
 SELECT
 STREAM TICKER,
 MIN(PRICE),
 MAX(PRICE)
 FROM
 "SOURCE_SQL_STREAM_001"
 GROUP BY
 TICKER,
 STEP("SOURCE_SQL_STREAM_001".
 ROWTIME BY INTERVAL '60' SECOND);

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 142

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =
update
) CREATE TABLE DESTINATION_SQL_STREAM (
 ticker VARCHAR(4),
 price DOUBLE,
 event_time VARCHAR(32),
 processing_time AS PROCTIME())
PARTITIONED BY (ticker) WITH (
 'connector' = 'kinesis',
 'stream' = 'kinesis-analytics-demo-stream',
 'aws.region' = 'us-east-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601')

Query 2 - % flink.ssql(type =
 update
)
 SELECT
 ticker,
 min(price) AS MIN_PRICE,
 max(price) AS MAX_PRICE
 FROM
 DESTINATION_SQL_STREAM
 GROUP BY
 TUMBLE(processing_time, INTERVAL '60' second),
 ticker;

Retrieving the most frequently occuring values (TOP_K_ITEMS_TUMBLING)

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "CALC_COUNT_SQL_STREAM"(TICKER VARCHAR(4),
 TRADETIME TIMESTAMP,
 TICKERCOUNT DOUBLE);
CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM"(
 TICKER VARCHAR(4),
 TRADETIME TIMESTAMP,

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 143

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 TICKERCOUNT DOUBLE);
CREATE PUMP "CALC_COUNT_SQL_PUMP_001" AS INSERT INTO "CALC_COUNT_SQL_STREAM" (
 "TICKER",
 "TRADETIME",
 "TICKERCOUNT")
SELECT
 STREAM"TICKER_SYMBOL",
 STEP("SOURCE_SQL_STREAM_001"."ROWTIME" BY INTERVAL '1' MINUTE) as "TradeTime",
 COUNT(*) AS "TickerCount"
FROM
 "SOURCE_SQL_STREAM_001"
GROUP BY STEP("SOURCE_SQL_STREAM_001".
 ROWTIME BY INTERVAL '1' MINUTE),
 STEP("SOURCE_SQL_STREAM_001".
 "APPROXIMATE_ARRIVAL_TIME" BY INTERVAL '1' MINUTE),
 TICKER_SYMBOL;
CREATE PUMP "AGGREGATED_SQL_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM" (
 "TICKER",
 "TRADETIME",
 "TICKERCOUNT")
SELECT
 STREAM "TICKER",
 "TRADETIME",
 SUM("TICKERCOUNT") OVER W1 AS "TICKERCOUNT"
FROM
 "CALC_COUNT_SQL_STREAM" WINDOW W1 AS
 (
 PARTITION BY "TRADETIME" RANGE INTERVAL '10' MINUTE PRECEDING
)
;

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =
update
) DROP TABLE IF EXISTS DESTINATION_SQL_STREAM;
CREATE TABLE DESTINATION_SQL_STREAM (
 TICKER VARCHAR(4),
 EVENT_TIME TIMESTAMP(3),
 WATERMARK FOR EVENT_TIME AS EVENT_TIME - INTERVAL '1' SECONDS)
PARTITIONED BY (TICKER) WITH (
 'connector' = 'kinesis', 'stream' = 'kinesis-analytics-demo-stream',
 'aws.region' = 'us-east-1',

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 144

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601');

Query 2 - % flink.ssql(type =
update
)
 SELECT
 *
 FROM
 (
 SELECT
 TICKER,
 COUNT(*) as MOST_FREQUENT_VALUES,
 ROW_NUMBER() OVER (PARTITION BY TICKER
 ORDER BY
 TICKER DESC) AS row_num
 FROM
 DESTINATION_SQL_STREAM
 GROUP BY
 TUMBLE(EVENT_TIME, INTERVAL '1' MINUTE),
 TICKER
)
 WHERE
 row_num <= 5;

Approximate Top-K items

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ITEM VARCHAR(1024), ITEM_COUNT DOUBLE);
CREATE
OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO
 "DESTINATION_SQL_STREAM"
 SELECT
 STREAM ITEM,
 ITEM_COUNT
 FROM
 TABLE(TOP_K_ITEMS_TUMBLING(CURSOR(
 SELECT

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 145

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 STREAM *
 FROM
 "SOURCE_SQL_STREAM_001"), 'column1', -- name of column in single quotes10,
 -- number of top items60 -- tumbling window size in seconds));

Managed Service for Apache Flink Studio

%flinkssql
DROP TABLE IF EXISTS SOURCE_SQL_STREAM_001
CREATE TABLE SOURCE_SQL_STREAM_001 (TS TIMESTAMP(3), WATERMARK FOR TS as TS -
 INTERVAL '5' SECOND, ITEM VARCHAR(1024),
PRICE DOUBLE)
 WITH ('connector' = 'kinesis', 'stream' = 'SOURCE_SQL_STREAM_001',
'aws.region' = 'us-east-1', 'scan.stream.initpos' = 'LATEST', 'format' = 'json',
'json.timestamp-format.standard' = 'ISO-8601');

%flink.ssql(type=update)
SELECT
 *
FROM
 (
 SELECT
 *,
 ROW_NUMBER() OVER (PARTITION BY AGG_WINDOW
 ORDER BY
 ITEM_COUNT DESC) as rownum
 FROM
 (
 select
 AGG_WINDOW,
 ITEM,
 ITEM_COUNT
 from
 (
 select
 TUMBLE_ROWTIME(TS, INTERVAL '60' SECONDS) as AGG_WINDOW,
 ITEM,
 count(*) as ITEM_COUNT
 FROM
 SOURCE_SQL_STREAM_001
 GROUP BY

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 146

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 TUMBLE(TS, INTERVAL '60' SECONDS),
 ITEM
)
)
)
where
 rownum <= 3

Parsing Web Logs (W3C_LOG_PARSE Function)

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM" (column1 VARCHAR(16),
 column2 VARCHAR(16),
 column3 VARCHAR(16),
 column4 VARCHAR(16),
 column5 VARCHAR(16),
 column6 VARCHAR(16),
 column7 VARCHAR(16));
CREATE
OR REPLACE PUMP "myPUMP" ASINSERT INTO "DESTINATION_SQL_STREAM"
SELECT
 STREAM l.r.COLUMN1,
 l.r.COLUMN2,
 l.r.COLUMN3,
 l.r.COLUMN4,
 l.r.COLUMN5,
 l.r.COLUMN6,
 l.r.COLUMN7
FROM
 (
 SELECT
 STREAM W3C_LOG_PARSE("log", 'COMMON')
 FROM
 "SOURCE_SQL_STREAM_001"
)
 AS l(r);

Managed Service for Apache Flink Studio

%flink.ssql(type=update)

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 147

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

DROP TABLE IF EXISTS SOURCE_SQL_STREAM_001 CREATE TABLE SOURCE_SQL_STREAM_001 (log
 VARCHAR(1024))
 WITH ('connector' = 'kinesis',
 'stream' = 'SOURCE_SQL_STREAM_001',
 'aws.region' = 'us-east-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601');

% flink.ssql(type=update)
 select
 SPLIT_INDEX(log, ' ', 0),
 SPLIT_INDEX(log, ' ', 1),
 SPLIT_INDEX(log, ' ', 2),
 SPLIT_INDEX(log, ' ', 3),
 SPLIT_INDEX(log, ' ', 4),
 SPLIT_INDEX(log, ' ', 5),
 SPLIT_INDEX(log, ' ', 6)
 from
 SOURCE_SQL_STREAM_001;

Split Strings into Multiple Fields (VARIABLE_COLUMN_LOG_PARSE Function)

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM"("column_A" VARCHAR(16),
 "column_B" VARCHAR(16),
 "column_C" VARCHAR(16),
 "COL_1" VARCHAR(16),
 "COL_2" VARCHAR(16),
 "COL_3" VARCHAR(16));
CREATE
OR REPLACE PUMP "SECOND_STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT
 STREAM t."Col_A",
 t."Col_B",
 t."Col_C",
 t.r."COL_1",
 t.r."COL_2",
 t.r."COL_3"
FROM

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 148

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 (
 SELECT
 STREAM "Col_A",
 "Col_B",
 "Col_C",
 VARIABLE_COLUMN_LOG_PARSE ("Col_E_Unstructured",
 'COL_1 TYPE VARCHAR(16),
 COL_2 TYPE VARCHAR(16),
 COL_3 TYPE VARCHAR(16)', ',') AS r
 FROM
 "SOURCE_SQL_STREAM_001"
)
 as t;

Managed Service for Apache Flink Studio

%flink.ssql(type=update)
DROP TABLE IF EXISTS SOURCE_SQL_STREAM_001 CREATE TABLE SOURCE_SQL_STREAM_001 (log
 VARCHAR(1024))
 WITH ('connector' = 'kinesis',
 'stream' = 'SOURCE_SQL_STREAM_001',
 'aws.region' = 'us-east-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601');

% flink.ssql(type=update)
 select
 SPLIT_INDEX(log, ' ', 0),
 SPLIT_INDEX(log, ' ', 1),
 SPLIT_INDEX(log, ' ', 2),
 SPLIT_INDEX(log, ' ', 3),
 SPLIT_INDEX(log, ' ', 4),
 SPLIT_INDEX(log, ' ', 5)
)
from
 SOURCE_SQL_STREAM_001;

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 149

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Joins

SQL-based Kinesis Data Analytics application

CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 ticker_symbol VARCHAR(4),
 "Company" varchar(20),
 sector VARCHAR(12),
 change DOUBLE,
 price DOUBLE);
CREATE
OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO
 "DESTINATION_SQL_STREAM"
 SELECT
 STREAM ticker_symbol,
 "c"."Company",
 sector,
 change,
 priceFROM "SOURCE_SQL_STREAM_001"
 LEFT JOIN
 "CompanyName" as "c"
 ON "SOURCE_SQL_STREAM_001".ticker_symbol = "c"."Ticker";

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =
update
) CREATE TABLE DESTINATION_SQL_STREAM (
 TICKER_SYMBOL VARCHAR(4),
 SECTOR VARCHAR(12),
 CHANGE INT,
 PRICE DOUBLE)
PARTITIONED BY (TICKER_SYMBOL) WITH (
 'connector' = 'kinesis',
 'stream' = 'kinesis-analytics-demo-stream',
 'aws.region' = 'us-east-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601');

Query 2 - CREATE TABLE CompanyName (

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 150

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 Ticker VARCHAR(4),
 Company VARCHAR(4)) WITH (
 'connector' = 'filesystem',
 'path' = 's3://kda-demo-sample/TickerReference.csv',
 'format' = 'csv');

Query 3 - % flink.ssql(type =
update
)
 SELECT
 TICKER_SYMBOL,
 c.Company,
 SECTOR,
 CHANGE,
 PRICE
 FROM
 DESTINATION_SQL_STREAM
 LEFT JOIN
 CompanyName as c
 ON DESTINATION_SQL_STREAM.TICKER_SYMBOL = c.Ticker;

Errors

SQL-based Kinesis Data Analytics application

SELECT
 STREAM ticker_symbol,
 sector,
 change,
 (
 price / 0
)
 as ProblemColumnFROM "SOURCE_SQL_STREAM_001"
WHERE
 sector SIMILAR TO '%TECH%';

Managed Service for Apache Flink Studio

Query 1 - % flink.ssql(type =
update
) DROP TABLE IF EXISTS DESTINATION_SQL_STREAM;
CREATE TABLE DESTINATION_SQL_STREAM (

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 151

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 TICKER_SYMBOL VARCHAR(4),
 SECTOR VARCHAR(16),
 CHANGE DOUBLE,
 PRICE DOUBLE)
PARTITIONED BY (TICKER_SYMBOL) WITH (
 'connector' = 'kinesis',
 'stream' = 'kinesis-analytics-demo-stream',
 'aws.region' = 'us-east-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601');

Query 2 - % flink.pyflink @udf(input_types = [DataTypes.BIGINT()],
 result_type = DataTypes.BIGINT()) def DivideByZero(price): try: price / 0
except
: return - 1 st_env.register_function("DivideByZero",
 DivideByZero)

 Query 3 - % flink.ssql(type =
update
)
 SELECT
 CURRENT_TIMESTAMP AS ERROR_TIME,
 *
 FROM
 (
 SELECT
 TICKER_SYMBOL,
 SECTOR,
 CHANGE,
 DivideByZero(PRICE) as ErrorColumn
 FROM
 DESTINATION_SQL_STREAM
 WHERE
 SECTOR SIMILAR TO '%TECH%'
)
 AS ERROR_STREAM;

Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio 152

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Migrating Random Cut Forest workloads

If you are looking to move workloads that use Random Cut Forest from Kinesis Analytics for SQL to
Managed Service for Apache Flink, this AWS blog post demonstrates how to use Managed Service
for Apache Flink to run an online RCF algorithm for anomaly detection.

Replacing Kinesis Data Firehose as a source with Kinesis Data
Streams

See Converting-KDASQL-KDAStudio/ for a full tutorial.

In the following exercise, you will change your data flow to use Amazon Managed Service for
Apache Flink Studio. This will also mean switching from Amazon Kinesis Data Firehose to Amazon
Kinesis Data Streams.

First we share a typical KDA-SQL architecture, before showing how you can replace this using
Amazon Managed Service for Apache Flink Studio and Amazon Kinesis Data Streams. Alternatively
you can launch the AWS CloudFormation template here:

Amazon Kinesis Data Analytics-SQL and Amazon Kinesis Data Firehose

Here is the Amazon Kinesis Data Analytics SQL architectural flow:

We first examine the setup of a legacy Amazon Kinesis Data Analytics-SQL and Amazon Kinesis
Data Firehose. The use case is a trading market where trading data, including stock ticker and
price, streams from external sources to Amazon Kinesis systems. Amazon Kinesis Data Analytics for
SQL uses the input stream to execute Windowed queries like Tumbling window to determine the
trade volume and the min, max and average trade price over a one-minute window for each stock
ticker.

Amazon Kinesis Data Analytics-SQL is set up to ingest data from the Amazon Kinesis Data Firehose
API. After processing, Amazon Kinesis Data Analytics-SQL sends the processed data to another
Amazon Kinesis Data Firehose, which then saves the output in an Amazon S3 bucket.

Migrating Random Cut Forest workloads 153

https://aws.amazon.com/blogs/big-data/real-time-anomaly-detection-via-random-cut-forest-in-amazon-kinesis-data-analytics/
https://github.com/aws-samples/amazon-kinesis-data-analytics-examples/tree/master/Converting-KDASQL-KDAStudio
https://github.com/aws-samples/amazon-kinesis-data-analytics-examples/blob/master/Converting-KDASQL-KDAStudio/environmentStackCfn/KdaStudioStack.template.yaml

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

In this case, you use Amazon Kinesis Data Generator. Amazon Kinesis Data Generator allows you
to send test data to your Amazon Kinesis Data Streams or Amazon Kinesis Data Firehose delivery
streams. To get started, please follow the instructions here. Use the AWS CloudFormation template
here in place of the one provided in the instructions:.

Once you run the AWS CloudFormation template, the output section will provide the Amazon
Kinesis Data Generator url. Log in to the portal using the Cognito user id and password you set
up here. Select the Region and the target stream name. For current state, choose the Amazon
Kinesis Data Firehose Delivery streams. For the new state, choose the Amazon Kinesis Data Firehose
Streams name. You can create multiple templates, depending on your requirements, and test the
template using the Test template button before sending it to the target stream.

Following is a sample payload using Amazon Kinesis Data Generator. The data generator targets
the input Amazon Kinesis Firehose Streams to stream the data continuously. The Amazon Kinesis
SDK client can send data from other producers as well.

2023-02-17 09:28:07.763,"AAPL",5032023-02-17 09:28:07.763,
"AMZN",3352023-02-17 09:28:07.763,
"GOOGL",1852023-02-17 09:28:07.763,
"AAPL",11162023-02-17 09:28:07.763,
"GOOGL",1582

The following JSON is used to generate a random series of trade time and date, stock ticker, and
stock price:

date.now(YYYY-MM-DD HH:mm:ss.SSS),
"random.arrayElement(["AAPL","AMZN","MSFT","META","GOOGL"])",
random.number(2000)

Once you choose Send data, the generator will start sending mock data.

External systems stream the data to Amazon Kinesis Data Firehose. Using Amazon Kinesis Data
Analytics for SQL Applications, you can analyze streaming data using standard SQL. The service
enables you to author and run SQL code against streaming sources to perform time-series
analytics, feed real-time dashboards, and create real-time metrics. Amazon Kinesis Data Analytics
for SQL Applications could create a destination stream from SQL queries on the input stream and
send the destination stream to another Amazon Kinesis Data Firehose. The destination Amazon
Kinesis Data Firehose could send the analytical data to Amazon S3 as the final state.

Amazon Kinesis Data Analytics-SQL legacy code is based on an extension of SQL Standard.

Amazon Kinesis Data Analytics-SQL and Amazon Kinesis Data Firehose 154

https://awslabs.github.io/amazon-kinesis-data-generator/web/help.html
https://github.com/aws-samples/amazon-kinesis-data-analytics-examples/blob/master/Converting-KDASQL-KDAStudio/environmentStackCfn/KdaStudioStack.template.yaml
https://awslabs.github.io/amazon-kinesis-data-generator/web/help.html
https://awslabs.github.io/amazon-kinesis-data-generator/web/help.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

You use the following query in Amazon Kinesis Data Analytics-SQL. You first create a destination
stream for the query output. Then, you would use PUMP, which is an Amazon Kinesis Data Analytics
Repository Object (an extension of the SQL Standard) that provides a continuously running
INSERT INTO stream SELECT ... FROM query functionality, thereby enabling the results of a
query to be continuously entered into a named stream.

CREATE
OR REPLACE STREAM "DESTINATION_SQL_STREAM" (EVENT_TIME TIMESTAMP,
INGEST_TIME TIMESTAMP,
TICKER VARCHAR(16),
VOLUME BIGINT,
AVG_PRICE DOUBLE,
MIN_PRICE DOUBLE,
MAX_PRICE DOUBLE);

CREATE
OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO
 "DESTINATION_SQL_STREAM"
 SELECT
 STREAM STEP("SOURCE_SQL_STREAM_001"."tradeTimestamp" BY INTERVAL '60' SECOND) AS
 EVENT_TIME,
 STEP("SOURCE_SQL_STREAM_001".ROWTIME BY INTERVAL '60' SECOND) AS
 "STREAM_INGEST_TIME",
 "ticker",
 COUNT(*) AS VOLUME,
 AVG("tradePrice") AS AVG_PRICE,
 MIN("tradePrice") AS MIN_PRICE,
 MAX("tradePrice") AS MAX_PRICEFROM "SOURCE_SQL_STREAM_001"
 GROUP BY
 "ticker",
 STEP("SOURCE_SQL_STREAM_001".ROWTIME BY INTERVAL '60' SECOND),
 STEP("SOURCE_SQL_STREAM_001"."tradeTimestamp" BY INTERVAL '60' SECOND);

The above SQL uses two time windows – tradeTimestamp that comes from the incoming stream
payload and ROWTIME.tradeTimestamp is also called Event Time or client-side time.
It is often desirable to use this time in analytics because it is the time when an event occurred.
However, many event sources, such as mobile phones and web clients, do not have reliable clocks,
which can lead to inaccurate times. In addition, connectivity issues can lead to records appearing
on a stream not in the same order the events occurred.

Amazon Kinesis Data Analytics-SQL and Amazon Kinesis Data Firehose 155

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

In-application streams also include a special column called ROWTIME. It stores a timestamp
when Amazon Kinesis Data Analytics inserts a row in the first in-application stream. ROWTIME
reflects the timestamp at which Amazon Kinesis Data Analytics inserted a record into the first
in-application stream after reading from the streaming source. This ROWTIME value is then
maintained throughout your application.

The SQL determines the count of ticker as volume, min, max and average price over a 60-second
interval.

Using each of these times in windowed queries that are time-based has advantages and
disadvantages. Choose one or more of these times, and a strategy to deal with the relevant
disadvantages based on your use case scenario.

A two-window strategy uses two time-based, both ROWTIME and one of the other times like the
event time.

• Use ROWTIME as the first window, which controls how frequently the query emits the results, as
shown in the following example. It is not used as a logical time.

• Use one of the other times that is the logical time that you want to associate with your analytics.
This time represents when the event occurred. In the following example, the analytics goal is to
group the records and return count by ticker.

Amazon Managed Service for Apache Flink Studio

In the updated architecture, you replace Amazon Kinesis Data Firehose with Amazon Kinesis Data
Streams. Amazon Kinesis Data Analytics for SQL Applications are replaced by Amazon Managed
Service for Apache Flink Studio. Apache Flink code is run interactively within an Apache Zeppelin
Notebook. Amazon Managed Service for Apache Flink Studio sends the aggregated trade data to
an Amazon S3 bucket for storage. The steps are shown following:

Here is the Amazon Managed Service for Apache Flink Studio architectural flow:

Amazon Managed Service for Apache Flink Studio 156

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Create a Kinesis Data Stream

To create a data stream using the console

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. In the navigation bar, expand the Region selector and choose a Region.

3. Choose Create data stream.

4. On the Create Kinesis stream page, enter a name for your data stream and accept the default
On-demand capacity mode.

With the On-demand mode, you can then choose Create Kinesis stream to create your data
stream.

On the Kinesis streams page, your stream's Status is Creating while the stream is being
created. When the stream is ready to use, the Status changes to Active.

5. Choose the name of your stream. The Stream Details page displays a summary of your stream
configuration, along with monitoring information.

6. In the Amazon Kinesis Data Generator, change the Stream/delivery stream to the new Amazon
Kinesis Data Streams: TRADE_SOURCE_STREAM.

JSON and Payload will be the same as you used for Amazon Kinesis Data Analytics-SQL. Use
the Amazon Kinesis Data Generator to produce some sample trading payload data and target
the TRADE_SOURCE_STREAM Data Stream for this exercise:

{{date.now(YYYY-MM-DD HH:mm:ss.SSS)}},
"{{random.arrayElement(["AAPL","AMZN","MSFT","META","GOOGL"])}}",
{{random.number(2000)}}

7. On the AWS Management Console go to Managed Service for Apache Flink and then choose
Create application.

8. On the left navigation pane, choose Studio notebooks and then choose Create studio
notebook.

9. Enter a name for the studio notebook.

10. Under AWS Glue database, provide an existing AWS Glue database that will define the
metadata for your sources and destinations. If you don’t have a AWS Glue database, choose
Create and do the following:

Amazon Managed Service for Apache Flink Studio 157

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

a. In the AWS Glue console, choose Databases under Data catalog from the left-hand menu.

b. Choose Create database

c. In the Create database page, enter a name for the database. In the Location - optional
section, choose Browse Amazon S3 and select the Amazon S3 bucket. If you don't have an
Amazon S3 bucket already set up, you can skip this step and come back to it later.

d. (Optional). Enter a description for the database.

e. Choose Create database.

11. Choose Create notebook

12. Once your notebook is created, choose Run.

13. Once the notebook has been successfully staeted, launch a Zeppelin notebook by choosing
Open in Apache Zeppelin.

14. On the Zeppelin Notebook page, choose Create new note and name it MarketDataFeed.

The Flink SQL code is explained following, but first this is what a Zeppelin notebook screen looks
like. Each window within the notebook is a separate code block, and they can be run one at a time.

Amazon Managed Service for Apache Flink Studio Code

Amazon Managed Service for Apache Flink Studio uses Zeppelin Notebooks to run the code.
Mapping is done for this example to ssql code based on Apache Flink 1.13. The code in the
Zeppelin Notebook is shown below one block at a time.

Before running any code in your Zeppelin Notebook, Flink configuration commands must be run.
If you need to change any configuration setting after running code (ssql, Python, or Scala), you
will need to stop and restart your notebook. In this example, you will need to set checkpointing.
Checkpointing is required so that you can stream data to a file in Amazon S3. This allows data
streaming to Amazon S3 to be flushed to a file. The statement below sets the interval to 5000
miliseconds.

%flink.conf
execution.checkpointing.interval 5000

%flink.conf indicates that this block is configuration statements. For more information about
Flink configuration including checkpointingg, see Apache Flink Checkpointing.

Amazon Managed Service for Apache Flink Studio 158

https://github.com/aws-samples/amazon-kinesis-data-analytics-examples/blob/master/Converting-KDASQL-KDAStudio/environmentStackCfn/open-Zeppelin-notebook.jpg
https://github.com/aws-samples/amazon-kinesis-data-analytics-examples/blob/master/Converting-KDASQL-KDAStudio/environmentStackCfn/open-Zeppelin-notebook.jpg
https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/ops/state/checkpoints/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

The input table for the source Amazon Kinesis Data Streams is created with the Flink ssql code
below. Note that the TRADE_TIME field stores the date/time created by the data generator.

%flink.ssql

DROP TABLE IF EXISTS TRADE_SOURCE_STREAM;
CREATE TABLE TRADE_SOURCE_STREAM (--`arrival_time` TIMESTAMP(3) METADATA FROM
 'timestamp' VIRTUAL,
TRADE_TIME TIMESTAMP(3),
WATERMARK FOR TRADE_TIME as TRADE_TIME - INTERVAL '5' SECOND,TICKER STRING,PRICE
 DOUBLE,
STATUS STRING)WITH ('connector' = 'kinesis','stream' = 'TRADE_SOURCE_STREAM',
'aws.region' = 'us-east-1','scan.stream.initpos' = 'LATEST','format' = 'csv');

You can view the input stream with this statement:

%flink.ssql(type=update)-- testing the source stream

select * from TRADE_SOURCE_STREAM;

Before sending the aggregate data to Amazon S3, you can view it directly in Amazon Managed
Service for Apache Flink Studio with a tumbling window select query. This aggregates the
trading data in a one-minute time windows. Note that the %flink.ssql statement must have a
(type=update) designation:

%flink.ssql(type=update)

select TUMBLE_ROWTIME(TRADE_TIME,
INTERVAL '1' MINUTE) as TRADE_WINDOW,
TICKER, COUNT(*) as VOLUME,
AVG(PRICE) as AVG_PRICE,
MIN(PRICE) as MIN_PRICE,
MAX(PRICE) as MAX_PRICE FROM TRADE_SOURCE_STREAMGROUP BY TUMBLE(TRADE_TIME, INTERVAL
 '1' MINUTE), TICKER;

You can then create a table for the destination in Amazon S3. You need to use a watermark. A
watermark is a progress metric that indicates a point in time when you are confident that no
more delayed events will arrive. The reason for the watermark is to account for late arrivals. The
interval ‘5’ Second allows trades to enter the Amazon Kinesis Data Stream 5 seconds late and

Amazon Managed Service for Apache Flink Studio 159

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

still be included if they have a timestamp within the window. For more information see Generating
Watermarks.

%flink.ssql(type=update)

DROP TABLE IF EXISTS TRADE_DESTINATION_S3;
CREATE TABLE TRADE_DESTINATION_S3 (
TRADE_WINDOW_START TIMESTAMP(3),
WATERMARK FOR TRADE_WINDOW_START as TRADE_WINDOW_START - INTERVAL '5' SECOND,
TICKER STRING,
VOLUME BIGINT,
AVG_PRICE DOUBLE,
MIN_PRICE DOUBLE,
MAX_PRICE DOUBLE)
WITH ('connector' = 'filesystem','path' = 's3://trade-destination/','format' = 'csv');

This statement inserts the data into the TRADE_DESTINATION_S3. TUMPLE_ROWTIME is the
timestamp of the inclusive upper bound of the tumbling window.

%flink.ssql(type=update)

insert into TRADE_DESTINATION_S3
select TUMBLE_ROWTIME(TRADE_TIME,
INTERVAL '1' MINUTE),
TICKER, COUNT(*) as VOLUME,
AVG(PRICE) as AVG_PRICE,
MIN(PRICE) as MIN_PRICE,
MAX(PRICE) as MAX_PRICE FROM TRADE_SOURCE_STREAM
GROUP BY TUMBLE(TRADE_TIME, INTERVAL '1' MINUTE), TICKER;

Let your statement run for 10 to 20 minutes to accumulate some data in Amazon S3. Then abort
your statement.

This closes the file in Amazon S3 so that it is viewable.

Here is what the contents looks like:

Amazon Managed Service for Apache Flink Studio 160

https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/event-time/generating_watermarks/
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/event-time/generating_watermarks/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

You can use the AWS CloudFormation template to create the infrastructure.

AWS CloudFormation will create the following resources in your AWS account:

• Amazon Kinesis Data Streams

• Amazon Managed Service for Apache Flink Studio

• Amazon Glue database

• Amazon S3 bucket

• IAM roles and policies for Amazon Managed Service for Apache Flink Studio to access
appropriate resources

Import the notebook and change the Amazon S3 bucket name with the new Amazon S3 bucket
created by AWS CloudFormation.

Amazon Managed Service for Apache Flink Studio 161

https://github.com/aws-samples/amazon-kinesis-data-analytics-examples/blob/master/Converting-KDASQL-KDAStudio/environmentStackCfn/KdaStudioStack.template.yaml

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

See more

Here are some additional resources you can use to learn more about using Managed Service for
Apache Flink Studio:

• Managed Service for Apache Flink Studio Notebooks Developers Guide

• Apache Flink 1.13 Documentation

• Managed Service for Apache Flink Studio Workshop

• Apache Flink Windowing

• Amazon Kinesis Data Analytics Developer Guide – Writing from a Kinesis Data Analytics Stream
to an S3 Bucket

Leveraging user-defined functions (UDFs)

The purpose of the pattern is to demonstrate how to leverage UDFs in Kinesis Data Analytics-
Studio Zeppelin notebooks for processing data in the Kinesis stream. Managed Service for Apache
Flink Studio uses Apache Flink to provide advanced analytical capabilities, including exactly-
once processing semantics, event-time windows, extensibility using user defined functions and
customer integrations, imperative language support, durable application state, horizontal scaling,
support for multiple data sources, extensible integrations, and more. These are critical for ensuring
accuracy, completeness, consistency, and reliability of data streams processing and are not
available with Amazon Kinesis Data Analytics for SQL.

In this sample application, we will demonstrate how to leverage UDFs in KDA-Studio Zeppelin
notebook for processing data in the Kinesis stream. Studio notebooks for Kinesis Data Analytics
allows you to interactively query data streams in real time, and easily build and run stream
processing applications using standard SQL, Python, and Scala. With a few clicks in the AWS
Management Console, you can launch a serverless notebook to query data streams and get results
in seconds. For more information, see Using a Studio notebook with Kinesis Data Analytics for
Apache Flink.

Leveraging user-defined functions (UDFs) 162

https://docs.aws.amazon.com/managed-flink/latest/java/how-notebook.html
https://nightlies.apache.org/flink/flink-docs-release-1.13/
https://catalog.us-east-1.prod.workshops.aws/workshops/c342c6d1-2baf-4827-ba42-52ef9eb173f6/en-US/flink-on-kda-studio
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/table/sql/queries/window-tvf/
https://docs.aws.amazon.com/managed-flink/latest/java/examples-s3.html
https://docs.aws.amazon.com/managed-flink/latest/java/examples-s3.html
https://docs.aws.amazon.com/managed-flink/latest/java/how-notebook.html
https://docs.aws.amazon.com/managed-flink/latest/java/how-notebook.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Lambda functions used for pre/post processing of data in KDA-SQL applications:

User-defined functions for pre/post processing of data using KDA-Studio Zeppelin notebooks

User-defined functions (UDFs)

To reuse common business logic into an operator, it can be useful to reference a user-defined
function to transform your data stream. This can be done either within the Managed Service for
Apache Flink Studio notebook, or as an externally referenced application jar file. Utilizing User-
defined functions can simplify the transformations or data enrichments that you might perform
over streaming data.

In your notebook, you will be referencing a simple Java application jar that has functionality to
anonymize personal phone numbers. You can also write Python or Scala UDFs for use within
the notebook. We chose a Java application jar to highlight the functionality of importing an
application jar into a Pyflink notebook.

User-defined functions (UDFs) 163

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Environment setup

To follow this guide and interact with your streaming data, you will use an AWS CloudFormation
scripts to launch the following resources:

• Source and target Kinesis Data Streams

• Glue Database

• IAM role

• Managed Service for Apache Flink Studio Application

• Lambda Function to start Managed Service for Apache Flink Studio Application

• Lambda Role to execute above Lambda function

• Custom resource to invoke Lambda function

Download the AWS CloudFormation template here.

Create the AWS CloudFormation stack

1. Go to the AWS Management Console and choose CloudFormation under the list of services.

2. On the CloudFormation page, choose Stacks and then choose Create Stack with new
resources (standard).

3. On the Create stack page, choose Upload a Template File, and then choose the kda-flink-
udf.yml that you downloaded previously. Upload the file and then choose Next.

4. Give the template a name, such as kinesis-UDF so that it is easy to remember, and update
input Parameters such as input-stream if you want a different name. Choose Next.

5. On the Configure stack options page, add Tags if you wish and then choose Next.

6. On the Review page, check the boxes allowing for the creation of IAM resources and then
choose Submit.

The AWS CloudFormation stack may take 10 to 15 minutes to launch depending on the Region
you are launching in. Once you see CREATE_COMPLETE status for the entire stack, you are ready to
continue.

Environment setup 164

https://github.com/aws-samples/amazon-kinesis-data-analytics-examples/blob/master/kda-udf-sample/cfn/kda-flink-udf.yml

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Working with Managed Service for Apache Flink Studio notebook

Studio notebooks for Kinesis Data Analytics allow you to interactively query data streams in real
time, and easily build and run stream processing applications using standard SQL, Python, and
Scala. With a few clicks in the AWS Management Console, you can launch a serverless notebook to
query data streams and get results in seconds.

A notebook is a web-based development environment. With notebooks, you get a simple
interactive development experience combined with the advanced data stream processing
capabilities provided by Apache Flink. Studio notebooks uses notebooks powered by Apache
Zeppelin, and uses Apache Flink as the stream processing engine. Studio notebooks seamlessly
combine these technologies to make advanced analytics on data streams accessible to developers
of all skill sets.

Apache Zeppelin provides your Studio notebooks with a complete suite of analytics tools, including
the following:

• Data Visualization

• Exporting data to files

• Controlling the output format for easier analysis

Using the notebook

1. Go to the AWS Management Console and choose Amazon Kinesis under the list of services.

2. On the left-hand navigation page, choose Analytics applications and then choose Studio
notebooks.

3. Verify that the KinesisDataAnalyticsStudio notebook is running.

4. Choose the notebook and then choose Open in Apache Zeppelin.

5. Download the Data Producer Zeppelin Notebook file which you will use to read and load data
into the Kinesis Stream.

6. Import the Data Producer Zeppelin Notebook. Make sure to modify input STREAM_NAME
and REGION in the notebook code. The input stream name can be found in the AWS
CloudFormation stack output.

7. Execute Data Producer notebook by choosing the Run this paragraph button to insert sample
data into the input Kinesis Data Stream.

Working with Managed Service for Apache Flink Studio notebook 165

https://github.com/aws-samples/amazon-kinesis-data-analytics-examples/blob/master/kda-udf-sample/notebooks/Data%20Producer.zpln
https://github.com/aws-samples/amazon-kinesis-data-analytics-examples/blob/master/kda-udf-sample/cfn/kda-flink-udf.yml
https://github.com/aws-samples/amazon-kinesis-data-analytics-examples/blob/master/kda-udf-sample/cfn/kda-flink-udf.yml

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

8. While the sample data loads, download MaskPhoneNumber-Interactive notebook, which will
read input data, anonymize phone numbers from the input stream and store anonymized data
into the output stream.

9. Import the MaskPhoneNumber-interactive Zeppelin notebook.

10. Execute each paragraph in the notebook.

a. In paragraph 1, you import User Defined Function to anonymize phone numbers.

%flink(parallelism=1)
import com.mycompany.app.MaskPhoneNumber
stenv.registerFunction("MaskPhoneNumber", new MaskPhoneNumber())

b. In the next paragraph, you create an in-memory table to read input stream data. Make
sure stream name and AWS region are correct.

%flink.ssql(type=update)

DROP TABLE IF EXISTS customer_reviews;

CREATE TABLE customer_reviews (
customer_id VARCHAR,
product VARCHAR,
review VARCHAR,
phone VARCHAR
)
WITH (
'connector' = 'kinesis',
'stream' = 'KinesisUDFSampleInputStream',
'aws.region' = 'us-east-1',
'scan.stream.initpos' = 'LATEST',
'format' = 'json');

c. Check if data is loaded into the in-memory table.

%flink.ssql(type=update)
select * from customer_reviews

d. Invoke the user defined function to anonymize the phone number.

%flink.ssql(type=update)

Working with Managed Service for Apache Flink Studio notebook 166

https://github.com/aws-samples/amazon-kinesis-data-analytics-examples/blob/master/kda-udf-sample/notebooks/MaskPhoneNumber-interactive.zpln

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

select customer_id, product, review, MaskPhoneNumber('mask_phone', phone) as
 phoneNumber from customer_reviews

e. Now that the phone numbers are masked, create a view with a masked number.

%flink.ssql(type=update)

DROP VIEW IF EXISTS sentiments_view;

CREATE VIEW
 sentiments_view
AS
 select customer_id, product, review, MaskPhoneNumber('mask_phone', phone) as
 phoneNumber from customer_reviews

f. Verify the data.

%flink.ssql(type=update)
select * from sentiments_view

g. Create in-memory table for the output Kinesis Stream. Make sure stream name and AWS
Region are correct.

%flink.ssql(type=update)

DROP TABLE IF EXISTS customer_reviews_stream_table;

CREATE TABLE customer_reviews_stream_table (
customer_id VARCHAR,
product VARCHAR,
review VARCHAR,
phoneNumber varchar
)
WITH (
'connector' = 'kinesis',
'stream' = 'KinesisUDFSampleOutputStream',
'aws.region' = 'us-east-1',
'scan.stream.initpos' = 'TRIM_HORIZON',
'format' = 'json');

h. Insert updated records in the target Kinesis Stream.

%flink.ssql(type=update)

Working with Managed Service for Apache Flink Studio notebook 167

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

INSERT INTO customer_reviews_stream_table
SELECT customer_id, product, review, phoneNumber
FROM sentiments_view

i. View and verify data from the target Kinesis Stream.

%flink.ssql(type=update)
select * from customer_reviews_stream_table

Promoting a notebook as an application

Now that you have tested your notebook code interactively, you will deploy the code as a
streaming application with durable state. You will need to first modify Application configuration to
specify a location for your code in Amazon S3.

1. On the AWS Management Console, choose your notebook and in Deploy as application
configuration - optional, choose Edit.

2. Under Destination for code in Amazon S3, choose the Amazon S3 bucket that was created by
the AWS CloudFormation scripts. The process may take a few minutes.

3. You won't be able to promote the note as is. If you try, you will an error as Select statements
are not supported. To avert this issue, download the MaskPhoneNumber-Streaming Zeppelin
Notebook.

4. Import MaskPhoneNumber-streaming Zeppelin Notebook.

5. Open the note and choose Actions for KinesisDataAnalyticsStudio.

6. Choose Build MaskPhoneNumber-Streaming and export to S3. Make sure to rename
Application Name and include no special characters.

7. Choose Build and Export. This will take few minutes to setup Streaming Application.

8. Once the build is complete, choose Deploy using AWS console.

9. On the next page, review settings and make sure to choose the correct IAM role. Next, choose
Create streaming application.

10. After few minutes, you would see message that the streaming application was created
successfully.

For more information on deploying applications with durable state and limits, see Deploying as an
application with durable state.

Promoting notebook as an Application 168

https://github.com/aws-samples/amazon-kinesis-data-analytics-examples/blob/master/kda-udf-sample/cfn/kda-flink-udf.yml
https://github.com/aws-samples/amazon-kinesis-data-analytics-examples/blob/master/kda-udf-sample/notebooks/MaskPhoneNumber-Streaming.zpln
https://github.com/aws-samples/amazon-kinesis-data-analytics-examples/blob/master/kda-udf-sample/notebooks/MaskPhoneNumber-Streaming.zpln
https://docs.aws.amazon.com/managed-flink/latest/java/how-notebook-durable.html
https://docs.aws.amazon.com/managed-flink/latest/java/how-notebook-durable.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Cleanup

Optionally, you can now uninstall the AWS CloudFormation stack. This will remove all the services
which you set up in previously.

Cleanup 169

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Kinesis Data Analytics for SQL examples

This section provides examples of creating and working with applications in Amazon Kinesis Data
Analytics. They include example code and step-by-step instructions to help you create Kinesis Data
Analytics applications and test your results.

Before you explore these examples, we recommend that you first review Amazon Kinesis Data
Analytics for SQL Applications: How It Works and Getting Started with Amazon Kinesis Data
Analytics for SQL Applications.

Topics

• Examples: Transforming Data

• Examples: Windows and Aggregation

• Examples: Joins

• Examples: Machine Learning

• Examples: Alerts and Errors

• Examples: Solution Accelerators

Examples: Transforming Data

There are times when your application code must preprocess incoming records before performing
any analytics in Amazon Kinesis Data Analytics. This can happen for various reasons, such as when
records don't conform to the supported record formats, resulting in unnormalized columns in the
in-application input streams.

This section provides examples of how to use the available string functions to normalize data, how
to extract information that you need from string columns, and so on. The section also points to
date time functions that you might find useful.

Preprocessing Streams with Lambda

For information about preprocessing streams with AWS Lambda, see Preprocessing Data Using a
Lambda Function.

Topics

• Examples: Transforming String Values

Transforming Data 170

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Example: Transforming DateTime Values

• Example: Transforming Multiple Data Types

Examples: Transforming String Values

Amazon Kinesis Data Analytics supports formats such as JSON and CSV for records on a streaming
source. For details, see RecordFormat. These records then map to rows in an in-application
stream as per the input configuration. For details, see Configuring Application Input. The input
configuration specifies how record fields in the streaming source map to columns in an in-
application stream.

This mapping works when records on the streaming source follow the supported formats, which
results in an in-application stream with normalized data. But what if data on your streaming source
does not conform to supported standards? For example, what if your streaming source contains
data such as clickstream data, IoT sensors, and application logs?

Consider these examples:

• Streaming source contains application logs – The application logs follow the standard Apache log
format, and are written to the stream using JSON format.

{
 "Log":"192.168.254.30 - John [24/May/2004:22:01:02 -0700] "GET /icons/
apache_pb.gif HTTP/1.1" 304 0"
}

For more information about the standard Apache log format, see Log Files on the Apache
website.

• Streaming source contains semi-structured data – The following example shows two records.
The Col_E_Unstructured field value is a series of comma-separated values. There are five
columns: the first four have string type values, and the last column contains comma-separated
values.

{ "Col_A" : "string",
 "Col_B" : "string",
 "Col_C" : "string",
 "Col_D" : "string",

Transforming String Values 171

https://httpd.apache.org/docs/2.4/logs.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "Col_E_Unstructured" : "value,value,value,value"}

{ "Col_A" : "string",
 "Col_B" : "string",
 "Col_C" : "string",
 "Col_D" : "string",
 "Col_E_Unstructured" : "value,value,value,value"}

• Records on your streaming source contain URLs, and you need a portion of the URL domain
name for analytics.

{ "referrer" : "http://www.amazon.com"}
{ "referrer" : "http://www.stackoverflow.com" }

In such cases, the following two-step process generally works for creating in-application streams
that contain normalized data:

1. Configure application input to map the unstructured field to a column of the VARCHAR(N) type
in the in-application input stream that is created.

2. In your application code, use string functions to split this single column into multiple columns
and then save the rows in another in-application stream. This in-application stream that your
application code creates will have normalized data. You can then perform analytics on this in-
application stream.

Amazon Kinesis Data Analytics provides the following string operations, standard SQL functions,
and extensions to the SQL standard for working with string columns:

• String operators – Operators such as LIKE and SIMILAR are useful in comparing strings. For
more information, see String Operators in the Amazon Managed Service for Apache Flink SQL
Reference.

• SQL functions – The following functions are useful when manipulating individual strings. For
more information, see String and Search Functions in the Amazon Managed Service for Apache
Flink SQL Reference.

• CHAR_LENGTH – Provides the length of a string.

• INITCAP – Returns a converted version of the input string such that the first character of each
space-delimited word is uppercase, and all other characters are lowercase.

• LOWER/UPPER – Converts a string to lowercase or uppercase.

Transforming String Values 172

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-string-operators.html
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-string-and-search-functions.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• OVERLAY – Replaces a portion of the first string argument (the original string) with the second
string argument (the replacement string).

• POSITION – Searches for a string within another string.

• REGEX_REPLACE – Replaces a substring with an alternative substring.

• SUBSTRING – Extracts a portion of a source string starting at a specific position.

• TRIM – Removes instances of the specified character from the beginning or end of the source
string.

• SQL extensions – These are useful for working with unstructured strings such as logs and URIs.
For more information, see Log Parsing Functions in the Amazon Managed Service for Apache Flink
SQL Reference.

• FAST_REGEX_LOG_PARSER – Works similar to the regex parser, but it takes several shortcuts
to ensure faster results. For example, the fast regex parser stops at the first match it finds
(known as lazy semantics).

• FIXED_COLUMN_LOG_PARSE – Parses fixed-width fields and automatically converts them to
the given SQL types.

• REGEX_LOG_PARSE – Parses a string based on default Java regular expression patterns.

• SYS_LOG_PARSE – Parses entries commonly found in UNIX/Linux system logs.

• VARIABLE_COLUMN_LOG_PARSE – Splits an input string into fields separated by a delimiter
character or a delimiter string.

• W3C_LOG_PARSE – Can be used for quickly formatting Apache logs.

For examples using these functions, see the following topics:

Topics

• Example: Extracting a Portion of a String (SUBSTRING Function)

• Example: Replacing a Substring using Regex (REGEX_REPLACE Function)

• Example: Parsing Log Strings Based on Regular Expressions (REGEX_LOG_PARSE Function)

• Example: Parsing Web Logs (W3C_LOG_PARSE Function)

• Example: Split Strings into Multiple Fields (VARIABLE_COLUMN_LOG_PARSE Function)

Transforming String Values 173

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-pattern-matching-functions.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Example: Extracting a Portion of a String (SUBSTRING Function)

This example uses the SUBSTRING function to transform a string in Amazon Kinesis Data Analytics.
The SUBSTRING function extracts a portion of a source string starting at a specific position. For
more information, see SUBSTRING in the Amazon Managed Service for Apache Flink SQL Reference.

In this example, you write the following records to an Amazon Kinesis data stream.

{ "REFERRER" : "http://www.amazon.com" }
{ "REFERRER" : "http://www.amazon.com"}
{ "REFERRER" : "http://www.amazon.com"}
...

You then create an Kinesis Data Analytics application on the console, using the Kinesis data stream
as the streaming source. The discovery process reads sample records on the streaming source and
infers an in-application schema with one column (REFERRER), as shown.

Then, you use the application code with the SUBSTRING function to parse the URL string to
retrieve the company name. Then you insert the resulting data into another in-application stream,
as shown following:

Transforming String Values 174

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-substring.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Topics

• Step 1: Create a Kinesis Data Stream

• Step 2: Create the Kinesis Data Analytics Application

Step 1: Create a Kinesis Data Stream

Create an Amazon Kinesis data stream and populate the log records as follows:

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. Choose Data Streams in the navigation pane.

3. Choose Create Kinesis stream, and create a stream with one shard. For more information, see
Create a Stream in the Amazon Kinesis Data Streams Developer Guide.

4. Run the following Python code to populate sample log records. This simple code continuously
writes the same log record to the stream.

import json
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
 return {"REFERRER": "http://www.amazon.com"}

Transforming String Values 175

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis
https://docs.aws.amazon.com/streams/latest/dev/learning-kinesis-module-one-create-stream.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name, Data=json.dumps(data),
 PartitionKey="partitionkey"
)

if __name__ == "__main__":
 generate(STREAM_NAME, boto3.client("kinesis"))

Step 2: Create the Kinesis Data Analytics Application

Next, create an Kinesis Data Analytics application as follows:

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/
kinesisanalytics.

2. Choose Create application, type an application name, and choose Create application.

3. On the application details page, choose Connect streaming data.

4. On the Connect to source page, do the following:

a. Choose the stream that you created in the preceding section.

b. Choose the option to create an IAM role.

c. Choose Discover schema. Wait for the console to show the inferred schema and samples
records used to infer the schema for the in-application stream created. The inferred
schema has only one column.

d. Choose Save and continue.

5. On the application details page, choose Go to SQL editor. To start the application, choose Yes,
start application in the dialog box that appears.

6. In the SQL editor, write the application code, and verify the results as follows:

a. Copy the following application code and paste it into the editor.

-- CREATE OR REPLACE STREAM for cleaned up referrer

Transforming String Values 176

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 "ingest_time" TIMESTAMP,
 "referrer" VARCHAR(32));

CREATE OR REPLACE PUMP "myPUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM
 "APPROXIMATE_ARRIVAL_TIME",
 SUBSTRING("referrer", 12, (POSITION('.com' IN "referrer") -
 POSITION('www.' IN "referrer") - 4))
 FROM "SOURCE_SQL_STREAM_001";

b. Choose Save and run SQL. On the Real-time analytics tab, you can see all the in-
application streams that the application created and verify the data.

Example: Replacing a Substring using Regex (REGEX_REPLACE Function)

This example uses the REGEX_REPLACE function to transform a string in Amazon Kinesis
Data Analytics. REGEX_REPLACE replaces a substring with an alternative substring. For more
information, see REGEX_REPLACE in the Amazon Managed Service for Apache Flink SQL Reference.

In this example, you write the following records to an Amazon Kinesis data stream:

{ "REFERRER" : "http://www.amazon.com" }
{ "REFERRER" : "http://www.amazon.com"}
{ "REFERRER" : "http://www.amazon.com"}
...

You then create an Kinesis Data Analytics application on the console, with the Kinesis data stream
as the streaming source. The discovery process reads sample records on the streaming source and
infers an in-application schema with one column (REFERRER) as shown.

Transforming String Values 177

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-regex-replace.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Then, you use the application code with the REGEX_REPLACE function to convert the URL to use
https:// instead of http://. You insert the resulting data into another in-application stream, as
shown following:

Topics

• Step 1: Create a Kinesis Data Stream

• Step 2: Create the Kinesis Data Analytics Application

Step 1: Create a Kinesis Data Stream

Create an Amazon Kinesis data stream and populate the log records as follows:

Transforming String Values 178

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. Choose Data Streams in the navigation pane.

3. Choose Create Kinesis stream, and create a stream with one shard. For more information, see
Create a Stream in the Amazon Kinesis Data Streams Developer Guide.

4. Run the following Python code to populate the sample log records. This simple code
continuously writes the same log record to the stream.

import json
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
 return {"REFERRER": "http://www.amazon.com"}

def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name, Data=json.dumps(data),
 PartitionKey="partitionkey"
)

if __name__ == "__main__":
 generate(STREAM_NAME, boto3.client("kinesis"))

Step 2: Create the Kinesis Data Analytics Application

Next, create an Kinesis Data Analytics application as follows:

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/
kinesisanalytics.

2. Choose Create application, type an application name, and choose Create application.

Transforming String Values 179

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis
https://docs.aws.amazon.com/streams/latest/dev/learning-kinesis-module-one-create-stream.html
https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

3. On the application details page, choose Connect streaming data.

4. On the Connect to source page, do the following:

a. Choose the stream that you created in the preceding section.

b. Choose the option to create an IAM role.

c. Choose Discover schema. Wait for the console to show the inferred schema and samples
records used to infer the schema for the in-application stream created. The inferred
schema has only one column.

d. Choose Save and continue.

5. On the application details page, choose Go to SQL editor. To start the application, choose Yes,
start application in the dialog box that appears.

6. In the SQL editor, write the application code and verify the results as follows:

a. Copy the following application code, and paste it into the editor:

-- CREATE OR REPLACE STREAM for cleaned up referrer
CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 "ingest_time" TIMESTAMP,
 "referrer" VARCHAR(32));

CREATE OR REPLACE PUMP "myPUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM
 "APPROXIMATE_ARRIVAL_TIME",
 REGEX_REPLACE("REFERRER", 'http://', 'https://', 1, 0)
 FROM "SOURCE_SQL_STREAM_001";

b. Choose Save and run SQL. On the Real-time analytics tab, you can see all the in-
application streams that the application created and verify the data.

Example: Parsing Log Strings Based on Regular Expressions (REGEX_LOG_PARSE
Function)

This example uses the REGEX_LOG_PARSE function to transform a string in Amazon Kinesis Data
Analytics. REGEX_LOG_PARSE parses a string based on default Java regular expression patterns.
For more information, see REGEX_LOG_PARSE in the Amazon Managed Service for Apache Flink SQL
Reference.

Transforming String Values 180

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-regex-log-parse.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

In this example, you write the following records to an Amazon Kinesis stream:

{"LOGENTRY": "203.0.113.24 - - [25/Mar/2018:15:25:37 -0700] \"GET /index.php HTTP/1.1\"
 200 125 \"-\" \"Mozilla/5.0 [en] Gecko/20100101 Firefox/52.0\""}
{"LOGENTRY": "203.0.113.24 - - [25/Mar/2018:15:25:37 -0700] \"GET /index.php HTTP/1.1\"
 200 125 \"-\" \"Mozilla/5.0 [en] Gecko/20100101 Firefox/52.0\""}
{"LOGENTRY": "203.0.113.24 - - [25/Mar/2018:15:25:37 -0700] \"GET /index.php HTTP/1.1\"
 200 125 \"-\" \"Mozilla/5.0 [en] Gecko/20100101 Firefox/52.0\""}
...

You then create an Kinesis Data Analytics application on the console, with the Kinesis data stream
as the streaming source. The discovery process reads sample records on the streaming source and
infers an in-application schema with one column (LOGENTRY), as shown following.

Then, you use the application code with the REGEX_LOG_PARSE function to parse the log string
to retrieve the data elements. You insert the resulting data into another in-application stream, as
shown in the following screenshot:

Transforming String Values 181

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Topics

• Step 1: Create a Kinesis Data Stream

• Step 2: Create the Kinesis Data Analytics Application

Step 1: Create a Kinesis Data Stream

Create an Amazon Kinesis data stream and populate the log records as follows:

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. Choose Data Streams in the navigation pane.

3. Choose Create Kinesis stream, and create a stream with one shard. For more information, see
Create a Stream in the Amazon Kinesis Data Streams Developer Guide.

4. Run the following Python code to populate sample log records. This simple code continuously
writes the same log record to the stream.

import json
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
 return {
 "LOGENTRY": "203.0.113.24 - - [25/Mar/2018:15:25:37 -0700] "
 '"GET /index.php HTTP/1.1" 200 125 "-" '
 '"Mozilla/5.0 [en] Gecko/20100101 Firefox/52.0"'
 }

def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name, Data=json.dumps(data),
 PartitionKey="partitionkey"
)

Transforming String Values 182

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis
https://docs.aws.amazon.com/streams/latest/dev/learning-kinesis-module-one-create-stream.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

if __name__ == "__main__":
 generate(STREAM_NAME, boto3.client("kinesis"))

Step 2: Create the Kinesis Data Analytics Application

Next, create an Kinesis Data Analytics application as follows:

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/
kinesisanalytics.

2. Choose Create application, and specify an application name.

3. On the application details page, choose Connect streaming data.

4. On the Connect to source page, do the following:

a. Choose the stream that you created in the preceding section.

b. Choose the option to create an IAM role.

c. Choose Discover schema. Wait for the console to show the inferred schema and samples
records used to infer the schema for the in-application stream created. The inferred
schema has only one column.

d. Choose Save and continue.

5. On the application details page, choose Go to SQL editor. To start the application, choose Yes,
start application in the dialog box that appears.

6. In the SQL editor, write the application code, and verify the results as follows:

a. Copy the following application code and paste it into the editor.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (logentry VARCHAR(24), match1
 VARCHAR(24), match2 VARCHAR(24));

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM T.LOGENTRY, T.REC.COLUMN1, T.REC.COLUMN2
 FROM
 (SELECT STREAM LOGENTRY,
 REGEX_LOG_PARSE(LOGENTRY, '(\w.+) (\d.+) (\w.+) (\w.+)') AS REC
 FROM SOURCE_SQL_STREAM_001) AS T;

Transforming String Values 183

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

b. Choose Save and run SQL. On the Real-time analytics tab, you can see all the in-
application streams that the application created and verify the data.

Example: Parsing Web Logs (W3C_LOG_PARSE Function)

This example uses the W3C_LOG_PARSE function to transform a string in Amazon Kinesis Data
Analytics. You can use W3C_LOG_PARSE to format Apache logs quickly. For more information, see
W3C_LOG_PARSE in the Amazon Managed Service for Apache Flink SQL Reference.

In this example, you write log records to an Amazon Kinesis data stream. Example logs are shown
following:

{"Log":"192.168.254.30 - John [24/May/2004:22:01:02 -0700] "GET /icons/apache_pba.gif
 HTTP/1.1" 304 0"}
{"Log":"192.168.254.30 - John [24/May/2004:22:01:03 -0700] "GET /icons/apache_pbb.gif
 HTTP/1.1" 304 0"}
{"Log":"192.168.254.30 - John [24/May/2004:22:01:04 -0700] "GET /icons/apache_pbc.gif
 HTTP/1.1" 304 0"}
...

You then create an Kinesis Data Analytics application on the console, with the Kinesis data stream
as the streaming source. The discovery process reads sample records on the streaming source and
infers an in-application schema with one column (log), as shown following:

Transforming String Values 184

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-w3c-log-parse.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Then, you use the application code with the W3C_LOG_PARSE function to parse the log, and create
another in-application stream with various log fields in separate columns, as shown following:

Topics

• Step 1: Create a Kinesis Data Stream

• Step 2: Create the Kinesis Data Analytics Application

Step 1: Create a Kinesis Data Stream

Create an Amazon Kinesis data stream, and populate the log records as follows:

Transforming String Values 185

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. Choose Data Streams in the navigation pane.

3. Choose Create Kinesis stream, and create a stream with one shard. For more information, see
Create a Stream in the Amazon Kinesis Data Streams Developer Guide.

4. Run the following Python code to populate the sample log records. This simple code
continuously writes the same log record to the stream.

import json
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
 return {
 "log": "192.168.254.30 - John [24/May/2004:22:01:02 -0700] "
 '"GET /icons/apache_pb.gif HTTP/1.1" 304 0'
 }

def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name, Data=json.dumps(data),
 PartitionKey="partitionkey"
)

if __name__ == "__main__":
 generate(STREAM_NAME, boto3.client("kinesis"))

Step 2: Create the Kinesis Data Analytics Application

Create an Kinesis Data Analytics application as follows:

Transforming String Values 186

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis
https://docs.aws.amazon.com/streams/latest/dev/learning-kinesis-module-one-create-stream.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/
kinesisanalytics.

2. Choose Create application, type an application name, and choose Create application.

3. On the application details page, choose Connect streaming data.

4. On the Connect to source page, do the following:

a. Choose the stream that you created in the preceding section.

b. Choose the option to create an IAM role.

c. Choose Discover schema. Wait for the console to show the inferred schema and samples
records used to infer the schema for the in-application stream created. The inferred
schema has only one column.

d. Choose Save and continue.

5. On the application details page, choose Go to SQL editor. To start the application, choose Yes,
start application in the dialog box that appears.

6. In the SQL editor, write the application code, and verify the results as follows:

a. Copy the following application code and paste it into the editor.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
column1 VARCHAR(16),
column2 VARCHAR(16),
column3 VARCHAR(16),
column4 VARCHAR(16),
column5 VARCHAR(16),
column6 VARCHAR(16),
column7 VARCHAR(16));

CREATE OR REPLACE PUMP "myPUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM
 l.r.COLUMN1,
 l.r.COLUMN2,
 l.r.COLUMN3,
 l.r.COLUMN4,
 l.r.COLUMN5,
 l.r.COLUMN6,
 l.r.COLUMN7
 FROM (SELECT STREAM W3C_LOG_PARSE("log", 'COMMON')

Transforming String Values 187

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 FROM "SOURCE_SQL_STREAM_001") AS l(r);

b. Choose Save and run SQL. On the Real-time analytics tab, you can see all the in-
application streams that the application created and verify the data.

Example: Split Strings into Multiple Fields (VARIABLE_COLUMN_LOG_PARSE
Function)

This example uses the VARIABLE_COLUMN_LOG_PARSE function to manipulate strings
in Kinesis Data Analytics. VARIABLE_COLUMN_LOG_PARSE splits an input string into
fields separated by a delimiter character or a delimiter string. For more information, see
VARIABLE_COLUMN_LOG_PARSE in the Amazon Managed Service for Apache Flink SQL Reference.

In this example, you write semi-structured records to an Amazon Kinesis data stream. The example
records are as follows:

{ "Col_A" : "string",
 "Col_B" : "string",
 "Col_C" : "string",
 "Col_D_Unstructured" : "value,value,value,value"}
{ "Col_A" : "string",
 "Col_B" : "string",
 "Col_C" : "string",
 "Col_D_Unstructured" : "value,value,value,value"}

You then create an Kinesis Data Analytics application on the console, using the Kinesis stream as
the streaming source. The discovery process reads sample records on the streaming source and
infers an in-application schema with four columns, as shown following:

Transforming String Values 188

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-variable-column-log-parse.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Then, you use the application code with the VARIABLE_COLUMN_LOG_PARSE function to parse the
comma-separated values, and insert normalized rows in another in-application stream, as shown
following:

Topics

• Step 1: Create a Kinesis Data Stream

• Step 2: Create the Kinesis Data Analytics Application

Step 1: Create a Kinesis Data Stream

Create an Amazon Kinesis data stream and populate the log records as follows:

Transforming String Values 189

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. Choose Data Streams in the navigation pane.

3. Choose Create Kinesis stream, and create a stream with one shard. For more information, see
Create a Stream in the Amazon Kinesis Data Streams Developer Guide.

4. Run the following Python code to populate the sample log records. This simple code
continuously writes the same log record to the stream.

import json
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
 return {"Col_A": "a", "Col_B": "b", "Col_C": "c", "Col_E_Unstructured":
 "x,y,z"}

def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name, Data=json.dumps(data),
 PartitionKey="partitionkey"
)

if __name__ == "__main__":
 generate(STREAM_NAME, boto3.client("kinesis"))

Step 2: Create the Kinesis Data Analytics Application

Create an Kinesis Data Analytics application as follows:

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/
kinesisanalytics.

Transforming String Values 190

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis
https://docs.aws.amazon.com/streams/latest/dev/learning-kinesis-module-one-create-stream.html
https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

2. Choose Create application, type an application name, and choose Create application.

3. On the application details page, choose Connect streaming data.

4. On the Connect to source page, do the following:

a. Choose the stream that you created in the preceding section.

b. Choose the option to create an IAM role.

c. Choose Discover schema. Wait for the console to show the inferred schema and samples
records used to infer the schema for the in-application stream created. Note that the
inferred schema has only one column.

d. Choose Save and continue.

5. On the application details page, choose Go to SQL editor. To start the application, choose Yes,
start application in the dialog box that appears.

6. In the SQL editor, write application code, and verify the results:

a. Copy the following application code and paste it into the editor:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM"(
 "column_A" VARCHAR(16),
 "column_B" VARCHAR(16),
 "column_C" VARCHAR(16),
 "COL_1" VARCHAR(16),
 "COL_2" VARCHAR(16),
 "COL_3" VARCHAR(16));

CREATE OR REPLACE PUMP "SECOND_STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM t."Col_A", t."Col_B", t."Col_C",
 t.r."COL_1", t.r."COL_2", t.r."COL_3"
 FROM (SELECT STREAM
 "Col_A", "Col_B", "Col_C",
 VARIABLE_COLUMN_LOG_PARSE ("Col_E_Unstructured",
 'COL_1 TYPE VARCHAR(16), COL_2 TYPE
 VARCHAR(16), COL_3 TYPE VARCHAR(16)',
 ',') AS r
 FROM "SOURCE_SQL_STREAM_001") as t;

b. Choose Save and run SQL. On the Real-time analytics tab, you can see all the in-
application streams that the application created and verify the data.

Transforming String Values 191

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Example: Transforming DateTime Values

Amazon Kinesis Data Analytics supports converting columns to time stamps. For example, you
might want to use your own time stamp as part of a GROUP BY clause as another time-based
window, in addition to the ROWTIME column. Kinesis Data Analytics provides operations and SQL
functions for working with date and time fields.

• Date and time operators – You can perform arithmetic operations on dates, times, and interval
data types. For more information, see Date, Timestamp, and Interval Operators in the Amazon
Managed Service for Apache Flink SQL Reference.

• SQL Functions – These include the following. For more information, see Date and Time
Functions in the Amazon Managed Service for Apache Flink SQL Reference.

• EXTRACT() – Extracts one field from a date, time, time stamp, or interval expression.

• CURRENT_TIME – Returns the time when the query executes (UTC).

• CURRENT_DATE – Returns the date when the query executes (UTC).

• CURRENT_TIMESTAMP – Returns the time stamp when the query executes (UTC).

• LOCALTIME – Returns the current time when the query executes as defined by the
environment on which Kinesis Data Analytics is running (UTC).

• LOCALTIMESTAMP – Returns the current time stamp as defined by the environment on which
Kinesis Data Analytics is running (UTC).

• SQL Extensions – These include the following. For more information, see Date and Time
Functions and Datetime Conversion Functions in the Amazon Managed Service for Apache Flink
SQL Reference.

• CURRENT_ROW_TIMESTAMP – Returns a new time stamp for each row in the stream.

• TSDIFF – Returns the difference of two time stamps in milliseconds.

• CHAR_TO_DATE – Converts a string to a date.

• CHAR_TO_TIME – Converts a string to time.

• CHAR_TO_TIMESTAMP – Converts a string to a time stamp.

• DATE_TO_CHAR – Converts a date to a string.

• TIME_TO_CHAR – Converts a time to a string.Transforming DateTime Values 192

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-date-timestamp-interval.html
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-date-time-functions.html
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-date-time-functions.html
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-date-time-functions.html
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-date-time-functions.html
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-datetime-conversion-functions.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• TIMESTAMP_TO_CHAR – Converts a time stamp to a string.

Most of the preceding SQL functions use a format to convert the columns. The format is flexible.
For example, you can specify the format yyyy-MM-dd hh:mm:ss to convert an input string
2009-09-16 03:15:24 into a time stamp. For more information, Char To Timestamp(Sys) in the
Amazon Managed Service for Apache Flink SQL Reference.

Example: Transforming Dates

In this example, you write the following records to an Amazon Kinesis data stream.

{"EVENT_TIME": "2018-05-09T12:50:41.337510", "TICKER": "AAPL"}
{"EVENT_TIME": "2018-05-09T12:50:41.427227", "TICKER": "MSFT"}
{"EVENT_TIME": "2018-05-09T12:50:41.520549", "TICKER": "INTC"}
{"EVENT_TIME": "2018-05-09T12:50:41.610145", "TICKER": "MSFT"}
{"EVENT_TIME": "2018-05-09T12:50:41.704395", "TICKER": "AAPL"}
...

You then create an Kinesis Data Analytics application on the console, with the Kinesis stream as the
streaming source. The discovery process reads sample records on the streaming source and infers
an in-application schema with two columns (EVENT_TIME and TICKER) as shown.

Then, you use the application code with SQL functions to convert the EVENT_TIME time stamp
field in various ways. You then insert the resulting data into another in-application stream, as
shown in the following screenshot:

Transforming DateTime Values 193

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-char-to-timestamp.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Step 1: Create a Kinesis Data Stream

Create an Amazon Kinesis data stream and populate it with event time and ticker records as
follows:

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. Choose Data Streams in the navigation pane.

3. Choose Create Kinesis stream, and create a stream with one shard.

4. Run the following Python code to populate the stream with sample data. This simple code
continuously writes a record with a random ticker symbol and the current time stamp to the
stream.

import datetime
import json
import random
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
 return {
 "EVENT_TIME": datetime.datetime.now().isoformat(),
 "TICKER": random.choice(["AAPL", "AMZN", "MSFT", "INTC", "TBV"]),

Transforming DateTime Values 194

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "PRICE": round(random.random() * 100, 2),
 }

def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name, Data=json.dumps(data),
 PartitionKey="partitionkey"
)

if __name__ == "__main__":
 generate(STREAM_NAME, boto3.client("kinesis"))

Step 2: Create the Amazon Kinesis Data Analytics Application

Create an application as follows:

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/
kinesisanalytics.

2. Choose Create application, type an application name, and choose Create application.

3. On the application details page, choose Connect streaming data to connect to the source.

4. On the Connect to source page, do the following:

a. Choose the stream that you created in the preceding section.

b. Choose to create an IAM role.

c. Choose Discover schema. Wait for the console to show the inferred schema and the
sample records that are used to infer the schema for the in-application stream created.
The inferred schema has two columns.

d. Choose Edit Schema. Change the Column type of the EVENT_TIME column to
TIMESTAMP.

e. Choose Save schema and update stream samples. After the console saves the schema,
choose Exit.

f. Choose Save and continue.

Transforming DateTime Values 195

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

5. On the application details page, choose Go to SQL editor. To start the application, choose Yes,
start application in the dialog box that appears.

6. In the SQL editor, write the application code and verify the results as follows:

a. Copy the following application code and paste it into the editor.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 TICKER VARCHAR(4),
 event_time TIMESTAMP,
 five_minutes_before TIMESTAMP,
 event_unix_timestamp BIGINT,
 event_timestamp_as_char VARCHAR(50),
 event_second INTEGER);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"

SELECT STREAM
 TICKER,
 EVENT_TIME,
 EVENT_TIME - INTERVAL '5' MINUTE,
 UNIX_TIMESTAMP(EVENT_TIME),
 TIMESTAMP_TO_CHAR('yyyy-MM-dd hh:mm:ss', EVENT_TIME),
 EXTRACT(SECOND FROM EVENT_TIME)
FROM "SOURCE_SQL_STREAM_001"

b. Choose Save and run SQL. On the Real-time analytics tab, you can see all the in-
application streams that the application created and verify the data.

Example: Transforming Multiple Data Types

A common requirement in extract, transform, and load (ETL) applications is to process multiple
record types on a streaming source. You can create Kinesis Data Analytics applications to process
these kinds of streaming sources. The process is as follows:

1. First, you map the streaming source to an in-application input stream, similar to all other
Kinesis Data Analytics applications.

2. Then, in your application code, you write SQL statements to retrieve rows of specific types
from the in-application input stream. You then insert them into separate in-application
streams. (You can create additional in-application streams in your application code.)

Transforming Multiple Data Types 196

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

In this exercise, you have a streaming source that receives records of two types (Order and Trade).
These are stock orders and corresponding trades. For each order, there can be zero or more trades.
Example records of each type are shown following:

Order record

{"RecordType": "Order", "Oprice": 9047, "Otype": "Sell", "Oid": 3811, "Oticker":
 "AAAA"}

Trade record

{"RecordType": "Trade", "Tid": 1, "Toid": 3812, "Tprice": 2089, "Tticker": "BBBB"}

When you create an application using the AWS Management Console, the console displays the
following inferred schema for the in-application input stream created. By default, the console
names this in-application stream SOURCE_SQL_STREAM_001.

When you save the configuration, Amazon Kinesis Data Analytics continuously reads data from the
streaming source and inserts rows in the in-application stream. You can now perform analytics on
data in the in-application stream.

Transforming Multiple Data Types 197

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

In the application code in this example, you first create two additional in-application streams,
Order_Stream and Trade_Stream. You then filter the rows from the SOURCE_SQL_STREAM_001
stream based on the record type and insert them in the newly created streams using pumps. For
information about this coding pattern, see Application Code.

1. Filter order and trade rows into separate in-application streams:

a. Filter the order records in the SOURCE_SQL_STREAM_001, and save the orders in the
Order_Stream.

--Create Order_Stream.
CREATE OR REPLACE STREAM "Order_Stream"
 (
 order_id integer,
 order_type varchar(10),
 ticker varchar(4),
 order_price DOUBLE,
 record_type varchar(10)
);

CREATE OR REPLACE PUMP "Order_Pump" AS
 INSERT INTO "Order_Stream"
 SELECT STREAM oid, otype,oticker, oprice, recordtype
 FROM "SOURCE_SQL_STREAM_001"
 WHERE recordtype = 'Order';

b. Filter the trade records in the SOURCE_SQL_STREAM_001, and save the orders in the
Trade_Stream.

--Create Trade_Stream.
CREATE OR REPLACE STREAM "Trade_Stream"
 (trade_id integer,
 order_id integer,
 trade_price DOUBLE,
 ticker varchar(4),
 record_type varchar(10)
);

CREATE OR REPLACE PUMP "Trade_Pump" AS
 INSERT INTO "Trade_Stream"
 SELECT STREAM tid, toid, tprice, tticker, recordtype
 FROM "SOURCE_SQL_STREAM_001"

Transforming Multiple Data Types 198

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 WHERE recordtype = 'Trade';

2. Now you can perform additional analytics on these streams. In this example, you count the
number of trades by the ticker in a one-minute tumbling window and save the results to yet
another stream, DESTINATION_SQL_STREAM.

--do some analytics on the Trade_Stream and Order_Stream.
-- To see results in console you must write to OPUT_SQL_STREAM.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 ticker varchar(4),
 trade_count integer
);

CREATE OR REPLACE PUMP "Output_Pump" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM ticker, count(*) as trade_count
 FROM "Trade_Stream"
 GROUP BY ticker,
 FLOOR("Trade_Stream".ROWTIME TO MINUTE);

You see the result, as shown following:

Topics

• Step 1: Prepare the Data

• Step 2: Create the Application

Next Step

Transforming Multiple Data Types 199

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Step 1: Prepare the Data

Step 1: Prepare the Data

In this section, you create a Kinesis data stream, and then populate order and trade records on the
stream. This is your streaming source for the application that you create in the next step.

Topics

• Step 1.1: Create a Streaming Source

• Step 1.2: Populate the Streaming Source

Step 1.1: Create a Streaming Source

You can create a Kinesis data stream using the console or the AWS CLI. The example assumes
OrdersAndTradesStream as the stream name.

• Using the console – Sign in to the AWS Management Console and open the Kinesis console
at https://console.aws.amazon.com/kinesis. Choose Data Streams, and then create a stream
with one shard. For more information, see Create a Stream in the Amazon Kinesis Data Streams
Developer Guide.

• Using the AWS CLI – Use the following Kinesis create-stream AWS CLI command to create the
stream:

$ aws kinesis create-stream \
--stream-name OrdersAndTradesStream \
--shard-count 1 \
--region us-east-1 \
--profile adminuser

Step 1.2: Populate the Streaming Source

Run the following Python script to populate sample records on the OrdersAndTradesStream. If
you created the stream with a different name, update the Python code appropriately.

1. Install Python and pip.

For information about installing Python, see the Python website.

Transforming Multiple Data Types 200

https://console.aws.amazon.com/kinesis
https://docs.aws.amazon.com/streams/latest/dev/learning-kinesis-module-one-create-stream.html
https://www.python.org/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

You can install dependencies using pip. For information about installing pip, see Installation on
the pip website.

2. Run the following Python code. The put-record command in the code writes the JSON
records to the stream.

import json
import random
import boto3

STREAM_NAME = "OrdersAndTradesStream"
PARTITION_KEY = "partition_key"

def get_order(order_id, ticker):
 return {
 "RecordType": "Order",
 "Oid": order_id,
 "Oticker": ticker,
 "Oprice": random.randint(500, 10000),
 "Otype": "Sell",
 }

def get_trade(order_id, trade_id, ticker):
 return {
 "RecordType": "Trade",
 "Tid": trade_id,
 "Toid": order_id,
 "Tticker": ticker,
 "Tprice": random.randint(0, 3000),
 }

def generate(stream_name, kinesis_client):
 order_id = 1
 while True:
 ticker = random.choice(["AAAA", "BBBB", "CCCC"])
 order = get_order(order_id, ticker)
 print(order)
 kinesis_client.put_record(

Transforming Multiple Data Types 201

https://pip.pypa.io/en/stable/installing/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 StreamName=stream_name, Data=json.dumps(order),
 PartitionKey=PARTITION_KEY
)
 for trade_id in range(1, random.randint(0, 6)):
 trade = get_trade(order_id, trade_id, ticker)
 print(trade)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(trade),
 PartitionKey=PARTITION_KEY,
)
 order_id += 1

if __name__ == "__main__":
 generate(STREAM_NAME, boto3.client("kinesis"))

Next Step

Step 2: Create the Application

Step 2: Create the Application

In this section, you create an Kinesis Data Analytics application. You then update the application by
adding input configuration that maps the streaming source you created in the preceding section to
an in-application input stream.

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/
kinesisanalytics.

2. Choose Create application. This example uses the application name
ProcessMultipleRecordTypes.

3. On the application details page, choose Connect streaming data to connect to the source.

4. On the Connect to source page, do the following:

a. Choose the stream that you created in Step 1: Prepare the Data.

b. Choose to create an IAM role.

c. Wait for the console to show the inferred schema and samples records that are used to
infer the schema for the in-application stream created.

Transforming Multiple Data Types 202

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

d. Choose Save and continue.

5. On the application hub, choose Go to SQL editor. To start the application, choose Yes, start
application in the dialog box that appears.

6. In the SQL editor, write the application code and verify the results:

a. Copy the following application code and paste it into the editor.

--Create Order_Stream.
CREATE OR REPLACE STREAM "Order_Stream"
 (
 "order_id" integer,
 "order_type" varchar(10),
 "ticker" varchar(4),
 "order_price" DOUBLE,
 "record_type" varchar(10)
);

CREATE OR REPLACE PUMP "Order_Pump" AS
 INSERT INTO "Order_Stream"
 SELECT STREAM "Oid", "Otype","Oticker", "Oprice", "RecordType"
 FROM "SOURCE_SQL_STREAM_001"
 WHERE "RecordType" = 'Order';
--**
--Create Trade_Stream.
CREATE OR REPLACE STREAM "Trade_Stream"
 ("trade_id" integer,
 "order_id" integer,
 "trade_price" DOUBLE,
 "ticker" varchar(4),
 "record_type" varchar(10)
);

CREATE OR REPLACE PUMP "Trade_Pump" AS
 INSERT INTO "Trade_Stream"
 SELECT STREAM "Tid", "Toid", "Tprice", "Tticker", "RecordType"
 FROM "SOURCE_SQL_STREAM_001"
 WHERE "RecordType" = 'Trade';
--***
--do some analytics on the Trade_Stream and Order_Stream.
CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 "ticker" varchar(4),
 "trade_count" integer

Transforming Multiple Data Types 203

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

);

CREATE OR REPLACE PUMP "Output_Pump" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM "ticker", count(*) as trade_count
 FROM "Trade_Stream"
 GROUP BY "ticker",
 FLOOR("Trade_Stream".ROWTIME TO MINUTE);

b. Choose Save and run SQL. Choose the Real-time analytics tab to see all of the in-
application streams that the application created and verify the data.

Next Step

You can configure application output to persist results to an external destination, such as another
Kinesis stream or a Firehose data delivery stream.

Examples: Windows and Aggregation

This section provides examples of Amazon Kinesis Data Analytics applications that use windowed
and aggregate queries. (For more information, see Windowed Queries.) Each example provides
step-by-step instructions and example code for setting up the Kinesis Data Analytics application.

Topics

• Example: Stagger Window

• Example: Tumbling Window Using ROWTIME

• Example: Tumbling Window Using an Event Timestamp

• Example: Retrieving the Most Frequently Occurring Values (TOP_K_ITEMS_TUMBLING)

• Example: Aggregating Partial Results from a Query

Example: Stagger Window

When a windowed query processes separate windows for each unique partition key, starting when
data with the matching key arrives, the window is referred to as a stagger window. For details, see
Stagger Windows. This Amazon Kinesis Data Analytics example uses the EVENT_TIME and TICKER

Windows and Aggregation 204

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

columns to create stagger windows. The source stream contains groups of six records with identical
EVENT_TIME and TICKER values that arrive within in a one-minute period, but not necessarily with
the same minute value (for example, 18:41:xx).

In this example, you write the following records to a Kinesis data stream at the following times.
The script does not write the times to the stream, but the time that the record is ingested by the
application is written to the ROWTIME field:

{"EVENT_TIME": "2018-08-01T20:17:20.797945", "TICKER": "AMZN"} 20:17:30
{"EVENT_TIME": "2018-08-01T20:17:20.797945", "TICKER": "AMZN"} 20:17:40
{"EVENT_TIME": "2018-08-01T20:17:20.797945", "TICKER": "AMZN"} 20:17:50
{"EVENT_TIME": "2018-08-01T20:17:20.797945", "TICKER": "AMZN"} 20:18:00
{"EVENT_TIME": "2018-08-01T20:17:20.797945", "TICKER": "AMZN"} 20:18:10
{"EVENT_TIME": "2018-08-01T20:17:20.797945", "TICKER": "AMZN"} 20:18:21
{"EVENT_TIME": "2018-08-01T20:18:21.043084", "TICKER": "INTC"} 20:18:31
{"EVENT_TIME": "2018-08-01T20:18:21.043084", "TICKER": "INTC"} 20:18:41
{"EVENT_TIME": "2018-08-01T20:18:21.043084", "TICKER": "INTC"} 20:18:51
{"EVENT_TIME": "2018-08-01T20:18:21.043084", "TICKER": "INTC"} 20:19:01
{"EVENT_TIME": "2018-08-01T20:18:21.043084", "TICKER": "INTC"} 20:19:11
{"EVENT_TIME": "2018-08-01T20:18:21.043084", "TICKER": "INTC"} 20:19:21
...

You then create a Kinesis Data Analytics application in the AWS Management Console, with the
Kinesis data stream as the streaming source. The discovery process reads sample records on
the streaming source and infers an in-application schema with two columns (EVENT_TIME and
TICKER) as shown following.

You use the application code with the COUNT function to create a windowed aggregation of
the data. Then you insert the resulting data into another in-application stream, as shown in the
following screenshot:

Stagger Window 205

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

In the following procedure, you create a Kinesis Data Analytics application that aggregates values
in the input stream in a stagger window based on EVENT_TIME and TICKER.

Topics

• Step 1: Create a Kinesis Data Stream

• Step 2: Create the Kinesis Data Analytics Application

Step 1: Create a Kinesis Data Stream

Create an Amazon Kinesis data stream and populate the records as follows:

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. Choose Data Streams in the navigation pane.

3. Choose Create Kinesis stream, and then create a stream with one shard. For more information,
see Create a Stream in the Amazon Kinesis Data Streams Developer Guide.

4. To write records to a Kinesis data stream in a production environment, we recommend using
either the Kinesis Producer Library or Kinesis Data Streams API. For simplicity, this example
uses the following Python script to generate records. Run the code to populate the sample
ticker records. This simple code continuously writes a group of six records with the same
random EVENT_TIME and ticker symbol to the stream, over the course of one minute. Keep
the script running so that you can generate the application schema in a later step.

import datetime
import json
import random

Stagger Window 206

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis
https://docs.aws.amazon.com/streams/latest/dev/learning-kinesis-module-one-create-stream.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-sdk.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

import time
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
 event_time = datetime.datetime.utcnow() - datetime.timedelta(seconds=10)
 return {
 "EVENT_TIME": event_time.isoformat(),
 "TICKER": random.choice(["AAPL", "AMZN", "MSFT", "INTC", "TBV"]),
 }

def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 # Send six records, ten seconds apart, with the same event time and ticker
 for _ in range(6):
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey",
)
 time.sleep(10)

if __name__ == "__main__":
 generate(STREAM_NAME, boto3.client("kinesis"))

Step 2: Create the Kinesis Data Analytics Application

Create a Kinesis Data Analytics application as follows:

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/
kinesisanalytics.

2. Choose Create application, type an application name, and choose Create application.

3. On the application details page, choose Connect streaming data to connect to the source.

4. On the Connect to source page, do the following:

Stagger Window 207

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

a. Choose the stream that you created in the preceding section.

b. Choose Discover Schema. Wait for the console to show the inferred schema and samples
records that are used to infer the schema for the in-application stream created. The
inferred schema has two columns.

c. Choose Edit Schema. Change the Column type of the EVENT_TIME column to
TIMESTAMP.

d. Choose Save schema and update stream samples. After the console saves the schema,
choose Exit.

e. Choose Save and continue.

5. On the application details page, choose Go to SQL editor. To start the application, choose Yes,
start application in the dialog box that appears.

6. In the SQL editor, write the application code, and verify the results as follows:

a. Copy the following application code and paste it into the editor.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 event_time TIMESTAMP,
 ticker_symbol VARCHAR(4),
 ticker_count INTEGER);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM
 EVENT_TIME,
 TICKER,
 COUNT(TICKER) AS ticker_count
 FROM "SOURCE_SQL_STREAM_001"
 WINDOWED BY STAGGER (
 PARTITION BY TICKER, EVENT_TIME RANGE INTERVAL '1' MINUTE);

b. Choose Save and run SQL.

On the Real-time analytics tab, you can see all the in-application streams that the
application created and verify the data.

Stagger Window 208

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Example: Tumbling Window Using ROWTIME

When a windowed query processes each window in a non-overlapping manner, the window is
referred to as a tumbling window. For details, see Tumbling Windows (Aggregations Using GROUP
BY). This Amazon Kinesis Data Analytics example uses the ROWTIME column to create tumbling
windows. The ROWTIME column represents the time the record was read by the application.

In this example, you write the following records to a Kinesis data stream.

{"TICKER": "TBV", "PRICE": 33.11}
{"TICKER": "INTC", "PRICE": 62.04}
{"TICKER": "MSFT", "PRICE": 40.97}
{"TICKER": "AMZN", "PRICE": 27.9}
...

You then create a Kinesis Data Analytics application in the AWS Management Console, with the
Kinesis data stream as the streaming source. The discovery process reads sample records on the
streaming source and infers an in-application schema with two columns (TICKER and PRICE) as
shown following.

You use the application code with the MIN and MAX functions to create a windowed aggregation
of the data. Then you insert the resulting data into another in-application stream, as shown in the
following screenshot:

Tumbling Window Using ROWTIME 209

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

In the following procedure, you create a Kinesis Data Analytics application that aggregates values
in the input stream in a tumbling window based on ROWTIME.

Topics

• Step 1: Create a Kinesis Data Stream

• Step 2: Create the Kinesis Data Analytics Application

Step 1: Create a Kinesis Data Stream

Create an Amazon Kinesis data stream and populate the records as follows:

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. Choose Data Streams in the navigation pane.

3. Choose Create Kinesis stream, and then create a stream with one shard. For more information,
see Create a Stream in the Amazon Kinesis Data Streams Developer Guide.

4. To write records to a Kinesis data stream in a production environment, we recommend using
either the Kinesis Client Library or Kinesis Data Streams API. For simplicity, this example uses
the following Python script to generate records. Run the code to populate the sample ticker
records. This simple code continuously writes a random ticker record to the stream. Keep the
script running so that you can generate the application schema in a later step.

import datetime
import json

Tumbling Window Using ROWTIME 210

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis
https://docs.aws.amazon.com/streams/latest/dev/learning-kinesis-module-one-create-stream.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-sdk.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

import random
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
 return {
 "EVENT_TIME": datetime.datetime.now().isoformat(),
 "TICKER": random.choice(["AAPL", "AMZN", "MSFT", "INTC", "TBV"]),
 "PRICE": round(random.random() * 100, 2),
 }

def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name, Data=json.dumps(data),
 PartitionKey="partitionkey"
)

if __name__ == "__main__":
 generate(STREAM_NAME, boto3.client("kinesis"))

Step 2: Create the Kinesis Data Analytics Application

Create a Kinesis Data Analytics application as follows:

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/
kinesisanalytics.

2. Choose Create application, enter an application name, and choose Create application.

3. On the application details page, choose Connect streaming data to connect to the source.

4. On the Connect to source page, do the following:

a. Choose the stream that you created in the preceding section.

Tumbling Window Using ROWTIME 211

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

b. Choose Discover Schema. Wait for the console to show the inferred schema and samples
records that are used to infer the schema for the in-application stream created. The
inferred schema has two columns.

c. Choose Save schema and update stream samples. After the console saves the schema,
choose Exit.

d. Choose Save and continue.

5. On the application details page, choose Go to SQL editor. To start the application, choose Yes,
start application in the dialog box that appears.

6. In the SQL editor, write the application code, and verify the results as follows:

a. Copy the following application code and paste it into the editor.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (TICKER VARCHAR(4), MIN_PRICE
 REAL, MAX_PRICE REAL);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM TICKER, MIN(PRICE), MAX(PRICE)
 FROM "SOURCE_SQL_STREAM_001"
 GROUP BY TICKER,
 STEP("SOURCE_SQL_STREAM_001".ROWTIME BY INTERVAL '60' SECOND);

b. Choose Save and run SQL.

On the Real-time analytics tab, you can see all the in-application streams that the
application created and verify the data.

Example: Tumbling Window Using an Event Timestamp

When a windowed query processes each window in a non-overlapping manner, the window is
referred to as a tumbling window. For details, see Tumbling Windows (Aggregations Using GROUP
BY). This Amazon Kinesis Data Analytics example demonstrates a tumbling window that uses
an event timestamp, which is a user-created timestamp that is included in the streaming data.
It uses this approach rather than just using ROWTIME, which is a timestamp that Kinesis Data
Analytics creates when the application receives the record. You would use an event timestamp in
the streaming data if you want to create an aggregation based on when an event occurred, rather
than when it was received by the application. In this example, the ROWTIME value triggers the
aggregation every minute, and the records are aggregated by both ROWTIME and the included
event time.

Tumbling Window Using an Event Timestamp 212

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

In this example, you write the following records to an Amazon Kinesis stream. The EVENT_TIME
value is set to 5 seconds in the past, to simulate processing and transmission lag that might create
a delay from when the event occurred, to when the record is ingested into Kinesis Data Analytics.

{"EVENT_TIME": "2018-06-13T14:11:05.766191", "TICKER": "TBV", "PRICE": 43.65}
{"EVENT_TIME": "2018-06-13T14:11:05.848967", "TICKER": "AMZN", "PRICE": 35.61}
{"EVENT_TIME": "2018-06-13T14:11:05.931871", "TICKER": "MSFT", "PRICE": 73.48}
{"EVENT_TIME": "2018-06-13T14:11:06.014845", "TICKER": "AMZN", "PRICE": 18.64}
...

You then create a Kinesis Data Analytics application in the AWS Management Console, with the
Kinesis data stream as the streaming source. The discovery process reads sample records on the
streaming source and infers an in-application schema with three columns (EVENT_TIME, TICKER,
and PRICE) as shown following.

You use the application code with the MIN and MAX functions to create a windowed aggregation
of the data. Then you insert the resulting data into another in-application stream, as shown in the
following screenshot:

Tumbling Window Using an Event Timestamp 213

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

In the following procedure, you create a Kinesis Data Analytics application that aggregates values
in the input stream in a tumbling window based on an event time.

Topics

• Step 1: Create a Kinesis Data Stream

• Step 2: Create the Kinesis Data Analytics Application

Step 1: Create a Kinesis Data Stream

Create an Amazon Kinesis data stream and populate the records as follows:

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. Choose Data Streams in the navigation pane.

3. Choose Create Kinesis stream, and then create a stream with one shard. For more information,
see Create a Stream in the Amazon Kinesis Data Streams Developer Guide.

4. To write records to a Kinesis data stream in a production environment, we recommend using
either the Kinesis Client Library or Kinesis Data Streams API. For simplicity, this example uses
the following Python script to generate records. Run the code to populate the sample ticker
records. This simple code continuously writes a random ticker record to the stream. Keep the
script running so that you can generate the application schema in a later step.

import datetime
import json

Tumbling Window Using an Event Timestamp 214

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis
https://docs.aws.amazon.com/streams/latest/dev/learning-kinesis-module-one-create-stream.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-sdk.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

import random
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
 return {
 "EVENT_TIME": datetime.datetime.now().isoformat(),
 "TICKER": random.choice(["AAPL", "AMZN", "MSFT", "INTC", "TBV"]),
 "PRICE": round(random.random() * 100, 2),
 }

def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name, Data=json.dumps(data),
 PartitionKey="partitionkey"
)

if __name__ == "__main__":
 generate(STREAM_NAME, boto3.client("kinesis"))

Step 2: Create the Kinesis Data Analytics Application

Create a Kinesis Data Analytics application as follows:

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/
kinesisanalytics.

2. Choose Create application, enter an application name, and choose Create application.

3. On the application details page, choose Connect streaming data to connect to the source.

4. On the Connect to source page, do the following:

a. Choose the stream that you created in the preceding section.

Tumbling Window Using an Event Timestamp 215

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

b. Choose Discover Schema. Wait for the console to show the inferred schema and samples
records that are used to infer the schema for the in-application stream created. The
inferred schema has three columns.

c. Choose Edit Schema. Change the Column type of the EVENT_TIME column to
TIMESTAMP.

d. Choose Save schema and update stream samples. After the console saves the schema,
choose Exit.

e. Choose Save and continue.

5. On the application details page, choose Go to SQL editor. To start the application, choose Yes,
start application in the dialog box that appears.

6. In the SQL editor, write the application code, and verify the results as follows:

a. Copy the following application code and paste it into the editor.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (EVENT_TIME timestamp, TICKER
 VARCHAR(4), min_price REAL, max_price REAL);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM STEP("SOURCE_SQL_STREAM_001".EVENT_TIME BY INTERVAL '60'
 SECOND),
 TICKER,
 MIN(PRICE) AS MIN_PRICE,
 MAX(PRICE) AS MAX_PRICE
 FROM "SOURCE_SQL_STREAM_001"
 GROUP BY TICKER,
 STEP("SOURCE_SQL_STREAM_001".ROWTIME BY INTERVAL '60' SECOND),
 STEP("SOURCE_SQL_STREAM_001".EVENT_TIME BY INTERVAL '60' SECOND);

b. Choose Save and run SQL.

On the Real-time analytics tab, you can see all the in-application streams that the
application created and verify the data.

Tumbling Window Using an Event Timestamp 216

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Example: Retrieving the Most Frequently Occurring Values
(TOP_K_ITEMS_TUMBLING)

This Amazon Kinesis Data Analytics example demonstrates how to use the
TOP_K_ITEMS_TUMBLING function to retrieve the most frequently occurring values in a tumbling
window. For more information, see TOP_K_ITEMS_TUMBLING function in the Amazon Managed
Service for Apache Flink SQL Reference.

The TOP_K_ITEMS_TUMBLING function is useful when aggregating over tens or hundreds of
thousands of keys, and you want to reduce your resource usage. The function produces the same
result as aggregating with GROUP BY and ORDER BY clauses.

In this example, you write the following records to an Amazon Kinesis data stream:

{"TICKER": "TBV"}
{"TICKER": "INTC"}
{"TICKER": "MSFT"}
{"TICKER": "AMZN"}
...

You then create a Kinesis Data Analytics application in the AWS Management Console, with the
Kinesis data stream as the streaming source. The discovery process reads sample records on
the streaming source and infers an in-application schema with one column (TICKER) as shown
following.

You use the application code with the TOP_K_VALUES_TUMBLING function to create a windowed
aggregation of the data. Then you insert the resulting data into another in-application stream, as
shown in the following screenshot:

Most Frequently Occurring Values (TOP_K_ITEMS_TUMBLING) 217

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/top-k.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

In the following procedure, you create a Kinesis Data Analytics application that retrieves the most
frequently occurring values in the input stream.

Topics

• Step 1: Create a Kinesis Data Stream

• Step 2: Create the Kinesis Data Analytics Application

Step 1: Create a Kinesis Data Stream

Create an Amazon Kinesis data stream and populate the records as follows:

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. Choose Data Streams in the navigation pane.

3. Choose Create Kinesis stream, and then create a stream with one shard. For more information,
see Create a Stream in the Amazon Kinesis Data Streams Developer Guide.

4. To write records to a Kinesis data stream in a production environment, we recommend using
either the Kinesis Client Library or Kinesis Data Streams API. For simplicity, this example uses
the following Python script to generate records. Run the code to populate the sample ticker
records. This simple code continuously writes a random ticker record to the stream. Leave the
script running so that you can generate the application schema in a later step.

import datetime
import json

Most Frequently Occurring Values (TOP_K_ITEMS_TUMBLING) 218

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis
https://docs.aws.amazon.com/streams/latest/dev/learning-kinesis-module-one-create-stream.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-sdk.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

import random
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
 return {
 "EVENT_TIME": datetime.datetime.now().isoformat(),
 "TICKER": random.choice(["AAPL", "AMZN", "MSFT", "INTC", "TBV"]),
 "PRICE": round(random.random() * 100, 2),
 }

def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name, Data=json.dumps(data),
 PartitionKey="partitionkey"
)

if __name__ == "__main__":
 generate(STREAM_NAME, boto3.client("kinesis"))

Step 2: Create the Kinesis Data Analytics Application

Create a Kinesis Data Analytics application as follows:

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/
kinesisanalytics.

2. Choose Create application, type an application name, and choose Create application.

3. On the application details page, choose Connect streaming data to connect to the source.

4. On the Connect to source page, do the following:

a. Choose the stream that you created in the preceding section.

Most Frequently Occurring Values (TOP_K_ITEMS_TUMBLING) 219

https://console.aws.amazon.com/kinesisanalytics
https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

b. Choose Discover Schema. Wait for the console to show the inferred schema and samples
records that are used to infer the schema for the in-application stream created. The
inferred schema has one column.

c. Choose Save schema and update stream samples. After the console saves the schema,
choose Exit.

d. Choose Save and continue.

5. On the application details page, choose Go to SQL editor. To start the application, choose Yes,
start application in the dialog box that appears.

6. In the SQL editor, write the application code, and verify the results as follows:

a. Copy the following application code and paste it into the editor:

CREATE OR REPLACE STREAM DESTINATION_SQL_STREAM (
 "TICKER" VARCHAR(4),
 "MOST_FREQUENT_VALUES" BIGINT
);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM *
 FROM TABLE (TOP_K_ITEMS_TUMBLING(
 CURSOR(SELECT STREAM * FROM "SOURCE_SQL_STREAM_001"),
 'TICKER', -- name of column in single quotes
 5, -- number of the most frequently occurring
 values
 60 -- tumbling window size in seconds
)
);

b. Choose Save and run SQL.

On the Real-time analytics tab, you can see all the in-application streams that the
application created and verify the data.

Example: Aggregating Partial Results from a Query

If an Amazon Kinesis data stream contains records that have an event time that does not exactly
match ingestion time, a selection of results in a tumbling window contains records that arrived,
but did not necessarily occur, within the window. In this case, the tumbling window contains only

Aggregating Partial Results 220

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

a partial set of the results that you want. There are several approaches that you can use to correct
this issue:

• Use a tumbling window only, and aggregate partial results in post processing through a database
or data warehouse using upserts. This approach is efficient in processing an application. It
handles the late data indefinitely for aggregate operators (sum, min, max, and so on). The
downside to this approach is that you must develop and maintain additional application logic in
the database layer.

• Use a tumbling and sliding window, which produces partial results early, but also continues to
produce complete results over the sliding window period. This approach handles late data with
an overwrite instead of an upsert so that no additional application logic needs to be added in the
database layer. The downside to this approach is that it uses more Kinesis processing units (KPUs)
and still produces two results, which might not work for some use cases.

For more information about tumbling and sliding windows, see Windowed Queries.

In the following procedure, the tumbling window aggregation produces two partial results
(sent to the CALC_COUNT_SQL_STREAM in-application stream) that must be combined to
produce a final result. The application then produces a second aggregation (sent to the
DESTINATION_SQL_STREAM in-application stream) that combines the two partial results.

To create an application that aggregates partial results using an event time

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. Choose Data Analytics in the navigation pane. Create a Kinesis Data Analytics application as
described in the Getting Started with Amazon Kinesis Data Analytics for SQL Applications
tutorial.

3. In the SQL editor, replace the application code with the following:

CREATE OR REPLACE STREAM "CALC_COUNT_SQL_STREAM"
 (TICKER VARCHAR(4),
 TRADETIME TIMESTAMP,
 TICKERCOUNT DOUBLE);

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM"
 (TICKER VARCHAR(4),
 TRADETIME TIMESTAMP,

Aggregating Partial Results 221

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 TICKERCOUNT DOUBLE);

CREATE PUMP "CALC_COUNT_SQL_PUMP_001" AS
 INSERT INTO "CALC_COUNT_SQL_STREAM" ("TICKER","TRADETIME", "TICKERCOUNT")
 SELECT STREAM
 "TICKER_SYMBOL",
 STEP("SOURCE_SQL_STREAM_001"."ROWTIME" BY INTERVAL '1' MINUTE) as
 "TradeTime",
 COUNT(*) AS "TickerCount"
 FROM "SOURCE_SQL_STREAM_001"
 GROUP BY
 STEP("SOURCE_SQL_STREAM_001".ROWTIME BY INTERVAL '1' MINUTE),
 STEP("SOURCE_SQL_STREAM_001"."APPROXIMATE_ARRIVAL_TIME" BY INTERVAL '1'
 MINUTE),
 TICKER_SYMBOL;

CREATE PUMP "AGGREGATED_SQL_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM" ("TICKER","TRADETIME", "TICKERCOUNT")
 SELECT STREAM
 "TICKER",
 "TRADETIME",
 SUM("TICKERCOUNT") OVER W1 AS "TICKERCOUNT"
 FROM "CALC_COUNT_SQL_STREAM"
 WINDOW W1 AS (PARTITION BY "TRADETIME" RANGE INTERVAL '10' MINUTE PRECEDING);

The SELECT statement in the application code filters rows in the SOURCE_SQL_STREAM_001
for stock price changes greater than 1 percent and inserts those rows into another in-
application stream CHANGE_STREAM using a pump.

4. Choose Save and run SQL.

The first pump outputs a stream to CALC_COUNT_SQL_STREAM similar to the following. Note that
the result set is incomplete:

Aggregating Partial Results 222

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

The second pump then outputs a stream to DESTINATION_SQL_STREAM that contains the
complete result set:

Examples: Joins

This section provides examples of Kinesis Data Analytics applications that use join queries. Each
example provides step-by-step instructions for setting up and testing your Kinesis Data Analytics
application.

Topics

• Example: Adding Reference Data to a Kinesis Data Analytics Application

Joins 223

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Example: Adding Reference Data to a Kinesis Data Analytics Application

In this exercise, you add reference data to an existing Kinesis Data Analytics application. For
information about reference data, see the following topics:

• Amazon Kinesis Data Analytics for SQL Applications: How It Works

• Configuring Application Input

In this exercise, you add reference data to the application you created in the Kinesis Data Analytics
Getting Started exercise. The reference data provides the company name for each ticker symbol;
for example:

Ticker, Company
AMZN,Amazon
ASD, SomeCompanyA
MMB, SomeCompanyB
WAS, SomeCompanyC

First, complete the steps in the Getting Started exercise to create a starter application. Then follow
these steps to set up and add reference data to your application:

1. Prepare the data

• Store the preceding reference data as an object in Amazon Simple Storage Service (Amazon
S3).

• Create an IAM role that Kinesis Data Analytics can assume to read the Amazon S3 object on
your behalf.

2. Add the reference data source to your application.

Kinesis Data Analytics reads the Amazon S3 object and creates an in-application reference table
that you can query in your application code.

3. Test the code.

In your application code, you write a join query to join the in-application stream with the in-
application reference table, to get the company name for each ticker symbol.

Topics

• Step 1: Prepare

Example: Add Reference Data Source 224

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Step 2: Add the Reference Data Source to the Application Configuration

• Step 3: Test: Query the In-Application Reference Table

Step 1: Prepare

In this section, you store sample reference data as an object in an Amazon S3 bucket. You also
create an IAM role that Kinesis Data Analytics can assume to read the object on your behalf.

Store Reference Data as an Amazon S3 Object

In this step, you store the sample reference data as an Amazon S3 object.

1. Open a text editor, add the following data, and save the file as TickerReference.csv.

Ticker, Company
AMZN,Amazon
ASD, SomeCompanyA
MMB, SomeCompanyB
WAS, SomeCompanyC

2. Upload the TickerReference.csv file to your S3 bucket. For instructions, see Uploading
Objects into Amazon S3 in the Amazon Simple Storage Service User Guide.

Create an IAM Role

Next, create an IAM role that Kinesis Data Analytics can assume and read the Amazon S3 object.

1. In AWS Identity and Access Management (IAM), create an IAM role named
KinesisAnalytics-ReadS3Object. To create the role, follow the instructions in Creating a
Role for an Amazon Service (AWS Management Console) in the IAM User Guide.

On the IAM console, specify the following:

• For Select Role Type, choose AWS Lambda. After creating the role, you will change the trust
policy to allow Kinesis Data Analytics (not AWS Lambda) to assume the role.

• Do not attach any policy on the Attach Policy page.

2. Update the IAM role policies:

Example: Add Reference Data Source 225

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/UploadingObjectsintoAmazonS3.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/UploadingObjectsintoAmazonS3.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html#roles-creatingrole-service-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html#roles-creatingrole-service-console

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

a. On the IAM console, choose the role that you created.

b. On the Trust Relationships tab, update the trust policy to grant Kinesis Data Analytics
permissions to assume the role. The trust policy is shown following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kinesisanalytics.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

c. On the Permissions tab, attach an Amazon-managed policy called
AmazonS3ReadOnlyAccess. This grants the role permissions to read an Amazon S3
object. This policy is shown following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"
],
 "Resource": "*"
 }
]
}

Step 2: Add the Reference Data Source to the Application Configuration

In this step, you add a reference data source to your application configuration. To begin, you need
the following information:

Example: Add Reference Data Source 226

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Your S3 bucket name and object key name

• The IAM role Amazon Resource Name (ARN)

1. In the main page for the application, choose Connect reference data.

2. In the Connect reference data source page, choose the Amazon S3 bucket containing your
reference data object, and enter the object's key name.

3. Enter CompanyName for the In-application reference table name.

4. In the Access to chosen resources section, choose Choose from IAM roles that Kinesis
Analytics can assume, and choose the KinesisAnalytics-ReadS3Object IAM role you created
in the previous section.

5. Choose Discover schema. The console detects two columns in the reference data.

6. Choose Save and close.

Step 3: Test: Query the In-Application Reference Table

You can now query the in-application reference table, CompanyName. You can use the reference
information to enrich your application by joining the ticker price data with the reference table. The
result shows the company name.

1. Replace your application code with the following. The query joins the in-application input
stream with the in-application reference table. The application code writes the results to
another in-application stream, DESTINATION_SQL_STREAM.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ticker_symbol VARCHAR(4),
 "Company" varchar(20), sector VARCHAR(12), change DOUBLE, price DOUBLE);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM ticker_symbol, "c"."Company", sector, change, price
 FROM "SOURCE_SQL_STREAM_001" LEFT JOIN "CompanyName" as "c"
 ON "SOURCE_SQL_STREAM_001".ticker_symbol = "c"."Ticker";

2. Verify that the application output appears in the SQLResults tab. Make sure that some of the
rows show company names (your sample reference data does not have all company names).

Example: Add Reference Data Source 227

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Examples: Machine Learning

This section provides examples of Amazon Kinesis Data Analytics applications that use machine
learning queries. Machine learning queries perform complex analysis on data, relying on the history
of the data in the stream to find unusual patterns. The examples provide step-by-step instructions
to set up and test your Kinesis Data Analytics application.

Topics

• Example: Detecting Data Anomalies on a Stream (RANDOM_CUT_FOREST Function)

• Example: Detecting Data Anomalies and Getting an Explanation
(RANDOM_CUT_FOREST_WITH_EXPLANATION Function)

• Example: Detecting Hotspots on a Stream (HOTSPOTS Function)

Example: Detecting Data Anomalies on a Stream
(RANDOM_CUT_FOREST Function)

Amazon Kinesis Data Analytics provides a function (RANDOM_CUT_FOREST) that can assign an
anomaly score to each record based on values in the numeric columns. For more information, see
RANDOM_CUT_FOREST Function in the Amazon Managed Service for Apache Flink SQL Reference.

In this exercise, you write application code to assign an anomaly score to records on your
application's streaming source. To set up the application, you do the following:

1. Set up a streaming source – You set up a Kinesis data stream and write sample heartRate
data, as shown following:

{"heartRate": 60, "rateType":"NORMAL"}
...
{"heartRate": 180, "rateType":"HIGH"}

The procedure provides a Python script for you to populate the stream. The heartRate values
are randomly generated, with 99 percent of the records having heartRate values between
60 and 100, and only 1 percent of heartRate values between 150 and 200. Thus, the records
that have heartRate values between 150 and 200 are anomalies.

2. Configure input – Using the console, you create a Kinesis Data Analytics application and
configure the application input by mapping the streaming source to an in-application stream

Machine Learning 228

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

(SOURCE_SQL_STREAM_001). When the application starts, Kinesis Data Analytics continuously
reads the streaming source and inserts records into the in-application stream.

3. Specify application code – The example uses the following application code:

--Creates a temporary stream.
CREATE OR REPLACE STREAM "TEMP_STREAM" (
 "heartRate" INTEGER,
 "rateType" varchar(20),
 "ANOMALY_SCORE" DOUBLE);

--Creates another stream for application output.
CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 "heartRate" INTEGER,
 "rateType" varchar(20),
 "ANOMALY_SCORE" DOUBLE);

-- Compute an anomaly score for each record in the input stream
-- using Random Cut Forest
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "TEMP_STREAM"
 SELECT STREAM "heartRate", "rateType", ANOMALY_SCORE
 FROM TABLE(RANDOM_CUT_FOREST(
 CURSOR(SELECT STREAM * FROM "SOURCE_SQL_STREAM_001")));

-- Sort records by descending anomaly score, insert into output stream
CREATE OR REPLACE PUMP "OUTPUT_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM * FROM "TEMP_STREAM"
 ORDER BY FLOOR("TEMP_STREAM".ROWTIME TO SECOND), ANOMALY_SCORE DESC;

The code reads rows in the SOURCE_SQL_STREAM_001, assigns an anomaly score, and writes
the resulting rows to another in-application stream (TEMP_STREAM). The application code then
sorts the records in the TEMP_STREAM and saves the results to another in-application stream
(DESTINATION_SQL_STREAM). You use pumps to insert rows in in-application streams. For
more information, see In-Application Streams and Pumps.

4. Configure output – You configure the application output to persist data in the
DESTINATION_SQL_STREAM to an external destination, which is another Kinesis data stream.
Reviewing the anomaly scores that are assigned to each record and determining what score
indicates an anomaly (and that you need to be alerted) is external to the application. You can
use an AWS Lambda function to process these anomaly scores and configure alerts.

Detecting Anomalies 229

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

The exercise uses the US East (N. Virginia) (us-east-1) to create these streams and your
application. If you use any other Region, you must update the code accordingly.

Topics

• Step 1: Prepare

• Step 2: Create an Application

• Step 3: Configure Application Output

• Step 4: Verify Output

Next Step

Step 1: Prepare

Step 1: Prepare

Before you create an Amazon Kinesis Data Analytics application for this exercise, you must
create two Kinesis data streams. Configure one of the streams as the streaming source for your
application, and the other stream as the destination where Kinesis Data Analytics persists your
application output.

Topics

• Step 1.1: Create the Input and Output Data Streams

• Step 1.2: Write Sample Records to the Input Stream

Step 1.1: Create the Input and Output Data Streams

In this section, you create two Kinesis streams: ExampleInputStream and
ExampleOutputStream. You can create these streams using the AWS Management Console or the
AWS CLI.

• To use the console

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. Choose Create data stream. Create a stream with one shard named ExampleInputStream.
For more information, see Create a Stream in the Amazon Kinesis Data Streams Developer
Guide.

Detecting Anomalies 230

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis
https://docs.aws.amazon.com/streams/latest/dev/learning-kinesis-module-one-create-stream.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

3. Repeat the previous step, creating a stream with one shard named ExampleOutputStream.

• To use the AWS CLI

1. Use the following Kinesis create-stream AWS CLI command to create the first stream
(ExampleInputStream).

$ aws kinesis create-stream \
--stream-name ExampleInputStream \
--shard-count 1 \
--region us-east-1 \
--profile adminuser

2. Run the same command, changing the stream name to ExampleOutputStream. This
command creates the second stream that the application uses to write output.

Step 1.2: Write Sample Records to the Input Stream

In this step, you run Python code to continuously generate sample records and write these records
to the ExampleInputStream stream.

{"heartRate": 60, "rateType":"NORMAL"}
...
{"heartRate": 180, "rateType":"HIGH"}

1. Install Python and pip.

For information about installing Python, see the Python website.

You can install dependencies using pip. For information about installing pip, see Installation on
the pip website.

2. Run the following Python code. The put-record command in the code writes the JSON
records to the stream.

from enum import Enum
import json
import random
import boto3

STREAM_NAME = "ExampleInputStream"

Detecting Anomalies 231

https://www.python.org/
https://pip.pypa.io/en/stable/installing/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

class RateType(Enum):
 normal = "NORMAL"
 high = "HIGH"

def get_heart_rate(rate_type):
 if rate_type == RateType.normal:
 rate = random.randint(60, 100)
 elif rate_type == RateType.high:
 rate = random.randint(150, 200)
 else:
 raise TypeError
 return {"heartRate": rate, "rateType": rate_type.value}

def generate(stream_name, kinesis_client, output=True):
 while True:
 rnd = random.random()
 rate_type = RateType.high if rnd < 0.01 else RateType.normal
 heart_rate = get_heart_rate(rate_type)
 if output:
 print(heart_rate)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(heart_rate),
 PartitionKey="partitionkey",
)

if __name__ == "__main__":
 generate(STREAM_NAME, boto3.client("kinesis"))

Next Step

Step 2: Create an Application

Step 2: Create an Application

In this section, you create an Amazon Kinesis Data Analytics application as follows:

Detecting Anomalies 232

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Configure the application input to use the Kinesis data stream that you created in the section
called “Step 1: Prepare” as the streaming source.

• Use the Anomaly Detection template on the console.

To create an application

1. Follow steps 1, 2, and 3 in the Kinesis Data Analytics Getting Started exercise (see Step 3.1:
Create an Application).

• In the source configuration, do the following:

• Specify the streaming source that you created in the preceding section.

• After the console infers the schema, edit the schema, and set the heartRate column type
to INTEGER.

Most of the heart rate values are normal, and the discovery process will most likely assign
the TINYINT type to this column. But a small percentage of the values show a high heart
rate. If these high values don't fit in the TINYINT type, Kinesis Data Analytics sends these
rows to an error stream. Update the data type to INTEGER so that it can accommodate all
the generated heart rate data.

• Use the Anomaly Detection template on the console. You then update the template code to
provide the appropriate column name.

2. Update the application code by providing column names. The resulting application code is
shown following (paste this code into the SQL editor):

--Creates a temporary stream.
CREATE OR REPLACE STREAM "TEMP_STREAM" (
 "heartRate" INTEGER,
 "rateType" varchar(20),
 "ANOMALY_SCORE" DOUBLE);

--Creates another stream for application output.
CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 "heartRate" INTEGER,
 "rateType" varchar(20),
 "ANOMALY_SCORE" DOUBLE);

-- Compute an anomaly score for each record in the input stream
-- using Random Cut Forest
CREATE OR REPLACE PUMP "STREAM_PUMP" AS

Detecting Anomalies 233

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 INSERT INTO "TEMP_STREAM"
 SELECT STREAM "heartRate", "rateType", ANOMALY_SCORE
 FROM TABLE(RANDOM_CUT_FOREST(
 CURSOR(SELECT STREAM * FROM "SOURCE_SQL_STREAM_001")));

-- Sort records by descending anomaly score, insert into output stream
CREATE OR REPLACE PUMP "OUTPUT_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM * FROM "TEMP_STREAM"
 ORDER BY FLOOR("TEMP_STREAM".ROWTIME TO SECOND), ANOMALY_SCORE DESC;

3. Run the SQL code and review the results on the Kinesis Data Analytics console:

Next Step

Step 3: Configure Application Output

Step 3: Configure Application Output

After completing the section called “Step 2: Create an Application”, you have application code that
is reading heart rate data from a streaming source and assigning an anomaly score to each.

Detecting Anomalies 234

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

You can now send the application results from the in-application stream to an external destination,
which is another Kinesis data stream (OutputStreamTestingAnomalyScores). You can analyze
the anomaly scores and determine which heart rate is anomalous. You can then extend this
application further to generate alerts.

Follow these steps to configure application output:

1. Open the Amazon Kinesis Data Analytics console. In the SQL editor, choose either Destination
or Add a destination in the application dashboard.

2. On the Connect to destination page, choose the OutputStreamTestingAnomalyScores
stream that you created in the preceding section.

Now you have an external destination, where Amazon Kinesis Data Analytics persists any
records your application writes to the in-application stream DESTINATION_SQL_STREAM.

3. You can optionally configure AWS Lambda to monitor the
OutputStreamTestingAnomalyScores stream and send you alerts. For instructions, see
Preprocessing Data Using a Lambda Function. If you don't set alerts, you can review the
records that Kinesis Data Analytics writes to the external destination, which is the Kinesis data
stream OutputStreamTestingAnomalyScores, as described in Step 4: Verify Output.

Next Step

Step 4: Verify Output

Step 4: Verify Output

After configuring the application output in the section called “Step 3: Configure Application
Output”, use the following AWS CLI commands to read records in the destination stream that is
written by the application:

1. Run the get-shard-iterator command to get a pointer to data on the output stream.

aws kinesis get-shard-iterator \
--shard-id shardId-000000000000 \
--shard-iterator-type TRIM_HORIZON \
--stream-name OutputStreamTestingAnomalyScores \
--region us-east-1 \
--profile adminuser

Detecting Anomalies 235

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

You get a response with a shard iterator value, as shown in the following example response:

 {
 "ShardIterator":
 "shard-iterator-value" }

Copy the shard iterator value.

2. Run the AWS CLI get-records command.

aws kinesis get-records \
--shard-iterator shared-iterator-value \
--region us-east-1 \
--profile adminuser

The command returns a page of records and another shard iterator that you can use in the
subsequent get-records command to fetch the next set of records.

Example: Detecting Data Anomalies and Getting an Explanation
(RANDOM_CUT_FOREST_WITH_EXPLANATION Function)

Amazon Kinesis Data Analytics provides the RANDOM_CUT_FOREST_WITH_EXPLANATION
function, which assigns an anomaly score to each record based on values in the numeric
columns. The function also provides an explanation of the anomaly. For more information, see
RANDOM_CUT_FOREST_WITH_EXPLANATION in the Amazon Managed Service for Apache Flink SQL
Reference.

In this exercise, you write application code to obtain anomaly scores for records in your
application's streaming source. You also obtain an explanation for each anomaly.

Topics

• Step 1: Prepare the Data

• Step 2: Create an Analytics Application

• Step 3: Examine the Results

First Step

Example: Detect Anomalies and Get an Explanation 236

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sqlrf-random-cut-forest-with-explanation.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Step 1: Prepare the Data

Step 1: Prepare the Data

Before you create an Amazon Kinesis Data Analytics application for this example, you create a
Kinesis data stream to use as the streaming source for your application. You also run Python code
to write simulated blood pressure data to the stream.

Topics

• Step 1.1: Create a Kinesis Data Stream

• Step 1.2: Write Sample Records to the Input Stream

Step 1.1: Create a Kinesis Data Stream

In this section, you create a Kinesis data stream named ExampleInputStream. You can create this
data stream using the AWS Management Console or the AWS CLI.

• To use the console:

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. Choose Data Streams in the navigation pane. Then choose Create Kinesis stream.

3. For the name, type ExampleInputStream. For the number of shards, type 1.

• Alternatively, to use the AWS CLI to create the data stream, run the following command:

$ aws kinesis create-stream --stream-name ExampleInputStream --shard-count 1

Step 1.2: Write Sample Records to the Input Stream

In this step, you run Python code to continuously generate sample records and write them to the
data stream that you created.

1. Install Python and pip.

For information about installing Python, see Python.

You can install dependencies using pip. For information about installing pip, see Installation in
the pip documentation.

Example: Detect Anomalies and Get an Explanation 237

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis
https://www.python.org/
https://pip.pypa.io/en/stable/installing/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

2. Run the following Python code. You can change the Region to the one you want to use for this
example. The put-record command in the code writes the JSON records to the stream.

from enum import Enum
import json
import random
import boto3

STREAM_NAME = "ExampleInputStream"

class PressureType(Enum):
 low = "LOW"
 normal = "NORMAL"
 high = "HIGH"

def get_blood_pressure(pressure_type):
 pressure = {"BloodPressureLevel": pressure_type.value}
 if pressure_type == PressureType.low:
 pressure["Systolic"] = random.randint(50, 80)
 pressure["Diastolic"] = random.randint(30, 50)
 elif pressure_type == PressureType.normal:
 pressure["Systolic"] = random.randint(90, 120)
 pressure["Diastolic"] = random.randint(60, 80)
 elif pressure_type == PressureType.high:
 pressure["Systolic"] = random.randint(130, 200)
 pressure["Diastolic"] = random.randint(90, 150)
 else:
 raise TypeError
 return pressure

def generate(stream_name, kinesis_client):
 while True:
 rnd = random.random()
 pressure_type = (
 PressureType.low
 if rnd < 0.005
 else PressureType.high
 if rnd > 0.995
 else PressureType.normal

Example: Detect Anomalies and Get an Explanation 238

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

)
 blood_pressure = get_blood_pressure(pressure_type)
 print(blood_pressure)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(blood_pressure),
 PartitionKey="partitionkey",
)

if __name__ == "__main__":
 generate(STREAM_NAME, boto3.client("kinesis"))

Next Step

Step 2: Create an Analytics Application

Step 2: Create an Analytics Application

In this section, you create an Amazon Kinesis Data Analytics application and configure
it to use the Kinesis data stream that you created as the streaming source in the
section called “Step 1: Prepare the Data”. You then run application code that uses the
RANDOM_CUT_FOREST_WITH_EXPLANATION function.

To create an application

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. Choose Data Analytics in the navigation pane, and then choose Create application.

3. Provide an application name and description (optional), and choose Create application.

4. Choose Connect streaming data, and then choose ExampleInputStream from the list.

5. Choose Discover schema, and make sure that Systolic and Diastolic appear as INTEGER
columns. If they have another type, choose Edit schema, and assign the type INTEGER to both
of them.

6. Under Real time analytics, choose Go to SQL editor. When prompted, choose to run your
application.

7. Paste the following code into the SQL editor, and then choose Save and run SQL.

--Creates a temporary stream.

Example: Detect Anomalies and Get an Explanation 239

https://console.aws.amazon.com/kinesis

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

CREATE OR REPLACE STREAM "TEMP_STREAM" (
 "Systolic" INTEGER,
 "Diastolic" INTEGER,
 "BloodPressureLevel" varchar(20),
 "ANOMALY_SCORE" DOUBLE,
 "ANOMALY_EXPLANATION" varchar(512));

--Creates another stream for application output.
CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 "Systolic" INTEGER,
 "Diastolic" INTEGER,
 "BloodPressureLevel" varchar(20),
 "ANOMALY_SCORE" DOUBLE,
 "ANOMALY_EXPLANATION" varchar(512));

-- Compute an anomaly score with explanation for each record in the input stream
-- using RANDOM_CUT_FOREST_WITH_EXPLANATION
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "TEMP_STREAM"
 SELECT STREAM "Systolic", "Diastolic", "BloodPressureLevel", ANOMALY_SCORE,
 ANOMALY_EXPLANATION
 FROM TABLE(RANDOM_CUT_FOREST_WITH_EXPLANATION(
 CURSOR(SELECT STREAM * FROM "SOURCE_SQL_STREAM_001"), 100, 256,
 100000, 1, true));

-- Sort records by descending anomaly score, insert into output stream
CREATE OR REPLACE PUMP "OUTPUT_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM * FROM "TEMP_STREAM"
 ORDER BY FLOOR("TEMP_STREAM".ROWTIME TO SECOND), ANOMALY_SCORE DESC;

Next Step

Step 3: Examine the Results

Step 3: Examine the Results

When you run the SQL code for this example, you first see rows with an anomaly score equal to
zero. This happens during the initial learning phase. Then you get results similar to the following:

ROWTIME SYSTOLIC DIASTOLIC BLOODPRESSURELEVEL ANOMALY_SCORE ANOMALY_EXPLANATION

Example: Detect Anomalies and Get an Explanation 240

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

27:49.0 101 66 NORMAL 0.711460417 {"Systolic":
{"DIRECTION":"LOW","STRENGTH":"0.0922","ATTRIBUTION_SCORE":"0.3792"},"Diastolic":
{"DIRECTION":"HIGH","STRENGTH":"0.0210","ATTRIBUTION_SCORE":"0.3323"}}
27:50.0 144 123 HIGH 3.855851061 {"Systolic":
{"DIRECTION":"HIGH","STRENGTH":"0.8567","ATTRIBUTION_SCORE":"1.7447"},"Diastolic":
{"DIRECTION":"HIGH","STRENGTH":"7.0982","ATTRIBUTION_SCORE":"2.1111"}}
27:50.0 113 69 NORMAL 0.740069409 {"Systolic":
{"DIRECTION":"LOW","STRENGTH":"0.0549","ATTRIBUTION_SCORE":"0.3750"},"Diastolic":
{"DIRECTION":"LOW","STRENGTH":"0.0394","ATTRIBUTION_SCORE":"0.3650"}}
27:50.0 105 64 NORMAL 0.739644157 {"Systolic":
{"DIRECTION":"HIGH","STRENGTH":"0.0245","ATTRIBUTION_SCORE":"0.3667"},"Diastolic":
{"DIRECTION":"LOW","STRENGTH":"0.0524","ATTRIBUTION_SCORE":"0.3729"}}
27:50.0 100 65 NORMAL 0.736993425 {"Systolic":
{"DIRECTION":"HIGH","STRENGTH":"0.0203","ATTRIBUTION_SCORE":"0.3516"},"Diastolic":
{"DIRECTION":"LOW","STRENGTH":"0.0454","ATTRIBUTION_SCORE":"0.3854"}}
27:50.0 108 69 NORMAL 0.733767202 {"Systolic":
{"DIRECTION":"LOW","STRENGTH":"0.0974","ATTRIBUTION_SCORE":"0.3961"},"Diastolic":
{"DIRECTION":"LOW","STRENGTH":"0.0189","ATTRIBUTION_SCORE":"0.3377"}}

• The algorithm in the RANDOM_CUT_FOREST_WITH_EXPLANATION function sees that the
Systolic and Diastolic columns are numeric, and uses them as input.

• The BloodPressureLevel column has text data, and is therefore not taken into account by the
algorithm. This column is simply a visual aide to help you quickly spot the normal, high, and low
blood pressure levels in this example.

• In the ANOMALY_SCORE column, records with higher scores are more anomalous. The
second record in this sample set of results is the most anomalous, with an anomaly score of
3.855851061.

• To understand the extent to which each of the numeric columns taken into account
by the algorithm contributes to the anomaly score, consult the JSON field named
ATTRIBUTION_SCORE in the ANOMALY_SCORE column. In the case of the second row in this
set of sample results, the Systolic and Diastolic columns contribute to the anomaly in the
ratio of 1.7447:2.1111. In other words, 45 percent of the explanation for the anomaly score is
attributable to the systolic value, and the remaining attribution is due to the diastolic value.

• To determine the direction in which the point represented by the second row in this sample is
anomalous, consult the JSON field named DIRECTION. Both the diastolic and systolic values are
marked as HIGH in this case. To determine the confidence with which these directions are correct,
consult the JSON field named STRENGTH. In this example, the algorithm is more confident that

Example: Detect Anomalies and Get an Explanation 241

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

the diastolic value is high. Indeed, the normal value for the diastolic reading is usually 60–80,
and 123 is much higher than expected.

Example: Detecting Hotspots on a Stream (HOTSPOTS Function)

Amazon Kinesis Data Analytics provides the HOTSPOTS function, which can locate and return
information about relatively dense regions in your data. For more information, see HOTSPOTS in
the Amazon Managed Service for Apache Flink SQL Reference.

In this exercise, you write application code to locate hotspots on your application's streaming
source. To set up the application, you do the following steps:

1. Set up a streaming source – You set up a Kinesis stream and write sample coordinate data as
shown following:

{"x": 7.921782426109737, "y": 8.746265312709893, "is_hot": "N"}
{"x": 0.722248626528026, "y": 4.648868803193405, "is_hot": "Y"}

The example provides a Python script for you to populate the stream. The x and y values are
randomly generated, with some records being clustered around certain locations.

The is_hot field is provided as an indicator if the script intentionally generated the value
as part of a hotspot. This can help you evaluate whether the hotspot detection function is
working properly.

2. Create the application – Using the AWS Management Console, you then create a Kinesis Data
Analytics application. Configure the application input by mapping the streaming source to an
in-application stream (SOURCE_SQL_STREAM_001). When the application starts, Kinesis Data
Analytics continuously reads the streaming source and inserts records into the in-application
stream.

In this exercise, you use the following code for the application:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 "x" DOUBLE,
 "y" DOUBLE,
 "is_hot" VARCHAR(4),
 HOTSPOTS_RESULT VARCHAR(10000)
);
CREATE OR REPLACE PUMP "STREAM_PUMP" AS

Example: Detect Hotspots 242

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sqlrf-hotspots.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT "x", "y", "is_hot", "HOTSPOTS_RESULT"
 FROM TABLE (
 HOTSPOTS(
 CURSOR(SELECT STREAM "x", "y", "is_hot" FROM "SOURCE_SQL_STREAM_001"),
 1000,
 0.2,
 17)
);

The code reads rows in the SOURCE_SQL_STREAM_001, analyzes it for significant hotspots,
and writes the resulting data to another in-application stream (DESTINATION_SQL_STREAM).
You use pumps to insert rows in in-application streams. For more information, see In-
Application Streams and Pumps.

3. Configure the output – You configure the application output to send data from the
application to an external destination, which is another Kinesis data stream. Review the
hotspot scores and determine what scores indicate that a hotspot occurred (and that you need
to be alerted). You can use an AWS Lambda function to further process hotspot information
and configure alerts.

4. Verify the output – The example includes a JavaScript application that reads data from the
output stream and displays it graphically, so you can view the hotspots that the application
generates in real time.

The exercise uses the US West (Oregon) (us-west-2) to create these streams and your application.
If you use any other Region, update the code accordingly.

Topics

• Step 1: Create the Input and Output Streams

• Step 2: Create the Kinesis Data Analytics Application

• Step 3: Configure the Application Output

• Step 4: Verify the Application Output

Example: Detect Hotspots 243

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Step 1: Create the Input and Output Streams

Before you create an Amazon Kinesis Data Analytics application for the Hotspots example, you
create two Kinesis data streams. Configure one of the streams as the streaming source for your
application, and the other stream as the destination where Kinesis Data Analytics persists your
application output.

Topics

• Step 1.1: Create the Kinesis Data Streams

• Step 1.2: Write Sample Records to the Input Stream

Step 1.1: Create the Kinesis Data Streams

In this section, you create two Kinesis data streams: ExampleInputStream and
ExampleOutputStream.

Create these data streams using the console or the AWS CLI.

• To create the data streams using the console:

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. Choose Data Streams in the navigation pane.

3. Choose Create Kinesis stream, and create a stream with one shard named
ExampleInputStream.

4. Repeat the previous step, creating a stream with one shard named ExampleOutputStream.

• To create data streams using the AWS CLI:

• Create streams (ExampleInputStream and ExampleOutputStream) using the following
Kinesis create-stream AWS CLI command. To create the second stream, which the
application will use to write output, run the same command, changing the stream name to
ExampleOutputStream.

$ aws kinesis create-stream \
--stream-name ExampleInputStream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

Example: Detect Hotspots 244

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

$ aws kinesis create-stream \
--stream-name ExampleOutputStream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

Step 1.2: Write Sample Records to the Input Stream

In this step, you run Python code to continuously generate sample records and write to the
ExampleInputStream stream.

{"x": 7.921782426109737, "y": 8.746265312709893, "is_hot": "N"}
{"x": 0.722248626580026, "y": 4.648868803193405, "is_hot": "Y"}

1. Install Python and pip.

For information about installing Python, see the Python website.

You can install dependencies using pip. For information about installing pip, see Installation on
the pip website.

2. Run the following Python code. This code does the following:

• Generates a potential hotspot somewhere in the (X, Y) plane.

• Generates a set of 1,000 points for each hotspot. Of these points, 20 percent are clustered
around the hotspot. The rest are generated randomly within the entire space.

• The put-record command writes the JSON records to the stream.

Important

Do not upload this file to a web server because it contains your AWS credentials.

import json
from pprint import pprint
import random

Example: Detect Hotspots 245

https://www.python.org/
https://pip.pypa.io/en/stable/installing/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

import time
import boto3

STREAM_NAME = "ExampleInputStream"

def get_hotspot(field, spot_size):
 hotspot = {
 "left": field["left"] + random.random() * (field["width"] - spot_size),
 "width": spot_size,
 "top": field["top"] + random.random() * (field["height"] - spot_size),
 "height": spot_size,
 }
 return hotspot

def get_record(field, hotspot, hotspot_weight):
 rectangle = hotspot if random.random() < hotspot_weight else field
 point = {
 "x": rectangle["left"] + random.random() * rectangle["width"],
 "y": rectangle["top"] + random.random() * rectangle["height"],
 "is_hot": "Y" if rectangle is hotspot else "N",
 }
 return {"Data": json.dumps(point), "PartitionKey": "partition_key"}

def generate(
 stream_name, field, hotspot_size, hotspot_weight, batch_size, kinesis_client
):
 """
 Generates points used as input to a hotspot detection algorithm.
 With probability hotspot_weight (20%), a point is drawn from the hotspot;
 otherwise, it is drawn from the base field. The location of the hotspot
 changes for every 1000 points generated.
 """
 points_generated = 0
 hotspot = None
 while True:
 if points_generated % 1000 == 0:
 hotspot = get_hotspot(field, hotspot_size)
 records = [
 get_record(field, hotspot, hotspot_weight) for _ in range(batch_size)
]
 points_generated += len(records)

Example: Detect Hotspots 246

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 pprint(records)
 kinesis_client.put_records(StreamName=stream_name, Records=records)

 time.sleep(0.1)

if __name__ == "__main__":
 generate(
 stream_name=STREAM_NAME,
 field={"left": 0, "width": 10, "top": 0, "height": 10},
 hotspot_size=1,
 hotspot_weight=0.2,
 batch_size=10,
 kinesis_client=boto3.client("kinesis"),
)

Next Step

Step 2: Create the Kinesis Data Analytics Application

Step 2: Create the Kinesis Data Analytics Application

In this section of the Hotspots example, you create an Kinesis Data Analytics application as follows:

• Configure the application input to use the Kinesis data stream you created as the streaming
source in Step 1.

• Use the provided application code in the AWS Management Console.

To create an application

1. Create a Kinesis Data Analytics application by following steps 1, 2, and 3 in the Getting Started
exercise (see Step 3.1: Create an Application).

In the source configuration, do the following:

• Specify the streaming source you created in the section called “Step 1: Create Streams”.

• After the console infers the schema, edit the schema. Ensure that the x and y column types
are set to DOUBLE and that the IS_HOT column type is set to VARCHAR.

2. Use the following application code (you can paste this code into the SQL editor):

Example: Detect Hotspots 247

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
 "x" DOUBLE,
 "y" DOUBLE,
 "is_hot" VARCHAR(4),
 HOTSPOTS_RESULT VARCHAR(10000)
);
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT "x", "y", "is_hot", "HOTSPOTS_RESULT"
 FROM TABLE (
 HOTSPOTS(
 CURSOR(SELECT STREAM "x", "y", "is_hot" FROM "SOURCE_SQL_STREAM_001"),
 1000,
 0.2,
 17)
);

3. Run the SQL code and review the results.

Next Step

Step 3: Configure the Application Output

Step 3: Configure the Application Output

At this point in the Hotspots example, you have Amazon Kinesis Data Analytics application code
discovering significant hotspots from a streaming source and assigning a heat score to each.

You can now send the application result from the in-application stream to an external destination,
which is another Kinesis data stream (ExampleOutputStream). You can then analyze the hotspot
scores and determine what an appropriate threshold is for hotspot heat. You can extend this
application further to generate alerts.

Example: Detect Hotspots 248

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

To configure the application output

1. Open the Kinesis Data Analytics console at https://console.aws.amazon.com/kinesisanalytics.

2. In the SQL editor, choose either Destination or Add a destination in the application
dashboard.

3. On the Add a destination page, choose Select from your streams. Then choose the
ExampleOutputStream stream that you created in the preceding section.

Now you have an external destination, where Amazon Kinesis Data Analytics persists any
records, your application writes to the in-application stream DESTINATION_SQL_STREAM.

4. You can optionally configure AWS Lambda to monitor the ExampleOutputStream stream
and send you alerts. For more information, see Using a Lambda Function as Output. You can
also review the records that Kinesis Data Analytics writes to the external destination, which
is the Kinesis stream ExampleOutputStream, as described in Step 4: Verify the Application
Output.

Next Step

Step 4: Verify the Application Output

Step 4: Verify the Application Output

In this section of the Hotspots example, you set up a web application that displays the hotspot
information in a Scalable Vector Graphics (SVG) control.

1. Create a file named index.html with the following contents:

<!doctype html>
<html lang=en>
<head>
 <meta charset=utf-8>
 <title>hotspots viewer</title>

 <style>
 #visualization {
 display: block;
 margin: auto;
 }

Example: Detect Hotspots 249

https://console.aws.amazon.com/kinesisanalytics

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 .point {
 opacity: 0.2;
 }

 .hot {
 fill: red;
 }

 .cold {
 fill: blue;
 }

 .hotspot {
 stroke: black;
 stroke-opacity: 0.8;
 stroke-width: 1;
 fill: none;
 }
 </style>
 <script src="https://sdk.amazonaws.com/js/aws-sdk-2.202.0.min.js"></script>
 <script src="https://d3js.org/d3.v4.min.js"></script>
</head>
<body>
<svg id="visualization" width="600" height="600"></svg>
<script src="hotspots_viewer.js"></script>
</body>
</html>

2. Create a file in the same directory named hotspots_viewer.js with the following contents.
Provide your , credentials, and output stream name in the variables provided.

// Visualize example output from the Kinesis Analytics hotspot detection algorithm.
// This script assumes that the output stream has a single shard.

// Modify this section to reflect your AWS configuration
var awsRegion = "", // The where your Kinesis Analytics application is
 configured.
 accessKeyId = "", // Your Access Key ID
 secretAccessKey = "", // Your Secret Access Key
 outputStream = ""; // The name of the Kinesis Stream where the output from
 the HOTSPOTS function is being written

Example: Detect Hotspots 250

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

// The variables in this section should reflect way input data was generated and
 the parameters that the HOTSPOTS
// function was called with.
var windowSize = 1000, // The window size used for hotspot detection
 minimumDensity = 40, // A filter applied to returned hotspots before
 visualization
 xRange = [0, 10], // The range of values to display on the x-axis
 yRange = [0, 10]; // The range of values to display on the y-axis

//
// D3 setup
//

var svg = d3.select("svg"),
 margin = {"top": 20, "right": 20, "bottom": 20, "left": 20},
 graphWidth = +svg.attr("width") - margin.left - margin.right,
 graphHeight = +svg.attr("height") - margin.top - margin.bottom;

// Return the linear function that maps the segment [a, b] to the segment [c, d].
function linearScale(a, b, c, d) {
 var m = (d - c) / (b - a);
 return function(x) {
 return c + m * (x - a);
 };
}

// helper functions to extract the x-value from a stream record and scale it for
 output
var xValue = function(r) { return r.x; },
 xScale = linearScale(xRange[0], xRange[1], 0, graphWidth),
 xMap = function(r) { return xScale(xValue(r)); };

// helper functions to extract the y-value from a stream record and scale it for
 output
var yValue = function(r) { return r.y; },
 yScale = linearScale(yRange[0], yRange[1], 0, graphHeight),
 yMap = function(r) { return yScale(yValue(r)); };

// a helper function that assigns a CSS class to a point based on whether it was
 generated as part of a hotspot
var classMap = function(r) { return r.is_hot == "Y" ? "point hot" : "point
 cold"; };

var g = svg.append("g")

Example: Detect Hotspots 251

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

function update(records, hotspots) {

 var points = g.selectAll("circle")
 .data(records, function(r) { return r.dataIndex; });

 points.enter().append("circle")
 .attr("class", classMap)
 .attr("r", 3)
 .attr("cx", xMap)
 .attr("cy", yMap);

 points.exit().remove();

 if (hotspots) {
 var boxes = g.selectAll("rect").data(hotspots);

 boxes.enter().append("rect")
 .merge(boxes)
 .attr("class", "hotspot")
 .attr("x", function(h) { return xScale(h.minValues[0]); })
 .attr("y", function(h) { return yScale(h.minValues[1]); })
 .attr("width", function(h) { return xScale(h.maxValues[0]) -
 xScale(h.minValues[0]); })
 .attr("height", function(h) { return yScale(h.maxValues[1]) -
 yScale(h.minValues[1]); });

 boxes.exit().remove();
 }
}

//
// Use the AWS SDK to pull output records from Kinesis and update the visualization
//

var kinesis = new AWS.Kinesis({
 "region": awsRegion,
 "accessKeyId": accessKeyId,
 "secretAccessKey": secretAccessKey
});

var textDecoder = new TextDecoder("utf-8");

Example: Detect Hotspots 252

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

// Decode an output record into an object and assign it an index value
function decodeRecord(record, recordIndex) {
 var record = JSON.parse(textDecoder.decode(record.Data));
 var hotspots_result = JSON.parse(record.HOTSPOTS_RESULT);
 record.hotspots = hotspots_result.hotspots
 .filter(function(hotspot) { return hotspot.density >= minimumDensity});
 record.index = recordIndex
 return record;
}

// Fetch a new records from the shard iterator, append them to records, and update
 the visualization
function getRecordsAndUpdateVisualization(shardIterator, records, lastRecordIndex)
 {
 kinesis.getRecords({
 "ShardIterator": shardIterator
 }, function(err, data) {
 if (err) {
 console.log(err, err.stack);
 return;
 }

 var newRecords = data.Records.map(function(raw) { return decodeRecord(raw,
 ++lastRecordIndex); });
 newRecords.forEach(function(record) { records.push(record); });

 var hotspots = null;
 if (newRecords.length > 0) {
 hotspots = newRecords[newRecords.length - 1].hotspots;
 }

 while (records.length > windowSize) {
 records.shift();
 }

 update(records, hotspots);

 getRecordsAndUpdateVisualization(data.NextShardIterator, records,
 lastRecordIndex);
 });
}

// Get a shard iterator for the output stream and begin updating the visualization.
 Note that this script will only

Example: Detect Hotspots 253

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

// read records from the first shard in the stream.
function init() {
 kinesis.describeStream({
 "StreamName": outputStream
 }, function(err, data) {
 if (err) {
 console.log(err, err.stack);
 return;
 }

 var shardId = data.StreamDescription.Shards[0].ShardId;

 kinesis.getShardIterator({
 "StreamName": outputStream,
 "ShardId": shardId,
 "ShardIteratorType": "LATEST"
 }, function(err, data) {
 if (err) {
 console.log(err, err.stack);
 return;
 }
 getRecordsAndUpdateVisualization(data.ShardIterator, [], 0);
 })
 });
}

// Start the visualization
init();

3. With the Python code from the first section running, open index.html in a web browser. The
hotspot information appears on the page, as shown following.

Example: Detect Hotspots 254

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Examples: Alerts and Errors

This section provides examples of Kinesis Data Analytics applications that use alerts and errors.
Each example provides step-by-step instructions and code to help you set up and test your Kinesis
Data Analytics application.

Topics

• Example: Creating Simple Alerts

• Example: Creating Throttled Alerts

• Example: Exploring the In-Application Error Stream

Alerts and Errors 255

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Example: Creating Simple Alerts

In this Kinesis Data Analytics application, the query runs continuously on the in-application stream
that is created over the demo stream. For more information, see Continuous Queries.

If any rows show a stock price change that is greater than 1 percent, those rows are inserted into
another in-application stream. In the exercise, you can configure the application output to persist
the results to an external destination. You can then further investigate the results. For example,
you can use an AWS Lambda function to process records and send you alerts.

To create a simple alerts application

1. Create the analytics application as described in the Kinesis Data Analytics Getting Started
exercise.

2. In the SQL editor in Kinesis Data Analytics, replace the application code with the following:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM"
 (ticker_symbol VARCHAR(4),
 sector VARCHAR(12),
 change DOUBLE,
 price DOUBLE);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
 INSERT INTO "DESTINATION_SQL_STREAM"
 SELECT STREAM ticker_symbol, sector, change, price
 FROM "SOURCE_SQL_STREAM_001"
 WHERE (ABS(Change / (Price - Change)) * 100) > 1;

The SELECT statement in the application code filters rows in the SOURCE_SQL_STREAM_001
for stock price changes greater than 1 percent. It then inserts those rows into another in-
application stream DESTINATION_SQL_STREAM using a pump. For more information about
the coding pattern that explains using pumps to insert rows into in-application streams, see
Application Code.

3. Choose Save and run SQL.

4. Add a destination. To do this, either choose the Destination tab in the SQL editor or choose
Add a destination on the application details page.

a. In the SQL editor, choose the Destination tab, and then choose Connect to a destination.

Simple Alerts 256

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

On the Connect to destination page, choose Create New.

b. Choose Go to Kinesis Streams.

c. On the Amazon Kinesis Data Streams console, create a new Kinesis stream (for example,
gs-destination) with one shard. Wait until the stream status is ACTIVE.

d. Return to the Kinesis Data Analytics console. On the Connect to destination page, choose
the stream that you created.

If the stream does not appear, refresh the page.

e. Choose Save and continue.

Now you have an external destination, a Kinesis data stream, where Kinesis Data Analytics
persists your application output in the DESTINATION_SQL_STREAM in-application stream.

5. Configure AWS Lambda to monitor the Kinesis stream you created and invoke a Lambda
function.

For instructions, see Preprocessing Data Using a Lambda Function.

Example: Creating Throttled Alerts

In this Kinesis Data Analytics application, the query runs continuously on the in-application stream
created over the demo stream. For more information, see Continuous Queries. If any rows show
that the stock price change is greater than 1 percent, those rows are inserted into another in-
application stream. The application throttles the alerts such that an alert is sent immediately when
the stock price changes. However, no more than one alert per minute per stock symbol is sent to
the in-application stream.

To create a throttled alerts application

1. Create a Kinesis Data Analytics application as described in the Kinesis Data Analytics Getting
Started exercise.

2. In the SQL editor in Kinesis Data Analytics, replace the application code with the following:

CREATE OR REPLACE STREAM "CHANGE_STREAM"
 (ticker_symbol VARCHAR(4),
 sector VARCHAR(12),
 change DOUBLE,

Throttled Alerts 257

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 price DOUBLE);

CREATE OR REPLACE PUMP "change_pump" AS
 INSERT INTO "CHANGE_STREAM"
 SELECT STREAM ticker_symbol, sector, change, price
 FROM "SOURCE_SQL_STREAM_001"
 WHERE (ABS(Change / (Price - Change)) * 100) > 1;

-- ** Trigger Count and Limit **
-- Counts "triggers" or those values that evaluated true against the previous where
 clause
-- Then provides its own limit on the number of triggers per hour per ticker symbol
 to what
-- is specified in the WHERE clause

CREATE OR REPLACE STREAM TRIGGER_COUNT_STREAM (
 ticker_symbol VARCHAR(4),
 change REAL,
 trigger_count INTEGER);

CREATE OR REPLACE PUMP trigger_count_pump AS INSERT INTO TRIGGER_COUNT_STREAM
SELECT STREAM ticker_symbol, change, trigger_count
FROM (
 SELECT STREAM ticker_symbol, change, COUNT(*) OVER W1 as trigger_count
 FROM "CHANGE_STREAM"
 --window to perform aggregations over last minute to keep track of triggers
 WINDOW W1 AS (PARTITION BY ticker_symbol RANGE INTERVAL '1' MINUTE PRECEDING)
)
WHERE trigger_count >= 1;

The SELECT statement in the application code filters rows in the SOURCE_SQL_STREAM_001
for stock price changes greater than 1 percent and inserts those rows into another in-
application stream CHANGE_STREAM using a pump.

The application then creates a second stream named TRIGGER_COUNT_STREAM for the
throttled alerts. A second query selects records from a window that hops forward every time
a record is admitted into it, such that only one record per stock ticker per minute is written to
the stream.

3. Choose Save and run SQL.

The example outputs a stream to TRIGGER_COUNT_STREAM similar to the following:

Throttled Alerts 258

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Example: Exploring the In-Application Error Stream

Amazon Kinesis Data Analytics provides an in-application error stream for each application that
you create. Any rows that your application cannot process are sent to this error stream. You might
consider persisting the error stream data to an external destination so that you can investigate.

You perform the following exercises on the console. In these examples, you introduce errors in the
input configuration by editing the schema that is inferred by the discovery process, and then you
verify the rows that are sent to the error stream.

Topics

• Introducing a Parse Error

• Introducing a Divide by Zero Error

Introducing a Parse Error

In this exercise, you introduce a parse error.

1. Create a Kinesis Data Analytics application as described in the Kinesis Data Analytics Getting
Started exercise.

2. On the application details page, choose Connect streaming data.

3. If you followed the Getting Started exercise, you have a demo stream (kinesis-analytics-
demo-stream) in your account. On the Connect to source page, choose this demo stream.

4. Kinesis Data Analytics takes a sample from the demo stream to infer a schema for the in-
application input stream it creates. The console shows the inferred schema and sample data in
the Formatted stream sample tab.

In-Application Error Stream 259

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

5. Next, edit the schema and modify the column type to introduce the parse error. Choose Edit
schema.

6. Change the TICKER_SYMBOL column type from VARCHAR(4) to INTEGER.

Now that the column type of the in-application schema that is created is invalid, Kinesis Data
Analytics can't bring in data in the in-application stream. Instead, it sends the rows to the error
stream.

7. Choose Save schema.

8. Choose Refresh schema samples.

Notice that there are no rows in the Formatted stream sample. However, the Error stream tab
shows data with an error message. The Error stream tab shows data sent to the in-application
error stream.

Because you changed the column data type, Kinesis Data Analytics could not bring the data in
the in-application input stream. It sent the data to the error stream instead.

Introducing a Divide by Zero Error

In this exercise, you update the application code to introduce a runtime error (division by zero).
Notice that Amazon Kinesis Data Analytics sends the resulting rows to the in-application error
stream, not to the DESTINATION_SQL_STREAM in-application stream where the results are
supposed to be written.

1. Create a Kinesis Data Analytics application as described in the Kinesis Data Analytics Getting
Started exercise.

Verify the results on the Real-time analytics tab as follows:

Sour

2. Update the SELECT statement in the application code to introduce divide by zero; for example:

SELECT STREAM ticker_symbol, sector, change, (price / 0) as ProblemColumn
FROM "SOURCE_SQL_STREAM_001"
WHERE sector SIMILAR TO '%TECH%';

3. Run the application.

In-Application Error Stream 260

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Because the division by zero runtime error occurs, instead of writing the results to the
DESTINATION_SQL_STREAM, Kinesis Data Analytics sends rows to the in-application error
stream. On the Real-time analytics tab, choose the error stream, and then you can see the
rows in the in-application error stream.

Examples: Solution Accelerators

The AWS Solutions Site has AWS CloudFormation templates available that you can use to create
complete streaming data solutions quickly.

The following templates are available:

Real-time insights on AWS account activity

This solution records and visualizes resource access and usage metrics for your AWS account(s) in
real-time. For more information, see Real-time insights on AWS account activity.

Real-time AWS IoT device monitoring with Kinesis Data Analytics

This solution collects, processes, analyzes and visualizes IoT device connectivity and activity data
in real-time. For more information, see Real-time AWS IoT device monitoring with Kinesis Data
Analytics.

Real-time web analytics with Kinesis Data Analytics

This solution collects, processes, analyzes and visualizes website clickstream data in real-time. For
more information, see Real-time web analytics with Kinesis Data Analytics.

Amazon Connected Vehicle Solution

This solution collects, processes, analyzes and visualizes IoT data from vehicles in real-time. For
more information, see Amazon Connected Vehicle Solution.

Solution Accelerators 261

https://aws.amazon.com/solutions/
https://docs.aws.amazon.com/solutions/latest/real-time-insights-account-activity/welcome.html
https://docs.aws.amazon.com/solutions/latest/real-time-iot-device-monitoring-with-kinesis/welcome.html
https://docs.aws.amazon.com/solutions/latest/real-time-iot-device-monitoring-with-kinesis/welcome.html
https://docs.aws.amazon.com/solutions/latest/real-time-web-analytics-with-kinesis/welcome.html
https://docs.aws.amazon.com//solutions/latest/connected-vehicle-solution/welcome.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Security in

Cloud security at AWS is the highest priority. As an AWS customer, you will benefit from a data
center and network architecture built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. The
effectiveness of our security is regularly tested and verified by third-party auditors as part of
the AWS compliance programs. To learn about the compliance programs that apply to , see AWS
Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your organization’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using . The following topics show you how to configure to meet your security and compliance
objectives. You'll also learn how to use other Amazon services that can help you to monitor and
secure your resources.

Topics

• Data Protection in Amazon Kinesis Data Analytics for SQL Applications

• Identity and Access Management in Kinesis Data Analytics

• Authentication and Access Control for

• Monitoring

• Compliance Validation for Amazon Kinesis Data Analytics for SQL Applications

• Resilience in Amazon Kinesis Data Analytics

• Infrastructure Security in Kinesis Data Analytics for SQL Applications

• Security Best Practices for Kinesis Data Analytics

262

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Data Protection in Amazon Kinesis Data Analytics for SQL
Applications

You can protect your data using tools that are provided by AWS. Kinesis Data Analytics can work
with services that support encrypting data, including Kinesis Data Streams, Firehose, and Amazon
S3.

Data Encryption in Kinesis Data Analytics

Encryption at Rest

Note the following about encrypting data at rest with Kinesis Data Analytics:

• You can encrypt data on the incoming Kinesis data stream using StartStreamEncryption. For
more information, see What Is Server-Side Encryption for Kinesis Data Streams?.

• Output data can be encrypted at rest using Firehose to store data in an encrypted Amazon
S3 bucket. You can specify the encryption key that your Amazon S3 bucket uses. For more
information, see Protecting Data Using Server-Side Encryption with KMS–Managed Keys (SSE-
KMS).

• Your application's code is encrypted at rest.

• Your application's reference data is encrypted at rest.

Encryption In Transit

Kinesis Data Analytics encrypts all data in transit. Encryption in transit is enabled for all Kinesis
Data Analytics applications and cannot be disabled.

Kinesis Data Analytics encrypts data in transit in the following scenarios:

• Data in transit from Kinesis Data Streams to Kinesis Data Analytics.

• Data in transit between internal components within Kinesis Data Analytics.

• Data in transit between Kinesis Data Analytics and Firehose.

Key Management

Data encryption in Kinesis Data Analytics uses service-managed keys. Customer-managed keys are
not supported.

Data Protection 263

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_StartStreamEncryption.html
https://docs.aws.amazon.com/streams/latest/dev/what-is-sse.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Identity and Access Management in Kinesis Data Analytics

Amazon Kinesis Data Analytics needs permissions to read records from a streaming source that
you specify in your application input configuration. Amazon Kinesis Data Analytics also needs
permissions to write your application output to streams that you specify in your application output
configuration.

You can grant these permissions by creating an IAM role that Amazon Kinesis Data Analytics can
assume. Permissions that you grant to this role determine what Amazon Kinesis Data Analytics can
do when the service assumes the role.

Note

The information in this section is useful if you want to create an IAM role yourself. When
you create an application in the Amazon Kinesis Data Analytics console, the console can
create an IAM role for you at that time. The console uses the following naming convention
for IAM roles that it creates:

kinesis-analytics-ApplicationName

After the role is created, you can review the role and attached policies in the IAM console.

Each IAM role has two policies attached to it. In the trust policy, you specify who can assume the
role. In the permissions policy (there can be one or more), you specify the permissions that you
want to grant to this role. The following sections describe these policies, which you can use when
you create an IAM role.

Trust Policy

To grant Amazon Kinesis Data Analytics permissions to assume a role to access a streaming or
reference source, you can attach the following trust policy to an IAM role:

{
 "Version": "2012-10-17",
 "Statement": [
 {

Identity and Access Management 264

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "Effect": "Allow",
 "Principal": {
 "Service": "kinesisanalytics.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Permissions Policy

If you are creating an IAM role to allow Amazon Kinesis Data Analytics to read from an application's
streaming source, you must grant permissions for relevant read actions. Depending on your source
(for example, an Kinesis stream, a Firehose delivery stream, or a reference source in an Amazon S3
bucket), you can attach the following permissions policy.

Permissions Policy for Reading an Kinesis Stream

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadInputKinesis",
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:ListShards"
],
 "Resource": [
 "arn:aws:kinesis:aws-region:aws-account-id:stream/inputStreamName"
]
 }
]
}

Permissions Policy for Reading a Firehose Delivery Stream

{
 "Version": "2012-10-17",

Permissions Policy 265

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "Statement": [
 {
 "Sid": "ReadInputFirehose",
 "Effect": "Allow",
 "Action": [
 "firehose:DescribeDeliveryStream",
 "firehose:Get*"
],
 "Resource": [
 "arn:aws:firehose:aws-region:aws-account-
id:deliverystream/inputFirehoseName"
]
 }
]
}

Note

The firehose:Get* permission refers to an internal accessor that Kinesis Data Analytics
uses to access the stream. There is no public accessor for a Firehose delivery stream.

If you direct Amazon Kinesis Data Analytics to write output to external destinations in your
application output configuration, you need to grant the following permission to the IAM role.

Permissions Policy for Writing to a Kinesis Stream

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "WriteOutputKinesis",
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:PutRecord",
 "kinesis:PutRecords"
],
 "Resource": [
 "arn:aws:kinesis:aws-region:aws-account-id:stream/output-stream-name"
]
 }

Permissions Policy 266

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

]
}

Permissions Policy for Writing to a Firehose Delivery Stream

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "WriteOutputFirehose",
 "Effect": "Allow",
 "Action": [
 "firehose:DescribeDeliveryStream",
 "firehose:PutRecord",
 "firehose:PutRecordBatch"
],
 "Resource": [
 "arn:aws:firehose:aws-region:aws-account-id:deliverystream/output-
firehose-name"
]
 }
]
}

Permissions Policy for Reading a Reference Data Source from an Amazon S3
Bucket

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"
],
 "Resource": "*"
 }
]
}

Permissions Policy 267

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Cross-service confused deputy prevention

In AWS, cross-service impersonation can occur when one service (the calling service) calls another
service (the called service). The calling service can be manipulated to act on another customer's
resources even though it shouldn't have the proper permissions, resulting in the confused deputy
problem.

To prevent confused deputies, AWS provides tools that help you protect your data for all services
using service principals that have been given access to resources in your account. This section
focuses on cross-service confused deputy prevention specific to Kinesis Data Analytics however,
you can learn more about this topic at The confused deputy problem section of the IAM User Guide.

In the context of Kinesis Data Analytics for SQL, we recommend using the aws:SourceArn and
aws:SourceAccount global condition context keys in your role trust policy to limit access to the role
to only those requests that are generated by expected resources.

Use aws:SourceArn if you want only one resource to be associated with the cross-service access.
Use aws:SourceAccount if you want to allow any resource in that account to be associated with
the cross-service use.

The value of aws:SourceArn must be the ARN of the resource used
by Kinesis Data Analytics, which is specified with the following format:
arn:aws:kinesisanalytics:region:account:resource.

The recommended approach to the confused deputy problem is to use the aws:SourceArn global
condition context key with the full resource ARN.

If you don't know the full ARN of the resource or if you are specifying multiple resources, use
the aws:SourceArn key with wildcard characters (*) for the unknown portions of the ARN. For
example: arn:aws:kinesisanalytics::111122223333:*.

While most actions in the Kinesis Data Analytics for SQL API such as CreateApplication,
AddApplicationInput and DeleteApplication are made in context of specific applications, the
DiscoverInputSchema action is not executed in the context of any application. That means the role
used in this action must not fully specify a resource in the SourceArn condition key. Following is
an example that uses a wildcard ARN:

{
 ...
 "ArnLike":{

Cross-service confused deputy prevention 268

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_CreateApplication.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_AddApplicationInput.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_DeleteApplication.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_DiscoverInputSchema.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "aws:SourceArn":"arn:aws:kinesisanalytics:us-east-1:123456789012:*"
 }
 ...
}

The default role generated by Kinesis Data Analytics for SQL uses this wildcard. This ensures
discovering input schema works seamlessly in the console experience. However, we recommend
editing the Trust Policy to use a full ARN after discovering the schema to implement complete
confused deputy mitigation.

Policies of roles that you provide to Kinesis Data Analytics as well as trust policies of roles
generated for you can make use of aws:SourceArn and aws:SourceAccount condition keys.

In order to protect against the confused deputy problem, carry out the following steps:

To protect against the confused deputy problem

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Roles and then choose the role you want to modify.

3. Choose Edit trust policy.

4. On the Edit trust policy page, replace the default JSON policy with a policy that uses one or
both of the aws:SourceArn and aws:SourceAccount global condition context keys. See
the following example policy:

5. Choose Update policy.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":"kinesisanalytics.amazonaws.com"
 },
 "Action":"sts:AssumeRole",
 "Condition":{
 "StringEquals":{
 "aws:SourceAccount":"Account ID"
 },
 "ArnEquals":{

Cross-service confused deputy prevention 269

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "aws:SourceArn":"arn:aws:kinesisanalytics:us-
east-1:123456789012:application/my-app"
 }
 }
 }
]
}

Authentication and Access Control for

Access to requires credentials. Those credentials must have permissions to access AWS resources,
such as an application or an Amazon Elastic Compute Cloud (Amazon EC2) instance. The following
sections provide details on how you can use AWS Identity and Access Management (IAM) and to
help secure access to your resources.

Access Control

You can have valid credentials to authenticate your requests, but unless you have permissions you
cannot create or access resources. For example, you must have permissions to create an application.

The following sections describe how to manage permissions for . We recommend that you read the
overview first.

• Overview of Managing Access Permissions to Your Resources

• Using Identity-Based Policies (IAM Policies) for

• API Permissions: Actions, Permissions, and Resources Reference

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Authentication and Access Control 270

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For

Authenticating with identities 271

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

Authenticating with identities 272

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using

Authenticating with identities 273

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Overview of Managing Access Permissions to Your Resources

Warning

For new projects, we recommend that you use the new Managed Service for Apache Flink
Studio over for SQL Applications. Managed Service for Apache Flink Studio combines ease
of use with advanced analytical capabilities, enabling you to build sophisticated stream
processing applications in minutes.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Note

An account administrator (or administrator user) is a user with administrator privileges. For
more information, see IAM Best Practices in the IAM User Guide.

Overview of Managing Access 274

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Topics

• Resources and Operations

• Understanding Resource Ownership

• Managing Access to Resources

• Specifying Policy Elements: Actions, Effects, and Principals

• Specifying Conditions in a Policy

Resources and Operations

In , the primary resource is an application. In a policy, you use an Amazon Resource Name (ARN) to
identify the resource that the policy applies to.

These resources have unique Amazon Resource Names (ARNs) associated with them, as shown in
the following table.

Resource Type ARN Format

Application arn:aws:kinesisanalytics: region:account-i
d :application/ application-name

provides a set of operations to work with resources. For a list of available operations, see Actions.

Understanding Resource Ownership

The AWS account owns the resources that are created in the account, regardless of who created the
resources. Specifically, the resource owner is the AWS account of the principal entity (that is, the
root account, a user, or an IAM role) that authenticates the resource creation request. The following
examples illustrate how this works:

• If you use the root account credentials of your AWS account to create an application, your AWS
account is the owner of the resource. (In , the resource is an application.)

• If you create a user in your AWS account and grant permissions to create an application to that
user, the user can create an application. However, your AWS account, to which the user belongs,
owns the application resource. We strongly recommend you grant permissions to roles and not
users.

Overview of Managing Access 275

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• If you create an IAM role in your AWS account with permissions to create an application, anyone
who can assume the role can create an application. Your AWS account, to which the user belongs,
owns the application resource.

Managing Access to Resources

A permissions policy describes who has access to what. The following section explains the available
options for creating permissions policies.

Note

This section discusses using IAM in the context of . It doesn't provide detailed information
about the IAM service. For complete IAM documentation, see What Is IAM? in the IAM User
Guide. For information about IAM policy syntax and descriptions, see IAM JSON Policy
Reference in the IAM User Guide.

Policies that are attached to an IAM identity are referred to as identity-based policies (IAM policies).
Policies that are attached to a resource are referred to as resource-based policies. supports only
identity-based policies (IAM policies).

Topics

• Identity-Based Policies (IAM Policies)

• Resource-Based Policies

Identity-Based Policies (IAM Policies)

You can attach policies to IAM identities. For example, you can do the following:

• Attach a permissions policy to a user or a group in your account – To grant a user permissions
to create an resource, such as an application, you can attach a permissions policy to a user or
group that the user belongs to.

• Attach a permissions policy to a role (grant cross-account permissions) – You can attach
an identity-based permissions policy to an IAM role to grant cross-account permissions. For
example, the administrator in account A can create a role to grant cross-account permissions to
another AWS account (for example, account B) or an Amazon service as follows:

Overview of Managing Access 276

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

1. Account A administrator creates an IAM role and attaches a permissions policy to the role that
grants permissions on resources in account A.

2. Account A administrator attaches a trust policy to the role identifying account B as the
principal who can assume the role.

3. Account B administrator can then delegate permissions to assume the role to any users in
account B. Doing this allows users in account B to create or access resources in account A. The
principal in the trust policy can also be an Amazon service principal if you want to grant an
Amazon service permissions to assume the role.

For more information about using IAM to delegate permissions, see Access Management in the
IAM User Guide.

The following is an example policy that grants permission for the
kinesisanalytics:CreateApplication action, which is required to create an application.

Note

This is an introductory example policy. When you attach the policy to the user, the user will
be able to create an application using the AWS CLI or AWS SDK. But the user will need more
permissions to configure input and output. In addition, the user will need more permissions
when using the console. The later sections provide more information.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1473028104000",
 "Effect": "Allow",
 "Action": [
 "kinesisanalytics:CreateApplication"
],
 "Resource": [
 "*"
]
 }
]
}

Overview of Managing Access 277

https://docs.aws.amazon.com/IAM/latest/UserGuide/access.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

For more information about using identity-based policies with , see Using Identity-Based Policies
(IAM Policies) for . For more information about users, groups, roles, and permissions, see Identities
(Users, Groups, and Roles) in the IAM User Guide.

Resource-Based Policies

Other services, such as Amazon S3, also support resource-based permissions policies. For example,
you can attach a policy to an S3 bucket to manage access permissions to that bucket. doesn't
support resource-based policies.

Specifying Policy Elements: Actions, Effects, and Principals

For each resource, the service defines a set of API operations. To grant permissions for these API
operations, defines a set of actions that you can specify in a policy. Some API operations can
require permissions for more than one action in order to perform the API operation. For more
information about resources and API operations, see Resources and Operations and Actions.

The following are the most basic policy elements:

• Resource – You use an Amazon Resource Name (ARN) to identify the resource that the policy
applies to. For more information, see Resources and Operations.

• Action – You use action keywords to identify resource operations that you want to allow or deny.
For example, you can use create to allow users to create an application.

• Effect – You specify the effect, either allow or deny, when the user requests the specific action.
If you don't explicitly grant access to (allow) a resource, access is implicitly denied. You can also
explicitly deny access to a resource, which you might do to make sure that a user cannot access it,
even if a different policy grants access.

• Principal – In identity-based policies (IAM policies), the user that the policy is attached to is the
implicit principal. For resource-based policies, you specify the user, account, service, or other
entity that you want to receive permissions (applies to resource-based policies only). doesn't
support resource-based policies.

To learn more about IAM policy syntax and descriptions, see IAM JSON Policy Reference in the IAM
User Guide.

For a list showing all of the API operations and the resources that they apply to, see API
Permissions: Actions, Permissions, and Resources Reference.

Overview of Managing Access 278

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Specifying Conditions in a Policy

When you grant permissions, you can use the access policy language to specify the conditions
when a policy should take effect. For example, you might want a policy to be applied only after a
specific date. For more information about specifying conditions in a policy language, see Condition
in the IAM User Guide.

To express conditions, you use predefined condition keys. There are no condition keys specific to .
However, there are AWS-wide condition keys that you can use as appropriate. For a complete list of
AWS-wide keys, see Available Keys for Conditions in the IAM User Guide.

Using Identity-Based Policies (IAM Policies) for

The following are examples of identity-based policies that demonstrate how an account
administrator can attach permissions policies to IAM identities (that is, users, groups, and roles) and
grant permissions to perform operations on resources.

Important

We recommend that you first review the introductory topics that explain the basic concepts
and options available to manage access to your resources. For more information, see
Overview of Managing Access Permissions to Your Resources.

Topics

• Permissions Required to Use the Console

• Amazon-Managed (Predefined) Policies for

• Customer Managed Policy Examples

The following shows an example of a permissions policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1473028104000",
 "Effect": "Allow",

Using Identity-Based Policies (IAM Policies) 279

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Condition
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "Action": [
 "kinesisanalytics:CreateApplication"
],
 "Resource": [
 "*"
]
 }
]
}

The policy has one statement:

• The first statement grants permissions for one action
(kinesisanalytics:CreateApplication) on a resource using the Amazon Resource Name
(ARN) for the application. The ARN in this case specifies a wildcard character (*) to indicate that
the permission is granted for any resource.

For a table showing all of the API operations and the resources that they apply to, see API
Permissions: Actions, Permissions, and Resources Reference.

Permissions Required to Use the Console

For a user to work with the console, you must grant the necessary permissions. For example, if you
want a user to have permissions to create an application, grant permissions that show them the
streaming sources in the account so that the user can configure input and output on the console.

We recommend the following:

• Use the Amazon-managed policies to grant user permissions. For available policies, see Amazon-
Managed (Predefined) Policies for .

• Create custom policies. In this case, we recommend that you review the example provided in this
section. For more information, see Customer Managed Policy Examples.

Amazon-Managed (Predefined) Policies for

AWS addresses many common use cases by providing standalone IAM policies that are created and
administered by AWS. These Amazon-managed policies grant necessary permissions for common

Using Identity-Based Policies (IAM Policies) 280

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

use cases so that you can avoid having to investigate what permissions are needed. For more
information, see Amazon-Managed Policies in the IAM User Guide.

The following Amazon-managed policies, which you can attach to users in your account, are
specific to :

• AmazonKinesisAnalyticsReadOnly – Grants permissions for actions that enable a user to list
applications and review input/output configuration. It also grants permissions that allow a user
to view a list of Kinesis streams and Firehose delivery streams. As the application is running, the
user can view source data and real-time analytics results in the console.

• AmazonKinesisAnalyticsFullAccess – Grants permissions for all actions and all other
permissions that allows a user to create and manage applications. However, note the following:

• These permissions are not sufficient if the user wants to create a new IAM role in the console
(these permissions allow the user to select an existing role). If you want the user to be able to
create an IAM role in the console, add the IAMFullAccess Amazon-managed policy.

• A user must have permission for the iam:PassRole action to specify an IAM role
when configuring application. This Amazon-managed policy grants permission for the
iam:PassRole action to the user only on the IAM roles that start with the prefix service-
role/kinesis-analytics.

If the user wants to configure the application with a role that does not have this prefix, you
first must explicitly grant the user permission for the iam:PassRole action on the specific
role.

You can also create your own custom IAM policies to allow permissions for actions and resources.
You can attach these custom policies to the users or groups that require those permissions.

Customer Managed Policy Examples

The examples in this section provide a group of sample policies that you can attach to a user. If
you are new to creating policies, we recommend that you first create a user in your account. Then

Using Identity-Based Policies (IAM Policies) 281

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

attach the policies to the user in sequence, as outlined in the steps in this section. You can then use
the console to verify the effects of each policy as you attach the policy to the user.

Initially, the user doesn't have permissions and can't do anything on the console. As you attach
policies to the user, you can verify that the user can perform various actions on the console.

We recommend that you use two browser windows. In one window, create the user and grant
permissions. In the other, sign in to the AWS Management Console using the user's credentials and
verify permissions as you grant them.

For examples that show how to create an IAM role that you can use as an execution role for your
application, see Creating IAM Roles in the IAM User Guide.

Example steps

• Step 1: Create an IAM User

• Step 2: Allow the User Permissions for Actions that Are Not Specific to

• Step 3: Allow the User to View a List of Applications and View Details

• Step 4: Allow the User to Start a Specific Application

• Step 5: Allow the User to Create an Application

• Step 6: Allow the Application to Use Lambda Preprocessing

Step 1: Create an IAM User

First, you need to create a user, add the user to an IAM group with administrative permissions, and
then grant administrative permissions to the user that you created. You can then access AWS using
a special URL and that user's credentials.

For instructions, see Creating Your First IAM User and Administrators Group in the IAM User Guide.

Step 2: Allow the User Permissions for Actions that Are Not Specific to

First, grant a user permission for all actions that aren't specific to that the user will need when
working with applications. These include permissions for working with streams (Amazon Kinesis
Data Streams actions, Amazon Data Firehose actions), and permissions for CloudWatch actions.
Attach the following policy to the user.

Using Identity-Based Policies (IAM Policies) 282

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

You need to update the policy by providing an IAM role name for which you want to grant the
iam:PassRole permission, or specify a wildcard character (*) indicating all IAM roles. This is not a
secure practice; however you might not have a specific IAM role created during this testing.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:CreateStream",
 "kinesis:DeleteStream",
 "kinesis:DescribeStream",
 "kinesis:ListStreams",
 "kinesis:PutRecord",
 "kinesis:PutRecords"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "firehose:DescribeDeliveryStream",
 "firehose:ListDeliveryStreams"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:GetMetricStatistics",
 "cloudwatch:ListMetrics"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "logs:GetLogEvents",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [

Using Identity-Based Policies (IAM Policies) 283

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "iam:ListPolicyVersions",
 "iam:ListRoles"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::*:role/service-role/role-name"
 }
]
}

Step 3: Allow the User to View a List of Applications and View Details

The following policy grants a user the following permissions:

• Permission for the kinesisanalytics:ListApplications action so the user can view a list
of applications. This is a service-level API call, and therefore you specify "*" as the Resource
value.

• Permission for the kinesisanalytics:DescribeApplication action so that you can get
information about any of the applications.

Add this policy to the user.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kinesisanalytics:ListApplications"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesisanalytics:DescribeApplication"
],
 "Resource": "arn:aws:kinesisanalytics:aws-region:aws-account-
id:application/*"

Using Identity-Based Policies (IAM Policies) 284

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 }
]
}

Verify these permissions by signing into the console using the user credentials.

Step 4: Allow the User to Start a Specific Application

If you want the user to be able to start one of the existing applications, attach the following policy
to the user. The policy provides the permission for the kinesisanalytics:StartApplication
action. You must update the policy by providing your account ID, AWS Region and application
name.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kinesisanalytics:StartApplication"
],
 "Resource": "arn:aws:kinesisanalytics:aws-region:aws-account-
id:application/application-name"
 }
]
}

Step 5: Allow the User to Create an Application

If you want the user to create an application, you can then attach the following policy to the
user. You must update the policy and provide an AWS Region, your account ID, and either a
specific application name that you want the user to create, or a "*" so that the user can specify any
application name (and thus create multiple applications).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1473028104000",
 "Effect": "Allow",
 "Action": [
 "kinesisanalytics:CreateApplication"

Using Identity-Based Policies (IAM Policies) 285

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

],
 "Resource": [
 "*"
]
 },

 {
 "Effect": "Allow",
 "Action": [
 "kinesisanalytics:StartApplication",
 "kinesisanalytics:UpdateApplication",
 "kinesisanalytics:AddApplicationInput",
 "kinesisanalytics:AddApplicationOutput"
],
 "Resource": "arn:aws:kinesisanalytics:aws-region:aws-account-
id:application/application-name"
 }
]
}

Step 6: Allow the Application to Use Lambda Preprocessing

If you want the application to be able to use Lambda preprocessing, attach the following policy to
the role.

 {
 "Sid": "UseLambdaFunction",
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunctionConfiguration"
],
 "Resource": "<FunctionARN>"
 }

API Permissions: Actions, Permissions, and Resources Reference

When you are setting up Access Control and writing a permissions policy that you can attach to an
IAM identity (identity-based policies), you can use the following list as a reference. The list includes
each API operation, the corresponding actions for which you can grant permissions to perform the
action, and the AWS resource for which you can grant the permissions. You specify the actions in
the policy's Action field, and you specify the resource value in the policy's Resource field.

API Permissions Reference 286

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

You can use AWS-wide condition keys in your policies to express conditions. For a complete list of
AWS-wide keys, see Available Keys in the IAM User Guide.

Note

To specify an action, use the kinesisanalytics prefix followed by the API operation
name (for example, kinesisanalytics:AddApplicationInput).

API and Required Permissions for Actions

API Operation:

Required Permissions (API Action):

Resources:

API and Required Permissions for Actions

Amazon RDS API and Required Permissions for Actions

API Operation:AddApplicationInput

Action: kinesisanalytics:AddApplicationInput

Resources:

arn:aws:kinesisanalytics: region:accountId:application/application-
name

GetApplicationState

The console uses an internal method called GetApplicationState to sample or access
application data. Your service application needs to have permissions for the internal
kinesisanalytics:GetApplicationState API to sample or access application data through
the AWS Management Console.

API Permissions Reference 287

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Monitoring

provides monitoring functionality for your applications. For more information, see Monitoring.

Compliance Validation for Amazon Kinesis Data Analytics for
SQL Applications

Third-party auditors assess the security and compliance of Amazon Kinesis Data Analytics as part
of multiple AWS compliance programs. These include SOC, PCI, HIPAA, and others.

For a list of AWS services in scope of specific compliance programs, see Amazon Services in Scope
by Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using Kinesis Data Analytics is determined by the sensitivity
of your data, your company's compliance objectives, and applicable laws and regulations. If your
use of Kinesis Data Analytics is subject to compliance with standards such as HIPAA or PCI, AWS
provides resources to help:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper – This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Config – This AWS service assesses how well your resource configurations comply with
internal practices, industry guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

Resilience in Amazon Kinesis Data Analytics

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with

Monitoring 288

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://d0.awsstatic.com/whitepapers/compliance/AWS_HIPAA_Compliance_Whitepaper.pdf
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between Availability
Zones without interruption. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, Kinesis Data Analytics offers several features to help
support your data resiliency and backup needs.

Disaster Recovery

Kinesis Data Analytics runs in a serverless mode, and takes care of host degradations, Availability
Zone availability, and other infrastructure related issues by performing automatic migration. When
this happens, Kinesis Data Analytics ensures that the application is processed without any loss of
data. For more information, see Delivery Model for Persisting Application Output to an External
Destination.

Infrastructure Security in Kinesis Data Analytics for SQL
Applications

As a managed service, Amazon Kinesis Data Analytics is protected by the AWS global network
security procedures that are described in the Amazon Web Services: Overview of Security Processes
whitepaper.

You use AWS published API calls to access Kinesis Data Analytics through the network. Clients must
support Transport Layer Security (TLS) 1.2 or later. Clients must also support cipher suites with
perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Ephemeral
Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Security Best Practices for Kinesis Data Analytics

Amazon Kinesis Data Analytics provides a number of security features to consider as you develop
and implement your own security policies. The following best practices are general guidelines

Disaster Recovery 289

https://aws.amazon.com/about-aws/global-infrastructure/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

and don’t represent a complete security solution. Because these best practices might not be
appropriate or sufficient for your environment, treat them as helpful considerations rather than
prescriptions.

Use IAM roles to access other Amazon services

Your Kinesis Data Analytics application must have valid credentials to access resources in other
services, such as Kinesis data streams, Firehose delivery streams, or Amazon S3 buckets. You should
not store AWS credentials directly in the application or in an Amazon S3 bucket. These are long-
term credentials that are not automatically rotated and could have a significant business impact if
they are compromised.

Instead, you should use an IAM role to manage temporary credentials for your application to access
other resources. When you use a role, you don't have to use long-term credentials to access other
resources.

For more information, see the following topics in the IAM User Guide:

• IAM Roles

• Common Scenarios for Roles: Users, Applications, and Services

Implement Server-Side Encryption in Dependent Resources

Data at rest and data in transit is encrypted in Kinesis Data Analytics, and this encryption cannot
be disabled. You should implement server-side encryption in your dependent resources, such as
Kinesis data streams, Firehose delivery streams, and Amazon S3 buckets. For more information on
implementing server-side encryption in dependent resources, see Data Protection.

Use CloudTrail to Monitor API Calls

Kinesis Data Analytics is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an Amazon service in Kinesis Data Analytics.

Using the information collected by CloudTrail, you can determine the request that was made to
Kinesis Data Analytics, the IP address from which the request was made, who made the request,
when it was made, and additional details.

For more information, see the section called “Using AWS CloudTrail”.

Use IAM roles to access other Amazon services 290

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Monitoring for SQL Applications

Monitoring is an important part of maintaining the reliability, availability, and performance of and
your application. You should collect monitoring data from all of the parts of your AWS solution
so that you can more easily debug a multipoint failure if one occurs. Before you start monitoring ,
however, you should create a monitoring plan that includes answers to the following questions:

• What are your monitoring goals?

• What resources will you monitor?

• How often will you monitor these resources?

• What monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

The next step is to establish a baseline for normal performance in your environment, by measuring
performance at various times and under different load conditions. As you monitor , you can store
historical monitoring data. If you do, you can compare it with current performance data, identify
normal performance patterns and performance anomalies, and devise methods to address issues.

With , you monitor the application. The application processes data streams (input or output),
both of which include identifiers which you can use to narrow your search on CloudWatch logs.
For information about how processes data streams, see Amazon Kinesis Data Analytics for SQL
Applications: How It Works.

The most important metric is the millisBehindLatest, which indicates how far behind an
application is reading from the streaming source. In a typical case, the milliseconds behind
should be at or near zero. It is common for brief spikes to appear, which appears as an increase in
millisBehindLatest.

We recommend that you set up a CloudWatch alarm that triggers when the application is behind
by more than an hour reading the streaming source. For some use cases that require very close to
real-time processing, such as emitting processed data to a live application, you might choose to set
the alarm at a lower value, such as five minutes.

Topics

• Monitoring Tools

291

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Monitoring with Amazon CloudWatch

• Logging API Calls with AWS CloudTrail

Monitoring Tools

AWS provides various tools that you can use to monitor . You can configure some of these tools to
do the monitoring for you, while some of the tools require manual intervention. We recommend
that you automate monitoring tasks as much as possible.

Automated Monitoring Tools

You can use the following automated monitoring tools to watch and report when something is
wrong:

• Amazon CloudWatch Alarms – Watch a single metric over a time period that you specify, and
perform one or more actions based on the value of the metric relative to a given threshold over
a number of time periods. The action is a notification sent to an Amazon Simple Notification
Service (Amazon SNS) topic or Amazon EC2 Auto Scaling policy. CloudWatch alarms do not
invoke actions simply because they are in a particular state; the state must have changed and
been maintained for a specified number of periods. For more information, see Monitoring with
Amazon CloudWatch.

• Amazon CloudWatch Logs – Monitor, store, and access your log files from AWS CloudTrail or
other sources. For more information, see Monitoring Log Files in the Amazon CloudWatch User
Guide.

• Amazon CloudWatch Events – Match events and route them to one or more target functions
or streams to make changes, capture state information, and take corrective action. For more
information, see What is Amazon CloudWatch Events in the Amazon CloudWatch User Guide.

• AWS CloudTrail Log Monitoring – Share log files between accounts, monitor CloudTrail log files
in real time by sending them to CloudWatch Logs, write log processing applications in Java, and
validate that your log files have not changed after delivery by CloudTrail. For more information,
see Working with CloudTrail Log Files in the AWS CloudTrail User Guide.

Monitoring Tools 292

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchEvents.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Manual Monitoring Tools

Another important part of monitoring involves manually monitoring those items that the
CloudWatch alarms don't cover. The , CloudWatch, Trusted Advisor, and other AWS Management
Console dashboards provide an at-a-glance view of the state of your AWS environment.

• The CloudWatch home page shows the following:

• Current alarms and status

• Graphs of alarms and resources

• Service health status

In addition, you can use CloudWatch to do the following:

• Create customized dashboards to monitor the services you care about

• Graph metric data to troubleshoot issues and discover trends

• Search and browse all your metrics

• Create and edit alarms to be notified of problems

• AWS Trusted Advisor can help you monitor your to improve performance, reliability, security, and
cost effectiveness. Four Trusted Advisor checks are available to all users. More than 50 checks
are available to users with a Business or Enterprise support plan. For more information, see AWS
Trusted Advisor.

Monitoring with Amazon CloudWatch

You can monitor applications using Amazon CloudWatch. CloudWatch collects and processes raw
data from into readable, near real-time metrics. These statistics are retained for a period of two
weeks. You can access the historical information and gain a better perspective on how your web
application or service is performing. By default, metric data is automatically sent to CloudWatch.
For more information, see What Is Amazon CloudWatch? in the Amazon CloudWatch User Guide.

Topics

• Metrics and Dimensions

• Viewing Metrics and Dimensions

• Creating CloudWatch Alarms to Monitor

• Working with Amazon CloudWatch Logs
Manual Tools 293

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CloudWatch_Dashboards.html
https://aws.amazon.com/premiumsupport/trustedadvisor/
https://aws.amazon.com/premiumsupport/trustedadvisor/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Metrics and Dimensions

The AWS/KinesisAnalytics namespace includes the following metrics.

Metric Description

Bytes The number of bytes read (per input stream) or
written (per output stream).

Levels: Per input stream and per output stream

KPUs The number of Kinesis Processing Units that are
used to run your stream processing application. The
average number of KPUs used each hour determines
the billing for your application.

Levels: Application-level

MillisBehindLatest Indicates how far behind from the current time an
application is reading from the streaming source.

Levels: Application-level

Records The number of records read (per input stream) or
written (per output stream).

Levels: Per input stream and per output stream

Success 1 for each successful delivery attempt to the
destination configured for your application; 0 for
every failed delivery attempt. The average value of
this metric indicates how many successful deliveries
are performed.

Levels: Per destination.

InputProcessing.Duration The time taken for each AWS Lambda function
invocation performed by .

Levels: Per input stream

Metrics and Dimensions 294

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Metric Description

InputProcessing.OkRecords The number of records returned by a Lambda
function that were marked with Ok status.

Levels: Per input stream

InputProcessing.OkBytes The sum of bytes of the records returned by a
Lambda function that were marked with Ok status.

Levels: Per input stream

InputProcessing.DroppedReco
rds

The number of records returned by a Lambda
function that were marked with Dropped status.

Levels: Per input stream

InputProcessing.ProcessingF
ailedRecords

The number of records returned by a Lambda
function that were marked with Processin
gFailed status.

Levels: Per input stream

InputProcessing.Success The number of successful Lambda invocations by .

Levels: Per input stream

LambdaDelivery.OkRecords The number of records returned by a Lambda
function that were marked with Ok status.

Levels: Per Lambda destination

LambdaDelivery.DeliveryFail
edRecords

The number of records returned by a Lambda
function that were marked with DeliveryFailed
status.

Levels: Per Lambda destination

Metrics and Dimensions 295

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Metric Description

LambdaDelivery.Duration The time taken for each Lambda function invocatio
n performed by .

Levels: Per Lambda destination

provides metrics for the following dimensions.

Dimension Description

Flow Per input stream: Input

Per output stream: Output

Id Per input stream: Input Id

Per output stream: Output Id

Viewing Metrics and Dimensions

When your application processes data streams, sends the following metrics and dimensions to
CloudWatch. You can use the following procedures to view the metrics for .

On the console, metrics are grouped first by service namespace, and then by the dimension
combinations within each namespace.

To view metrics using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Metrics.

3. In the CloudWatch Metrics by Category pane for , choose a metrics category.

4. In the upper pane, scroll to view the full list of metrics.

To view metrics using the AWS CLI

• At a command prompt, use the following command.

Viewing Metrics and Dimensions 296

https://console.aws.amazon.com/cloudwatch/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

aws cloudwatch list-metrics --namespace "AWS/KinesisAnalytics" --region region

metrics are collected at the following levels:

• Application

• Input stream

• Output stream

Creating CloudWatch Alarms to Monitor

You can create an Amazon CloudWatch alarm that sends an Amazon SNS message when the alarm
changes state. An alarm watches a single metric over a time period you specify. It performs one or
more actions based on the value of the metric relative to a given threshold over a number of time
periods. The action is a notification sent to an Amazon SNS topic or Auto Scaling policy.

Alarms invoke actions for sustained state changes only. For a CloudWatch alarm to invoke an
action, the state must have changed and been maintained for a specified amount of time.

You can set alarms using the AWS Management Console, CloudWatch AWS CLI, or CloudWatch API,
as described following.

To set an alarm using the CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Create Alarm. The Create Alarm Wizard starts.

3. Choose Kinesis Analytics Metrics. Then scroll through the metrics to locate the metric you
want to place an alarm on.

To display just metrics, search for the file system ID of your file system. Choose the metric to
create an alarm for, and then choose Next.

4. Enter values for Name, Description, and Whenever for the metric.

5. If you want CloudWatch to send you an email when the alarm state is reached, in the
Whenever this alarm: field, choose State is ALARM. In the Send notification to: field, choose

Alarms 297

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

an existing SNS topic. If you select Create topic, you can set the name and email addresses for
a new email subscription list. This list is saved and appears in the field for future alarms.

Note

If you use Create topic to create a new Amazon SNS topic, the email addresses must be
verified before they receive notifications. Emails are only sent when the alarm enters
an alarm state. If this alarm state change happens before the email addresses are
verified, they do not receive a notification.

6. In the Alarm Preview section, preview the alarm you’re about to create.

7. Choose Create Alarm to create the alarm.

To set an alarm using the CloudWatch CLI

• Call mon-put-metric-alarm. For more information, see the Amazon CloudWatch CLI
Reference.

To set an alarm using the CloudWatch API

• Call PutMetricAlarm. For more information, see the Amazon CloudWatch API Reference.

Working with Amazon CloudWatch Logs

If an application is misconfigured, it can transition to a running state during application start. Or it
can update but not process any data into the in-application input stream. By adding a CloudWatch
log option to the application, you can monitor for application configuration problems.

can generate configuration errors under the following conditions:

• The Kinesis data stream used for input doesn't exist.

• The Amazon Data Firehose delivery stream used for input doesn't exist.

• The Amazon S3 bucket used as a reference data source doesn't exist.

• The specified file in the reference data source in the S3 bucket doesn't exist.

• The correct resource is not defined in the AWS Identity and Access Management (IAM) role that
manages related permissions.

Logs 298

https://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/cli-mon-put-metric-alarm.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• The correct permission is not defined in the IAM role that manages related permissions.

• doesn't have permission to assume the IAM role that manages related permissions.

For more information about Amazon CloudWatch, see the Amazon CloudWatch User Guide.

Adding the PutLogEvents Policy Action

needs permissions to write misconfiguration errors to CloudWatch. You can add these permissions
to the IAM role that assumes, as described following. For more information on using an IAM role
for , see Identity and Access Management in Kinesis Data Analytics.

Trust Policy

To grant permissions to assume an IAM role, you can attach the following trust policy to the role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kinesisanalytics.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Permissions Policy

To grant an application permissions to write log events to CloudWatch from a resource, you can use
the following IAM permissions policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt0123456789000",
 "Effect": "Allow",
 "Action": [

Logs 299

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-east-1:123456789012:log-group:my-log-group:log-
stream:my-log-stream*"
]
 }
]
}

Adding Configuration Error Monitoring

Use the following API actions to add a CloudWatch log option to a new or existing application or
change a log option for an existing application.

Note

You can currently only add a CloudWatch log option to an application by using API actions.
You can't add CloudWatch log options by using the console.

Adding a CloudWatch Log Option When Creating an Application

The following code example demonstrates how to use the CreateApplication action
to add a CloudWatch log option when you create an application. For more information on
Create_Application, see CreateApplication.

{
 "ApplicationCode": "<The SQL code the new application will run on the input
 stream>",
 "ApplicationDescription": "<A friendly description for the new application>",
 "ApplicationName": "<The name for the new application>",
 "Inputs": [...],
 "Outputs": [...],
 "CloudWatchLoggingOptions": [{
 "LogStreamARN": "<Amazon Resource Name (ARN) of the CloudWatch log stream to add
 to the new application>",
 "RoleARN": "<ARN of the role to use to access the log>"
 }]
}

Logs 300

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Adding a CloudWatch Log Option to an Existing Application

The following code example demonstrates how to use the
AddApplicationCloudWatchLoggingOption action to add a CloudWatch log option to an
existing application. For more information about AddApplicationCloudWatchLoggingOption,
see AddApplicationCloudWatchLoggingOption.

{
 "ApplicationName": "<Name of the application to add the log option to>",
 "CloudWatchLoggingOption": {
 "LogStreamARN": "<ARN of the log stream to add to the application>",
 "RoleARN": "<ARN of the role to use to access the log>"
 },
 "CurrentApplicationVersionId": <Version of the application to add the log to>
}

Updating an Existing CloudWatch Log Option

The following code example demonstrates how to use the UpdateApplication action to modify
an existing CloudWatch log option. For more information about UpdateApplication, see
UpdateApplication.

{
 "ApplicationName": "<Name of the application to update the log option for>",
 "ApplicationUpdate": {
 "CloudWatchLoggingOptionUpdates": [
 {
 "CloudWatchLoggingOptionId": "<ID of the logging option to modify>",
 "LogStreamARNUpdate": "<ARN of the new log stream to use>",
 "RoleARNUpdate": "<ARN of the new role to use to access the log stream>"
 }
],
 },
 "CurrentApplicationVersionId": <ID of the application version to modify>
}

Logs 301

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Deleting a CloudWatch Log Option from an Application

The following code example demonstrates how to use the
DeleteApplicationCloudWatchLoggingOption action to delete an existing CloudWatch log
option. For more information about DeleteApplicationCloudWatchLoggingOption, see
DeleteApplicationCloudWatchLoggingOption.

{
 "ApplicationName": "<Name of application to delete log option from>",
 "CloudWatchLoggingOptionId": "<ID of the application log option to delete>",
 "CurrentApplicationVersionId": <Version of the application to delete the log option
 from>
}

Configuration Errors

The following sections contain details about errors that you might see in Amazon CloudWatch Logs
from a misconfigured application.

Error Message Format

Error messages generated by application misconfiguration appear in the following format.

{
"applicationARN": "string",
"applicationVersionId": integer,
"messageType": "ERROR",
"message": "string",
"inputId": "string",
"referenceId": "string",
"errorCode": "string"
"messageSchemaVersion": "integer",
}

The fields in an error message contain the following information:

• applicationARN: The Amazon Resource Name (ARN) of the generating application, for
example: arn:aws:kinesisanalytics:us-east-1:112233445566:application/
sampleApp

Logs 302

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• applicationVersionId: The version of the application at the time the error was encountered.
For more information, see ApplicationDetail.

• messageType: The message type. Currently, this type can be only ERROR.

• message: The details of the error, for example:

There is a problem related to the configuration of your input. Please check that the
 resource exists, the role has the correct permissions to access the resource and
 that Kinesis Analytics can assume the role provided.

• inputId: The ID associated with the application input. This value is only present if this
input is the cause of the error. This value is not present if referenceId is present. For more
information, see DescribeApplication.

• referenceId: The ID associated with the application reference data source. This value is only
present if this source is the cause of the error. This value is not present if inputId is present. For
more information, see DescribeApplication.

• errorCode: The identifier for the error. This ID is either InputError or
ReferenceDataError.

• messageSchemaVersion: A value that specifies the current message schema version, currently
1. You can check this value to see if the error message schema has been updated.

Errors

The errors that might appear in CloudWatch Logs for include the following.

Resource Does Not Exist

If an ARN is specified for a Kinesis input stream that doesn't exist, but the ARN is syntactically
correct, an error like the following is generated.

{
"applicationARN": "arn:aws:kinesisanalytics:us-east-1:112233445566:application/
sampleApp",
"applicationVersionId": "5",
 "messageType": "ERROR",
 "message": "There is a problem related to the configuration of your input. Please
 check that the resource exists, the role has the correct permissions to access the
 resource and that Kinesis Analytics can assume the role provided.",
 "inputId":"1.1",

Logs 303

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "errorCode": "InputError",
 "messageSchemaVersion": "1"
}

If an incorrect Amazon S3 file key is used for reference data, an error like the following is
generated.

{
 "applicationARN": "arn:aws:kinesisanalytics:us-east-1:112233445566:application/
sampleApp",
 "applicationVersionId": "5",
 "messageType": "ERROR",
 "message": "There is a problem related to the configuration of your reference data.
 Please check that the bucket and the file exist, the role has the correct permissions
 to access these resources and that Kinesis Analytics can assume the role provided.",
 "referenceId":"1.1",
 "errorCode": "ReferenceDataError",
 "messageSchemaVersion": "1"
}

Role Does Not Exist

If an ARN is specified for an IAM input role that doesn't exist, but the ARN is syntactically correct,
an error like the following is generated.

{
 "applicationARN": "arn:aws:kinesisanalytics:us-east-1:112233445566:application/
sampleApp",
 "applicationVersionId": "5",
 "messageType": "ERROR",
 "message": "There is a problem related to the configuration of your input. Please
 check that the resource exists, the role has the correct permissions to access the
 resource and that Kinesis Analytics can assume the role provided.",
 "inputId":null,
 "errorCode": "InputError",
 "messageSchemaVersion": "1"
}

Role Does Not Have Permissions to Access the Resource

If an input role is used that doesn't have permission to access the input resources, such as a Kinesis
source stream, an error like the following is generated.

Logs 304

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

{
 "applicationARN": "arn:aws:kinesisanalytics:us-east-1:112233445566:application/
sampleApp",
 "applicationVersionId": "5",
 "messageType": "ERROR",
 "message": "There is a problem related to the configuration of your input. Please
 check that the resource exists, the role has the correct permissions to access the
 resource and that Kinesis Analytics can assume the role provided.",
 "inputId":null,
 "errorCode": "InputError",
 "messageSchemaVersion": "1"
}

Logging API Calls with AWS CloudTrail

is integrated with AWS CloudTrail, a service that provides a record of actions taken by a user, role,
or an AWS service in . CloudTrail captures all API calls for as events. The calls captured include
calls from the console and code calls to the API operations. If you create a trail, you can enable
continuous delivery of CloudTrail events to an Amazon S3 bucket, including events for . If you
don't configure a trail, you can still view the most recent events in the CloudTrail console in Event
history. Using the information collected by CloudTrail, you can determine the request that was
made to , the IP address from which the request was made, who made the request, when it was
made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in ,
that activity is recorded in a CloudTrail event along with other AWS service events in Event history.
You can view, search, and download recent events in your AWS account. For more information, see
Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for , create a trail. A trail
enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create a trail
in the console, the trail applies to all . The trail logs events from all Regions in the AWS partition
and delivers the log files to the Amazon S3 bucket that you specify. Additionally, you can configure
other AWS services to further analyze and act upon the event data collected in CloudTrail logs. For
more information, see the following:

Using AWS CloudTrail 305

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All actions are logged by CloudTrail and are documented in the API reference. For example, calls to
the CreateApplication and UpdateApplication actions generate entries in the CloudTrail
log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with AWS account root user or user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Understanding Log File Entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the
AddApplicationCloudWatchLoggingOption and DescribeApplication actions.

{
 "Records": [
 {
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::012345678910:user/Alice",

Understanding Log File Entries 306

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "accountId": "012345678910",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2019-03-14T01:03:00Z",
 "eventSource": "kinesisanalytics.amazonaws.com",
 "eventName": "AddApplicationCloudWatchLoggingOption",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version Linux/x.xx",
 "requestParameters": {
 "currentApplicationVersionId": 1,
 "cloudWatchLoggingOption": {
 "roleARN": "arn:aws:iam::012345678910:role/cloudtrail_test",
 "logStreamARN": "arn:aws:logs:us-east-1:012345678910:log-
group:cloudtrail-test:log-stream:sql-cloudwatch"
 },
 "applicationName": "cloudtrail-test"
 },
 "responseElements": null,
 "requestID": "e897cd34-45f4-11e9-8912-e52573a36cd9",
 "eventID": "57fe50e9-c764-47c3-a0aa-d0c271fa1cbb",
 "eventType": "AwsApiCall",
 "apiVersion": "2015-08-14",
 "recipientAccountId": "303967445486"
 },
 {
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::012345678910:user/Alice",
 "accountId": "012345678910",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2019-03-14T05:37:20Z",
 "eventSource": "kinesisanalytics.amazonaws.com",
 "eventName": "DescribeApplication",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version Linux/x.xx",
 "requestParameters": {
 "applicationName": "cloudtrail-test"

Understanding Log File Entries 307

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 },
 "responseElements": null,
 "requestID": "3b74eb29-461b-11e9-a645-fb677e53d147",
 "eventID": "750d0def-17b6-4c20-ba45-06d9d45e87ee",
 "eventType": "AwsApiCall",
 "apiVersion": "2015-08-14",
 "recipientAccountId": "012345678910"
 }
]
}

Understanding Log File Entries 308

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Limits

When working with Amazon Kinesis Data Analytics for SQL Applications, note the following limits:

• Kinesis Data Analytics for SQL is available in the following AWS Regions: US East (Ohio), US
East (N. Virginia), US West (Oregon), Canada (Central), Europe (Paris), Europe (Ireland), Europe
(Frankfurt), Europe (London), Asia Pacific (Hong Kong), Asia Pacific (Mumbai), Asia Pacific
(Sydney), Asia Pacific (Singapore), Asia Pacific (Seoul), Asia Pacific (Tokyo), South America (Sao
Paulo), AWS GovCloud (US-East), AWS GovCloud (US-West). We have no plans to launch Kinesis
Data Analytics for SQL into additional AWS Regions.

• After June 28, 2023, you will be not be able to create new Kinesis Data Analytics for SQL
applications using the AWS management console if you do not already use Kinesis Data Analytics
for SQL. If you created a Kinesis Data Analytics for SQL application before June 28 2023, there
are no changes to how you create and run applications today in an AWS Region where you
already use Kinesis Data Analytics for SQL. However, you will no longer be able to create new
applications using the AWS Console in a Region where you do not use Kinesis Data Analytics for
SQL.

• After September 12, 2023, you will not able to create new applications using Kinesis Data
Firehose as a source if you do not already use Kinesis Data Analytics for SQL. Existing customers
using Kinesis Data Analytics for SQL applications with KinesisFirehoseInput can continue
to add applications with KinesisFirehoseInput within an existing account using Kinesis Data
Analytics. If you are an existing customer and wish to create a new account with Kinesis Data
Analytics for SQL applications with KinesisFirehoseInput you can open a support case. For
more information, see the AWS Support Center.

• The size of a row in an in-application stream is limited to 512 KB. Kinesis Data Analytics uses up
to 1 KB to store metadata. This metadata counts against the row limit.

• The SQL code in an application is limited to 100 KB.

• The longest window we recommend for a windowed query is one hour. In-application streams
are stored in volatile storage, and unexpected application interruptions will cause the application
to rebuild the stream from the source data in the volatile storage.

309

https://console.aws.amazon.com/support/home#/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• The most throughput we recommend for a single in-application stream is between 2 and 20 MB/
second, depending on the complexity of the application's query.

• You can create up to 50 Kinesis Data Analytics applications per AWS Region in your account. You
can create a case to request additional applications via the service limit increase form. For more
information, see the AWS Support Center.

• The maximum streaming throughput a single Kinesis Data Analytics for SQL application can
process is approximately 100 MB/sec. This assumes that you have increased the number of in-
application streams to the maximum value of 64, and you have increased your KPU limit beyond
8 (see the following limit for details). If your application needs to process more than 100 MB/sec
of input, do one of the following:

• Use multiple Kinesis Data Analytics for SQL applications to process input

• Use Managed Service for Apache Flink for Java Applications if you want to continue to use a
single stream and application.

Note

We advise periodically reviewing your application’s InputProcessing.OkBytes metric
so that you can plan ahead to use multiple SQL applications or migrate to Managed
Service for for Apache Flink for Java Applications if your application’s projected input
throughput exceeds 100 MB/sec. We also advise creating a CloudWatch alarm on
InputProcessing.OkBytes so that you are notified when your application is nearing
input throughput limit. This can be useful as you can update your application query to
tradeoff for higher throughput, thereby avoiding backpressure and delay in analytics.
For more information, see Troubleshooting. Alarming can also be useful if you have a
mechanism to reduce throughput in upstream.

• The number of Kinesis processing units (KPU) is limited to eight. For instructions on how to
request an increase to this limit, see To request a limit increase in Amazon Service Limits.

310

https://console.aws.amazon.com/support/home#/
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

With Kinesis Data Analytics, you pay only for what you use. You are charged an hourly rate based
on the average number of KPUs that are used to run your stream-processing application. A single
KPU provides you with 1 vCPU and 4 GB of memory.

• Each application can have one streaming source and up to one reference data source.

• You can configure up to three destinations for your Kinesis Data Analytics application. We
recommend that you use one of these destinations to persist in-application error stream data.

• The Amazon S3 object that stores reference data can be up to 1 GB in size.

• If you change the reference data that is stored in the S3 bucket after you upload reference data
to an in-application table, you need to use the UpdateApplication operation (using the API or
AWS CLI) to refresh the data in the in-application table. Currently, the AWS Management Console
doesn't support refreshing reference data in your application.

• Currently, Kinesis Data Analytics doesn't support data generated by the Amazon Kinesis Producer
Library (KPL).

• You can assign up to 50 tags per application.

311

https://docs.aws.amazon.com/kinesis/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/kinesis/latest/dev/developing-producers-with-kpl.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Best Practices

This section describes best practices when working with Amazon Kinesis Data Analytics
applications.

Topics

• Managing Applications

• Scaling Applications

• Monitoring Applications

• Defining Input Schema

• Connecting to Outputs

• Authoring Application Code

• Testing Applications

Managing Applications

When managing Amazon Kinesis Data Analytics applications, follow these best practices:

• Set up Amazon CloudWatch alarms – You can use the CloudWatch metrics that Kinesis Data
Analytics provides to monitor the following:

• Input bytes and input records (number of bytes and records entering the application)

• Output bytes and output records

• MillisBehindLatest (how far behind the application is in reading from the streaming
source)

We recommend that you set up at least two CloudWatch alarms on the following metrics for
your in-production applications:

• MillisBehindLatest – For most cases, we recommend that you set this alarm to trigger
when your application is 1 hour behind the latest data, for an average of 1 minute. For
applications with lower end-to-end processing needs, you can tune this to a lower tolerance.
This alarm can help ensure that your application is reading the latest data.

Managing Applications 312

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• To avoid getting the ReadProvisionedThroughputException exception, limit the number of
production applications reading from the same Kinesis data stream to two applications.

Note

In this case, application refers to any application that can read from the streaming source.
Only a Kinesis Data Analytics application can read from a Firehose delivery stream.
However, many applications can read from a Kinesis data stream, such as a Kinesis Data
Analytics application or AWS Lambda. The recommended application limit refers to all
applications that you configure to read from a streaming source.

Amazon Kinesis Data Analytics reads a streaming source approximately once per second per
application. However, an application that falls behind might read data at a faster rate to catch
up. To allow adequate throughput for applications to catch up, limit the number of applications
reading the same data source.

• Limit the number of production applications reading from the same Firehose delivery stream to
one application.

A Firehose delivery stream can write to destinations such as Amazon S3 and Amazon Redshift.
It can also be a streaming source for your Kinesis Data Analytics application. Therefore, we
recommend that you do not configure more than one Kinesis Data Analytics application per
Firehose delivery stream. This helps ensure that the delivery stream can also deliver to other
destinations.

Scaling Applications

Set up your application for your future scaling needs by proactively increasing the number of input
in-application streams from the default (one). We recommend the following language choices
based on the throughput of your application:

• Use multiple streams and Kinesis Data Analytics for SQL applications if your application has
scaling needs beyond 100 MB/second.

Scaling Applications 313

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Use Managed Service for Apache Flink Applications if you want to use a single stream and
application.

Note

We advise periodically reviewing your application’s InputProcessing.OkBytes metric
so that you can plan ahead to use multiple SQL applications or migrate to managed-flink/
latest/java/ if your application’s projected input throughput exceeds 100 MB/sec.

Monitoring Applications

We advise creating a CloudWatch alarm on InputProcessing.OkBytes so that you are notified
when your application is nearing input throughput limit. This can be useful as you can update
your application query to tradeoff for higher throughput, thereby avoiding backpressure and
delay in analytics. For more information, see Troubleshooting. This can also be useful if you have a
mechanism to reduce throughput in upstream.

• The most throughput we recommend for a single in-application stream is between 2 and 20 MB/
second, depending on the complexity of the application's query.

• The maximum streaming throughput a single Kinesis Data Analytics for SQL application can
process is approximately 100 MB/sec. This assumes that you have increased the number of in-
application streams to the maximum value of 64, and you have increased your KPU limit beyond
8. For more information, see Limits.

Note

We advise periodically reviewing your application’s InputProcessing.OkBytes metric
so that you can plan ahead to use multiple SQL applications or migrate to managed-flink/
latest/java/ if your application’s projected input throughput exceeds 100 MB/sec.

Defining Input Schema

When configuring application input in the console, you first specify a streaming source. The console
then uses the discovery API (see DiscoverInputSchema) to infer a schema by sampling records

Monitoring Applications 314

https://docs.aws.amazon.com/managed-flink/latest/java/what-is.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

on the streaming source. The schema, among other things, defines names and data types of the
columns in the resulting in-application stream. The console displays the schema. We recommend
that you do the following with this inferred schema:

• Adequately test the inferred schema. The discovery process uses only a sample of records on
the streaming source to infer a schema. If your streaming source has many record types, the
discovery API might have missed sampling one or more record types. This situation can result in a
schema that does not accurately reflect data on the streaming source.

When your application starts, these missed record types might result in parsing errors. Amazon
Kinesis Data Analytics sends these records to the in-application error stream. To reduce these
parsing errors, we recommend that you test the inferred schema interactively in the console and
monitor the in-application stream for missed records.

• The Kinesis Data Analytics API does not support specifying the NOT NULL constraint on columns
in the input configuration. If you want NOT NULL constraints on columns in your in-application
stream, create these in-application streams using your application code. You can then copy data
from one in-application stream into another, and then the constraint is enforced.

Any attempt to insert rows with NULL values when a value is required results in an error. Kinesis
Data Analytics sends these errors to the in-application error stream.

• Relax data types inferred by the discovery process. The discovery process recommends columns
and data types based on a random sampling of records on the streaming source. We recommend
that you review these carefully and consider relaxing these data types to cover all of the possible
cases of records in your input. This ensures fewer parsing errors across the application while
it is running. For example, if an inferred schema has a SMALLINT as a column type, consider
changing it to an INTEGER.

• Use SQL functions in your application code to handle any unstructured data or columns. You
might have unstructured data or columns, such as log data, in your input. For examples, see
Example: Transforming DateTime Values. One approach to handling this type of data is to define
the schema with only one column of type VARCHAR(N), where N is the largest possible row that
you would expect to see in your stream. In your application code, you can then read the incoming
records and use the String and Date Time functions to parse and schematize the raw data.

Defining Input Schema 315

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/app-tworecordtypes.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Make sure that you completely handle streaming source data that contains nesting more than
two levels deep. When source data is JSON, you can have nesting. The discovery API infers a
schema that flattens one level of nesting. For two levels of nesting, the discovery API also tries
to flatten these. Beyond two levels of nesting, there is limited support for flattening. To handle
nesting completely, you have to manually modify the inferred schema to suit your needs. Use
either of the following strategies to do this:

• Use the JSON row path to selectively pull out only the required key value pairs for your
application. A JSON row path provides a pointer to the specific key value pair that you want to
bring in your application. You can do this for any level of nesting.

• Use the JSON row path to selectively pull out complex JSON objects and then use string
manipulation functions in your application code to pull the specific data that you need.

Connecting to Outputs

We recommend that every application have at least two outputs:

• Use the first destination to insert the results of your SQL queries.

• Use the second destination to insert the entire error stream and send it to an S3 bucket through
a Firehose delivery stream.

Authoring Application Code

We recommend the following:

• In your SQL statement, don't specify a time-based window that is longer than one hour for the
following reasons:

• Sometimes an application needs to be restarted, either because you updated the application
or for Kinesis Data Analytics internal reasons. When it restarts, all data included in the window
must be read again from the streaming data source. This takes time before Kinesis Data
Analytics can emit output for that window.

Connecting to Outputs 316

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Kinesis Data Analytics must maintain everything related to the application's state, including
relevant data, for the duration. This consumes significant Kinesis Data Analytics processing
units.

• During development, keep the window size small in your SQL statements so that you can see the
results faster. When you deploy the application to your production environment, you can set the
window size as appropriate.

• Instead of a single complex SQL statement, consider breaking it into multiple statements, in each
step saving results in intermediate in-application streams. This might help you debug faster.

• When you're using tumbling windows, we recommend that you use two windows, one for
processing time and one for your logical time (ingest time or event time). For more information,
see Timestamps and the ROWTIME Column.

Testing Applications

When you're changing the schema or application code for your Kinesis Data Analytics application,
we recommend using a test application to verify your changes before deploying them to
production.

Setting up a Test Application

You can set up a test application either through the console, or by using an AWS CloudFormation
template. Using an AWS CloudFormation template helps ensure that the code changes you make to
the test application and your live application are consistent.

When setting up a test application, you can either connect the application to your live data, or you
can populate a stream with mock data to test against. We recommend two methods for populating
a stream with mock data:

• Use the Kinesis Data Generator (KDG). The KDG uses a data template to send random data to a
Kinesis stream. The KDG is simple to use, but isn't appropriate for testing complex relationships
between data items, such as for applications that detect data hotspots or anomalies.

• Use a custom Python application to send more complex data to a Kinesis data stream. A Python
application can generate complex relationships between data items, such as hotspots or
anomalies. For an example of a Python application that sends data clustered into a data hotspot,
see Example: Detecting Hotspots on a Stream (HOTSPOTS Function).

Testing Applications 317

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html
https://aws.amazon.com/blogs/big-data/test-your-streaming-data-solution-with-the-new-amazon-kinesis-data-generator/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

When running your test application, view your results using a destination (such as a Firehose
delivery stream to an Amazon Redshift database) instead of viewing your in-application stream
on the console. The data that is displayed on the console is a sampling of the stream and doesn't
contain all of the records.

Testing Schema Changes

When changing an application's input stream schema, use your test application to verify that the
following are true:

• The data from your stream is being coerced into the correct data type. For example, ensure that
datetime data is not being ingested into the application as a string.

• The data is being parsed and coerced into the data type that you want. If parsing or coercion
errors occur, you can view them on the console, or assign a destination to the error stream and
view the errors in the destination store.

• The data fields for character data are of sufficient length, and the application isn't truncating
the character data. You can check the data records in your destination store to verify that your
application data isn't being truncated.

Testing Code Changes

Testing changes to your SQL code requires some domain knowledge of your application. You must
be able to determine what output needs to be tested and what the correct output should be. For
potential problem areas to verify when modifying your application's SQL code, see Troubleshooting
Amazon Kinesis Data Analytics for SQL Applications.

Testing Schema Changes 318

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Troubleshooting Amazon Kinesis Data Analytics for SQL
Applications

The following can help you troubleshoot problems that you might encounter with Amazon Kinesis
Data Analytics for SQL Applications.

Topics

• Stopped applications

• Unable to Run SQL Code

• Unable to Detect or Discover My Schema

• Reference Data is Out of Date

• Application Not Writing to Destination

• Important Application Health Parameters to Monitor

• Invalid Code Errors When Running an Application

• Application is Writing Errors to the Error Stream

• Insufficient Throughput or High MillisBehindLatest

Stopped applications

• What is a stopped Kinesis Data Analytics for SQL application?

A stopped application is an application that we have observed not processing any records for a
minimum of three months. This means customers are paying for Kinesis Data Analytics for SQL
resources they are not using.

• When will AWS begin stopping idle applications?

AWS will begin stopping idle applications on November 14, 2023 and complete by November 21,
2023. We will stop idle applications in the office hours timezone of that Region.

• Can stopped Kinesis Data Analytics for SQL applications be re-started?

Yes. If you require to re-start your application you can do so as normal. There is no need to cut a
support ticket.

• When AWS stops an idle application will any of my query results also be deleted?

Stopped applications 319

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

No. First, because your application is idle it is not processing queries. Second, your query results
are not stored in Kinesis Data Analytics for SQL. You configure your Kinesis Data Analytics
for SQL application with a sink destination where the results of its calculations are sent (for
example, in Amazon S3 or another data stream). As such, you retain full ownership of your data
and it will remain retrievable under the terms of that storage service.

• What do I do if I don’t want my application stopped?

You can email the service team (kda-sql-questions@amazon.com) requesting applications not
be stopped any time before November 10, 2023. The email should include your account ID and
application ARN.

Unable to Run SQL Code

If you need to figure out how to get a particular SQL statement to work correctly, you have several
different resources when using Kinesis Data Analytics:

• For more information about SQL statements, see Kinesis Data Analytics for SQL examples. This
section provides a number of SQL examples that you can use.

• The Amazon Kinesis Data Analytics SQL Reference provides a detailed guide to authoring
streaming SQL statements.

• If you're still running into issues, we recommend that you ask a question on the Kinesis Data
Analytics Forums.

Unable to Detect or Discover My Schema

In some cases, Kinesis Data Analytics can't detect or discover a schema. In many of these cases, you
can still use Kinesis Data Analytics.

Suppose that you have UTF-8 encoded data that doesn't use a delimiter, or data that uses a format
other than comma-separated values (CSV), or the discovery API did not discover your schema. In
these cases, you can define a schema manually or use string manipulation functions to structure
your data.

To discover the schema for your stream, Kinesis Data Analytics randomly samples the latest data
in your stream. If you aren't consistently sending data to your stream, Kinesis Data Analytics might

Unable to Run SQL Code 320

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sqlrf_Preface.html
https://forums.aws.amazon.com/ann.jspa?annID=4153
https://forums.aws.amazon.com/ann.jspa?annID=4153

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

not be able to retrieve a sample and detect a schema. For more information, see Using the Schema
Discovery Feature on Streaming Data.

Reference Data is Out of Date

Reference data is loaded from the Amazon Simple Storage Service (Amazon S3) object into the
application when the application is started or updated, or during application interruptions that are
caused by service issues.

Reference data is not loaded into the application when updates are made to the underlying
Amazon S3 object.

If the reference data in the application is not up to date, you can reload the data by following these
steps:

1. On the Kinesis Data Analytics console, choose the application name in the list, and then choose
Application details.

2. Choose Go to SQL editor to open the Real-time analytics page for the application.

3. In the Source Data view, choose your reference data table name.

4. Choose Actions, Synchronize reference data table.

Application Not Writing to Destination

If data is not being written to the destination, check the following:

• Verify that the application's role has sufficient permission to access the destination. For more
information, see Permissions Policy for Writing to a Kinesis Stream or Permissions Policy for
Writing to a Firehose Delivery Stream.

• Verify that the application destination is correctly configured and that the application is using
the correct name for the output stream.

• Check the Amazon CloudWatch metrics for your output stream to see if data is being written. For
information about using CloudWatch metrics, see Monitoring with Amazon CloudWatch.

• Add a CloudWatch log stream using the section called
“AddApplicationCloudWatchLoggingOption”. Your application will write configuration errors to
the log stream.

Reference Data is Out of Date 321

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

If the role and destination configuration look correct, try restarting the application, specifying
LAST_STOPPED_POINT for the InputStartingPositionConfiguration.

Important Application Health Parameters to Monitor

To make sure that your application is running correctly, we recommend that you monitor certain
important parameters.

The most important parameter to monitor is the Amazon CloudWatch metric
MillisBehindLatest. This metric represents how far behind the current time you are reading
from the stream. This metric helps you determine whether you are processing records from the
source stream fast enough.

As a general rule, you should set up a CloudWatch alarm to trigger if you fall behind more than one
hour. However, the amount of time depends on your use case. You can adjust it as needed.

For more information, see Best Practices.

Invalid Code Errors When Running an Application

When you can't save and run the SQL code for your Amazon Kinesis Data Analytics application, the
following are common causes:

• The stream was redefined in your SQL code – After you create a stream and the pump
associated with the stream, you can't redefine the same stream in your code. For more
information about creating a stream, see CREATE STREAM in the Amazon Kinesis Data Analytics
SQL Reference. For more information about creating a pump, see CREATE PUMP.

• A GROUP BY clause uses multiple ROWTIME columns – You can specify only one ROWTIME
column in the GROUP BY clause. For more information, see GROUP BY and ROWTIME in the
Amazon Kinesis Data Analytics SQL Reference.

• One or more data types have an invalid casting – In this case, your code has an invalid implicit
cast. For example, you might be casting a timestamp to a bigint in your code.

• A stream has the same name as a service reserved stream name – A stream can't have the
same name as the service-reserved stream error_stream.

Important Application Health Parameters to Monitor 322

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-create-stream.html
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-create-pump.html
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-group-by-clause.html
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-rowtime.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Application is Writing Errors to the Error Stream

If your application is writing errors to the in-application error stream, you can decode the value
in the DATA_ROW field using standard libraries. For more information about the error stream, see
Error Handling.

Insufficient Throughput or High MillisBehindLatest

If your application's MillisBehindLatest metric is steadily increasing or consistently is above 1000
(one second), it can be due to the following reasons:

• Check your application's InputBytes CloudWatch metric. If you are ingesting more than 4 MB/sec,
this can cause an increase in MillisBehindLatest. To improve your application's throughput,
increase the value of the InputParallelism parameter. For more information, see Parallelizing
Input Streams for Increased Throughput.

• Check your application's output delivery Success metric for failures in delivering to your
destination. Verify that you have correctly configured the output, and that your output stream
has sufficient capacity.

• If your application uses an AWS Lambda function for pre-processing or as an output, check the
application’s InputProcessing.Duration or LambdaDelivery.Duration CloudWatch metric. If the
Lambda function invocation duration is longer than 5 seconds, consider doing the following:

• Increase the Lambda function’s Memory allocation. You can do this on the AWS Lambda
console, on the Configuration page, under Basic settings. For more information, see
Configuring Lambda Functions in the AWS Lambda Developer Guide.

• Increase the number of shards in your input stream of the application. This increases
the number of parallel functions that the application will invoke, which might increase
throughput.

• Verify that the function is not making blocking calls that are affecting performance, such as
synchronous requests for external resources.

• Examine your AWS Lambda function to see whether there are other areas where you can
improve performance. Check the CloudWatch Logs of the application Lambda function.
For more information, see Accessing Amazon CloudWatch Metrics for in the AWS Lambda
Developer Guide.

Application is Writing Errors to the Error Stream 323

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aka-metricscollected.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aka-metricscollected.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aka-metricscollected.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aka-metricscollected.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aka-metricscollected.html
https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-access-metrics.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• Verify that your application is not reaching the default limit for Kinesis Processing Units (KPU). If
your application is reaching this limit, you can request a limit increase. For more information, see
Automatically Scaling Applications to Increase Throughput.

• If your application is still having issues after having your KPU limit increase, check that your
application's input throughput does not exceed 100MB/sec. If it exceeds 100MB/sec, we
recommend implementing changes to reduce overall throughput to stabilize the application,
for example by reducing the amount of data being sent to the data source that the Kinesis
Data Analytics Sql application reads from. We also recommended other approaches, including
increasing the paralellism of the application, reducing the time period of computations, changing
columnar data types from VARCHAR to data types with smaller sizes (e.g., INTEGER, LONG, etc),
and reducing data processed by sampling or filtering.

Note

We advise periodically reviewing your application’s InputProcessing.OkBytes metric
so that you can plan ahead to use multiple SQL applications or migrate to managed-
flink/latest/java/ if your application’s projected input throughput will exceed 100 MB/
sec.

Insufficient Throughput or High MillisBehindLatest 324

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Kinesis Data Analytics SQL Reference

For information about the SQL language elements that are supported by Kinesis Data Analytics,
see Kinesis Data Analytics SQL Reference.

325

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

API Reference

Note

This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which only
supports SQL applications. Version 2 of the API supports SQL and Java applications. For
more information about version 2, see Amazon Managed Service for Apache Flink API V2
Documentation.

You can use the AWS CLI to explore the Amazon Kinesis Data Analytics API. This guide provides
Getting Started with Amazon Kinesis Data Analytics for SQL Applications exercises that use the
AWS CLI.

Topics

• Actions

• Data Types

Actions

The following actions are supported:

• AddApplicationCloudWatchLoggingOption

• AddApplicationInput

• AddApplicationInputProcessingConfiguration

• AddApplicationOutput

• AddApplicationReferenceDataSource

• CreateApplication

• DeleteApplication

• DeleteApplicationCloudWatchLoggingOption

• DeleteApplicationInputProcessingConfiguration

• DeleteApplicationOutput

• DeleteApplicationReferenceDataSource

Actions 326

https://docs.aws.amazon.com/managed-flink/latest/apiv2/Welcome.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/Welcome.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• DescribeApplication

• DiscoverInputSchema

• ListApplications

• ListTagsForResource

• StartApplication

• StopApplication

• TagResource

• UntagResource

• UpdateApplication

Actions 327

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

AddApplicationCloudWatchLoggingOption

Note

This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which
only supports SQL applications. Version 2 of the API supports SQL and Java applications.
For more information about version 2, see Amazon Kinesis Data Analytics API V2
Documentation.

Adds a CloudWatch log stream to monitor application configuration errors. For more information
about using CloudWatch log streams with Amazon Kinesis Analytics applications, see Working with
Amazon CloudWatch Logs.

Request Syntax

{
 "ApplicationName": "string",
 "CloudWatchLoggingOption": {
 "LogStreamARN": "string",
 "RoleARN": "string"
 },
 "CurrentApplicationVersionId": number
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationName

The Kinesis Analytics application name.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

AddApplicationCloudWatchLoggingOption 328

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/cloudwatch-logs.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/cloudwatch-logs.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

CloudWatchLoggingOption

Provides the CloudWatch log stream Amazon Resource Name (ARN) and the IAM role ARN.
Note: To write application messages to CloudWatch, the IAM role that is used must have the
PutLogEvents policy action enabled.

Type: CloudWatchLoggingOption object

Required: Yes

CurrentApplicationVersionId

The version ID of the Kinesis Analytics application.

Type: Long

Valid Range: Minimum value of 1. Maximum value of 999999999.

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

ConcurrentModificationException

Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

HTTP Status Code: 400

InvalidArgumentException

Specified input parameter value is invalid.

HTTP Status Code: 400

ResourceInUseException

Application is not available for this operation.

HTTP Status Code: 400

AddApplicationCloudWatchLoggingOption 329

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

ResourceNotFoundException

Specified application can't be found.

HTTP Status Code: 400

UnsupportedOperationException

The request was rejected because a specified parameter is not supported or a specified resource
is not valid for this operation.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

AddApplicationCloudWatchLoggingOption 330

https://docs.aws.amazon.com/goto/aws-cli/kinesisanalytics-2015-08-14/AddApplicationCloudWatchLoggingOption
https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesisanalytics-2015-08-14/AddApplicationCloudWatchLoggingOption
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/AddApplicationCloudWatchLoggingOption
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/AddApplicationCloudWatchLoggingOption
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/AddApplicationCloudWatchLoggingOption
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/kinesisanalytics-2015-08-14/AddApplicationCloudWatchLoggingOption
https://docs.aws.amazon.com/goto/SdkForPHPV3/kinesisanalytics-2015-08-14/AddApplicationCloudWatchLoggingOption
https://docs.aws.amazon.com/goto/boto3/kinesisanalytics-2015-08-14/AddApplicationCloudWatchLoggingOption
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/AddApplicationCloudWatchLoggingOption

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

AddApplicationInput

Note

This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which
only supports SQL applications. Version 2 of the API supports SQL and Java applications.
For more information about version 2, see Amazon Kinesis Data Analytics API V2
Documentation.

Adds a streaming source to your Amazon Kinesis application. For conceptual information, see
Configuring Application Input.

You can add a streaming source either when you create an application or you can use this
operation to add a streaming source after you create an application. For more information, see
CreateApplication.

Any configuration update, including adding a streaming source using this operation, results in a
new version of the application. You can use the DescribeApplication operation to find the current
application version.

This operation requires permissions to perform the kinesisanalytics:AddApplicationInput
action.

Request Syntax

{
 "ApplicationName": "string",
 "CurrentApplicationVersionId": number,
 "Input": {
 "InputParallelism": {
 "Count": number
 },
 "InputProcessingConfiguration": {
 "InputLambdaProcessor": {
 "ResourceARN": "string",
 "RoleARN": "string"
 }
 },
 "InputSchema": {

AddApplicationInput 331

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_CreateApplication.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_DescribeApplication.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "RecordColumns": [
 {
 "Mapping": "string",
 "Name": "string",
 "SqlType": "string"
 }
],
 "RecordEncoding": "string",
 "RecordFormat": {
 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordColumnDelimiter": "string",
 "RecordRowDelimiter": "string"
 },
 "JSONMappingParameters": {
 "RecordRowPath": "string"
 }
 },
 "RecordFormatType": "string"
 }
 },
 "KinesisFirehoseInput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "KinesisStreamsInput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "NamePrefix": "string"
 }
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationName

Name of your existing Amazon Kinesis Analytics application to which you want to add the
streaming source.

Type: String

AddApplicationInput 332

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

CurrentApplicationVersionId

Current version of your Amazon Kinesis Analytics application. You can use the
DescribeApplication operation to find the current application version.

Type: Long

Valid Range: Minimum value of 1. Maximum value of 999999999.

Required: Yes

Input

The Input to add.

Type: Input object

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

CodeValidationException

User-provided application code (query) is invalid. This can be a simple syntax error.

HTTP Status Code: 400

ConcurrentModificationException

Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

HTTP Status Code: 400

AddApplicationInput 333

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_DescribeApplication.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_Input.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

InvalidArgumentException

Specified input parameter value is invalid.

HTTP Status Code: 400

ResourceInUseException

Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException

Specified application can't be found.

HTTP Status Code: 400

UnsupportedOperationException

The request was rejected because a specified parameter is not supported or a specified resource
is not valid for this operation.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

AddApplicationInput 334

https://docs.aws.amazon.com/goto/aws-cli/kinesisanalytics-2015-08-14/AddApplicationInput
https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesisanalytics-2015-08-14/AddApplicationInput
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/AddApplicationInput
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/AddApplicationInput
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/AddApplicationInput
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/kinesisanalytics-2015-08-14/AddApplicationInput
https://docs.aws.amazon.com/goto/SdkForPHPV3/kinesisanalytics-2015-08-14/AddApplicationInput
https://docs.aws.amazon.com/goto/boto3/kinesisanalytics-2015-08-14/AddApplicationInput
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/AddApplicationInput

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

AddApplicationInputProcessingConfiguration

Note

This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which
only supports SQL applications. Version 2 of the API supports SQL and Java applications.
For more information about version 2, see Amazon Kinesis Data Analytics API V2
Documentation.

Adds an InputProcessingConfiguration to an application. An input processor preprocesses records
on the input stream before the application's SQL code executes. Currently, the only input processor
available is AWS Lambda.

Request Syntax

{
 "ApplicationName": "string",
 "CurrentApplicationVersionId": number,
 "InputId": "string",
 "InputProcessingConfiguration": {
 "InputLambdaProcessor": {
 "ResourceARN": "string",
 "RoleARN": "string"
 }
 }
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationName

Name of the application to which you want to add the input processing configuration.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

AddApplicationInputProcessingConfiguration 335

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_InputProcessingConfiguration.html
https://docs.aws.amazon.com/lambda/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Required: Yes

CurrentApplicationVersionId

Version of the application to which you want to add the input processing configuration. You
can use the DescribeApplication operation to get the current application version. If the version
specified is not the current version, the ConcurrentModificationException is returned.

Type: Long

Valid Range: Minimum value of 1. Maximum value of 999999999.

Required: Yes

InputId

The ID of the input configuration to add the input processing configuration to. You can get a list
of the input IDs for an application using the DescribeApplication operation.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

InputProcessingConfiguration

The InputProcessingConfiguration to add to the application.

Type: InputProcessingConfiguration object

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

ConcurrentModificationException

Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

AddApplicationInputProcessingConfiguration 336

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_DescribeApplication.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_DescribeApplication.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_InputProcessingConfiguration.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

HTTP Status Code: 400

InvalidArgumentException

Specified input parameter value is invalid.

HTTP Status Code: 400

ResourceInUseException

Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException

Specified application can't be found.

HTTP Status Code: 400

UnsupportedOperationException

The request was rejected because a specified parameter is not supported or a specified resource
is not valid for this operation.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

AddApplicationInputProcessingConfiguration 337

https://docs.aws.amazon.com/goto/aws-cli/kinesisanalytics-2015-08-14/AddApplicationInputProcessingConfiguration
https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesisanalytics-2015-08-14/AddApplicationInputProcessingConfiguration
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/AddApplicationInputProcessingConfiguration
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/AddApplicationInputProcessingConfiguration
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/AddApplicationInputProcessingConfiguration
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/kinesisanalytics-2015-08-14/AddApplicationInputProcessingConfiguration
https://docs.aws.amazon.com/goto/SdkForPHPV3/kinesisanalytics-2015-08-14/AddApplicationInputProcessingConfiguration
https://docs.aws.amazon.com/goto/boto3/kinesisanalytics-2015-08-14/AddApplicationInputProcessingConfiguration
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/AddApplicationInputProcessingConfiguration

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

AddApplicationInputProcessingConfiguration 338

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

AddApplicationOutput

Note

This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which
only supports SQL applications. Version 2 of the API supports SQL and Java applications.
For more information about version 2, see Amazon Kinesis Data Analytics API V2
Documentation.

Adds an external destination to your Amazon Kinesis Analytics application.

If you want Amazon Kinesis Analytics to deliver data from an in-application stream within your
application to an external destination (such as an Amazon Kinesis stream, an Amazon Kinesis
Firehose delivery stream, or an AWS Lambda function), you add the relevant configuration to your
application using this operation. You can configure one or more outputs for your application. Each
output configuration maps an in-application stream and an external destination.

You can use one of the output configurations to deliver data from your in-application error
stream to an external destination so that you can analyze the errors. For more information, see
Understanding Application Output (Destination).

Any configuration update, including adding a streaming source using this operation, results in a
new version of the application. You can use the DescribeApplication operation to find the current
application version.

For the limits on the number of application inputs and outputs you can configure, see Limits.

This operation requires permissions to perform the
kinesisanalytics:AddApplicationOutput action.

Request Syntax

{
 "ApplicationName": "string",
 "CurrentApplicationVersionId": number,
 "Output": {
 "DestinationSchema": {
 "RecordFormatType": "string"
 },

AddApplicationOutput 339

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-output.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_DescribeApplication.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "KinesisFirehoseOutput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "KinesisStreamsOutput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "LambdaOutput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "Name": "string"
 }
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationName

Name of the application to which you want to add the output configuration.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

CurrentApplicationVersionId

Version of the application to which you want to add the output configuration. You can use the
DescribeApplication operation to get the current application version. If the version specified is
not the current version, the ConcurrentModificationException is returned.

Type: Long

Valid Range: Minimum value of 1. Maximum value of 999999999.

Required: Yes

AddApplicationOutput 340

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_DescribeApplication.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Output

An array of objects, each describing one output configuration. In the output configuration,
you specify the name of an in-application stream, a destination (that is, an Amazon Kinesis
stream, an Amazon Kinesis Firehose delivery stream, or an AWS Lambda function), and record
the formation to use when writing to the destination.

Type: Output object

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

ConcurrentModificationException

Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

HTTP Status Code: 400

InvalidArgumentException

Specified input parameter value is invalid.

HTTP Status Code: 400

ResourceInUseException

Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException

Specified application can't be found.

HTTP Status Code: 400

UnsupportedOperationException

The request was rejected because a specified parameter is not supported or a specified resource
is not valid for this operation.

AddApplicationOutput 341

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

AddApplicationOutput 342

https://docs.aws.amazon.com/goto/aws-cli/kinesisanalytics-2015-08-14/AddApplicationOutput
https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesisanalytics-2015-08-14/AddApplicationOutput
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/AddApplicationOutput
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/AddApplicationOutput
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/AddApplicationOutput
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/kinesisanalytics-2015-08-14/AddApplicationOutput
https://docs.aws.amazon.com/goto/SdkForPHPV3/kinesisanalytics-2015-08-14/AddApplicationOutput
https://docs.aws.amazon.com/goto/boto3/kinesisanalytics-2015-08-14/AddApplicationOutput
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/AddApplicationOutput

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

AddApplicationReferenceDataSource

Note

This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which
only supports SQL applications. Version 2 of the API supports SQL and Java applications.
For more information about version 2, see Amazon Kinesis Data Analytics API V2
Documentation.

Adds a reference data source to an existing application.

Amazon Kinesis Analytics reads reference data (that is, an Amazon S3 object) and creates an in-
application table within your application. In the request, you provide the source (S3 bucket name
and object key name), name of the in-application table to create, and the necessary mapping
information that describes how data in Amazon S3 object maps to columns in the resulting in-
application table.

For conceptual information, see Configuring Application Input. For the limits on data sources you
can add to your application, see Limits.

This operation requires permissions to perform the
kinesisanalytics:AddApplicationOutput action.

Request Syntax

{
 "ApplicationName": "string",
 "CurrentApplicationVersionId": number,
 "ReferenceDataSource": {
 "ReferenceSchema": {
 "RecordColumns": [
 {
 "Mapping": "string",
 "Name": "string",
 "SqlType": "string"
 }
],
 "RecordEncoding": "string",
 "RecordFormat": {

AddApplicationReferenceDataSource 343

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordColumnDelimiter": "string",
 "RecordRowDelimiter": "string"
 },
 "JSONMappingParameters": {
 "RecordRowPath": "string"
 }
 },
 "RecordFormatType": "string"
 }
 },
 "S3ReferenceDataSource": {
 "BucketARN": "string",
 "FileKey": "string",
 "ReferenceRoleARN": "string"
 },
 "TableName": "string"
 }
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationName

Name of an existing application.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

CurrentApplicationVersionId

Version of the application for which you are adding the reference data source. You can use the
DescribeApplication operation to get the current application version. If the version specified is
not the current version, the ConcurrentModificationException is returned.

Type: Long

AddApplicationReferenceDataSource 344

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_DescribeApplication.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Valid Range: Minimum value of 1. Maximum value of 999999999.

Required: Yes

ReferenceDataSource

The reference data source can be an object in your Amazon S3 bucket. Amazon Kinesis Analytics
reads the object and copies the data into the in-application table that is created. You provide an
S3 bucket, object key name, and the resulting in-application table that is created. You must also
provide an IAM role with the necessary permissions that Amazon Kinesis Analytics can assume
to read the object from your S3 bucket on your behalf.

Type: ReferenceDataSource object

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

ConcurrentModificationException

Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

HTTP Status Code: 400

InvalidArgumentException

Specified input parameter value is invalid.

HTTP Status Code: 400

ResourceInUseException

Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException

Specified application can't be found.

AddApplicationReferenceDataSource 345

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

HTTP Status Code: 400

UnsupportedOperationException

The request was rejected because a specified parameter is not supported or a specified resource
is not valid for this operation.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

AddApplicationReferenceDataSource 346

https://docs.aws.amazon.com/goto/aws-cli/kinesisanalytics-2015-08-14/AddApplicationReferenceDataSource
https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesisanalytics-2015-08-14/AddApplicationReferenceDataSource
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/AddApplicationReferenceDataSource
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/AddApplicationReferenceDataSource
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/AddApplicationReferenceDataSource
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/kinesisanalytics-2015-08-14/AddApplicationReferenceDataSource
https://docs.aws.amazon.com/goto/SdkForPHPV3/kinesisanalytics-2015-08-14/AddApplicationReferenceDataSource
https://docs.aws.amazon.com/goto/boto3/kinesisanalytics-2015-08-14/AddApplicationReferenceDataSource
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/AddApplicationReferenceDataSource

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

CreateApplication

Note

This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which
only supports SQL applications. Version 2 of the API supports SQL and Java applications.
For more information about version 2, see Amazon Kinesis Data Analytics API V2
Documentation.

Creates an Amazon Kinesis Analytics application. You can configure each application with one
streaming source as input, application code to process the input, and up to three destinations
where you want Amazon Kinesis Analytics to write the output data from your application. For an
overview, see How it Works.

In the input configuration, you map the streaming source to an in-application stream, which you
can think of as a constantly updating table. In the mapping, you must provide a schema for the in-
application stream and map each data column in the in-application stream to a data element in the
streaming source.

Your application code is one or more SQL statements that read input data, transform it, and
generate output. Your application code can create one or more SQL artifacts like SQL streams or
pumps.

In the output configuration, you can configure the application to write data from in-application
streams created in your applications to up to three destinations.

To read data from your source stream or write data to destination streams, Amazon Kinesis
Analytics needs your permissions. You grant these permissions by creating IAM roles. This
operation requires permissions to perform the kinesisanalytics:CreateApplication action.

For introductory exercises to create an Amazon Kinesis Analytics application, see Getting Started.

Request Syntax

{
 "ApplicationCode": "string",
 "ApplicationDescription": "string",
 "ApplicationName": "string",
 "CloudWatchLoggingOptions": [

CreateApplication 347

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/getting-started.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 {
 "LogStreamARN": "string",
 "RoleARN": "string"
 }
],
 "Inputs": [
 {
 "InputParallelism": {
 "Count": number
 },
 "InputProcessingConfiguration": {
 "InputLambdaProcessor": {
 "ResourceARN": "string",
 "RoleARN": "string"
 }
 },
 "InputSchema": {
 "RecordColumns": [
 {
 "Mapping": "string",
 "Name": "string",
 "SqlType": "string"
 }
],
 "RecordEncoding": "string",
 "RecordFormat": {
 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordColumnDelimiter": "string",
 "RecordRowDelimiter": "string"
 },
 "JSONMappingParameters": {
 "RecordRowPath": "string"
 }
 },
 "RecordFormatType": "string"
 }
 },
 "KinesisFirehoseInput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "KinesisStreamsInput": {
 "ResourceARN": "string",

CreateApplication 348

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "RoleARN": "string"
 },
 "NamePrefix": "string"
 }
],
 "Outputs": [
 {
 "DestinationSchema": {
 "RecordFormatType": "string"
 },
 "KinesisFirehoseOutput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "KinesisStreamsOutput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "LambdaOutput": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "Name": "string"
 }
],
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
]
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationCode

One or more SQL statements that read input data, transform it, and generate output. For
example, you can write a SQL statement that reads data from one in-application stream,
generates a running average of the number of advertisement clicks by vendor, and insert

CreateApplication 349

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

resulting rows in another in-application stream using pumps. For more information about the
typical pattern, see Application Code.

You can provide such series of SQL statements, where output of one statement can be used
as the input for the next statement. You store intermediate results by creating in-application
streams and pumps.

Note that the application code must create the streams with names specified in the Outputs.
For example, if your Outputs defines output streams named ExampleOutputStream1 and
ExampleOutputStream2, then your application code must create these streams.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 102400.

Required: No

ApplicationDescription

Summary description of the application.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 1024.

Required: No

ApplicationName

Name of your Amazon Kinesis Analytics application (for example, sample-app).

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

CloudWatchLoggingOptions

Use this parameter to configure a CloudWatch log stream to monitor application configuration
errors. For more information, see Working with Amazon CloudWatch Logs.

CreateApplication 350

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-app-code.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/cloudwatch-logs.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Type: Array of CloudWatchLoggingOption objects

Required: No

Inputs

Use this parameter to configure the application input.

You can configure your application to receive input from a single streaming source. In this
configuration, you map this streaming source to an in-application stream that is created. Your
application code can then query the in-application stream like a table (you can think of it as a
constantly updating table).

For the streaming source, you provide its Amazon Resource Name (ARN) and format of data
on the stream (for example, JSON, CSV, etc.). You also must provide an IAM role that Amazon
Kinesis Analytics can assume to read this stream on your behalf.

To create the in-application stream, you need to specify a schema to transform your data into a
schematized version used in SQL. In the schema, you provide the necessary mapping of the data
elements in the streaming source to record columns in the in-app stream.

Type: Array of Input objects

Required: No

Outputs

You can configure application output to write data from any of the in-application streams to up
to three destinations.

These destinations can be Amazon Kinesis streams, Amazon Kinesis Firehose delivery streams,
AWS Lambda destinations, or any combination of the three.

In the configuration, you specify the in-application stream name, the destination stream or
Lambda function Amazon Resource Name (ARN), and the format to use when writing data.
You must also provide an IAM role that Amazon Kinesis Analytics can assume to write to the
destination stream or Lambda function on your behalf.

In the output configuration, you also provide the output stream or Lambda function ARN. For
stream destinations, you provide the format of data in the stream (for example, JSON, CSV).
You also must provide an IAM role that Amazon Kinesis Analytics can assume to write to the
stream or Lambda function on your behalf.

CreateApplication 351

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Type: Array of Output objects

Required: No

Tags

A list of one or more tags to assign to the application. A tag is a key-value pair that identifies
an application. Note that the maximum number of application tags includes system tags. The
maximum number of user-defined application tags is 50. For more information, see Using
Tagging.

Type: Array of Tag objects

Array Members: Minimum number of 1 item. Maximum number of 200 items.

Required: No

Response Syntax

{
 "ApplicationSummary": {
 "ApplicationARN": "string",
 "ApplicationName": "string",
 "ApplicationStatus": "string"
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

ApplicationSummary

In response to your CreateApplication request, Amazon Kinesis Analytics returns a response
with a summary of the application it created, including the application Amazon Resource Name
(ARN), name, and status.

Type: ApplicationSummary object

CreateApplication 352

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-tagging.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-tagging.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Errors

CodeValidationException

User-provided application code (query) is invalid. This can be a simple syntax error.

HTTP Status Code: 400

ConcurrentModificationException

Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

HTTP Status Code: 400

InvalidArgumentException

Specified input parameter value is invalid.

HTTP Status Code: 400

LimitExceededException

Exceeded the number of applications allowed.

HTTP Status Code: 400

ResourceInUseException

Application is not available for this operation.

HTTP Status Code: 400

TooManyTagsException

Application created with too many tags, or too many tags added to an application. Note that
the maximum number of application tags includes system tags. The maximum number of user-
defined application tags is 50.

HTTP Status Code: 400

UnsupportedOperationException

The request was rejected because a specified parameter is not supported or a specified resource
is not valid for this operation.

HTTP Status Code: 400

CreateApplication 353

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

CreateApplication 354

https://docs.aws.amazon.com/goto/aws-cli/kinesisanalytics-2015-08-14/CreateApplication
https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesisanalytics-2015-08-14/CreateApplication
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/CreateApplication
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/CreateApplication
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/CreateApplication
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/kinesisanalytics-2015-08-14/CreateApplication
https://docs.aws.amazon.com/goto/SdkForPHPV3/kinesisanalytics-2015-08-14/CreateApplication
https://docs.aws.amazon.com/goto/boto3/kinesisanalytics-2015-08-14/CreateApplication
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/CreateApplication

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

DeleteApplication

Note

This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which
only supports SQL applications. Version 2 of the API supports SQL and Java applications.
For more information about version 2, see Amazon Kinesis Data Analytics API V2
Documentation.

Deletes the specified application. Amazon Kinesis Analytics halts application execution and deletes
the application, including any application artifacts (such as in-application streams, reference table,
and application code).

This operation requires permissions to perform the kinesisanalytics:DeleteApplication
action.

Request Syntax

{
 "ApplicationName": "string",
 "CreateTimestamp": number
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationName

Name of the Amazon Kinesis Analytics application to delete.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

DeleteApplication 355

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

CreateTimestamp

You can use the DescribeApplication operation to get this value.

Type: Timestamp

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

ConcurrentModificationException

Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

HTTP Status Code: 400

ResourceInUseException

Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException

Specified application can't be found.

HTTP Status Code: 400

UnsupportedOperationException

The request was rejected because a specified parameter is not supported or a specified resource
is not valid for this operation.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

DeleteApplication 356

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

DeleteApplication 357

https://docs.aws.amazon.com/goto/aws-cli/kinesisanalytics-2015-08-14/DeleteApplication
https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesisanalytics-2015-08-14/DeleteApplication
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/DeleteApplication
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/DeleteApplication
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/DeleteApplication
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/kinesisanalytics-2015-08-14/DeleteApplication
https://docs.aws.amazon.com/goto/SdkForPHPV3/kinesisanalytics-2015-08-14/DeleteApplication
https://docs.aws.amazon.com/goto/boto3/kinesisanalytics-2015-08-14/DeleteApplication
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/DeleteApplication

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

DeleteApplicationCloudWatchLoggingOption

Note

This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which
only supports SQL applications. Version 2 of the API supports SQL and Java applications.
For more information about version 2, see Amazon Kinesis Data Analytics API V2
Documentation.

Deletes a CloudWatch log stream from an application. For more information about using
CloudWatch log streams with Amazon Kinesis Analytics applications, see Working with Amazon
CloudWatch Logs.

Request Syntax

{
 "ApplicationName": "string",
 "CloudWatchLoggingOptionId": "string",
 "CurrentApplicationVersionId": number
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationName

The Kinesis Analytics application name.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

CloudWatchLoggingOptionId

The CloudWatchLoggingOptionId of the CloudWatch logging option to delete. You can get
the CloudWatchLoggingOptionId by using the DescribeApplication operation.

DeleteApplicationCloudWatchLoggingOption 358

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/cloudwatch-logs.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/cloudwatch-logs.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_DescribeApplication.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

CurrentApplicationVersionId

The version ID of the Kinesis Analytics application.

Type: Long

Valid Range: Minimum value of 1. Maximum value of 999999999.

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

ConcurrentModificationException

Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

HTTP Status Code: 400

InvalidArgumentException

Specified input parameter value is invalid.

HTTP Status Code: 400

ResourceInUseException

Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException

Specified application can't be found.

DeleteApplicationCloudWatchLoggingOption 359

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

HTTP Status Code: 400

UnsupportedOperationException

The request was rejected because a specified parameter is not supported or a specified resource
is not valid for this operation.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

DeleteApplicationCloudWatchLoggingOption 360

https://docs.aws.amazon.com/goto/aws-cli/kinesisanalytics-2015-08-14/DeleteApplicationCloudWatchLoggingOption
https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesisanalytics-2015-08-14/DeleteApplicationCloudWatchLoggingOption
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/DeleteApplicationCloudWatchLoggingOption
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/DeleteApplicationCloudWatchLoggingOption
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/DeleteApplicationCloudWatchLoggingOption
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/kinesisanalytics-2015-08-14/DeleteApplicationCloudWatchLoggingOption
https://docs.aws.amazon.com/goto/SdkForPHPV3/kinesisanalytics-2015-08-14/DeleteApplicationCloudWatchLoggingOption
https://docs.aws.amazon.com/goto/boto3/kinesisanalytics-2015-08-14/DeleteApplicationCloudWatchLoggingOption
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/DeleteApplicationCloudWatchLoggingOption

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

DeleteApplicationInputProcessingConfiguration

Note

This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which
only supports SQL applications. Version 2 of the API supports SQL and Java applications.
For more information about version 2, see Amazon Kinesis Data Analytics API V2
Documentation.

Deletes an InputProcessingConfiguration from an input.

Request Syntax

{
 "ApplicationName": "string",
 "CurrentApplicationVersionId": number,
 "InputId": "string"
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationName

The Kinesis Analytics application name.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

CurrentApplicationVersionId

The version ID of the Kinesis Analytics application.

Type: Long

DeleteApplicationInputProcessingConfiguration 361

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_InputProcessingConfiguration.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Valid Range: Minimum value of 1. Maximum value of 999999999.

Required: Yes

InputId

The ID of the input configuration from which to delete the input processing configuration. You
can get a list of the input IDs for an application by using the DescribeApplication operation.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

ConcurrentModificationException

Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

HTTP Status Code: 400

InvalidArgumentException

Specified input parameter value is invalid.

HTTP Status Code: 400

ResourceInUseException

Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException

Specified application can't be found.

DeleteApplicationInputProcessingConfiguration 362

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_DescribeApplication.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

HTTP Status Code: 400

UnsupportedOperationException

The request was rejected because a specified parameter is not supported or a specified resource
is not valid for this operation.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

DeleteApplicationInputProcessingConfiguration 363

https://docs.aws.amazon.com/goto/aws-cli/kinesisanalytics-2015-08-14/DeleteApplicationInputProcessingConfiguration
https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesisanalytics-2015-08-14/DeleteApplicationInputProcessingConfiguration
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/DeleteApplicationInputProcessingConfiguration
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/DeleteApplicationInputProcessingConfiguration
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/DeleteApplicationInputProcessingConfiguration
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/kinesisanalytics-2015-08-14/DeleteApplicationInputProcessingConfiguration
https://docs.aws.amazon.com/goto/SdkForPHPV3/kinesisanalytics-2015-08-14/DeleteApplicationInputProcessingConfiguration
https://docs.aws.amazon.com/goto/boto3/kinesisanalytics-2015-08-14/DeleteApplicationInputProcessingConfiguration
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/DeleteApplicationInputProcessingConfiguration

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

DeleteApplicationOutput

Note

This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which
only supports SQL applications. Version 2 of the API supports SQL and Java applications.
For more information about version 2, see Amazon Kinesis Data Analytics API V2
Documentation.

Deletes output destination configuration from your application configuration. Amazon Kinesis
Analytics will no longer write data from the corresponding in-application stream to the external
output destination.

This operation requires permissions to perform the
kinesisanalytics:DeleteApplicationOutput action.

Request Syntax

{
 "ApplicationName": "string",
 "CurrentApplicationVersionId": number,
 "OutputId": "string"
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationName

Amazon Kinesis Analytics application name.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

DeleteApplicationOutput 364

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

CurrentApplicationVersionId

Amazon Kinesis Analytics application version. You can use the DescribeApplication operation
to get the current application version. If the version specified is not the current version, the
ConcurrentModificationException is returned.

Type: Long

Valid Range: Minimum value of 1. Maximum value of 999999999.

Required: Yes

OutputId

The ID of the configuration to delete. Each output configuration that is added to the
application, either when the application is created or later using the AddApplicationOutput
operation, has a unique ID. You need to provide the ID to uniquely identify the output
configuration that you want to delete from the application configuration. You can use the
DescribeApplication operation to get the specific OutputId.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

ConcurrentModificationException

Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

HTTP Status Code: 400

InvalidArgumentException

Specified input parameter value is invalid.

DeleteApplicationOutput 365

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_DescribeApplication.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_AddApplicationOutput.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_DescribeApplication.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

HTTP Status Code: 400

ResourceInUseException

Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException

Specified application can't be found.

HTTP Status Code: 400

UnsupportedOperationException

The request was rejected because a specified parameter is not supported or a specified resource
is not valid for this operation.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

DeleteApplicationOutput 366

https://docs.aws.amazon.com/goto/aws-cli/kinesisanalytics-2015-08-14/DeleteApplicationOutput
https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesisanalytics-2015-08-14/DeleteApplicationOutput
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/DeleteApplicationOutput
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/DeleteApplicationOutput
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/DeleteApplicationOutput
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/kinesisanalytics-2015-08-14/DeleteApplicationOutput
https://docs.aws.amazon.com/goto/SdkForPHPV3/kinesisanalytics-2015-08-14/DeleteApplicationOutput
https://docs.aws.amazon.com/goto/boto3/kinesisanalytics-2015-08-14/DeleteApplicationOutput
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/DeleteApplicationOutput

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

DeleteApplicationReferenceDataSource

Note

This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which
only supports SQL applications. Version 2 of the API supports SQL and Java applications.
For more information about version 2, see Amazon Kinesis Data Analytics API V2
Documentation.

Deletes a reference data source configuration from the specified application configuration.

If the application is running, Amazon Kinesis Analytics immediately removes the in-application
table that you created using the AddApplicationReferenceDataSource operation.

This operation requires permissions to perform the
kinesisanalytics.DeleteApplicationReferenceDataSource action.

Request Syntax

{
 "ApplicationName": "string",
 "CurrentApplicationVersionId": number,
 "ReferenceId": "string"
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationName

Name of an existing application.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

DeleteApplicationReferenceDataSource 367

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_AddApplicationReferenceDataSource.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

CurrentApplicationVersionId

Version of the application. You can use the DescribeApplication operation to get the
current application version. If the version specified is not the current version, the
ConcurrentModificationException is returned.

Type: Long

Valid Range: Minimum value of 1. Maximum value of 999999999.

Required: Yes

ReferenceId

ID of the reference data source. When you add a reference data source to your application using
the AddApplicationReferenceDataSource, Amazon Kinesis Analytics assigns an ID. You can use
the DescribeApplication operation to get the reference ID.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

ConcurrentModificationException

Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

HTTP Status Code: 400

InvalidArgumentException

Specified input parameter value is invalid.

HTTP Status Code: 400

DeleteApplicationReferenceDataSource 368

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_DescribeApplication.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_AddApplicationReferenceDataSource.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_DescribeApplication.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

ResourceInUseException

Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException

Specified application can't be found.

HTTP Status Code: 400

UnsupportedOperationException

The request was rejected because a specified parameter is not supported or a specified resource
is not valid for this operation.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

DeleteApplicationReferenceDataSource 369

https://docs.aws.amazon.com/goto/aws-cli/kinesisanalytics-2015-08-14/DeleteApplicationReferenceDataSource
https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesisanalytics-2015-08-14/DeleteApplicationReferenceDataSource
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/DeleteApplicationReferenceDataSource
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/DeleteApplicationReferenceDataSource
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/DeleteApplicationReferenceDataSource
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/kinesisanalytics-2015-08-14/DeleteApplicationReferenceDataSource
https://docs.aws.amazon.com/goto/SdkForPHPV3/kinesisanalytics-2015-08-14/DeleteApplicationReferenceDataSource
https://docs.aws.amazon.com/goto/boto3/kinesisanalytics-2015-08-14/DeleteApplicationReferenceDataSource
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/DeleteApplicationReferenceDataSource

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

DescribeApplication

Note

This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which
only supports SQL applications. Version 2 of the API supports SQL and Java applications.
For more information about version 2, see Amazon Kinesis Data Analytics API V2
Documentation.

Returns information about a specific Amazon Kinesis Analytics application.

If you want to retrieve a list of all applications in your account, use the ListApplications operation.

This operation requires permissions to perform the kinesisanalytics:DescribeApplication
action. You can use DescribeApplication to get the current application versionId, which you
need to call other operations such as Update.

Request Syntax

{
 "ApplicationName": "string"
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationName

Name of the application.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

DescribeApplication 370

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_ListApplications.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Response Syntax

{
 "ApplicationDetail": {
 "ApplicationARN": "string",
 "ApplicationCode": "string",
 "ApplicationDescription": "string",
 "ApplicationName": "string",
 "ApplicationStatus": "string",
 "ApplicationVersionId": number,
 "CloudWatchLoggingOptionDescriptions": [
 {
 "CloudWatchLoggingOptionId": "string",
 "LogStreamARN": "string",
 "RoleARN": "string"
 }
],
 "CreateTimestamp": number,
 "InputDescriptions": [
 {
 "InAppStreamNames": ["string"],
 "InputId": "string",
 "InputParallelism": {
 "Count": number
 },
 "InputProcessingConfigurationDescription": {
 "InputLambdaProcessorDescription": {
 "ResourceARN": "string",
 "RoleARN": "string"
 }
 },
 "InputSchema": {
 "RecordColumns": [
 {
 "Mapping": "string",
 "Name": "string",
 "SqlType": "string"
 }
],
 "RecordEncoding": "string",
 "RecordFormat": {
 "MappingParameters": {
 "CSVMappingParameters": {

DescribeApplication 371

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "RecordColumnDelimiter": "string",
 "RecordRowDelimiter": "string"
 },
 "JSONMappingParameters": {
 "RecordRowPath": "string"
 }
 },
 "RecordFormatType": "string"
 }
 },
 "InputStartingPositionConfiguration": {
 "InputStartingPosition": "string"
 },
 "KinesisFirehoseInputDescription": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "KinesisStreamsInputDescription": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "NamePrefix": "string"
 }
],
 "LastUpdateTimestamp": number,
 "OutputDescriptions": [
 {
 "DestinationSchema": {
 "RecordFormatType": "string"
 },
 "KinesisFirehoseOutputDescription": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "KinesisStreamsOutputDescription": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "LambdaOutputDescription": {
 "ResourceARN": "string",
 "RoleARN": "string"
 },
 "Name": "string",
 "OutputId": "string"

DescribeApplication 372

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 }
],
 "ReferenceDataSourceDescriptions": [
 {
 "ReferenceId": "string",
 "ReferenceSchema": {
 "RecordColumns": [
 {
 "Mapping": "string",
 "Name": "string",
 "SqlType": "string"
 }
],
 "RecordEncoding": "string",
 "RecordFormat": {
 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordColumnDelimiter": "string",
 "RecordRowDelimiter": "string"
 },
 "JSONMappingParameters": {
 "RecordRowPath": "string"
 }
 },
 "RecordFormatType": "string"
 }
 },
 "S3ReferenceDataSourceDescription": {
 "BucketARN": "string",
 "FileKey": "string",
 "ReferenceRoleARN": "string"
 },
 "TableName": "string"
 }
]
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

DescribeApplication 373

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

ApplicationDetail

Provides a description of the application, such as the application Amazon Resource Name (ARN),
status, latest version, and input and output configuration details.

Type: ApplicationDetail object

Errors

ResourceNotFoundException

Specified application can't be found.

HTTP Status Code: 400

UnsupportedOperationException

The request was rejected because a specified parameter is not supported or a specified resource
is not valid for this operation.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

DescribeApplication 374

https://docs.aws.amazon.com/goto/aws-cli/kinesisanalytics-2015-08-14/DescribeApplication
https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesisanalytics-2015-08-14/DescribeApplication
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/DescribeApplication
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/DescribeApplication
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/DescribeApplication
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/kinesisanalytics-2015-08-14/DescribeApplication
https://docs.aws.amazon.com/goto/SdkForPHPV3/kinesisanalytics-2015-08-14/DescribeApplication
https://docs.aws.amazon.com/goto/boto3/kinesisanalytics-2015-08-14/DescribeApplication
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/DescribeApplication

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

DiscoverInputSchema

Note

This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which
only supports SQL applications. Version 2 of the API supports SQL and Java applications.
For more information about version 2, see Amazon Kinesis Data Analytics API V2
Documentation.

Infers a schema by evaluating sample records on the specified streaming source (Amazon Kinesis
stream or Amazon Kinesis Firehose delivery stream) or S3 object. In the response, the operation
returns the inferred schema and also the sample records that the operation used to infer the
schema.

You can use the inferred schema when configuring a streaming source for your application.
For conceptual information, see Configuring Application Input. Note that when you create an
application using the Amazon Kinesis Analytics console, the console uses this operation to infer a
schema and show it in the console user interface.

This operation requires permissions to perform the kinesisanalytics:DiscoverInputSchema
action.

Request Syntax

{
 "InputProcessingConfiguration": {
 "InputLambdaProcessor": {
 "ResourceARN": "string",
 "RoleARN": "string"
 }
 },
 "InputStartingPositionConfiguration": {
 "InputStartingPosition": "string"
 },
 "ResourceARN": "string",
 "RoleARN": "string",
 "S3Configuration": {
 "BucketARN": "string",
 "FileKey": "string",

DiscoverInputSchema 375

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "RoleARN": "string"
 }
}

Request Parameters

The request accepts the following data in JSON format.

InputProcessingConfiguration

The InputProcessingConfiguration to use to preprocess the records before discovering the
schema of the records.

Type: InputProcessingConfiguration object

Required: No

InputStartingPositionConfiguration

Point at which you want Amazon Kinesis Analytics to start reading records from the specified
streaming source discovery purposes.

Type: InputStartingPositionConfiguration object

Required: No

ResourceARN

Amazon Resource Name (ARN) of the streaming source.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

RoleARN

ARN of the IAM role that Amazon Kinesis Analytics can assume to access the stream on your
behalf.

Type: String

DiscoverInputSchema 376

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_InputProcessingConfiguration.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

S3Configuration

Specify this parameter to discover a schema from data in an Amazon S3 object.

Type: S3Configuration object

Required: No

Response Syntax

{
 "InputSchema": {
 "RecordColumns": [
 {
 "Mapping": "string",
 "Name": "string",
 "SqlType": "string"
 }
],
 "RecordEncoding": "string",
 "RecordFormat": {
 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordColumnDelimiter": "string",
 "RecordRowDelimiter": "string"
 },
 "JSONMappingParameters": {
 "RecordRowPath": "string"
 }
 },
 "RecordFormatType": "string"
 }
 },
 "ParsedInputRecords": [
 ["string"]
],
 "ProcessedInputRecords": ["string"],

DiscoverInputSchema 377

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "RawInputRecords": ["string"]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

InputSchema

Schema inferred from the streaming source. It identifies the format of the data in the streaming
source and how each data element maps to corresponding columns in the in-application stream
that you can create.

Type: SourceSchema object

ParsedInputRecords

An array of elements, where each element corresponds to a row in a stream record (a stream
record can have more than one row).

Type: Array of arrays of strings

ProcessedInputRecords

Stream data that was modified by the processor specified in the
InputProcessingConfiguration parameter.

Type: Array of strings

RawInputRecords

Raw stream data that was sampled to infer the schema.

Type: Array of strings

Errors

InvalidArgumentException

Specified input parameter value is invalid.

HTTP Status Code: 400

DiscoverInputSchema 378

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

ResourceProvisionedThroughputExceededException

Discovery failed to get a record from the streaming source because of the Amazon Kinesis
Streams ProvisionedThroughputExceededException. For more information, see GetRecords in
the Amazon Kinesis Streams API Reference.

HTTP Status Code: 400

ServiceUnavailableException

The service is unavailable. Back off and retry the operation.

HTTP Status Code: 500

UnableToDetectSchemaException

Data format is not valid. Amazon Kinesis Analytics is not able to detect schema for the given
streaming source.

HTTP Status Code: 400

UnsupportedOperationException

The request was rejected because a specified parameter is not supported or a specified resource
is not valid for this operation.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

DiscoverInputSchema 379

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html
https://docs.aws.amazon.com/goto/aws-cli/kinesisanalytics-2015-08-14/DiscoverInputSchema
https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesisanalytics-2015-08-14/DiscoverInputSchema
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/DiscoverInputSchema
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/DiscoverInputSchema
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/DiscoverInputSchema
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/kinesisanalytics-2015-08-14/DiscoverInputSchema
https://docs.aws.amazon.com/goto/SdkForPHPV3/kinesisanalytics-2015-08-14/DiscoverInputSchema
https://docs.aws.amazon.com/goto/boto3/kinesisanalytics-2015-08-14/DiscoverInputSchema

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• AWS SDK for Ruby V3

DiscoverInputSchema 380

https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/DiscoverInputSchema

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

ListApplications

Note

This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which
only supports SQL applications. Version 2 of the API supports SQL and Java applications.
For more information about version 2, see Amazon Kinesis Data Analytics API V2
Documentation.

Returns a list of Amazon Kinesis Analytics applications in your account. For each application, the
response includes the application name, Amazon Resource Name (ARN), and status. If the response
returns the HasMoreApplications value as true, you can send another request by adding the
ExclusiveStartApplicationName in the request body, and set the value of this to the last
application name from the previous response.

If you want detailed information about a specific application, use DescribeApplication.

This operation requires permissions to perform the kinesisanalytics:ListApplications
action.

Request Syntax

{
 "ExclusiveStartApplicationName": "string",
 "Limit": number
}

Request Parameters

The request accepts the following data in JSON format.

ExclusiveStartApplicationName

Name of the application to start the list with. When using pagination to retrieve the list, you
don't need to specify this parameter in the first request. However, in subsequent requests, you
add the last application name from the previous response to get the next page of applications.

Type: String

ListApplications 381

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_DescribeApplication.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: No

Limit

Maximum number of applications to list.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 50.

Required: No

Response Syntax

{
 "ApplicationSummaries": [
 {
 "ApplicationARN": "string",
 "ApplicationName": "string",
 "ApplicationStatus": "string"
 }
],
 "HasMoreApplications": boolean
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

ApplicationSummaries

List of ApplicationSummary objects.

Type: Array of ApplicationSummary objects

HasMoreApplications

Returns true if there are more applications to retrieve.

ListApplications 382

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Type: Boolean

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

ListApplications 383

https://docs.aws.amazon.com/goto/aws-cli/kinesisanalytics-2015-08-14/ListApplications
https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesisanalytics-2015-08-14/ListApplications
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/ListApplications
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/ListApplications
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/ListApplications
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/kinesisanalytics-2015-08-14/ListApplications
https://docs.aws.amazon.com/goto/SdkForPHPV3/kinesisanalytics-2015-08-14/ListApplications
https://docs.aws.amazon.com/goto/boto3/kinesisanalytics-2015-08-14/ListApplications
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/ListApplications

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

ListTagsForResource

Retrieves the list of key-value tags assigned to the application. For more information, see Using
Tagging.

Request Syntax

{
 "ResourceARN": "string"
}

Request Parameters

The request accepts the following data in JSON format.

ResourceARN

The ARN of the application for which to retrieve tags.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

Response Syntax

{
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

ListTagsForResource 384

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-tagging.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-tagging.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

The following data is returned in JSON format by the service.

Tags

The key-value tags assigned to the application.

Type: Array of Tag objects

Array Members: Minimum number of 1 item. Maximum number of 200 items.

Errors

ConcurrentModificationException

Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

HTTP Status Code: 400

InvalidArgumentException

Specified input parameter value is invalid.

HTTP Status Code: 400

ResourceNotFoundException

Specified application can't be found.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

ListTagsForResource 385

https://docs.aws.amazon.com/goto/aws-cli/kinesisanalytics-2015-08-14/ListTagsForResource
https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesisanalytics-2015-08-14/ListTagsForResource
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/ListTagsForResource
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/ListTagsForResource
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/ListTagsForResource

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

ListTagsForResource 386

https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/kinesisanalytics-2015-08-14/ListTagsForResource
https://docs.aws.amazon.com/goto/SdkForPHPV3/kinesisanalytics-2015-08-14/ListTagsForResource
https://docs.aws.amazon.com/goto/boto3/kinesisanalytics-2015-08-14/ListTagsForResource
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/ListTagsForResource

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

StartApplication

Note

This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which
only supports SQL applications. Version 2 of the API supports SQL and Java applications.
For more information about version 2, see Amazon Kinesis Data Analytics API V2
Documentation.

Starts the specified Amazon Kinesis Analytics application. After creating an application, you must
exclusively call this operation to start your application.

After the application starts, it begins consuming the input data, processes it, and writes the output
to the configured destination.

The application status must be READY for you to start an application. You can get the application
status in the console or using the DescribeApplication operation.

After you start the application, you can stop the application from processing the input by calling
the StopApplication operation.

This operation requires permissions to perform the kinesisanalytics:StartApplication
action.

Request Syntax

{
 "ApplicationName": "string",
 "InputConfigurations": [
 {
 "Id": "string",
 "InputStartingPositionConfiguration": {
 "InputStartingPosition": "string"
 }
 }
]
}

StartApplication 387

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_DescribeApplication.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_StopApplication.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Request Parameters

The request accepts the following data in JSON format.

ApplicationName

Name of the application.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

InputConfigurations

Identifies the specific input, by ID, that the application starts consuming. Amazon Kinesis
Analytics starts reading the streaming source associated with the input. You can also specify
where in the streaming source you want Amazon Kinesis Analytics to start reading.

Type: Array of InputConfiguration objects

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

InvalidApplicationConfigurationException

User-provided application configuration is not valid.

HTTP Status Code: 400

InvalidArgumentException

Specified input parameter value is invalid.

HTTP Status Code: 400

StartApplication 388

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

ResourceInUseException

Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException

Specified application can't be found.

HTTP Status Code: 400

UnsupportedOperationException

The request was rejected because a specified parameter is not supported or a specified resource
is not valid for this operation.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

StartApplication 389

https://docs.aws.amazon.com/goto/aws-cli/kinesisanalytics-2015-08-14/StartApplication
https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesisanalytics-2015-08-14/StartApplication
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/StartApplication
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/StartApplication
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/StartApplication
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/kinesisanalytics-2015-08-14/StartApplication
https://docs.aws.amazon.com/goto/SdkForPHPV3/kinesisanalytics-2015-08-14/StartApplication
https://docs.aws.amazon.com/goto/boto3/kinesisanalytics-2015-08-14/StartApplication
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/StartApplication

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

StopApplication

Note

This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which
only supports SQL applications. Version 2 of the API supports SQL and Java applications.
For more information about version 2, see Amazon Kinesis Data Analytics API V2
Documentation.

Stops the application from processing input data. You can stop an application only if it is in the
running state. You can use the DescribeApplication operation to find the application state. After
the application is stopped, Amazon Kinesis Analytics stops reading data from the input, the
application stops processing data, and there is no output written to the destination.

This operation requires permissions to perform the kinesisanalytics:StopApplication
action.

Request Syntax

{
 "ApplicationName": "string"
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationName

Name of the running application to stop.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

StopApplication 390

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_DescribeApplication.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

ResourceInUseException

Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException

Specified application can't be found.

HTTP Status Code: 400

UnsupportedOperationException

The request was rejected because a specified parameter is not supported or a specified resource
is not valid for this operation.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

StopApplication 391

https://docs.aws.amazon.com/goto/aws-cli/kinesisanalytics-2015-08-14/StopApplication
https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesisanalytics-2015-08-14/StopApplication
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/StopApplication
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/StopApplication
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/StopApplication
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/kinesisanalytics-2015-08-14/StopApplication
https://docs.aws.amazon.com/goto/SdkForPHPV3/kinesisanalytics-2015-08-14/StopApplication
https://docs.aws.amazon.com/goto/boto3/kinesisanalytics-2015-08-14/StopApplication
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/StopApplication

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

StopApplication 392

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

TagResource

Adds one or more key-value tags to a Kinesis Analytics application. Note that the maximum
number of application tags includes system tags. The maximum number of user-defined
application tags is 50. For more information, see Using Tagging.

Request Syntax

{
 "ResourceARN": "string",
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
]
}

Request Parameters

The request accepts the following data in JSON format.

ResourceARN

The ARN of the application to assign the tags.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

Tags

The key-value tags to assign to the application.

Type: Array of Tag objects

Array Members: Minimum number of 1 item. Maximum number of 200 items.

Required: Yes

TagResource 393

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-tagging.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

ConcurrentModificationException

Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

HTTP Status Code: 400

InvalidArgumentException

Specified input parameter value is invalid.

HTTP Status Code: 400

ResourceInUseException

Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException

Specified application can't be found.

HTTP Status Code: 400

TooManyTagsException

Application created with too many tags, or too many tags added to an application. Note that
the maximum number of application tags includes system tags. The maximum number of user-
defined application tags is 50.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

TagResource 394

https://docs.aws.amazon.com/goto/aws-cli/kinesisanalytics-2015-08-14/TagResource

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

TagResource 395

https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesisanalytics-2015-08-14/TagResource
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/TagResource
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/TagResource
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/TagResource
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/kinesisanalytics-2015-08-14/TagResource
https://docs.aws.amazon.com/goto/SdkForPHPV3/kinesisanalytics-2015-08-14/TagResource
https://docs.aws.amazon.com/goto/boto3/kinesisanalytics-2015-08-14/TagResource
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/TagResource

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

UntagResource

Removes one or more tags from a Kinesis Analytics application. For more information, see Using
Tagging.

Request Syntax

{
 "ResourceARN": "string",
 "TagKeys": ["string"]
}

Request Parameters

The request accepts the following data in JSON format.

ResourceARN

The ARN of the Kinesis Analytics application from which to remove the tags.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

TagKeys

A list of keys of tags to remove from the specified application.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 200 items.

Length Constraints: Minimum length of 1. Maximum length of 128.

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

UntagResource 396

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-tagging.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-tagging.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Errors

ConcurrentModificationException

Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

HTTP Status Code: 400

InvalidArgumentException

Specified input parameter value is invalid.

HTTP Status Code: 400

ResourceInUseException

Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException

Specified application can't be found.

HTTP Status Code: 400

TooManyTagsException

Application created with too many tags, or too many tags added to an application. Note that
the maximum number of application tags includes system tags. The maximum number of user-
defined application tags is 50.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

UntagResource 397

https://docs.aws.amazon.com/goto/aws-cli/kinesisanalytics-2015-08-14/UntagResource
https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesisanalytics-2015-08-14/UntagResource
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/UntagResource

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

UntagResource 398

https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/UntagResource
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/UntagResource
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/kinesisanalytics-2015-08-14/UntagResource
https://docs.aws.amazon.com/goto/SdkForPHPV3/kinesisanalytics-2015-08-14/UntagResource
https://docs.aws.amazon.com/goto/boto3/kinesisanalytics-2015-08-14/UntagResource
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/UntagResource

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

UpdateApplication

Note

This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which
only supports SQL applications. Version 2 of the API supports SQL and Java applications.
For more information about version 2, see Amazon Kinesis Data Analytics API V2
Documentation.

Updates an existing Amazon Kinesis Analytics application. Using this API, you can update
application code, input configuration, and output configuration.

Note that Amazon Kinesis Analytics updates the CurrentApplicationVersionId each time you
update your application.

This operation requires permission for the kinesisanalytics:UpdateApplication action.

Request Syntax

{
 "ApplicationName": "string",
 "ApplicationUpdate": {
 "ApplicationCodeUpdate": "string",
 "CloudWatchLoggingOptionUpdates": [
 {
 "CloudWatchLoggingOptionId": "string",
 "LogStreamARNUpdate": "string",
 "RoleARNUpdate": "string"
 }
],
 "InputUpdates": [
 {
 "InputId": "string",
 "InputParallelismUpdate": {
 "CountUpdate": number
 },
 "InputProcessingConfigurationUpdate": {
 "InputLambdaProcessorUpdate": {
 "ResourceARNUpdate": "string",
 "RoleARNUpdate": "string"
 }

UpdateApplication 399

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 },
 "InputSchemaUpdate": {
 "RecordColumnUpdates": [
 {
 "Mapping": "string",
 "Name": "string",
 "SqlType": "string"
 }
],
 "RecordEncodingUpdate": "string",
 "RecordFormatUpdate": {
 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordColumnDelimiter": "string",
 "RecordRowDelimiter": "string"
 },
 "JSONMappingParameters": {
 "RecordRowPath": "string"
 }
 },
 "RecordFormatType": "string"
 }
 },
 "KinesisFirehoseInputUpdate": {
 "ResourceARNUpdate": "string",
 "RoleARNUpdate": "string"
 },
 "KinesisStreamsInputUpdate": {
 "ResourceARNUpdate": "string",
 "RoleARNUpdate": "string"
 },
 "NamePrefixUpdate": "string"
 }
],
 "OutputUpdates": [
 {
 "DestinationSchemaUpdate": {
 "RecordFormatType": "string"
 },
 "KinesisFirehoseOutputUpdate": {
 "ResourceARNUpdate": "string",
 "RoleARNUpdate": "string"
 },
 "KinesisStreamsOutputUpdate": {

UpdateApplication 400

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 "ResourceARNUpdate": "string",
 "RoleARNUpdate": "string"
 },
 "LambdaOutputUpdate": {
 "ResourceARNUpdate": "string",
 "RoleARNUpdate": "string"
 },
 "NameUpdate": "string",
 "OutputId": "string"
 }
],
 "ReferenceDataSourceUpdates": [
 {
 "ReferenceId": "string",
 "ReferenceSchemaUpdate": {
 "RecordColumns": [
 {
 "Mapping": "string",
 "Name": "string",
 "SqlType": "string"
 }
],
 "RecordEncoding": "string",
 "RecordFormat": {
 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordColumnDelimiter": "string",
 "RecordRowDelimiter": "string"
 },
 "JSONMappingParameters": {
 "RecordRowPath": "string"
 }
 },
 "RecordFormatType": "string"
 }
 },
 "S3ReferenceDataSourceUpdate": {
 "BucketARNUpdate": "string",
 "FileKeyUpdate": "string",
 "ReferenceRoleARNUpdate": "string"
 },
 "TableNameUpdate": "string"
 }
]

UpdateApplication 401

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

 },
 "CurrentApplicationVersionId": number
}

Request Parameters

The request accepts the following data in JSON format.

ApplicationName

Name of the Amazon Kinesis Analytics application to update.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

ApplicationUpdate

Describes application updates.

Type: ApplicationUpdate object

Required: Yes

CurrentApplicationVersionId

The current application version ID. You can use the DescribeApplication operation to get this
value.

Type: Long

Valid Range: Minimum value of 1. Maximum value of 999999999.

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

UpdateApplication 402

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_DescribeApplication.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Errors

CodeValidationException

User-provided application code (query) is invalid. This can be a simple syntax error.

HTTP Status Code: 400

ConcurrentModificationException

Exception thrown as a result of concurrent modification to an application. For example, two
individuals attempting to edit the same application at the same time.

HTTP Status Code: 400

InvalidArgumentException

Specified input parameter value is invalid.

HTTP Status Code: 400

ResourceInUseException

Application is not available for this operation.

HTTP Status Code: 400

ResourceNotFoundException

Specified application can't be found.

HTTP Status Code: 400

UnsupportedOperationException

The request was rejected because a specified parameter is not supported or a specified resource
is not valid for this operation.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

UpdateApplication 403

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Data Types

The following data types are supported:

• ApplicationDetail

• ApplicationSummary

• ApplicationUpdate

• CloudWatchLoggingOption

• CloudWatchLoggingOptionDescription

• CloudWatchLoggingOptionUpdate

• CSVMappingParameters

• DestinationSchema

• Input

• InputConfiguration

• InputDescription

• InputLambdaProcessor

• InputLambdaProcessorDescription

• InputLambdaProcessorUpdate

• InputParallelism

• InputParallelismUpdate

• InputProcessingConfiguration

Data Types 404

https://docs.aws.amazon.com/goto/aws-cli/kinesisanalytics-2015-08-14/UpdateApplication
https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesisanalytics-2015-08-14/UpdateApplication
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/UpdateApplication
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/UpdateApplication
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/UpdateApplication
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/kinesisanalytics-2015-08-14/UpdateApplication
https://docs.aws.amazon.com/goto/SdkForPHPV3/kinesisanalytics-2015-08-14/UpdateApplication
https://docs.aws.amazon.com/goto/boto3/kinesisanalytics-2015-08-14/UpdateApplication
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/UpdateApplication

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• InputProcessingConfigurationDescription

• InputProcessingConfigurationUpdate

• InputSchemaUpdate

• InputStartingPositionConfiguration

• InputUpdate

• JSONMappingParameters

• KinesisFirehoseInput

• KinesisFirehoseInputDescription

• KinesisFirehoseInputUpdate

• KinesisFirehoseOutput

• KinesisFirehoseOutputDescription

• KinesisFirehoseOutputUpdate

• KinesisStreamsInput

• KinesisStreamsInputDescription

• KinesisStreamsInputUpdate

• KinesisStreamsOutput

• KinesisStreamsOutputDescription

• KinesisStreamsOutputUpdate

• LambdaOutput

• LambdaOutputDescription

• LambdaOutputUpdate

• MappingParameters

• Output

• OutputDescription

• OutputUpdate

• RecordColumn

• RecordFormat

• ReferenceDataSource

• ReferenceDataSourceDescription

• ReferenceDataSourceUpdate

Data Types 405

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• S3Configuration

• S3ReferenceDataSource

• S3ReferenceDataSourceDescription

• S3ReferenceDataSourceUpdate

• SourceSchema

• Tag

Data Types 406

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

ApplicationDetail

Note

This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which
only supports SQL applications. Version 2 of the API supports SQL and Java applications.
For more information about version 2, see Amazon Kinesis Data Analytics API V2
Documentation.

Provides a description of the application, including the application Amazon Resource Name (ARN),
status, latest version, and input and output configuration.

Contents

ApplicationARN

ARN of the application.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

ApplicationName

Name of the application.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

ApplicationStatus

Status of the application.

ApplicationDetail 407

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Type: String

Valid Values: DELETING | STARTING | STOPPING | READY | RUNNING | UPDATING |
AUTOSCALING

Required: Yes

ApplicationVersionId

Provides the current application version.

Type: Long

Valid Range: Minimum value of 1. Maximum value of 999999999.

Required: Yes

ApplicationCode

Returns the application code that you provided to perform data analysis on any of the in-
application streams in your application.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 102400.

Required: No

ApplicationDescription

Description of the application.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 1024.

Required: No

CloudWatchLoggingOptionDescriptions

Describes the CloudWatch log streams that are configured to receive application messages.
For more information about using CloudWatch log streams with Amazon Kinesis Analytics
applications, see Working with Amazon CloudWatch Logs.

Type: Array of CloudWatchLoggingOptionDescription objects

ApplicationDetail 408

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/cloudwatch-logs.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Required: No

CreateTimestamp

Time stamp when the application version was created.

Type: Timestamp

Required: No

InputDescriptions

Describes the application input configuration. For more information, see Configuring
Application Input.

Type: Array of InputDescription objects

Required: No

LastUpdateTimestamp

Time stamp when the application was last updated.

Type: Timestamp

Required: No

OutputDescriptions

Describes the application output configuration. For more information, see Configuring
Application Output.

Type: Array of OutputDescription objects

Required: No

ReferenceDataSourceDescriptions

Describes reference data sources configured for the application. For more information, see
Configuring Application Input.

Type: Array of ReferenceDataSourceDescription objects

Required: No

ApplicationDetail 409

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-output.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-output.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

ApplicationDetail 410

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/ApplicationDetail
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/ApplicationDetail
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/ApplicationDetail
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/ApplicationDetail

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

ApplicationSummary

Note

This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which
only supports SQL applications. Version 2 of the API supports SQL and Java applications.
For more information about version 2, see Amazon Kinesis Data Analytics API V2
Documentation.

Provides application summary information, including the application Amazon Resource Name
(ARN), name, and status.

Contents

ApplicationARN

ARN of the application.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

ApplicationName

Name of the application.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

ApplicationStatus

Status of the application.

ApplicationSummary 411

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Type: String

Valid Values: DELETING | STARTING | STOPPING | READY | RUNNING | UPDATING |
AUTOSCALING

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

ApplicationSummary 412

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/ApplicationSummary
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/ApplicationSummary
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/ApplicationSummary
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/ApplicationSummary

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

ApplicationUpdate

Describes updates to apply to an existing Amazon Kinesis Analytics application.

Contents

ApplicationCodeUpdate

Describes application code updates.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 102400.

Required: No

CloudWatchLoggingOptionUpdates

Describes application CloudWatch logging option updates.

Type: Array of CloudWatchLoggingOptionUpdate objects

Required: No

InputUpdates

Describes application input configuration updates.

Type: Array of InputUpdate objects

Required: No

OutputUpdates

Describes application output configuration updates.

Type: Array of OutputUpdate objects

Required: No

ReferenceDataSourceUpdates

Describes application reference data source updates.

Type: Array of ReferenceDataSourceUpdate objects

ApplicationUpdate 413

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

ApplicationUpdate 414

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/ApplicationUpdate
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/ApplicationUpdate
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/ApplicationUpdate
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/ApplicationUpdate

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

CloudWatchLoggingOption

Provides a description of CloudWatch logging options, including the log stream Amazon Resource
Name (ARN) and the role ARN.

Contents

LogStreamARN

ARN of the CloudWatch log to receive application messages.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

RoleARN

IAM ARN of the role to use to send application messages. Note: To write application messages
to CloudWatch, the IAM role that is used must have the PutLogEvents policy action enabled.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

CloudWatchLoggingOption 415

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/CloudWatchLoggingOption
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/CloudWatchLoggingOption
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/CloudWatchLoggingOption
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/CloudWatchLoggingOption

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

CloudWatchLoggingOption 416

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

CloudWatchLoggingOptionDescription

Description of the CloudWatch logging option.

Contents

LogStreamARN

ARN of the CloudWatch log to receive application messages.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

RoleARN

IAM ARN of the role to use to send application messages. Note: To write application messages
to CloudWatch, the IAM role used must have the PutLogEvents policy action enabled.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

CloudWatchLoggingOptionId

ID of the CloudWatch logging option description.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: No

CloudWatchLoggingOptionDescription 417

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

CloudWatchLoggingOptionDescription 418

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/CloudWatchLoggingOptionDescription
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/CloudWatchLoggingOptionDescription
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/CloudWatchLoggingOptionDescription
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/CloudWatchLoggingOptionDescription

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

CloudWatchLoggingOptionUpdate

Describes CloudWatch logging option updates.

Contents

CloudWatchLoggingOptionId

ID of the CloudWatch logging option to update

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

LogStreamARNUpdate

ARN of the CloudWatch log to receive application messages.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

RoleARNUpdate

IAM ARN of the role to use to send application messages. Note: To write application messages
to CloudWatch, the IAM role used must have the PutLogEvents policy action enabled.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

CloudWatchLoggingOptionUpdate 419

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

CloudWatchLoggingOptionUpdate 420

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/CloudWatchLoggingOptionUpdate
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/CloudWatchLoggingOptionUpdate
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/CloudWatchLoggingOptionUpdate
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/CloudWatchLoggingOptionUpdate

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

CSVMappingParameters

Provides additional mapping information when the record format uses delimiters, such as CSV. For
example, the following sample records use CSV format, where the records use the '\n' as the row
delimiter and a comma (",") as the column delimiter:

"name1", "address1"

"name2", "address2"

Contents

RecordColumnDelimiter

Column delimiter. For example, in a CSV format, a comma (",") is the typical column delimiter.

Type: String

Length Constraints: Minimum length of 1.

Required: Yes

RecordRowDelimiter

Row delimiter. For example, in a CSV format, '\n' is the typical row delimiter.

Type: String

Length Constraints: Minimum length of 1.

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

CSVMappingParameters 421

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/CSVMappingParameters
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/CSVMappingParameters
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/CSVMappingParameters
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/CSVMappingParameters

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

CSVMappingParameters 422

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

DestinationSchema

Describes the data format when records are written to the destination. For more information, see
Configuring Application Output.

Contents

RecordFormatType

Specifies the format of the records on the output stream.

Type: String

Valid Values: JSON | CSV

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

DestinationSchema 423

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-output.html
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/DestinationSchema
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/DestinationSchema
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/DestinationSchema
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/DestinationSchema

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Input

When you configure the application input, you specify the streaming source, the in-application
stream name that is created, and the mapping between the two. For more information, see
Configuring Application Input.

Contents

InputSchema

Describes the format of the data in the streaming source, and how each data element maps to
corresponding columns in the in-application stream that is being created.

Also used to describe the format of the reference data source.

Type: SourceSchema object

Required: Yes

NamePrefix

Name prefix to use when creating an in-application stream. Suppose that you specify a
prefix "MyInApplicationStream." Amazon Kinesis Analytics then creates one or more (as
per the InputParallelism count you specified) in-application streams with names
"MyInApplicationStream_001," "MyInApplicationStream_002," and so on.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Required: Yes

InputParallelism

Describes the number of in-application streams to create.

Data from your source is routed to these in-application input streams.

(see Configuring Application Input.

Type: InputParallelism object

Required: No

Input 424

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

InputProcessingConfiguration

The InputProcessingConfiguration for the input. An input processor transforms records as they
are received from the stream, before the application's SQL code executes. Currently, the only
input processing configuration available is InputLambdaProcessor.

Type: InputProcessingConfiguration object

Required: No

KinesisFirehoseInput

If the streaming source is an Amazon Kinesis Firehose delivery stream, identifies the delivery
stream's ARN and an IAM role that enables Amazon Kinesis Analytics to access the stream on
your behalf.

Note: Either KinesisStreamsInput or KinesisFirehoseInput is required.

Type: KinesisFirehoseInput object

Required: No

KinesisStreamsInput

If the streaming source is an Amazon Kinesis stream, identifies the stream's Amazon Resource
Name (ARN) and an IAM role that enables Amazon Kinesis Analytics to access the stream on
your behalf.

Note: Either KinesisStreamsInput or KinesisFirehoseInput is required.

Type: KinesisStreamsInput object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

Input 425

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_InputProcessingConfiguration.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_InputLambdaProcessor.html
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/Input
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/Input
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/Input

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• AWS SDK for Ruby V3

Input 426

https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/Input

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

InputConfiguration

When you start your application, you provide this configuration, which identifies the input source
and the point in the input source at which you want the application to start processing records.

Contents

Id

Input source ID. You can get this ID by calling the DescribeApplication operation.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

InputStartingPositionConfiguration

Point at which you want the application to start processing records from the streaming source.

Type: InputStartingPositionConfiguration object

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

InputConfiguration 427

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_DescribeApplication.html
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/InputConfiguration
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/InputConfiguration
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/InputConfiguration
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/InputConfiguration

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

InputDescription

Describes the application input configuration. For more information, see Configuring Application
Input.

Contents

InAppStreamNames

Returns the in-application stream names that are mapped to the stream source.

Type: Array of strings

Length Constraints: Minimum length of 1. Maximum length of 32.

Required: No

InputId

Input ID associated with the application input. This is the ID that Amazon Kinesis Analytics
assigns to each input configuration you add to your application.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: No

InputParallelism

Describes the configured parallelism (number of in-application streams mapped to the
streaming source).

Type: InputParallelism object

Required: No

InputProcessingConfigurationDescription

The description of the preprocessor that executes on records in this input before the
application's code is run.

Type: InputProcessingConfigurationDescription object

InputDescription 428

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Required: No

InputSchema

Describes the format of the data in the streaming source, and how each data element maps to
corresponding columns in the in-application stream that is being created.

Type: SourceSchema object

Required: No

InputStartingPositionConfiguration

Point at which the application is configured to read from the input stream.

Type: InputStartingPositionConfiguration object

Required: No

KinesisFirehoseInputDescription

If an Amazon Kinesis Firehose delivery stream is configured as a streaming source, provides
the delivery stream's ARN and an IAM role that enables Amazon Kinesis Analytics to access the
stream on your behalf.

Type: KinesisFirehoseInputDescription object

Required: No

KinesisStreamsInputDescription

If an Amazon Kinesis stream is configured as streaming source, provides Amazon Kinesis
stream's Amazon Resource Name (ARN) and an IAM role that enables Amazon Kinesis Analytics
to access the stream on your behalf.

Type: KinesisStreamsInputDescription object

Required: No

NamePrefix

In-application name prefix.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

InputDescription 429

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

InputDescription 430

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/InputDescription
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/InputDescription
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/InputDescription
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/InputDescription

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

InputLambdaProcessor

An object that contains the Amazon Resource Name (ARN) of the AWS Lambda function that is
used to preprocess records in the stream, and the ARN of the IAM role that is used to access the
AWS Lambda function.

Contents

ResourceARN

The ARN of the AWS Lambda function that operates on records in the stream.

Note

To specify an earlier version of the Lambda function than the latest, include the Lambda
function version in the Lambda function ARN. For more information about Lambda
ARNs, see Example ARNs: AWS Lambda

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

RoleARN

The ARN of the IAM role that is used to access the AWS Lambda function.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

InputLambdaProcessor 431

https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

InputLambdaProcessor 432

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/InputLambdaProcessor
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/InputLambdaProcessor
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/InputLambdaProcessor
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/InputLambdaProcessor

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

InputLambdaProcessorDescription

An object that contains the Amazon Resource Name (ARN) of the AWS Lambda function that is
used to preprocess records in the stream, and the ARN of the IAM role that is used to access the
AWS Lambda expression.

Contents

ResourceARN

The ARN of the AWS Lambda function that is used to preprocess the records in the stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

RoleARN

The ARN of the IAM role that is used to access the AWS Lambda function.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

InputLambdaProcessorDescription 433

https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/InputLambdaProcessorDescription
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/InputLambdaProcessorDescription
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/InputLambdaProcessorDescription
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/InputLambdaProcessorDescription

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

InputLambdaProcessorDescription 434

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

InputLambdaProcessorUpdate

Represents an update to the InputLambdaProcessor that is used to preprocess the records in the
stream.

Contents

ResourceARNUpdate

The Amazon Resource Name (ARN) of the new AWS Lambda function that is used to preprocess
the records in the stream.

Note

To specify an earlier version of the Lambda function than the latest, include the Lambda
function version in the Lambda function ARN. For more information about Lambda
ARNs, see Example ARNs: AWS Lambda

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

RoleARNUpdate

The ARN of the new IAM role that is used to access the AWS Lambda function.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

InputLambdaProcessorUpdate 435

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_InputLambdaProcessor.html
https://docs.aws.amazon.com/lambda/

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

InputLambdaProcessorUpdate 436

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/InputLambdaProcessorUpdate
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/InputLambdaProcessorUpdate
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/InputLambdaProcessorUpdate
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/InputLambdaProcessorUpdate

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

InputParallelism

Describes the number of in-application streams to create for a given streaming source. For
information about parallelism, see Configuring Application Input.

Contents

Count

Number of in-application streams to create. For more information, see Limits.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 64.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

InputParallelism 437

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/InputParallelism
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/InputParallelism
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/InputParallelism
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/InputParallelism

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

InputParallelismUpdate

Provides updates to the parallelism count.

Contents

CountUpdate

Number of in-application streams to create for the specified streaming source.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 64.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

InputParallelismUpdate 438

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/InputParallelismUpdate
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/InputParallelismUpdate
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/InputParallelismUpdate
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/InputParallelismUpdate

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

InputProcessingConfiguration

Provides a description of a processor that is used to preprocess the records in the stream before
being processed by your application code. Currently, the only input processor available is AWS
Lambda.

Contents

InputLambdaProcessor

The InputLambdaProcessor that is used to preprocess the records in the stream before being
processed by your application code.

Type: InputLambdaProcessor object

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

InputProcessingConfiguration 439

https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_InputLambdaProcessor.html
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/InputProcessingConfiguration
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/InputProcessingConfiguration
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/InputProcessingConfiguration
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/InputProcessingConfiguration

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

InputProcessingConfigurationDescription

Provides configuration information about an input processor. Currently, the only input processor
available is AWS Lambda.

Contents

InputLambdaProcessorDescription

Provides configuration information about the associated InputLambdaProcessorDescription.

Type: InputLambdaProcessorDescription object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

InputProcessingConfigurationDescription 440

https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_InputLambdaProcessorDescription.html
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/InputProcessingConfigurationDescription
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/InputProcessingConfigurationDescription
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/InputProcessingConfigurationDescription
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/InputProcessingConfigurationDescription

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

InputProcessingConfigurationUpdate

Describes updates to an InputProcessingConfiguration.

Contents

InputLambdaProcessorUpdate

Provides update information for an InputLambdaProcessor.

Type: InputLambdaProcessorUpdate object

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

InputProcessingConfigurationUpdate 441

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_InputProcessingConfiguration.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_InputLambdaProcessor.html
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/InputProcessingConfigurationUpdate
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/InputProcessingConfigurationUpdate
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/InputProcessingConfigurationUpdate
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/InputProcessingConfigurationUpdate

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

InputSchemaUpdate

Describes updates for the application's input schema.

Contents

RecordColumnUpdates

A list of RecordColumn objects. Each object describes the mapping of the streaming source
element to the corresponding column in the in-application stream.

Type: Array of RecordColumn objects

Array Members: Minimum number of 1 item. Maximum number of 1000 items.

Required: No

RecordEncodingUpdate

Specifies the encoding of the records in the streaming source. For example, UTF-8.

Type: String

Pattern: UTF-8

Required: No

RecordFormatUpdate

Specifies the format of the records on the streaming source.

Type: RecordFormat object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

InputSchemaUpdate 442

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/InputSchemaUpdate
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/InputSchemaUpdate
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/InputSchemaUpdate

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• AWS SDK for Ruby V3

InputSchemaUpdate 443

https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/InputSchemaUpdate

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

InputStartingPositionConfiguration

Describes the point at which the application reads from the streaming source.

Contents

InputStartingPosition

The starting position on the stream.

• NOW - Start reading just after the most recent record in the stream, start at the request time
stamp that the customer issued.

• TRIM_HORIZON - Start reading at the last untrimmed record in the stream, which is the
oldest record available in the stream. This option is not available for an Amazon Kinesis
Firehose delivery stream.

• LAST_STOPPED_POINT - Resume reading from where the application last stopped reading.

Type: String

Valid Values: NOW | TRIM_HORIZON | LAST_STOPPED_POINT

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

InputStartingPositionConfiguration 444

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/InputStartingPositionConfiguration
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/InputStartingPositionConfiguration
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/InputStartingPositionConfiguration
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/InputStartingPositionConfiguration

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

InputUpdate

Describes updates to a specific input configuration (identified by the InputId of an application).

Contents

InputId

Input ID of the application input to be updated.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

InputParallelismUpdate

Describes the parallelism updates (the number in-application streams Amazon Kinesis Analytics
creates for the specific streaming source).

Type: InputParallelismUpdate object

Required: No

InputProcessingConfigurationUpdate

Describes updates for an input processing configuration.

Type: InputProcessingConfigurationUpdate object

Required: No

InputSchemaUpdate

Describes the data format on the streaming source, and how record elements on the streaming
source map to columns of the in-application stream that is created.

Type: InputSchemaUpdate object

Required: No

InputUpdate 445

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

KinesisFirehoseInputUpdate

If an Amazon Kinesis Firehose delivery stream is the streaming source to be updated, provides
an updated stream ARN and IAM role ARN.

Type: KinesisFirehoseInputUpdate object

Required: No

KinesisStreamsInputUpdate

If an Amazon Kinesis stream is the streaming source to be updated, provides an updated stream
Amazon Resource Name (ARN) and IAM role ARN.

Type: KinesisStreamsInputUpdate object

Required: No

NamePrefixUpdate

Name prefix for in-application streams that Amazon Kinesis Analytics creates for the specific
streaming source.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

InputUpdate 446

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/InputUpdate
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/InputUpdate
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/InputUpdate
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/InputUpdate

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

JSONMappingParameters

Provides additional mapping information when JSON is the record format on the streaming source.

Contents

RecordRowPath

Path to the top-level parent that contains the records.

Type: String

Length Constraints: Minimum length of 1.

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

JSONMappingParameters 447

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/JSONMappingParameters
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/JSONMappingParameters
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/JSONMappingParameters
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/JSONMappingParameters

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

KinesisFirehoseInput

Identifies an Amazon Kinesis Firehose delivery stream as the streaming source. You provide the
delivery stream's Amazon Resource Name (ARN) and an IAM role ARN that enables Amazon Kinesis
Analytics to access the stream on your behalf.

Contents

ResourceARN

ARN of the input delivery stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

RoleARN

ARN of the IAM role that Amazon Kinesis Analytics can assume to access the stream on your
behalf. You need to make sure that the role has the necessary permissions to access the stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

KinesisFirehoseInput 448

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/KinesisFirehoseInput
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/KinesisFirehoseInput
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/KinesisFirehoseInput

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• AWS SDK for Ruby V3

KinesisFirehoseInput 449

https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/KinesisFirehoseInput

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

KinesisFirehoseInputDescription

Describes the Amazon Kinesis Firehose delivery stream that is configured as the streaming source
in the application input configuration.

Contents

ResourceARN

Amazon Resource Name (ARN) of the Amazon Kinesis Firehose delivery stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

RoleARN

ARN of the IAM role that Amazon Kinesis Analytics assumes to access the stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

KinesisFirehoseInputDescription 450

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/KinesisFirehoseInputDescription
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/KinesisFirehoseInputDescription
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/KinesisFirehoseInputDescription
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/KinesisFirehoseInputDescription

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

KinesisFirehoseInputUpdate

When updating application input configuration, provides information about an Amazon Kinesis
Firehose delivery stream as the streaming source.

Contents

ResourceARNUpdate

Amazon Resource Name (ARN) of the input Amazon Kinesis Firehose delivery stream to read.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

RoleARNUpdate

ARN of the IAM role that Amazon Kinesis Analytics can assume to access the stream on your
behalf. You need to grant the necessary permissions to this role.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

KinesisFirehoseInputUpdate 451

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/KinesisFirehoseInputUpdate
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/KinesisFirehoseInputUpdate
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/KinesisFirehoseInputUpdate
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/KinesisFirehoseInputUpdate

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

KinesisFirehoseInputUpdate 452

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

KinesisFirehoseOutput

When configuring application output, identifies an Amazon Kinesis Firehose delivery stream as the
destination. You provide the stream Amazon Resource Name (ARN) and an IAM role that enables
Amazon Kinesis Analytics to write to the stream on your behalf.

Contents

ResourceARN

ARN of the destination Amazon Kinesis Firehose delivery stream to write to.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

RoleARN

ARN of the IAM role that Amazon Kinesis Analytics can assume to write to the destination
stream on your behalf. You need to grant the necessary permissions to this role.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

KinesisFirehoseOutput 453

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/KinesisFirehoseOutput
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/KinesisFirehoseOutput
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/KinesisFirehoseOutput

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• AWS SDK for Ruby V3

KinesisFirehoseOutput 454

https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/KinesisFirehoseOutput

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

KinesisFirehoseOutputDescription

For an application output, describes the Amazon Kinesis Firehose delivery stream configured as its
destination.

Contents

ResourceARN

Amazon Resource Name (ARN) of the Amazon Kinesis Firehose delivery stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

RoleARN

ARN of the IAM role that Amazon Kinesis Analytics can assume to access the stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

KinesisFirehoseOutputDescription 455

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/KinesisFirehoseOutputDescription
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/KinesisFirehoseOutputDescription
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/KinesisFirehoseOutputDescription
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/KinesisFirehoseOutputDescription

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

KinesisFirehoseOutputUpdate

When updating an output configuration using the UpdateApplication operation, provides
information about an Amazon Kinesis Firehose delivery stream configured as the destination.

Contents

ResourceARNUpdate

Amazon Resource Name (ARN) of the Amazon Kinesis Firehose delivery stream to write to.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

RoleARNUpdate

ARN of the IAM role that Amazon Kinesis Analytics can assume to access the stream on your
behalf. You need to grant the necessary permissions to this role.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

KinesisFirehoseOutputUpdate 456

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_UpdateApplication.html
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/KinesisFirehoseOutputUpdate
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/KinesisFirehoseOutputUpdate
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/KinesisFirehoseOutputUpdate
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/KinesisFirehoseOutputUpdate

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

KinesisFirehoseOutputUpdate 457

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

KinesisStreamsInput

Identifies an Amazon Kinesis stream as the streaming source. You provide the stream's Amazon
Resource Name (ARN) and an IAM role ARN that enables Amazon Kinesis Analytics to access the
stream on your behalf.

Contents

ResourceARN

ARN of the input Amazon Kinesis stream to read.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

RoleARN

ARN of the IAM role that Amazon Kinesis Analytics can assume to access the stream on your
behalf. You need to grant the necessary permissions to this role.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

KinesisStreamsInput 458

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/KinesisStreamsInput
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/KinesisStreamsInput
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/KinesisStreamsInput

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• AWS SDK for Ruby V3

KinesisStreamsInput 459

https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/KinesisStreamsInput

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

KinesisStreamsInputDescription

Describes the Amazon Kinesis stream that is configured as the streaming source in the application
input configuration.

Contents

ResourceARN

Amazon Resource Name (ARN) of the Amazon Kinesis stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

RoleARN

ARN of the IAM role that Amazon Kinesis Analytics can assume to access the stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

KinesisStreamsInputDescription 460

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/KinesisStreamsInputDescription
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/KinesisStreamsInputDescription
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/KinesisStreamsInputDescription
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/KinesisStreamsInputDescription

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

KinesisStreamsInputUpdate

When updating application input configuration, provides information about an Amazon Kinesis
stream as the streaming source.

Contents

ResourceARNUpdate

Amazon Resource Name (ARN) of the input Amazon Kinesis stream to read.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

RoleARNUpdate

ARN of the IAM role that Amazon Kinesis Analytics can assume to access the stream on your
behalf. You need to grant the necessary permissions to this role.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

KinesisStreamsInputUpdate 461

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/KinesisStreamsInputUpdate
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/KinesisStreamsInputUpdate
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/KinesisStreamsInputUpdate
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/KinesisStreamsInputUpdate

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

KinesisStreamsInputUpdate 462

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

KinesisStreamsOutput

When configuring application output, identifies an Amazon Kinesis stream as the destination. You
provide the stream Amazon Resource Name (ARN) and also an IAM role ARN that Amazon Kinesis
Analytics can use to write to the stream on your behalf.

Contents

ResourceARN

ARN of the destination Amazon Kinesis stream to write to.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

RoleARN

ARN of the IAM role that Amazon Kinesis Analytics can assume to write to the destination
stream on your behalf. You need to grant the necessary permissions to this role.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

KinesisStreamsOutput 463

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/KinesisStreamsOutput
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/KinesisStreamsOutput
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/KinesisStreamsOutput

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• AWS SDK for Ruby V3

KinesisStreamsOutput 464

https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/KinesisStreamsOutput

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

KinesisStreamsOutputDescription

For an application output, describes the Amazon Kinesis stream configured as its destination.

Contents

ResourceARN

Amazon Resource Name (ARN) of the Amazon Kinesis stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

RoleARN

ARN of the IAM role that Amazon Kinesis Analytics can assume to access the stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

KinesisStreamsOutputDescription 465

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/KinesisStreamsOutputDescription
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/KinesisStreamsOutputDescription
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/KinesisStreamsOutputDescription
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/KinesisStreamsOutputDescription

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

KinesisStreamsOutputUpdate

When updating an output configuration using the UpdateApplication operation, provides
information about an Amazon Kinesis stream configured as the destination.

Contents

ResourceARNUpdate

Amazon Resource Name (ARN) of the Amazon Kinesis stream where you want to write the
output.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

RoleARNUpdate

ARN of the IAM role that Amazon Kinesis Analytics can assume to access the stream on your
behalf. You need to grant the necessary permissions to this role.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

KinesisStreamsOutputUpdate 466

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_UpdateApplication.html
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/KinesisStreamsOutputUpdate
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/KinesisStreamsOutputUpdate
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/KinesisStreamsOutputUpdate

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• AWS SDK for Ruby V3

KinesisStreamsOutputUpdate 467

https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/KinesisStreamsOutputUpdate

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

LambdaOutput

When configuring application output, identifies an AWS Lambda function as the destination. You
provide the function Amazon Resource Name (ARN) and also an IAM role ARN that Amazon Kinesis
Analytics can use to write to the function on your behalf.

Contents

ResourceARN

Amazon Resource Name (ARN) of the destination Lambda function to write to.

Note

To specify an earlier version of the Lambda function than the latest, include the Lambda
function version in the Lambda function ARN. For more information about Lambda
ARNs, see Example ARNs: AWS Lambda

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

RoleARN

ARN of the IAM role that Amazon Kinesis Analytics can assume to write to the destination
function on your behalf. You need to grant the necessary permissions to this role.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

LambdaOutput 468

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

LambdaOutput 469

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/LambdaOutput
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/LambdaOutput
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/LambdaOutput
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/LambdaOutput

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

LambdaOutputDescription

For an application output, describes the AWS Lambda function configured as its destination.

Contents

ResourceARN

Amazon Resource Name (ARN) of the destination Lambda function.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

RoleARN

ARN of the IAM role that Amazon Kinesis Analytics can assume to write to the destination
function.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

LambdaOutputDescription 470

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/LambdaOutputDescription
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/LambdaOutputDescription
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/LambdaOutputDescription
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/LambdaOutputDescription

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

LambdaOutputUpdate

When updating an output configuration using the UpdateApplication operation, provides
information about an AWS Lambda function configured as the destination.

Contents

ResourceARNUpdate

Amazon Resource Name (ARN) of the destination Lambda function.

Note

To specify an earlier version of the Lambda function than the latest, include the Lambda
function version in the Lambda function ARN. For more information about Lambda
ARNs, see Example ARNs: AWS Lambda

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

RoleARNUpdate

ARN of the IAM role that Amazon Kinesis Analytics can assume to write to the destination
function on your behalf. You need to grant the necessary permissions to this role.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

LambdaOutputUpdate 471

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_UpdateApplication.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

LambdaOutputUpdate 472

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/LambdaOutputUpdate
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/LambdaOutputUpdate
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/LambdaOutputUpdate
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/LambdaOutputUpdate

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

MappingParameters

When configuring application input at the time of creating or updating an application, provides
additional mapping information specific to the record format (such as JSON, CSV, or record fields
delimited by some delimiter) on the streaming source.

Contents

CSVMappingParameters

Provides additional mapping information when the record format uses delimiters (for example,
CSV).

Type: CSVMappingParameters object

Required: No

JSONMappingParameters

Provides additional mapping information when JSON is the record format on the streaming
source.

Type: JSONMappingParameters object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

MappingParameters 473

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/MappingParameters
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/MappingParameters
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/MappingParameters
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/MappingParameters

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Output

Describes application output configuration in which you identify an in-application stream and a
destination where you want the in-application stream data to be written. The destination can be an
Amazon Kinesis stream or an Amazon Kinesis Firehose delivery stream.

For limits on how many destinations an application can write and other limitations, see Limits.

Contents

DestinationSchema

Describes the data format when records are written to the destination. For more information,
see Configuring Application Output.

Type: DestinationSchema object

Required: Yes

Name

Name of the in-application stream.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Required: Yes

KinesisFirehoseOutput

Identifies an Amazon Kinesis Firehose delivery stream as the destination.

Type: KinesisFirehoseOutput object

Required: No

KinesisStreamsOutput

Identifies an Amazon Kinesis stream as the destination.

Type: KinesisStreamsOutput object

Required: No

Output 474

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/limits.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-output.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

LambdaOutput

Identifies an AWS Lambda function as the destination.

Type: LambdaOutput object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Output 475

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/Output
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/Output
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/Output
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/Output

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

OutputDescription

Describes the application output configuration, which includes the in-application stream name and
the destination where the stream data is written. The destination can be an Amazon Kinesis stream
or an Amazon Kinesis Firehose delivery stream.

Contents

DestinationSchema

Data format used for writing data to the destination.

Type: DestinationSchema object

Required: No

KinesisFirehoseOutputDescription

Describes the Amazon Kinesis Firehose delivery stream configured as the destination where
output is written.

Type: KinesisFirehoseOutputDescription object

Required: No

KinesisStreamsOutputDescription

Describes Amazon Kinesis stream configured as the destination where output is written.

Type: KinesisStreamsOutputDescription object

Required: No

LambdaOutputDescription

Describes the AWS Lambda function configured as the destination where output is written.

Type: LambdaOutputDescription object

Required: No

Name

Name of the in-application stream configured as output.

Type: String

OutputDescription 476

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Length Constraints: Minimum length of 1. Maximum length of 32.

Required: No

OutputId

A unique identifier for the output configuration.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

OutputDescription 477

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/OutputDescription
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/OutputDescription
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/OutputDescription
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/OutputDescription

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

OutputUpdate

Describes updates to the output configuration identified by the OutputId.

Contents

OutputId

Identifies the specific output configuration that you want to update.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

DestinationSchemaUpdate

Describes the data format when records are written to the destination. For more information,
see Configuring Application Output.

Type: DestinationSchema object

Required: No

KinesisFirehoseOutputUpdate

Describes an Amazon Kinesis Firehose delivery stream as the destination for the output.

Type: KinesisFirehoseOutputUpdate object

Required: No

KinesisStreamsOutputUpdate

Describes an Amazon Kinesis stream as the destination for the output.

Type: KinesisStreamsOutputUpdate object

Required: No

LambdaOutputUpdate

Describes an AWS Lambda function as the destination for the output.

OutputUpdate 478

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-output.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Type: LambdaOutputUpdate object

Required: No

NameUpdate

If you want to specify a different in-application stream for this output configuration, use this
field to specify the new in-application stream name.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

OutputUpdate 479

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/OutputUpdate
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/OutputUpdate
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/OutputUpdate
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/OutputUpdate

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

RecordColumn

Describes the mapping of each data element in the streaming source to the corresponding column
in the in-application stream.

Also used to describe the format of the reference data source.

Contents

Name

Name of the column created in the in-application input stream or reference table.

Type: String

Required: Yes

SqlType

Type of column created in the in-application input stream or reference table.

Type: String

Length Constraints: Minimum length of 1.

Required: Yes

Mapping

Reference to the data element in the streaming input or the reference data source. This element
is required if the RecordFormatType is JSON.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

RecordColumn 480

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_RecordFormat.html#analytics-Type-RecordFormat-RecordFormatTypel
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/RecordColumn
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/RecordColumn

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• AWS SDK for Java V2

• AWS SDK for Ruby V3

RecordColumn 481

https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/RecordColumn
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/RecordColumn

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

RecordFormat

Describes the record format and relevant mapping information that should be applied to
schematize the records on the stream.

Contents

RecordFormatType

The type of record format.

Type: String

Valid Values: JSON | CSV

Required: Yes

MappingParameters

When configuring application input at the time of creating or updating an application, provides
additional mapping information specific to the record format (such as JSON, CSV, or record
fields delimited by some delimiter) on the streaming source.

Type: MappingParameters object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

RecordFormat 482

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/RecordFormat
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/RecordFormat
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/RecordFormat
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/RecordFormat

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

ReferenceDataSource

Describes the reference data source by providing the source information (S3 bucket name and
object key name), the resulting in-application table name that is created, and the necessary schema
to map the data elements in the Amazon S3 object to the in-application table.

Contents

ReferenceSchema

Describes the format of the data in the streaming source, and how each data element maps to
corresponding columns created in the in-application stream.

Type: SourceSchema object

Required: Yes

TableName

Name of the in-application table to create.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Required: Yes

S3ReferenceDataSource

Identifies the S3 bucket and object that contains the reference data. Also identifies the IAM
role Amazon Kinesis Analytics can assume to read this object on your behalf. An Amazon
Kinesis Analytics application loads reference data only once. If the data changes, you call the
UpdateApplication operation to trigger reloading of data into your application.

Type: S3ReferenceDataSource object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

ReferenceDataSource 483

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

ReferenceDataSource 484

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/ReferenceDataSource
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/ReferenceDataSource
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/ReferenceDataSource
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/ReferenceDataSource

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

ReferenceDataSourceDescription

Describes the reference data source configured for an application.

Contents

ReferenceId

ID of the reference data source. This is the ID that Amazon Kinesis Analytics
assigns when you add the reference data source to your application using the
AddApplicationReferenceDataSource operation.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

S3ReferenceDataSourceDescription

Provides the S3 bucket name, the object key name that contains the reference data. It also
provides the Amazon Resource Name (ARN) of the IAM role that Amazon Kinesis Analytics can
assume to read the Amazon S3 object and populate the in-application reference table.

Type: S3ReferenceDataSourceDescription object

Required: Yes

TableName

The in-application table name created by the specific reference data source configuration.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Required: Yes

ReferenceSchema

Describes the format of the data in the streaming source, and how each data element maps to
corresponding columns created in the in-application stream.

ReferenceDataSourceDescription 485

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_AddApplicationReferenceDataSource.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Type: SourceSchema object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

ReferenceDataSourceDescription 486

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/ReferenceDataSourceDescription
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/ReferenceDataSourceDescription
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/ReferenceDataSourceDescription
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/ReferenceDataSourceDescription

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

ReferenceDataSourceUpdate

When you update a reference data source configuration for an application, this object provides
all the updated values (such as the source bucket name and object key name), the in-application
table name that is created, and updated mapping information that maps the data in the Amazon
S3 object to the in-application reference table that is created.

Contents

ReferenceId

ID of the reference data source being updated. You can use the DescribeApplication operation
to get this value.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

ReferenceSchemaUpdate

Describes the format of the data in the streaming source, and how each data element maps to
corresponding columns created in the in-application stream.

Type: SourceSchema object

Required: No

S3ReferenceDataSourceUpdate

Describes the S3 bucket name, object key name, and IAM role that Amazon Kinesis Analytics can
assume to read the Amazon S3 object on your behalf and populate the in-application reference
table.

Type: S3ReferenceDataSourceUpdate object

Required: No

TableNameUpdate

In-application table name that is created by this update.

ReferenceDataSourceUpdate 487

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_DescribeApplication.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Type: String

Length Constraints: Minimum length of 1. Maximum length of 32.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

ReferenceDataSourceUpdate 488

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/ReferenceDataSourceUpdate
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/ReferenceDataSourceUpdate
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/ReferenceDataSourceUpdate
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/ReferenceDataSourceUpdate

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

S3Configuration

Provides a description of an Amazon S3 data source, including the Amazon Resource Name (ARN)
of the S3 bucket, the ARN of the IAM role that is used to access the bucket, and the name of the
Amazon S3 object that contains the data.

Contents

BucketARN

ARN of the S3 bucket that contains the data.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

FileKey

The name of the object that contains the data.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Required: Yes

RoleARN

IAM ARN of the role used to access the data.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

S3Configuration 489

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

S3Configuration 490

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/S3Configuration
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/S3Configuration
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/S3Configuration
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/S3Configuration

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

S3ReferenceDataSource

Identifies the S3 bucket and object that contains the reference data. Also identifies the IAM role
Amazon Kinesis Analytics can assume to read this object on your behalf.

An Amazon Kinesis Analytics application loads reference data only once. If the data changes, you
call the UpdateApplication operation to trigger reloading of data into your application.

Contents

BucketARN

Amazon Resource Name (ARN) of the S3 bucket.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

FileKey

Object key name containing reference data.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Required: Yes

ReferenceRoleARN

ARN of the IAM role that the service can assume to read data on your behalf. This role must
have permission for the s3:GetObject action on the object and trust policy that allows
Amazon Kinesis Analytics service principal to assume this role.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

S3ReferenceDataSource 491

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/API_UpdateApplication.html

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

S3ReferenceDataSource 492

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/S3ReferenceDataSource
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/S3ReferenceDataSource
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/S3ReferenceDataSource
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/S3ReferenceDataSource

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

S3ReferenceDataSourceDescription

Provides the bucket name and object key name that stores the reference data.

Contents

BucketARN

Amazon Resource Name (ARN) of the S3 bucket.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

FileKey

Amazon S3 object key name.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Required: Yes

ReferenceRoleARN

ARN of the IAM role that Amazon Kinesis Analytics can assume to read the Amazon S3 object on
your behalf to populate the in-application reference table.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

S3ReferenceDataSourceDescription 493

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

S3ReferenceDataSourceDescription 494

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/S3ReferenceDataSourceDescription
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/S3ReferenceDataSourceDescription
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/S3ReferenceDataSourceDescription
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/S3ReferenceDataSourceDescription

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

S3ReferenceDataSourceUpdate

Describes the S3 bucket name, object key name, and IAM role that Amazon Kinesis Analytics can
assume to read the Amazon S3 object on your behalf and populate the in-application reference
table.

Contents

BucketARNUpdate

Amazon Resource Name (ARN) of the S3 bucket.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

FileKeyUpdate

Object key name.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Required: No

ReferenceRoleARNUpdate

ARN of the IAM role that Amazon Kinesis Analytics can assume to read the Amazon S3 object
and populate the in-application.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: arn:.*

Required: No

S3ReferenceDataSourceUpdate 495

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

S3ReferenceDataSourceUpdate 496

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/S3ReferenceDataSourceUpdate
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/S3ReferenceDataSourceUpdate
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/S3ReferenceDataSourceUpdate
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/S3ReferenceDataSourceUpdate

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

SourceSchema

Describes the format of the data in the streaming source, and how each data element maps to
corresponding columns created in the in-application stream.

Contents

RecordColumns

A list of RecordColumn objects.

Type: Array of RecordColumn objects

Array Members: Minimum number of 1 item. Maximum number of 1000 items.

Required: Yes

RecordFormat

Specifies the format of the records on the streaming source.

Type: RecordFormat object

Required: Yes

RecordEncoding

Specifies the encoding of the records in the streaming source. For example, UTF-8.

Type: String

Pattern: UTF-8

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

SourceSchema 497

https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/SourceSchema
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/SourceSchema
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/SourceSchema

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

• AWS SDK for Ruby V3

SourceSchema 498

https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/SourceSchema

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Tag

A key-value pair (the value is optional) that you can define and assign to AWS resources. If you
specify a tag that already exists, the tag value is replaced with the value that you specify in the
request. Note that the maximum number of application tags includes system tags. The maximum
number of user-defined application tags is 50. For more information, see Using Tagging.

Contents

Key

The key of the key-value tag.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Required: Yes

Value

The value of the key-value tag. The value is optional.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Tag 499

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-tagging.html
https://docs.aws.amazon.com/goto/SdkForCpp/kinesisanalytics-2015-08-14/Tag
https://docs.aws.amazon.com/goto/SdkForGoV1/kinesisanalytics-2015-08-14/Tag
https://docs.aws.amazon.com/goto/SdkForJavaV2/kinesisanalytics-2015-08-14/Tag
https://docs.aws.amazon.com/goto/SdkForRubyV3/kinesisanalytics-2015-08-14/Tag

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Document History for Amazon Kinesis Data Analytics

The following table describes the important changes to the documentation since the last release of
Amazon Kinesis Data Analytics.

• API version: 2015-08-14

• Latest documentation update: May 8, 2019

Change Description Date

Tagging Kinesis Data
Analytics Applications

Use application tagging to
determine per-application
costs, control access, or for
user-defined purposes. For
more information, see Using
Tagging.

May 8, 2019

Logging Kinesis Data
Analytics API Calls with AWS
CloudTrail

Amazon Kinesis Data
Analytics is integrated with
AWS CloudTrail, a service that
provides a record of actions
taken by a user, role, or an
AWS service in Kinesis Data
Analytics. For more informati
on, see Using AWS CloudTrail.

March 22, 2019

Kinesis Data Analytics
available in Frankfurt region

Kinesis Analytics is now
available in the Europe
(Frankfurt) Region region.
For more information, see
and Endpoints: Kinesis Data
Analytics.

July 18, 2018

Use reference data in the
console

You can now work with
application reference data
in the console. For more

July 13, 2018

500

https://docs.aws.amazon.com/general/latest/gr/rande.html#ka_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#ka_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#ka_region

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Change Description Date

information, see Example:
Adding Reference Data to
a Kinesis Data Analytics
 Application .

Windowed query examples Example applications for
windows and aggregation.
For more information, see
Examples: Windows and
Aggregation .

July 9, 2018

Testing applications Guidance on testing changes
to application schema and
code. For more information,
see Testing Applications .

July 3, 2018

Example applications for
preprocessing data

Additional code samples
for REGEX_LOG_PARSE,
REGEX_REPLACE, and
DateTime operators. For more
information, see Examples:
Transforming Data .

May 18, 2018

Increase in size of returned
rows and SQL code

The limit for the size for a
returned row is increased to
512 KB, and the limit for the
size of the SQL code in an
application is increased to
100 KB. For more informati
on, see Limits.

May 2, 2018

501

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Change Description Date

AWS Lambda function
examples in Java and .NET

Code samples for creating
Lambda functions for
preprocessing records and
for application destinati
ons. For more informati
on, see Creating Lambda
Functions for Preproces
sing and Creating Lambda
Functions for Application
Destinations.

March 22, 2018

New HOTSPOTS function Locate and return informati
on about relatively dense
regions in your data. For more
information, see Example:
Detecting Hotspots on a
Stream (HOTSPOTS Function)
.

March 19, 2018

Lambda function as a
destination

Send analytics results
to a Lambda function as
a destination. For more
information, see Using a
Lambda Function as Output.

December 20, 2017

New RANDOM_CUT_FOREST_
WITH_EXPLANATION
function

Get an explanation of what
fields contribute to an
anomaly score in a data
stream. For more informati
on, see Example: Detecting
Data Anomalies and Getting
an Explanation (RANDOM_C
UT_FOREST_WITH_EXP
LANATION Function).

November 2, 2017

502

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Change Description Date

Schema discovery on static
data

Run schema discovery on
static data stored in an
Amazon S3 bucket. For more
information, see Using the
Schema Discovery Feature on
Static Data.

October 6, 2017

Lambda preprocessing
feature

Preprocess records in an input
stream with AWS Lambda
before analysis. For more
information, see Preproces
sing Data Using a Lambda
Function.

October 6, 2017

Auto scaling applications Automatically increase
the data throughput of
your application with auto
scaling. For more informati
on, see Automatically Scaling
Applications to Increase
Throughput.

September 13, 2017

Multiple in-application input
streams

Increase application
throughput with multiple in-
application streams. For more
information, see Parallelizing
Input Streams for Increased
Throughput.

June 29, 2017

503

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

Change Description Date

Guide to using the AWS
Management Console for
Kinesis Data Analytics

Edit an inferred schema and
SQL code using the schema
editor and SQL editor in
the Kinesis Data Analytics
console. For more informati
on, see Step 4 (Optional) Edit
the Schema and SQL Code
Using the Console.

April 7, 2017

Public release Public release of the Amazon
Kinesis Data Analytics
Developer Guide.

August 11, 2016

Preview release Preview release of the
Amazon Kinesis Data Analytics
Developer Guide.

January 29, 2016

504

Amazon Kinesis Data Analytics for SQL Applications Developer Guide SQL Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

505

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon Kinesis Data Analytics for SQL Applications Developer Guide
	Table of Contents
	
	What Is Amazon Kinesis Data Analytics for SQL Applications?
	When Should I Use Amazon Kinesis Data Analytics?
	Are You a First-Time User of Amazon Kinesis Data Analytics?

	Amazon Kinesis Data Analytics for SQL Applications: How It Works
	Configuring Application Input
	Configuring a Streaming Source
	Configuring a Reference Source
	Working with JSONPath
	Accessing JSON Elements with JSONPath
	Accessing JSON Elements
	Accessing Nested JSON Elements
	Accessing Arrays
	Retrieve All Elements in an Array in a Single Row
	Retrieve All Elements in an Array in Separate Rows

	Other Considerations
	Related Topics

	Mapping Streaming Source Elements to SQL Input Columns
	Mapping JSON Data to SQL Columns
	Using the API
	JSON Input Schema Example
	CSV Input Schema Example

	Mapping JSON Data Types to SQL Data Types
	Null Literal
	Boolean Literal
	Number
	String
	Array or Object

	Related Topics

	Using the Schema Discovery Feature on Streaming Data
	Column Naming During Schema Discovery
	Examples of Discovery-Suggested Column Names

	Schema Discovery Issues

	Using the Schema Discovery Feature on Static Data
	Running Schema Discovery Using the Console
	Running Schema Discovery Using the API

	Preprocessing Data Using a Lambda Function
	Using a Lambda Function for Preprocessing Records
	Lambda Preprocessing Permissions
	Lambda Preprocessing Metrics
	Using AWS Lambda with the Kinesis Producer Library
	Data Preprocessing Event Input Data Model/Record Response Model
	Event Input Data Model
	Record Response Model

	Common Data Preprocessing Failures
	Creating Lambda Functions for Preprocessing
	Creating a Preprocessing Lambda Function in Node.js
	Creating a Preprocessing Lambda Function in Python
	Creating a Preprocessing Lambda Function in Java
	Creating a Preprocessing Lambda Function in .NET

	Parallelizing Input Streams for Increased Throughput
	Evaluating Whether to Increase Your Number of In-Application Input Streams
	Implementing Multiple In-Application Input Streams
	Setting a New Application's Input Stream Count
	Setting an Existing Application's Input Stream Count

	Accessing Separate In-Application Streams in Your Amazon Kinesis Data Analytics Application
	Additional Considerations

	Application Code
	Configuring Application Output
	Creating an Output Using the AWS CLI
	Creating a Kinesis Stream Output
	Creating a Firehose Delivery Stream Output
	Creating a Lambda Function Output

	Using a Lambda Function as Output
	Lambda as Output Permissions
	Lambda as Output Metrics
	Lambda as Output Event Input Data Model and Record Response Model
	Event Input Data Model
	Record Response Model

	Lambda Output Invocation Frequency
	Adding a Lambda Function for Use as an Output
	Common Lambda as Output Failures
	Creating Lambda Functions for Application Destinations
	Creating a Lambda Function Destination in Node.js
	Creating a Lambda Function Destination in Python
	Creating a Lambda Function Destination in Java
	Creating a Lambda Function Destination in .NET

	Delivery Model for Persisting Application Output to an External Destination

	Error Handling
	Reporting Errors Using an In-Application Error Stream
	Error Stream Schema

	Automatically Scaling Applications to Increase Throughput
	Using Tagging
	Adding Tags when an Application is Created
	Adding or Updating Tags for an Existing Application
	Listing Tags for an Application
	Removing Tags from an Application

	Getting Started with Amazon Kinesis Data Analytics for SQL Applications
	Sign up for an AWS account
	Create an administrative user
	Step 1: Set Up an Account and Create an Administrator User
	Sign Up for AWS
	Create an IAM User
	Next Step

	Sign up for an AWS account
	Create an administrative user
	Step 2: Set Up the AWS Command Line Interface (AWS CLI)
	Next Step

	Step 3: Create Your Starter Amazon Kinesis Data Analytics Application
	Step 3.1: Create an Application
	Step 3.2: Configure Input
	Step 3.3: Add Real-Time Analytics (Add Application Code)
	Step 3.4: (Optional) Update the Application Code

	Step 4 (Optional) Edit the Schema and SQL Code Using the Console
	Working with the Schema Editor
	Schema Editor Main Screen
	Editing the Schema for a Streaming Source
	Editing a JSON Schema
	Editing a CSV Schema

	Working with the SQL Editor
	Source Data Tab
	Real-Time Analytics Tab
	Destination Tab

	Streaming SQL Concepts
	In-Application Streams and Pumps
	Timestamps and the ROWTIME Column
	Understanding Various Times in Streaming Analytics

	Continuous Queries
	Windowed Queries
	Stagger Windows
	Partial Results with Tumbling Windows
	Complete Results with Stagger Windows

	Tumbling Windows (Aggregations Using GROUP BY)
	Sliding Windows
	Example 1: Process a Stream Using a 1-Minute Sliding Window
	Example 2: Query Applying Aggregates on a Sliding Window
	Example 3: Query Data from Multiple Sliding Windows on the Same Stream

	Streaming Data Operations: Stream Joins
	Example 1: Report Orders Where There Are Trades Within One Minute of the Order Being Placed

	Migrating to Managed Service for Apache Flink Studio Examples
	Replicating Kinesis Data Analytics for SQL Queries in Managed Service for Apache Flink Studio
	Re-creating Kinesis Data Analytics for SQL queries in Managed Service for Apache Flink Studio
	Multi-Step application
	Transforming DateTime values
	Simple alerts
	Throttled alerts
	Aggregating Partial Results from a Query
	Transforming string values
	Replacing a substring using Regex
	Regex log parse
	Transforming DateTime values
	Windows and aggregation
	Tumbling Window using Rowtime
	Retrieving the most frequently occuring values (TOP_K_ITEMS_TUMBLING)
	Approximate Top-K items
	Parsing Web Logs (W3C_LOG_PARSE Function)
	Split Strings into Multiple Fields (VARIABLE_COLUMN_LOG_PARSE Function)
	Joins
	Errors

	Migrating Random Cut Forest workloads
	Replacing Kinesis Data Firehose as a source with Kinesis Data Streams
	Amazon Kinesis Data Analytics-SQL and Amazon Kinesis Data Firehose
	Amazon Managed Service for Apache Flink Studio
	Create a Kinesis Data Stream
	Amazon Managed Service for Apache Flink Studio Code
	See more

	Leveraging user-defined functions (UDFs)
	User-defined functions (UDFs)
	Environment setup
	Working with Managed Service for Apache Flink Studio notebook
	Promoting a notebook as an application
	Cleanup

	Kinesis Data Analytics for SQL examples
	Examples: Transforming Data
	Preprocessing Streams with Lambda
	Examples: Transforming String Values
	Example: Extracting a Portion of a String (SUBSTRING Function)
	Step 1: Create a Kinesis Data Stream
	Step 2: Create the Kinesis Data Analytics Application

	Example: Replacing a Substring using Regex (REGEX_REPLACE Function)
	Step 1: Create a Kinesis Data Stream
	Step 2: Create the Kinesis Data Analytics Application

	Example: Parsing Log Strings Based on Regular Expressions (REGEX_LOG_PARSE Function)
	Step 1: Create a Kinesis Data Stream
	Step 2: Create the Kinesis Data Analytics Application

	Example: Parsing Web Logs (W3C_LOG_PARSE Function)
	Step 1: Create a Kinesis Data Stream
	Step 2: Create the Kinesis Data Analytics Application

	Example: Split Strings into Multiple Fields (VARIABLE_COLUMN_LOG_PARSE Function)
	Step 1: Create a Kinesis Data Stream
	Step 2: Create the Kinesis Data Analytics Application

	Example: Transforming DateTime Values
	Example: Transforming Dates
	Step 1: Create a Kinesis Data Stream
	Step 2: Create the Amazon Kinesis Data Analytics Application

	Example: Transforming Multiple Data Types
	Step 1: Prepare the Data
	Step 1.1: Create a Streaming Source
	Step 1.2: Populate the Streaming Source

	Step 2: Create the Application

	Examples: Windows and Aggregation
	Example: Stagger Window
	Step 1: Create a Kinesis Data Stream
	Step 2: Create the Kinesis Data Analytics Application

	Example: Tumbling Window Using ROWTIME
	Step 1: Create a Kinesis Data Stream
	Step 2: Create the Kinesis Data Analytics Application

	Example: Tumbling Window Using an Event Timestamp
	Step 1: Create a Kinesis Data Stream
	Step 2: Create the Kinesis Data Analytics Application

	Example: Retrieving the Most Frequently Occurring Values (TOP_K_ITEMS_TUMBLING)
	Step 1: Create a Kinesis Data Stream
	Step 2: Create the Kinesis Data Analytics Application

	Example: Aggregating Partial Results from a Query

	Examples: Joins
	Example: Adding Reference Data to a Kinesis Data Analytics Application
	Step 1: Prepare
	Store Reference Data as an Amazon S3 Object
	Create an IAM Role

	Step 2: Add the Reference Data Source to the Application Configuration
	Step 3: Test: Query the In-Application Reference Table

	Examples: Machine Learning
	Example: Detecting Data Anomalies on a Stream (RANDOM_CUT_FOREST Function)
	Step 1: Prepare
	Step 1.1: Create the Input and Output Data Streams
	Step 1.2: Write Sample Records to the Input Stream

	Step 2: Create an Application
	Step 3: Configure Application Output
	Step 4: Verify Output

	Example: Detecting Data Anomalies and Getting an Explanation (RANDOM_CUT_FOREST_WITH_EXPLANATION Function)
	Step 1: Prepare the Data
	Step 1.1: Create a Kinesis Data Stream
	Step 1.2: Write Sample Records to the Input Stream

	Step 2: Create an Analytics Application
	Step 3: Examine the Results

	Example: Detecting Hotspots on a Stream (HOTSPOTS Function)
	Step 1: Create the Input and Output Streams
	Step 1.1: Create the Kinesis Data Streams
	Step 1.2: Write Sample Records to the Input Stream

	Step 2: Create the Kinesis Data Analytics Application
	Step 3: Configure the Application Output
	Step 4: Verify the Application Output

	Examples: Alerts and Errors
	Example: Creating Simple Alerts
	Example: Creating Throttled Alerts
	Example: Exploring the In-Application Error Stream
	Introducing a Parse Error
	Introducing a Divide by Zero Error

	Examples: Solution Accelerators
	Real-time insights on AWS account activity
	Real-time AWS IoT device monitoring with Kinesis Data Analytics
	Real-time web analytics with Kinesis Data Analytics
	Amazon Connected Vehicle Solution

	Security in
	Data Protection in Amazon Kinesis Data Analytics for SQL Applications
	Data Encryption in Kinesis Data Analytics
	Encryption at Rest
	Encryption In Transit
	Key Management

	Identity and Access Management in Kinesis Data Analytics
	Trust Policy
	Permissions Policy
	Permissions Policy for Reading an Kinesis Stream
	Permissions Policy for Reading a Firehose Delivery Stream
	Permissions Policy for Writing to a Kinesis Stream
	Permissions Policy for Writing to a Firehose Delivery Stream
	Permissions Policy for Reading a Reference Data Source from an Amazon S3 Bucket

	Cross-service confused deputy prevention

	Authentication and Access Control for
	Access Control
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Overview of Managing Access Permissions to Your Resources
	Resources and Operations
	Understanding Resource Ownership
	Managing Access to Resources
	Identity-Based Policies (IAM Policies)
	Resource-Based Policies

	Specifying Policy Elements: Actions, Effects, and Principals
	Specifying Conditions in a Policy

	Using Identity-Based Policies (IAM Policies) for
	Permissions Required to Use the Console
	Amazon-Managed (Predefined) Policies for
	Customer Managed Policy Examples
	Step 1: Create an IAM User
	Step 2: Allow the User Permissions for Actions that Are Not Specific to
	Step 3: Allow the User to View a List of Applications and View Details
	Step 4: Allow the User to Start a Specific Application
	Step 5: Allow the User to Create an Application
	Step 6: Allow the Application to Use Lambda Preprocessing

	API Permissions: Actions, Permissions, and Resources Reference
	GetApplicationState

	Monitoring
	Compliance Validation for Amazon Kinesis Data Analytics for SQL Applications
	Resilience in Amazon Kinesis Data Analytics
	Disaster Recovery

	Infrastructure Security in Kinesis Data Analytics for SQL Applications
	Security Best Practices for Kinesis Data Analytics
	Use IAM roles to access other Amazon services
	Implement Server-Side Encryption in Dependent Resources
	Use CloudTrail to Monitor API Calls

	Monitoring for SQL Applications
	Monitoring Tools
	Automated Monitoring Tools
	Manual Monitoring Tools

	Monitoring with Amazon CloudWatch
	Metrics and Dimensions
	Viewing Metrics and Dimensions
	Creating CloudWatch Alarms to Monitor
	Working with Amazon CloudWatch Logs
	Adding the PutLogEvents Policy Action
	Trust Policy
	Permissions Policy

	Adding Configuration Error Monitoring
	Adding a CloudWatch Log Option When Creating an Application
	Adding a CloudWatch Log Option to an Existing Application
	Updating an Existing CloudWatch Log Option
	Deleting a CloudWatch Log Option from an Application

	Configuration Errors
	Error Message Format
	Errors
	Resource Does Not Exist
	Role Does Not Exist
	Role Does Not Have Permissions to Access the Resource

	Logging API Calls with AWS CloudTrail
	Information in CloudTrail
	Understanding Log File Entries

	Limits
	Best Practices
	Managing Applications
	Scaling Applications
	Monitoring Applications
	Defining Input Schema
	Connecting to Outputs
	Authoring Application Code
	Testing Applications
	Setting up a Test Application
	Testing Schema Changes
	Testing Code Changes

	Troubleshooting Amazon Kinesis Data Analytics for SQL Applications
	Stopped applications
	Unable to Run SQL Code
	Unable to Detect or Discover My Schema
	Reference Data is Out of Date
	Application Not Writing to Destination
	Important Application Health Parameters to Monitor
	Invalid Code Errors When Running an Application
	Application is Writing Errors to the Error Stream
	Insufficient Throughput or High MillisBehindLatest

	Kinesis Data Analytics SQL Reference
	API Reference
	Actions
	AddApplicationCloudWatchLoggingOption
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	AddApplicationInput
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	AddApplicationInputProcessingConfiguration
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	AddApplicationOutput
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	AddApplicationReferenceDataSource
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	CreateApplication
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteApplication
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	DeleteApplicationCloudWatchLoggingOption
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	DeleteApplicationInputProcessingConfiguration
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	DeleteApplicationOutput
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	DeleteApplicationReferenceDataSource
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	DescribeApplication
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DiscoverInputSchema
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	ListApplications
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	See Also

	ListTagsForResource
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	StartApplication
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	StopApplication
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	TagResource
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	UntagResource
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	UpdateApplication
	Request Syntax
	Request Parameters
	Response Elements
	Errors
	See Also

	Data Types
	ApplicationDetail
	Contents
	See Also

	ApplicationSummary
	Contents
	See Also

	ApplicationUpdate
	Contents
	See Also

	CloudWatchLoggingOption
	Contents
	See Also

	CloudWatchLoggingOptionDescription
	Contents
	See Also

	CloudWatchLoggingOptionUpdate
	Contents
	See Also

	CSVMappingParameters
	Contents
	See Also

	DestinationSchema
	Contents
	See Also

	Input
	Contents
	See Also

	InputConfiguration
	Contents
	See Also

	InputDescription
	Contents
	See Also

	InputLambdaProcessor
	Contents
	See Also

	InputLambdaProcessorDescription
	Contents
	See Also

	InputLambdaProcessorUpdate
	Contents
	See Also

	InputParallelism
	Contents
	See Also

	InputParallelismUpdate
	Contents
	See Also

	InputProcessingConfiguration
	Contents
	See Also

	InputProcessingConfigurationDescription
	Contents
	See Also

	InputProcessingConfigurationUpdate
	Contents
	See Also

	InputSchemaUpdate
	Contents
	See Also

	InputStartingPositionConfiguration
	Contents
	See Also

	InputUpdate
	Contents
	See Also

	JSONMappingParameters
	Contents
	See Also

	KinesisFirehoseInput
	Contents
	See Also

	KinesisFirehoseInputDescription
	Contents
	See Also

	KinesisFirehoseInputUpdate
	Contents
	See Also

	KinesisFirehoseOutput
	Contents
	See Also

	KinesisFirehoseOutputDescription
	Contents
	See Also

	KinesisFirehoseOutputUpdate
	Contents
	See Also

	KinesisStreamsInput
	Contents
	See Also

	KinesisStreamsInputDescription
	Contents
	See Also

	KinesisStreamsInputUpdate
	Contents
	See Also

	KinesisStreamsOutput
	Contents
	See Also

	KinesisStreamsOutputDescription
	Contents
	See Also

	KinesisStreamsOutputUpdate
	Contents
	See Also

	LambdaOutput
	Contents
	See Also

	LambdaOutputDescription
	Contents
	See Also

	LambdaOutputUpdate
	Contents
	See Also

	MappingParameters
	Contents
	See Also

	Output
	Contents
	See Also

	OutputDescription
	Contents
	See Also

	OutputUpdate
	Contents
	See Also

	RecordColumn
	Contents
	See Also

	RecordFormat
	Contents
	See Also

	ReferenceDataSource
	Contents
	See Also

	ReferenceDataSourceDescription
	Contents
	See Also

	ReferenceDataSourceUpdate
	Contents
	See Also

	S3Configuration
	Contents
	See Also

	S3ReferenceDataSource
	Contents
	See Also

	S3ReferenceDataSourceDescription
	Contents
	See Also

	S3ReferenceDataSourceUpdate
	Contents
	See Also

	SourceSchema
	Contents
	See Also

	Tag
	Contents
	See Also

	Document History for Amazon Kinesis Data Analytics
	AWS Glossary

