aws

Developer Guide

Amazon Lex V1

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Lex V1 Developer Guide

Amazon Lex V1: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Lex V1 Developer Guide

Table of Contents

... viii
What IS AMQAzZON LeX? ...ciiiiiiiiiiiiiieneensss 1
Are You a First-time User of AMAzOn LEX? ...c.icviriririinenieinenienteesessestsessessesessessessesessessessssessessessssens 2
HOW If WOKKS cociiiiiiiiinnnninnnnnnnnnnneseemsensssssssesesssssssnessnestmneesiseessens 4
SUPPOItEA LANGUAGESocuverereeieeieeeeieietectesteetestestesseesesaesaesessessassassassassesssessessastensansessessessessssssessensensanes 6
Supported Languages and LOCALES ...ttt sve e e et saesbestesse s e e e s n e s nns 7
Languages and Locales Supported by Amazon Lex FEAtUresceeeeveeceeceeceeceeeceeeeeeeenns 7
Programming MOGEL ...ttt ettt st et esse e e e s e e s et et e s aesaa s e s e esaessenaansensanean 8
Model Building APl OPErations ...ttt e s et e stestessesae s e s e s s e s e s esaesaenes 8
RUNTIME AP OPEIAtiONSueieeieeeeeteee ettt sttt e sae s sae e st e s sse e ssae s sa e s b e s sseassaesssaessassanasssassnes 9
Lambda FunNctions As COde HOOKSccoueiririnirininintnenieeeesestets ettt sse st ssessesassessanes 11
MaANAGING MESSQAGESuveeeriieieririirieeireesteesreestes st estessseesseesssesssaesssessstesssessssesssessseesssessssesssessseesssessseessans 13
TYPES OF MESSAGES ...ttt te st et e st et et e st e s ae st e st e s e e e et e s et e testansassesseesassaensansansansan 14
Contexts for CoNfigUIiNg MESSAGESc.ccueeuirieieeieetectecteste ettt ste s e s se s e s e e e e e e s e e e saensanes 15
Supported MesSsage FOIMALS ...ttt ste e e e e e e s e tesaestessesse e e s e e e enansans 20
MESSAGE GIOUPS ..veeeurirereirieerrteeiterseessteesstessessseesssessseesssesssessssessssesssessssssssesssessssessssssssessssesssesssessssessses 20
RESPONSE CArAS ..uvinveiieeieietetetetestee ettt et e e teste st e s se e e et et e s et assessesseesaessasaessessansasassassessaessensansans 22
Managing Conversation CONTEXT ...ttt e e s e e s e e s sae s s s e ssae e s e essaesssnesanas 26
Setting INTENT CONTEXEoiieee ettt st et e s st s e e ssae e s b e s sse s s aesssaessnassneans 27
USING DEFAULL SLOt VALUES ...ttt s e e et st e st esaesbesse s s e s e aeaebansans 29
Setting SESSION AtTIDULEScveeeeeeeeeeeeee ettt et s te s s ae e e e nea et nes 30
Setting ReqUESt AtLIHDULES ...ttt a et 32
Setting the SeSSION TIMEOUL ..ottt et e s e s ae e e e e e e aesaennan 35
Sharing Information BetWeen INLENLS ..ottt 36
Setting COMPLEX ALEFDULES ...c.eeeeeceeeeee ettt st e s ae s ra e e e s aesaeaan 36
USING CONTIAENCE SCOMES ..ottt e sttt e st e te st e s tesseste s e e e e e et et et assassassessasseensansanean 38
SESSION MANAGEMENToiiiiiiecterteect ettt e ste e st e st e s sae s s e e s sse e st esssasssaesssaessaesssessssessseessaesssennns 40
CONVEISATION LOGS ..oiueiiiiieieinitirieeeteeie st essteeseessaessseessaessseesssesssaessaesssasssassssessssesssesssassssessssesssesssassssensns 41
IAM Policies for CoONVErsation LOGSccceeeeiriiieieiectestecteseeeeee e saestestessessessessesssessessessessessansans 42
Configuring CONVEIrSAtioN LOGScceciecieeieeieeiieeeietete e stestestestessee e e e e essaesaessessessassassesseennesaessansanes 45
ENCrypting ConVersation LOGSccicieiiiirienritinieniecseessresseessreeseessseesssessssesssesssesssaessssessaesssssssaesnns 49
Viewing Text Logs in Amazon CloudWatch LOgS ...ttt 50
Accessing Audio LOgs iN AMAZON S3iiieicecieeecteste st e e s e tesaestestesse s e s e e s e e s saesaessessanean 54

Monitoring Conversation Log Status with CloudWatch Metricsooeeeveieciececececeeeeeeee 55

Amazon Lex V1 Developer Guide

MaANAGING SESSIONSeiiuieeriieierieeriteerteetessreesrteesseesstessseestessstasssessssesssessseesssessssesssessseesssessssesssesssessssessses 55
SWILCRING INEENLS ...ttt ettt e st et e st e e e e s s e s e st e st e aesbassassesseesaensansansans 57
ReSUMING @ PrIOr INTENT ..ottt e sre s e e s re e s e e s sae s sa e s aeessn e s se s snesnnas 58
STArting @ NEW SESSIONiiieiiiiecteeecteere st s e st e s e e st e s aesssaessaeesseesssesssaesssasssnasssessaesnnes 59
Validating SLOt VALUES ...ttt ettt st e e e e e et t e st et e s sesse e e e e e na e s asanean 59

DEPLOYMENT OPLIONS ..ottt ettt cte et e st e st e e e e e s e e s e st e st e sesbessesseesaesaessansansensansassessaeseanes 59

BUilt-in INtents and SLOt TYPES ..ottt a et et te st e s seese e e e e s e e e tenan 60
BUILE-IN INEENTES ettt ettt ettt b et e s st et s e s aa b e ssasaesaenas 60
BUILE-IN SLOT TYPES ettt te et sa et t e s ae s e s s s e e e et et e st e stassassaesesnnennanes 78

CUSEOM SLOT TYPES vttt ettt e te st e st e s te s e e e s et et et e be st e st e s saeseesaesaensansansansasassassassaensanes 89

SLOt ODBFUSCAtION ..ttt ettt st e s ae st et s s b et e s b et e e s e saesse e saassessenens 91

SENTIMENT ANGLYSIS ..ttt te e e et e e e e e e e et et e te st e st e ssesbasseese e s essestansassansassassasseessensanean 92

TAGGING RESOUICESeeeveiieeeiiicteeiteeteeteesteesreestessaeesseesssesssaesssessssesssessssesssessseasssessssesssessseesssessssesssesssenns 93
TAGGING YOUIR RESOUICEScooueeieiiereeiteeteesteesteestesseeesseesssessseesssessssesssessseessssesssesssessssessssessaesssssssaesnns 94
TG RESEFICTIONS .ottt et s e st e s s ae s s e e s b e e st e s ae s e e s saeessaasssessssesssaessaasssenns 94
Tagging ReSoUIrCES (CONSOLE) ...couicueeuiiieeeteciectecteeeeee et e tectestestestesse s e e s e s et e saesaessessassessassnensannans 95
Tagging RESOUICES (AWS CLI) ettt te e ste s e te e e e e e e e stestesaessesse s e s e e s esesessessansans 97

[CT =1 4 T T) = =T« [P UPUP N 929

Step 1: Set UP @n ACCOUNT ...ttt sttt e ssae s re e s sae s sse e s sae e se e s sesssaessaaessaasssasssaesnns 99
SIGN UP TOr AWS ..ottt e st e e et et e st e st e st e b e st e s se e e e st e e et et e be st assassaeseeseensansansansanes 99
CrEATE @ USEI ..ttt ettt ettt s e st et a et e et eese s b e s st e se et e et e eaesbesstenseensessaesnans 100
NEXE STEP ceiiiieitereecteree ettt ettt sste e st e s s st e s ae s sae e s b e s st e s sae s sa e st assseasssasssaesssessseesssesssaesssesssnans 101

SteP 2: SEt UP the AWS CLI ...ttt ettt e ste st e s te s e e e e s sa et et e a e s se s s e e e e e e e e e enaanes 101
.. 102

Step 3: Getting Started (CONSOLE) ...ttt s e s s e e e e e ae s 102
Exercise 1: Create a Bot UsSing @ BLUEPIINT ...c.oovioeieieeeeeeeeeeeeeeee ettt n e 103
Exercise 2: Create @ CUSTOM BOt ...ttt e et sae s 140
Exercise 3: Publish a Version and Create an ALIasc.ccvvevevineninnieneneeesenietsesseseeessesseees 156

Step 4: Getting Start@d (AWS CLI) .ottt te e e e e e ste st e ae s e s sa e s sa e aa s s 157
EXErcise 1: Create @ BOt ...ttt ettt e sae st s sa e st e snene 158
Exercise 2: Add @ NeW ULLEIraNCe ...ttt sttt sae st e s s e s e s 176
Exercise 3: Add @ Lambda FUNCLIONcociiiriiniiirinetctnetetsenietseseste et steesaesae e ssessesasasaens 181
EXercise 4: PUDLISN @ VEISION ..ottt sttt st sae st ss et s sse e e nas 185
EXErcise 5: Create @n ALIAS ..ottt ste st et e st et esae st e e s e s b e st e sbasae e e e neen 192
EXEICISE 6: CLEAN UP oottt ettt e it et e saesae s s e e e e s e et et e aesaesbasse s e esaesaensansansansanes 193

Versioning and ALIASESciiiiiiiiiiiiieeeeeneesiisssseeeissessssssssssssssssscsss 195

Amazon Lex V1 Developer Guide

VEISIONING euviiitieieeiteete st es e et estese e e e ste e st e saesssesssaessseesstessa e ssassaesssessseesssesssaesssessseesssessseesstessseessaenses 195
THE SLATEST VEISION ...eoueeeereeeeeeereeeeeeecesesessesesssasssssssss s s s s sssssasasssssasssssasssasssssssssasssssssasasnsssases 195
Publishing an Amazon Lex RESOUICE VEISIONcceceeeeereeeeietetectestestesseseeeesessessessessessessens 196
Updating an AMAazon LEX RESOUICEccuecueeieriereeeeietetestestestesseseseesessssessessessessessassessssssessenss 197
Deleting an Amazon Lex RESOUICE OF VEISIONc.cccveiecieriecienieseeeeeeeeeesessessessessessesseesesssssennes 197

ALIGSES ...ttt ettt s te sttt et e s b et e s st et e st et e e A et et e e e et e R e h et et e R et et e Re b et e e e se e et esaebe st eneeaenee 198

Using Lambda FUNCHIONScceeeeeeiiiiiiiiiiiiiinennnnnnsiiiineceeisess 200

Lambda Function Input Event and Response FOrMatccceceecieiecieneneneneseeeeeecee e seseeseeeennens 200
INPUL EVENT FOrMAt ..ottt sttt ettt e s re e st e s ae s sae s sae e s saessaaessaasnaessnassnnanns 200
RESPONSE FOIMIAT ...ttt ettt e s sae s sa e s sae s sa e s b e s ssaesbeessaasssesssaesssassnaans 208

Amazon Lex and AWS Lambda BLUEPIINTS ...ttt ste e e e ae e eaeneaens 215
Updating a Blueprint for @ Specific LOCALEcueeueeeieieeeeeeeeeeeee et 216

DePloying BOtS ...cccciiiiiiieeennneciiiieeeiiniinnesssssssssssseecssses 217

Deploying an Amazon Lex Bot on a Messaging Platformcccoeeeiecieciececececeeeeeeeeee s 217
INtegrating With FACEDOOK ...ttt st 220
INtEGrating With KiKcoeoueeeeeeeeeeeee ettt s ae e s sa e st sa e b s 223
INtEGrating With SLACKe ettt e et ettt e st nn e an 227
INtegrating With TWIlio SMS ... ettt st st n e e nes 233

Deploying an Amazon Lex Bot in Mobile Applicationsccoeoeerieciecieciccececeeceeee e 236

IMPOrting and EXPOrting ...ccccccciiiiieeeeeeniiiiiiieeeiineneesss 237

Exporting and Importing in AMazon Lex FOrmMatccoeieeenececeeeereceeceseee e saesae e e 237
Exporting in AMazon LeX FOIMAL ...ttt ssse e sae e e e s sessvaesaeessnessaasnns 238
Importing in AMAzon LeX FOMMAL ...ttt st e re et e s saessseessaessseesssessvnessnens 239
JSON Format for Importing and EXPOrtingc.cceoeeeieeeciececesececeeeeeeee et cte e sve e eesenens 241

EXPOrting t0 @n ALEXA SKill ..c..ceeeeeeeeeeeee ettt sa ettt re e s a e saeaan 244

BOt EXQIMIPLES ..ceeeeiiiiiiiiiiiiiinnennnnniiisiseeesesss 246

Schedule APPOINTMENT ...ttt e e st e s e e e e e e e et et e st e ssassasse s e ennensenaassansans 246
Overview of the Bot Blueprint (ScheduleAppointment)ccveeeeciececececereeeeee e 249
Overview of the Lambda Function Blueprint (lex-make-appointment-python) 250
Step 1: Create an AMAzon LeX BOt ...ttt esressveeseesssessssessaaessnessanens 251
Step 2: Create @ Lambda FUNCLION ...ttt ettt te s e e nenens 253
Step 3: Update the Intent: Configure a Code HOOKcooiireiieieieeeceeececee e 254
Step 4: Deploy the Bot on the Facebook Messenger Platformcccceeeeeeieeeienececceecienens 255
Details of INFOrMAtion FLOWc.oouiiiiiiicieeccteteteretee ettt et sa s sae s sans 256

BOOK THIP cteeueeteietestesteseetee ettt et et e st esteste e e e e e e et e e e st et e s bessaesessaeseesaensasbansansansasessaeseansassansansansensanes 274
StepP 1: BLUEPIINT REVIEW ...ttt ettt s teste s e e e e s e e s et e st e stassasse s e esnennennan 275

Amazon Lex V1 Developer Guide

Step 2: Create an AMAzon LeX BOt ...ttt et e s nessveesaesssesssnesssaessnessneens 278
Step 3: Create @ Lambda fUNCLION ...ttt aan 281
Step 4: Add the Lambda Function as @ Code HOOKcceeveeeeenerieeeeeeeecesee e 282
Details of the INfOrmMation FLOW ..ottt ettt sse st saenes 286
Example: Using @ RESPONSE Cardcviieiecieiieeeceeeeeetetetete st ste e e eee s s tesaessessessessee e saessesaesanean 306
UPAting ULEErANCES ...ttt ettt et e e e a et et e st e sae b e se e e e seenn et enanes 310
INtegrating With @ WED SIte ...ttt e se e e b aens 312
Call Center AQENt ASSISTANTcoeeieieeieecteeeeseree ettt te e et a e st e st e s ae e e e se e e e s e aessansanes 312
Step 1: Create an AMAzon Kendra INAEXceceeieiecieeienereeeeeeeeeeeectectecae e s e re e saessesaeaas 314
Step 2: Create an AMAzon LeX BOt ...ttt et esressreeseesssesssessaaessnessnnens 314
Step 3: Add a Custom and BUilt=in INteNt ..o 315
Step 4: Set Up AMAZON COGNITO ...eiiviiiiiiiciieieerteet et este s sressreessaeestessaesssaessseessnessseesssesssasssaens 316
Step 5: Deploy Your Bot as @ Web Application ...t 318
SEEP 6: USE The BOt ettt e et sa e sae st e s e s e s e s e e e a e aenaanaans 318
MiIgrating @ DOt ... iiiiiiiiiiiiiieeciiiiieeeiininieeessssessissssesesssesss 322
Migrating @ DOt (CONSOLE) .ttt ettt s ae s ae e s e e et et nes 322
Migrating @ Lambda FUNCLION ...ttt ettt snens 323
MiIGrationN MESSAGEScocuiieiiiteeeecterreert et ettt s st e s ste s st e sseesssaessaessseessaessseassaessssasssesssaesssessssesssassseans 324
BUILE-IN INTENT ettt ettt st et s et et s e st et e e saessenaenans 324
BUILE-IN SLOT tY P ettt sa et e b e st e e e e e e et e aesbe st e aasseesnennennanes 324
(@o] 0 V7T =1 To] o T Fo Yo [OOOOTT TSROSO 324
MESSAGE GIOUPS ..eecvverveirierireeetersreestessseesstessseesssessseesssesssessssesssessssesssessssessseesssesssessssesssessssesssesssssssses 325
Prompts @nd PRIASES ...ttt e et e st et ae st e sesse e e e e e e e e e aesabansans 325
Other AmMAzon LeX VT fEAUIES ..ottt sttt sttt et e e ssesse s e e ssa s e e enes 326
Migrating @ Lambda fFUNCLION ...ttt st st e e e s snens 326
List OF UPAAted fIELAS ...ttt st et e st s e e e e e e aesaeaens 328
SECUNITY ceiiiiiiiieennniiiiiieieiitnensessssssssssssecss 336
DAta Prot@CLION ..c.coiiieeee ettt sttt st s a et s b st sene s b e st e nesaesneesnes 337
ENCrYPLION @t REST ..ttt re e e st e s sae s ae e s sae s s ae e s b e sssaesbessneassaessnaessnans 337
ENCryPLion iN TranSIt c.eeeoiiiecececctestesterte sttt s et e st s te s re e st e s saesssbessaasssnessaessssessnsessaassseanns 339
KEY MANAGEMENT ..ottt ettt re st e s ste s sre e s ae s s st e s b e s saeessaessaaessaesssasssaassseessaesssannns 339
Identity and Access ManNAgQEIMENTccuecieieeiieieieteteste ettt e e aesaestestesaesse s e e e e e e s e s e aensessensanes 339
AUAIENCE ..ttt sttt sttt s b et st s bt et s s b et e e s s et et s sa b et esassassestesassansesessansensesanns 339
Authenticating With identities ...ttt 340
Managing access USING POLICIEScceieeieiieieececeeeeee et ste et s e e e re e e e s e s e stessesse s e sse e e esaennennan 343
How Amazon Lex WOrks WIith TAM ...ttt sse s se e sse e s e ssens 346

Vi

Amazon Lex V1 Developer Guide

Identity-based POLliCYy XAMPLESccucoueeieeeeeeeeeeee ettt re e e e et saesaenaens 357

AWS managed policies fOr AMAzZON LEXeeereeeeeseeceetete e see e e ae s stesae e e s e s s e saenes 364
USING Service-LiNKEA ROLES ...ttt te e a et et te st st a e st saeaan 373
TrOUBLESNOOTING ...ttt te e e ettt e st e st e s be s e e sa e e e e e a e s entanean 375
MORNIEOTING «eviiviiiieiteeieeet ettt es e st s et e e et e st e s s seessaeesaeesssesssaesssesssaesstessseesssessssasssessseesssessstesssenssaensees 376
Monitoring Amazon Lex With CLoudWatch ..o 377
Logging Amazon Lex API Calls with AWS CloudTrailcccceeeeeeeeeeeeeeeeeceeceeeeee e 389
ComMPLIANCE Valid@tion ...ttt te e e e s et e st e saesbesse s e eseennesaaneans 394
RESILIEICE .ottt sttt sttt ettt s a et et s s et et e e b et e sesae st e st esasaassesasansensans 395
INFrAaStrUCTUIE SECUIILY ..cuveeeeeeeeeeee ettt e st et e s e e e e e e s et e stessassessasanesaanaans 395
GUIdEliNes aNd QUOLAS ..ccuueeeeueeeeeeeeeenneeeeeneeeesseceessecessssccsssssesssssscssssssssssssssssssssssssscssssssssssssssnssane 396
SUPPOITEA REGIONS ...ttt ettt e testeste e e e e e e e s et e te b e ssessessaessessessansassassassesssessensansansansansans 396
GENETAL GUIAELINES ..ottt sttt ettt et st et s et e st s e s et e e sae s enaesasansnas 396

L@] U]) = L3RRS 399
RUNEIME SErVICE QUOTAS ...ueeeeeceeeeceteee ettt e ceetteeceesareeeeesaaeesesssaeeeesssssessssssssesssssssesessssnnesens 400
Model BUilding QUOLASooueiieieeeececee ettt e e e e e e ste st e st e s b e s e e e e e e e e aesaesaaaeneas 402

APl REFEIEONCE auvvevvvervreeennnnnnnnnenniiiiiiiiiiiiiieiieesessses 407
ACTIONS ettt ettt st a et e s b e st a e e et e e st s b e et e st e b e et e bt st e et e e ae et e et e enesbesnees 407
Amazon Lex Model BUilding SEIVICE ...ttt ste s e sae e e e saesaesaessassans 409
AmaAzon LeX RUNTIME SEIVICE ...ttt ettt sae st sae s sae s nes 620

DAt TYPES ettt sttt et e st s e s st et e s st s s e e e b e e e e e st e e e e e e b e e s R e e e ae e s ra e et e e st e teesraeeraesntans 663
Amazon Lex Model BUilding SEIVICE ...ttt ste s e ste e e se st saessassans 664
AmaAzon LeX RUNTIME SEIVICE ...ttt ettt sae st sae s sae s nes 724

(0T oYal 1Ty 1 L= 31 o 1T o oV UPTR 744
AWS GLOSSANY .cceeernnnniiseecennneassesses 751

vii

Amazon Lex V1 Developer Guide

If you are using Amazon Lex V2, refer to the Amazon Lex V2 guide instead.

If you are using Amazon Lex V1, we recommend upgrading your bots to Amazon Lex V2. We are no
longer adding new features to V1 and strongly recommend using V2 for all new bots.

viii

https://docs.aws.amazon.com/lexv2/latest/dg/what-is.html
https://docs.aws.amazon.com/lexv2/latest/dg/migration.html

Amazon Lex V1 Developer Guide

What Is Amazon Lex?

Amazon Lex is an AWS service for building conversational interfaces for applications using voice
and text. With Amazon Lex, the same conversational engine that powers Amazon Alexa is now
available to any developer, enabling you to build sophisticated, natural language chatbots into
your new and existing applications. Amazon Lex provides the deep functionality and flexibility
of natural language understanding (NLU) and automatic speech recognition (ASR) so you can
build highly engaging user experiences with lifelike, conversational interactions, and create new
categories of products.

Amazon Lex enables any developer to build conversational chatbots quickly. With Amazon Lex,
no deep learning expertise is necessary—to create a bot, you just specify the basic conversation
flow in the Amazon Lex console. Amazon Lex manages the dialogue and dynamically adjusts the
responses in the conversation. Using the console, you can build, test, and publish your text or
voice chatbot. You can then add the conversational interfaces to bots on mobile devices, web
applications, and chat platforms (for example, Facebook Messenger).

Amazon Lex provides pre-built integration with AWS Lambda, and you can easily integrate with
many other services on the AWS platform, including Amazon Cognito, AWS Mobile Hub, Amazon
CloudWatch, and Amazon DynamoDB. Integration with Lambda provides bots access to pre-built
serverless enterprise connectors to link to data in SaaS applications, such as Salesforce, HubSpot,
or Marketo.

Some of the benefits of using Amazon Lex include:

« Simplicity - Amazon Lex guides you through using the console to create your own chatbot in
minutes. You supply just a few example phrases, and Amazon Lex builds a complete natural
language model through which the bot can interact using voice and text to ask questions, get
answers, and complete sophisticated tasks.

- Democratized deep learning technologies — Powered by the same technology as Alexa, Amazon
Lex provides ASR and NLU technologies to create a Speech Language Understanding (SLU)
system. Through SLU, Amazon Lex takes natural language speech and text input, understands
the intent behind the input, and fulfills the user intent by invoking the appropriate business
function.

Amazon Lex V1 Developer Guide

Speech recognition and natural language understanding are some of the most challenging
problems to solve in computer science, requiring sophisticated deep learning algorithms to

be trained on massive amounts of data and infrastructure. Amazon Lex puts deep learning
technologies within reach of all developers, powered by the same technology as Alexa. Amazon
Lex chatbots convert incoming speech to text and understand the user intent to generate

an intelligent response, so you can focus on building your bots with differentiated value-

add for your customers, to define entirely new categories of products made possible through
conversational interfaces.

« Seamless deployment and scaling — With Amazon Lex, you can build, test, and deploy your
chatbots directly from the Amazon Lex console. Amazon Lex enables you to easily publish your
voice or text chatbots for use on mobile devices, web apps, and chat services (for example,
Facebook Messenger). Amazon Lex scales automatically so you don't need to worry about
provisioning hardware and managing infrastructure to power your bot experience.

 Built-in integration with the AWS platform — Amazon Lex has native interoperability with other
AWS services, such as Amazon Cognito, AWS Lambda, Amazon CloudWatch, and AWS Mobile
Hub. You can take advantage of the power of the AWS platform for security, monitoring, user
authentication, business logic, storage, and mobile app development.

» Cost-effectiveness — With Amazon Lex, there are no upfront costs or minimum fees. You are
charged only for the text or speech requests that are made. The pay-as-you-go pricing and the
low cost per request make the service a cost-effective way to build conversational interfaces.
With the Amazon Lex free tier, you can easily try Amazon Lex without any initial investment.

Are You a First-time User of Amazon Lex?

If you are a first-time user of Amazon Lex, we recommend that you read the following sections in
order:

1. Getting Started with Amazon Lex - In this section, you set up your account and test Amazon

Lex.

Are You a First-time User of Amazon Lex? 2

Amazon Lex V1 Developer Guide

2. API Reference - This section provides additional examples that you can use to explore Amazon

Lex.

Are You a First-time User of Amazon Lex? 3

Amazon Lex V1

Amazon Lex: How It Works

Amazon Lex enables you to build applications using a speech or text interface powered by the

same technology that powers Amazon Alexa. Following are the typical steps you perform when
working with Amazon Lex:

1.

Create a bot and configure it with one or more intents that you want to support. Configure the
bot so it understands the user's goal (intent), engages in conversation with the user to elicit
information, and fulfills the user's intent.

. Test the bot. You can use the test window client provided by the Amazon Lex console.
. Publish a version and create an alias.

. Deploy the bot. You can deploy the bot on platforms such as mobile applications or messaging

platforms such as Facebook Messenger.

Before you get started, familiarize yourself with the following Amazon Lex core concepts and

terminology:

Bot — A bot performs automated tasks such as ordering a pizza, booking a hotel, ordering
flowers, and so on. An Amazon Lex bot is powered by Automatic Speech Recognition (ASR) and
Natural Language Understanding (NLU) capabilities. Each bot must have a unique name within
your account.

Amazon Lex bots can understand user input provided with text or speech and converse in
natural language. You can create Lambda functions and add them as code hooks in your intent
configuration to perform user data validation and fulfillment tasks.

Intent — An intent represents an action that the user wants to perform. You create a bot to
support one or more related intents. For example, you might create a bot that orders pizza and
drinks. For each intent, you provide the following required information:

« Intent name- A descriptive name for the intent. For example, OxrdexPizza. Intent names
must be unique within your account.

Developer Guide

Amazon Lex V1 Developer Guide

« Sample utterances — How a user might convey the intent. For example, a user might say "Can |
order a pizza please" or "l want to order a pizza".

« How to fulfill the intent - How you want to fulfill the intent after the user provides the
necessary information (for example, place order with a local pizza shop). We recommend that
you create a Lambda function to fulfill the intent.

You can optionally configure the intent so Amazon Lex simply returns the information back to
the client application to do the necessary fulfillment.

In addition to custom intents such as ordering a pizza, Amazon Lex also provides built-in intents
to quickly set up your bot. For more information, see Built-in Intents and Slot Types.

» Slot — An intent can require zero or more slots or parameters. You add slots as part of the intent
configuration. At runtime, Amazon Lex prompts the user for specific slot values. The user must
provide values for all required slots before Amazon Lex can fulfill the intent.

For example, the OrderPizza intent requires slots such as pizza size, crust type, and number of
pizzas. In the intent configuration, you add these slots. For each slot, you provide slot type and
a prompt for Amazon Lex to send to the client to elicit data from the user. A user can reply with
a slot value that includes additional words, such as "large pizza please" or "let's stick with small."
Amazon Lex can still understand the intended slot value.

« Slot type — Each slot has a type. You can create your custom slot types or use built-in slot types.
Each slot type must have a unique name within your account. For example, you might create and
use the following slot types for the OrderPizza intent:

» Size — With enumeration values Small, Medium, and Large.

e Crust — With enumeration values Thick and Thin.

Amazon Lex V1 Developer Guide

Amazon Lex also provides built-in slot types. For example, AMAZON.NUMBER is a built-in slot type
that you can use for the number of pizzas ordered. For more information, see Built-in Intents and

Slot Types.

For a list of AWS Regions where Amazon Lex is available, see AWS Regions and Endpoints in the

Amazon Web Services General Reference.

The following topics provide additional information. We recommend that you review them in order
and then explore the Getting Started with Amazon Lex exercises.

Topics

« Languages Supported in Amazon Lex

« Programming Model

» Managing Messages

« Managing Conversation Context

» Using Confidence Scores

« Conversation Logs

« Managing Sessions With the Amazon Lex API

« Bot Deployment Options

 Built-in Intents and Slot Types

o Custom Slot Types

o Slot Obfuscation

« Sentiment Analysis

« Tagging Your Amazon Lex Resources

Languages Supported in Amazon Lex

Amazon Lex V1 supports a variety of languages and locales. The languages supported and the
features that support them are listed in the following tables.

Amazon Lex V2 supports additional languages, see Languages Supported in Amazon Lex V2

Supported Languages 6

https://docs.aws.amazon.com/general/latest/gr/rande.html#lex_region
https://docs.aws.amazon.com/lexv2/latest/dg/how-languages.html

Amazon Lex V1

Developer Guide

Supported Languages and Locales

Amazon Lex V1 supports the following languages and locales.

Code
de-DE
en-AU
en-GB
en-IN
en-US
es-419
es-ES
es-US
fr-CA
fr-FR
it-1T
ja-JP

ko-KR

Languages and Locales Supported by Amazon Lex Features

Language and locale
German (German)
English (Australia)
English (UK)

English (India)
English (US)

Spanish (Latin America)
Spanish (Spain)
Spanish (US)

French (Canada)
French (France)
Italian (Italy)
Japanese (Japan)

Korean (Korea)

All Amazon Lex features are supported in all languages and locales except as listed in this table.

Feature

Setting Intent Context

Supported languages and locales

English (US) (en-US)

Supported Languages and Locales

Amazon Lex V1 Developer Guide

Programming Model

A bot is the primary resource type in Amazon Lex. The other resource types in Amazon Lex are
intent, slot type, alias, and bot channel association.

You create a bot using the Amazon Lex console or the model building API. The console provides a
graphical user interface that you use to build a production-ready bot for your application. If you
prefer, you can use the model building API through the AWS CLI or your own custom program to
create a bot.

After you create a bot, you deploy it on one of the supported platforms or integrate it into your
own application. When a user interacts with the bot, the client application sends requests to the
bot using the Amazon Lex runtime API. For example, when a user says "l want to order pizza," your
client sends this input to Amazon Lex using one of the runtime API operations. Users can provide
input as speech or text.

You can also create Lambda functions and use them in an intent. Use these Lambda function
code hooks to perform runtime activities such as initialization, validation of user input, and intent
fulfillment. The following sections provide additional information.

Topics

« Model Building APl Operations

o Runtime API Operations

« Lambda Functions As Code Hooks

Model Building APl Operations

To programmatically create bots, intents, and slot types, use the model building API operations.
You can also use the model building API to manage, update, and delete resources for your bot. The
model building APl operations include:

« PutBot, PutBotAlias, Putintent, and PutSlotType to create and update bots, bot aliases, intents,

and slot types, respectively.

» CreateBotVersion, CreatelntentVersion, and CreateSlotTypeVersion to create and publish versions
of your bots, intents, and slot types, respectively.

» GetBot and GetBots to get a specific bot or a list of bots that you have created, respectively.

Programming Model 8

https://docs.aws.amazon.com/lex/latest/dg/chatbot-service.html

Amazon Lex V1 Developer Guide

« GetIntent and GetIntents to get a specific intent or a list of intents that you have created,

respectively.

» GetSlotType and GetSlotTypes to get a specific slot type or a list of slot types that you have
created, respectively.

o GetBuiltinIntent, GetBuiltinintents, and GetBuiltinSlotTypes to get an Amazon Lex built-in intent,
a list of Amazon Lex built-in intents, or a list of built-in slot types that you can use in your bot,
respectively.

» GetBotChannelAssociation and GetBotChannelAssociations to get an association between your
bot and a messaging platform or a list of the associations between your bot and messaging
platforms, respectively.

» DeleteBot, DeleteBotAlias, DeleteBotChannelAssociation, Deletelntent, and DeleteSlotType to

remove unneeded resources in your account.

You can use the model building API to create custom tools to manage your Amazon Lex resources.
For example, there is a limit of 100 versions each for bots, intents, and slot types. You could use the
model building API to build a tool that automatically deletes old versions when your bot nears the
limit.

To make sure that only one operation updates a resource at a time, Amazon Lex uses checksums.
When you use a Put APl operation—PutBot, PutBotAlias Putintent, or PutSlotType—to update
a resource, you must pass the current checksum of the resource in the request. If two tools

try to update a resource at the same time, they both provide the same current checksum.

The first request to reach Amazon Lex matches the current checksum of the resource. By the
time that the second request arrives, the checksum is different. The second tool receives a

PreconditionFailedException exception and the update terminates.

The Get operations—GetBot, GetIntent, and GetSlotType—are eventually consistent. If you use a

Get operation immediately after you create or modify a resource with one of the Put operations,
the changes might not be returned. After a Get operation returns the most recent update, it
always returns that updated resource until the resource is modified again. You can determine if an
updated resource has been returned by looking at the checksum.

Runtime API Operations

Client applications use the following runtime API operations to communicate with Amazon Lex:

Runtime API Operations 9

Amazon Lex V1 Developer Guide

« PostContent — Takes speech or text input and returns intent information and a text or speech
message to convey to the user. Currently, Amazon Lex supports the following audio formats:

Input audio formats — LPCM and Opus

Output audio formats - MPEG, OGG, and PCM

The PostContent operation supports audio input at 8 kHz and 16 kHz. Applications where the
end user speaks with Amazon Lex over the telephone, such as an automated call center, can pass
8 kHz audio directly.

» PostText — Takes text as input and returns intent information and a text message to convey to
the user.

Your client application uses the runtime API to call a specific Amazon Lex bot to process utterances
— user text or voice input. For example, suppose that a user says "l want pizza." The client sends
this user input to a bot using one of the Amazon Lex runtime API operations. From the user input,
Amazon Lex recognizes that the user request is for the OrderPizza intent defined in the bot.
Amazon Lex engages the user in a conversation to gather the required information, or slot data,
such as pizza size, toppings, and number of pizzas. After the user provides all of the necessary slot
data, Amazon Lex either invokes the Lambda function code hook to fulfill the intent, or returns the
intent data to the client, depending on how the intent is configured.

Use the PostContent operation when your bot uses speech input. For example, an automated call
center application can send speech to an Amazon Lex bot instead of an agent to address customer
inquiries. You can use the 8 kHz audio format to send audio directly from the telephone to Amazon
Lex.

The test window in the Amazon Lex console uses the PostContent API to send text and speech
requests to Amazon Lex. You use this test window in the Getting Started with Amazon Lex

exercises.

Runtime API Operations 10

Amazon Lex V1 Developer Guide

Lambda Functions As Code Hooks

You can configure your Amazon Lex bot to invoke a Lambda function as a code hook. The code
hook can serve multiple purposes:

» Customizes the user interaction—For example, when Joe asks for available pizza toppings, you
can use prior knowledge of Joe's choices to display a subset of toppings.

« Validates the user's input—Suppose that Jen wants to pick up flowers after hours. You can
validate the time that Jen input and send an appropriate response.

o Fulfills the user's intent—After Joe provides all of the information for his pizza order, Amazon
Lex can invoke a Lambda function to place the order with a local pizzeria.

When you configure an intent, you specify Lambda functions as code hooks in the following places:
» Dialog code hook for initialization and validation—This Lambda function is invoked on each user
input, assuming Amazon Lex understood the user intent.

« Fulfillment code hook—This Lambda function is invoked after the user provides all of the slot
data required to fulfill the intent.

You choose the intent and set the code hooks in the Amazon Lex console, as shown in the
following screen shot:

Lambda Functions As Code Hooks 11

Amazon Lex V1 Developer Guide

OrderFlowers Latest =

~ Sample utterances @

e.g. | would like to book a flight [+]
| would like to pick up flowers [%]
I would like to order some flowers (x}
Order flowers Q

+ Lambda initialization and validation €

+| Initialization and validation code hook

Lambda Function Name -
v Slots @
Priority Required Name Slot type Prompt
e.g. Location egA. - e.g. What city? o (+)
1. v v FlowerType Flowe... = 1w What type of flow | £ [x]
2. v PickupDate AMA... - Built-in « What day do you | £ (%]
3.0~ E PickupTime AMA... = Built-in » Atwhattime doy £ Q

+ Confirmation prompt @
v| Confirmation prompt
Confirm

Okay, your {FlowerType} will be ready for pickup by {Picku] £%

Cancel (if the user says "no")

Ckay, | will not place your order. o
« Fulfillment @
® AWS Lambda function Return parameters to client
L ambda Function NMame hd

Laml'::da ﬁ'@%ﬁ?}sﬁé éotaHooks 12

Amazon Lex V1 Developer Guide

You can also set the code hooks using the dialogCodeHook and fulfillmentActivity fields in
the Putintent operation.

One Lambda function can perform initialization, validation, and fulfillment. The event data that
the Lambda function receives has a field that identifies the caller as either a dialog or fulfillment
code hook. You can use this information to run the appropriate portion of your code.

You can use a Lambda function to build a bot that can navigate complex dialogs. You use the
dialogAction field in the Lambda function response to direct Amazon Lex to take specific
actions. For example, you can use the E1icitSlot dialog action to tell Amazon Lex to ask the
user for a slot value that isn't required. If you have a clarification prompt defined, you can use the
ElicitIntent dialog action to elicit a new intent when the user is finished with the previous one.

For more information, see Using Lambda Functions.

Managing Messages

Topics

» Types of Messages

Contexts for Configuring Messages

Supported Message Formats

Message Groups

Response Cards

When you create a bot, you can configure clarifying or informational messages that you want it to
send to the client. Consider the following examples:

» You could configure your bot with the following clarification prompt:

I don't understand. What would you like to do?

Amazon Lex sends this message to the client if it doesn't understand the user's intent.

« Suppose that you create a bot to support an intent called OrderPizza. For a pizza order,
you want users to provide information such as pizza size, toppings, and crust type. You could
configure the following prompts:

Managing Messages 13

Amazon Lex V1 Developer Guide

What size pizza do you want?
What toppings do you want?
Do you want thick or thin crust?

After Amazon Lex determines the user's intent to order pizza, it sends these messages to the
client to get information from the user.

This section explains designing user interactions in your bot configuration.

Types of Messages

A message can be a prompt or a statement.

« A prompt is typically a question and expects a user response.

« A statement is informational. It doesn't expect a response.

A message can include references to slot, session attributes, and request attributes. At runtime,
Amazon Lex substitutes these references with actual values.

To refer to slots values that have been set, use the following syntax:

{SlotName}

To refer to session attributes, use the following syntax:
[SessionAttributeName]

To refer to request attributes, use the following syntax:
((RequestAttributeName))

Messages can include both slot values, session attributes and request attributes.

For example, suppose that you configure the following message in your bot's OrderPizza intent:

"Hey [FirstName], your {PizzaTopping} pizza will arrive in [DeliveryTime] minutes."

Types of Messages

14

Amazon Lex V1 Developer Guide

This message refers to both slot (PizzaTopping) and session attributes (FirstName and
DeliveryTime). At runtime, Amazon Lex replaces these placeholders with values and returns the
following message to the client:

"Hey John, your cheese pizza will arrive in 30 minutes."

To include brackets ([]) or braces ({}) in a message, use the backslash (\) escape character. For
example, the following message includes the curly braces and square brackets:

\{Text\} \[Text\]
The text returned to the client application looks like this:

{Text} [Text]

For information about session attributes, see the runtime API operations PostText and
PostContent. For an example, see Book Trip.

Lambda functions can also generate messages and return them to Amazon Lex to send to the user.
If you add Lambda functions when you configure your intent, you can create messages dynamically.
By providing the messages while configuring your bot, you can eliminate the need to construct a
prompt in your Lambda function.

Contexts for Configuring Messages

When you are creating your bot, you can create messages in different contexts, such as clarification
prompts in bot, prompts for slot values, and messages from intents. Amazon Lex chooses an
appropriate message in each context to return to your user. You can provide a group of messages
for each context. If you do, Amazon Lex randomly chooses one message from the group. You can
also specify the format of the message or group the messages together. For more information, see
Supported Message Formats.

If you have a Lambda function associated with an intent, you can override any of the messages
that you configured at build time. A Lambda function is not required to use any of these messages,
however.

Bot Messages

You can configure your bot with clarification prompts and session end messages. At runtime,
Amazon Lex uses the clarification prompt if it doesn't understand the user's intent. You can

Contexts for Configuring Messages 15

Amazon Lex V1 Developer Guide

configure the number of times that Amazon Lex requests clarification before sending the session
end message. You configure bot-level messages in the Error Handling section of the Amazon Lex

console, as in the following image:

¢ OrderFlowers Bulld m i

Editor Settings Channels Monitoring

[+ Error handling
OrderFlowers I Clarification prompts I

o L+
Appointment Typel

’ didn'l understand you, whal would you likelod = £

CarType\values
Crusls Maximum number of retries
Flower Types ’
Pizzakind
RoomTypeValues
Sizes L+
IError Handling Sorry, I'm nol able 1o assist al this time [

With the API, you configure messages by setting the clarificationPrompt and
abortStatement fields in the PutBot operation.

If you use a Lambda function with an intent, the Lambda function might return a response
directing Amazon Lex to ask a user's intent. If the Lambda function doesn’t provide such a
message, Amazon Lex uses the clarification prompt.

Slot Prompts

You must specify at least one prompt message for each of the required slots in an intent. At
runtime, Amazon Lex uses one of these messages to prompt the user to provide a value for the
slot. For example, for a cityName slot, the following is a valid prompt:

Which city would you like to fly to?

You can set one or more prompts for each slot using the console. You can also create groups of
prompts using the Putintent operation. For more information, see Message Groups.

Contexts for Configuring Messages

16

Amazon Lex V1 Developer Guide

Responses

In the console, use the Responses section to build dynamic, engaging conversations for your
bot. You can create one or more message groups for a response. At runtime, Amazon Lex builds
a response by selecting one message from each message group. For more information about
message groups, see Message Groups.

For example, your first message group could contain different greetings: "Hello," "Hi," and
"Greetings." The second message group could contain different forms of introduction: "l am the
reservation bot" and "This is the reservation bot." A third message group could communicate the
bot's capabilities: "I can help with car rentals and hotel reservations," "You can make car rentals and
hotel reservations," and "l can help you rent a car and book a hotel."

Lex uses a message from each of the message groups to dynamically build the responses in a
conversation. For example, one interaction could be the following:

> Test Bot (Latest) @ READY

Hi
| am the reservation bot.

| can make car rentals and hotel

resenvations.

Another one could be the following:

Contexts for Configuring Messages 17

Amazon Lex V1 Developer Guide

> Test Bot (Latest) © READY

Hello
Hit

This is the reservation bot

I can help you rent a car and book a hotel.

In either case, the user could respond with a new intent, such as the BookCar or BookHotel

intent.

You can set up the bot to ask a follow-up question in the response. For example, for the preceding
interaction, you could create a fourth message group with the following questions: "Can | help with
a car or a hotel?", "Would you like to make a reservation now?", and "Is there anything that | can do
for you?". For messages that include "No" as a response, you can create a follow-up prompt. The
following image provides an example:

Contexts for Configuring Messages 18

Amazon Lex V1 Developer Guide

> Test Bot (Latest) © READY

Hi

Hil

This is the reservation bot

| can help you rent a car and book a hotel.

Is there anything that | can do for you today?

| am always here if you want to make a
reservation.

To create a follow-up prompt, choose Wait for user reply. Then type the message or messages
that you want to send when the user says "No." When you create a response to use as a follow-up
prompt, you must also specify an appropriate statement when the answer to the statement is "No."
See the following image for an example:

v Wait for user reply
IT the user says "'no,” the following message will be presentad.

Message €9

Cne of these messages will be presented at random.

Ok. Thank you. Have a great day! (+]

I'm always here if you want to make a reservation. Q

Contexts for Configuring Messages 19

Amazon Lex V1 Developer Guide

To add responses to an intent with the API, use the PutIntent operation. To specify a response,
set the conclusionStatement field in the PutIntent request. To set a follow-up prompt, set
the followUpPrompt field and include the statement to send when the user says "No." You can't
set both the conclusionStatement field and the followUpPrompt field on the same intent.

Supported Message Formats

When you use the PostText operation, or when you use the PostContent operation with the
Accept header set to text/plain; charset=utf8, Amazon Lex supports messages in the
following formats:

 PlainText—The message contains plain UTF-8 text.
« SSML—The message contains text formatted for voice output.

« CustomPayload—The message contains a custom format that you have created for your client.
You can define the payload to meet the needs of your application.

» Composite—The message is a collection of messages, one from each message group. For more
information about message groups, see Message Groups.

By default, Amazon Lex returns any one of the messages defined for a particular prompt. For
example, if you define five messages to elicit a slot value, Amazon Lex chooses one of the
messages randomly and returns it to the client.

If you want Amazon Lex to return a specific type of message to the client in a run-time request,
set the x-amzn-1lex:accept-content-types request parameter. The response is limited to
the type or types requested. If there is more than one message of the specified type, Amazon Lex
returns one at random. For more information about the x-amz-1lex:accept-content-types
header, see Setting the Response Type.

Message Groups

A message group is a set of suitable responses to a particular prompt. Use message groups when
you want your bot to dynamically build the responses in a conversation. When Amazon Lex returns
a response to the client application, it randomly chooses one message from each group. You can
create a maximum of five message groups for each response. Each group can contain a maximum
of five messages. For examples of creating message groups in the console, see Responses.

To create a message group, you can use the console or you can use the PutBot, Putintent, or
PutSlotType operations to assign a group number to a message. If you don't create a message

Supported Message Formats 20

Amazon Lex V1 Developer Guide

group, or if you create only one message group, Amazon Lex sends a single message in the
Message field. Client applications get multiple messages in a response only when you have created
more than one message group in the console, or when you create more than one message group
when you create or update an intent with the Putintent operation.

When Amazon Lex sends a message from a group, the response's Message field contains an
escaped JSON object that contains the messages. The following example shows the contents of the
Message field when it contains multiple messages.

(® Note

The example is formatted for readability. A response doesn't contain carriage returns (CR).

{\"messages\":[
{\"type\":\"PlainText\",\"group\":0,\"value\":\"Plain text\"},
{\"type\":\"SSML\",\"group\":1,\"value\":\"SSML text\"},
{\"type\":\"CustomPayload\",\"group\":2,\"value\":\"Custom payload\"}
13

You can set the format of the messages. The format can be one of the following:

» PlainText—The message is in plain UTF-8 text.
o SSML—The message is Speech Synthesis Markup Language (SSML).

« CustomPayload—The message is in a custom format that you specified.

To control the format of messages that the PostContent and PostText operations return in
the Message field, set the x-amz-lex:accept-content-types request attribute. For example,
if you set the header to the following, you receive only plain text and SSML messages in the
response:

x-amz-lex:accept-content-types: PlainText, SSML

If you request a specific message format and a message group doesn't contain that a message with
that format, you get a NoUsableMessageException exception. When you use a message group
to group messages by type, don't use the x-amz-lex:accept-content-types header.

Message Groups 21

Amazon Lex V1 Developer Guide

For more information about the x-amz-lex:accept-content-types header, see Setting the
Response Type.

Response Cards

(® Note

Response cards do not work with Amazon Connect chat. However, see Add interactive

messages to chat for similar functionality.

A response card contains a set of appropriate responses to a prompt. Use response cards to simplify
interactions for your users and increase your bot's accuracy by reducing typographical errors in

text interactions. You can send a response card for each prompt that Amazon Lex sends to your
client application. You can use response cards with Facebook Messenger, Slack, Twilio, and your
own client applications.

For example, in a taxi application, you can configure an option in the response card for "Home" and
set the value to the user's home address. When the user selects this option, Amazon Lex receives
the entire address as the input text. See the following image:

TAXI

Where To?

Home
Wark

Someplace else

You can define a response card for the following prompts:

« Conclusion statement
« Confirmation prompt

» Follow-up prompt

Response Cards 22

https://docs.aws.amazon.com/connect/latest/adminguide/interactive-messages.html
https://docs.aws.amazon.com/connect/latest/adminguide/interactive-messages.html

Amazon Lex V1 Developer Guide

» Rejection statement

» Slot type utterances

You can define only one response card for each prompt.

You configure response cards when you create an intent. You can define a static response card at
build time using the console or the Putintent operation. Or you can define a dynamic response
card at runtime in a Lambda function. If you define both static and dynamic response cards, the
dynamic response card takes precedence.

Amazon Lex sends response cards in the format that the client understands. It transforms response
cards for Facebook Messenger, Slack, and Twilio. For other clients, Amazon Lex sends a JSON
structure in the PostText response. For example, if the client is Facebook Messenger, Amazon

Lex transforms the response card to a generic template. For more information about Facebook
Messenger generic templates, see Generic Template on the Facebook website. For an example of

the JSON structure, see Generating Response Cards Dynamically.

You can use response cards only with the PostText operation. You can't use response cards with the
PostContent operation.

Defining Static Response Cards

Define static response cards with the PutBot operation or the Amazon Lex console when you create
an intent. A static response card is defined at the same time as the intent. Use a static response
card when the responses are fixed. Suppose that you are creating a bot with an intent that has

a slot for flavor. When defining the flavor slot, you specify prompts, as shown in the following
console screenshot:

~ Slots @
Priority Required MName Slot type Prompt
v e.q. What city? f+] o
1 v teaSize - What size iced tea wc £ O
2. - v teaFlavor teaFlavor w Would you like a flave & o

When defining prompts, you can optionally associate a response card and define details with the
PutBot operation, or, in the Amazon Lex console, as shown in the following example:

Response Cards 23

https://developers.facebook.com/docs/messenger-platform/send-api-reference/generic-template

Amazon Lex V1

Developer Guide

teaFlavor Prompts

IVIGAITTIUNTT TIWNNIWSD W TSLH SO

2
Corresponding utterances

e.g. | would like to go to {foCily}

Prompt response cards

0
Card image Card title
What Flavor?
Button value Button title
lemon v Lemon
raspberry - Raspberry
plain v Plain
None v e g. Button
None - e.g. Button
Delete card

Card subtitle

What flavor tea would

L+
[+

Preview
Facebook -

What Flavor?

Leman
Raspberry

Plain

Now suppose that you've integrated your bot with Facebook Messenger. The user can click the
buttons to choose a flavor, as shown in the following illustration:

Response Cards

24

Amazon Lex V1 Developer Guide

What flavor tea would you like?

e W ok
| ¥ £

What flavor?

L W LA AL 3

Lemon
Raspberry
Flain
To customize the content of a response card, you can refer to session attributes. At runtime,

Amazon Lex substitutes these references with appropriate values from the session attributes. For
more information, see Setting Session Attributes. For an example, see Using a Response Card.

Generating Response Cards Dynamically

To generate response cards dynamically at runtime, use the initialization and validation Lambda
function for the intent. Use a dynamic response card when the responses are determined at
runtime in the Lambda function. In response to user input, the Lambda function generates a
response card and returns it in the dialogAction section of the response. For more information,
see Response Format.

The following is a partial response from a Lambda function that shows the responseCard
element. It generates a user experience similar to the one shown in the preceding section.

responseCard: {
"version": 1,

Response Cards 25

Amazon Lex V1 Developer Guide

"contentType": "application/vnd.amazonaws.card.generic",
"genericAttachments": [
{

"title": "What Flavor?",
"subtitle": "What flavor do you want?",

"imageUrl": "Link to image",
"attachmentLinkUrl": "Link to attachment",
"buttons": [
{
"text": "Lemon",
"value": "lemon"
I
{
"text": "Raspberry",
"value": "raspberry"
I
{
"text": "Plain",
"value": "plain"
}
]
}
]

For an example, see Schedule Appointment.

Managing Conversation Context

Conversation context is the information that a user, your application, or a Lambda function provides

to an Amazon Lex bot to fulfill an intent. Conversation context includes slot data that the user
provides, request attributes set by the client application, and session attributes that the client
application and Lambda functions create.

Topics

Setting Intent Context
Using Default Slot Values

Setting Session Attributes

Setting Request Attributes

Setting the Session Timeout

Managing Conversation Context

26

Amazon Lex V1 Developer Guide

« Sharing Information Between Intents

» Setting Complex Attributes

Setting Intent Context

You can have Amazon Lex trigger intents based on context. A context is a state variable that can be
associated with an intent when you define a bot.

You configure the contexts for an intent when you create the intent using the console or using
the Putintent operation. You can only use contexts in the English (US) (en-US) locale, and only if
you set the enableModelImprovements parameter to true when you created the bot with the
PutBot operation.

There are two types of relationships for contexts, output contexts and input contexts. An output
context becomes active when an associated intent is fulfilled. An output context is returned to your
application in the response from the PostText or PostContent operation, and it is set for the current

session. After a context is activated, it stays active for the number of turns or time limit configured
when the context was defined.

An input context specifies conditions under which an intent can be recognized. An intent can only
be recognized during a conversation when all of its input contexts are active. An intent with no
input contexts is always eligible for recognition.

Amazon Lex automatically manages the lifecycle of contexts that are activated by fulfilling intents
with output contexts. You can also set active contexts in a call to the PostContent or PostText
operation.

You can also set the context of a conversation using the Lambda function for the intent. The
output context from Amazon Lex is sent to the Lambda function input event. The Lambda function
can send contexts in its response. For more information, see Lambda Function Input Event and
Response Format.

For example, suppose you have an intent to book a rental car that is configured to return an output
context called "book_car_fulfilled". When the intent is fulfilled, Amazon Lex sets the output context
variable "book_car_fulfilled". Since "book_car_fulfilled" is an active context, an intent with the
"book_car_fulfilled" context set as an input context is now considered for recognition, as long as

a user utterance is recognized as an attempt to elicit that intent. You can use this for intents that
only make sense after booking a car, such as emailing a receipt or modifying a reservation.

Setting Intent Context 27

Amazon Lex V1 Developer Guide

Output Context

Amazon Lex makes an intent's output contexts active when the intent is fulfilled. You can use the
output context to control the intents eligible to follow up the current intent.

Each context has a list of parameters that are maintained in the session. The parameters are the
slot values for the fulfilled intent. You can use these parameters to pre-populate slot values for
other intents. For more information,see Using Default Slot Values.

You configure the output context when you create an intent with the console or with the Putintent
operation. You can configure an intent with more than one output context. When the intent is
fulfilled, all of the output contexts are activated and returned in the PostText or PostContent

response.

The following shows assigning an output context to an intent using the console.

Input tags €

Output tags ©

order_complete €
£F 5tuns 90 secs

When you define an output context you also define its time to live, the length of time or number of
turns that the context is included in responses from Amazon Lex. A turn is one request from your
application to Amazon Lex. Once the number of turns or the time has expired, the context is no
longer active.

Your application can use the output context as needed. For example, your application can use the
output context to:

« Change the behavior of the application based on the context. For example, a travel application
could have a different action for the context "book_car_fulfilled" than "rental_hotel_fulfilled."

» Return the output context to Amazon Lex as the input context for the next utterance. If Amazon
Lex recognizes the utterance as an attempt to elicit an intent, it uses the context to limit the
intents that can be returned to ones with the specified context.

Setting Intent Context 28

Amazon Lex V1 Developer Guide

Input Context

You set an input context to limit the points in the conversation where the intent is recognized.
Intents without an input context are always eligible to be recognized.

You set the input contexts that an intent responds to using the console or the PutIntent
operation. An intent can have more than one input context. The following shows assigning an input
context to an intent using the console.

+~ Context @&
Input tags €@
v
order_complete @
Output tags €
-

For an intent with more than one input context, all contexts must be active to trigger the intent.
You can set an input context when you call the PostText, PostContent, or PutSession operation.

You can configure the slots in an intent to take default values from the current active context.
Default values are used when Amazon Lex recognizes a new intent but doesn't receive a slot value.
You specify the context name and slot name in the form #context-name.parameter-name
when you define the slot. For more information, see Using Default Slot Values.

Using Default Slot Values

When you use a default value, you specify a source for a slot value to be filled for new intents
when no slot is provided by the user’s input. This source can be previous dialog, request or session
attributes, or a fixed value that you set at build-time.

You can use the following as the source for your default values.

Previous dialog (contexts) — #context-name.parameter-name

Session attributes — [attribute-name]

Request attributes — <attribute-name>

Fixed value — Any value that doesn't match the previous

Using Default Slot Values 29

Amazon Lex V1 Developer Guide

When you use the Putintent operation to add slots to an intent, you can add a list of default values.
Default values are used in the order that they are listed. For example, suppose you have an intent
with a slot with the following definition:

"slots": [
{
"name": "reservation-start-date",
"defaultValueSpec": {
"defaultValuelList": [

{
"defaultValue": "#book-car-fulfilled.startDate"
1,
{
"defaultValue": "[reservationStartDate]"
}

Iy

Other slot configuration settings

When the intent is recognized, the slot named "reservation-start-date" has its value set to one of
the following.

1. If the "book-car-fulfilled" context is active, the value of the "startDate" parameter is used as the
default value.

2. If the "book-car-fulfilled" context is not active, or if the "startDate" parameter is not set, the
value of the "reservationStartDate" session attribute is used as the default value.

3. If neither of the first two default values are used, then the slot doesn't have a default value and
Amazon Lex will elicit a value as usual.

If a default value is used for the slot, the slot is not elicited even if it is required.

Setting Session Attributes

Session attributes contain application-specific information that is passed between a bot and a
client application during a session. Amazon Lex passes session attributes to all Lambda functions
configured for a bot. If a Lambda function adds or updates session attributes, Amazon Lex passes
the new information back to the client application. For example:

Setting Session Attributes 30

Amazon Lex V1 Developer Guide

 In Exercise 1: Create an Amazon Lex Bot Using a Blueprint (Console), the example bot uses the
price session attribute to maintain the price of flowers. The Lambda function sets this attribute
based on the type of flowers that was ordered. For more information, see Step 5 (Optional):
Review the Details of the Information Flow (Console).

 In Book Trip, the example bot uses the currentReservation session attribute to maintain a
copy of the slot type data during the conversation to book a hotel or to book a rental car. For
more information, see Details of the Information Flow.

Use session attributes in your Lambda functions to initialize a bot and to customize prompts and
response cards. For example:

« Initialization — In a pizza ordering bot, the client application passes the user's location as
a session attribute in the first call to the PostContent or PostText operation. For example,

"Location": "111 Maple Street". The Lambda function uses this information to find the
closest pizzeria to place the order.

» Personalize prompts — Configure prompts and response cards to refer to session attributes.
For example, "Hey [FirstName], what toppings would you like?" If you pass the user's first name
as a session attribute ({"FirstName": "Jo"}), Amazon Lex substitutes the name for the
placeholder. It then sends a personalized prompt to the user, "Hey Jo, which toppings would you
like?"

Session attributes persist for the duration of the session. Amazon Lex stores them in an encrypted
data store until the session ends. The client can create session attributes in a request by calling
either the PostContent or the PostText operation with the sessionAttributes field setto a
value. A Lambda function can create a session attribute in a response. After the client or a Lambda
function creates a session attribute, the stored attribute value is used any time that the client
application doesn't include sessionAttribute field in a request to Amazon Lex.

For example, suppose you have two session attributes, {"x": "1", "y": "2"}.If the client calls
the PostContent or PostText operation without specifying the sessionAttributes field,
Amazon Lex calls the Lambda function with the stored session attributes ({"x": 1, "y": 23}).

If the Lambda function doesn't return session attributes, Amazon Lex returns the stored session
attributes to the client application.

If either the client application or a Lambda function passes session attributes, Amazon Lex updates
the stored session attributes. Passing an existing value, suchas {"x": 2}, updates the stored
value. If you pass a new set of session attributes, such as {"z": 3}, the existing values are

Setting Session Attributes 31

Amazon Lex V1 Developer Guide

removed and only the new value is kept. When an empty map, {3}, is passed, stored values are
erased.

To send session attributes to Amazon Lex, you create a string-to-string map of the attributes. The
following shows how to map session attributes:

"attributeName": "attributeValue",
"attributeName": "attributeValue"

For the PostText operation, you insert the map into the body of the request using the
sessionAttributes field, as follows:

"sessionAttributes": {
"attributeName": "attributeValue",
"attributeName": "attributeValue"

For the PostContent operation, you base64 encode the map, and then send it as the x-amz-
lex-session-attributes header.

If you are sending binary or structured data in a session attribute, you must first transform the data
to a simple string. For more information, see Setting Complex Attributes.

Setting Request Attributes

Request attributes contain request-specific information and apply only to the current request. A
client application sends this information to Amazon Lex. Use request attributes to pass information
that doesn't need to persist for the entire session. You can create your own request attributes or
you can use predefined attributes. To send request attributes, use the x-amz-lex-request-
attributes header in a the section called “PostContent” or the requestAttributes field in a

the section called “PostText” request. Because request attributes don't persist across requests like

session attributes do, they are not returned in PostContent or PostText responses.

(® Note

To send information that persists across requests, use session attributes.

Setting Request Attributes 32

Amazon Lex V1 Developer Guide

The namespace x-amz-1lex: is reserved for the predefined request attributes. Don't create request
attributes with the prefix x-amz-1lex:.

Setting Predefined Request Attributes

Amazon Lex provides predefined request attributes for managing the way that it processes
information sent to your bot. The attributes do not persist for the entire session, so you must
send the predefined attributes in each request. All predefined attributes are in the x-amz-1lex:
namespace.

In addition to the following predefined attributes, Amazon Lex provides predefined attributes
for messaging platforms. For a list of those attributes, see Deploying an Amazon Lex Bot on a
Messaging Platform.

Setting the Response Type

If you have two client applications that have different capabilities, you may need to limit the
format of messages in a response. For example, you might want to restrict messages sent to a Web
client to plain text, but enable a mobile client to use both plain text and Speech Synthesis Markup
Language (SSML). To set the format of messages returned by the PostContent and PostText
operations, use the x-amz-1lex:accept-content-types" request attribute.

You can set the attribute to any combination of the following message types:

e PlainText—The message contains plain UTF-8 text.
e SSML—The message contains text formatted for voice output.

« CustomPayload—The message contains a custom format that you have created for your client.
You can define the payload to meet the needs of your application.

Amazon Lex returns only messages with the specified type in the Message field of the response.
You can set more than one value by separating values with a comma. If you are using message
groups, every message group must contain at least one message of the specified type. Otherwise,
you get a NoUsableMessageException error. For more information, see Message Groups.

(@ Note

The x-amz-lex:accept-content-types request attribute has no effect on the contents
of the HTML body. The contents of a PostText operation response is always plain UTF-8

Setting Request Attributes 33

Amazon Lex V1 Developer Guide

text. The body of a PostContent operation response contains data in the format set in the
Accept header in the request.

Setting the Preferred Time Zone

To set the time zone used to resolve dates so that it is relative to the user's time zone, use the
x-amz-lex:time-zone request attribute. If you do not specify a time zone in the x-amz-
lex:time-zone attribute, the default depends on the region that you are using for your bot.

Region Default time zone

US East (N. Virginia) America/New_York

US West (Oregon) America/Los_Angeles
Asia Pacific (Singapore) Asia/Singapore

Asia Pacific (Sydney) Australia/Sydney
Asia Pacific (Tokyo) Asia/Tokyo

Europe (Frankfurt) Europe/Berlin

Europe (Ireland) Europe/Dublin

Europe (London) Europe/London

For example, if the user responds tomorrow in response to the prompt "Which day would you like
your package delivered?" the actual date that the package is delivered depends on the user's time
zone. For example, when it is 01:00 September 16 in New York, it is 22:00 September 15 in Los
Angeles. If your service is running in the US East (N. Virginia) Region and a person in Los Angeles
orders a package to be delivered "tomorrow" using the default time zone, the package would be
delivered on the 17th, not the 16th. However, if you set the x-amz-lex:time-zone request
attribute to America/Los_Angeles, the package would be delivered on the 16th.

You can set the attribute to any of the Internet Assigned Number Authority (IANA) time zone
names. For the list of time zone names, see the List of tz database time zones on Wikipedia.

Setting Request Attributes 34

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Amazon Lex V1 Developer Guide

Setting User-Defined Request Attributes

A user-defined request attribute is data that you send to your bot in each request. You send the
information in the amz-lex-request-attributes header of a PostContent request orin the
requestAttributes field of a PostText request.

To send request attributes to Amazon Lex, you create a string-to-string map of the attributes. The
following shows how to map request attributes:

"attributeName": "attributeValue",
"attributeName": "attributeValue"

For the PostText operation, you insert the map into the body of the request using the
requestAttributes field, as follows:

"requestAttributes": {
"attributeName": "attributeValue",
"attributeName": "attributeValue"

For the PostContent operation, you base64 encode the map, and then send it as the x-amz-
lex-request-attributes header.

If you are sending binary or structured data in a request attribute, you must first transform the
data to a simple string. For more information, see Setting Complex Attributes.

Setting the Session Timeout

Amazon Lex retains context information—slot data and session attributes—until a conversation
session ends. To control how long a session lasts for a bot, set the session timeout. By default,
session duration is 5 minutes, but you can specify any duration between 0 and 1,440 minutes (24
hours).

For example, suppose that you create a ShoeOrdering bot that supports intents such as

OrderShoes and GetOrderStatus. When Amazon Lex detects that the user's intent is to order
shoes, it asks for slot data. For example, it asks for shoe size, color, brand, etc. If the user provides
some of the slot data but doesn't complete the shoe purchase, Amazon Lex remembers all of the

Setting the Session Timeout 35

Amazon Lex V1 Developer Guide

slot data and session attributes for the entire session. If the user returns to the session before it
expires, he or she can provide the remaining slot data, and complete the purchase.

In the Amazon Lex console, you set the session timeout when you create a bot. With the AWS
command line interface (AWS CLI) or API, you set the timeout when you create or update a bot
with the PutBot operation by setting the idleSessionTTLInSeconds field.

Sharing Information Between Intents

Amazon Lex supports sharing information between intents. To share between intents, use session
attributes.

For example, a user of the ShoeOrdering bot starts by ordering shoes. The bot engages in a
conversation with the user, gathering slot data, such as shoe size, color, and brand. When the
user places an order, the Lambda function that fulfills the order sets the orderNumber session
attribute, which contains the order number. To get the status of the order, the user uses the
GetOrderStatus intent. The bot can ask the user for slot data, such as order number and order
date. When the bot has the required information, it returns the status of the order.

If you think that your users might switch intents during the same session, you can design your
bot to return the status of the latest order. Instead of asking the user for order information again,
you use the orderNumber session attribute to share information across intents and fulfill the
GetOrderStatus intent. The bot does this by returning the status of the last order that the user
placed.

For an example of cross-intent information sharing, see Book Trip.

Setting Complex Attributes

Session and request attributes are string-to-string maps of attributes and values. In many cases,
you can use the string map to transfer attribute values between your client application and a bot.
In some cases, however, you might need to transfer binary data or a complex structure that can't
be easily converted to a string map. For example, the following JSON object represents an array of
the three most populous cities in the United States:

{
"cities": [
{
"city": {
"name": "New York",

Sharing Information Between Intents 36

https://docs.aws.amazon.com/lex/latest/dg/API_PutBot.html#lex-PutBot-request-idleSessionTTLInSeconds

Amazon Lex V1 Developer Guide

"state": "New York",
"pop": "8537673"
}
.
{
"city": {
"name": "Los Angeles",
"state": "California",
"pop": "3976322"
}
},
{
"city": {
"name": "Chicago",
"state": "Illinois",
"pop": "2704958"
}
}

This array of data doesn't translate well to a string-to-string map. In such a case, you can transform

an object to a simple string so that you can send it to your bot with the PostContent and PostText
operations.

For example, if you are using JavaScript, you can use the JSON.stringify operation to convert
an object to JSON, and the JSON. parse operation to convert JSON text to a JavaScript object:

// To convert an object to a string.

var jsonString = JSON.stringify(object, null, 2);
// To convert a string to an object.

var obj = JSON.parse(JSON string);

To send session attributes with the PostContent operation, you must base64 encode the
attributes before you add them to the request header, as shown in the following JavaScript code:

var encodedAttributes = new Buffer(attributeString).toString("base64");

You can send binary data to the PostContent and PostText operations by first converting the
data to a base64-encoded string, and then sending the string as the value in the session attributes:

Setting Complex Attributes 37

Amazon Lex V1 Developer Guide

"sessionAttributes" : {
"binaryData": "base64 encoded data"

Using Confidence Scores

When a user makes an utterance, Amazon Lex uses natural language understanding (NLU) to
understand the user's request and return the proper intent. By default, Amazon Lex returns the
most likely intent defined by your bot.

In some cases it may be difficult for Amazon Lex to determine the most likely intent. For example,

the user might make an ambiguous utterance, or there might be two intents that are similar. To
help determine the proper intent, you can combine your domain knowledge with the confidence
scores of a list of alternative intents. A confidence score is a rating that Amazon Lex provides that
shows how confident it is that an intent is the correct intent.

To determine the difference between two alternative intents, you can compare their confidence
scores. For example, if one intent has a confidence score of 0.95 and another has a score of 0.65,
the first intent is probably correct. However, if one intent has a score of 0.75 and another has a
score of 0.72, there is ambiguity between the two intents that you may be able to discriminate
using domain knowledge in your application.

You can also use confidence scores to create test applications that determine if changes to an
intent's utterances make a difference in the behavior of the bot. For example, you can get the
confidence scores for a bot's intents using a set of utterances, then update the intents with new
utterances. You can then check the confidence scores to see if there was an improvement.

The confidence scores that Amazon Lex returns are comparative values. You should not rely on
them as an absolute score. The values may change based on improvements to Amazon Lex.

When you use confidence scores, Amazon Lex returns the most likely intent and up to 4
alternative intents with their associated scores in each response. If all of the confidence

scores are less than a threshold, Amazon Lex includes the AMAZON.FallbackIntent, the
AMAZON.KendraSearchIntent, or both, if you have them configured. You can use the default
threshold or you can set your own threshold.

The following JSON code shows the alternativeIntents field in the response from the
PostText operation.

Using Confidence Scores

38

Amazon Lex V1 Developer Guide

"alternativeIntents": [

{
"intentName": "string",
"nluIntentConfidence": {
"score": number
1,
"slots": {
"string" : "string"
}
}

1,

Set the threshold when you create or update a bot. You can use either the API or the Amazon Lex
console. For the regions listed below you need to opt-in to enable accuracy improvements and
confidence scores. In the console, choose confidence scores in the Advanced Options section.
Using the API, set the enableModelImprovements parameter when you call the PutBot
operation. :

US East (N. Virginia) (us-east-1)

US West (Oregon) (us-west-2)

Asia Pacific (Sydney) (ap-southeast-2)

Europe (Ireland) (eu-west-1)

In all other regions, accuracy improvements and confidence score support is available by default.

To change the confidence threshold, set it in the console or using the PutBot operation. The
threshold must be a number between 1.00 and 0.00.

To use the console, set the confidence threshold when you create or update your bot.
To set the confidence threshold when creating a bot (Console)

o On Create your bot, enter a value in the Confidence score threshold field.

To update the confidence threshold (Console)

1. From the list of your bots, choose the bot to update.

2. Choose the Settings tab.

Using Confidence Scores 39

Amazon Lex V1 Developer Guide

3. In the left navigation, choose General.

4. Update the value in the Confidence score threshold field.

To set or update the confidence threshold (SDK)

« SetthenluIntentConfidenceThreshold parameter of the PutBot operation. The
following JSON code shows the parameter being set.

"nluIntentConfidenceThreshold": @.75,

Session Management

To change the intent that Amazon Lex uses in a conversation with the user, you can use the
response from your dialog code hook Lambda function, or you can use the session management
APIs in your custom application.

Using a Lambda function

When you use a Lambda function, Amazon Lex calls it with a JSON structure that contains

the input to the function. The JSON structure contains a field called currentIntent that
contains the intent that Amazon Lex has identified as the most likely intent for the user's
utterance. The JSON structure also includes an alternativeIntents field that contains up

to four additional intents that may satisfy the user's intent. Each intent includes a field called
nlulntentConfidenceScore that contains the confidence score that Amazon Lex assigned to
the intent.

To use an alternative intent, you specify it in the ConfirmIntent or the ElicitSlot dialog
action in your Lambda function.

For more information, see Using Lambda Functions.

Using the Session Management API

To use a different intent from the current intent, use the PutSession operation. For example, if you
decide that the first alternative is preferable to the intent that Amazon Lex chose, you can use the
PutSession operation to change intents so that the next intent that the user interacts with is the
one that you selected.

Session Management 40

Amazon Lex V1 Developer Guide

For more information, see Managing Sessions With the Amazon Lex API.

Conversation Logs

You enable conversation logs to store bot interactions. You can use these logs to review the
performance of your bot and to troubleshoot issues with conversations. You can log text for the
PostText operation. You can log both text and audio for the PostContent operation. By enabling
conversation logs you get a detailed view of conversations that users have with your bot.

For example, a session with your bot has a session ID. You can use this ID to get the transcript of
the conversation including user utterances and the corresponding bot responses. You also get
metadata such as intent name and slot values for an utterance.

(® Note

You can't use conversation logs with a bot subject to the Children's Online Privacy
Protection Act (COPPA).

Conversation logs are configured for an alias. Each alias can have different settings for their text
and audio logs. You can enable text logs, audio logs, or both for each alias. Text logs store text
input, transcripts of audio input, and associated metadata in CloudWatch Logs. Audio logs store
audio input in Amazon S3. You can enable encryption of text and audio logs using AWS KMS
customer managed CMKs.

To configure logging, use the console or the PutBotAlias operation. You can't log conversations
for the $LATEST alias of your bot or for the test bot available in the Amazon Lex console. After
enabling conversation logs for an alias, PostContent or PostText operation for that alias logs the

text or audio utterances in the configured CloudWatch Logs log group or S3 bucket.

Topics

« IAM Policies for Conversation Logs

« Configuring Conversation Logs

» Encrypting Conversation Logs

» Viewing Text Logs in Amazon CloudWatch Logs

o Accessing Audio Logs in Amazon S3

« Monitoring Conversation Log Status with CloudWatch Metrics

Conversation Logs 41

Amazon Lex V1 Developer Guide

IAM Policies for Conversation Logs

Depending on the type of logging that you select, Amazon Lex requires permission to use Amazon
CloudWatch Logs and Amazon Simple Storage Service (S3) buckets to store your logs. You must
create AWS ldentity and Access Management roles and permissions to enable Amazon Lex to access
these resources.

Creating an IAM Role and Policies for Conversation Logs

To enable conversation logs, you must grant write permission for CloudWatch Logs and Amazon
S3. If you enable object encryption for your S3 objects, you need to grant access permission to the
AWS KMS keys used to encrypt the objects.

You can use the IAM AWS Management Console, the IAM API, or the AWS Command Line Interface
to create the role and policies. These instructions use the AWS CLI to create the role and policies.
For information about creating policies with the console, see Creating policies on the JSON tab in

the AWS Identity and Access Management User Guide.

® Note

The following code is formatted for Linux and MacOS. For Windows, replace the Linux line
continuation character (\) with a caret (*).

To create an IAM role for conversation logs

1. Create a document in the current directory called
LexConversationLogsAssumeRolePolicyDocument. json, add the following code to it,
and save it. This policy document adds Amazon Lex as a trusted entity to the role. This allows
Lex to assume the role to deliver logs to the resources configured for conversation logs.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "lex.amazonaws.com"

}I

"Action": "sts:AssumeRole"

IAM Policies for Conversation Logs 42

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html#access_policies_create-json-editor

Amazon Lex V1 Developer Guide

2. Inthe AWS CLI, run the following command to create the IAM role for conversation logs.

aws iam create-role \
--role-name role-name \
--assume-role-policy-document file://
LexConversationLogsAssumeRolePolicyDocument. json

Next, create and attach a policy to the role that enables Amazon Lex to write to CloudWatch Logs.
To create an IAM policy for logging conversation text to CloudWatch Logs

1. Create a document in the current directory called
LexConversationLogsCloudWatchLogsPolicy. json, add the following IAM policy to it,

and save it.

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [
"logs:CreatelLogStream",
"logs:PutLogEvents"
1,
"Resource": "arn:aws:logs:region:account-id:log-group:log-group-name:*"
}

2. Inthe AWS CLI, create the IAM policy that grants write permission to the CloudWatch Logs log
group.

aws iam create-policy \
--policy-name cloudwatch-policy-name \
--policy-document file://LexConversationLogsCloudWatchLogsPolicy.json

3. Attach the policy to the IAM role that you created for conversation logs.

IAM Policies for Conversation Logs 43

Amazon Lex V1 Developer Guide

aws iam attach-role-policy \
--policy-arn arn:aws:iam::account-id:policy/cloudwatch-policy-name \
--role-name role-name

If you are logging audio to an S3 bucket, create a policy that enables Amazon Lex to write to the
bucket.

To create an IAM policy for audio logging to an S3 bucket

1. Create a document in the current directory called LexConversationLogsS3Policy. json,
add the following policy to it, and save it.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:PutObject"
1,
"Resource": "arn:aws:s3:::bucket-name/*"
}
]
}

2. Inthe AWS CLI, create the IAM policy that grants write permission to your S3 bucket.

aws iam create-policy \
--policy-name s3-policy-name \
--policy-document file://LexConversationLogsS3Policy.json

3. Attach the policy to the role that you created for conversation logs.

aws iam attach-role-policy \
--policy-arn arn:aws:iam::account-id:policy/s3-policy-name \
--role-name role-name

IAM Policies for Conversation Logs 44

Amazon Lex V1 Developer Guide

Granting Permission to Pass an IAM Role

When you use the console, the AWS Command Line Interface, or an AWS SDK to specify an IAM
role to use for conversation logs, the user specifying the conversation logs IAM role must have
permission to pass the role to Amazon Lex. To allow the user to pass the role to Amazon Lex, you
must grant PassRole permission to the user, role, or group.

The following policy defines the permission to grant to the user, role, or group. You can use the
iam:AssociatedResourceArn and iam:PassedToService condition keys to limit the scope
of the permission. For more information, see Granting a User Permissions to Pass a Role to an
AWS Service and IAM and AWS STS Condition Context Keys in the AWS Identity and Access
Management User Guide.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "iam:PassRole",
"Resource": "arn:aws:iam::account-id:role/role-name",
"Condition": {
"StringEquals": {
"iam:PassedToService": "lex.amazonaws.com"
.
"StringlLike": {
"iam:AssociatedResourceARN": "arn:aws:lex:region:account-
id:bot:bot-name:bot-alias"
}
}
}
]
}

Configuring Conversation Logs

You enable and disable conversation logs using the console or the conversationlLogs field of the
PutBotAlias operation. You can turn on or turn off audio logs, text logs, or both. Logging starts
on new bot sessions. Changes to log settings aren't reflected for active sessions.

To store text logs, use an Amazon CloudWatch Logs log group in your AWS account. You can use
any valid log group. The log group must be in the same region as the Amazon Lex bot. For more

Configuring Conversation Logs 45

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html

Amazon Lex V1 Developer Guide

information about creating a CloudWatch Logs log group, see Working with Log Groups and Log
Streams in the Amazon CloudWatch Logs User Guide.

To store audio logs, use an Amazon S3 bucket in your AWS account. You can use any valid S3
bucket. The bucket must be in the same region as the Amazon Lex bot. For more information about
creating an S3 bucket, see Create a Bucket in the Amazon Simple Storage Service Getting Started
Guide.

You must provide an IAM role with policies that enable Amazon Lex to write to the configured log
group or bucket. For more information, see Creating an IAM Role and Policies for Conversation

Logs.

If you create a service-linked role using the AWS Command Line Interface, you must add a custom
suffix to the role using the custom-suffix option as follows:

aws iam create-service-linked-role \
--aws-service-name lex.amazon.aws.com \
--custom-suffix suffix

The IAM role that you use to enable conversation logs must have the iam:PassRole permission.
The following policy should be attached to the role.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "iam:PassRole",
"Resource": "arn:aws:iam::account:role/role"
}
]
}

Enabling Conversation Logs
To turn on logs using the console

1. Open the Amazon Lex console https://console.aws.amazon.com/lex.

2. From the list, choose a bot.

3. Choose the Settings tab, and then from the left menu choose Conversation logs.

Configuring Conversation Logs 46

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
https://console.aws.amazon.com/lex

Amazon Lex V1 Developer Guide

4.

© © N o wu

In the list of aliases, choose the settings icon for the alias for which you want to configure
conversation logs.

Select whether to log text, audio, or both.

For text logging, enter the Amazon CloudWatch Logs log group name.

For audio logging, enter the S3 bucket information.

Optional. To encrypt audio logs, choose the AWS KMS key to use for encryption.

Choose an IAM role with the required permissions.

10. Choose Save to start logging conversations.

To turn on text logs using the API

1.

Call the PutBotAlias operation with an entry in the 1logSettings member of the
conversationlLogs field

e Set the destination member to CLOUDWATCH_LOGS

» Set the logType member to TEXT

e Set the resourceArn member to the Amazon Resource Name (ARN) of the CloudWatch
Logs log group that is the destination for the logs

Set the iamRoleArn member of the conversationLogs field to the Amazon Resource Name
(ARN) of an IAM role that has the required permissions for enabling conversation logs on the
specified resources.

To turn on audio logs using the API

1.

Call the PutBotAlias operation with an entry in the logSettings member of the
conversationlLogs field

« Set the destination member to S3

» Set the 1ogType member to AUDIO

» Set the resourceArn member to the ARN of the Amazon S3 bucket where the audio logs
are stored

« Optional. To encrypt audio logs with a specific AWS KMS key, set the kmsKeyArn member of
the ARN of the key that is used for encryption.

Configuring Conversation Logs 47

Amazon Lex V1 Developer Guide

2. Setthe iamRoleArn member of the conversationLogs field to the Amazon Resource Name
(ARN) of an IAM role that has the required permissions for enabling conversation logs on the
specified resources.

Disabling Conversation Logs

To turn off logs using the console

1. Open the Amazon Lex console https://console.aws.amazon.com/lex.

2. From the list, choose a bot.
3. Choose the Settings tab, and then from the left menu choose Conversation logs.
4

In the list of aliases, choose the settings icon for the alias for which you want to configure
conversation logs.

hd

Clear the check from text, audio, or both to turn off logging.

6. Choose Save to stop logging conversations.

To turn off logs using the API

e Callthe PutBotAlias operation without the conversationLogs field.

To turn off text logs using the API

o « Ifyou are logging audio
« Call the PutBotAlias operation with a logSettings entry only for AUDIO.
« The call to the PutBotAlias operation must not have a 1ogSettings entry for TEXT.
« If you are not logging audio

« Call the PutBotAlias operation without the conversationLogs field.

To turn off audio logs using the API

o « Ifyou are logging text
« Call the PutBotAlias operation with a logSettings entry only for TEXT.
e The call to the PutBotAlias operation must not have a 1logSettings entry for AUDIO.

« If you are not logging text

Configuring Conversation Logs 48

https://console.aws.amazon.com/lex

Amazon Lex V1 Developer Guide

« Call the PutBotAlias operation without the conversationLogs field.

Encrypting Conversation Logs

You can use encryption to help protect the contents of your conversation logs. For text and audio
logs, you can use AWS KMS customer managed CMKs to encrypt data in your CloudWatch Logs log
group and S3 bucket.

® Note

Amazon Lex supports only symmetric CMKs. Do not use an asymmetric CMK to encrypt
your data.

You enable encryption using an AWS KMS key on the CloudWatch Logs log group that Amazon

Lex uses for text logs. You can't provide an AWS KMS key in the log settings to enable AWS KMS
encryption of your log group. For more information, see Encrypt Log Data in CloudWatch Logs

Using AWS KMS in the Amazon CloudWatch Logs User Guide.

For audio logs you use default encryption on your S3 bucket or specify an AWS KMS key to encrypt
your audio objects. Even if your S3 bucket uses default encryption you can still specify a different
AWS KMS key to encrypt your audio objects. For more information, see Amazon S3 Default

Encryption for S3 Buckets in the Amazon Simple Storage Service Developer Guide.

Amazon Lex requires AWS KMS permissions if you choose to encrypt your audio logs. You need to
attach additional policies to the IAM role used for conversation logs. If you use default encryption
on your S3 bucket, your policy must grant access to the AWS KMS key configured for that bucket. If
you specify an AWS KMS key in your audio log settings, your must grant access to that key.

If you have not created a role for conversation logs, see IAM Policies for Conversation Logs.

To create an IAM policy for using an AWS KMS key for encrypting audio logs

1. Create a document in the current directory called LexConversationLogsKMSPolicy. json,
add the following policy to it, and save it.

{
"Version": "2012-10-17",

Encrypting Conversation Logs =

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/bucket-encryption.html

Amazon Lex V1 Developer Guide

"Statement": [

{
"Effect": "Allow",
"Action": [
"kms:GenerateDataKey"
1,
"Resource": "kms-key-arn"
}

2. Inthe AWS CLI, create the IAM policy that grants permission to use the AWS KMS key for
encrypting audio logs.

aws iam create-policy \
--policy-name kms-policy-name \
--policy-document file://LexConversationLogsKMSPolicy.json

3. Attach the policy to the role that you created for conversation logs.

aws iam attach-role-policy \
--policy-arn arn:aws:iam::account-id:policy/kms-policy-name \
--role-name role-name

Viewing Text Logs in Amazon CloudWatch Logs

Amazon Lex stores text logs for your conversations in Amazon CloudWatch Logs. To view the logs,
you can use the CloudWatch Logs console or API. For more information, see Search Log Data Using
Filter Patterns and CloudWatch Logs Insights Query Syntax in the Amazon CloudWatch Logs User
Guide.

To view logs using the Amazon Lex console

1. Open the Amazon Lex console https://console.aws.amazon.com/lex.

2. From the list, choose a bot.
3. Choose the Settings tab, then from the left menu choose Conversation logs.
4

Choose the link under Text logs to view the logs for the alias in the CloudWatch console.

Viewing Text Logs in Amazon CloudWatch Logs 50

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SearchDataFilterPattern.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SearchDataFilterPattern.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html
https://console.aws.amazon.com/lex

Amazon Lex V1 Developer Guide

You can also use the CloudWatch console or API to view your log entries. To find the log entries,
navigate to the log group that you configured for the alias. You find the log stream prefix for your
logs in the Amazon Lex console or by using the GetBotAlias operation.

Log entries for a user utterance is in multiple log streams. An utterance in the conversation has an
entry in one of the log streams with the specified prefix. An entry in the log stream contains the
following information.

"messageVersion": "1.0",
"botName": "bot name",
"botAlias": "bot alias",
"botVersion": "bot version",
"inputTranscript": "text used to process the request",
"botResponse": "response from the bot",
"intent": "matched intent",
"nluIntentConfidence": "number",
"slots": {

"slot name": "slot value",

"slot name": null,

"slot name": "slot value"

},
"alternativeIntents": [
{
"name": "intent name",
"nluIntentConfidence": "number",
"slots": {
"slot name": slot value,
"slot name": null,
"slot name": slot value

"name": "intent name",
"nluIntentConfidence": number,
"slots": {}

1,

"developerOverride": "true" | "false",
"missedUtterance": true | false,
"inputDialogMode": "Text" | "Speech",

Viewing Text Logs in Amazon CloudWatch Logs 51

Amazon Lex V1 Developer Guide

"requestId": "request ID",
"s3PathForAudio": "S3 path to audio file",

"userId": "user ID",
"sessionId": "session ID",
"sentimentResponse": {
"sentimentScore": "{Positive: number, Negative: number, Neutral: number,
Mixed: numberl}",
"sentimentlLabel": "Positive" | "Negative" | "Neutral" | "Mixed"
},
"slotToElicit": "slot name",
"dialogState": "ElicitIntent" | "ConfirmIntent" | "ElicitSlot" | "Fulfilled" |
"ReadyForFulfillment" | "Failed",

"responseCard": {
"genericAttachments": [

1,
"contentType": "application/vnd.amazonaws.card.generic",
"version": 1
},
"locale": "locale",
"timestamp": "ISO 8601 UTC timestamp",
"kendraResponse": {
"totalNumberOfResults": number,
"resultItems": [
{
"id": "query ID",
"type": "DOCUMENT" | "QUESTION_ANSWER" | "ANSWER",
"additionalAttributes": [
{

1,

"documentId": "document ID",
"documentTitle": {
"text": "title",
"highlights": null
},
"documentExcerpt": {
"text": "text",
"highlights": [
{
"beginOffset": number,
"endOffset": number,
"topAnswer": true | false

Viewing Text Logs in Amazon CloudWatch Logs 52

Amazon Lex V1 Developer Guide

iy
"documentURI": "URI",
"documentAttributes": []

iF
"facetResults": [],

"sdkResponseMetadata": {
"requestId": "request ID"

},

"sdkHttpMetadata": {
"httpHeaders": {

"Content-Length": "number",
"Content-Type": "application/x-amz-json-1.1",
"Date": "date and time",
"x-amzn-RequestId": "request ID"
.
"httpStatusCode": 200
.
"queryId": "query ID"
.
"sessionAttributes": {
"attribute name": "attribute value"
.
"requestAttributes": {
"attribute name": "attribute value"
}

The contents of the log entry depends on the result of a transaction and the configuration of the
bot and request.

« The intent, slots, and slotToElicit fields don't appear in an entry if the
missedUtterance fieldis true.

» The s3PathForAudio field doesn't appear if audio logs are disabled or if the
inputDialogModefield is Text.

« The responseCard field only appears when you have defined a response card for the bot.

Viewing Text Logs in Amazon CloudWatch Logs 53

Amazon Lex V1 Developer Guide

» The requestAttributes map only appears if you have specified request attributes in the
request.

« The kendraResponse field is only present when the AMAZON.KendraSearchIntent makes a
request to search an Amazon Kendra index.

« The developerOverride field is true when an alternative intent was specified in the bot's
Lambda function.

« The sessionAttributes map only appears if you have specified session attributes in the
request.

« The sentimentResponse map only appears if you configure the bot to return sentiment values.

(® Note

The input format may change without a corresponding change in the messageVersion.
Your code should not throw an error if new fields are present.

You must have a role and policy set to enable Amazon Lex to write to CloudWatch Logs. For more
information see IAM Policies for Conversation Logs.

Accessing Audio Logs in Amazon S3

Amazon Lex stores audio logs for your conversations in an S3 bucket.
To access audio logs using the console

1. Open the Amazon Lex console https://console.aws.amazon.com/lex.

2. From the list, choose a bot.
3. Choose the Settings tab, then from the left menu choose Conversation logs.
4

Choose the link under Audio logs to access the logs for the alias in the Amazon S3 console.

You can also use the Amazon S3 console or API to access audio logs. You can see the S3 object
key prefix of the audio files in the Amazon Lex console, or in the resourcePrefix field in the
GetBotAlias operation response.

Accessing Audio Logs in Amazon S3 54

https://console.aws.amazon.com/lex

Amazon Lex V1 Developer Guide

Monitoring Conversation Log Status with CloudWatch Metrics

Use Amazon CloudWatch to monitor delivery metrics of your conversation logs. You can set alarms
on metrics so that you are aware of issues with logging if they should occur.

Amazon Lex provides four metrics in the AWS/Lex namespace for conversation logs:

ConversationLogsAudioDeliverySuccess

ConversationLogsAudioDeliveryFailure

ConversationLogsTextDeliverySuccess

ConversationLogsTextDeliveryFailure

For more information, see CloudWatch Metrics for Conversation Logs.

The success metrics show that Amazon Lex has successfully written your audio or text logs to their
destinations.

The failure metrics show that Amazon Lex couldn't deliver audio or text logs to the specified
destination. Typically, this is a configuration error. When your failure metrics are above zero, check
the following:

« Make sure that Amazon Lex is a trusted entity for the IAM role.

» For text logging, make sure that the CloudWatch Logs log group exists. For audio logging, make
sure that the S3 bucket exists.

« Make sure that the IAM role that Amazon Lex uses to access the CloudWatch Logs log group or
S3 bucket has write permission for the log group or bucket.

» Make sure that the S3 bucket exists in the same region as the Amazon Lex bot and belongs to
your account.

« If you are using an AWS KMS key for S3 encryption, make sure that there are no policies that
prevent Amazon Lex from using your key and make sure that the 1AM role you provide has the
necessary AWS KMS permissions. For more information, see IAM Policies for Conversation Logs.

Managing Sessions With the Amazon Lex API

When a user starts a conversation with your bot, Amazon Lex creates a session. The information
exchanged between your application and Amazon Lex makes up the session state for the

Monitoring Conversation Log Status with CloudWatch Metrics 55

Amazon Lex V1 Developer Guide

conversation. When you make a request, the session is identified by a combination of the bot
name and a user identifier that you specify. For more information about the user identifier, see the
userId field in the PostContent or PostText operation.

The response from a session operation includes a unique session identifier that identifies a specific
session with a user. You can use this identifier during testing or to help troubleshoot your bot.

You can modify the session state sent between your application and your bot. For example, you
can create and modify session attributes that contain custom information about the session, and
you can change the flow of the conversation by setting the dialog context to interpret the next
utterance.

There are two ways that you can update session state. The first is to use a Lambda function with
the PostContent or PostText operation that is called after each turn of the conversation. For
more information, see Using Lambda Functions. The other is to use the Amazon Lex runtime API in

your application to make changes to the session state.

The Amazon Lex runtime API provides operations that enable you to manage session information
for a conversation with your bot. The operations are the PutSession operation, the GetSession
operation, and the DeleteSession operation. You use these operations to get information about the

state of your user's session with your bot, and to have fine-grained control over the state.

Use the GetSession operation when you want to get the current state of the session. The
operation returns the current state of the session, including the state of the dialog with your user,
any session attributes that have been set and slot values for the last three intents that the user
interacted with.

The PutSession operation enables you to directly manipulate the current session state. You can
set the type of dialog action that the bot will perform next. This gives you control over the flow of
the conversation with the bot. Set the dialog action type field to Delegate to have Amazon Lex
determine the next action for the bot.

You can use the PutSession operation to create a new session with a bot and set the intent
that the bot should start with. You can also use the PutSession operation to change from one
intent to another. When you create a session or change the intent you also can set session state,
such as slot values and session attributes. When the new intent is finished, you have the option of
restarting the prior intent. You can use the GetSession operation to get the dialog state of the
prior intent from Amazon Lex and use the information to set the dialog state of the intent.

Managing Sessions 56

Amazon Lex V1 Developer Guide

The response from the PutSession operation contains the same information as the
PostContent operation. You can use this information to prompt the user for the next piece of
information, just as you would with the response from the PostContent operation.

Use the DeleteSession operation to remove an existing session and start over with a new
session. For example, when you are testing your bot you can use the DeleteSession operation to
remove test sessions from your bot.

The session operations work with your fulfillment Lambda functions. For example, if your Lambda
function returns Failed as the fulfillment state you can use the PutSession operation to set
the dialog action type to close and fulfillmentState to ReadyForFulfillment to retry the
fulfillment step.

Here are some things that you can do with the session operations:

Have the bot start a conversation instead of waiting for the user.

Switch intents during a conversation.

Return to a previous intent.

Start or restart a conversation in the middle of the interaction.

Validate slot values and have the bot re-prompt for values that are not valid.

Each of these are described further below.

Switching Intents

You can use the PutSession operation to switch from one intent to another. You can also use it to
switch back to a previous intent. You can use the PutSession operation to set session attributes
or slot values for the new intent.

» Call the PutSession operation. Set the intent name to the name of the new intent and set the
dialog action to Delegate. You can also set any slot values or session attributes required for the
new intent.

« Amazon Lex will start a conversation with the user using the new intent.

Switching Intents 57

Amazon Lex V1 Developer Guide

Resuming a Prior Intent

To resume a prior intent you use the GetSession operation to get the summary of the intent, and
then use the PutSession operation to set the intent to its previous dialog state.

« Call the GetSession operation. The response from the operation includes a summary of the
dialog state of the last three intents that the user interacted with.

 Using the information from the intent summary, call the PutSession operation. This will return
the user to the previous intent in the same place in the conversation.

In some cases it may be necessary to resume your user's conversation with your bot. For example,
say that you have created a customer service bot. Your application determines that the user needs
to talk to a customer service representative. After talking to the user, the representative can direct
the conversation back to the bot with the information that they collected.

To resume a session, use steps similar to these:

« Your application determines that the user needs to speak to a customer service representative.
« Use the GetSession operation to get the current dialog state of the intent.
« The customer service representative talks to the user and resolves the issue.

« Use the PutSession operation to set the dialog state of the intent. This may include setting slot
values, setting session attributes, or changing the intent.

+ The bot resumes the conversation with the user.

You can use the PutSession operation checkpointLabel parameter to label an intent so that
you can find it later. For example, a bot that asks a customer for information might go into a
Waiting intent while the customer gathers the information. The bot creates a checkpoint label for
the current intent and then starts the Waiting intent. When the customer returns the bot can find
the previous intent using the checkpoint label and switch back.

The intent must be present in the recentIntentSummaryView structure returned by the
GetSession operation. If you specify a checkpoint label in the GetSession operation request, it
will return a maximum of three intents with that checkpoint label.

« Use the GetSession operation to get the current state of the session.

Resuming a Prior Intent 58

Amazon Lex V1 Developer Guide

» Use the PutSession operation to add a checkpoint label to the last intent. If necessary you can
use this PutSession call to switch to a different intent.

« When it is time to switch back to the labeled intent, call the GetSession operation to return
a recent intent list. You can use the checkpointLabelFilter parameter so that Amazon Lex
returns only intents with the specified checkpoint label.

Starting a New Session

If you want to have the bot start the conversation with your user, you can use the PutSession
operation.

» Create a welcome intent with no slots and a conclusion message that prompts the user to state
an intent. For example, "What would you like to order? You can say 'Order a drink' or 'Order a

pizza.

« Call the PutSession operation. Set the intent name to the name of your welcome intent and
set the dialog action to Delegate.

« Amazon Lex will respond with the prompt from your welcome intent to start the conversation
with your user.

Validating Slot Values

You can validate responses to your bot using your client application. If the response isn't valid, you
can use the PutSession operation to get a new response from your user. For example, suppose
that your flower ordering bot can only sell tulips, roses, and lilies. If the user orders carnations, your
application can do the following:

« Examine the slot value returned from the PostText or PostContent response.

« If the slot value is not valid, call the PutSession operation. Your application should clear
the slot value, set the slotToElicit field, and set the dialogAction.type value to
elicitSlot. Optionally, you can set the message and messageFormat fields if you want to
change the message that Amazon Lex uses to elicit the slot value.

Bot Deployment Options

Currently, Amazon Lex provides the following bot deployment options:

Starting a New Session 59

Amazon Lex V1 Developer Guide

« AWS Mobile SDK - You can build mobile applications that communicate with Amazon Lex using
the AWS Mobile SDKs.

« Facebook Messenger - You can integrate your Facebook Messenger page with your Amazon
Lex bot so that end users on Facebook can communicate with the bot. In the current
implementation, this integration supports only text input messages.

» Slack - You can integrate your Amazon Lex bot with a Slack messaging application.

« Twilio — You can integrate your Amazon Lex bot with the Twilio Simple Messaging Service (SMS).

For examples, see Deploying Amazon Lex Bots.

Built-in Intents and Slot Types

To make it easier to create bots, Amazon Lex allows you to use standard built-in intents and slot
types.

Topics

e Built-in Intents

 Built-in Slot Types

Built-in Intents

For common actions, you can use the standard built-in intents library. To create an intent from a
built-in intent, choose a built-intent in the console, and give it a new name. The new intent has the
configuration of the base intent, such as the sample utterances.

In the current implementation, you can't do the following:

« Add or remove sample utterances from the base intent
 Configure slots for built-in intents
To add a built-in intent to a bot

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Choose the bot to add the built-in intent to.

3. Inthe navigation pane, choose the plus (+) next to Intents.

Built-in Intents and Slot Types 60

https://aws.amazon.com/mobile/sdk/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

4. For Add intent, choose Search existing intents.

5. In the Search intents box, type the name of the built-in intent to add to your bot.
6. For Copy built-in intent, give the intent a name, and then choose Add.
7

Configure the intent as required for your bot.

Topics

« AMAZON.Cancellntent

« AMAZON.FallbackIntent
« AMAZON.HelpIntent
« AMAZON.KendraSearchlntent

« AMAZON.Pauselntent

« AMAZON.Repeatintent

« AMAZON.Resumelntent
« AMAZON.StartOverIntent
« AMAZON.Stopintent

(® Note
For the English (US) (en-US) locale, Amazon Lex supports intents from the Alexa standard
built-in intents. For a list of built-in intents, see Standard Built-in Intents in the Alexa Skills
Kit.
Amazon Lex doesn't support the following intents:

e AMAZON.YesIntent
« AMAZON.NoIntent
« The intents in the Built-in Intent Library in the Alexa Skills Kit

AMAZON.Cancellntent

Responds to words and phrases that indicate the user wants to cancel the current interaction. Your
application can use this intent to remove slot type values and other attributes before ending the
interaction with the user.

Built-in Intents 61

https://developer.amazon.com/docs/custom-skills/standard-built-in-intents.html
https://developer.amazon.com/docs/custom-skills/built-in-intent-library.html

Amazon Lex V1 Developer Guide

Common utterances:

« cancel
e never mind

» forgetit

AMAZON.Fallbackintent

When a user's input to an intent isn't what a bot expects, you can configure Amazon Lex to invoke
a fallback intent. For example, if the user input "I'd like to order candy" doesn't match an intent in
your OrderFlowers bot, Amazon Lex invokes the fallback intent to handle the response.

You add a fallback intent by adding the built-in AMAZON.FallbackIntent intent type to your
bot. You can specify the intent using the PutBot operation or by choosing the intent from the list
of built-in intents in the console.

Invoking a fallback intent uses two steps. In the first step the fallback intent is matched based on
the input from the user. When the fallback intent is matched, the way the bot behaves depends on
the number of retries configured for a prompt. For example, if the maximum number of attempts
to determine an intent is 2, the bot returns the bot's clarification prompt twice before invoking the
fallback intent.

Amazon Lex matches the fallback intent in these situations:

« The user's input to an intent doesn't match the input that the bot expects
« Audio input is noise, or text input isn't recognized as words.

« The user's input is ambiguous and Amazon Lex can't determine which intent to invoke.

The fallback intent is invoked when:

« The bot doesn't recognize the user input as an intent after the configured number of tries for
clarification when the conversation is started.

« Anintent doesn't recognize the user input as a slot value after the configured number of tries.

« An intent doesn't recognize the user input as a response to a confirmation prompt after the
configured number of tries.

You can use the following with a fallback intent:

Built-in Intents 62

Amazon Lex V1 Developer Guide

« A fulfillment Lambda function
« A conclusion statement

« A follow up prompt

You can't add the following to a fallback intent:

Utterances

Slots

An initialization and validation Lambda function

A confirmation prompt

If you have configured both a cancel statement and a fallback intent for a bot, Amazon Lex uses
the fallback intent. If you need your bot to have a cancel statement, you can use the fulfillment
function for the fallback intent to provide the same behavior as a cancel statement. For more
information, see the abortStatement parameter of the PutBot operation.

Using Clarification Prompts

If you provide your bot with a clarification prompt, the prompt is used to solicit a valid intent from
the user. The clarification prompt will be repeated the number of times that you configured. After
that the fallback intent will be invoked.

If you don't set a clarification prompt when you create a bot and the user doesn't start the
conversation with a valid intent, Amazon Lex immediately calls your fallback intent .

When you use a fallback intent without a clarification prompt, Amazon Lex doesn't call the fallback
under these circumstances:

« When the user responds to a follow-up prompt but doesn't provide an intent. For example, in
response to a follow-up prompt that says "Would you like anything else today?", the user says
"Yes." Amazon Lex returns a 400 Bad Request exception because it doesn't have a clarification
prompt to send to the user to get an intent.

« When using an AWS Lambda function, you return an ElicitIntent dialog type. Because
Amazon Lex doesn't have a clarification prompt to get an intent from the user, it returns a 400
Bad Request exception.

Built-in Intents 63

Amazon Lex V1 Developer Guide

« When using the PutSession operation, you send an ElicitIntent dialog type. Because
Amazon Lex doesn't have a clarification prompt to get an intent from the user, it returns a 400
Bad Request exception.

Using a Lambda Function with a Fallback Intent

When a fallback intent is invoked, the response depends on the setting of the
fulfillmentActivity parameter to the Putintent operation. The bot does one of the following:

» Returns the intent information to the client application.

o Calls the fulfillment Lambda function. It calls the function with the session variables that are set
for the session.

For more information about setting the response when a fallback intent is invoked, see the
fulfillmentActivity parameter of the Putintent operation.

If you use the fulfillment Lambda function in your fallback intent, you can use this function to
call another intent or to perform some form of communication with the user, such as collecting a
callback number or opening a session with a customer service representative.

You can perform any action in a fallback intent Lambda function that you can perform in the
fulfillment function for any other intent. For more information about creating a fulfillment
function using AWS Lambda, see Using Lambda Functions.

A fallback intent can be invoked multiple times in the same session. For example, suppose that
your Lambda function uses the E1icitIntent dialog action to prompt the user for a different
intent. If Amazon Lex can't infer the user's intent after the configured number of tries, it invokes
the fallback intent again. It also invokes the fallback intent when the user doesn't respond with a
valid slot value after the configured number of tries.

You can configure a Lambda function to keep track of the number of times that the fallback intent
is called using a session variable. Your Lambda function can take a different action if it is called
more times than the threshold that you set in your Lambda function. For more information about
session variables, see Setting Session Attributes.

AMAZON.Helpintent

Responds to words or phrases that indicate the user needs help while interacting with your bot.
When this intent is invoked, you can configure your Lambda function or application to provide

Built-in Intents 64

Amazon Lex V1 Developer Guide

information about the your bot's capabilities, ask follow up questions about areas of help, or hand
the interaction over to a human agent.

Common utterances:

« help
o help me

« can you help me

AMAZON.KendraSearchintent

To search documents that you have indexed with Amazon Kendra, use the
AMAZON.KendraSearchIntent intent. When Amazon Lex can't determine the next action in a
conversation with the user, it triggers the search intent.

The AMAZON.KendraSearchIntent is available only in the English (US) (en-US) locale and in the
US East (N. Virginia), US West (Oregon) and Europe (Ireland) Regions.

Amazon Kendra is a machine-learning-based search service that indexes natural language
documents such as PDF documents or Microsoft Word files. It can search indexed documents and
return the following types of responses to a question:

e An answer

« An entry from a FAQ that might answer the question

o A document that is related to the question

For an example of using the AMAZON.KendraSearchIntent, see Example: Creating a FAQ Bot for

an Amazon Kendra Index.

If you configure an AMAZON.KendraSearchIntent intent for your bot, Amazon Lex calls the
intent whenever it can't determine the user utterance for a slot or intent. For example, if your bot
is eliciting a response for a slot type called "pizza topping" and the user says "What is a pizza?,"
Amazon Lex calls the AMAZON.KendraSearchIntent to handle the question. If there is no
response from Amazon Kendra, the conversation continues as configured in the bot.

When you use both the AMAZON.KendraSearchIntent and the AMAZON.FallbackIntent in
the same bot, Amazon Lex uses the intents as follows:

Built-in Intents 65

Amazon Lex V1 Developer Guide

1.

Amazon Lex calls the AMAZON.KendraSearchIntent. The intent calls the Amazon Kendra
Query operation.

. If Amazon Kendra returns a response, Amazon Lex displays the result to the user.

. If there is no response from Amazon Kendra, Amazon Lex re-prompts the user. The next action

depends on response from the user.

« If the response from the user contains an utterance that Amazon Lex recognizes, such as filling
a slot value or confirming an intent, the conversation with the user proceeds as configured for
the bot.

« If the response from the user does not contain an utterance that Amazon Lex recognizes,
Amazon Lex makes another call to the Query operation.

. If there is no response after the configured number of retries, Amazon Lex calls the

AMAZON.FallbackIntent and ends the conversation with the user.

There are three ways to use the AMAZON.KendraSearchIntent to make a request to Amazon

Kendra:

Let the search intent make the request for you. Amazon Lex calls Amazon Kendra with the user's
utterance as the search string. When you create the intent, you can define a query filter string
that limits the number of responses that Amazon Kendra returns. Amazon Lex uses the filter in
the query request.

Add additional query parameters to the request to narrow the search results using your dialog
Lambda function. You add a kendraQueryFilterString field that contains Amazon Kendra
query parameters to the delegate dialog action. When you add query parameters to the
request with the Lambda function, they take precedence over the query filter that you defined
when you created the intent.

Create a new query using the dialog Lambda function. You can create a complete

Amazon Kendra query request that Amazon Lex sends. You specify the query in

the kendraQueryRequestPayload field in the delegate dialog action. The
kendraQueryRequestPayload field takes precedence over the kendraQueryFilterString
field.

To specify the queryFilterString parameter when you create a bot, or to specify the

kendraQueryFilterString field when you call the delegate action in a dialog Lambda

function, you specify a string that is used as the attribute filter for the Amazon Kendra query. If

the string isn't a valid attribute filter, you'll get an InvalidBotConfigException exception

Built-in Intents 66

Amazon Lex V1 Developer Guide

at runtime. For more information about attribute filters, see Using document attributes to filter
queries in the Amazon Kendra Developer Guide.

To have control over the query that Amazon Lex sends to Amazon Kendra, you can specify a query
in the kendraQueryRequestPayloadfield in your dialog Lambda function. If the query isn't valid,
Amazon Lex returns an InvalidLambdaResponseException exception. For more information,
see the Query operation in the Amazon Kendra Developer Guide.

For an example of how to use the AMAZON.KendraSearchIntent, see Example: Creating a FAQ

Bot for an Amazon Kendra Index.

IAM Policy for Amazon Kendra Search

To use the AMAZON.KendraSearchIntent intent, you must use a role that provides AWS Identity
and Access Management (IAM) policies that enable Amazon Lex to assume a runtime role that has
permission to call the Amazon Kendra Query intent. The IAM settings that you use depend on
whether you create the AMAZON.KendraSearchIntent using the Amazon Lex console, or using
an AWS SDK or the AWS Command Line Interface (AWS CLI). When you use the console, you can
choose between adding permission to call Amazon Kendra to the Amazon Lex service-linked role
or using a role specifically for calling the Amazon Kendra Query operation. When you use the AWS
CLI or an SDK to create the intent, you must use a role specifically for calling the Query operation.

Attaching Permissions

You can use the console to attach permissions to access the Amazon Kendra Query operation to
the default Amazon Lex service-linked role. When you attach permissions to the service-linked role,
you don't have to create and manage a runtime role specifically to connect to the Amazon Kendra
index.

The user, role, or group that you use to access the Amazon Lex console must have permissions to
manage role policies. Attach the following IAM policy to the console access role. When you grant
these permissions, the role has permissions to change the existing service-linked role policy.

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"iam:AttachRolePolicy",

iam:PutRolePolicy",

Built-in Intents 67

https://docs.aws.amazon.com/kendra/latest/dg/filtering.html#search-filtering
https://docs.aws.amazon.com/kendra/latest/dg/filtering.html#search-filtering
https://docs.aws.amazon.com/kendra/latest/dg/API_Query.html

Amazon Lex V1 Developer Guide

"iam:GetRolePolicy"

1,
"Resource": "arn:aws:iam::*:role/aws-service-role/lex.amazonaws.com/
AWSServiceRoleForLexBots"
},
{
"Effect": "Allow",
"Action": "iam:ListRoles",
"Resource": "*"
}

Specifying a Role

You can use the console, the AWS CLI, or the API to specify a runtime role to use when calling the
Amazon Kendra Query operation.

The user, role, or group that you use to specify the runtime role must have the

iam:PassRole permission. The following policy defines the permission. You can use the
iam:AssociatedResourceArn and iam:PassedToService condition context keys to further
limit the scope of the permissions. For more information, see IAM and AWS STS Condition Context
Keys in the AWS Identity and Access Management User Guide.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "iam:PassRole",
"Resource": "arn:aws:iam::account:role/role"
}
]
}

The runtime role that Amazon Lex needs to use to call Amazon Kendra must have the
kendra:Query permissions. When you use an existing IAM role for permission to call the Amazon
Kendra Query operation, the role must have the following policy attached.

You can use the IAM console, the IAM API, or the AWS CLI to create a policy and attach it to a role.
These instructions use the AWS CLI to create the role and policies.

Built-in Intents 68

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html

Amazon Lex V1 Developer Guide

® Note

The following code is formatted for Linux and MacOS. For Windows, replace the Linux line
continuation character (\) with a caret (*).

To add Query operation permission to a role

1. Create a document called KendraQueryPolicy. json in the current directory, add the
following code to it, and save it

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"kendra:Query"
1,
"Resource": [
"arn:aws:kendra:region:account:index/index ID"
]
}
]
}

2. Inthe AWS CLI, run the following command to create the IAM policy for running the Amazon
Kendra Query operation.

aws iam create-policy \
--policy-name query-policy-name \
--policy-document file://KendraQueryPolicy.json

3. Attach the policy to the IAM role that you are using to call the Query operation.

aws iam attach-role-policy \
--policy-arn arn:aws:iam::account-id:policy/query-policy-name
--role-name role-name

Built-in Intents 69

Amazon Lex V1 Developer Guide

You can choose to update the Amazon Lex service-linked role or to use a role that you created
when you create the AMAZON.KendraSearchIntent for your bot. The following procedure shows
how to choose the IAM role to use.

To specify the runtime role for AMAZON.KendraSearchintent

1. Signin to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

Choose the bot that you want to add the AMAZON.KendraSearchIntent to.
Choose the plus (+) next to Intents.
In Add intent, choose Search existing intents.

In Search intents, enter AMAZON.KendraSearchIntent and then choose Add.

o oA W

In Copy built-in intent, enter a name for the intent, such as KendraSeaxrchIntent, and then
choose Add.

N

Open the Amazon Kendra query section.

8. For IAM role choose one of the following options:

» To update the Amazon Lex service-linked role to enable your bot to query Amazon Kendra
indexes, choose Add Amazon Kendra permissions.

» To use a role that has permission to call the Amazon Kendra Query operation, choose Use
an existing role.

Using Request and Session Attributes as Filters

To filter the response from Amazon Kendra to items related to current conversation, use session
and request attributes as filters by adding the queryFilterString parameter when you create
your bot. You specify a placeholder for the attribute when you create the intent, and then Amazon
Lex V2 substitutes a value before it calls Amazon Kendra. For more information about request
attributes, see Setting Request Attributes. For more information about session attributes, see

Setting Session Attributes.

The following is a example of a queryFilterString parameter that uses a string to filter the
Amazon Kendra query.

"{"equalsTo": {"key": "City", "value": {"stringValue": "Seattle"}}}"

Built-in Intents 70

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

The following is an example of a queryFilterString parameter that uses a session attribute
called "SourceURI" to filter the Amazon Kendra query.

"{"equalsTo": {"key": "SourceURI","value": {"stringValue": "[FileURL]"}}}"

The following is an example of a queryFilterString parameter that uses a request attribute
called "DepartmentName" to filter the Amazon Kendra query.

"{"equalsTo": {"key": "Department", "value": {"stringValue": "((DepartmentName))"3}3}}"

The AMAZON.KendraSearchInteng filters use the same format as the Amazon Kendra search
filters. For more information, see Using document attributes to filter search results in the Amazon
Kendra developer guide.

The query filter string used with the AMAZON.KendraSearchIntent must use lower-case
letters for the first letter of each filter. For example, the following is a valid query filter for the
AMAZON.KendraSearchIntent.

{
"andAllFilters": [
{
"equalsTo": {
"key": "City",
"value": {
"stringValue": "Seattle"
}
}
.
{
"equalsTo": {
"key": "State",
"value": {
"stringValue": "Washington"
}
}
}
]
}

Built-in Intents 71

https://docs.aws.amazon.com/kendra/latest/dg/filtering.html#search-filtering

Amazon Lex V1 Developer Guide

Using the Search Response

Amazon Kendra returns the response to a search in the intent's conclusion statement. The intent
must have a conclusion statement unless a fulfillment Lambda function produces a conclusion
message.

Amazon Kendra has four types of responses.
e x-amz-lex:kendra-search-response-question_answer-question-<N> - The question
from a FAQ that matches the search.

e x-amz-lex:kendra-search-response-question_answer-answer-<N> - The answer
from a FAQ that matches the search.

e x-amz-lex:kendra-search-response-document-<N> - An excerpt from a document in the
index that is related to the text of the utterance.

e x-amz-lex:kendra-search-response-document-1link-<N>-The URL of a documentin
the index that is related to the text of the utterance.

e x-amz-lex:kendra-search-response-answer-<N> - An excerpt from a document in the
index that answers the question.

The responses are returned in request attributes. There can be up to five responses for each
attribute, numbered 1 through 5. For more information about responses, see Types of response in

the Amazon Kendra Developer Guide.

The conclusion statement must have one or more message groups. Each message group
contains one or more messages. Each message can contain one or more placeholder variables
that are replaced by request attributes in the response from Amazon Kendra. There must be at
least one message in the message group where all of the variables in the message are replaced by
request attribute values in the runtime response, or there must be a message in the group with
no placeholder variables. The request attributes are set off with double parentheses ("((" "))"). The
following message group messages match any response from Amazon Kendra:

« “l found a FAQ question for you: ((x-amz-lex:kendra-search-response-question_answer-
question-1)), and the answer is ((x-amz-lex:kendra-search-response-question_answer-answer-1))"
o "l found an excerpt from a helpful document: ((x-amz-lex:kendra-search-response-document-1))"

« “l think the answer to your questions is ((x-amz-lex:kendra-search-response-answer-1))”

Built-in Intents 72

https://docs.aws.amazon.com/kendra/latest/dg/response-types.html

Amazon Lex V1 Developer Guide

Using a Lambda Function to Manage the Request and Response

The AMAZON.KendraSearchIntent intent can use your dialog code hook and fulfillment code
hook to manage the request to Amazon Kendra and the response. Use the dialog code hook
Lambda function when you want to modify the query that you send to Amazon Kendra, and the
fulfillment code hook Lambda function when you want to modify the response.

Creating a Query with the Dialog Code Hook

You can use the dialog code hook to create a query to send to Amazon Kendra. Using the dialog
code hook is optional. If you don't specify a dialog code hook, Amazon Lex constructs a query from
the user utterance and uses the queryFilterString that you provided when you configured the
intent, if you provided one.

You can use two fields in the dialog code hook response to modify the request to Amazon Kendra:

« kendraQueryFilterString - Use this string to specify attribute filters for the Amazon
Kendra request. You can filter the query using any of the index fields defined in your index.
For the structure of the filter string, see Using document attributes to filter queries in the

Amazon Kendra Developer Guide. If the specified filter string isn't valid, you will get an
InvalidLambdaResponseException exception. The kendraQueryFilterString string
overrides any query string specified in the queryFilterString configured for the intent.

« kendraQueryRequestPayload - Use this string to specify an Amazon Kendra query. Your
query can use any of the features of Amazon Kendra. If you don't specify a valid query, you get
a InvalidLambdaResponseException exception. For more information, see Query in the
Amazon Kendra Developer Guide.

After you have created the filter or query string, you send the response to Amazon Lex with the
dialogAction field of the response set to delegate. Amazon Lex sends the query to Amazon
Kendra and then returns the query response to the fulfillment code hook.

Using the Fulfillment Code Hook for the Response

After Amazon Lex sends a query to Amazon Kendra, the query response is returned to the
AMAZON.KendraSearchIntent fulfillment Lambda function. The input event to the code hook
contains the complete response from Amazon Kendra. The query data is in the same structure
as the one returned by the Amazon Kendra Query operation. For more information, see Query
response syntax in the Amazon Kendra Developer Guide.

Built-in Intents 73

https://docs.aws.amazon.com/kendra/latest/dg/filtering.html#search-filtering
https://docs.aws.amazon.com/kendra/latest/dg/API_Query.html
https://docs.aws.amazon.com/kendra/latest/dg/API_Query.html#API_Query_ResponseSyntax
https://docs.aws.amazon.com/kendra/latest/dg/API_Query.html#API_Query_ResponseSyntax

Amazon Lex V1 Developer Guide

The fulfillment code hook is optional. If one does not exist, or if the code hook doesn't return a
message in the response, Amazon Lex uses the conclusion statement for responses.

Example: Creating a FAQ Bot for an Amazon Kendra Index

This example creates an Amazon Lex bot that uses an Amazon Kendra index to provide

answers to users' questions. The FAQ bot manages the dialog for the user. It uses the
AMAZON.KendraSearchIntent intent to query the index and to present the response to the user.
To create the bot, you:

1. Create a bot that your customers will interact with to get answers from your bot.

2. Create a custom intent. Your bot requires at least one intent with at least one utterance. This
intent enables your bot to build, but is not used otherwise.

3. Add the KendraSearchIntent intent to your bot and configure it to work with your Amazon
Kendra index.

4. Test the bot by asking questions that are answered by documents stored in your Amazon Kendra
index.

Before you can use this example, you need to create an Amazon Kendra index. For more
information, see Getting started with an S3 bucket (console) in the Amazon Kendra Developer
Guide.

To create a FAQ bot

1. Signin to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. In the navigation pane, choose Bots.
Choose Create.

4. Choose Custom bot. Configure the bot as follows:

« Bot name - Give the bot a name that indicates its purpose, such as KendraTestBot.
« Output voice — Choose None.

» Session timeout - Enter 5.

« Sentiment analysis — Choose No.

o COPPA - Choose No.

« User utterance storage — Choose Do not store.

Built-in Intents 74

https://docs.aws.amazon.com/kendra/latest/dg/gs-console.html
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

5. Choose Create.

To successfully build a bot, you must create at least one intent with at least one sample utterance.
This intent is required to build your Amazon Lex bot, but isn't used for the FAQ response. The
utterance for the intent must not apply to any of the questions that your customer asks.

To create the required intent

On the Getting started with your bot page, choose Create intent.
For Add intent, choose Create intent.
In the Create intent dialog box, give the intent a name, such as RequiredIntent.

For Sample utterances, type an utterance, such as Required utterance.

A A e

Choose Save intent.

Now, create the intent to search an Amazon Kendra index and the response messages that it should
return.

To create an AMAZON.KendraSearchintent intent and response message

1. In the navigation pane, choose the plus (+) next to Intents.

2. For Add intent, choose Search existing intents.

3. In the Search intents box, enter AMAZON.KendraSeaxrchIntent, then choose it from the list.
4

For Copy built-in intent, give the intent a name, such as KendraSearchIntent, and then
choose Add.

d

In the intent editor, choose Amazon Kendra query to open the query options.
6. From the Amazon Kendra index menu, choose the index that you want the intent to search.

7. In the Response section, add the following three messages:

I found a FAQ question for you: ((x-amz-lex:kendra-search-response-question_answer-
question-1)) and the answer is ((x-amz-lex:kendra-search-response-question_answer-
answer-1)).

I found an excerpt from a helpful document: ((x-amz-lex:kendra-search-response-
document-1)).

I think the answer to your questions is ((x-amz-lex:kendra-search-response-
answer-1)).

Built-in Intents 75

Amazon Lex V1 Developer Guide

8. Choose Save intent, and then choose Build to build the bot.

Finally, use the console test window to test responses from your bot. Your questions should be in
the domain that your index supports.

To test your FAQ bot

1. Inthe console test window, type a question for your index.
2. Verify the answer in the test window's response section.

3. Toreset the test window for another question, choose Clear chat history.

AMAZON.Pauseintent

Responds to words and phrases that enable the user to pause an interaction with a bot so that
they can return to it later. Your Lambda function or application needs to save intent data in session
variables, or you need to use the GetSession operation to retrieve intent data when you resume the
current intent.

Common utterances:

« pause

o pause that

AMAZON.Repeatintent

Responds to words and phrases that enable the user to repeat the previous message. Your
application needs to use a Lambda function to save the previous intent information in session
variables, or you need to use the GetSession operation to get the previous intent information.

Common utterances:

» repeat
 say that again

» repeat that

Built-in Intents 76

Amazon Lex V1 Developer Guide

AMAZON.Resumelntent

Responds to words and phrases the enable the user to resume a previously paused intent. You
Lambda function or application must manage the information required to resume the previous
intent.

Common utterances:

e resume
e continue

» keep going

AMAZON.StartOverintent

Responds to words and phrases that enable the user to stop processing the current intent and start
over from the beginning. You can use your Lambda function or the PutSession operation to elicit
the first slot value again.

Common utterances:

e start over
e restart

» start again

AMAZON.Stopintent

Responds to words and phrases that indicate that the user wants to stop processing the current
intent and end the interaction with a bot. Your Lambda function or application should clear any
existing attributes and slot type values and then end the interaction.

Common utterances:

» stop
« off

« shut up

Built-in Intents 77

Amazon Lex V1

Developer Guide

Built-in Slot Types

Amazon Lex supports built-in slot types that define how data in the slot is recognized and handled.

You can create slots of these types in your intents. This eliminates the need to create enumeration

values for commonly used slot data such as date, time, and location. Built-in slot types do not have

versions.

Slot Type

AMAZON.Airport

AMAZONL.AL
phaNumeric

AMAZON.City

AMAZON.Country

AMAZON.DATE

AMAZON.DURATION

AMAZON.Em
ailAddress

Short Description

Recognizes words
that represent an
airport.

Recognizes words
made up of letters
and numbers.

Recognizes words
that represent a city.

Recognizes words
that represent a
country.

Recognizes words
that represent a date
and converts them to
a standard format.

Recognizes words
that represent
duration and converts
them to a standard
format.

Recognizes words
that represent an
email address and
converts them into

Supported Locales

All locales

All locales except

Korean (ko-KR)

All locales

All locales

All locales

All locales

All locales

Built-in Slot Types

78

Amazon Lex V1 Developer Guide

Slot Type Short Description Supported Locales

a standard email
address.

AMAZON.FirstName Recognizes words All locales

that represent a first
name.

AMAZON.LastName Recognizes words All locales

that represent a last
name.

AMAZON.NUMBER Recognizes numeric All locales
words and converts

them into digits.

AMAZON.Percentage Recognizes words All locales

that represent a
percentage and
converts them to
a number and a
percent sign (%).

AMAZON.Ph Recognizes words All locales
oneNumber that represent a

phone number and

converts them into a

numeric string.

AMAZON.SpeedUnit Recognizes words English (US) (en-US)
that represent a

speed unit and
converts them into
a standard abbreviat
ion.

Built-in Slot Types 79

Amazon Lex V1

Developer Guide

Slot Type

AMAZON.State

AMAZON.StreetName

AMAZON.TIME

AMAZON.WeightUnit

(® Note

Short Description

Recognizes words
that represent a
state.

Recognizes words
that represent a
street name.

Recognizes words

that indicate times
and converts them
into a time format.

Recognizes words
that represent a
weight unit and
converts them into
a standard abbreviat
ion

Supported Locales

All locales

All locales except

English (US) (en-US)

All locales

English (US) (en-US)

For the English (US) (en-US) locale, Amazon Lex supports slot types from the Alexa Skill Kit.

For a list of available built-in slot types, see the Slot Type Reference in the Alexa Skills Kit

documentation.

« Amazon Lex doesn't support the AMAZON.LITERAL or the AMAZON.SearchQuery built-

in slot types.

AMAZON.Airport

Provides a list of airports. Examples include:

« John F. Kennedy International Airport

« Melbourne Airport

Built-in Slot Types

80

https://developer.amazon.com/docs/custom-skills/slot-type-reference.html

Amazon Lex V1 Developer Guide

AMAZON.AlphaNumeric

Recognizes strings made up of letters and numbers, such as APQ123.
This slot type is not available in the Korean (ko-KR) locale.
You can use the AMAZON . AlphaNumeric slot type for strings that contain:

« Alphabetical characters, such as ABC
e Numeric characters, such as 123

« A combination of alphanumeric characters, such as ABC123
You can add a regular expression to the AMAZON.AlphaNumexric slot type to validate values
entered for the slot. For example, you can use a regular expression to validate:

« United Kingdom or Canadian postal codes
« Driver's license numbers

« Vehicle identification numbers
Use a standard regular expression. Amazon Lex supports the following characters in the regular
expression:

e A-Z a-z
« 0-9

Amazon Lex also supports Unicode characters in regular expressions. The form is \uUnicode. Use
four digits to represent Unicode characters. For example, [\u0@41-\u@@5A] is equivalent to [A-Z].
The following regular expression operators are not supported:

« Infinite repeaters: *, +, or {x,} with no upper bound.

o Wild card (.)

The maximum length of the regular expression is 300 characters. The maximum length of a string
stored in an AMAZON.AlphaNumeric slot type that uses a regular expression is 30 characters.

The following are some example regular expressions.

Built-in Slot Types 81

Amazon Lex V1 Developer Guide

» Alphanumeric strings, such as APQ123 or APQ1: [A-Z]1{3}[0-9]{1, 3} or a more constrained
[A-DP-T]{3} [1-5]1{1,3}

» US Postal Service Priority Mail International format, such as CP123456789US: CP[0-9]{93}US
« Bank routing numbers, such as 123456789: [0-9]{9}

To set the regular expression for a slot type, use the console or the PutSlotType operation. The
regular expression is validated when you save the slot type. If the expression isn't valid, Amazon
Lex returns an error message.

When you use a regular expression in a slot type, Amazon Lex checks input to slots of that type
against the regular expression. If the input matches the expression, the value is accepted for the
slot. If the input does not match, Amazon Lex prompts the user to repeat the input.

AMAZON.City

Provides a list of local and world cities. The slot type recognizes common variations of city names.
Amazon Lex doesn't convert from a variation to an official name.

Examples:

New York

Reykjavik

Tokyo

Versailles

AMAZON.Country

The names of countries around the world. Examples:

Australia

Germany

Japan

United States

Uruguay

Built-in Slot Types 82

Amazon Lex V1 Developer Guide

AMAZON.DATE

Converts words that represent dates into a date format.

The date is provided to your intent in ISO-8601 date format. The date that your intent receives in
the slot can vary depending on the specific phrase uttered by the user.

« Utterances that map to a specific date, such as "today," "now," or "November twenty-fifth,"

convert to a complete date: 2020-11-25. This defaults to dates on or after the current date.

« Utterances that map to a specific week, such as "this week," or "next week," convert to the date
of the first day of the week. In ISO-8601 format, the week starts on Monday and ends on Sunday.
For example, if today is 2020-11-25, "next week" converts to 2020-11-30.

« Utterances that map to a month, but not a specific day, such as "next month," convert to the last
day of the month. For example, if today is 2020-11-25, "next month" converts to 2020-12-31.

« Utterances that map to a year, but not a specific month or day, such as "next year," convert to
the last day of the following year. For example, if today is 2020-11-25, "next year" converts to
2021-12-31.

AMAZON.DURATION

Converts words that indicate durations into a numeric duration.

The duration is resolved to a format based on the ISO-8601 duration format, PnYnMnWnDTnHNMnS.
The P indicates that this is a duration, the n is a numeric value, and the capital letter following the

n is the specific date or time element. For example, P3D means 3 days. A T is used to indicate that
the remaining values represent time elements rather than date elements.

Examples:

« "ten minutes": PT10M
 "five hours": PT5H

» "three days": P3D

« "forty five seconds": PT45S
« "eight weeks": P8W

» "seven years": P7Y

« "five hours ten minutes": PT5H10M

Built-in Slot Types 83

https://en.wikipedia.org/wiki/ISO_8601#Durations

Amazon Lex V1 Developer Guide

» "two years three hours ten minutes": P2YT3H10M

AMAZON.EmailAddress

Recognizes words that represent an email address provided as username@domain. Addresses can
include the following special characters in a user name: underscore (_), hyphen (-), period (.), and
the plus sign (+).

AMAZON.FirstName

Commonly used first names. This slot type recognizes both formal names and informal nicknames.
The name sent to your intent is the value sent by the user. Amazon Lex doesn't convert from the
nick name to the formal name.

For first names that sound alike but are spelled differently, Amazon Lex sends your intent a single
common form.

In the English (US) (en-US) locale, use the slot name AMAZON.US_First_Name.
Examples:

o Emily
« John
« Sophie

AMAZON.LastName

Commonly used last names. For names that sound alike that are spelled differently, Amazon Lex
sends your intent a single common form.

In the English (US) (en-US) locale, use the slot name AMAZON.US_Last_Name.

Examples:

Brosky

Dasher

Evers

Parres

Built-in Slot Types 84

Amazon Lex V1 Developer Guide

o Welt

AMAZON.NUMBER

Converts words or numbers that express a number into digits, including decimal numbers. The
following table shows how the AMAZON . NUMBER slot type captures numeric words.

Input Response
one hundred twenty three point four five 123.45
one hundred twenty three dot four five 123.45
point four two 0.42
point forty two 0.42
232.998 232.998
50 50
AMAZON.Percentage

Converts words and symbols that represent a percentage into a numeric value with a percent sign
(%).

If the user enters a number without a percent sign or the word "percent," the slot value is set to the
number. The following table shows how the AMAZON.Percentage slot type captures percentages.

Input Response
50 percent 50%

0.4 percent 0.4%
23.5% 23.5%
twenty five percent 25%

Built-in Slot Types 85

Amazon Lex V1

Developer Guide

AMAZON.PhoneNumber

Converts the numbers or words that represent a phone number into a string format without

punctuation as follows.

Type

International number
with leading plus (+)
sign

International number
without leading plus

(+) sign

National number

Local number

AMAZON.SpeedUnit

Converts words that represent speed units into the corresponding abbreviation. For example,

Description

11-digit number with
leading plus sign.

11-digit number
without leading plus
sign

10-digit number
without international
code

7-digit phone
number without an
international code or
an area code

"miles per hour" is converted to mph.

Input

+61 7 4445 1061

+1 (509) 555-1212

1(509) 555-1212

617 4445 1061

(03) 5115 4444

(509) 555-1212

555-1212

This slot type is available only in the English (US) (en-US) locale.

Result

+61744431061

+15095551212

15095551212

61744451061

0351154444

5095551212

5551212

The following examples show how the AMAZON. SpeedUnit slot type captures speed units.

Speed unit

miles per hour, mph, MPH, m/h

Abbreviation

mph

Built-in Slot Types

86

Amazon Lex V1

Developer Guide

Speed unit

kilometers per hour, km per hour, kmph,
KMPH, km/h

meters per second, mps, MPS, m/s

nautical miles per hour, knots, knot

AMAZON.State

The names of geographical and political regions within countries.

Examples:

Bavaria

Fukushima Prefecture

Pacific Northwest

Queensland

Wales

AMAZON.StreetName

Abbreviation

kmph

mps

knot

The names of streets within a typical street address. This includes just the street name, not the

house number.

This slot type isn't available in the English (US) (en-US) locale.

Examples:

« Canberra Avenue
« Front Street

+ Market Road

Built-in Slot Types

87

Amazon Lex V1 Developer Guide

AMAZON.TIME

Converts words that represent times into time values. Includes resolutions for ambiguous times.
When a user enters an ambiguous time, Amazon Lex uses the slotDetails attribute of a Lambda
event to pass resolutions for the ambiguous times to your Lambda function. For example, if your
bot prompts the user for a delivery time, the user can respond by saying "10 o'clock." This time

is ambiguous. It means either 10:00 AM or 10:00 PM. In this case, the value in the slots map is
null, and the slotDetails entity contains the two possible resolutions of the time. Amazon Lex
inputs the following into the Lambda function:

"slots": {
"deliveryTime": null
b
"slotDetails": {
"deliveryTime": {
"resolutions": [

{

"value": "10:00"
iy
{

"value": "22:00"
}

When the user responds with an unambiguous time, Amazon Lex sends the time to your Lambda
function in the slots attribute of the Lambda event and the slotDetails attribute is empty.
For example, if your user responds to the prompt for a delivery time with "10:00 PM," Amazon Lex
inputs the following into the Lambda function:

"slots": {

"deliveryTime": "22:00"

For more information about the data sent from Amazon Lex to a Lambda function, see Input Event
Format.

Built-in Slot Types 88

Amazon Lex V1 Developer Guide

AMAZON.WeightUnit

Converts words that represent a weight unit into the corresponding abbreviation. For example,
"kilogram" is converted to kg.

This slot type is available only in the English (US) (en-US) locale.

The following examples show how the AMAZON.WeightUnit slot type captures weight units:

Weight unit Abbreviation
kilograms, kilos, kgs, KGS kg

grams, gms, gm, GMS, g g

milligrams, mg, mgs mg

pounds, lbs, LBS lbs

ounces, oz, OZ oz

tonne, ton, t t

kiloton, kt kt

Custom Slot Types

For each intent, you can specify parameters that indicate the information that the intent needs to
fulfill the user's request. These parameters, or slots, have a type. A slot type is a list of values that
Amazon Lex uses to train the machine learning model to recognize values for a slot. For example,
you can define a slot type called "Genres." Each value in the slot type is the name of a genre,

"comedy," "adventure," "documentary," etc. You can define a synonym for a slot type value. For

example, you can define the synonyms "funny" and "humorous" for the value "comedy."

You can configure the slot type to restrict resolution to the slot values. The slot values will be used
as an enumeration and the value entered by the user will be resolved to the slot value only if it is
the same as one of the slot values or a synonym. A synonym is resolved to the corresponding slot
value. For example, if the user enters "funny" it will resolve to the slot value "comedy."

Custom Slot Types 89

Amazon Lex V1 Developer Guide

Alternately, you can configure the slot type to expand the values. Slot values will be used as
training data and the slot is resolved to the value provided by the user if it is similar to the slot
values and synonyms. This is the default behavior.

Amazon Lex maintains a list of possible resolutions for a slot. Each entry in the list provides a
resolution value that Amazon Lex recognized as additional possibilities for the slot. A resolution
value is the best effort to match the slot value. The list contains up to five values.

When the value entered by the user is a synonym, the first entry in the list of resolution
values is the slot type value. For example, if the user enters "funny," the slots field contains
"funny" and the first entry in the slotDetails field is "comedy." You can configure the
valueSelectionStrategy when you create or update a slot type with the PutSlotType
operation so that the slot value is filled with the first value in the resolution list.

If you are using a Lambda function, the input event to the function includes a resolution list called
slotDetails. The following example shows the slot and slot details section of the input to a
Lambda function:

"slots": {
"MovieGenre": "funny";

.
"slotDetails": {
"Movie": {
"resolutions": [
"value": "comedy"

For each slot type, you can define a maximum of 10,000 values and synonyms. Each bot can have
a total number of 50,000 slot type values and synonyms. For example, you can have 5 slot types,
each with 5,000 values and 5,000 synonyms, or you can have 10 slot types, each with 2,500 values
and 2,500 synonyms. If you exceed these limits, you will get a LimitExceededException when
you call the PutBot operation.

Custom Slot Types 90

Amazon Lex V1 Developer Guide

Slot Obfuscation

Amazon Lex enables you to obfuscate, or hide, the contents of slots so that the content is not
visible. To protect sensitive data captured as slot values, you can enable slot obfuscation to mask
those values in conversation logs.

When you choose to obfuscate slot values, Amazon Lex replaces the value of the slot with the
name of the slot in conversation logs. For a slot called full_name, the value of the slot would be
obfuscated as follows:

Before obfuscation:

My name is John Stiles
After obfuscation:

My name is {full_name}

If an utterance contains bracket characters ({}) Amazon Lex escapes the bracket characters with two
back slashes (\\). For example, the text {John Stiles} is obfuscated as follows:

Before obfuscation:

My name is {John Stiles}
After obfuscation:

My name is \\{{full_name}\\}

Slot values are obfuscated in conversation logs. The slot values are still available in the response
from the PostContent and PostText operations, and the slot values are available to your
validation and fulfillment Lambda functions. If you are using slot values in your prompts or
responses, those slot values are not obfuscated in conversation logs.

In the first turn of a conversation, Amazon Lex obfuscates slot values if it recognizes a slot and slot
value in the utterance. If no slot value is recognized, Amazon Lex does not obfuscate the utterance.

On the second and later turns, Amazon Lex knows the slot to elicit and if the slot value should

be obfuscated. If Amazon Lex recognizes the slot value, the value is obfuscated. If Amazon Lex
does not recognize a value, the entire utterance is obfuscated. Any slot values in missed utterances
won't be obfuscated.

Amazon Lex also doesn't obfuscate slot values that you store in request or session attributes. If you
are storing slot values that should be obfuscated as an attribute, you must encrypt or otherwise
obfuscate the value.

Slot Obfuscation 91

Amazon Lex V1 Developer Guide

Amazon Lex doesn't obfuscate the slot value in audio. It does obfuscate the slot value in the audio
transcription.

You don't need to obfuscate all of the slots in a bot. You can choose which slots obfuscate using
the console or by using the Amazon Lex API. In the console, choose Slot obfuscation in the
settings for a slot. If you are using the API, set the obfuscationSetting field of the slot to
DEFAULT_OBFUSCATION when you call the Putintent operation.

Sentiment Analysis

You can use sentiment analysis to determine the sentiments expressed in a user utterance. With
the sentiment information you can manage conversation flow or perform post-call analysis. For
example, if the user sentiment is negative you can create a flow to hand over a conversation to a
human agent.

Amazon Lex integrates with Amazon Comprehend to detect user sentiment. The response from
Amazon Comprehend indicates whether the overall sentiment of the text is positive, neutral,
negative, or mixed. The response contains the most likely sentiment for the user utterance and the
scores for each of the sentiment categories. The score represents the likelihood that the sentiment
was correctly detected.

You enable sentiment analysis for a bot using the console or by using the Amazon Lex API. On the
Amazon Lex console, choose the Settings tab for your bot, then set the Sentiment Analysis option
to Yes. If you are using the API, call the PutBot operation with the detectSentiment field set to
true.

When sentiment analysis is enabled, the response from the PostContent and PostText operations

return a field called sentimentResponse in the bot response with other metadata. The
sentimentResponse field has two fields, SentimentLabel and SentimentScore, that contain
the result of the sentiment analysis. If you are using a Lambda function, the sentimentResponse
field is included in the event data sent to your function.

The following is an example of the sentimentResponse field returned as part of the PostText
or PostContent response. The SentimentScore field is a string that contains the scores for the
response.

"SentimentScore":

"{

Sentiment Analysis 92

Amazon Lex V1 Developer Guide

Mixed: 0.030585512690246105,
Positive: ©0.94992071056365967,
Neutral: ©0.0141543131828308,
Negative: 0.00893945890665054
B

"SentimentLabel": "POSITIVE"

Amazon Lex calls Amazon Comprehend on your behalf to determine the sentiment in every
utterance processed by the bot. By enabling sentiment analysis, you agree to the service terms
and agreements for Amazon Comprehend. For more information about pricing for Amazon
Comprehend, see Amazon Comprehend Pricing.

For more information about how Amazon Comprehend sentiment analysis works, see Determine
the Sentiment in the Amazon Comprehend Developer Guide.

Tagging Your Amazon Lex Resources

To help you manage your Amazon Lex bots, bot aliases, and bot channels, you can assign metadata
to each resource as tags. A tag is a label that you assign to an AWS resource. Each tag consists of a
key and a value.

Tags enable you to categorize your AWS resources in different ways, for example, by purpose,
owner, or application. Tags help you to:

« Identify and organize your AWS resources. Many AWS resources support tagging, so you can
assign the same tag to resources in different services to indicate that the resources are related.
For example, you can tag a bot and the Lambda functions that it uses with the same tag.

 Allocate costs. You activate tags on the AWS Billing and Cost Management dashboard. AWS uses
the tags to categorize your costs and deliver a monthly cost allocation report to you. For Amazon
Lex, you can allocate costs for each alias using tags specific to the alias, except for the $LATEST
alias. You allocate costs for the $LATEST alias using tags for your Amazon Lex bot. For more
information, see Use Cost Allocation Tags in the AWS Billing and Cost Management User Guide.

» Control access to your resources. You can use tags to Amazon Lex to create policies to control
access to Amazon Lex resources. These policies can be attached to an IAM role or user to enable
tag-based access control. For more information, see ABAC with Amazon Lex. To view an example

identity-based policy for limiting access to a resource based on the tags on that resource, see
Use a Tag to Access a Resource.

Tagging Resources 93

https://aws.amazon.com/comprehend/pricing/
https://docs.aws.amazon.com/comprehend/latest/dg/how-sentiment.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-sentiment.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon Lex V1 Developer Guide

You can work with tags using the AWS Management Console, the AWS Command Line Interface, or
the Amazon Lex API.

Tagging Your Resources

If you are using the Amazon Lex console, you can tag resources when you create them, or you can
add the tags later. You can also use the console to update or remove existing tags.

If you are using the AWS CLI or the Amazon Lex API, you use the following operations to manage
tags for your resources:

ListTagsForResource — view the tags associated with a resource.

PutBot and PutBotAlias — apply tags when you create a bot or a bot alias.

TagResource — add and modify tags on an existing resource.

UntagResource — remove tags from a resource.

The following resources in Amazon Lex support tagging:

» Bots - use an Amazon Resource Name (ARN) like the following:

e arn:${partition}:lex:${region}:${account}:bot:${bot-name}
» Bot aliases - use an ARN like the following:

o arn:${partition}:lex:${region}:${account}:bot:${bot-name}:${bot-alias}
« Bot channels - use an ARN like the following:

e arn:${partition}:lex:${region}:${account}:bot-channel:${bot-name}:
${bot-alias}:${channel-name}

Tag Restrictions

The following basic restrictions apply to tags on Amazon Lex resources:

Maximum number of tags - 50

Maximum key length — 128 characters

Maximum value length — 256 characters

Valid characters for key and value - a-z, A-Z, 0-9, space, and the following characters: _.:/ =+ -
and @

Tagging Your Resources 94

Amazon Lex V1 Developer Guide

» Keys and values are case sensitive.

« Don't use aws: as a prefix for keys; it's reserved for AWS use.

Tagging Resources (Console)

You can use the console to manage tags on a bot, a bot alias, or a bot channel resource. You
can add tags when you create a resource, or you can add, modify, or remove tags from existing
resources.

To add a tag when you create a bot

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Choose Create to create a new bot.
3. At the bottom of the Create your bot page, choose Tags.
4. Choose Add tag and add one or more tags to the bot. You can add up to 50 tags.

To add a tag when you create a bot alias

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

Choose the bot that you want to add the bot alias to.
Choose Settings.

Add the alias name, choose the bot version, and then choose Add tags.

Lok W

Choose Add tag and add one or more tags to the bot alias. You can add up to 50 tags.

To add a tag when you create a bot channel

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

Choose the bot that you want to add the bot channel to.
Choose Channels and then choose the channel that you want to add.

Add the details for the bot channel, and then choose Tags.

ok W

Choose Add tag and add one or more tags to the bot channel. You can add up to 50 tags.

Tagging Resources (Console) 95

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

To add a tag when you import a bot

1.

Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

Choose Actions and then choose Import.
Choose the zip file for importing the bot.

Choose Tags, then choose Add tag to add one or more tags to the bot. You can add up to 50
tags.

To add, remove, or modify a tag on an existing bot

1.

Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

From the left menu, choose Bots and then choose the bot that you want to modify.
Choose Settings and then from the left menu choose General.

Choose Tags and then add, modify, or remove tags for the bot.

To add, remove, or modify a tag on a bot alias

1.

Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

From the left menu, choose Bots and then choose the bot that you want to modify.
Choose Settings and then from the left menu choose Aliases.

Choose Manage tags for the alias that you want to modify, and then add, modify, or remove
tags for the bot alias.

To add, remove, or modify a tag on an existing bot channel

1.

Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

From the left menu, choose Bots and then choose the bot that you want to modify.
Choose Channels.

Choose Tags and then add, modify, or remove tags for the bot channel.

Tagging Resources (Console) 96

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

Tagging Resources (AWS CLI)

You can use the AWS CLI to manage tags on a bot, a bot alias, or a bot channel resource. You can
add tags when you create a bot or a bot alias, or you can add, modify, or remove tags from a bot, a
bot alias, or a bot channel.

All of the examples are formatted for Linux and macOS. To use the command in Windows, replace
the Linux continuation character (\) with a caret ().

To add a tag when you create a bot

« The following abbreviated put-bot AWS CLI command shows the parameters that you
must use to add a tag when you create a bot. To actually create a bot, you must supply other
parameters. For more information, see Step 4: Getting Started (AWS CLI).

aws lex-models put-bot \
--tags '[{"key": "keyl", "value": "valuel"}, \
{"key": "key2", "value": "value2"}]'

To add a tag when you create a bot alias

e The following abbreviated put-bot-alias AWS CLI command shows the parameters that
you must use to add a tag when you create a bot alias. To actually create a bot alias, you must
supply other parameters. For more information, see Exercise 5: Create an Alias (AWS CLI).

aws lex-models put-bot \
--tags '[{"key": "keyl", "value": "valuel"}, \
{nkeyn: nkeyzn’ "Value": nvaluezn}]n

To list tags on a resource

e Usethelist-tags-for-resource AWS CLI command to show the resources associated
with a bot, bot alias, bot channel.

aws lex-models list-tags-for-resource \
--resource-arn bot, bot alias, or bot channel ARN

Tagging Resources (AWS CLI) 97

Amazon Lex V1 Developer Guide

To add or modify tags on a resource

e« Usethe tag-resource AWS CLI command to add or modify a bot, bot alias, or bot channel.

aws lex-models tag-resource \
--resource-arn bot, bot alias, or bot channel ARN \

--tags '[{"key": "keyl", "value": "valuel"}, \
{"key": "key2", "value": "value2"}]'

To remove tags from a resource

« Usetheuntag-resource AWS CLI command to remove tags from a bot, bot alias, or bot

channel.

aws lex-models untag-resource \
--resource-arn bot, bot alias, or bot channel ARN \

--tag-keys '["keyl", "key2"]'

Tagging Resources (AWS CLI) 98

Amazon Lex V1 Developer Guide

Getting Started with Amazon Lex

Amazon Lex provides APl operations that you can integrate with your existing applications. For a
list of supported operations, see the API Reference. You can use any of the following options:

« AWS SDK — When using the SDKs your requests to Amazon Lex are automatically signed and
authenticated using the credentials that you provide. This is the recommended choice for
building your applications.

o AWS CLI — You can use the AWS CLI to access any Amazon Lex feature without having to write
any code.

« AWS Console — The console is the easiest way to get started testing and using Amazon Lex

If you are new to Amazon Lex, we recommend that you read Amazon Lex: How It Works. first.

Topics

» Step 1: Set Up an AWS Account and Create an Administrator User

o Step 2: Set Up the AWS Command Line Interface

» Step 3: Getting Started (Console)
» Step 4: Getting Started (AWS CLI)

Step 1: Set Up an AWS Account and Create an Administrator
User

Before you use Amazon Lex for the first time, complete the following tasks:

1. Sign Up for AWS

2. Create a user

Sign Up for AWS

If you already have an AWS account, skip this task.

When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up
for all services in AWS, including Amazon Lex. You are charged only for the services that you use.

Step 1: Set Up an Account 99

Amazon Lex V1 Developer Guide

With Amazon Lex, you pay only for the resources that you use. If you are a new AWS customer, you
can get started with Amazon Lex for free. For more information, see AWS Free Usage Tier.

If you already have an AWS account, skip to the next task. If you don't have an AWS account, use
the following procedure to create one.

To create an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks

that require root user access.

Write down your AWS account ID because you'll need it for the next task.

Create a user

Services in AWS, such as Amazon Lex, require that you provide credentials when you access them
so that the service can determine whether you have permissions to access the resources owned by
that service. The console requires your password. However, we don't recommend that you access
AWS using the credentials for your AWS account. Instead, we recommend that you:

» Use AWS Identity and Access Management (IAM) to create a user

« Add the user to an IAM group with administrative permissions

« Grant administrative permissions to the user that you created.

You can then access AWS using a special URL and the user's credentials.

The Getting Started exercises in this guide assume that you have a user (adminuser) with
administrator privileges. Follow the procedure to create adminuser in your account.

Create a user 100

https://aws.amazon.com/free/
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html

Amazon Lex V1 Developer Guide

To create an administrator user and sign in to the console

1. Create an administrator user called adminuser in your AWS account. For instructions, see
Creating Your First User and Administrators Group in the IAM User Guide.

2. As auser, you can sign in to the AWS Management Console using a special URL. For more
information, How Users Sign In to Your Account in the IAM User Guide.

For more information about 1AM, see the following:

o AWS Identity and Access Management (IAM)

o Getting started
« |AM User Guide

Next Step

Step 2: Set Up the AWS Command Line Interface

Step 2: Set Up the AWS Command Line Interface

If you prefer to use Amazon Lex with the AWS Command Line Interface (AWS CLI), download and
configure it.

/A Important

You don't need the AWS CLI to perform the steps in the Getting Started exercises. However,
some of the later exercises in this guide use the AWS CLI. If you prefer to start by using the
console, skip this step and go to Step 3: Getting Started (Console). Later, when you need
the AWS CLI, return here to set it up.

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide:

o Getting Set Up with the AWS Command Line Interface

» Configuring the AWS Command Line Interface

Next Step 101

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

Amazon Lex V1 Developer Guide

2. Add a named profile for the administrator user to the end of the AWS CLI config file. You use
this profile when executing AWS CLI commands. For more information about named profiles,
see Named Profiles in the AWS Command Line Interface User Guide.

[profile adminuser]

aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

For a list of available AWS Regions, see Regions and Endpoints in the Amazon Web Services
General Reference.

3. Verify the setup by typing the Help command at the command prompt:

aws help

Step 3: Getting Started (Console)

Step 3: Getting Started (Console)

The easiest way to learn how to use Amazon Lex is by using the console. To get you started, we
created the following exercises, all of which use the console:

» Exercise 1 — Create an Amazon Lex bot using a blueprint, a predefined bot that provides all of
the necessary bot configuration. You do only a minimum of work to test the end-to-end setup.

In addition, you use the Lambda function blueprint, provided by AWS Lambda, to create a
Lambda function. The function is a code hook that uses predefined code that is compatible with
your bot.

» Exercise 2 — Create a custom bot by manually creating and configuring a bot. You also create a
Lambda function as a code hook. Sample code is provided.

» Exercise 3 — Publish a bot, and then create a new version of it. As part of this exercise you create
an alias that points to the bot version.

Topics

» Exercise 1: Create an Amazon Lex Bot Using a Blueprint (Console)

102

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-multiple-profiles
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Lex V1 Developer Guide

o Exercise 2: Create a Custom Amazon Lex Bot

« Exercise 3: Publish a Version and Create an Alias

Exercise 1: Create an Amazon Lex Bot Using a Blueprint (Console)

In this exercise, you do the following:
» Create your first Amazon Lex bot, and test it in the Amazon Lex console.

For this exercise, you use the OrderFlowers blueprint. For information about blueprints, see
Amazon Lex and AWS Lambda Blueprints.

» Create an AWS Lambda function and test it in the Lambda console. While processing a request,
your bot calls this Lambda function. For this exercise, you use a Lambda blueprint (lex-order-
flowers-python) provided in the AWS Lambda console to create your Lambda function. The
blueprint code illustrates how you can use the same Lambda function to perform initialization
and validation, and to fulfill the OrderFlowers intent.

« Update the bot to add the Lambda function as the code hook to fulfill the intent. Test the end-
to-end experience.

The following sections explain what the blueprints do.
Amazon Lex Bot: Blueprint Overview

You use the OrderFlowers blueprint to create an Amazon Lex bot.For more information about the
structure of a bot, see Amazon Lex: How It Works. The bot is preconfigured as follows:

« Intent — OrderFlowers

» Slot types — One custom slot type called FlowerTypes with enumeration values: roses,
lilies, and tulips.

» Slots - The intent requires the following information (that is, slots) before the bot can fulfill the
intent.

+ PickupTime (AMAZON.TIME built-in type)
« FlowerType (FlowerTypes custom type)

Exercise 1: Create a Bot Using a Blueprint 103

Amazon Lex V1 Developer Guide

e PickupDate (AMAZON.DATE built-in type)
» Utterance - The following sample utterances indicate the user's intent:
« "l would like to pick up flowers."
« "l would like to order some flowers."
« Prompts — After the bot identifies the intent, it uses the following prompts to fill the slots:
» Prompt for the FlowerType slot - "What type of flowers would you like to order?"
« Prompt for the PickupDate slot — "What day do you want the {FlowerType} to be picked up?"

» Prompt for the PickupTime slot — "At what time do you want the {FlowerType} to be picked
up?ll

« Confirmation statement - "Okay, your {FlowerType} will be ready for pickup by {PickupTime}
on {PickupDate}. Does this sound okay?"

AWS Lambda Function: Blueprint Summary

The Lambda function in this exercise performs both initialization and validation and fulfillment
tasks. Therefore, after creating the Lambda function, you update the intent configuration by
specifying the same Lambda function as a code hook to handle both the initialization and
validation and fulfillment tasks.

« As an initialization and validation code hook, the Lambda function performs basic validation.
For example, if the user provides a time for pickup that is outside of normal business hours, the
Lambda function directs Amazon Lex to re-prompt the user for the time.

 As part of the fulfillment code hook, the Lambda function returns a summary message indicating
that the flower order has been placed (that is, the intent is fulfilled).

Next Step

Step 1: Create an Amazon Lex Bot (Console)

Step 1: Create an Amazon Lex Bot (Console)

For this exercise, create a bot for ordering flowers, called OrderFlowersBot.

To create an Amazon Lex bot (console)

Exercise 1: Create a Bot Using a Blueprint 104

Amazon Lex V1 Developer Guide

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. If thisis your first bot, choose Get Started; otherwise, on the Bots page, choose Create.

3. On the Create your Lex bot page, provide the following information, and then choose Create.

Choose the OrderFlowers blueprint.

Leave the default bot name (OrderFlowers).

For COPPA, choose No.

« For User utterance storage, choose the appropriate response.

4. Choose Create. The console makes the necessary requests to Amazon Lex to save the
configuration. The console then displays the bot editor window.

5. Wait for confirmation that your bot was built.

6. Test the bot.

(® Note

You can test the bot by typing text into the test window, or, for compatible browsers,
by choosing the microphone button in the test window and speaking.

Use the following example text to engage in conversation with the bot to order flowers:

Exercise 1: Create a Bot Using a Blueprint 105

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1

Developer Guide

> Test bot (Latest) (@ Ready. Build complete.

I would like to order flowers

What type of flowers would you like to order?

roses

What day do you want the roses to be picked

up?

tomorrow

Pick up the roses at what time on 2018-08-
247

6pm

Okay, your roses will be ready for pickup by

18:00 on 2018-08-24. Does this sound okay?

Clear chat history

From this input, the bot infers the OrderFlowers intent and prompts for slot data. When you
provide all of the required slot data, the bot fulfills the intent (OrderFlowexrs) by returning
all of the information to the client application (in this case, the console). The console shows
the information in the test window.

Specifically:

Exercise 1: Create a Bot Using a Blueprint

106

Amazon Lex V1 Developer Guide

« In the statement "What day do you want the roses to be picked up?,"the term "roses"
appears because the prompt for the pickupDate slot is configured using substitutions,
{FlowerType}. Verify this in the console.

« The "Okay, your roses will be ready..." statement is the confirmation prompt that you
configured.

» The last statement ("FlowerType:roses...")is just the slot data that is returned to the
client, in this case, in the test window. In the next exercise, you use a Lambda function to
fulfill the intent, in which case you get a message indicating that the order is fulfilled.

Next Step

Step 2 (Optional): Review the Details of Information Flow (Console)

Step 2 (Optional): Review the Details of Information Flow (Console)

This section explains the flow of information between a client and Amazon Lex for each user input
in our example conversation.

The example uses the console test window for the conversation with the bot.
To open the Amazon Lex test window

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Choose the bot to test.

3. From the right side of the console, choose Test chatbot.

To see the flow of information for spoken or typed content, choose the appropriate topic.

Topics

« Step 2a (Optional): Review the Details of the Spoken Information Flow (Console)

» Step 2b (Optional): Review the Details of the Typed Information Flow (Console)

Step 2a (Optional): Review the Details of the Spoken Information Flow (Console)

This section explains the flow of information between the client and Amazon Lex when the client
uses speech to send requests. For more information, see PostContent.

Exercise 1: Create a Bot Using a Blueprint 107

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

1. The user says: | would like to order some flowers.

a. The client (console) sends the following PostContent request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/409wwdhx6nlheferh6a73fujd3118f5w/
content HTTP/1.1

x-amz-lex-session-attributes: "e30="

Content-Type: "audio/x-116; sample-rate=16000; channel-count=1"

Accept: "audio/mpeg"

Request body
input stream

Both the request URI and the body provide information to Amazon Lex:

« Request URI - Provides the bot name (OrderFlowers), bot alias ($LATEST), and the
user name (a random string that identifies the user). content indicates that this is a
PostContent API request (not a PostText request).

» Request headers

e x-amz-lex-session-attributes - The base64-encoded value represents "{}".
When the client makes the first request, there are no session attributes.

« Content-Type - Reflects the audio format.

» Request body — The user input audio stream ("l would like to order some flowers.").

(® Note

If the user chooses to send text ("l would like to order some flowers") to the
PostContent API instead of speaking, the request body is the user input. The
Content-Type header is set accordingly:

POST /bot/OrderFlowers/alias/$LATEST/
user/4o09wwdhxé6nlheferh6a73fujd3118f5w/content HTTP/1.1
Xx-amz-lex-session-attributes: "e30="

Content-Type: "text/plain; charset=utf-8"

Accept: accept

Request body

Exercise 1: Create a Bot Using a Blueprint 108

Amazon Lex V1 Developer Guide

input stream

b. From the input stream, Amazon Lex detects the intent (OrderFlowers). It then chooses
one of the intent's slots (in this case, the FlowerType) and one of its value elicitation
prompts, and then sends a response with the following headers:

x-amz-lex-dialog-state:ElicitSlot

x-amz-lex-input-transcript:I would like to order some flowers.
x-amz-lex-intent-name:0rderFlowers

x-amz-lex-message:What type of flowers would you like to order?
Xx-amz-lex-session-attributes:e30=

x-amz-lex-slot-to-elicit:FlowerType

X-amz-lex-
slots:eyJQaWNrdXBUaW1llIjpudWxsLCIGbG93ZXIUeXB1IjpudWxsLCIQaWNrdXBEYXR1IjpudwWxsfQ==

The header values provide the following information:

e Xx-amz-lex-input-transcript - Provides the transcript of the audio (user input)
from the request

« x-amz-lex-message - Provides the transcript of the audio Amazon Lex returned in
the response

e Xx-amz-lex-slots - The base64 encoded version of the slots and values:

{"PickupTime":null, "FlowerType":null, "PickupDate":null}

e X-amz-lex-session-attributes - The base64-encoded version of the session
attributes ({})

The client plays the audio in the response body.

2. The user says: roses

a. The client (console) sends the following PostContent request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/409wwdhx6nlheferh6a73fujd3118f5w/
content HTTP/1.1

Xx-amz-lex-session-attributes: "e30="

Content-Type: "audio/x-116; sample-rate=16000; channel-count=1"

Accept: "audio/mpeg"

Exercise 1: Create a Bot Using a Blueprint 109

Amazon Lex V1 Developer Guide

Request body
input stream ("roses")

The request body is the user input audio stream (roses). The sessionAttributes
remains empty.

b. Amazon Lex interprets the input stream in the context of the current intent (it remembers
that it had asked this user for information pertaining to the FlowerType slot). Amazon
Lex first updates the slot value for the current intent. It then chooses another slot
(PickupDate), along with one of its prompt messages (When do you want to pick up the
roses?), and returns a response with the following headers:

x-amz-lex-dialog-state:ElicitSlot

x-amz-lex-input-transcript:roses

x-amz-lex-intent-name:0rderFlowers

x-amz-lex-message:When do you want to pick up the roses?
x-amz-lex-session-attributes:e30=

x-amz-lex-slot-to-elicit:PickupDate

X-amz-lex-
slots:eyJQaWNrdXBUaWllIjpudWxsLCIGbG93Z2XIJUeXBlIjoicm9zaSdzIiwilUGlja3VwRGF@ZSI6bnVsbHO=

The header values provide the following information:

e X-amz-lex-slots - The base64-encoded version of the slots and values:

{"PickupTime":null, "FlowerType":"roses", "PickupDate":null}

e X-amz-lex-session-attributes - The base64-encoded version of the session
attributes ({})

The client plays the audio in the response body.

3. The user says: tomorrow

a. The client (console) sends the following PostContent request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/409wwdhx6nlheferh6a73fujd3118f5w/
content HTTP/1.1

Xx-amz-lex-session-attributes: "e30="

Content-Type: "audio/x-116; sample-rate=16000; channel-count=1"

Exercise 1: Create a Bot Using a Blueprint 110

Amazon Lex V1 Developer Guide

Accept: "audio/mpeg"

Request body
input stream ('"tomorrow'")

The request body is the user input audio stream ("tomorrow").The sessionAttributes
remains empty.

b. Amazon Lex interprets the input stream in the context of the current intent (it remembers
that it had asked this user for information pertaining to the PickupDate slot). Amazon
Lex updates the slot (PickupDate) value for the current intent. It then chooses another
slot to elicit value for (PickupTime) and one of the value elicitation prompts (When do
you want to pick up the roses on 2017-03-18?), and returns a response with the following
headers:

x-amz-lex-dialog-state:ElicitSlot

x-amz-lex-input-transcript:tomorrow

Xx-amz-lex-intent-name:0rderFlowers

x-amz-lex-message:When do you want to pick up the roses on 2017-03-18?
Xx-amz-lex-session-attributes:e30=

x-amz-lex-slot-to-elicit:PickupTime

X-amz-lex-
slots:eyJQaWNrdXBUaW1llIjpudWxsLCIGbG93Z2XIUeXBlIjoicm9zaSdzIiwilUGlja3VwRGFOZSI6IjIwMTctM
x-amzn-RequestId:3a205b70-0b69-11e7-b447-eb69face3ebf

The header values provide the following information:

e X-amz-lex-slots - The base64-encoded version of the slots and values:

{"PickupTime":null, "FlowerType":"roses", "PickupDate":"2017-03-18"}

e X-amz-lex-session-attributes — The base64-encoded version of the session
attributes ({})

The client plays the audio in the response body.

4. The user says: 6 pm

a. The client (console) sends the following PostContent request to Amazon Lex:

Exercise 1: Create a Bot Using a Blueprint 111

Amazon Lex V1 Developer Guide

POST /bot/OrderFlowers/alias/$LATEST/user/409wwdhx6nlheferh6a73fujd3118f5w/
content HTTP/1.1

x-amz-lex-session-attributes: "e30="

Content-Type: "text/plain; charset=utf-8"

Accept: "audio/mpeg"

Request body
input stream ("6 pm")

The request body is the user input audio stream ("6 pm"). The sessionAttributes
remains empty.

b. Amazon Lex interprets the input stream in the context of the current intent (it remembers
that it had asked this user for information pertaining to the PickupTime slot). It first
updates the slot value for the current intent.

Now Amazon Lex detects that it has information for all of the slots. However, the
OrderFlowers intent is configured with a confirmation message. Therefore, Amazon Lex
needs an explicit confirmation from the user before it can proceed to fulfill the intent. It
sends a response with the following headers requesting confirmation before ordering the
flowers:

x-amz-lex-dialog-state:ConfirmIntent

Xx-amz-lex-input-transcript:six p. m.

x-amz-lex-intent-name:0rderFlowers

x-amz-lex-message:0kay, your roses will be ready for pickup by 18:00 on

2017-03-18. Does this sound okay?

Xx-amz-lex-session-attributes:e30=

x-amz-lex-
slots:eyJQaWNrdXBUaW1llIjoiMTg6MDAiLCIGbG93Z2XIUeXBlIjoicm9zaSdzIiwilUGlja3VwRGFOZSI6I jIwN
x-amzn-RequestId:083ca360-0bba-1le7-b447-eb69face3ebf

The header values provide the following information:

e X-amz-lex-slots - The base64-encoded version of the slots and values:

{"PickupTime":"18:00","FlowerType":"roses", "PickupDate":"2017-03-18"}

Exercise 1: Create a Bot Using a Blueprint 112

Amazon Lex V1 Developer Guide

e X-amz-lex-session-attributes - The base64-encoded version of the session
attributes ({})

The client plays the audio in the response body.

5. The user says: Yes

a. The client (console) sends the following PostContent request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/409wwdhx6nlheferh6a73fujd3118f5w/
content HTTP/1.1

Xx-amz-lex-session-attributes: "e30="

Content-Type: "audio/x-116; sample-rate=16000; channel-count=1"

Accept: "audio/mpeg"

Request body
input stream ("Yes")

The request body is the user input audio stream ("Yes"). The sessionAttributes
remains empty.

b. Amazon Lex interprets the input stream and understands that the user want to proceed
with the order. The OrderFlowers intent is configured with ReturnIntent as the
fulfillment activity. This directs Amazon Lex to return all of the intent data to the client.
Amazon Lex returns a response with following:

x-amz-lex-dialog-state:ReadyForFulfillment

X-amz-lex-input-transcript:yes

x-amz-lex-intent-name:0rderFlowers

Xx-amz-lex-session-attributes:e30=

x-amz-lex-
slots:eyJQaWNrdXBUaW1llIjoiMTg6MDAiLCIGbG93Z2XIUeXBlIjoicm9zaSdzIiwilUGlja3VwRGFOZSI6I jIwN

Thex-amz-lex-dialog-state response header is set to ReadyForFulfillment. The
client can then fulfill the intent.

6. Now, retest the bot. To establish a new (user) context, choose the Clear link in the console.
Provide data for the OrderFlowers intent, and include some invalid data. For example:

Exercise 1: Create a Bot Using a Blueprint 113

Amazon Lex V1 Developer Guide

» Jasmine as the flower type (it is not one of the supported flower types)

» Yesterday as the day when you want to pick up the flowers

Notice that the bot accepts these values because you don't have any code to initialize and
validate the user data. In the next section, you add a Lambda function to do this. Note the
following about the Lambda function:

« It validates slot data after every user input. It fulfills the intent at the end. That is, the bot
processes the flower order and returns a message to the user instead of simply returning slot
data to the client. For more information, see Using Lambda Functions.

« [t also sets the session attributes. For more information about session attributes, see
PostText.

After you complete the Getting Started section, you can do the additional exercises
(Additional Examples: Creating Amazon Lex Bots). Book Trip uses session attributes to share
cross-intent information to engage in a dynamic conversation with the user.

Next Step

Step 3: Create a Lambda Function (Console)

Step 2b (Optional): Review the Details of the Typed Information Flow (Console)

This section explains flow of information between client and Amazon Lex in which the client uses
the PostText API to send requests. For more information, see PostText.

1. User types: | would like to order some flowers

a. The client (console) sends the following PostText request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/409wwdhx6nlheferh6a73fujd3118f5w/text

"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{

"inputText": "I would like to order some flowers",
"sessionAttributes": {}

Exercise 1: Create a Bot Using a Blueprint 114

Amazon Lex V1 Developer Guide

2.

Both the request URI and the body provide information to Amazon Lex:

« Request URI - Provides bot name (OrderFlowers), bot alias ($LATEST), and user name
(a random string identifying the user). The trailing text indicates that it is a PostText
API request (and not PostContent).

» Request body - Includes the user input (inputText) and empty sessionAttributes.
When the client makes the first request, there are no session attributes. The Lambda
function initiates them later.

From the inputText, Amazon Lex detects the intent (OrderFlowers). This intent does
not have any code hooks (that is, the Lambda functions) for initialization and validation of
user input or fulfillment.

Amazon Lex chooses one of the intent's slots (FlowerType) to elicit the value. It
also selects one of the value-elicitation prompts for the slot (all part of the intent
configuration), and then sends the following response back to the client. The console
displays the message in the response to the user.

Headers Cookies Params Response
Filter properties

J50N

dialogState: "ElicitSlot”
intentMame: "OrderFlowers”
message: "What type of flowers would you like to order?”
responseCard: null
sessionAttributes: Object
slotToklicit: "FlowerType"
slots: Object
FlowerType: null
PickupDate: null
PickupTime: null

The client displays the message in the response.

User types: roses

a.

The client (console) sends the following PostText request to Amazon Lex:

Exercise 1: Create a Bot Using a Blueprint 115

Amazon Lex V1

Developer Guide

POST /bot/OrderFlowers/alias/$LATEST/user/409wwdhx6nlheferh6a73fujd3118f5w/text

"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

"inputText": "roses",
"sessionAttributes": {}

The inputText in the request body provides user input. The sessionAttributes

remains empty.

b. Amazon Lex first interprets the inputText in the context of the current intent—
the service remembers that it had asked the specific user for information about the
FlowerType slot. Amazon Lex first updates the slot value for the current intent and
chooses another slot (PickupDate) along with one of its prompt messages—What day do

you want the roses to be picked up?— for the slot.

Then, Amazon Lex returns the following response:

Fiter nrnnertnes
LLE L [§8=

JS0N

dialogState: "ElicitSlot”
intentMame: "OrderFlowers"
message: "What day do you want the roses to be picked up?”
responseCard: null
sessionAttributes: Object
slotToklicit "PickupDate”
slots: Object
FlowerType: "roses”
PickupDate: null
PickupTime: null

Headers Cookies Params Response

The client displays the message in the response.

3. User types: tomorrow

a. The client (console) sends the following PostText request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/409wwdhx6nlheferh6a73fujd3118f5w/text

Exercise 1: Create a Bot Using a Blueprint

116

Amazon Lex V1 Developer Guide

"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

"inputText": "tomorrow",
"sessionAttributes": {}

The inputText in the request body provides user input. The sessionAttributes
remains empty.

b. Amazon Lex first interprets the inputText in the context of the current intent—
the service remembers that it had asked the specific user for information about the
PickupDate slot. Amazon Lex updates the slot (PickupDate) value for the current
intent. It chooses another slot to elicit value for (PickupTime). It returns one of the
value-elicitation prompts—Deliver the roses at what time on 2017-01-05?—to the client.

Amazon Lex then returns the following response:

Headers Cookies Params Response

P L.
l—.._—..—z A OREFTEs
LET DI Criics

JSON

dialogState: "ElicitSlot”
intentMame: "OrderFlowers"
message: "Deliver the roses at what tirme on"2017-01-05"
responseCard: null
sessionAttributes: Object
slotToklict: "PickupTime"
slots: Object
FlowerType: "roses”
PickupDate: "2017-01-05"
PickupTime: null

The client displays the message in the response.

4. Usertypes: 6 pm

a. The client (console) sends the following PostText request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/409wwdhx6nlheferh6a73fujd3118f5w/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

Exercise 1: Create a Bot Using a Blueprint 117

Amazon Lex V1

Developer Guide

"inputText": "6 pm",
"sessionAttributes": {}

The inputText in the request body provides user input. The sessionAttributes

remains empty.

b. Amazon Lex first interprets the inputText in the context of the current intent—

the service remembers that it had asked the specific user for information about the
PickupTime slot. Amazon Lex first updates the slot value for the current intent. Now

Amazon Lex detects that it has information for all the slots.

The OrderFlowers intent is configured with a confirmation message. Therefore, Amazon
Lex needs an explicit confirmation from the user before it can proceed to fulfill the intent.
Amazon Lex sends the following message to the client requesting confirmation before

ordering the flowers:

responseCard: null
sessionAttributes: Object
slotToklicit: null
slots: Object
FlowerType: "roses”
PickupDate: "2017-01-01"
PickupTirne: "18:00"

e —
Headers Cookies Params Response Timings Security
JSON
dialogState: "ConfirmIntent”
intentMame: "CrderFlowers"
message: "Okay, your roses will be ready for pickup by 18:00 on 2017-01-01. Does this sound okay?"

The client displays the message in the response.

5. User types: Yes

a. The client (console) sends the following PostText request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/409wwdhx6nlheferh6a73fujd3118f5w/text

"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

Exercise 1: Create a Bot Using a Blueprint

118

Amazon Lex V1 Developer Guide

{

"inputText": "Yes",
"sessionAttributes": {}

The inputText in the request body provides user input. The sessionAttributes
remains empty.

b. Amazon Lex interprets the inputText in the context of confirming the current intent. It
understands that the user want to proceed with the order. The OrderFlowers intent is
configured with ReturnIntent as the fulfillment activity (there is no Lambda function to

fulfill the intent). Therefore, Amazon Lex returns the following slot data to the client.

—— |
Headers Cookies Params Response

iy .t
Filter nrnneres
LiET DrUDICTLIES

J50N

dialogState: "ReadyForFulfillment”
intentMame: "OrderFlowers"
message: null
responseCard: null
sessionAttributes: Object
slotTeElicit: null
slots: Object
FlowerType: "roses”
PickupDate: "2017-01-01"
PickupTime: "18:00"

Amazon Lex set the dialogState to ReadyForFulfillment. The client can then fulfill
the intent.

6. Now test the bot again. To do that, you must choose the Clear link in the console to establish a
new (user) context. Now as you provide data for the order flowers intent, try to provide invalid
data. For example:

» Jasmine as the flower type (it is not one of the supported flower types).

 Yesterday as the day when you want to pick up the flowers.

Notice that the bot accepts these values because you don't have any code to initialize/validate
user data. In the next section, you add a Lambda function to do this. Note the following about
the Lambda function:

Exercise 1: Create a Bot Using a Blueprint 119

Amazon Lex V1 Developer Guide

« The Lambda function validates slot data after every user input. It fulfills the intent at
the end. That is, the bot processes the flowers order and returns a message to the user
instead of simply returning slot data to the client. For more information, see Using Lambda

Functions.

« The Lambda function also sets the session attributes. For more information about session
attributes, see PostText.

After you complete the Getting Started section, you can do the additional exercises
(Additional Examples: Creating Amazon Lex Bots). Book Trip uses session attributes to share

cross-intent information to engage in a dynamic conversation with the user.

Next Step

Step 3: Create a Lambda Function (Console)

Step 3: Create a Lambda Function (Console)

Create a Lambda function (using the lex-order-flowers-python blueprint) and perform test
invocation using sample event data in the AWS Lambda console.

You return to the Amazon Lex console and add the Lambda function as the code hook to fulfill the
OrderFlowers intent in the OrderFlowersBot that you created in the preceding section.

To create the Lambda function (console)

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create function.

3. On the Create function page, choose Use a blueprint. Type 1ex- in the filter text box and
then press Enter to find the blueprint, choose the lex-order-flowers-python blueprint.

Lambda function blueprints are provided in both Node.js and Python. For this exercise, use the
Python-based blueprint.

4. On the Basic information page, do the following.

» Type a Lambda function name (OrderFlowersCodeHook).

» For the execution role, choose Create a new role with basic Lambda permissions.

Exercise 1: Create a Bot Using a Blueprint 120

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Lex V1 Developer Guide

o Leave the other default values.
5. Choose Create function.

6. If you are using a locale other than English (US) (en-US), update the intent names as described
in Updating a Blueprint for a Specific Locale.

7. Test the Lambda function.

a. Choose Select a test event, Configure test events.

b. Choose Amazon Lex Order Flowers from the Event template list. This sample event
matches the Amazon Lex request/response model (see Using Lambda Functions). Give the

test event a name (LexOrderFlowersTest).
c. Choose Create.
d. Choose Test to test the code hook.

e. Verify that the Lambda function ran successfully. The response in this case matches the
Amazon Lex response model.

Next Step

Step 4: Add the Lambda Function as Code Hook (Console)

Step 4: Add the Lambda Function as Code Hook (Console)

In this section, you update the configuration of the OrderFlowers intent to use the Lambda
function as follows:

« First use the Lambda function as a code hook to perform fulfillment of the OrderFlowers
intent. You test the bot and verify that you received a fulfillment message from the Lambda
function. Amazon Lex invokes the Lambda function only after you provide data for all the
required slots for ordering flowers.

» Configure the same Lambda function as a code hook to perform initialization and validation. You
test and verify that the Lambda function performs validation (as you provide slot data).

To add a Lambda function as a code hook (console)

1. In the Amazon Lex console, select the OrderFlowers bot. The console shows the OrderFlowers
intent. Make sure that the intent version is set to $LATEST because this is the only version that
we can modify.

Exercise 1: Create a Bot Using a Blueprint 121

Amazon Lex V1 Developer Guide

2. Add the Lambda function as the fulfillment code hook and test it.

In the Editor, choose AWS Lambda function as Fulfillment, and select the Lambda
function that you created in the preceding step (OrderFlowersCodeHook). Choose OK to
give Amazon Lex permission to invoke the Lambda function.

You are configuring this Lambda function as a code hook to fulfill the intent. Amazon Lex
invokes this function only after it has all the necessary slot data from the user to fulfill the
intent.

Specify a Goodbye message.
Choose Build.

Test the bot using the previous conversation.

The last statement "Thanks, your order for roses....." is a response from the Lambda function
that you configured as a code hook. In the preceding section, there was no Lambda function.
Now you are using a Lambda function to actually fulfill the OrderFlowers intent.

3. Add the Lambda function as an initialization and validation code hook, and test.

The sample Lambda function code that you are using can both perform user input
validation and fulfillment. The input event the Lambda function receives has a field
(invocationSource) that the code uses to determine what portion of the code to run. For
more information, see Lambda Function Input Event and Response Format.

a.

Select the $LATEST version of the OrderFlowers intent. That's is the only version that
you can update.

In the Editor, choose Initialization and validation in Options.
Again, select the same Lambda function.

Choose Build.

Test the bot.

You are now ready to converse with Amazon Lex as in the following image. To test the
validation portion, choose time 6 PM, and your Lambda function returns a response ("Our
business hours are from 10 AM to 5 PM."), and prompts you again. After you provide all
the valid slot data, the Lambda function fulfills the order.

Exercise 1: Create a Bot Using a Blueprint 122

Amazon Lex V1 Developer Guide

> Test Bot (Latest) (© Ready. Build complete. -

I want to order flowers

What type of flowers would you like to

order?

roses

What day do you want the roses to be picked
up?

tomorrow

Pick up the roses at what time on 2017-09-
132

6pm

Our business hours are from ten a m. to five p
m. Can you specify a time during this
range?

4pm

Okay, your roses will be ready for pickup by
16:00 on 2017-09-13. Does this sound

okay?

Clear

l’:!." |i'_-,-'."'_|.3[' o ¥ our Dol

Next Step

Exercise 1: Create a Bot Using a Blueprint 123

Amazon Lex V1 Developer Guide

Step 5 (Optional): Review the Details of the Information Flow (Console)

Step 5 (Optional): Review the Details of the Information Flow (Console)

This section explains the flow of information between the client and Amazon Lex for each user
input, including the integration of the Lambda function.

® Note

The section assumes that the client sends requests to Amazon Lex using the PostText
runtime APl and shows request and response details accordingly. For an example of

the information flow between the client and Amazon Lex in which client uses the
PostContent API, see Step 2a (Optional): Review the Details of the Spoken Information
Flow (Console) .

For more information about the PostText runtime APl and additional details on the requests and
responses shown in the following steps, see PostText.

1. User: | would like to order some flowers.

a. The client (console) sends the following PostText request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/ignw84y6seypredxly5rimopuri2xwnd/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
"inputText": "I would like to order some flowers",
"sessionAttributes": {}

Both the request URI and the body provide information to Amazon Lex:

» Request URI - Provides bot name (OrderFlowers), bot alias ($LATEST), and user name
(a random string identifying the user). The trailing text indicates that it is a PostText
API request (and not PostContent).

» Request body - Includes the user input (inputText) and empty sessionAttributes.
When the client makes the first request, there are no session attributes. The Lambda
function initiates them later.

Exercise 1: Create a Bot Using a Blueprint 124

Amazon Lex V1 Developer Guide

b. From the inputText, Amazon Lex detects the intent (OrderFlowexrs). This intent
is configured with a Lambda function as a code hook for user data initialization and
validation. Therefore, Amazon Lex invokes that Lambda function by passing the following
information as event data:

{
"messageVersion": "1.0",
"invocationSource": "DialogCodeHook",
"userId": "ignw84y6seypre4xlyS5rimopuri2xwnd”,
"sessionAttributes": {3},
"bot": {
"name": "OrderFlowers",
"alias": null,
"version": "$LATEST"
},
"outputDialogMode": "Text",
"currentIntent": {
"name": "OrderFlowers",
"slots": {
"PickupTime": null,
"FlowerType": null,
"PickupDate": null
},
"confirmationStatus": "None"
}
}

For more information, see Input Event Format.

In addition to the information that the client sent, Amazon Lex also includes the following
additional data:
« messageVersion - Currently Amazon Lex supports only the 1.0 version.

« invocationSource - Indicates the purpose of Lambda function invocation. In this
case, it is to perform user data initialization and validation. At this time, Amazon Lex
knows that the user has not provided all the slot data to fulfill the intent.

e currentIntent information with all of the slot values set to null.

c. At this time, all the slot values are null. There is nothing for the Lambda function to
validate. The Lambda function returns the following response to Amazon Lex:

Exercise 1: Create a Bot Using a Blueprint 125

Amazon Lex V1 Developer Guide

{
"sessionAttributes": {3},
"dialogAction": {
"type": "Delegate",
"slots": {
"PickupTime": null,
"FlowerType": null,
"PickupDate": null
}
}
}

For information about the response format, see Response Format.

Note the following:

« dialogAction.type - By setting this value to Delegate, Lambda function delegates
the responsibility of deciding the next course of action to Amazon Lex.

® Note

If Lambda function detects anything in the user data validation, it instructs
Amazon Lex what to do next, as shown in the next few steps.

According to the dialogAction. type, Amazon Lex decides the next course of action.
Because none of the slots are filled, it decides to elicit the value for the FlowerType slot.

It selects one of the value elicitation prompts ("What type of flowers would you like to
order?") for this slot and sends the following response back to the client:

Exercise 1: Create a Bot Using a Blueprint 126

Amazon Lex V1 Developer Guide

Headers Cookies Params Response
Filter properties
JSONM
dialogState: "ElicitSlot”
intentMame: "CrderFlowers"
message: "What type of flowers would you like to order?
responseCard: null
sessionAttributes: Object
slotToklicit: "FlowerType"
slots: Object
FlowerType: null
PickupDate: null
PickupTime: null

The client displays the message in the response.

2. User: roses

a. The client sends the following PostText request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/ignw84y6seypredxly5rimopuri2xwnd/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

"inputText": "roses",
"sessionAttributes": {}

In the request body, the inputText provides user input. The sessionAttributes
remains empty.

b. Amazon Lex first interprets the inputText in the context of the current intent.
The service remembers that it had asked the specific user for information about the
FlowerType slot. It updates the slot value in the current intent and invokes the Lambda
function with the following event data:

"messageVersion": "1.0",
"invocationSource": "DialogCodeHook",

Exercise 1: Create a Bot Using a Blueprint 127

Amazon Lex V1 Developer Guide

"userId": "ignw84y6seypre4xlySrimopuri2xwnd",
"sessionAttributes": {3},
"bot": {

"name": "OrderFlowers",

"alias": null,
"version": "$LATEST"
},
"outputDialogMode": "Text",
"currentIntent": {

"name": "OrderFlowers",

"slots": {
"PickupTime": null,
"FlowerType": "roses",
"PickupDate": null

},

"confirmationStatus": "None"

Note the following:

e invocationSource - continues to be DialogCodeHook (we are simply validating user
data).

« currentIntent.slots - Amazon Lex has updated the FlowerType slot to roses.

c. According to the invocationSource value of DialogCodeHook, the Lambda function
performs user data validation. It recognizes roses as a valid slot value (and sets Price as
a session attribute) and returns the following response to Amazon Lex.

"sessionAttributes": {
"Price": 25
},
"dialogAction": {
"type": "Delegate",
"slots": {
"PickupTime": null,
"FlowerType": "roses",
"PickupDate": null

Exercise 1: Create a Bot Using a Blueprint 128

Amazon Lex V1 Developer Guide

Note the following:

e sessionAttributes - Lambda function has added Price (of the roses) as a session
attribute.

« dialogAction.type —-isset to Delegate. The user data was valid so the Lambda
function directs Amazon Lex to choose the next course of action.

d. According to the dialogAction.type, Amazon Lex chooses the next course of action.
Amazon Lex knows it needs more slot data so it picks the next unfilled slot (PickupDate)
with the highest priority according to the intent configuration. Amazon Lex selects one
of the value-elicitation prompt messages—"What day do you want the roses to be picked
up?"—for this slot according to the intent configuration, and then sends the following
response back to the client:

Headers Cookies Params Response

Eilter nronerties

J50N

dialogState: "ElicitSlot”
intentMame: "CrderFlowers"
message: "What day do you want the roses to be picked up?”
responseCard: null
sessionfttributes: Object
slotToklicit "PickupDate”
slots: Object
FlowerType: "roses”
PickupDate: null
PickupTime: null

The client simply displays the message in the response — "What day do you want the roses
to be picked up?."

3. User: tomorrow

a. The client sends the following PostText request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/ignw84y6seypredxly5rimopuri2xwnd/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

Exercise 1: Create a Bot Using a Blueprint 129

Amazon Lex V1 Developer Guide

{
"inputText": "tomorrow",
"sessionAttributes": {
"Price": "25"
}
}

In the request body, inputText provides user input and the client passes the session
attributes back to the service.

b. Amazon Lex remembers the context—that it was eliciting data for the PickupDate slot.
In this context, it knows the inputText value is for the PickupDate slot. Amazon Lex
then invokes the Lambda function by sending the following event:

{
"messageVersion": "1.0",
"invocationSource": "DialogCodeHook",
"userId": "ignw84yb6seypre4xlySrimopuri2xwnd",
"sessionAttributes": {
"Price": "25"
},
"bot": {
"name": "OrderFlowersCustomWithRespCard",
"alias": null,
"version": "$LATEST"
.
"outputDialogMode": "Text",
"currentIntent": {
"name": "OrderFlowers",
"slots": {
"PickupTime": null,
"FlowerType": "roses",
"PickupDate": "2017-01-05"
.
"confirmationStatus": "None"
}
}

Amazon Lex has updated the currentIntent.slots by setting the PickupDate
value. Also note that the service passes the sessionAttributes asitis to the Lambda
function.

Exercise 1: Create a Bot Using a Blueprint 130

Amazon Lex V1 Developer Guide

c. AsperinvocationSource value of DialogCodeHook, the Lambda function performs
user data validation. It recognizes PickupDate slot value is valid and returns the
following response to Amazon Lex:

"sessionAttributes": {
"Price": 25
},
"dialogAction": {
"type": "Delegate",
"slots": {
"PickupTime": null,
"FlowerType": "roses",
"PickupDate": "2017-01-05"

Note the following:

» sessionAttributes - No change.

« dialogAction.type —isset to Delegate. The user data was valid, and the Lambda
function directs Amazon Lex to choose the next course of action.

d. According to the dialogAction.type, Amazon Lex chooses the next course of action.
Amazon Lex knows it needs more slot data so it picks the next unfilled slot (PickupTime)
with the highest priority according to the intent configuration. Amazon Lex selects one
of the prompt messages ("Deliver the roses at what time on 2017-01-05?") for this slot
according to the intent configuration and sends the following response back to the client:

Exercise 1: Create a Bot Using a Blueprint 131

Amazon Lex V1 Developer Guide

Headers Cookies Pararns Response

Criter ._:\.rﬂ._:\EaT'.E.'

JSOM

dialogState: "ElicitSlot”
intentMame: "CrderFlowers"
message: "Deliver the roses at what tirme on"2017-01-05"
responseCard: null
sessionAttributes: Object
slotTeElicit: "PickupTime"
slots: Object
FlowerType: "roses”
PickupDate: "2017-01-05"
PickupTirme: null

The client displays the message in the response — "Deliver the roses at what time on
2017-01-05?"
4. User:4 pm

a. The client sends the following PostText request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/ignw84y6seypredxly5rimopuri2xwnd/text

"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
"inputText": "4 pm",
"sessionAttributes": {
"Price": "25"
}
}

In the request body, inputText provides user input. The client passes the
sessionAttributes in the request.

b. Amazon Lex understands context. It understands that it was eliciting data for the
PickupTime slot. In this context, it knows that the inputText value is for the
PickupTime slot. Amazon Lex then invokes the Lambda function by sending the
following event:

"messageVersion": "1.0",

Exercise 1: Create a Bot Using a Blueprint 132

Amazon Lex V1 Developer Guide

"invocationSource": "DialogCodeHook",
"userId": "ignw84y6seypre4xlySrimopuri2xwnd",
"sessionAttributes": {

"Price": "25"
},
"bot": {
"name": "OrderFlowersCustomWithRespCard",
"alias": null,
"version": "$LATEST"
.

"outputDialogMode": "Text",
"currentIntent": {

"name": "OrderFlowers",
"slots": {
"PickupTime": "16:00",
"FlowerType": "roses",
"PickupDate": "2017-01-05"
.
"confirmationStatus": "None"

Amazon Lex has updated the currentIntent.slots by setting the PickupTime value.

¢. According to the invocationSource value of DialogCodeHook, the Lambda function
performs user data validation. It recognizes PickupDate slot value is valid and returns
the following response to Amazon Lex.

"sessionAttributes": {
"Price": 25
.
"dialogAction": {
"type": "Delegate",
"slots": {
"PickupTime": "16:00",
"FlowerType": "roses",
"PickupDate": "2017-01-05"

Note the following:

Exercise 1: Create a Bot Using a Blueprint 133

Amazon Lex V1 Developer Guide

» sessionAttributes - No change in session attribute.

« dialogAction.type —isset to Delegate. The user data was valid so the Lambda
function directs Amazon Lex to choose the next course of action.

d. At this time Amazon Lex knows it has all the slot data. This intent is configured with a

confirmation prompt. Therefore, Amazon Lex sends the following response to the user
asking for confirmation before fulfilling the intent:

Headers Cookies Params Response Tirmings

Eilter nronerties

JSOM

dialegState: "ConfirmIntent”
intentMame: "OrderFlowers”
message: "Okay, your roses will be ready for pickup by 16:00 on 2017-01-05, and will cost 25 dollars. Does this sound okay?"
responseCard: null
sessionfAttributes: Object
Price: "25"
slotTeklick: null
slots: Object
FlowerType: "roses”
PickupDate: "2017-01-05"
PickupTime: "16:00"

The client simply displays the message in the response and waits for the user response.

5. User: Yes

a. The client sends the following PostText request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/ignw84y6seypredxly5rimopuri2xwnd/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
"inputText": "yes",
"sessionAttributes": {
"Price": "25"
}
}

b. Amazon Lex interprets the inputText in the context of confirming the current intent.
Amazon Lex understands that the user wants to proceed with the order. This time Amazon
Lex invokes the Lambda function to fulfill the intent by sending the following event,

Exercise 1: Create a Bot Using a Blueprint 134

Amazon Lex V1 Developer Guide

which sets the invocationSource to FulfillmentCodeHook in the event it sends to
the Lambda function. Amazon Lex also sets the confirmationStatus to Confirmed.

{
"messageVersion": "1.0",
"invocationSource": "FulfillmentCodeHook",
"userId": "ignw84y6seypre4xlySrimopuri2xwnd",
"sessionAttributes": {
"Price": "25"
1,
"bot": {
"name": "OrderFlowersCustomWithRespCard",
"alias": null,
"version": "$LATEST"
},
"outputDialogMode": "Text",
"currentIntent": {
"name": "OrderFlowers",
"slots": {
"PickupTime": "16:00",
"FlowerType": "roses",
"PickupDate": "2017-01-05"
},
"confirmationStatus": "Confirmed"
}
}

Note the following:

e invocationSource - This time Amazon Lex set this value to FulfillmentCodeHook,
directing the Lambda function to fulfill the intent.

e confirmationStatus —is set to Confirmed.

c. This time, the Lambda function fulfills the OrderFlowers intent, and returns the
following response:

"sessionAttributes": {
"Price": "25"

iy

"dialogAction": {
"type": "Close",

Exercise 1: Create a Bot Using a Blueprint 135

Amazon Lex V1 Developer Guide

"fulfillmentState": "Fulfilled",
"message": {
"contentType": "PlainText",
"content": "Thanks, your order for roses has been placed and will
be ready for pickup by 16:00 on 2017-01-05"

}

Note the following:

« Setsthe dialogAction.type - The Lambda function sets this value to Close,
directing Amazon Lex to not expect a user response.

o dialogAction.fulfillmentState -is set to Fulfilled and includes an appropriate
message to convey to the user.

d. Amazon Lex reviews the fulfillmentState and sends the following response back to
the client.

Amazon Lex then returns the following to the client:

Headers Cookies Params Tirnings

lf:':'tff properties
JS0N

dialogState: "Fulfilled"
intentMame: "OrderFlowers"
message: "Thanks, your order for roses has been placed and will be ready for pickup by 16:00 on 2017-01-05"
responseCard: null
sessicnfttributes: Object
Price: "25"
slotToklicit: null
slots: Object
FlowerType: "roses”
PickupDate: "2017-01-05"
PickupTirne: "16:00"

Note that:

« dialogState — Amazon Lex sets this value to fulfilled.

« message - is the same message that the Lambda function provided.

Exercise 1: Create a Bot Using a Blueprint 136

Amazon Lex V1 Developer Guide

The client displays the message.

6. Now test the bot again. To establish a new (user) context, choose the Clear link in the test
window. Now provide invalid slot data for the OrderFlowexrs intent. This time the Lambda
function performs the data validation, resets invalid slot data value to null, and asks Amazon
Lex to prompt the user for valid data. For example, try the following:

« Jasmine as the flower type (it is not one of the supported flower types).

» Yesterday as the day when you want to pick up the flowers.

» After placing your order, enter another flower type instead of replying "yes" to confirm the
order. In response, the Lambda function updates the Price in the session attribute, keeping
a running total of flower orders.

The Lambda function also performs the fulfillment activity.

Next Step

Step 6: Update the Intent Configuration to Add an Utterance (Console)

Step 6: Update the Intent Configuration to Add an Utterance (Console)

The OrderFlowers bot is configured with only two utterances. This provides limited information
for Amazon Lex to build a machine learning model that recognizes and responds to the user's
intent. Try typing "l want to order flowers", as in the following test window. Amazon Lex doesn't
recognize the text, and responds with "I didn't understand you, what would you like to do?" You can
improve the machine learning model by adding more utterances.

Exercise 1: Create a Bot Using a Blueprint 137

Amazon Lex V1 Developer Guide

> Test Bot (Latest) © Ready. Build complete.

| want to order flowers

| didn't understand you, what would you like
to do?

Clear

& [Type to your bot

Each utterance that you add provides Amazon Lex with more information about how to respond
to your users. You don't need to add an exact utterance, Amazon Lex generalizes from the samples
that you provide to recognize both exact matches and similar input.

To add an utterance (console)

1. Add the utterance "l want flowers" to the intent by typing it in the Sample utterances section
of the intent editor, as in the following image, and then clicking the plus icon next to the new

utterance.

+ Sample utterances @

| want flowers| (4]

| would like to pick up flowers

| would like to order some flowers [x]

2. Build your bot to pick up the change. Choose Build, and then choose Build again.

Exercise 1: Create a Bot Using a Blueprint 138

Amazon Lex V1 Developer Guide

3. Test your bot to confirm that it recognized the new utterance. In the test window, as in the
following image, type "l want to order flowers." Amazon Lex recognizes the phrase and
responds with "What type of flowers would you like to order?".

> Test Bot (Latest) (© Ready. Build complete.

| want to order flowers

What type of flowers would you like to
order?

Clear

Next Step

Step 7 (Optional): Clean Up (Console)

Step 7 (Optional): Clean Up (Console)
Now, delete the resources that you created and clean up your account.

You can delete only resources that are not in use. In general, you should delete resources in the
following order:

» Delete bots to free up intent resources.

» Delete intents to free up slot type resources.

o Delete slot types last.

Exercise 1: Create a Bot Using a Blueprint 139

Amazon Lex V1 Developer Guide

To clean up your account (console)

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

From the list of bots, choose the check box next to OrderFlowers.

To delete the bot, choose Delete, and then choose Continue in the confirmation dialog box.

In the left pane, choose Intents.

In the list of intents, choose OrderFlowersintent.

To delete the intent, choose Delete, and then choose Continue in the confirmation dialog box.
In the left pane, choose Slot types.

In the list of slot types, choose Flowers.

O ® N o U A W DN

To delete the slot type, choose Delete, and then choose Continue in the confirmation dialog
box.

You have removed all of the Amazon Lex resources that you created and cleaned up your account.
If desired, you can use the Lambda console to delete the Lambda function used in this exercise.

Exercise 2: Create a Custom Amazon Lex Bot

In this exercise, you use the Amazon Lex console to create a custom bot that orders pizza
(OrderPizzaBot). You configure the bot by adding a custom intent (OrderPizza), defining
custom slot types, and defining the slots required to fulfill a pizza order (pizza crust, size, and so
on). For more information about slot types and slots, see Amazon Lex: How It Works.

Topics

Step 1: Create a Lambda Function

Step 2: Create a Bot

Step 3: Build and Test the Bot

Step 4 (Optional): Clean up

Step 1: Create a Lambda Function

First, create a Lambda function which fulfills a pizza order. You specify this function in your
Amazon Lex bot, which you create in the next section.

Exercise 2: Create a Custom Bot 140

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lambda

Amazon Lex V1 Developer Guide

To create a Lambda function

1. Signin to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create function.

3. On the Create function page, choose Author from scratch.

Because you are using custom code provided to you in this exercise to create a Lambda
function, you choose author the function from scratch.

Do the following:

a. Typethe name (PizzaOrderProcessor).

b. For the Runtime, choose the latest version of Node.js.

c. Forthe Role, choose Create new role from template(s).
d. Enter a new role name (PizzaOrderProcessorRole).
e. Choose Create function.

4. On the function page, do the following:

In the Function code section, choose Edit code inline, and then copy the following Node.js
function code and paste it in the window.

'use strict';

// Close dialog with the customer, reporting fulfillmentState of Failed or
Fulfilled ("Thanks, your pizza will arrive in 20 minutes")
function close(sessionAttributes, fulfillmentState, message) {
return {
sessionAttributes,
dialogAction: {
type: 'Close',
fulfillmentState,
message,

iy

Exercise 2: Create a Custom Bot 141

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Lex V1

Developer Guide

function dispatch(intentRequest, callback) {

console.log(‘request received for userId=${intentRequest.userId}, intentName=

${intentRequest.currentIntent.name}");
const sessionAttributes = intentRequest.sessionAttributes;
const slots = intentRequest.currentIntent.slots;
const crust = slots.crust;
const size = slots.size;
const pizzaKind = slots.pizzaKind;

callback(close(sessionAttributes, 'Fulfilled',

{'contentType': 'PlainText', 'content': ‘Okay, I have ordered your ${size}

${pizzaKind} pizza on ${crust} crust'}));

// Route the incoming request based on intent.
// The JSON body of the request is provided in the event slot.
export const handler = (event, context, callback) => {
try {
dispatch(event,
(response) => {
callback(null, response);
1);
} catch (err) {
callback(err);

i

5. Choose Save.

Test the Lambda Function Using Sample Event Data

In the console, test the Lambda function by using sample event data to manually invoke it.

To test the Lambda function:

1. Signin to the AWS Management Console and open the AWS Lambda console at https://

console.aws.amazon.com/lambda/.

2. On the Lambda function page, choose the Lambda function (PizzaOrderProcessor).

3. Onthe function page, in the list of test events, choose Configure test events.

Exercise 2: Create a Custom Bot

142

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Lex V1 Developer Guide

4. On the Configure test event page, do the following:

a. Choose Create new test event.
b. In the Event name field, enter a name for the event (PizzaOrderProcessorTest).

c. Copy the following Amazon Lex event into the window.

"messageVersion": "1.0",
"invocationSource": "FulfillmentCodeHook",
"userId": "user-1",
"sessionAttributes": {3},
"bot": {
"name": "PizzaOrderingApp",
"alias": "$LATEST",
"version": "$LATEST"
},
"outputDialogMode": "Text",
"currentIntent": {
"name": "OrderPizza",
"slots": {
"size": "large",
"pizzaKind": "meat",
"crust": "thin"
},

"confirmationStatus": "None"

5. Choose Create.

AWS Lambda creates the test and you go back to the function page. Choose Test and Lambda runs
your Lambda function.

In the result box, choose Details. The console displays the following output in the Execution result
pane.

"sessionAttributes": {3},
"dialogAction": {
"type": "Close",
"fulfillmentState": "Fulfilled",

Exercise 2: Create a Custom Bot 143

Amazon Lex V1 Developer Guide

"message": {
"contentType": "PlainText",
"content": "Okay, I have ordered your large meat pizza on thin crust."

}

Next Step

Step 2: Create a Bot

Step 2: Create a Bot
In this step, you create a bot to handle pizza orders.

Topics
+ Create the Bot

Create an Intent

Create Slot Types

Configure the Intent

Configure the Bot

Create the Bot

Create the PizzaOrderingBot bot with the minimum information needed. You add an intent, an
action that the user wants to perform, for the bot later.

To create the bot

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Create a bot.

a. If you are creating your first bot, choose Get Started. Otherwise, choose Bots, and then
choose Create.

b. On the Create your Lex bot page, choose Custom bot and provide the following
information:

« Bot name: PizzaOrderingBot

» Language: Choose the language and locale for your bot.

Exercise 2: Create a Custom Bot 144

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

o Output voice: Salli

« Session timeout : 5 minutes.

o COPPA: Choose the appropriate response.

« User utterance storage: Choose the appropriate response.

c. Choose Create.

The console sends Amazon Lex a request to create a new bot. Amazon Lex sets the bot
version to $LATEST. After creating the bot, Amazon Lex shows the bot Editor tab, as in
the following image:

|
< PizzaOrdenngBola P
Editor Settings Channels Monitoring
[+ Getting started with your bot
Welcome to your bot editor. You can start nght away by adding an intent using the
@ button in the Intents section of the left navgation

o + Create Intent

« The bot version, Latest, appears next to the bot name in the console. New Amazon
Lex resources have $LATEST as the version. For more information, see Versioning and
Aliases.

» Because you haven't created any intents or slots types, none are listed.

« Build and Publish are bot-level activities. After you configure the entire bot, you'll learn
more about these activities.

Next Step

Create an Intent

Create an Intent

Now, create the OrderPizza intent, an action that the user wants to perform, with the minimum
information needed. You add slot types for the intent and then configure the intent later.

To create an intent

1. In the Amazon Lex console, choose the plus sign (+) next to Intents, and then choose Create
new intent.

Exercise 2: Create a Custom Bot 145

Amazon Lex V1 Developer Guide

2. Inthe Create intent dialog box, type the name of the intent (OrderPizza), and then choose
Add.

The console sends a request to Amazon Lex to create the OrderPizza intent. In this example you
create slots for the intent after you create slot types.

Next Step

Create Slot Types

Create Slot Types

Create the slot types, or parameter values, that the OrderPizza intent uses.
To create slot types

1. In the left menu, choose the plus sign (+) next to Slot types.

2. Inthe Add slot type dialog box, add the following:

» Slot type name - Crusts
« Description - Available crusts
» Choose Restrict to Slot values and Synonyms

» Value - Type thick. Press tab and in the Synonym field type stuffed. Choose the plus
sign (+). Type thin and then choose the plus sign (+) again.

The dialog should look like the following image:

Exercise 2: Create a Custom Bot 146

Amazon Lex V1 Developer Guide

Add slot type X

Slot type name

Crusts

Description
Available crusts
Slot Resolution

Expand Values €%

® Restrict to Slot values and Synonyms €3

Value ©
e.g. Smalf Enter Synonym L+
Press Tab to add a synonym
thick stuffed @ @ | Q
thin unstuffed (]

Cancel Save slot type Add slot to intent

3. Choose Add slot to intent.

4. On the Intent page, choose Required. Change the name of the slot from slotOne to cxust.
Change the prompt to What kind of crust would you like?

5. Repeat Step 1 through Step 4 using the values in the following table:

Exercise 2: Create a Custom Bot 147

Amazon Lex V1 Developer Guide

Name Description Values Slot name Prompt

Sizes Available sizes small, medium, size What size
large pizza?

PizzaKind Available pizzas veg, cheese pizzaKind Do you want a

veg or cheese
pizza?

Next Step

Configure the Intent

Configure the Intent

Configure the OrderPizza intent to fulfill a user's request to order a pizza.
To configure an intent

« On the OrderPizza configuration page, configure the intent as follows:

« Sample utterances - Type the following strings. The curly braces {} enclose slot names.

« | want to order pizza please

| want to order a pizza

| want to order a {pizzaKind} pizza

| want to order a {size} {pizzaKind} pizza

| want a {size} {crust} crust {pizzaKind} pizza

Can | get a pizza please

Can | get a {pizzaKind} pizza
« Can | get a {size} {pizzaKind} pizza
« Lambda initialization and validation - Leave the default setting.
« Confirmation prompt - Leave the default setting.
« Fulfillment - Perform the following tasks:
« Choose AWS Lambda function.

e Choose PizzaOrderProcessor.

Exercise 2: Create a Custom Bot

148

Amazon Lex V1 Developer Guide

« If the Add permission to Lambda function dialog box is shown, choose OK to give the
OrderPizza intent permission to call the PizzaOrderProcessor Lambda function.

+ Leave None selected.

The intent should look like the following:

OrderPizza La -

= Sample utterances @

| want to order a pizza please

2 o

| want to order a pizza

| want to order a pizza

| want to order a pizza

| want to order a crust pzza
Can | get a pizza please

Canlgeta pizza

Canlgeta pizza

» Lambda initialization and validation &

2 9 © 9o o o

= Slois @

Prigrity Required Name Slot type Prompt

e.g. Location -)) Py o
- bl Crusts - 1~ What kind of crust would you & o
2 oA < m Sizes A 1w What size pizza o (x}

PizzaKind - 1w Do you want a veg or chees £ [x]

w
¥
b

v Confirmation prompt €

» Fulfilment @

® AWS Lambda function Return parameters to client

PizzaOrderProcessor -

Next Step

Configure the Bot

Exercise 2: Create a Custom Bot 149

Amazon Lex V1 Developer Guide

Configure the Bot

Configure error handling for the PizzaOrderingBot bot.

1. Navigate to the PizzaOrderingBot bot. Choose Editor. and then choose Error Handling, as
in the following image:

¢ PizzaOrderingBot Build m
Editor Setings Channels
[+ Emror handling
CrderPizza Clarification prompts
L+
o
PizzaKind Samy, can you please repeat that? [«]
Sizes
et Maximum number of retries
AUSLE
FlowerTypes
Hang-up phrase
| Error Handling
Saorry, | could not understand. Goodbye [x]

2. Use the Editor tab to configure bot error handling.

 Information you provide in Clarification Prompts maps to the bot's clarificationPrompt
configuration.

When Amazon Lex can't determine the user intent, the service returns a response with this
message.

 Information that you provide in the Hang-up phrase maps to the bot's abortStatement
configuration.

If the service can't determine the user's intent after a set number of consecutive requests,
Amazon Lex returns a response with this message.

Leave the defaults.

Exercise 2: Create a Custom Bot 150

https://docs.aws.amazon.com/lex/latest/dg/API_PutBot.html#lex-PutBot-request-clarificationPrompt
https://docs.aws.amazon.com/lex/latest/dg/API_PutBot.html#lex-PutBot-request-abortStatement

Amazon Lex V1 Developer Guide

Next Step

Step 3: Build and Test the Bot

Step 3: Build and Test the Bot

Make sure the bot works, by building and testing it.
To build and test the bot

1. To build the PizzaOrderingBot bot, choose Build.

Amazon Lex builds a machine learning model for the bot. When you test the bot, the console
uses the runtime API to send the user input back to Amazon Lex. Amazon Lex then uses the
machine learning model to interpret the user input.

It can take some time to complete the build.

2. To test the bot, in the Test Bot window, start communicating with your Amazon Lex bot.

« For example, you might say or type the following:

Exercise 2: Create a Custom Bot 151

Amazon Lex V1 Developer Guide

> Test Bot (Latest) (© Ready. Build complete.

| want a pizza

Do you want a veg or cheese pizza

cheese

What size pizza

What kind of crust would you like

large

thick

Intent OrderPizza is ReadyForFulfillment:

crust:thick pizzaKind:cheese size:large

Clear

« Use the sample utterances that you configured in the OrderPizza intent to test the bot.
For example, the following is one of the sample utterances that you configured for the
PizzaOrder intent:

I want a {size} {crust} crust {pizzaKind} pizza

To test it, type the following:

I want a large thin crust cheese pizza

When you type "l want to order a pizza," Amazon Lex detects the intent (OrderPizza). Then,
Amazon Lex asks for slot information.

Exercise 2: Create a Custom Bot 152

Amazon Lex V1 Developer Guide

After you provide all of the slot information, Amazon Lex invokes the Lambda function that
you configured for the intent.

The Lambda function returns a message ("Okay, | have ordered your ...") to Amazon Lex, which
Amazon Lex returns to you..

Inspecting the Response

Underneath the chat window is a pane that enables you to inspect the response from Amazon Lex.
The pane provides comprehensive information about the state of your bot that changes as you
interact with your bot. The contents of the panes show you the current state of the operation.

» Dialog State — The current state of the conversation with the user. It can be ElicitIntent,
ElicitSlot, ConfirmIntent or Fulfilled.

« Summary - Shows a simplified view of the dialog that shows the slot values for the intent
being fulfilled so that you can keep track of the information flow. It shows the intent name, the
number of slots and the number of slots filled, and a list of all of the slots and their associated
values. See the following image:

Exercise 2: Create a Custom Bot 153

Amazon Lex V1 Developer Guide

Inspect Response

Dialog State: ElicitSlot

® Summary Detail

Intent: OrderPizza

Slots (2/3)
crust null
pizzaKind cheese
size large

 Detail - Shows the raw JSON response from the chatbot to give you a deeper view into the bot
interaction and the current state of the dialog as you test and debug your chatbot. If you type
in the chat window, the inspection pane shows the JSON response from the PostText operation.
If you speak to the chat window, the inspection pane shows the response headers from the
PostContent operation. See the following image:

Exercise 2: Create a Custom Bot 154

Amazon Lex V1 Developer Guide

Inspect Response
Dialog State: ElicitSlot

Summary (@ Detail

RequestlD: 41392c21-97f-11e7-a10b-5bcc0093a006

"dialogState™: "Elicitslot”,

“intentname™: "OrderPizza”,

"message": "What kind of crust would you like",
“responseCard”: null,

"sessionattributes”: {},

's1lotToElicit":

“slots™: {

crust",

"crust": nuwll,
"pizzaKind": "cheese",

“size": "large"

Next Step

Step 4 (Optional): Clean up

Step 4 (Optional): Clean up

Delete the resources that you created and clean up your account to avoid incurring more charges
for the resources you created.

You can delete only resources that are not in use. For example, you cannot delete a slot type that is
referenced by an intent. You cannot delete an intent that is referenced by a bot.

Delete resources in the following order:

« Delete bots to free up intent resources.

Exercise 2: Create a Custom Bot 155

Amazon Lex V1 Developer Guide

» Delete intents to free up slot type resources.

o Delete slot types last.

To clean up your account

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

From the list of bots, choose PizzaOrderingBot.

To delete the bot, choose Delete, and then choose Continue.

In the left pane, choose Intents.

In the list of intents, choose OrderPizza.

To delete the intent, choose Delete, and then choose Continue.
In the left menu, choose Slot types.

In the list of slot types, choose Crusts.

To delete the slot type, choose Delete, and then choose Continue.

2 0 ® NV AW

0. Repeat Step 8 and Step 9 for the Sizes and PizzaKind slot types.

You have removed all of the resources that you created and cleaned up your account.
Next Steps

« Publish a Version and Create an Alias

o Create an Amazon Lex bot with the AWS Command Line Interface

Exercise 3: Publish a Version and Create an Alias

In Getting Started Exercises 1 and 2, you created a bot and tested it. In this exercise, you do the
following:

« Publish a new version of the bot. Amazon Lex takes a snapshot copy of the $LATEST version to
publish a new version.

» Create an alias that points to the new version.

For more information about versioning and aliases, see Versioning and Aliases.

Exercise 3: Publish a Version and Create an Alias 156

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://docs.aws.amazon.com/lex/latest/dg/gettingstarted-ex3.html
https://docs.aws.amazon.com/lex/latest/dg/gs-cli.html

Amazon Lex V1 Developer Guide

Do the following to publish a version of a bot you created for this exercise:

1. Inthe Amazon Lex console, choose one of the bots you created.

Verify that the console shows the $LATEST as the bot version next to the bot name.
2. Choose Publish.
3. On the Publish botname wizard, specify the alias BETA, and then choose Publish.

4. Verify that the Amazon Lex console shows the new version next to the bot name, as in the
following image.

Publish PizzaOrdenngBaot =

VWhat to do next?

Your bot is published! You can now connect to Here are some resources to help you progress once your

your robde app or continue to chatbal wal 15 published

deployment
How ko connact to Wour madile app
Leamn how to connect to your bat to your mabile app

BotName PzzaCrdenngSot Download connection info
Bot Version 1
Alias BETA, How to deploy your bat to ather sernvices

Leamm how o deploy your bal 1o ather seraces like
Facabook Massanger and Slac

Go to channels

Cancel

Now that you have a working bot with published version and an alias, you can deploy the bot
(in your mobile application or integrate the bot with Facebook Messenger). For an example, see
Integrating an Amazon Lex Bot with Facebook Messenger.

Step 4: Getting Started (AWS CLI)

In this step, you use the AWS CLI to create, test, and modify an Amazon Lex bot. To complete these
exercises, you need to be familiar with using the CLI and have a text editor. For more information,
see Step 2: Set Up the AWS Command Line Interface

» Exercise 1 — Create and test an Amazon Lex bot. The exercise provides all of the JSON objects
that you need to create a custom slot type, an intent, and a bot. For more information, see
Amazon Lex: How It Works

Step 4: Getting Started (AWS CLI) 157

Amazon Lex V1 Developer Guide

» Exercise 2 — Update the bot that you created in Exercise 1 to add an additional sample
utterance. Amazon Lex uses sample utterances to build the machine learning model for your bot.

« Exercise 3 — Update the bot that you created in Exercise 1 to add a Lambda function to validate
user input and to fulfill the intent.

» Exercise 4 — Publish a version of the slot type, intent, and bot resources that you created in
Exercise 1. A version is a snapshot of a resource that can't be changed.

» Exercise 5 — Create an alias for the bot that you created in Exercise 1.

» Exercise 6 — Clean up your account by deleting the slot type, intent, and bot that you created in
Exercise 1, and the alias that you created in Exercise 5.

Topics

« Exercise 1: Create an Amazon Lex Bot (AWS CLI)

o Exercise 2: Add a New Utterance (AWS CLI)

o Exercise 3: Add a Lambda Function (AWS CLI)

» Exercise 4: Publish a Version (AWS CLI)

o Exercise 5: Create an Alias (AWS CLI)

» Exercise 6: Clean Up (AWS CLI)

Exercise 1: Create an Amazon Lex Bot (AWS CLI)

In general, when you create bots, you:

1. Create slot types to define the information that your bot will be working with.

2. Create intents that define the user actions that your bot supports. Use the custom slot types
that you created earlier to define the slots, or parameters, that your intent requires.

3. Create a bot that uses the intents that you defined.

In this exercise you create and test a new Amazon Lex bot using the CLI. Use the JSON structures
that we provide to create the bot. To run the commands in this exercise, you need to know the
region where the commands will be run. For a list of regions, see Model Building Quotas .

Topics

» Step 1: Create a Service-Linked Role (AWS CLlI)

Exercise 1: Create a Bot 158

Amazon Lex V1

Developer Guide

Step 2: Create a Custom Slot Type (AWS CLI)

Step 3: Create an Intent (AWS CLI)

Step 4: Create a Bot (AWS CLI)

Step 5: Test a Bot (AWS CLI)

Step 1: Create a Service-Linked Role (AWS CLI)

Amazon Lex assumes AWS Identity and Access Management service-linked roles to call AWS

services on behalf of your bots. The roles, which are in your account, are linked to Amazon Lex use

cases and have predefined permissions. For more information, see Using Service-Linked Roles for

Amazon Lex.

If you've already created an Amazon Lex bot using the console, the service-linked role was created

automatically. Skip to Step 2: Create a Custom Slot Type (AWS CLI).

To create a service-linked role (AWS CLI)

1.

In the AWS CLI, type the following command:

aws iam create-service-linked-role --aws-service-name lex.amazonaws.com

Check the policy using the following command:

aws iam get-role --role-name AWSServiceRoleForLexBots

The response is:

"Role": {
"AssumeRolePolicyDocument": {
"Version": "2012-10-17",
"Statement": [

{
"Action": "sts:AssumeRole",
"Effect": "Allow",
"Principal": {
"Service": "lex.amazonaws.com"
}
}

Exercise 1: Create a Bot

159

Amazon Lex V1 Developer Guide

},
"RoleName": "AWSServiceRoleForLexBots",
"Path": "/aws-service-role/lex.amazonaws.com/",
"Arn": "arn:aws:iam::account-id:role/aws-service-role/lex.amazonaws.com/
AWSServiceRoleForLexBots"
}
Next Step

Step 2: Create a Custom Slot Type (AWS CLI)

Step 2: Create a Custom Slot Type (AWS CLI)

Create a custom slot type with enumeration values for the flowers that can be ordered. You use
this type in the next step when you create the OrderFlowers intent. A slot type defines the
possible values for a slot, or parameter, of the intent.

To run the commands in this exercise, you need to know the region where the commands will be
run. For a list of regions, see Model Building Quotas .

To create a custom slot type (AWS CLI)

1. Create a text file named FlowexrTypes. json. Copy the JSON code from FlowerTypes.json into
the text file.

2. Call the PutSlotType operation using the AWS CLI to create the slot type. The example
is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (»).

aws lex-models put-slot-type \
--region region \
--name FlowerTypes \
--cli-input-json file://FlowerTypes.json

The response from the server is:

{
"enumerationValues": [
{
"value": "tulips"
},

Exercise 1: Create a Bot 160

Amazon Lex V1 Developer Guide

{
"value": "lilies"
},
{
"value": "roses"
}
1,
"name": "FlowerTypes",
"checksum": "checksum",

"version": "$LATEST",

"lastUpdatedDate": timestamp,

"createdDate": timestamp,

"description": "Types of flowers to pick up"

Next Step

Step 3: Create an Intent (AWS CLI)

FlowerTypes.json

The following code is the JSON data required to create the FlowerTypes custom slot type:

{
"enumerationValues": [
{
"value": "tulips"
b
{
"value": "lilies"
},
{
"value": "roses"
}
1,
"name": "FlowerTypes",
"description": "Types of flowers to pick up"
}

Exercise 1: Create a Bot 161

Amazon Lex V1 Developer Guide

Step 3: Create an Intent (AWS CLI)

Create an intent for the OrderFlowersBot bot and provide three slots, or parameters. The slots
allow the bot to fulfill the intent:

« FlowerType is a custom slot type that specifies which types of flowers can be ordered.

« AMAZON.DATE and AMAZON. TIME are built-in slot types used for getting the date and time to
deliver the flowers from the user.

To run the commands in this exercise, you need to know the region where the commands will be
run. For a list of regions, see Model Building Quotas .

To create the OrderFlowers intent (AWS CLI)

1. Create a text file named OrdexrFlowers. json. Copy the JSON code from OrderFlowers.json
into the text file.

2. Inthe AWS CLI, call the Putintent operation to create the intent. The example is formatted for
Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix continuation character at
the end of each line with a caret (*).

aws lex-models put-intent \
--region region \
--name OrderFlowers \
--cli-input-json file://OrderFlowers. json

The server responds with the following:

"confirmationPrompt": {
"maxAttempts": 2,
"messages": [
{
"content": "Okay, your {FlowerType} will be ready for pickup by
{PickupTime} on {PickupDate}. Does this sound okay?",
"contentType": "PlainText"

}
]
.
"name": "OrderFlowers",
"checksum": '"checksum",

Exercise 1: Create a Bot 162

Amazon Lex V1 Developer Guide

"version": "$LATEST",
"rejectionStatement": {
"messages": [
{
"content": "Okay, I will not place your order.",
"contentType": "PlainText"

},
"createdDate": timestamp,
"lastUpdatedDate": timestamp,
"sampleUtterances": [
"I would like to pick up flowers",
"I would like to order some flowers"

1,
"slots": [
{
"slotType": "AMAZON.TIME",
"name": "PickupTime",
"slotConstraint": "Required",

"valueElicitationPrompt": {
"maxAttempts": 2,
"messages": [

{
"content": "Pick up the {FlowerType} at what time on
{PickupDate}?",
"contentType": "PlainText"
}
]
I
"priority": 3,
"description": "The time to pick up the flowers"
},
{
"slotType": "FlowerTypes",
"name": "FlowerType",
"slotConstraint": "Required",
"valueElicitationPrompt": {
"maxAttempts": 2,
"messages": [
{
"content": "What type of flowers would you like to
order?",

"contentType": "PlainText"

Exercise 1: Create a Bot 163

Amazon Lex V1 Developer Guide

},
"priority": 1,
"slotTypeVersion": "$LATEST",
"sampleUtterances": [
"I would like to order {FlowerTypel}"

1,

"description": "The type of flowers to pick up"
I
{

"slotType": "AMAZON.DATE",

"name": "PickupDate",

"slotConstraint": "Required",

"valueElicitationPrompt": {
"maxAttempts": 2,
"messages": [

{
"content": "What day do you want the {FlowerType} to be
picked up?",
"contentType": "PlainText"
}
]
},
"priority": 2,
"description": "The date to pick up the flowers"

1,
"fulfillmentActivity": {
"type": "ReturnIntent"

}I

"description": "Intent to order a bouquet of flowers for pick up"

Next Step

Step 4: Create a Bot (AWS CLI)

OrderFlowers.json

The following code is the JSON data required to create the OrderFlowers intent:

Exercise 1: Create a Bot 164

Amazon Lex V1 Developer Guide

"confirmationPrompt": {
"maxAttempts": 2,
"messages": [
{
"content": "Okay, your {FlowerType} will be ready for pickup by
{PickupTime} on {PickupDate}. Does this sound okay?",
"contentType": "PlainText"

I
"name": "OrderFlowers",
"rejectionStatement": {
"messages": [
{
"content": "Okay, I will not place your order.",
"contentType": "PlainText"

},
"sampleUtterances": [
"I would like to pick up flowers",
"I would like to order some flowers"
1,
"slots": [
{
"slotType": "FlowerTypes",
"name": "FlowerType",
"slotConstraint": "Required",
"valueElicitationPrompt": {
"maxAttempts": 2,
"messages": [
{
"content": "What type of flowers would you like to order?",
"contentType": "PlainText"

},
"priority": 1,
"slotTypeVersion": "$LATEST",
"sampleUtterances": [
"I would like to order {FlowerTypel}"
1,
"description": "The type of flowers to pick up"

iy

Exercise 1: Create a Bot 165

Amazon Lex V1 Developer Guide

"slotType": "AMAZON.DATE",
"name": "PickupDate",
"slotConstraint": "Required",
"valueElicitationPrompt": {

"maxAttempts": 2,

"messages": [

{
"content": "What day do you want the {FlowerType} to be picked
up?",

"contentType": "PlainText"

I
"priority": 2,
"description": "The date to pick up the flowers"

"slotType": "AMAZON.TIME",

"name": "PickupTime",

"slotConstraint": "Required",

"valueElicitationPrompt": {
"maxAttempts": 2,
"messages": [

{
"content": "Pick up the {FlowerType} at what time on
{PickupDate}?",
"contentType": "PlainText"
}
]
1,
"priority": 3,
"description": "The time to pick up the flowers"

1,
"fulfillmentActivity": {
"type": "ReturnIntent"

iy

"description": "Intent to order a bouquet of flowers for pick up"

Exercise 1: Create a Bot 166

Amazon Lex V1 Developer Guide

Step 4: Create a Bot (AWS CLI)

The OrderFlowersBot bot has one intent, the OrderFlowers intent that you created in the
previous step. To run the commands in this exercise, you need to know the region where the
commands will be run. For a list of regions, see Model Building Quotas .

® Note

The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows,
change "\$LATEST" to $LATEST.

To create the OrdexrFlowersBot bot (AWS CLI)

1. Create a text file named OxrdexrFlowersBot. json. Copy the JSON code from
OrderFlowersBot.json into the text file.

2. Inthe AWS CLI, call the PutBot operation to create the bot. The example is formatted for Unix,
Linux, and macOS. For Windows, replace the backslash (\) Unix continuation character at the
end of each line with a caret (#).

aws lex-models put-bot \
--region region \
--name OrderFlowersBot \
--cli-input-json file://OrderFlowersBot.json

The response from the server follows. When you create or update bot, the status field is set
to BUILDING. This indicates that the bot isn't ready to use. To determine when the bot is ready
for use, use the GetBot operation in the next step .

"status'": "BUILDING",
"intents": [

{
"intentVersion": "$LATEST",
"intentName": "OrderFlowers"
}
1,
"name": "OrderFlowersBot",
"locale": "en-US",
"checksum": "checksum",

Exercise 1: Create a Bot 167

Amazon Lex V1 Developer Guide

"abortStatement": {
"messages": [
{

"content": "Sorry, I'm not able to assist at this time",
"contentType": "PlainText"

.

"version": "$LATEST",

"lastUpdatedDate": timestamp,

"createdDate": timestamp,

"clarificationPrompt": {
"maxAttempts": 2,
"messages": [

{
"content": "I didn't understand you, what would you like to do?",
"contentType": "PlainText"
}
]
.
"voiceId": "Salli",

"childDirected": false,

"idleSessionTTLInSeconds": 600,

"processBehavior": "BUILD",

"description": "Bot to order flowers on the behalf of a user"

3. To determine if your new bot is ready for use, run the following command. Repeat this
command until the status field returns READY. The example is formatted for Unix, Linux, and

macOS. For Windows, replace the backslash (\) Unix continuation character at the end of each
line with a caret (*).

aws lex-models get-bot \
--region region \
--name OrderFlowersBot \
--version-or-alias "\$LATEST"

Look for the status field in the response:

"status": "READY",

Exercise 1: Create a Bot 168

Amazon Lex V1 Developer Guide

Next Step

Step 5: Test a Bot (AWS CLI)

OrderFlowersBot.json

The following code provides the JSON data required to build the OrderFlowers Amazon Lex bot:

{
"intents": [
{
"intentVersion": "$LATEST",
"intentName": "OrderFlowers"
}
1,
"name": "OrderFlowersBot",
"locale": "en-US",

"abortStatement": {
"messages": [
{
"content": "Sorry, I'm not able to assist at this time",
"contentType": "PlainText"

iy

"clarificationPrompt": {
"maxAttempts": 2,
"messages": [

{
"content": "I didn't understand you, what would you like to do?",
"contentType": "PlainText"
}
]
},
"voiceId": "Salli",

"childDirected": false,
"idleSessionTTLInSeconds": 600,
"description": "Bot to order flowers on the behalf of a user"

Exercise 1: Create a Bot 169

Amazon Lex V1 Developer Guide

}

Step 5: Test a Bot (AWS CLI)

To test the bot,you can use either a text-based or a speech-based test.

Topics

» Test the Bot Using Text Input (AWS CLI)

» Test the Bot Using Speech Input (AWS CLI)

Test the Bot Using Text Input (AWS CLI)

To verify that the bot works correctly with text input, use the PostText operation. To run the
commands in this exercise, you need to know the region where the commands will be run. For a list
of regions, see Runtime Service Quotas.

(® Note

The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows,
change "\$LATEST" to $LATEST and replace the backslash (\) continuation character at
the end of each line with a caret (*).

To use text to test the bot (AWS CLI)

1. Inthe AWS CLI, start a conversation with the OrderFlowersBot bot. The example
is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret ().

aws lex-runtime post-text \
--region region \
--bot-name OrderFlowersBot \
--bot-alias "\$LATEST" \
--user-id UserOne \
--input-text "i would like to order flowers"

Amazon Lex recognizes the user's intent and starts a conversation by returning the following
response:

Exercise 1: Create a Bot 170

Amazon Lex V1 Developer Guide

{
"slotToElicit": "FlowerType",
"slots": {
"PickupDate": null,
"PickupTime": null,
"FlowerType": null
.
"dialogState": "ElicitSlot",
"message": "What type of flowers would you like to order?",
"intentName": "OrderFlowers"
}

2. Run the following commands to finish the conversation with the bot.

aws lex-runtime post-text \
--region region \
--bot-name OrderFlowersBot \
--bot-alias "\$LATEST" \
--user-id UserOne \
--input-text "roses"

aws lex-runtime post-text \
--region region \
--bot-name OrderFlowersBot \
--bot-alias "\$LATEST" \
--user-id UserOne \
--input-text "tuesday"

aws lex-runtime post-text \
--region region \
--bot-name OrderFlowersBot --bot-alias "\$LATEST" \
--user-id UserOne \
--input-text "10:00 a.m."

aws lex-runtime post-text \
--region region \
--bot-name OrderFlowersBot \
--bot-alias "\$LATEST" \
--user-id UserOne \
--input-text "yes"

Exercise 1: Create a Bot 171

Amazon Lex V1 Developer Guide

After you confirm the order, Amazon Lex sends a fulfillment response to complete the
conversation:

{
"slots": {
"PickupDate": "2017-05-16",
"PickupTime": "10:00",
"FlowerType": "roses"
3,
"dialogState": "ReadyForFulfillment",
"intentName": "OrderFlowers"
}
Next Step

Test the Bot Using Speech Input (AWS CLI)

Test the Bot Using Speech Input (AWS CLI)

To test the bot using audio files, use the PostContent operation. You generate the audio files using
Amazon Polly text-to-speech operations.

To run the commands in this exercise, you need to know the region the Amazon Lex and Amazon
Polly commands will be run. For a list of regions for Amazon Lex, see Runtime Service Quotas. For

a list of regions for Amazon Polly see AWS Regions and Endpoints in the Amazon Web Services

General Reference.

(® Note

The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows,
change "\$LATEST" to $LATEST and replace the backslash (\) continuation character at
the end of each line with a caret (*).

To use a speech input to test the bot (AWS CLI)

1. In the AWS CLI, create an audio file using Amazon Polly. The example is formatted for Unix,
Linux, and macOS. For Windows, replace the backslash (\) Unix continuation character at the
end of each line with a caret (*).

Exercise 1: Create a Bot 172

https://docs.aws.amazon.com/general/latest/gr/rande.html#pol_region

Amazon Lex V1 Developer Guide

aws polly synthesize-speech \
--region region \
--output-format pcm \
--text "i would like to order flowers" \
--voice-id "Salli" \
IntentSpeech.mpg

2. To send the audio file to Amazon Lex, run the following command. Amazon Lex saves the
audio from the response in the specified output file.

aws lex-runtime post-content \
--region region \
--bot-name OrderFlowersBot \
--bot-alias "\$LATEST" \
--user-id UserOne \
--content-type "audio/116; rate=16000; channels=1" \
--input-stream IntentSpeech.mpg \
IntentOutputSpeech.mpg

Amazon Lex responds with a request for the first slot. It saves the audio response in the
specified output file.

{
"contentType": "audio/mpeg",
"slotToElicit": "FlowerType",
"dialogState": "ElicitSlot",
"intentName": "OrderFlowers",
"inputTranscript": "i would like to order some flowers",
"slots": {
"PickupDate": null,
"PickupTime": null,
"FlowerType": null
1,
"message": "What type of flowers would you like to order?"
}

3. To order roses, create the following audio file and send it to Amazon Lex :

aws polly synthesize-speech \
--region region \
--output-format pcm \

Exercise 1: Create a Bot 173

Amazon Lex V1 Developer Guide

--text "roses" \
--voice-id "Salli" \
FlowerTypeSpeech.mpg

aws lex-runtime post-content \
--region region \
--bot-name OrderFlowersBot \
--bot-alias "\$LATEST" \
--user-id UserOne \
--content-type "audio/116; rate=16000; channels=1" \
--input-stream FlowerTypeSpeech.mpg \
FlowerTypeOutputSpeech.mpg

4. To set the delivery date, create the following audio file and send it to Amazon Lex:

aws polly synthesize-speech \
--region region \
--output-format pcm \
--text "tuesday" \
--voice-id "Salli" \
DateSpeech.mpg

aws lex-runtime post-content \
--region region \
--bot-name OrderFlowersBot \
--bot-alias "\$LATEST" \
--user-id UserOne \
--content-type "audio/116; rate=16000; channels=1" \
--input-stream DateSpeech.mpg \
DateOutputSpeech.mpg

5. To set the delivery time, create the following audio file and send it to Amazon Lex:

aws polly synthesize-speech \
--region region \
--output-format pcm \
--text "10:00 a.m." \
--voice-id "Salli" \
TimeSpeech.mpg

aws lex-runtime post-content \

Exercise 1: Create a Bot 174

Amazon Lex V1 Developer Guide

--region region \

--bot-name OrderFlowersBot \

--bot-alias "\$LATEST" \

--user-id UserOne \

--content-type "audio/116; rate=16000; channels=1" \
--input-stream TimeSpeech.mpg \

TimeOutputSpeech.mpg

6. To confirm the delivery, create the following audio file and send it to Amazon Lex:

aws polly synthesize-speech \
--region region \
--output-format pcm \
--text "yes" \
--voice-id "Salli" \
ConfirmSpeech.mpg

aws lex-runtime post-content \
--region region \
--bot-name OrderFlowersBot \
--bot-alias "\$LATEST" \
--user-id UserOne \
--content-type "audio/116; rate=16000; channels=1" \
--input-stream ConfirmSpeech.mpg \
ConfirmOutputSpeech.mpg

After you confirm the delivery, Amazon Lex sends a response that confirms fulfillment of the
intent:

"contentType": "text/plain;charset=utf-8",
"dialogState": "ReadyForFulfillment",

"intentName": "OrderFlowers",
"inputTranscript": "yes",
"slots": {

"PickupDate": "2017-05-16",
"PickupTime": "10:00",
"FlowerType": "roses"

Exercise 1: Create a Bot 175

Amazon Lex V1 Developer Guide

Next Step

Exercise 2: Add a New Utterance (AWS CLI)

Exercise 2: Add a New Utterance (AWS CLI)

To improve the machine learning model that Amazon Lex uses to recognize requests from your
users, add another sample utterance to the bot.

Adding a new utterance is a four-step process.

1. Use the Getintent operation to get an intent from Amazon Lex.
2. Update the intent.
3. Use the Putintent operation to send the updated intent back to Amazon Lex.

4. Use the GetBot and PutBot operations to rebuild any bot that uses the intent.

To run the commands in this exercise, you need to know the region where the commands will be
run. For a list of regions, see Model Building Quotas .

The response from the GetIntent operation contains a field called checksum that identifies a
specific revision of the intent. You must provide the checksum value when you use the Putintent
operation to update an intent. If you don't, you'll get the following error message:

An error occurred (PreconditionFailedException) when calling
the PutIntent operation: Intent intent name already exists.
If you are trying to update intent name you must specify the
checksum.

(® Note

The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows,
change "\$LATEST" to $LATEST and replace the backslash (\) continuation character at
the end of each line with a caret (*).

Exercise 2: Add a New Utterance 176

Amazon Lex V1 Developer Guide

To update the OrdexFlowers intent (AWS CLI)

1. Inthe AWS CLI, get the intent from Amazon Lex. Amazon Lex sends the output to a file called
OrderFlowers-V2. json.

aws lex-models get-intent \
--region region \
--name OrderFlowers \
--intent-version "\$LATEST" > OrderFlowers-V2.json

2. Open OrdexFlowers-V2.json in a text editor.

1. Find and delete the createdDate, lastUpdatedDate, and version fields.

2. Add the following to the sampleUtterances field:

I want to order flowers

3. Save the file.

3. Send the updated intent to Amazon Lex with the following command:

aws lex-models put-intent \
--region region \
--name OrderFlowers \
--cli-input-json file://OrderFlowers-V2.json

Amazon Lex sends the following response:

"confirmationPrompt": {
"maxAttempts": 2,
"messages": [
{
"content": "Okay, your {FlowerType} will be ready for pickup by
{PickupTime} on {PickupDate}. Does this sound okay?",
"contentType": "PlainText"

}
]
.
"name": "OrderFlowers",
"checksum": "checksum",

"version": "$LATEST",

Exercise 2: Add a New Utterance 177

Amazon Lex V1 Developer Guide

"rejectionStatement": {
"messages": [
{
"content": "Okay, I will not place your order.",
"contentType": "PlainText"

iy

"createdDate": timestamp,
"lastUpdatedDate": timestamp,
"sampleUtterances": [

"I would like to pick up flowers",

"I would like to order some flowers",

"I want to order flowers"

1,
"slots": [
{
"slotType": "AMAZON.TIME",
"name": "PickupTime",
"slotConstraint": "Required",

"valueElicitationPrompt": {
"maxAttempts": 2,
"messages": [

{
"content": "Pick up the {FlowerType} at what time on
{PickupDate}?",
"contentType": "PlainText"
}
]
I
"priority": 3,
"description": "The time to pick up the flowers"
},
{
"slotType": "FlowerTypes",
"name": "FlowerType",
"slotConstraint": "Required",
"valueElicitationPrompt": {
"maxAttempts": 2,
"messages": [
{
"content": "What type of flowers would you like to
order?",

"contentType": "PlainText"

Exercise 2: Add a New Utterance 178

Amazon Lex V1 Developer Guide

},
"priority": 1,
"slotTypeVersion": "$LATEST",
"sampleUtterances": [
"I would like to order {FlowerTypel}"

1,

"description": "The type of flowers to pick up"
.
{

"slotType": "AMAZON.DATE",

"name": "PickupDate",

"slotConstraint": "Required",

"valueElicitationPrompt": {
"maxAttempts": 2,
"messages": [

{
"content": "What day do you want the {FlowerType} to be
picked up?",
"contentType": "PlainText"
}
]
1,
"priority": 2,
"description": "The date to pick up the flowers"

1,
"fulfillmentActivity": {
"type": "ReturnIntent"

}I

"description": "Intent to order a bouquet of flowers for pick up"

Now that you have updated the intent, rebuild any bot that uses it.
To rebuild the OrdexrFlowersBot bot (AWS CLI)

1. In the AWS CLI, get the definition of the OrderFlowersBot bot and save it to a file with the
following command:

aws lex-models get-bot \

Exercise 2: Add a New Utterance 179

Amazon Lex V1 Developer Guide

--region region \
--name OrderFlowersBot \
--version-or-alias "\$LATEST" > OrderFlowersBot-V2.json

2. In atext editor, open OrderFlowersBot-V2. json. Remove the createdDate,
lastUpdatedDate, status and version fields.

3. In atext editor, add the following line to the bot definition:

"processBehavior": "BUILD",

4. Inthe AWS CLI, build a new revision of the bot by running the following command to :

aws lex-models put-bot \
--region region \
--name OrderFlowersBot \
--cli-input-json file://OrderFlowersBot-V2. json

The response from the server is:

"status": "BUILDING",
"intents": [

{
"intentVersion": "$LATEST",
"intentName": "OrderFlowers"
}
1,
"name": "OrderFlowersBot",
"locale": "en-US",
"checksum": "checksum",

"abortStatement": {
"messages": [
{
"content": "Sorry, I'm not able to assist at this time",
"contentType": "PlainText"

},

"version": "$LATEST",
"lastUpdatedDate": timestamp,
"createdDate": timestamp
"clarificationPrompt": {

Exercise 2: Add a New Utterance 180

Amazon Lex V1 Developer Guide

"maxAttempts": 2,
"messages": [

{
"content": "I didn't understand you, what would you like to do?",
"contentType": "PlainText"
}
]
.
"voiceId": "Salli",

"childDirected": false,
"idleSessionTTLInSeconds": 600,
"description": "Bot to order flowers on the behalf of a user"

Next Step

Exercise 3: Add a Lambda Function (AWS CLlI)

Exercise 3: Add a Lambda Function (AWS CLI)

Add a Lambda function that validates user input and fulfills the user's intent to the bot.
Adding a Lambda expression is a five-step process.

1. Use the Lambda AddPermission function to enable the OrderFlowers intent to call the

Lambda Invoke operation.
Use the Getlntent operation to get the intent from Amazon Lex.
Update the intent to add the Lambda function.

Use the Putintent operation to send the updated intent back to Amazon Lex.

ik W

Use the GetBot and PutBot operations to rebuild any bot that uses the intent.

To run the commands in this exercise, you need to know the region where the commands will be
run. For a list of regions, see Model Building Quotas .

If you add a Lambda function to an intent before you add the InvokeFunction permission, you
get the following error message:

An error occurred (BadRequestException) when calling the

Exercise 3: Add a Lambda Function 181

http://docs.aws.amazon.com/lambda/latest/dg/API_AddPermission.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-api-permissions-ref.html

Amazon Lex V1 Developer Guide

PutIntent operation: Lex is unable to access the Lambda
function Lambda function ARN in the context of intent
intent ARN. Please check the resource-based policy on
the function.

The response from the GetIntent operation contains a field called checksum that identifies a
specific revision of the intent. When you use the Putintent operation to update an intent, you must
provide the checksum value. If you don't, you get the following error message:

An error occurred (PreconditionFailedException) when calling
the PutIntent operation: Intent intent name already exists.
If you are trying to update intent name you must specify the
checksum.

This exercise uses the Lambda function from Exercise 1: Create an Amazon Lex Bot Using a

Blueprint (Console). For instructions to create the Lambda function, see Step 3: Create a Lambda
Function (Console).

® Note

The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows,
change "\$LATEST" to $LATEST.

To add a Lambda function to an intent

1. Inthe AWS CLI, add the InvokeFunction permission for the OrderFlowers intent:

aws lambda add-permission \
--region region \
--function-name OrderFlowersCodeHook \
--statement-id LexGettingStarted-OrderFlowersBot \
--action lambda:InvokeFunction \
--principal lex.amazonaws.com \
--source-arn "arn:aws:lex:region:account ID:intent:0rderFlowers:*"
--source-account account ID

Lambda sends the following response:

Exercise 3: Add a Lambda Function 182

Amazon Lex V1 Developer Guide

{
"Statement": "{\"Sid\":\"LexGettingStarted-OrderFlowersBot\",
\"Resource\":\"arn:aws:lambda:region:account ID:function:0rderFlowersCodeHook
\",
\"Effect\":\"Allow\",
\"Principal\":{\"Service\":\"lex.amazonaws.com\"},
\"Action\":[\"lambda:InvokeFunction\"],
\"Condition\":{\"StringEquals\":
{\"AWS:SourceAccount\": \"account ID\"},
{\"AWS:SourceArn\":
\"arn:aws:lex:region:account ID:intent:0rderFlowers:*\"}}}"
}

2. Get the intent from Amazon Lex. Amazon Lex sends the output to a file called
OrderFlowers-V3. json.

aws lex-models get-intent \
--region region \
--name OrderFlowers \
--intent-version "\$LATEST" > OrderFlowers-V3.json

3. In atext editor, open the OrdexrFlowexrs-V3. json.

1. Find and delete the createdDate, lastUpdatedDate, and version fields.
2. Update the fulfillmentActivity field:

"fulfillmentActivity": {
"type": "CodeHook",
"codeHook": {

uri": "arn:aws:lambda:region:account
ID:function:0rderFlowersCodeHook",

"messageVersion": "1.0"

3. Save the file.
4. Inthe AWS CLI, send the updated intent to Amazon Lex:

aws lex-models put-intent \
--region region \
--name OrderFlowers \

Exercise 3: Add a Lambda Function 183

Amazon Lex V1 Developer Guide

--cli-input-json file://OrderFlowers-V3.json

Now that you have updated the intent, rebuild the bot.
To rebuild the OxrdexrFlowersBot bot

1. In the AWS CLI, get the definition of the OrderFlowersBot bot and save it to a file:

aws lex-models get-bot \
--region region \
--name OrderFlowersBot \
--version-or-alias "\$LATEST" > OrderFlowersBot-V3.json

2. In a text editor,open OrderFlowexrsBot-V3. json. Remove the createdDate,
lastUpdatedDate, status, and version fields.

3. Inthe text editor, add the following line to the definition of the bot:
"processBehavior": "BUILD",

4. Inthe AWS CLI, build a new revision of the bot:

aws lex-models put-bot \
--region region \
--name OrderFlowersBot \
--cli-input-json file://OrderFlowersBot-V3.json

The response from the server is:

"status": "READY",
"intents": [

{
"intentVersion": "$LATEST",
"intentName": "OrderFlowers"
}
1,
"name": "OrderFlowersBot",
"locale": "en-US",
"checksum": "checksum",

"abortStatement": {

Exercise 3: Add a Lambda Function 184

Amazon Lex V1 Developer Guide

"messages": [
{
"content": "Sorry, I'm not able to assist at this time",
"contentType": "PlainText"

},

"version": "$LATEST",

"lastUpdatedDate": timestamp,

"createdDate": timestamp,

"clarificationPrompt": {
"maxAttempts": 2,
"messages": [

{
"content": "I didn't understand you, what would you like to do?",
"contentType": "PlainText"
}
]
},
"voiceId": "Salli",

"childDirected": false,
"idleSessionTTLInSeconds": 600,
"description": "Bot to order flowers on the behalf of a user"

Next Step

Exercise 4: Publish a Version (AWS CLI)

Exercise 4: Publish a Version (AWS CLI)

Now, create a version of the bot that you created in Exercise 1. A version is a snapshot of the bot.
After you create a version, you can't change it. The only version of a bot that you can update is the
$LATEST version. For more information about versions, see Versioning and Aliases.

Before you can publish a version of a bot, you must publish the intents that is uses. Likewise, you
must publish the slot types that those intents refer to. In general, to publish a version of a bot, you
do the following:

1. Publish a version of a slot type with the CreateSlotTypeVersion operation.

2. Publish a version of an intent with the CreatelntentVersion operation.

Exercise 4: Publish a Version 185

Amazon Lex V1 Developer Guide

3. Publish a version of a bot with the CreateBotVersion operation .

To run the commands in this exercise, you need to know the region where the commands will be
run. For a list of regions, see Model Building Quotas .

Topics

o Step 1: Publish the Slot Type (AWS CLI)
o Step 2: Publish the Intent (AWS CLI)

o Step 3: Publish the Bot (AWS CLI)

Step 1: Publish the Slot Type (AWS CLI)

Before you can publish a version of any intents that use a slot type, you must publish a version of
that slot type. In this case, you publish the FlowerTypes slot type.

(® Note

The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows,
change "\$LATEST" to $LATEST and replace the backslash (\) continuation character at
the end of each line with a caret (*).

To publish a slot type (AWS CLI)

1. In the AWS CLI, get the latest version of the slot type:

aws lex-models get-slot-type \
--region region \
--name FlowerTypes \
--slot-type-version "\$LATEST"

The response from Amazon Lex follows. Record the checksum for the current revision of the
$LATEST version.

"enumerationValues": [

{

"value": "tulips"

Exercise 4: Publish a Version 186

Amazon Lex V1

Developer Guide

2.

},
{
"value": "liljes"
I
{
"value": "roses"
}
1,
"name": "FlowerTypes",
"checksum": "checksum",

"version": "$LATEST",
"lastUpdatedDate": timestamp,
"createdDate": timestamp,

"description": "Types of flowers to pick up"

Publish a version of the slot type. Use the checksum that you recorded in the previous step.

aws lex-models create-slot-type-version \

--region region \
--name FlowerTypes \
--checksum "checksum"

The response from Amazon Lex follows. Record the version number for the next step.

{
"version": "1",
"enumerationValues": [
{
"value": "tulips"
iy
{
"value": "lilies"
iy
{
"value": "roses"
}
iF
"name": "FlowerTypes",

"createdDate": timestamp,
"lastUpdatedDate": timestamp,
"description": "Types of flowers to

pick up"

Exercise 4: Publish a Version

187

Amazon Lex V1 Developer Guide

}

Next Step

Step 2: Publish the Intent (AWS CLI)

Step 2: Publish the Intent (AWS CLI)

Before you can publish an intent, you have to publish all of the slot types referred to by the intent.
The slot types must be numbered versions, not the $LATEST version.

First, update the OrderFlowers intent to use the version of the FlowerTypes slot type that you
published in the previous step. Then publish a new version of the OrderFlowers intent.

(® Note

The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows,
change "\$LATEST" to $LATEST and replace the backslash (\) continuation character at
the end of each line with a caret (*).

To publish a version of an intent (AWS CLI)

1. Inthe AWS CLI, get the $LATEST version of the OrderFlowers intent and save it to a file:

aws lex-models get-intent \
--region region \
--name OrderFlowers \
--intent-version "\$LATEST" > OrderFlowers_V4.json

2. In atext editor, open the OxrdexFlowexs_V4. json file. Delete the createdDate,
lastUpdatedDate, and version fields. Find the FlowerTypes slot type and change the
version to the version number that you recorded in the previous step. The following fragment
of the OxrdexFlowers_V4. json file shows the location of the change:

"slotType": "FlowerTypes",
"name": "FlowerType",
"slotConstraint": "Required",
"valueElicitationPrompt": {

Exercise 4: Publish a Version 188

Amazon Lex V1

Developer Guide

"maxAttempts": 2,
"messages": [

{
"content": "What type of flowers?",
"contentType": "PlainText"
}
]
I
"priority": 1,
"slotTypeVersion": "version",

"sampleUtterances": []

iy

3. Inthe AWS CLI, save the revision of the intent:

aws lex-models put-intent \
--name OrderFlowers \
--cli-input-json file://OrderFlowers_V4.json

4. Get the checksum of the latest revision of the intent:

aws lex-models get-intent \
--region region \
--name OrderFlowers \
--intent-version "\$LATEST" > OrderFlowers_Vé4a.json

The following fragment of the response shows the checksum of the intent. Record this for the

next step.
"name": "OrderFlowers",
"checksum": "checksum",

"version": "$LATEST",

5. Publish a new version of the intent:

aws lex-models create-intent-version \
--region region \
--name OrderFlowers \
--checksum "checksum"

The following fragment of the response shows the new version of the intent. Record the

version number for the next step.

Exercise 4: Publish a Version

189

Amazon Lex V1 Developer Guide

"name": "OrderFlowers",
"checksum": "checksum",
"version": "version",

Next Step

Step 3: Publish the Bot (AWS CLI)

Step 3: Publish the Bot (AWS CLI)

After you have published all of the slot types and intents that are used by your bot, you can publish
the bot.

Update the OrderFlowersBot bot to use the OrderFlowers intent that you updated in the
previous step. Then, publish a new version of the OrderFlowersBot bot.

(® Note

The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows,
change "\$LATEST" to $LATEST and replace the backslash (\) continuation character at
the end of each line with a caret (*).

To publish a version of a bot (AWS CLI)

1. Inthe AWS CLI, get the $LATEST version of the OrderFlowersBot bot and save it to a file:

aws lex-models get-bot \
--region region \
--name OrderFlowersBot \
--version-or-alias "\$LATEST" > OrderFlowersBot_V4.json

2. In atext editor, open the OxrdexFlowexsBot_V4. json file. Delete the createdDate,
lastUpdatedDate, status and version fields. Find the OrderFlowers intent and change
the version to the version number that you recorded in the previous step. The following
fragment of OrderFlowexrsBot_V4. json shows the location of the change.

"intents": [

Exercise 4: Publish a Version 190

Amazon Lex V1 Developer Guide

"intentVersion": "version",
"intentName": "OrderFlowers"

3. Inthe AWS CLI, save the new revision of the bot. Make note of the version number returned by
the call to put-bot.

aws lex-models put-bot \
--name OrderFlowersBot \
--cli-input-json file://OrderFlowersBot_V4. json

4. Get the checksum of the latest revision of the bot. Use the version number returned in step 3.

aws lex-models get-bot \
--region region \
--version-or-alias version \
--name OrderFlowersBot > OrderFlowersBot_V4a.json

The following fragment of the response shows the checksum of the bot. Record this for the

next step.
"name": "OrderFlowersBot",
"locale": "en-US",
"checksum": '"checksum",

5. Publish a new version of the bot:

aws lex-models create-bot-version \
--region region \
--name OrderFlowersBot \
--checksum "checksum"

The following fragment of the response shows the new version of the bot.

"checksum": "checksum",
"abortStatement": {

.
"version": "1",
"lastUpdatedDate": timestamp,

Exercise 4: Publish a Version 191

Amazon Lex V1 Developer Guide

Next Step

Exercise 5: Create an Alias (AWS CLI)

Exercise 5: Create an Alias (AWS CLI)

An alias is a pointer to a specific version of a bot. With an alias you can easily update the version
that your client applications are using. For more information, see Versioning and Aliases.To run the
commands in this exercise, you need to know the region where the commands will be run. For a list
of regions, see Model Building Quotas .

To create an alias (AWS CLI)

1. In the AWS CLI, get the version of the OrderFlowersBot bot that you created in Exercise 4:
Publish a Version (AWS CLI).

aws lex-models get-bot \
--region region \
--name OrderFlowersBot \
--version-or-alias version > OrderFlowersBot_V5.json

2. In a text editor, open OxrderFlowersBot_v5. json. Find and record the version number.
3. Inthe AWS CLI, create the bot alias:

aws lex-models put-bot-alias \
--region region \
--name PROD \
--bot-name OrderFlowersBot \
--bot-version version

The following is the reponse from the server:

"name": "PROD",
"createdDate": timestamp,
"checksum": "checksum",
"lastUpdatedDate": timestamp,
"botName": "OrderFlowersBot",
"botVersion": "1"

1}

Exercise 5: Create an Alias 192

Amazon Lex V1 Developer Guide

Next Step

Exercise 6: Clean Up (AWS CLI)

Exercise 6: Clean Up (AWS CLI)

Delete the resources that you created and clean up your account.

You can delete only resources that are not in use. In general, you should delete resources in the
following order.

1. Delete aliases to free up bot resources.

2. Delete bots to free up intent resources.

3. Delete intents to free up slot type resources.

4. Delete slot types.

To run the commands in this exercise, you need to know the region where the commands will be
run. For a list of regions, see Model Building Quotas .

To clean up your account (AWS CLI)

1. Inthe AWS CLI command line, delete the alias:

aws lex-models delete-bot-alias \
--region region \
--name PROD \
--bot-name OrderFlowersBot

2. Inthe AWS CLI command line, delete the bot:

aws lex-models delete-bot \
--region region \
--name OrderFlowersBot

3. Inthe AWS CLI command line, delete the intent:

aws lex-models delete-intent \
--region region \
--name OrderFlowers

Exercise 6: Clean Up 193

Amazon Lex V1 Developer Guide

4. From the AWS CLI command line, delete the slot type:

aws lex-models delete-slot-type \
--region region \
--name FlowerTypes

You have removed all of the resources that you created and cleaned up your account.

Exercise 6: Clean Up 194

Amazon Lex V1 Developer Guide

Versioning and Aliases

Amazon Lex supports publishing versions of bots, intents, and slot types so that you can control
the implementation that your client applications use. A version is a numbered snapshot of your
work that you can publish for use in different parts of your workflow, such as development, beta
deployment, and production.

Amazon Lex bots also support aliases. An alias is a pointer to a specific version of a bot. With an
alias, you can easily update the version that your client applications are using. For example, you can
point an alias to version 1 of your bot. When you are ready to update the bot, you publish version 2
and change the alias to point to the new version. Because your applications use the alias instead of
a specific version, all of your clients get the new functionality without needing to be updated.

Topics

 Versioning
« Aliases

Versioning

When you version an Amazon Lex resource you create a snapshot of the resource so that you can
use the resource as it existed when the version was made. Once you've created a version it will stay
the same while you continue to work on your application.

The $LATEST Version

When you create an Amazon Lex bot, intent, or slot type there is only one version, the $LATEST
version.

Amazon Lex bot
Version $LATEST

$LATEST is the working copy of your resource. You can update only the $LATEST version and until
you publish your first version, $LATEST is the only version of the resource that you have.

Versioning 195

Amazon Lex V1 Developer Guide

Only the $LATEST version of a resource can use the $LATEST version of another resource.
For example, the $LATEST version of a bot can use the $LATEST version of an intent, and the
$LATEST version of an intent can use the $LATEST version of a slot type.

The $LATEST version of your bot should only be used for manual testing. Amazon Lex limits the
number of runtime requests that you can make to the $LATEST version of the bot.

Publishing an Amazon Lex Resource Version

When you publish a resource, Amazon Lex makes a copy of the $LATEST version and saves it as a
numbered version. The published version can't be changed.

Amazon Lex bot Amazon Lex bot
Version SLATEST Version 1

You create and publish versions using the Amazon Lex console or the CreateBotVersion operation.
For an example, see Exercise 3: Publish a Version and Create an Alias.

When you modify the $LATEST version of a resource, you can publish the new version to make the
changes available to your client applications. Every time you publish a version, Amazon Lex copies
the $LATEST version to create the new version and increments the version number by 1. Version
numbers are never reused. For example, if you remove a resource numbered version 10 and then
recreate it, the next version number Amazon Lex assigns is version 11.

Before you can publish a bot, you must point it to a numbered version of any intent that it uses. If
you try to publish a new version of a bot that uses the $LATEST version of an intent, Amazon Lex
returns an HTTP 400 Bad Request exception. Before you can publish a numbered version of the
intent, you must point the intent to a numbered version of any slot type that it uses. Otherwise you
will get an HTTP 400 Bad Request exception.

Publishing an Amazon Lex Resource Version 196

Amazon Lex V1 Developer Guide

Amazon Lex bot Amazon Lex bot Amazon Lex bot
Version $LATEST Version 2 Version 1
® Note

Amazon Lex publishes a new version only if the last published version is different from the
$LATEST version. If you try to publish the $LATEST version without modifying it, Amazon
Lex doesn't create or publish a new version.

Updating an Amazon Lex Resource

You can update only the $LATEST version of an Amazon Lex bot, intent, or slot type. Published
versions can't be changed. You can publish a new version any time after you update a resource in
the console or with the CreateBotVersion, the CreatelntentVersion or the CreateSlotTypeVersion
operations.

Deleting an Amazon Lex Resource or Version

Amazon Lex supports deleting a resource or version using the console or one of the API operations:

e DeleteBot

e DeleteBotVersion

e DeleteBotAlias

e DeleteBotChannelAssociation

e Deletelntent

o DeletelntentVersion

o DeleteSlotType

o DeleteSlotTypeVersion

Updating an Amazon Lex Resource 197

Amazon Lex V1 Developer Guide

Aliases

An alias is a pointer to a specific version of an Amazon Lex bot. Use an alias to allow client
applications to use a specific version of the bot without requiring the application to track which
version that is.

The following example shows two versions of an Amazon Lex bot, version version 1 and version 2.
Each of these bot versions has an associated alias, BETA and PROD, respectively. Client applications
use the PROD alias to access the bot.

Amazon Lex bot Amazon Lex bot
Version 2 Version 1
'Y A

Cient
| E E application
Amazon Lex bot Amazon Lex bot
Beta alias Prod alias

When you create a second version of the bot, you can update the alias to point to the new version
of the bot using the console or the PutBot operation. When you change the alias, all of your client
applications use the new version. If there is a problem with the new version, you can roll back to
the previous version by simply changing the alias to point to that version.

Aliases 198

Amazon Lex V1

Developer Guide

Amazon Lex bot Amazon Lex bot
Version 2 Version 1
r'y
:
u W, Tl ™ 1
::;:r. =
e e
_=n-:n.-r_n|:
o .
Cient
E application

Amazon Lex bot
Prod alias

®

Note

Although you can test the $LATEST version of a bot in the console, we recommend that
when you integrate a bot with your client application, you first publish a version and
create an alias that points to that version. Use the alias in your client application for the
reasons explained in this section. When you update an alias, Amazon Lex will wait until the
session timeout of all current sessions expires before it starts using the new version. For
more information about the session timeout, see the section called “Setting the Session
Timeout”

Aliases

199

Amazon Lex V1 Developer Guide

Using Lambda Functions

You can create AWS Lambda functions to use as code hooks for your Amazon Lex bot. You can
identify Lambda functions to perform initialization and validation, fulfillment, or both in your
intent configuration.

We recommend that you use a Lambda function as a code hook for your bot. Without a Lambda
function, your bot returns the intent information to the client application for fulfillment.

Topics

o Lambda Function Input Event and Response Format

« Amazon Lex and AWS Lambda Blueprints

Lambda Function Input Event and Response Format

This section describes the structure of the event data that Amazon Lex provides to a Lambda
function. Use this information to parse the input in your Lambda code. It also explains the format
of the response that Amazon Lex expects your Lambda function to return.

Topics

» Input Event Format

e Response Format

Input Event Format

The following shows the general format of an Amazon Lex event that is passed to a Lambda
function. Use this information when you are writing your Lambda function.

® Note

The input format may change without a corresponding change in the messageVersion.
Your code should not throw an error if new fields are present.

{

"currentIntent": {

Lambda Function Input Event and Response Format 200

Amazon Lex V1

Developer Guide

"name": "intent-name",
"nluIntentConfidenceScore":
"slots": {
"slot name":
"slot name":
I
"slotDetails": {

"slot name": {

score,

"value",
"value"

"resolutions" : [
{ "value": "resolved value" 1},
{ "value": "resolved value" }
1,
"originalValue": "original text"
I
"slot name": {
"resolutions" : [
{ "value": "resolved value" 1},
{ "value": "resolved value" }
1,
"originalValue": "original text"
}
I
"confirmationStatus": "None, Confirmed,
configured)"
},
"alternativeIntents": [
{
"name": "intent-name",
"nluIntentConfidenceScore": score,
"slots": {
"slot name": "value",
"slot name": "value"
},
"slotDetails": {
"slot name": {
"resolutions" : [
{ "value": "resolved value" 1},
{ "value": "resolved value" }
1,
"originalValue": "original text"
},
"slot name": {
"resolutions" : [
{ "value": "resolved value" 1},

or Denied (intent confirmation, if

Input Event Format

201

Amazon Lex V1 Developer Guide

{ "value": "resolved value" }
1,
"originalValue": "original text"
}
},
"confirmationStatus": "None, Confirmed, or Denied (intent confirmation, if
configured)"
}
1,
"bot": {
"name": "bot name",
"alias": "bot alias",
"version": "bot version"
I
"userId": "User ID specified in the POST request to Amazon Lex.",
"inputTranscript": "Text used to process the request",
"invocationSource": "FulfillmentCodeHook or DialogCodeHook",
"outputDialogMode": "Text or Voice, based on ContentType request header in runtime
API request",
"messageVersion": "1.0",
"sessionAttributes": {
"key": "value",
"key": "value"
I
"requestAttributes": {
"key": "value",
"key": "value"
I
"recentIntentSummaryView": [
{
"intentName": "Name",
"checkpointLabel": Label,
"slots": {
"slot name": "value",
"slot name": "value"
I
"confirmationStatus": "None, Confirmed, or Denied (intent confirmation, if

configured)",
"dialogActionType": "ElicitIntent, ElicitSlot, ConfirmIntent, Delegate, or
Close",
"fulfillmentState": "Fulfilled or Failed",
"slotToElicit": "Next slot to elicit"
}
1,

Input Event Format 202

Amazon Lex V1 Developer Guide

"sentimentResponse": {
"sentimentLabel": "sentiment",
"sentimentScore": '"score"

iy

"kendraResponse": {
Complete query response from Amazon Kendra

}I

"activeContexts": [

{
"timeTolLive": {
"timeTolLiveInSeconds": seconds,
"turnsTolLive": turns

iy
"name": "name",
"parameters": {

"key name": "value"

Note the following additional information about the event fields:

« currentintent - Provides the intent name, slots, slotDetails and confirmationStatus
fields.

nluIntentConfidenceScore is the confidence that Amazon Lex has that the current intent is
the one that best matches the user's current intent.

slots is a map of slot names, configured for the intent, to slot values that Amazon Lex has
recognized in the user conversation. A slot value remains null until the user provides a value.

The slot value in the input event may not match one of the values configured for the slot. For
example, if the user responds to the prompt "What color car would you like?" with "pizza,"
Amazon Lex will return "pizza" as the slot value. Your function should validate the values to
make sure that they make sense in context.

Input Event Format 203

Amazon Lex V1 Developer Guide

slotDetails provides additional information about a slot value. The resolutions array
contains a list of additional values recognized for the slot. Each slot can have a maximum of five
values.

The originalValue field contains the value that was entered by the user for the slot. When the
slot type is configured to return the top resolution value as the slot value, the originalValue
may be different from the value in the slots field.

confirmationStatus provides the user response to a confirmation prompt, if there is one. For

example, if Amazon Lex asks "Do you want to order a large cheese pizza?," depending on the user
response, the value of this field can be Confirmed or Denied. Otherwise, this value of this field

is None.

If the user confirms the intent, Amazon Lex sets this field to Confirmed. If the user denies the
intent, Amazon Lex sets this value to Denied.

In the confirmation response, a user utterance might provide slot updates. For example, the
user might say "yes, change size to medium." In this case, the subsequent Lambda event has the
updated slot value, PizzaSize set to medium. Amazon Lex sets the confirmationStatus to
None, because the user modified some slot data, requiring the Lambda function to perform user
data validation.

« alternativelntents - If you enable confidence scores, Amazon Lex returns up to four alternative
intents. Each intent includes a score that indicates the level of confidence that Amazon Lex has
that the intent is the correct intent based on the user's utterance.

Input Event Format 204

Amazon Lex V1 Developer Guide

The contents of the alternative intents is the same as the contents of the currentIntent field.
For more information, see Using Confidence Scores.

« bot - Information about the bot that processed the request.
« name — The name of the bot that processed the request.
« alias - The alias of the bot version that processed the request.

« version - The version of the bot that processed the request.

« userld - This value is provided by the client application. Amazon Lex passes it to the Lambda
function.

 inputTranscript — The text used to process the request.

If the input was text, the inputTranscript field contains the text that was input by the user.

If the input was an audio stream, the inputTranscript field contains the text extracted from
the audio stream. This is the text that is actually processed to recognize intents and slot values.

« invocationSource - To indicate why Amazon Lex is invoking the Lambda function, it sets this to
one of the following values:

« DialogCodeHook — Amazon Lex sets this value to direct the Lambda function to initialize the
function and to validate the user's data input.

When the intent is configured to invoke a Lambda function as an initialization and validation
code hook, Amazon Lex invokes the specified Lambda function on each user input (utterance)
after Amazon Lex understands the intent.

Input Event Format 205

Amazon Lex V1 Developer Guide

® Note

If the intent is not clear, Amazon Lex can't invoke the Lambda function.

e FulfillmentCodeHook — Amazon Lex sets this value to direct the Lambda function to fulfill
an intent.

If the intent is configured to invoke a Lambda function as a fulfillment code hook, Amazon Lex
sets the invocationSouzrce to this value only after it has all the slot data to fulfill the intent.

In your intent configuration, you can have two separate Lambda functions to initialize and
validate user data and to fulfill the intent. You can also use one Lambda function to do both. In
that case, your Lambda function can use the invocationSource value to follow the correct
code path.

« outputDialogMode - For each user input, the client sends the request to Amazon Lex using
one of the runtime API operations, PostContent or PostText. Amazon Lex uses the request

parameters to determine whether the response to the client is text or voice, and sets this field
accordingly.

The Lambda function can use this information to generate an appropriate message. For example,
if the client expects a voice response, your Lambda function could return Speech Synthesis
Markup Language (SSML) instead of text.

« messageVersion — The version of the message that identifies the format of the event data going
into the Lambda function and the expected format of the response from a Lambda function.

Input Event Format 206

Amazon Lex V1 Developer Guide

® Note

You configure this value when you define an intent. In the current implementation, only
message version 1.0 is supported. Therefore, the console assumes the default value of
1.0 and doesn't show the message version.

» sessionAttributes — Application-specific session attributes that the client sends in the request.
If you want Amazon Lex to include them in the response to the client, your Lambda function
should send these back to Amazon Lex in the response. For more information, see Setting
Session Attributes

» requestAttributes — Request-specific attributes that the client sends in the request. Use request
attributes to pass information that doesn't need to persist for the entire session. If there are no
request attributes, the value will be null. For more information, see Setting Request Attributes

« recentintentSummaryView — Information about the state of an intent. You can see information
about the last three intents used. You can use this information to set values in the intent or to
return to a previous intent. For more information, see Managing Sessions With the Amazon Lex
API.

« sentimentResponse — The result of an Amazon Comprehend sentiment analysis of the last
utterance. You can use this information to manage the conversation flow of your bot depending
on the sentiment expressed by the user. For more information, see Sentiment Analysis.

« kendraResponse — The result of a query to an Amazon Kendra index. Only present in the input to
a fulfillment code hook and only when the intent extends the AMAZON.KendraSearchIntent
built-in intent. The field contains the entire response from the Amazon Kendra search. For more
information, see AMAZON.KendraSearchlntent.

« activeContexts — One or more contexts that are active during this turn of a conversation with the
user.

Input Event Format 207

Amazon Lex V1 Developer Guide

» timeTolive - The length of time or number of turns in the conversation with the user that the
context remains active.

« name - the name of the context.
« parameters a list of key/value pairs the contains the name and value of the slots from the

intent that activated the context.

For more information, see Setting Intent Context.

Response Format

Amazon Lex expects a response from a Lambda function in the following format:

{
"sessionAttributes": {
"keyl": "valuel",
"key2": "value2"
.
"recentIntentSummaryView": [
{
"intentName": "Name",
"checkpointLabel": "Label",
"slots": {
"slot name": "value",
"slot name": "value"
.
"confirmationStatus": "None, Confirmed, or Denied (intent confirmation, if

configured)",
"dialogActionType": "ElicitIntent, ElicitSlot, ConfirmIntent, Delegate, or

Close",
"fulfillmentState": "Fulfilled or Failed",
"slotToElicit": "Next slot to elicit"
}
1,
"activeContexts": [
{

"timeTolLive": {
"timeTolLiveInSeconds": seconds,
"turnsTolLive": turns

1,

"name": "name",

Response Format 208

Amazon Lex V1 Developer Guide

"parameters": {
"key name": "value"

}
}
1,
"dialogAction": {
"type": "ElicitIntent, ElicitSlot, ConfirmIntent, Delegate, or Close",
Full structure based on the type field. See below for details.

}
}

The response consists of four fields. The sessionAttributes, recentIntentSummaryView,
and activeContexts fields are optional, the dialogAction field is required. The contents of the
dialogAction field depends on the value of the type field. For details, see dialogAction.

sessionAttributes

Optional. If you include the sessionAttributes field it can be empty. If your Lambda function
doesn't return session attributes, the last known sessionAttributes passed via the API or
Lambda function remain. For more information, see the PostContent and PostText operations.

"sessionAttributes": {
"keyl": "valuel",
"key2": "value2"

recentintentSummaryView

Optional. If included, sets values for one or more recent intents. You can include information for
up to three intents. For example, you can set values for previous intents based on information
gathered by the current intent. The information in the summary must be valid for the intent. For
example, the intent name must be an intent in the bot. If you include a slot value in the summary
view, the slot must exist in the intent. If you don't include the recentIntentSummaryView in
your response, all of the values for the recent intents remain unchanged. For more information, see
the PutSession operation or the IntentSummary data type.

"recentIntentSummaryView": [

{
"intentName": "Name",
"checkpointLabel": "Label",
"slots": {

Response Format 209

Amazon Lex V1 Developer Guide

"slot name": "value",
"slot name": "value"
},
"confirmationStatus": "None, Confirmed, or Denied (intent confirmation, if
configured)",
"dialogActionType": "ElicitIntent, ElicitSlot, ConfirmIntent, Delegate, or
Close",
"fulfillmentState": "Fulfilled or Failed",
"slotToElicit": "Next slot to elicit"
}
]
activeContexts

Optional. If included, sets the value for one or more contexts. For example, you can include a
context to make one or more intents that have that context as an input eligible for recognition in
the next turn of the conversation.

Any active contexts that are not included in the response have their time-to-live values
decremented and may still be active on the next request.

If you specify a time-to-live of O for a context that was included in the input event, it will be
inactive on the next request.

For more information, see Setting Intent Context.

dialogAction

Required. The dialogAction field directs Amazon Lex to the next course of action, and describes
what to expect from the user after Amazon Lex returns a response to the client.

The type field indicates the next course of action. It also determines the other fields that the
Lambda function needs to provide as part of the dialogAction value.

e Close — Informs Amazon Lex not to expect a response from the user. For example, "Your pizza
order has been placed" does not require a response.

The fulfillmentState field is required. Amazon Lex uses this value to set the dialogState
field in the PostContent or PostText response to the client application. The message and

Response Format 210

Amazon Lex V1 Developer Guide

responseCard fields are optional. If you don't specify a message, Amazon Lex uses the goodbye
message or the follow-up message configured for the intent.

"dialogAction": {
"type": "Close",
"fulfillmentState": "Fulfilled or Failed",
"message": {
"contentType": "PlainText or SSML or CustomPayload",

"content": "Message to convey to the user. For example, Thanks, your pizza has
been ordered."

},
"responseCard": {
"version": integer-value,

"contentType": "application/vnd.amazonaws.card.generic",
"genericAttachments": [
{

"title":"card-title",

"subTitle":"card-sub-title",

"imageUrl":"URL of the image to be shown",

"attachmentLinkUrl":"URL of the attachment to be associated with the

card",
"buttons": [
{
"text":"button-text",
"value":"Value sent to server on button click"
}
]
}
]
}
}

« ConfirmIntent — Informs Amazon Lex that the user is expected to give a yes or no answer to
confirm or deny the current intent.

You must include the intentName and slots fields. The slots field must contain an entry
for each of the filled slots for the specified intent. You don't need to include a entry in the
slots field for slots that aren't filled. You must include the message field if the intent's
confirmationPrompt field is null. The contents of the message field returned by the

Response Format 211

Amazon Lex V1 Developer Guide

Lambda function take precedence over the confirmationPrompt specified in the intent. The
responseCard field is optional.

"dialogAction": {
"type": "ConfirmIntent",
"message": {
"contentType": "PlainText or SSML or CustomPayload",

"content": "Message to convey to the user. For example, Are you sure you want a
large pizza?"
1,
"intentName": "intent-name",
"slots": {
"slot-name": "value",
"slot-name": "value",
"slot-name": "value"
1,

"responseCard": {
"version": integer-value,

"contentType": "application/vnd.amazonaws.card.generic",
"genericAttachments": [
{

"title":"card-title",

"subTitle":"card-sub-title",

"imageUrl":"URL of the image to be shown",

"attachmentLinkUrl":"URL of the attachment to be associated with the

card",
"buttons": [
{
"text":"button-text",
"value":"Value sent to server on button click"
}
]
}
]
}
}

« Delegate — Directs Amazon Lex to choose the next course of action based on the bot
configuration. If the response does not include any session attributes Amazon Lex retains the
existing attributes. If you want a slot value to be null, you don't need to include the slot field

Response Format 212

Amazon Lex V1 Developer Guide

in the request. You will get a DependencyFailedException exception if your fulfillment
function returns the Delegate dialog action without removing any slots.

The kendraQueryRequestPayload and kendraQueryFilterString fields are optional and
only used when the intent is derived from the AMAZON.KendraSearchIntent built-in intent.
for more information, see AMAZON.KendraSearchintent.

"dialogAction": {
"type": "Delegate",

"slots": {
"slot-name": "value",
"slot-name": "value",
"slot-name": "value"
},
"kendraQueryRequestPayload": "Amazon Kendra query",
"kendraQueryFilterString": "Amazon Kendra attribute filters"

ElicitIntent — Informs Amazon Lex that the user is expected to respond with an

utterance that includes an intent. For example, "l want a large pizza," which indicates the
OrderPizzalIntent. The utterance "large," on the other hand, is not sufficient for Amazon Lex
to infer the user's intent.

The message and responseCaxrd fields are optional. If you don't provide a message, Amazon
Lex uses one of the bot's clarification prompts. If there is no clarification prompt defined,
Amazon Lex returns a 400 Bad Request exception.

{
"dialogAction": {
"type": "ElicitIntent",
"message": {
"contentType": "PlainText or SSML or CustomPayload",
"content": "Message to convey to the user. For example, What can I help you
with?"

I,
"responseCard": {
"version": integer-value,

"contentType": "application/vnd.amazonaws.card.generic",
"genericAttachments": [
{

Response Format 213

Amazon Lex V1 Developer Guide

"title":"card-title",

"subTitle":"card-sub-title",

"imageUrl":"URL of the image to be shown",

"attachmentLinkUrl":"URL of the attachment to be associated with the

card",
"buttons": [
{
"text":"button-text",
"value":"Value sent to server on button click"
}
]
}
]
}
}

e« ElicitSlot — Informs Amazon Lex that the user is expected to provide a slot value in the
response.

The intentName, slotToElicit, and slots fields are required. The message and
responseCard fields are optional. If you don't specify a message, Amazon Lex uses one of the
slot elicitation prompts configured for the slot.

"dialogAction": {
"type": "ElicitSlot",
"message": {
"contentType": "PlainText or SSML or CustomPayload",

"content": "Message to convey to the user. For example, What size pizza would
you like?"
.
"intentName": "intent-name",
"slots": {
"slot-name": "value",
"slot-name": "value",
"slot-name": "value"
.
"slotToElicit" : "slot-name",

"responseCard": {
"version": integer-value,
"contentType": "application/vnd.amazonaws.card.generic",

Response Format 214

Amazon Lex V1 Developer Guide

"genericAttachments": [
{
"title":"card-title",
"subTitle":"card-sub-title",
"imageUrl":"URL of the image to be shown",
"attachmentLinkUrl":"URL of the attachment to be associated with the
card",
"buttons": [

{
"text":"button-text",
"value":"Value sent to server on button click"

Amazon Lex and AWS Lambda Blueprints

The Amazon Lex console provides example bots (called bot blueprints) that are preconfigured

so you can quickly create and test a bot in the console. For each of these bot blueprints, Lambda
function blueprints are also provided. These blueprints provide sample code that works with their
corresponding bots. You can use these blueprints to quickly create a bot that is configured with a
Lambda function as a code hook, and test the end-to-end setup without having to write code.

You can use the following Amazon Lex bot blueprints and the corresponding AWS Lambda function
blueprints as code hooks for bots:
« Amazon Lex blueprint — OrderFlowers
e AWS Lambda blueprint — lex-order-flowers-python
« Amazon Lex blueprint — ScheduleAppointment
« AWS Lambda blueprint — lex-make-appointment-python
« Amazon Lex blueprint — BookTrip

o AWS Lambda blueprint — lex-book-trip-python

Amazon Lex and AWS Lambda Blueprints 215

Amazon Lex V1 Developer Guide

To create a bot using a blueprint and configure it to use a Lambda function as a code hook, see
Exercise 1: Create an Amazon Lex Bot Using a Blueprint (Console). For an example of using other
blueprints, see Additional Examples: Creating Amazon Lex Bots.

Updating a Blueprint for a Specific Locale

If you are using a blueprint in a locale other than English (US) (en-US), you need to update the
name of any intents to include the locale. For example, if you are using the OrderFlowers
blueprint, you need to do the following.

« Find the dispatch function near the end of the Lambda function code.

 Inthe dispatch function, update the name of the intent to include the locale that you are
using. For example, if you are using the English (Australian) (en-AU) locale, change the line:

if intent_name == 'OrderFlowers':
to
if intent_name == 'OrderFlowers_enAU"':

Other blueprints use other intent names, they should be updated as above before you use them.

Updating a Blueprint for a Specific Locale 216

Amazon Lex V1 Developer Guide

Deploying Amazon Lex Bots

This section provides examples of deploying Amazon Lex bots on various messaging platforms and
in mobile applications.

Topics

» Deploying an Amazon Lex Bot on a Messaging Platform

» Deploying an Amazon Lex Bot in Mobile Applications

Deploying an Amazon Lex Bot on a Messaging Platform

This section explains how to deploy Amazon Lex bots on the Facebook, Slack, and Twilio messaging
platforms.

(® Note

When storing your Facebook, Slack, or Twilio configurations, Amazon Lex uses AWS Key
Management Service customer managed keys to encrypt the information. The first time
that you create a channel to one of these messaging platforms, Amazon Lex creates a
default customer managed key (aws/lex). Alternatively, you can create your own customer
managed key with AWS KMS. This gives you more flexibility, including the ability to create,
rotate, and disable keys. You can also define access controls and audit the encryption keys
used to protect your data. For more information, see the AWS Key Management Service
Developer Guide.

When a messaging platform sends a request to Amazon Lex it includes platform-specific
information as a request attribute to your Lambda function. Use these attributes to customize the
way that your bot behaves. For more information, see Setting Request Attributes.

All of the attributes take the namespace, x-amz-1ex:, as the prefix . For example, the user-
id attribute is called x-amz-lex:user-id. There are common attributes that are sent by all
messaging platforms in addition to attributes that are specific to a particular platform. The
following tables list the request attributes that messaging platforms send to your bot's Lambda
function.

Deploying an Amazon Lex Bot on a Messaging Platform 217

http://docs.aws.amazon.com/kms/latest/developerguide/
http://docs.aws.amazon.com/kms/latest/developerguide/

Amazon Lex V1

Developer Guide

Common Request Attributes

Attribute
channel-id
channel-name

channel-type

webhook-endpoint-u
rl

Description

The channel endpoint identifier from Amazon Lex.
The channel name from Amazon Lex.

One of the following values:

Facebook

« Kik

« Slack
Twilio-SMS

The Amazon Lex endpoint for the channel.

Facebook Request Attributes

Attribute

user-id

facebook-page-id

Kik Request Attributes

Attribute

kik-chat-id

Description

The Facebook identifier of the sender. See https://developer
s.facebook.com/docs/messenger-platform/webhook-reference/me

ssage-received.

The Facebook page identifier of the recipient. See https://developer
s.facebook.com/docs/messenger-platform/webhook-reference/me

ssage-received.

Description

The identifier for the conversation that your bot is involved in.
For more information, see https://dev.kik.com/#/docs/messa
ging#message-formats.

Deploying an Amazon Lex Bot on a Messaging Platform 218

https://developers.facebook.com/docs/messenger-platform/webhook-reference/message-received
https://developers.facebook.com/docs/messenger-platform/webhook-reference/message-received
https://developers.facebook.com/docs/messenger-platform/webhook-reference/message-received
https://developers.facebook.com/docs/messenger-platform/webhook-reference/message-received
https://developers.facebook.com/docs/messenger-platform/webhook-reference/message-received
https://developers.facebook.com/docs/messenger-platform/webhook-reference/message-received
https://dev.kik.com/%23/docs/messaging%23message-formats
https://dev.kik.com/%23/docs/messaging%23message-formats

Amazon Lex V1

Developer Guide

Attribute

kik-chat-type

kik-message-id

kik-message-type

Twilio Request Attributes

Attribute

user-id

twilio-target-phon
e-number
Slack Request Attributes

Attribute
user-id

slack-team-id

slack-bot-token

Description

The type of conversation that the message originated from.
For more information, see https://dev.kik.com/#/docs/messa

ging#message-formats.

A UUID the identifies the message. For more information, see
https://dev.kik.com/#/docs/messaging#message-formats.

The type of message. For more information, see https://dev.kik.c
om/#/docs/messaging#message-types.

Description

The sender's phone number ("From"). See https://www.twilio.com/
docs/api/rest/message.

The phone number of the recipient ("To"). See https://www.twili
o.com/docs/api/rest/message.

Description

The Slack user identifier. See https://api.slack.com/types/user.

The identifier of the team that sent the message. See https://
api.slack.com/methods/team.info.

The developer token that gives the bot access to the Slack APIs. See
https://api.slack.com/docs/token-types.

Deploying an Amazon Lex Bot on a Messaging Platform 219

https://dev.kik.com/%23/docs/messaging%23message-formats
https://dev.kik.com/%23/docs/messaging%23message-formats
https://dev.kik.com/%23/docs/messaging%23message-formats
https://dev.kik.com/%23/docs/messaging%23message-types
https://dev.kik.com/%23/docs/messaging%23message-types
https://www.twilio.com/docs/api/rest/message
https://www.twilio.com/docs/api/rest/message
https://www.twilio.com/docs/api/rest/message
https://www.twilio.com/docs/api/rest/message
https://api.slack.com/types/user
https://api.slack.com/methods/team.info
https://api.slack.com/methods/team.info
https://api.slack.com/docs/token-types

Amazon Lex V1 Developer Guide

Integrating an Amazon Lex Bot with Facebook Messenger

This exercise shows how to integrate Facebook Messenger with your Amazon Lex bot. You perform
the following steps:

1. Create an Amazon Lex bot

2. Create a Facebook application

3. Integrate Facebook Messenger with your Amazon Lex bot

4. Validate the integration

Topics

o Step 1: Create an Amazon Lex Bot

» Step 2: Create a Facebook Application

» Step 3: Integrate Facebook Messenger with the Amazon Lex Bot

o Step 4: Test the Integration

Step 1: Create an Amazon Lex Bot

If you don't already have an Amazon Lex bot, create and deploy one. In this topic, we assume that
you are using the bot that you created in Getting Started Exercise 1. However, you can use any of
the example bots provided in this guide. For Getting Started Exercise 1, see Exercise 1: Create an
Amazon Lex Bot Using a Blueprint (Console).

1. Create an Amazon Lex bot. For instructions, see Exercise 1: Create an Amazon Lex Bot Using a
Blueprint (Console).

2. Deploy the bot and create an alias. For instructions, see Exercise 3: Publish a Version and
Create an Alias.

Step 2: Create a Facebook Application

On the Facebook developer portal, create a Facebook application and a Facebook page. For
instructions, see Quick Start in the Facebook Messenger platform documentation. Write down the
following:

» The App Secret for the Facebook App

Integrating with Facebook 220

https://developers.facebook.com/docs/messenger-platform/guides/quick-start

Amazon Lex V1 Developer Guide

» The Page Access Token for the Facebook page

Step 3: Integrate Facebook Messenger with the Amazon Lex Bot
In this section, you integrate Facebook Messenger with your Amazon Lex bot.
After you complete this step, the console provides a callback URL. Write down this URL.

To integrate Facebook Messenger with your bot

1. a. Signin to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

b. Choose your Amazon Lex bot.
¢. Choose Channels.
d. Choose Facebook under Chatbots. The console displays the Facebook integration page.

e. Onthe Facebook integration page, do the following:

Type the following name: BotFacebookAssociation.
» For KMS key, choose aws/lex .
« For Alias, choose the bot alias.

« For Verify token, type a token. This can be any string you choose (for example,
ExampleToken). You use this token later in the Facebook developer portal when you
set up the webhook.

» For Page access token, type the token that you obtained from Facebook in Step 2.

» For App secret key, type the key that you obtained from Facebook in Step 2.

Integrating with Facebook

221

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1

Developer Guide

Description Channel for associating Facebool €

IAM Role AWSServiceRoleForLexChannels
Automatically created on your behalf

KMS key aws/lex v O

Alias Beta v O

Verify token ExampleToken (i)

Page access token Page access token {i]

App secret key Kop secrat ke | Li]
=

)y Test Bot ~

Choose Activate.

< BookTrip | v Build (7]
Editor Settings Channels Monitoring
Chatbots Facebook
: Facebook Fill in the form below and click activate to get a callback URL to use with Facebook. You can generate multiple
Twilio SMS callback URLs.
Slack
Name BotFacebookAssociation (1]

The console creates the bot channel association and returns a callback URL. Write down

this URL.

2. On the Facebook developer portal, choose your app.

3. Choose the Messenger product, and choose Setup webhooks in the Webhooks section of the
page.

For instructions, see Quick Start in the Facebook Messenger platform documentation.

4. On the webhook page of the subscription wizard, do the following:

procedure.

For Verify Token, type the same token that you used in Amazon Lex.

For Callback URL, type the callback URL provided in the Amazon Lex console earlier in the

Choose Subscription Fields (messages, messaging_postbacks, and messaging_optins).

Choose Verify and Save. This initiates a handshake between Facebook and Amazon Lex.

5. Enable Webhooks integration. Choose the page that you created, and then choose subscribe.

Integrating with Facebook

222

https://developers.facebook.com/docs/messenger-platform/guides/quick-start

Amazon Lex V1 Developer Guide

® Note

If you update or recreate a webhook, unsubscribe and then resubscribe to the page.

Step 4: Test the Integration

You can now start a conversation from Facebook Messenger with your Amazon Lex bot.

1. Open your Facebook page, and choose Message.

2. In the Messenger window, use the same test utterances provided in Step 1: Create an Amazon
Lex Bot (Console).

Integrating an Amazon Lex Bot with Kik

This exercise provides instructions for integrating an Amazon Lex bot with the Kik messaging
application. You perform the following steps:

1. Create an Amazon Lex bot.

2. Create a Kik bot using the Kik app and website.

3. Integrate the your Amazon Lex bot with the Kik bot using the Amazon Lex console.

4. Engage in a conversation with your Amazon Lex bot using Kik to test the association between
your Amazon Lex bot and Kik.

Topics

Step 1: Create an Amazon Lex Bot

Step 2: Create a Kik Bot

Step 3: Integrate the Kik Bot with the Amazon Lex Bot

Step 4: Test the Integration

Step 1: Create an Amazon Lex Bot

If you don't already have an Amazon Lex bot, create and deploy one. In this topic, we assume that
you are using the bot that you created in Getting Started Exercise 1. However, you can use any of

Integrating with Kik 223

Amazon Lex V1 Developer Guide

the example bots provided in this guide. For Getting Started Exercise 1, see Exercise 1: Create an
Amazon Lex Bot Using a Blueprint (Console)

1. Create an Amazon Lex bot. For instructions, see Exercise 1: Create an Amazon Lex Bot Using a

Blueprint (Console).

2. Deploy the bot and create an alias. For instructions, see Exercise 3: Publish a Version and

Create an Alias.

Next Step

Step 2: Create a Kik Bot

Step 2: Create a Kik Bot

In this step you use the Kik user interface to create a Kik bot. You use information generated while
creating the bot to connect it to your Amazon Lex bot.

1. If you haven't already, download and install the Kik app and sign up for a Kik account. If you
have an account, log in.

2. Open the Kik website at https://dev.kik.com/. Leave the browser window open.

In the Kik app, choose the gear icon to open settings, and then choose Your Kik Code.

4. Scan the Kik code on the Kik website to open the Botsworth chatbot. Choose Yes to open the
Bot Dashboard.

5. In the Kik app, choose Create a Bot. Follow the prompts to create your Kik bot.

6. Once the bot is created, choose Configuration in your browser. Make sure that your new bot is
selected.

7. Note the bot name and the API key for the next section.

Next Step

Step 3: Integrate the Kik Bot with the Amazon Lex Bot

Step 3: Integrate the Kik Bot with the Amazon Lex Bot

Now that you have created an Amazon Lex bot and a Kik bot, you are ready to create an channel
association between them in Amazon Lex. When the association is activated, Amazon Lex
automatically sets up a callback URL with Kik.

Integrating with Kik 224

https://dev.kik.com

Amazon Lex V1 Developer Guide

1.

Lok W

Sign in to the AWS Management Console, and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

Choose the Amazon Lex bot that you created in Step 1.
Choose the Channels tab.
In the Channels section, choose Kik.

On the Kik page, provide the following:

» Type a name. For example, BotKikIntegration.

» Type a description.

o Choose "aws/lex" from the KMS key drop-down.

» For Alias, choose an alias from the drop-down.

« For Kik bot user name, type the name that you gave the bot on Kik.

» For Kik API key, type the API key that was assigned to the bot on Kik.

» For User greeting, type the greeting that you would like your bot to send the first time that
a user chats with it.

« For Error message, enter an error message that is shown to the user when part of the
conversation is not understood.

» For Group chat behavior, choose one of the options:
« Enable - Enables the entire chat group to interact with your bot in a single conversation.

» Disable - Restricts the conversation to one user in the chat group.

« Choose Activate to create the association and link it to the Kik bot.

Integrating with Kik 225

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

Kik
Fill in the form below and click activate to get a callback URL to use with Kik. You can generate multiple callback URLs. Learn mare on steps to
integrate with Kik

Channel Name* KikBotintegration i}
Channel Description Integrate an Amazon Lex bot with Kik (1]
|IAM Role AWSServiceRoleForLexChannels i}

Automatically created on your behalf

KMS key aws/lex * O
Alias* BETA * O
Kik Bot User Name™ XOO00000K (1]

Kik APl Key” N - KK O DOH K Y

User Greeting” Welcome to my first Amazon Lex bot on Kik €

Advanced configuration

Error Message” There seems o be a problem. i}
Group Chat Behavior Enable []
® Disable

Next Step

Step 4: Test the Integration

Step 4: Test the Integration

Now that you have created an association between your Amazon Lex bot and Kik, you can use the
Kik app to test the association.

Integrating with Kik 226

Amazon Lex V1

Developer Guide

1. Start the Kik app and log in. Select the bot that you created.

2. You can test the bot with the following:

| would like to pick up flowers

What type of flowers would you like
to order?

What day do you want the roses to
be picked up?

Pick up the roses at what time on
2017-11-177

Okay, your roses will be ready for
pickup by 18:00 on 2017-11-17.
Does this sound okay?

Intent: OrderFlowers

As you enter each phrase, your Amazon Lex bot will respond through Kik with the prompt that

you created for each slot.

Integrating an Amazon Lex Bot with Slack

This exercise provides instructions for integrating an Amazon Lex bot with the Slack messaging

application. You perform the following steps:

1. Create an Amazon Lex bot.

2. Create a Slack messaging application.

3. Integrate the Slack application with your bot Amazon Lex.

Integrating with Slack

227

Amazon Lex V1 Developer Guide

4. Test the integration by engaging in conversation with your Amazon Lex bot. You send messages
with the Slack application and test in a browser window.

Topics

o Step 1: Create an Amazon Lex Bot

» Step 2: Sign Up for Slack and Create a Slack Team

» Step 3: Create a Slack Application

» Step 4: Integrate the Slack Application with the Amazon Lex Bot

» Step 5: Complete Slack Integration

» Step 6: Test the Integration

Step 1: Create an Amazon Lex Bot

If you don't already have an Amazon Lex bot, create and deploy one. In this topic, we assume that
you are using the bot that you created in Getting Started Exercise 1. However, you can use any of
the example bots provided in this guide. For Getting Started Exercise 1, see Exercise 1: Create an
Amazon Lex Bot Using a Blueprint (Console)

1. Create an Amazon Lex bot. For instructions, see Exercise 1: Create an Amazon Lex Bot Using a
Blueprint (Console).

2. Deploy the bot and create an alias. For instructions, see Exercise 3: Publish a Version and
Create an Alias.

Next Step

Step 2: Sign Up for Slack and Create a Slack Team

Step 2: Sign Up for Slack and Create a Slack Team

Sign up for a Slack account and create a Slack team. For instructions, see Using Slack. In the next
section, you create a Slack application, which any Slack team can install.

Next Step

Step 3: Create a Slack Application

Integrating with Slack 228

https://get.slack.help/hc/en-us/articles/212675257-Creating-a-Slack-account

Amazon Lex V1 Developer Guide

Step 3: Create a Slack Application

In this section, you do the following:

1. Create a Slack application on the Slack API Console

2. Configure the application to add interactive messaging to your bot:

At the end of this section, you get application credentials (Client Id, Client Secret, and Verification
Token). In the next section, you use this information to configure bot channel association in the
Amazon Lex console.

1. Sign in to the Slack APl Console at http://api.slack.com .

2. Create an application.

After you have successfully created the application, Slack displays the Basic Information page
for the application.

3. Configure the application features as follows:
o Inthe left menu, choose Interactivity & Shortcuts.

« Choose the toggle to turn interactive components on.

 In the Request URL box, specify any valid URL. For example, you can use https://
slack.com.

(® Note

For now, enter any valid URL to get the verification token that you need in the
next step. You will update this URL after you add the bot channel association in
the Amazon Lex console.

« Choose Save Changes.
4. Inthe left menu, in Settings, choose Basic Information. Record the following application
credentials:
o ClientID
o Client Secret

« Verification Token

Integrating with Slack 229

http://api.slack.com

Amazon Lex V1 Developer Guide

Next Step

Step 4: Integrate the Slack Application with the Amazon Lex Bot

Step 4: Integrate the Slack Application with the Amazon Lex Bot

Now that you have Slack application credentials, you can integrate the application with your
Amazon Lex bot. To associate the Slack application with your bot, add a bot channel association in
Amazon Lex.

In the Amazon Lex console, activate a bot channel association to associate the bot with your
Slack application. When the bot channel association is activated, Amazon Lex returns two URLs
(Postback URL and OAuth URL). Record these URLs because you need them later.

To integrate the Slack application with your Amazon Lex bot

1. Sign in to the AWS Management Console, and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

Choose the Amazon Lex bot that you created in Step 1.
Choose the Channels tab.

In the left menu, choose Slack.

ik W

On the Slack page, provide the following:

Type a name. For example, BotSlackIntegration.

Choose "aws/lex" from the KMS key drop-down.

For Alias, choose the bot alias.

Type the Client Id, Client secret, and Verification Token, which you recorded in the
preceding step. These are the credentials of the Slack application.

Integrating with Slack 230

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1

Slack

Fill in the form below and click activate to get a caliback URL to use with Slack. You can generate multiple callback | JRLs. Leam more on steps to ntegrate

with Slack

Channel Name*

Channel Description

BotSlackAssociation

Channel for Slack

Developer Guide

IAM Role AWSServiceRoleForLexChannels
Automatically created an your bahalf
KMS Key awsllex

Alias® BETA - | O
Client Id* 4]
Client Secret* (i)
Verification Token® i
Success Page URL 1]

* Required Field

Callback URLs

6. Choose Activate.

The console creates the bot channel association and returns two URLs (Postback URL and
OAuth URL). Record them. In the next section, you update your Slack application configuration
to use these endpoints as follows:

» The Postback URL is the Amazon Lex bot's endpoint that listens to Slack events. You use this
URL:
» As the request URL in the Event Subscriptions feature of the Slack application.

» To replace the placeholder value for the request URL in the Interactive Messages feature
of the Slack application.

Integrating with Slack 231

Amazon Lex V1 Developer Guide

o The OAuth URL is your Amazon Lex bot's endpoint for an OAuth handshake with Slack.

Next Step

Step 5: Complete Slack Integration

Step 5: Complete Slack Integration

In this section, use the Slack API console to complete integration of the Slack application.

1. Signin to the Slack API console at http://api.slack.com. Choose the app that you created in

Step 3: Create a Slack Application.

2. Update the OAuth & Permissions feature as follows:

a. Inthe left menu, choose OAuth & Permissions.

b. Inthe Redirect URLs section, add the OAuth URL that Amazon Lex provided in the
preceding step. Choose Add a new Redirect URL, and then choose Save URLs.

¢. Inthe Bot Token Scopes section, add two permissions with the Add an OAuth Scope
button. Filter the list with the following text:
« chat:write
« team:read

3. Update the Interactivity & Shortcuts feature by updating the Request URL value to the
Postback URL that Amazon Lex provided in the preceding step. Enter the postback URL that
you saved in step 4, and then choose Save Changes.

4. Subscribe to the Event Subscriptions feature as follows:

« Enable events by choosing the On option.

« Set the Request URL value to the Postback URL that Amazon Lex provided in the preceding
step.

 In the Subscribe to Bot Events section, subscribe to the message. im bot event to enable
direct messaging between the end user and the Slack bot.

» Save the changes.

5. Enable sending messages from the messages tab as follows:

« From the left menu, choose App Home.

Integrating with Slack 232

http://api.slack.com

Amazon Lex V1 Developer Guide

 In the Show Tabs section, choose Allow users to send Slash commands and messages from
the messages tab.

Next Step

Step 6: Test the Integration

Step 6: Test the Integration
Now use a browser window to test the integration of Slack with your Amazon Lex bot.

1. Choose Manage Distribution under Settings. Choose Add to Slack to install the application.
Authorize the bot to respond to messages.

2. You are redirected to your Slack team. In the left menu, in the Direct Messages section, choose
your bot. If you don't see your bot, choose the plus icon (+) next to Direct Messages to search
for it.

3. Engage in a chat with your Slack application, which is linked to the Amazon Lex bot. Your bot
now responds to messages.

If you created the bot using Getting Started Exercise 1, you can use the example conversations
provided in that exercise. For more information, see Step 4: Add the Lambda Function as Code

Hook (Console).

Integrating an Amazon Lex Bot with Twilio Programmable SMS

This exercise provides instructions for integrating an Amazon Lex bot with the Twilio simple
messaging service (SMS). You perform the following steps:

1. Create an Amazon Lex bot
2. Integrate Twilio programmable SMS with your bot Amazon Lex

3. Engage in an interaction with the Amazon Lex bot by testing the setup using the SMS service on
your mobile phone

4. Test the integration

Topics

o Step 1: Create an Amazon Lex Bot

Integrating with Twilio SMS 233

Amazon Lex V1 Developer Guide

o Step 2: Create a Twilio SMS Account

» Step 3: Integrate the Twilio Messaging Service Endpoint with the Amazon Lex Bot

» Step 4: Test the Integration

Step 1: Create an Amazon Lex Bot

If you don't already have an Amazon Lex bot, create and deploy one. In this topic, we assume that
you are using the bot that you created in Getting Started Exercise 1. However, you can use any of
the example bots provided in this guide. For Getting Started Exercise 1, see Exercise 1: Create an
Amazon Lex Bot Using a Blueprint (Console).

1. Create an Amazon Lex bot. For instructions, see Exercise 1: Create an Amazon Lex Bot Using a

Blueprint (Console).

2. Deploy the bot and create an alias. For instructions, see Exercise 3: Publish a Version and
Create an Alias.

Step 2: Create a Twilio SMS Account

Sign up for a Twilio account and record the following account information:

« ACCOUNT SID
« AUTH TOKEN

For sign-up instructions, see https://www.twilio.com/console.

Step 3: Integrate the Twilio Messaging Service Endpoint with the Amazon Lex Bot
To integrate Twilio with your Amazon Lex bot

1. To associate the Amazon Lex bot with your Twilio programmable SMS endpoint, activate bot
channel association in the Amazon Lex console. When the bot channel association has been
activated, Amazon Lex returns a callback URL. Record this callback URL because you need it
later.

a. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

b. Choose the Amazon Lex bot that you created in Step 1.

Integrating with Twilio SMS 234

https://www.twilio.com/console
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1

Developer Guide

2.

On the Twilio console, connect the Twilio SMS endpoint to the Amazon Lex bot.

a.

Choose the Channels tab.
In the Chatbots section, choose Twilio SMS.

On the Twilio SMS page, provide the following information:

Type a name. For example, BotTwilioAssociation.

Choose "aws/lex" from KMS key.

For Alias, choose the bot alias.

For Account SID, type the ACCOUNT SID for your Twilio account.

For Authentication Token, type the AUTH TOKEN for your Twilio account.

< BooKTrip Latest Build Publish
Editor Settings Channels Monitoring
Chatbots Twilio SMS
Facebook Fill in the form below and click activate to get a callback URL to use with Twilio SMS. You can generate multiple
| Twilio SMS callback URLs.
Slack
Name BotTwilioAssociation i]
Description = Channel for Twilio [i]
IAM Role AWSServiceRoleForLexChannels
Automatically created on your behalf
KMS key = aws/lex v 0
Alias Beta * O
Authentication Token | Authentication Token J o
Account SID Account SID i]
Callback URLs
Fill in the form above and click activate to get a callback URL. You can ge
2y Test Bot

Choose Activate.

The console creates the bot channel association and returns a callback URL. Record this

URL.

Sign in to the Twilio console at https://www.twilio.com/console.

Integrating with Twilio SMS

235

https://www.twilio.com/console

Amazon Lex V1 Developer Guide

b. If you don't have a Twilio SMS endpoint, create it.

c. Update the Inbound Settings configuration of the messaging service by setting the
REQUEST URL value to the callback URL that Amazon Lex provided in the preceding step.

Step 4: Test the Integration
Use your mobile phone to test the integration between Twilio SMS and your bot.
To test integration

1. Sign in to the Twilio console at https://www.twilio.com/console and do the following:

a. Verify that you have a Twilio number associated with the messaging service under Manage
Numbers.

You send messages to this number and engage in SMS interaction with the Amazon Lex
bot from your mobile phone.

b. Verify that your mobile phone is listed as Verified Caller ID.

If it isn't, follow instructions on the Twilio console to enable the mobile phone that you
plan to use for testing.

Now you can use your mobile phone to send messages to the Twilio SMS endpoint, which
is mapped to the Amazon Lex bot.

2. Using your mobile phone, send messages to the Twilio number.

The Amazon Lex bot responds. If you created the bot using Getting Started Exercise 1, you can
use the example conversations provided in that exercise. For more information, see Step 4: Add
the Lambda Function as Code Hook (Console).

Deploying an Amazon Lex Bot in Mobile Applications

Using AWS Amplify, you can integrate your Amazon Lex bots with mobile or web applications. For
more information, see Interactions — Getting started in the AWS Amplify Docs.

Deploying an Amazon Lex Bot in Mobile Applications 236

https://www.twilio.com/console
https://docs.amplify.aws/lib/interactions/getting-started/q/platform/js

Amazon Lex V1 Developer Guide

Importing and Exporting Amazon Lex Bots, Intents, and
Slot Types

You can import or export a bot, intent, or slot type. For example, if you want to share a bot with
a colleague in a different AWS account, you can export it, then send it to her. If you want to add
multiple utterances to a bot, you can export it, add the utterances, then import it back into your
account.

You can export bots, intents, and slot types in either Amazon Lex (to share or modify them) or an
Alexa skill format. You can import only in Amazon Lex format.

When you export a resource, you have to export it in a format that is compatible with the service
that you are exporting to, Amazon Lex or the Alexa Skills Kit. If you export a bot in Amazon Lex
format, you can reimport it into your account, or an Amazon Lex user in another account can
import it into his account. You can also export a bot in a format compatible with an Alexa skill.
Then you can import the bot using the Alexa Skills Kit to make your bot available with Alexa. For
more information, see Exporting to an Alexa Skill.

When you export a bot, intent or slot type, its resources are written to a JSON file. To export a bot,
intent, or slot type, you can use either the Amazon Lex console or the GetExport operation. Import
a bot, intent or slot type using the Startimport.

Topics

« Exporting and Importing in Amazon Lex Format

» Exporting to an Alexa Skill

Exporting and Importing in Amazon Lex Format

To export bots, intents, and slot types, from Amazon Lex with the intention of reimporting into
Amazon Lex, you use create a JSON file in Amazon Lex format. You can edit your resources in this
file and import it back into Amazon Lex. For example, you can add utterances to an intent and then
import the changed intent back into your account. You can also use the JSON format to share a
resource. For example, you can export a bot from one AWS Region and then import it into another
Region. Or you can send the JSON file to a colleague to share a bot.

Exporting and Importing in Amazon Lex Format 237

Amazon Lex V1 Developer Guide

Topics

» Exporting in Amazon Lex Format

» Importing in Amazon Lex Format

» JSON Format for Importing and Exporting

Exporting in Amazon Lex Format

Export your Amazon Lex bots, intents, and slot types to a format that you can import to an AWS
account. You can export the following resources:

« A bot, including all of the intents and custom slot types used by the bot
« Anintent, including all of the custom slot types used by the intent

« A custom slot type, including all of values for the slot type
You can export only a numbered version of a resource. You can't export a resource's $LATEST
version.

Exporting is an asynchronous process. When the export is complete, you get an Amazon S3
presigned URL. The URL provides the location of a .zip archive that contains the exported resource
in JSON format.

You use either the console or the GetExport operation to export bots, intents, and custom slot
types.

The process for exporting, a bot, an intent, or a slot type is the same. In the following procedures,
substitute intent or slot type for bot.

Exporting a Bot
To export a bot

1. Sign in to the AWS Management Console, and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Choose Bots, then choose the bot to export.
On the Actions menu, choose Export.

4. Inthe Export Bot dialog, choose the version of the bot to export. For Platform, choose
Amazon Lex.

Exporting in Amazon Lex Format 238

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

5. Choose Export.

6. Download and save the .zip archive.

Amazon Lex exports the bot to a JSON file that is contained in the .zip archive. To update the bot,
modify the JSON text, then import it back into Amazon Lex.

Next step

Importing in Amazon Lex Format

Importing in Amazon Lex Format

After you have exported a resource to a JSON file in the Amazon Lex format, you can import the
JSON file containing the resource into one or more AWS accounts. For example, you can export a
bot, and then import it into another AWS Region. Or you can send the bot to a colleague so that
she can import it into her account.

When you import a bot, intent, or slot type, you must decide whether you want to overwrite the
$LATEST version of a resource, such as an intent or a slot type, during import, or if you want the
import to fail if you want to preserve the resource that is in your account. For example, if you are
uploading an edited version of a resource to your account, you would choose to overwrite the
$LATEST version. If you are uploading a resource sent to you by a colleague, you can choose to
have the import fail if there are are resource conflicts so that your own resources aren't replaced.

When importing a resource, the permissions assigned to the user making the import request apply.
The user must have permissions for all of the resources in the account that the import affects.

The user must also have permission for the GetBot, PutBot, Getlntent Putintent, GetSlotType,
PutSlotType operations. For more information about permissions, see How Amazon Lex works with
IAM.

The import reports errors that occur during processing. Some errors are reported before the import
begins, others are reported during the import process. For example, if the account that is importing
an intent doesn't have permission to call a Lambda function that the intent uses, the import fails
before changes are made to the slot types or intents. If an import fails during the import process,
the $LATEST version of any intent or slot type imported before the process failed is modified. You
can't roll back changes made to the $LATEST version.

When you import a resource, all dependent resources are imported to the $LATEST version of the
resource and then given a numbered version. For example, if a bot uses an intent, the intent is

Importing in Amazon Lex Format 239

Amazon Lex V1 Developer Guide

given a numbered version. If an intent uses a custom slot type, the slot type is given a numbered
version.

A resource is imported only once. For example, if the bot contains an OrderPizza intent and an
OrdexrDrink intent that both rely on the custom slot type Size, the Size slot type is imported
once and used for both intents.

(@ Note

If you exported your bot with the enableModelImprovements parameter set to
false, you must open the .zip file containing the bot definition and change the
enableModelImprovements parameter to true in the following Regions:

Asia Pacific (Singapore) (ap-southeast-1)

Asia Pacific (Tokyo) (ap-northeast-1)
EU (Frankfurt) (eu-central-1)
EU (London) (eu-west-2)

The process for importing a bot, an intent, or a custom slot type is the same. In the following
procedures, substitute intent or slot type, as appropriate.

Importing a Bot
To import a bot

1. Signin to the AWS Management Console, and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Choose Bots, then choose the bot to import. To import a new bot, skip this step.
For Actions, choose Import.

4. For Import Bot, choose the .zip archive that contains the JSON file that contains the bot
to import. If you want to see merge conflicts before merging, choose Notify me of merge
conflicts. If you turn off conflict checking, the $LATEST version of all of the resources used by
the bot are overwritten.

5. Choose Import. If you have chosen to be notified of merge conflicts and there are conflicts, a
dialog appears that lists them. To overwrite the $LATEST version of all conflicting resources,
choose Overwrite and continue. To stop the import, choose Cancel.

Importing in Amazon Lex Format 240

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

You can now test the bot in your account.

JSON Format for Importing and Exporting

The following examples show the JSON structure for exporting and importing slot types, intents,
and bots in Amazon Lex format.

Slot Type structure

The following is the JSON structure for custom slot types. Use this structure when you import or
export slot types, and when you export intents that depend on custom slot types.

"metadata": {
"schemaVersion": "1.0",
"importType": "LEX",
"importFormat": "JSON"
},
"resource": {
"name": "slot type name",
"version": "version number",
"enumerationValues": [
{
"value": "enumeration value",
"synonyms": []

"value": "enumeration value",
"synonyms": []
}

1,
"valueSelectionStrategy": "ORIGINAL_VALUE or TOP_RESOLUTION"

}

Intent structure

The following is the JSON structure for intents. Use this structure when you import or export
intents and bots that depend on an intent.

{
"metadata": {
"schemaVersion": "1.0",

JSON Format for Importing and Exporting 241

Amazon Lex V1 Developer Guide

"importType": "LEX",
"importFormat": "JSON"
},
"resource": {
"description": "intent description",
"rejectionStatement": {
"messages": [

{
"contentType": "PlainText or SSML or CustomPayload",
"content": "string"
}
]
},
"name": "intent name",
"version": "version number",

"fulfillmentActivity": {
"type": "ReturnIntent or CodeHook"

I
"sampleUtterances": [
"string",
"string"
1,
"slots": [
{
"name": "slot name",
"description": "slot description",
"slotConstraint": "Required or Optional",
"slotType": "slot type",
"valueElicitationPrompt": {
"messages": [
{
"contentType": "PlainText or SSML or CustomPayload",
"content": "string"
}
1,
"maxAttempts": value
},
"priority": value,
"sampleUtterances": []
}
1,

"confirmationPrompt": {
"messages": [

{

JSON Format for Importing and Exporting 242

Amazon Lex V1 Developer Guide

"contentType": "PlainText or SSML or CustomPayload",

"content": "string"
3,
{
"contentType": "PlainText or SSML or CustomPayload",
"content": "string"
}
1,

"maxAttempts": value
1,
"slotTypes": [
List of slot type JSON structures.
For more information, see Slot Type structure.

Bot structure

The following is the JSON structure for bots. Use this structure when you import or export bots.

{

"metadata": {
"schemaVersion": "1.0",
"importType": "LEX",
"importFormat": "JSON"

},

"resource": {
"name": "bot name",
"version": "version number",,

"nluIntentConfidenceThreshold": 0.00-1.00,
"enableModelImprovements": true | false,
"intents": [

List of intent JSON structures.

For more information, see Intent structure.

1,
"slotTypes": [
List of slot type JSON structures.
For more information, see Slot Type structure.

1,

"voiceId": "output voice ID",
"childDirected": boolean,
"locale": "en-US",

JSON Format for Importing and Exporting 243

Amazon Lex V1 Developer Guide

"idleSessionTTLInSeconds": timeout,

"description": "bot description",

"clarificationPrompt": {
"messages": [

{
"contentType": "PlainText or SSML or CustomPayload",
"content": "string"
}
1,
"maxAttempts": value

I
"abortStatement": {

"messages": [

{
"contentType": "PlainText or SSML or CustomPayload",

"content": "string"

Exporting to an Alexa Skill

You can export your bot schema in a format compatible with an Alexa skill. After you export the
bot to a JSON file, you upload it to Alexa using the skill builder.

To export a bot and its schema (interaction model)

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Choose the bot that you want to export.
3. For Actions, choose Export.

4. Choose the version of the bot that you want to export. For the format, choose Alexa Skills Kit,
then choose Export.

5. If adownload dialog box appears, choose a location to save the file, then choose Save.

The downloaded file is a .zip archive containing one file with the name of the exported bot. It
contains the information necessary to import the bot as an Alexa skill.

Exporting to an Alexa Skill 244

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

® Note

Amazon Lex and the Alexa Skills Kit differ in the following ways:

» Session attributes, denoted by square brackets ([]), are not supported by the Alexa Skills
Kit. You need to update prompts that use session attributes.

« Punctuation marks are not supported by the Alexa Skills Kit. You need to update
utterances that use punctuation.

To upload the bot to an Alexa Skill

1. Login to the developer portal at https://developer.amazon.com/.

2. On the Alexa Skills page, choose Create Skill.

3. On the Create a new skill page, enter a skill name and the default language for the skill. Make
sure that Custom is selected for the skill model, and then choose Create skill.

4. Make sure that Start from scratch is selected and the choose Choose.

From the left menu, choose JSON Editor. Drag the JSON file that you exported from Amazon
Lex to the JSON editor.

6. Choose Save Model to save your interaction model.

After uploading the schema into the Alexa skill, make changes necessary for running the skill with
Alexa. For more information about creating an Alexa skill, see Use the Skill Builder (Beta) in the
Alexa Skills Kit.

Exporting to an Alexa Skill 245

https://developer.amazon.com/edw/home.html#/
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/ask-define-the-vui-with-gui

Amazon Lex V1 Developer Guide

Additional Examples: Creating Amazon Lex Bots

The following sections provide additional Amazon Lex exercises with step-by-step instructions.

Topics
o Schedule Appointment

» Book Trip
» Using a Response Card

» Updating Utterances

 Integrating with a Web site

« Call Center Agent Assistant

Schedule Appointment

The example bot in this exercise schedules appointments for a dentist's office. The example
also illustrates using response cards to obtain user input with buttons. Specifically, the example
illustrates generating response cards dynamically at runtime.

You can configure response cards at build time (also referred to as static response cards) or
generate them dynamically in an AWS Lambda function. In this example, the bot uses the following
response cards:

» Aresponse card that lists buttons for appointment type. See the following image for an
example:

What type of appointment would you like
to schedule?

Specify Appointment Type

cleaning (30 min)
root canal (60 min)

whitening (30 min)

Schedule Appointment 246

Amazon Lex V1 Developer Guide

« A response card that lists buttons for appointment date. See the following image for an
example:

When would you like to schedule your
root canal?

Specify Date

2-15 (Wed)

2-16 (Thu)

2-17 (Fri)

« Aresponse card that lists buttons to confirm a suggested appointment time. See the following
image for an example:

What time on 2017-02-15 works for
you? 4:00 p.m. is our only availability,
does that work for you?

Confirm Appointment

The available appointment dates and times vary, which requires you to generate response cards

at runtime. You use an AWS Lambda function to generate these response cards dynamically. The
Lambda function returns response cards in its response to Amazon Lex. Amazon Lex includes the
response card in its response to the client.

If a client (for example, Facebook Messenger) supports response cards, the user can either choose
from the list of buttons or type the response. Otherwise, the user simply types the response.

Schedule Appointment 247

Amazon Lex V1 Developer Guide

In addition to the button shown in the preceding example, you can also include images,
attachments, and other useful information to display on response cards. For information about
response cards, see Response Cards.

In this exercise, you do the following:

» Create and test a bot (using the ScheduleAppointment blueprint). For this exercise, you use a bot
blueprint to quickly set up and test the bot. For a list of available blueprints, see Amazon Lex and
AWS Lambda Blueprints.This bot is preconfigured with one intent (MakeAppointment).

» Create and test a Lambda function (using the lex-make-appointment-python blueprint provided
by Lambda). You configure the MakeAppointment intent to use this Lambda function as a code
hook to perform initialization, validation, and fulfillment tasks.

(® Note

The provided example Lambda function showcases a dynamic conversation based on the
mocked-up availability of a dentist appointment. In a real application, you might use a
real calendar to set an appointment.

« Update the MakeAppointment intent configuration to use the Lambda function as a code hook.
Then, test the end-to-end experience.

« Publish the schedule appointment bot to Facebook Messenger so you can see the response cards
in action (the client in the Amazon Lex console currently does not support response cards).
The following sections provide summary information about the blueprints you use in this exercise.

Topics

» Overview of the Bot Blueprint (ScheduleAppointment)

» Overview of the Lambda Function Blueprint (lex-make-appointment-python)

o Step 1: Create an Amazon Lex Bot

o Step 2: Create a Lambda Function

« Step 3: Update the Intent: Configure a Code Hook

« Step 4: Deploy the Bot on the Facebook Messenger Platform

« Details of Information Flow

Schedule Appointment 248

Amazon Lex V1 Developer Guide

Overview of the Bot Blueprint (ScheduleAppointment)

The ScheduleAppointment blueprint that you use to create a bot for this exercise is preconfigured
with the following:

» Slot types — One custom slot type called AppointmentTypeValue, with the enumeration
values root canal, cleaning, and whitening.
 Intent - One intent (MakeAppointment), which is preconfigured as follows:
» Slots — The intent is configured with the following slots:
« Slot AppointmentType, of the AppointmentTypes custom type.
« Slot Date, of the AMAZON.DATE built-in type.
« Slot Time, of the AMAZON. TIME built-in type.
« Utterances - The intent is preconfigured with the following utterances:
« "l would like to book an appointment”
» "Book an appointment”

» "Book a {AppointmentType}"

If the user utters any of these, Amazon Lex determines that MakeAppointment is the intent,
and then uses the prompts to elicit slot data.

» Prompts - The intent is preconfigured with the following prompts:

« Prompt for the AppointmentType slot — "What type of appointment would you like to
schedule?"

« Prompt for the Date slot - "When should | schedule your {AppointmentType}?"

« Prompt for the Time slot — "At what time do you want to schedule the {AppointmentType}?"
and
"At what time on {Date}?"

» Confirmation prompt - "{Time} is available, should | go ahead and book your appointment?"

« Cancel message- "Okay, | will not schedule an appointment.”

Overview of the Bot Blueprint (ScheduleAppointment) 249

Amazon Lex V1 Developer Guide

Overview of the Lambda Function Blueprint (lex-make-appointment-
python)

The Lambda function blueprint (lex-make-appointment-python) is a code hook for bots that you
create using the ScheduleAppointment bot blueprint.

This Lambda function blueprint code can perform both initialization/validation and fulfillment
tasks.

« The Lambda function code showcases a dynamic conversation that is based on example
availability for a dentist appointment (in real applications, you might use a calendar). For the day
or date that the user specifies, the code is configured as follows:

o If there are no appointments available, the Lambda function returns a response directing
Amazon Lex to prompt the user for another day or date (by setting the dialogAction type to
ElicitSlot). For more information, see Response Format.

« If there is only one appointment available on the specified day or date, the Lambda
function suggests the available time in the response and directs Amazon Lex to obtain
user confirmation by setting the dialogAction in the response to ConfirmIntent. This
illustrates how you can improve the user experience by proactively suggesting the available
time for an appointment.

« If there are multiple appointments available, the Lambda function returns a list of available
times in the response to Amazon Lex. Amazon Lex returns a response to the client with the
message from the Lambda function.

 As the fulfillment code hook, the Lambda function returns a summary message indicating that
an appointment is scheduled (that is, the intent is fulfilled).

(® Note

In this example, we show how to use response cards. The Lambda function constructs and
returns a response card to Amazon Lex. The response card lists available days and times

as buttons to choose from. When testing the bot using the client provided by the Amazon
Lex console, you cannot see the response card. To see it, you must integrate the bot with

a messaging platform, such as Facebook Messenger. For instructions, see Integrating an
Amazon Lex Bot with Facebook Messenger. For more information about response cards, see

Managing Messages .

Overview of the Lambda Function Blueprint (lex-make-appointment-python) 250

Amazon Lex V1 Developer Guide

When Amazon Lex invokes the Lambda function, it passes event data as input. One of the event
fields is invocationSource, which the Lambda function uses to choose between an input
validation and fulfillment activity. For more information, see Input Event Format.

Next Step

Step 1: Create an Amazon Lex Bot

Step 1: Create an Amazon Lex Bot

In this section, you create an Amazon Lex bot using the ScheduleAppointment blueprint, which is
provided in the Amazon Lex console.

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. On the Bots page, choose Create.
3. Onthe Create your Lex bot page, do the following:

o Choose the ScheduleAppointment blueprint.
» Leave the default bot name (ScheduleAppointment).

4. Choose Create.

This step saves and builds the bot. The console sends the following requests to Amazon Lex
during the build process:

« Create a new version of the slot types (from the $LATEST version). For information
about slot types defined in this bot blueprint, see Overview of the Bot Blueprint

(ScheduleAppointment).

 Create a version of the MakeAppointment intent (from the $LATEST version). In some
cases, the console sends a request for the update API operation before creating a new
version.

« Update the $LATEST version of the bot.

At this time, Amazon Lex builds a machine learning model for the bot. When you test the
bot in the console, the console uses the runtime API to send user input back to Amazon Lex.
Amazon Lex then uses the machine learning model to interpret the user input.

5. The console shows the ScheduleAppointment bot. On the Editor tab, review the preconfigured
intent (MakeAppointment) details.

Step 1: Create an Amazon Lex Bot 251

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

6. Test the bot in the test window. Use the following screen shot to engage in a test conversation
with your bot:

&) Test Bot

Build: Latest | Status: READY

Book an appointment

What type of appointment would you like to schedule?

Root canal

When should | schedule your root canal?

December 18

At what time do you want to schedule the root canal?

4 pm

16:00 iz available, should | go ahead and book your
appointment?

Yes

AppointmentType:root canal Date:2017-12-18 Time: 16:00

Clear

Note the following:

 From the initial user input ("Book an appointment"), the bot infers the intent
(MakeAppointment).

« The bot then uses the configured prompts to get slot data from the user.

« The bot blueprint has the MakeAppointment intent configured with the following
confirmation prompt:

{Time} is available, should I go ahead and book your appointment?

Step 1: Create an Amazon Lex Bot 252

Amazon Lex V1 Developer Guide

After the user provides all of the slot data, Amazon Lex returns a response to the client with
a confirmation prompt as the message. The client displays the message for the user:

16:00 is available, should I go ahead and book your appointment?

Notice that the bot accepts any appointment date and time values because you don't have any
code to initialize or validate the user data. In the next section, you add a Lambda function to
do this.

Next Step

Step 2: Create a Lambda Function

Step 2: Create a Lambda Function

In this section, you create a Lambda function using a blueprint (lex-make-appointment-python)
that is provided in the Lambda console. You also test the Lambda function by invoking it using
sample Amazon Lex event data that is provided by the console.

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create a Lambda function.

3. For Select blueprint, type lex to find the blueprint, and then choose the lex-make-
appointment-python blueprint.

4. Configure the Lambda function as follows.

» Type the Lambda function name (MakeAppointmentCodeHook).
» For the role, choose Create a new role from template(s), and then type a role name.
» Leave other default values.

5. Choose Create Function.

6. If you are using a locale other than English (US) (en-US), update the intent names as described
in Updating a Blueprint for a Specific Locale.

7. Test the Lambda function.

a. Choose Actions, and then chooseConfigure test event.

Step 2: Create a Lambda Function 253

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Lex V1 Developer Guide

b. From the Sample event template list, choose Lex-Make Appointment (preview). This
sample event uses the Amazon Lex request/response model, with values set to match
a request from your Amazon Lex bot. For information about the Amazon Lex request/
response model, see Using Lambda Functions.

Choose Save and test.

d. Verify that the Lambda function ran successfully. The response in this case matches the
Amazon Lex response model.

Next Step

Step 3: Update the Intent: Configure a Code Hook

Step 3: Update the Intent: Configure a Code Hook

In this section, you update the configuration of the MakeAppointment intent to use the Lambda
function as a code hook for the validation and fulfillment activities.

1. Inthe Amazon Lex console, select the ScheduleAppointment bot. The console shows the
MakeAppointment intent. Modify the intent configuration as follows.

(@ Note

You can update only the $LATEST versions of any of the Amazon Lex resources,
including the intents. Make sure that the intent version is set to $LATEST. You have
not published a version of your bot yet, so it should still be the $LATEST version in the
console.

a. Inthe Options section, choose Initialization and validation code hook, and then choose
the Lambda function from the list.

b. In the Fulfillment section, choose AWS Lambda function, and then choose the Lambda
function from the list.

¢. Choose Goodbye message, and type a message.
2. Choose Save, and then choose Build.

3. Test the bot, as in the following image:

Step 3: Update the Intent: Configure a Code Hook 254

Amazon Lex V1 Developer Guide

Q.‘ Te=t Bot 4

Build: Latest | Status: READY
Book appointment
What type of appointment would you like to schedule?
root canal
When would yvou like to schedule your root canal?
Tuesday

We do not have any availability on that date, iz there
another day which works for you?

Wednesday

What time on 2017-01-18 works for you? 4:00 p.m. is our
only availability, does that work for you?

Ves

Okay, | have booked your appointment. We will 2ee vou at
400 p.m. on 2017-01-18

Clear

Next Step

Step 4: Deploy the Bot on the Facebook Messenger Platform

Step 4: Deploy the Bot on the Facebook Messenger Platform

In the preceding section, you tested the ScheduleAppointment bot using the client in the Amazon
Lex console. Currently, the Amazon Lex console does not support response cards. To test the
dynamically generated response cards that the bot supports, deploy the bot on the Facebook
Messenger platform and test it.

For instructions, see Integrating an Amazon Lex Bot with Facebook Messenger.

Step 4: Deploy the Bot on the Facebook Messenger Platform 255

Amazon Lex V1 Developer Guide

Next Step

Details of Information Flow

Details of Information Flow

The ScheduleAppointment bot blueprint primarily showcases the use of dynamically generated
response cards. The Lambda function in this exercise includes response cards in its response to
Amazon Lex. Amazon Lex includes the response cards in its reply to the client. This section explains
both the following:

« Data flow between client and Amazon Lex.

The section assumes client sends requests to Amazon Lex using the PostText runtime API and
shows request/response details accordingly. For more information about the PostText runtime
API, see PostText.

(® Note

For an example of information flow between client and Amazon Lex in which client
uses the PostContent API, see Step 2a (Optional): Review the Details of the Spoken
Information Flow (Console) .

« Data flow between Amazon Lex and the Lambda function. For more information, see Lambda
Function Input Event and Response Format.

(@ Note

The example assumes that you are using the Facebook Messenger client, which does not
pass session attributes in the request to Amazon Lex. Accordingly, the example requests
shown in this section show empty sessionAttributes. If you test the bot using the
client provided in the Amazon Lex console, the client includes the session attributes.

Details of Information Flow 256

Amazon Lex V1 Developer Guide

This section describes what happens after each user input.
1. User: Types Book an appointment.

a. The client (console) sends the following PostContent request to Amazon Lex:

POST /bot/ScheduleAppointment/alias/$LATEST/
user/bijtérovckwecnzesbthrrld7lv3ja3n/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

"inputText":"book appointment",
"sessionAttributes":{}

Both the request URI and the body provide information to Amazon Lex:

« Request URI - Provides the bot name (ScheduleAppointment), the bot alias ($LATEST),
and the user name ID. The trailing text indicates that it is a PostText (not
PostContent) API request.

» Request body - Includes the user input (inputText) and empty sessionAttributes.

b. From the inputText, Amazon Lex detects the intent (MakeAppointment). The service
invokes the Lambda function, which is configured as a code hook, to perform initialization
and validation by passing the following event. For details, see Input Event Format.

"currentIntent": {
"slots": {
"AppointmentType": null,
"Date": null,
"Time": null
3,
"name": "MakeAppointment",
"confirmationStatus": "None"
b
"bot": {
"alias": null,
"version": "$LATEST",
"name": "ScheduleAppointment"

}I

Details of Information Flow 257

Amazon Lex V1 Developer Guide

"userId": "bijt6érovckwecnzesbthrrld7lv3ja3n",

"invocationSource": "DialogCodeHook",
"outputDialogMode": "Text",
"messageVersion": "1.0",

"sessionAttributes": {}

In addition to the information sent by the client, Amazon Lex also includes the following
data:

e currentIntent - Provides current intent information.

e invocationSource - Indicates the purpose of the Lambda function invocation. In
this case, the purpose is to perform user data initialization and validation. (Amazon Lex
knows that the user has not provided all of the slot data to fulfill the intent yet.)

« messageVersion - Currently Amazon Lex supports only the 1.0 version.

c. At this time, all of the slot values are null (there is nothing to validate). The Lambda
function returns the following response to Amazon Lex, directing the service to elicit
information for the AppointmentType slot. For information about the response format,
see Response Format.

"dialogAction": {
"slotToElicit": "AppointmentType",
"intentName": "MakeAppointment",
"responseCard": {
"genericAttachments": [

{
"buttons": [

{
"text": "cleaning (30 min)",
"value": "cleaning"

},

{
"text": "root canal (60 min)",
"value": "root canal"

},

{

"text": "whitening (30 min)",
"value": "whitening"

1,

Details of Information Flow 258

Amazon Lex V1 Developer Guide

"subTitle": "What type of appointment would you like to
schedule?",

"title": "Specify Appointment Type"

}

1,

"version": 1,

"contentType": "application/vnd.amazonaws.card.generic"
I
"slots": {

"AppointmentType": null,

"Date": null,

"Time": null
},

"type": "ElicitSlot",

"message": {
"content": "What type of appointment would you like to schedule?",
"contentType": "PlainText"

}I

"sessionAttributes": {}

The response includes the dialogAction and sessionAttributes fields. Among other
things, the dialogAction field returns the following fields:

» type - By setting this field to E1icitSlot, the Lambda function directs Amazon Lex to
elicit the value for the slot specified in the slotToElicit field. The Lambda function
also provides a message to convey to the user.

« responseCard - Identifies a list of possible values for the AppointmentType slot.
A client that supports response cards (for example, the Facebook Messenger) displays
a response card to allow the user to choose an appointment type, as in the following
image:

Details of Information Flow 259

Amazon Lex V1

Developer Guide

What type of appointment would you like
to schedule?

Specify Appointment Type

cleaning (30 min)
root canal (60 min)

whitening (30 min)

d. Asindicated by the dialogAction.type in the response from the Lambda function,

Amazon Lex sends the following response back to the client:

JSOM

Time: null

Headers Cookies Params

Filter properties

dialog5State: "ElicitSlot”
intentMame: "Makelppointrment”
message: "What type of appointment would you like to schedule?"
responseCard: Object
contentType: "application/vwnd.amazonaws.card.generic”
genericAttachments: Object
wersion: "1"
sessionAttributes: Object
slotTeklicit: "AppointmentType”
slots: Object
AppointmentType: null
Date: null

The client reads the response, and then displays the message: "What type of appointment
would you like to schedule?" and the response card (if the client supports response cards).

2. User: Depending on the client, the user has two options:

« If the response card is shown, choose root canal (60 min) or type root canal.

« If the client does not support response cards, type root canal.

Details of Information Flow

260

Amazon Lex V1 Developer Guide

a. The client sends the following PostText request to Amazon Lex (line breaks have been
added for readability):

POST /bot/BookTrip/alias/$LATEST/user/bijtérovckwecnzesbthrrid7lv3ja3n/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

"inputText": "root canal",
"sessionAttributes": {}

b. Amazon Lex invokes the Lambda function for user data validation by sending the
following event as a parameter:

"currentIntent": {
"slots": {
"AppointmentType": "root canal",
"Date": null,
"Time": null
},
"name": "MakeAppointment",
"confirmationStatus": "None"
I
"bot": {
"alias": null,
"version": "$LATEST",
"name": "ScheduleAppointment"
},
"userId": "bijt6rovckwecnzesbthrrld7lv3ja3n",
"invocationSource": "DialogCodeHook",
"outputDialogMode": "Text",
"messageVersion": "1.0",
"sessionAttributes": {}

In the event data, note the following:

Details of Information Flow 261

Amazon Lex V1 Developer Guide

« invocationSource continues to be DialogCodeHook. In this step, we are just
validating user data.

« Amazon Lex sets the AppointmentType field in the currentIntent.slots slot to
root canal.

« Amazon Lex simply passes the sessionAttributes field between the client and the
Lambda function.

¢. The Lambda function validates the user input and returns the following response to
Amazon Lex, directing the service to elicit a value for the appointment date.

{
"dialogAction": {
"slotToElicit": "Date",
"intentName": "MakeAppointment",
"responseCard": {
"genericAttachments": [
{
"buttons": [
{
"text": "2-15 (Wed)",
"value": "Wednesday, February 15, 2017"
.
{
"text": "2-16 (Thu)",
"value": "Thursday, February 16, 2017"
.
{
"text": "2-17 (Fri)",
"value": "Friday, February 17, 2017"
.
{
"text": "2-20 (Mon)",
"value": "Monday, February 20, 2017"
.
{
"text": "2-21 (Tue)",
"value": "Tuesday, February 21, 2017"
}
1,
"subTitle": "When would you like to schedule your root
canal?",

Details of Information Flow 262

Amazon Lex V1 Developer Guide

"title": "Specify Date"

}

1,

"version": 1,

"contentType": "application/vnd.amazonaws.card.generic"
I
"slots": {

"AppointmentType": "root canal",

"Date": null,

"Time": null
},

"type": "ElicitSlot",

"message": {
"content": "When would you like to schedule your root canal?",
"contentType": "PlainText"

}I

"sessionAttributes": {}

Again, the response includes the dialogAction and sessionAttributes fields.
Among other things, the dialogAction field returns the following fields:

» type - By setting this field to E1icitSlot, the Lambda function directs Amazon Lex to
elicit the value for the slot specified in the slotToElicit field. The Lambda function
also provides a message to convey to the user.

« responseCard - Identifies a list of possible values for the Date slot. A client that
supports response cards (for example, Facebook Messenger) displays a response card
that allows the user to choose an appointment date, as in the following image:

Details of Information Flow 263

Amazon Lex V1

Developer Guide

When would you like to schedule your
root canal?

Specify Date

2-15 (Wed)

|
!

2-16 (Thu)

Although the Lambda function returned five dates, the client (Facebook Messenger)
has a limit of three buttons for a response card. Therefore, you see only the first three

values in the screen shot.

These dates are hard coded in the Lambda function. In a production application, you
might use a calendar to get available dates in real time. Because the dates are dynamic,

you must generate the response card dynamically in the Lambda function.

d. Amazon Lex notices the dialogAction. type and returns the following response to the

client that includes information from the Lambda function's response.

Headers Cookies
Filter properties
JSON

dialogState: "ElicitSlot”
intentMame: "Makefppointment”

message: "When would you like to schedule your root canal?

responseCard: Object

contentType: "application/wnd.amazonaws.card.generic”

generichAttachments: Object
wersion: "1"
sessiondttributes: Object
slotTeoElicit: "Date”
slots: Object
AppointmentType: "root canal”
Date: null
Time: null

Params

Details of Information Flow

264

Amazon Lex V1 Developer Guide

The client displays the message: When would you like to schedule your root canal? and
the response card (if the client supports response cards).

3. User: Types Thursday.

a. The client sends the following PostText request to Amazon Lex (line breaks have been
added for readability):

POST /bot/BookTrip/alias/$LATEST/user/bijtérovckwecnzesbthrrid71lv3ja3n/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

"inputText": "Thursday",
"sessionAttributes": {}

b. Amazon Lex invokes the Lambda function for user data validation by sending in the
following event as a parameter:

"currentIntent": {
"slots": {
"AppointmentType": "root canal",
"Date": "2017-02-16",
"Time": null
},
"name": "MakeAppointment",
"confirmationStatus": "None"
.
"bot": {
"alias": null,
"version": "$LATEST",
"name": "ScheduleAppointment"
},
"userId": "u3fpr9gghj02zts7y5tpg5Smmadin2xqy",
"invocationSource": "DialogCodeHook",
"outputDialogMode": "Text",
"messageVersion": "1.0",
"sessionAttributes": {3}

Details of Information Flow 265

Amazon Lex V1 Developer Guide

In the event data, note the following:

« invocationSource continues to be DialogCodeHook. In this step, we are just
validating the user data.

« Amazon Lex sets the Date field in the currentIntent.slots slot to 2017-02-16.

« Amazon Lex simply passes the sessionAttributes between the client and the
Lambda function.

¢. The Lambda function validates the user input. This time the Lambda function determines
that there are no appointments available on the specified date. It returns the following
response to Amazon Lex, directing the service to again elicit a value for the appointment

date.
{
"dialogAction": {
"slotToElicit": "Date",
"intentName": "MakeAppointment",
"responseCard": {
"genericAttachments": [
{
"buttons": [
{
"text": "2-15 (Wed)",
"value": "Wednesday, February 15, 2017"
b
{
"text": "2-17 (Fri)",
"value": "Friday, February 17, 2017"
b
{
"text": "2-20 (Mon)",
"value": "Monday, February 20, 2017"
b
{
"text": "2-21 (Tue)",
"value": "Tuesday, February 21, 2017"
}
1,
"subTitle": "When would you like to schedule your root
canal?",

"title": "Specify Date"

Details of Information Flow 266

Amazon Lex V1 Developer Guide

}

1,

"version": 1,

"contentType": "application/vnd.amazonaws.card.generic"
},
"slots": {

"AppointmentType": "root canal",

"Date": null,

"Time": null
.

"type": "ElicitSlot",
"message": {
"content": "We do not have any availability on that date, is there
another day which works for you?",
"contentType": "PlainText"

}I

"sessionAttributes": {
"bookingMap": "{\"2017-02-16\": []1}"
}

Again, the response includes the dialogAction and sessionAttributes fields.
Among other things, the dialogAction returns the following fields:

« dialogAction field:

« type - The Lambda function sets this value to E1icitSlot and resets the
slotToElicit field to Date. The Lambda function also provides an appropriate
message to convey to the user.

« responseCard - Returns a list of values for the Date slot.

« sessionAttributes - This time the Lambda function includes the bookingMap
session attribute. Its value is the requested date of the appointment and available
appointments (an empty object indicates that no appointments are available).

d. Amazon Lex notices the dialogAction. type and returns the following response to the
client that includes information from the Lambda function's response.

Details of Information Flow 267

Amazon Lex V1 Developer Guide

Headers Cookies Params Tirmings

Filter properties
J50N

dialogState: "ElicitSlot”
intentMame: "MakefAppointment”

message: "We do not have any availability on that date, is there another day which works for you?"
responseCard: Object
contentType: "application/vnd.amazonaws.card.generic”
genericAttachments: Object
version: "1"
sessionAttributes: Object
bookingMap: "{"2017-02-14": []}"
slotTeElicit: "Date"
slots: Object
AppointmentType: "root canal”
Date: null

Time: null

The client displays the message: We do not have any availability on that date, is there
another day which works for you? and the response card (if the client supports response
cards).

4. User: Depending on the client, the user has two options:

« If the response card is shown, choose 2-15 (Wed) or type Wednesday.

« If the client does not support response cards, type Wednesday.

a. The client sends the following PostText request to Amazon Lex:

POST /bot/BookTrip/alias/$LATEST/user/bijt6rovckwecnzesbthrrid7lv3ja3n/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

"inputText": "Wednesday",
"sessionAttributes": {

}

Details of Information Flow 268

Amazon Lex V1 Developer Guide

® Note

The Facebook Messenger client does not set any session attributes. If you want to
maintain session states between requests, you must do so in the Lambda function.
In a real application, you might need to maintain these session attributes in a
backend database.

b. Amazon Lex invokes the Lambda function for user data validation by sending the
following event as a parameter:

"currentIntent": {
"slots": {
"AppointmentType": "root canal",
"Date": "2017-02-15",
"Time": null
.
"name": "MakeAppointment",
"confirmationStatus": "None"
1,
"bot": {
"alias": null,
"version": "$LATEST",
"name": "ScheduleAppointment"
.
"userId": "u3fpr9gghj02zts7y5tpgSmmidin2xqy",
"invocationSource": "DialogCodeHook",
"outputDialogMode": "Text",
"messageVersion": "1.0",
"sessionAttributes": {

}

Amazon Lex updated currentIntent.slots by setting the Date slot to 2017-02-15.

¢. The Lambda function validates the user input and returns the following response to
Amazon Lex, directing it to elicit the value for the appointment time.

"dialogAction": {
"slots": {

Details of Information Flow 269

Amazon Lex V1 Developer Guide

"AppointmentType": "root canal",
"Date": "2017-02-15",
"Time": "16:00"
1,
"message": {
"content": "What time on 2017-02-15 works for you? 4:00 p.m. is our
only availability, does that work for you?",
"contentType": "PlainText"

1,
"type": "ConfirmIntent",
"intentName": "MakeAppointment",

"responseCard": {
"genericAttachments": [

{
"buttons": [
{
"text": "yes",
"value": "yes"
},
{
"text": "no",
"value": "no"
}
1,
"subTitle": "Is 4:00 p.m. on 2017-02-15 okay?",
"title": "Confirm Appointment"
}

1,
"version": 1,
"contentType": "application/vnd.amazonaws.card.generic"

iy

"sessionAttributes": {
"bookingMap": "{\"2017-02-15\": [\"10:00\", \"16:00\", \"16:30\"]1}"

Again, the response includes the dialogAction and sessionAttributes fields.
Among other things, the dialogAction returns the following fields:

« dialogAction field:

Details of Information Flow 270

Amazon Lex V1 Developer Guide

« type - The Lambda function sets this value to ConfirmIntent, directing Amazon
Lex to obtain user confirmation of the appointment time suggested in the message.

« responseCard - Returns a list of yes/no values for the user to choose from. If
the client supports response cards, it displays the response card, as shown in the
following example:

What time on 2017-02-15 works for
you? 4:00 p.m. is our only availability,
does that work for you?

Confirm Appointment

« sessionAttributes - The Lambda function sets the bookingMap session attribute
with its value set to the appointment date and available appointments on that date.
In this example, these are 30-minute appointments. For a root canal that requires one
hour, only 4 p.m. can be booked.

d. Asindicated inthe dialogAction.type in the Lambda function's response, Amazon Lex
returns the following response to the client:

Details of Information Flow 271

Amazon Lex V1 Developer Guide

Headers Cookies Params Tirmings

Filter properties
JSON
dialogState: "ConfirmIntent”

intentMame: "Makefppointrment”
message: "What time on 2017-02-15 works for you? 4:00 p.m. is our only availability, does that work for you?"
responseCard: Object

contentType: "application/vnd.amazonaws.card.generic”

genericAttachments: Object

wersion: "1"

sessionAttributes: Object

bookingMap: "{"2017-02-15": ["10:00", "16:00", "16:30"], "2017-02-14": []}"
slotTeElicit: null
slots: Object

AppointmentType: "root canal”

Date: "2017-02-15"

Time: "16:00"

The client displays the message: What time on 2017-02-15 works for you? 4:00 p.m. is
our only availability, does that work for you?

5. User: Choose yes.

Amazon Lex invokes the Lambda function with the following event data. Because the user
replied yes, Amazon Lex sets the confirmationStatus to Confirmed, and sets the Time
field in currentIntent.slots to4 p.m.

"currentIntent": {
"slots": {
"AppointmentType": "root canal",
"Date": "2017-02-15",
"Time": "16:00"
Yy
"name": "MakeAppointment",
"confirmationStatus": "Confirmed"
.
"bot": {
"alias": null,
"version": "$LATEST",

Details of Information Flow 272

Amazon Lex V1 Developer Guide

"name": "ScheduleAppointment"

.

"userId": "u3fpr9gghj02zts7y5tpgSmmidin2xqy",
"invocationSource": "FulfillmentCodeHook",
"outputDialogMode": "Text",

"messageVersion": "1.0",

"sessionAttributes": {

Because the confirmationStatus is confirmed, the Lambda function processes the intent
(books a dental appointment) and returns the following response to Amazon Lex:

"dialogAction": {
"message": {
"content": "Okay, I have booked your appointment. We will see you at
4:00 p.m. on 2017-02-15",
"contentType": "PlainText"

Iy
"type": "Close",

"fulfillmentState": "Fulfilled"
},

"sessionAttributes": {
"formattedTime": "4:00 p.m.",
"bookingMap": "{\"2017-02-15\": [\"10:00\"]1}"

Note the following:

« The Lambda function has updated the sessionAttributes.

« dialogAction.type is setto Close, which directs Amazon Lex to not expect a user
response.

« dialogAction.fulfillmentStateissetto Fulfilled, indicating that the intent is
successfully fulfilled.

The client displays the message: Okay, | have booked your appointment. We will see you at
4:00 p.m. on 2017-02-15.

Details of Information Flow 273

Amazon Lex V1 Developer Guide

Book Trip

This example illustrates creating a bot that is configured to support multiple intents. The example
also illustrates how you can use session attributes for cross-intent information sharing. After
creating the bot, you use a test client in the Amazon Lex console to test the bot (BookTrip). The
client uses the PostText runtime API operation to send requests to Amazon Lex for each user input.

The BookTrip bot in this example is configured with two intents (BookHotel and BookCar). For
example, suppose a user first books a hotel. During the interaction, the user provides information
such as check-in dates, location, and number of nights. After the intent is fulfilled, the client can
persist this information using session attributes. For more information about session attributes, see
PostText.

Now suppose that the user continues to book a car. Using information that the user provided in the
previous BookHotel intent (that is, destination city, and check-in and check-out dates), the code
hook (Lambda function) you configured to initialize and validate the BookCar intent, initializes

slot data for the BookCar intent (that is, destination, pick-up city, pick-up date, and return date).
This illustrates how cross-intent information sharing enables you to build bots that can engage in
dynamic conversation with the user.

In this example, we use the following session attributes. Only the client and the Lambda function
can set and update session attributes. Amazon Lex only passes these between the client and the
Lambda function. Amazon Lex doesn't maintain or modify any session attributes.

« currentReservation - Contains slot data for an in-progress reservation and other relevant
information. For example, the following is a sample request from the client to Amazon Lex. It
shows the currentReservation session attribute in the request body.

POST /bot/BookTrip/alias/$LATEST/user/wch89kjqcpkds8seny7dly5x30tq68j3/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

"inputText":"Chicago",
"sessionAttributes":{
"currentReservation":"{\"ReservationType\":\"Hotel\",
\"Location\":\"Moscow\",
\"RoomType\":null,

Book Trip 274

Amazon Lex V1 Developer Guide

\"CheckInDate\":null,
\"Nights\":null}"

« lastConfirmedReservation - Contains similar information for a previous intent, if any. For
example, if the user booked a hotel and then is in process of booking a car, this session attribute
stores slot data for the previous BookHotel intent.

« confirmationContext — The Lambda function sets this to AutoPopulate when it
prepopulates some of the slot data based on slot data from the previous reservation (if there is
one). This enables cross-intent information sharing. For example, if the user previously booked
a hotel and now wants to book a car, Amazon Lex can prompt the user to confirm (or deny) that
the car is being booked for the same city and dates as their hotel reservation

In this exercise you use blueprints to create an Amazon Lex bot and a Lambda function. For more
information about blueprints, see Amazon Lex and AWS Lambda Blueprints.

Next Step

Step 1: Review the Blueprints Used in this Exercise

Step 1: Review the Blueprints Used in this Exercise

Topics

» Overview of the Bot Blueprint (BookTrip)

» Overview of the Lambda Function Blueprint (lex-book-trip-python)

Overview of the Bot Blueprint (BookTrip)
The blueprint (BookTrip) you use to create a bot provides the following preconfiguration:

» Slot types — Two custom slot types:

Step 1: Blueprint Review 275

Amazon Lex V1 Developer Guide

« RoomTypes with enumeration values: king, queen, and deluxe, for use in the BookHotel
intent.

« CarTypes with enumeration values: economy, standard, midsize, full size, luxury,

and minivan, for use in the BookCar intent.

 Intent 1 (BookHotel) - It is preconfigured as follows:

» Preconfigured slots

RoomType, of the RoomTypes custom slot type
Location, of the AMAZON.US_CITY built-in slot type

« CheckInDate, of the AMAZON.DATE built-in slot type

Nights, of the AMAZON.NUMBER built-in slot type

« Preconfigured utterances

"Book a hotel"
"l want to make hotel reservations"

"Book a {Nights} stay in {Location}"

If the user utters any of these, Amazon Lex determines that BookHotel is the intent and then
prompts the user for slot data.

» Preconfigured prompts

Prompt for the Location slot - "What city will you be staying in?"

Prompt for the CheckInDate slot — "What day do you want to check in?"

Prompt for the Nights slot — "How many nights will you be staying?"

Prompt for the RoomType slot - "What type of room would you like, queen, king, or deluxe?"

Confirmation statement — "Okay, | have you down for a {Nights} night stay in {Location}
starting {CheckinDate}. Shall | book the reservation?"

Denial — "Okay, | have cancelled your reservation in progress."

« Intent 2 (BookCar) - It is preconfigured as follows:

« Preconfigured slots

PickUpCity, of the AMAZON.US_CITY built-in type

step T BIpREKIPDa te, of the AMAZON . DATE built-in type e

Amazon Lex V1 Developer Guide

« ReturnDate, of the AMAZON.DATE built-in type
« DriverAge, of the AMAZON.NUMBER built-in type
« CarType, of the CarTypes custom type

» Preconfigured utterances
« "Book a car"
» "Reserve a car"

« "Make a car reservation"

If the user utters any of these, Amazon Lex determines BookCar is the intent and then prompts
the user for slot data.

« Preconfigured prompts
e Prompt for the PickUpCity slot - "In what city do you need to rent a car?"
« Prompt for the PickUpDate slot — "What day do you want to start your rental?""
« Prompt for the ReturnDate slot - "What day do you want to return this car?"
e Prompt for the DriverAge slot — "How old is the driver for this rental?"

« Prompt for the CarType slot - "What type of car would you like to rent? Our most popular
options are economy, midsize, and luxury"

« Confirmation statement - "Okay, | have you down for a {CarType} rental in {PickUpCity} from
{PickUpDate} to {ReturnDate}. Should | book the reservation?"

» Denial - "Okay, | have cancelled your reservation in progress."

Overview of the Lambda Function Blueprint (lex-book-trip-python)

In addition to the bot blueprint, AWS Lambda provides a blueprint (lex-book-trip-python) that
you can use as a code hook with the bot blueprint. For a list of bot blueprints and corresponding
Lambda function blueprints, see Amazon Lex and AWS Lambda Blueprints.

When you create a bot using the BookTrip blueprint, you update configuration of both the intents
(BookCar and BookHotel) by adding this Lambda function as a code hook for both initialization/
validation of user data input and fulfillment of the intents.

This Lambda function code provided showcases dynamic conversation using previously known
information (persisted in session attributes) about a user to initialize slot values for an intent. For
more information, see Managing Conversation Context.

Step 1: Blueprint Review 277

Amazon Lex V1 Developer Guide

Next Step

Step 2: Create an Amazon Lex Bot

Step 2: Create an Amazon Lex Bot

In this section, you create an Amazon Lex bot (BookTrip).

1.

Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

On the Bots page, choose Create.

On the Create your Lex bot page,

o Choose BookTrip blueprint.
» Leave the default bot name (BookTrip).

Choose Create. The console sends a series of requests to Amazon Lex to create the bot. Note
the following:

The console shows the BookTrip bot. On the Editor tab, review the details of the preconfigured
intents (BookCar and BookHotel).

Test the bot in the test window. Use the following to engage in a test conversation with your
bot:

Step 2: Create an Amazon Lex Bot 278

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

Q} Test Bot '

Book a hotel
What city will you be staying in?
Chicago
What day do you want to check in?
December 16th

How many nights will you be staying?

4
What type of room would you like, gqueen, king or deluxe?
(ueen
Olkay, | have you down for a 4 night stay in Chicago starting 2016-12-18.
Shall | book the reservation?
Yes

CheckinDate:2016-12-18 Location:Chicago Mights:4 RoomType:queen

Clear

From the initial user input ("Book a hotel"), Amazon Lex infers the intent (BookHotel). The bot
then uses the prompts preconfigured in this intent to elicit slot data from the user. After user
provide all of the slot data, Amazon Lex returns a response back to the client with a message

that includes all the user input as a message. The client displays the message in the response

as shown.

CheckInDate:2016-12-18 Location:Chicago Nights:5 RoomType:queen

Now you continue the conversation and try to book a car in the following conversation.

Step 2: Create an Amazon Lex Bot 279

Amazon Lex V1 Developer Guide

gy |

Q} Test Bot W

Also book a car
In what city do you need to rent a car?
Chicago
What day do you want to start your rental?
December 18th
What day do you want to return the car?
December 22nd
How old is the driver for this rental?
35

What type of car would you like to rent? Our most popular
options are economy, midsize, and luxury

m

economy

The price of this economy rental in Chicago from 2016-12-18 to
2016-12-22 is 556 dollars. Shall | book the resenvation’?

Yes
[CarType:economy DriverAge:35 PickUpCity:Chicago
PickUpDate:2016-12-18 ReturnDate:2016-12-22
Clear
.
Note that,

» There is no user data validation at this time. For example, you can provide any city to book a
hotel.

Step 2: Create an Amazon Lex Bot 280

Amazon Lex V1 Developer Guide

» You are providing some of the same information again (destination, pick-up city, pick-up
date, and return date) to book a car. In a dynamic conversation, your bot should initialize
some of this information based on prior input user provided for booking hotel.

In this next section, you create a Lambda function to do some of the user data validation, and
initialization using cross-intent information sharing via session attributes. Then you update the
intent configuration by adding the Lambda function as code hook to perform initialization/
validation of user input and fulfill intent.

Next Step

Step 3: Create a Lambda function

Step 3: Create a Lambda function

In this section you create a Lambda function using a blueprint (lex-book-trip-python) provided
in the AWS Lambda console. You also test the Lambda function by invoking it using sample event
data provided by the console.

This Lambda function is written in Python.

1. Signin to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create function.

3. Choose Use a blueprint. Type 1lex to find the blueprint, choose the 1lex-book-trip-python
blueprint.

4. Choose Configure the Lambda function as follows.

« Type a Lambda function name (BookTripCodeHook).
« For the role, choose Create a new role from template(s) and then type a role name.
 Leave the other default values.

5. Choose Create function.

6. If you are using a locale other than English (US) (en-US), update the intent names as described
in Updating a Blueprint for a Specific Locale.

7. Test the Lambda function. You invoke the Lambda function twice, using sample data for both
booking a car and booking a hotel.

Step 3: Create a Lambda function 281

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Lex V1 Developer Guide

a. Choose Configure test event from the Select a test event drop down.

b. Choose Amazon Lex Book Hotel from the Sample event template list.

This sample event matches the Amazon Lex request/response model. For more
information, see Using Lambda Functions.

c. Choose Save and test.

d. Verify that the Lambda function ran successfully. The response in this case matches the
Amazon Lex response model.

e. Repeat the step. This time you choose the Amazon Lex Book Car from the Sample event
template list. The Lambda function processes the car reservation.

Next Step

Step 4: Add the Lambda Function as a Code Hook

Step 4: Add the Lambda Function as a Code Hook

In this section, you update the configurations of both the BookCar and BookHotel intents by
adding the Lambda function as a code hook for initialization/validation and fulfillment activities.
Make sure you choose the $LATEST version of the intents because you can only update the
$LATEST version of your Amazon Lex resources.

1. In the Amazon Lex console, choose the BookTrip bot.

2. On the Editor tab, choose the BookHotel intent. Update the intent configuration as follows:

a. Make sure the intent version (next to the intent name) is $LATEST.

b. Add the Lambda function as an initialization and validation code hook as follows:

« In Options, choose Initialization and validation code hook.
» Choose your Lambda function from the list.

c. Add the Lambda function as a fulfillment code hook as follows:

« In Fulfillment, choose AWS Lambda function.

» Choose your Lambda function from the list.

Step 4: Add the Lambda Function as a Code Hook 282

Amazon Lex V1 Developer Guide

» Choose Goodbye message and type a message.
d. Choose Save.

3. On the Editor tab, choose the BookCar intent. Follow the preceding step to add your Lambda
function as validation and fulfillment code hook.

4. Choose Build. The console sends a series of requests to Amazon Lex to save the configurations.

5. Test the bot. Now that you a have a Lambda function performing the initialization, user data
validation and fulfillment, you can see the difference in the user interaction in the following
conversation:

Step 4: Add the Lambda Function as a Code Hook 283

Amazon Lex V1

Developer Guide

ul

L=

Q) Test Bot
book a hotel
What city will yvou be staying in?
moscow

We currently do not support Moscow as a valid destination. Can
wou try a different city?

chicago

What day do you want to check in?

I
! december 16th
How many nights will you be staying?
I
5
C
What type of room would you like, gueen, king or deluxe?
queen
Okay. | have you down for a 5 night stay in Chicago starting
2016-12-18. Shall | book the reservation?
VEE

Thanks, | have placed your reservation. Please let me know if you
would like to book a car rental, or another hotel.

Clear

For more information about the data flow from the client (console) to Amazon Lex, and from

Amazon Lex to the Lambda function, see Data Flow: Book Hotel Intent.

6. Continue the conversation and book a car as shown in the following image:

Step 4: Add the Lambda Function as a Code Hook

284

Amazon Lex V1 Developer Guide

Test Bot

U] T | fi Miwaedt Te g |illl|| EE TR L T h|_|| i ﬂllllll_
iy | ¢ J | L | buiaiu i 1 Ver raozemrtoepl] oind
11
Vogndik g Vopesr ghign g Pl tetegi ool Pigagazer igh Hrap dptagan |
fip mmpag il biber 94 deiaiid @ (S TRR AR | ti gt Vaer Vel

also book a car

h Is this car rental for your 5 night stay in Chicago on 2016-12-187
L oves
How old is the driver of this car rental?
I
35
Ic
What type of car would you like to rent? Our most popular
options are economy. midsize, and luxury | _
BCONomy
The price of this economy rental in Chicageo from 2016-12-18 to
2016-12-23 is 695 dollars. Shall | book the reservation?
L yes
Thanks, | have placed your reservation. _
¥ Clear

When you choose to book a car, the client (console) sends a request to Amazon Lex that
includes the session attributes (from the previous conversation, BookHotel). Amazon Lex
passes this information to the Lambda function, which then initializes (that is, it prepopulates)
some of the BookCar slot data (that is, PickUpDate, ReturnDate, and PickUpCity).

Step 4: Add the Lambda Function as a Code Hook 285

Amazon Lex V1 Developer Guide

® Note

This illustrates how session attributes can be used to maintain context across intents.
The console client provides the Clear link in the test window that a user can use to
clear any prior session attributes.

For more information about the data flow from the client (console) to Amazon Lex, and from
Amazon Lex to the Lambda function, see Data Flow: Book Car Intent.

Details of the Information Flow

In this exercise, you engaged in a conversation with the Amazon Lex BookTrip bot using the test
window client provided in the Amazon Lex console. This section explains the following:

o The data flow between the client and Amazon Lex.

The section assumes that the client sends requests to Amazon Lex using the PostText runtime
API and shows request and response details accordingly. For more information about the
PostText runtime API, see PostText.

(@ Note
For an example of the information flow between the client and Amazon Lex in which
the client uses the PostContent API, see Step 2a (Optional): Review the Details of the
Spoken Information Flow (Console) .

» The data flow between Amazon Lex and the Lambda function. For more information, see
Lambda Function Input Event and Response Format.

Topics

« Data Flow: Book Hotel Intent

Details of the Information Flow 286

Amazon Lex V1 Developer Guide

« Data Flow: Book Car Intent

Data Flow: Book Hotel Intent

This section explains what happens after each user input.
1. User: "book a hotel"

a. The client (console) sends the following PostText request to Amazon Lex:

POST /bot/BookTrip/alias/$LATEST/usexr/wch89kjqcpkds8seny7dly5x30tq68j3/text
"Content-Type":"application/json"

"Content-Encoding":"amz-1.0"

{
"inputText":"book a hotel",
"sessionAttributes":{}

Both the request URI and the body provides information to Amazon Lex:

« Request URI - Provides bot name (BookTrip), bot alias ($LATEST) and the user name.
The trailing text indicates that it is a PostText API request (and not PostContent).

« Request body - Includes the user input (inputText) and empty sessionAttributes.
Initially, this is an empty object and the Lambda function first sets the session
attributes.

b. From the inputText, Amazon Lex detects the intent (BookHotel). This intent is
configured with a Lambda function as a code hook for user data initialization/validation.
Therefore, Amazon Lex invokes that Lambda function by passing the following
information as the event parameter (see Input Event Format):

"messageVersion":"1.0",
"invocationSource":"DialogCodeHook",
"userId":"wch89kjqcpkds8seny7dly5x30tq683j3",
"sessionAttributes":{

o
"bot":{

Details of the Information Flow 287

Amazon Lex V1 Developer Guide

"name" :"BookTrip",
"alias":null,
"version":"$LATEST"

iy
"outputDialogMode":"Text",

"currentIntent":{
"name" : "BookHotel",
"slots":{

"RoomType":null,
"CheckInDate":null,
"Nights":null,
"Location":null

}I

"confirmationStatus":"None"

In addition to the information sent by the client, Amazon Lex also includes the following
additional data:

» messageVersion - Currently Amazon Lex supports only the 1.0 version.

e invocationSource - Indicates the purpose of Lambda function invocation. In this
case, it is to perform user data initialization and validation (at this time Amazon Lex
knows that the user has not provided all the slot data to fulfill the intent).

e currentIntent - All of the slot values are set to null.

c. At this time, all the slot values are null. There is nothing for the Lambda function to
validate. The Lambda function returns the following response to Amazon Lex. For
information about response format, see Response Format.

"sessionAttributes":{
"currentReservation":"{\"ReservationType\":\"Hotel\",\"Location\":null,
\"RoomType\":null,\"CheckInDate\":null,\"Nights\":null}"
.
"dialogAction":{
"type":"Delegate",
"slots":{
"RoomType":null,
"CheckInDate":null,
"Nights":null,
"Location":null

Details of the Information Flow 288

Amazon Lex V1 Developer Guide

® Note

« currentReservation - The Lambda function includes this session attribute.
Its value is a copy of the current slot information and the reservation type.

Only the Lambda function and the client can update these session attributes.
Amazon Lex simply passes these values.

« dialogAction.type - By setting this value to Delegate, the Lambda
function delegates the responsibility for the next course of action to Amazon
Lex.

If the Lambda function detected anything in the user data validation, it instructs
Amazon Lex what to do next.

d. AsperthedialogAction.type, Amazon Lex decides the next course of action—elicit
data from the user for the Location slot. It selects one of the prompt messages ("What
city will you be staying in?") for this slot, according to the intent configuration, and then
sends the following response to the user:

Headers Cookies Params m Timings

Filter properties

dialog5tate: "ElicitSlot”
intentMame: "BookHotel"
message: "What city will you be staying in?"
responseCard: null
sessicnAttributes: Object

currentReservation: "{"ReservationType":"Hotel","Location”:null,"ReomType"inull," ChecklnDate":null,"Mights":null}"
slotToklicit: "Location”
slots: Object
CheckInDate: null
Location: null
Mights: null
RoomType: null

The session attributes are passed to the client.

Details of the Information Flow 289

Amazon Lex V1 Developer Guide

The client reads the response and then displays the message: "What city will you be
staying in?"

2. User: "Moscow"

a. The client sends the following PostText request to Amazon Lex (line breaks added for
readability):

POST /bot/BookTrip/alias/$LATEST/user/wch89kjqcpkds8seny7dly5x30tq68j3/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
"inputText":"Moscow",
"sessionAttributes": {
"currentReservation":"{\"ReservationType\":\"Hotel\",
\"Location\":null,
\"RoomType\":null,
\"CheckInDate\":null,
\"Nights\":null}"
}
}

In addition to the inputText, the client includes the same currentReservation
session attributes it received.

b. Amazon Lex first interprets the inputText in the context of the current intent (the
service remembers that it had asked the specific user for information about Location
slot). It updates the slot value for the current intent and invokes the Lambda function
using the following event:

{
"messageVersion": "1.0",
"invocationSource": "DialogCodeHook",
"userId": "wch89kjqcpkds8seny7dly5x30tq68j3",
"sessionAttributes": {
"currentReservation": "{\"ReservationType\":\"Hotel\",\"Location
\":null,\"RoomType\":null,\"CheckInDate\":null,\"Nights\":null}"
1,
"bot": {
"name": "BookTrip",

"alias": null,

Details of the Information Flow 290

Amazon Lex V1 Developer Guide

"version": "$LATEST"

iy
"outputDialogMode": "Text",

"currentIntent": {
"name": "BookHotel",
"slots": {
"RoomType": null,
"CheckInDate": null,
"Nights": null,
"Location": "Moscow"

}I

"confirmationStatus": "None"

(® Note

« invocationSource continues to be DialogCodeHook. In this step, we are just
validating user data.

« Amazon Lex is just passing the session attribute to the Lambda function.

e For currentIntent.slots, Amazon Lex has updated the Location slot to

Moscow.

c. The Lambda function performs the user data validation and determines that Moscow is an
invalid location.

(® Note

The Lambda function in this exercise has a simple list of valid cities and Moscow is
not on the list. In a production application, you might use a back-end database to
get this information.

It resets the slot value back to null and directs Amazon Lex to prompt the user again for
another value by sending the following response:

"sessionAttributes": {

Details of the Information Flow 291

Amazon Lex V1 Developer Guide

"currentReservation": "{\"ReservationType\":\"Hotel\",\"Location\":
\"Moscow\",\"RoomType\" :null,\"CheckInDate\":null,\"Nights\":null}"
},
"dialogAction": {
"type": "ElicitSlot",
"intentName": "BookHotel",
"slots": {
"RoomType": null,
"CheckInDate": null,
"Nights": null,
"Location": null
.
"slotToElicit": "Location",
"message": {
"contentType": "PlainText",

"content": "We currently do not support Moscow as a valid
destination. Can you try a different city?"
}
}
}
(® Note

e currentIntent.slots.Location is reset to null.

« dialogAction.typeissetto ElicitSlot, which directs Amazon Lex to
prompt the user again by providing the following:

« dialogAction.slotToElicit - slot for which to elicit data from the user.

 dialogAction.message —amessage to convey to the user.

d. Amazon Lex notices the dialogAction.type and passes the information to the client in
the following response:

Details of the Information Flow 292

Amazon Lex V1 Developer Guide

i
Headers Cookies Params m Timings Security

Filter properties

dialogState: "Elicit5lot”
intentMame: "BookHotel"
message: "We currently do not support Mescow as a valid destination. Can you try a different city?"
responseCard: null
sessionAttributes: Object

currentReservation: "{"ReservationType":"Hotel","Location™:"Moscow"," Roem Type"null,"CheckInDate":null,"Mights":null}"
clotTekElicit: "Location”
slots: Object
CheckInDate: null
Location: null
Mights: null
RoomType: null

The client simply displays the message: "We currently do not support Moscow as a valid
destination. Can you try a different city?"

3. User: "Chicago"

a. The client sends the following PostText request to Amazon Lex:

POST /bot/BookTrip/alias/$LATEST/user/wch89kjqcpkds8seny7dly5x30tq68j3/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
"inputText":"Chicago",
"sessionAttributes":{
"currentReservation":"{\"ReservationType\":\"Hotel\",
\"Location\":\"Moscow\",
\"RoomType\":null,
\"CheckInDate\":null,
\"Nights\":null}"
}
}

b. Amazon Lex knows the context, that it was eliciting data for the Location slot. In this
context, it knows the inputText value is for the Location slot. It then invokes the
Lambda function by sending the following event:

Details of the Information Flow 293

Amazon Lex V1 Developer Guide

"messageVersion": "1.0",
"invocationSource": "DialogCodeHook",
"userId": "wch89kjqcpkds8seny7dly5x30tgq68j3",
"sessionAttributes": {
"currentReservation": "{\"ReservationType\":\"Hotel\",\"Location
\" :Moscow, \"RoomType\" :null,\"CheckInDate\":null,\"Nights\":null}"
},
"bot": {
"name": "BookTrip",
"alias": null,
"version": "$LATEST"
.
"outputDialogMode": "Text",
"currentIntent": {
"name": "BookHotel",
"slots": {
"RoomType": null,
"CheckInDate": null,
"Nights": null,
"Location": "Chicago"
},

"confirmationStatus": "None"

Amazon Lex updated the currentIntent.slots by setting the Location slot to
Chicago.

¢. According to the invocationSource value of DialogCodeHook, the Lambda function
performs user data validation. It recognizes Chicago as a valid slot value, updates the
session attribute accordingly, and then returns the following response to Amazon Lex.

{
"sessionAttributes": {
"currentReservation": "{\"ReservationType\":\"Hotel\",\"Location\":
\"Chicago\",\"RoomType\":null,\"CheckInDate\":null,\"Nights\":null}"

b
"dialogAction": {
"type": "Delegate",
"slots": {
"RoomType": null,

Details of the Information Flow 294

Amazon Lex V1 Developer Guide

"CheckInDate": null,
"Nights": null,
"Location": "Chicago

(® Note

« currentReservation - The Lambda function updates this session attribute by
setting the Location to Chicago.

« dialogAction.type - Is set to Delegate. User data was valid, and the
Lambda function directs Amazon Lex to choose the next course of action.

d. According to dialogAction.type, Amazon Lex chooses the next course of action.
Amazon Lex knows that it needs more slot data and picks the next unfilled slot
(CheckInDate) with the highest priority according to the intent configuration. It selects
one of the prompt messages ("What day do you want to check in?") for this slot according
to the intent configuration and then sends the following response back to the client:

Headers Cookies Params m Timings Security

Filter properties

dialogState: "ElicitSlot”
intentMame: "BookHotel"
message: "What day do you want to check in?"
responseCard: null
sessicnAttributes: Object
currentReservation: "{"ReservationType":"Hotel","Location™:"Chicage"”, "ReemType":null,"CheckInDate":null,"Mights":null}"
slotToElicit: "CheckInDate”
slots: Object
CheckInDate: null
Location: "Chicage”
Mights: null
RoomType: null

The client displays the message: "What day do you want to check in?"

Details of the Information Flow 295

Amazon Lex V1 Developer Guide

4.

The user interaction continues—the user provides data, the Lambda function validates data,
and then delegates the next course of action to Amazon Lex. Eventually the user provides all
of the slot data, the Lambda function validates all of the user input, and then Amazon Lex
recognizes it has all the slot data.

® Note

In this exercise, after the user provides all of the slot data, the Lambda function
computes the price of the hotel reservation and returns it as another session attribute
(currentReservationPrice).

At this point, the intent is ready to be fulfilled, but the BookHotel intent is configured with
a confirmation prompt requiring user confirmation before Amazon Lex can fulfill the intent.
Therefore, Amazon Lex sends the following message to the client requesting confirmation
before booking the hotel:

Headers Cookies Params m Tirmings

Filter properties

dialegState: "ConfirmIntent”
intentMame: "BookHotel”
message: "Okay, I have you down for a 5 night stay in Chicage starting 2016-12-18. Shall I book the reservation?”
responseCard: null
sessicndttributes: Object
currentReservation: "{"ReservationType":"Hotel","Location™:" Chicage”,"RoomType":"queen”, "CheckInDate":"2016-12-18","Nights":"5"}"
currentReservationPrice: "1195"
slotTeklicit: null
slots: Object
CheckInDate: "2016-12-18"
Lacation: "Chicage"
Mights: "5"
RoomType: "queen”

The client display the message: "Okay, | have you down for a 5 night in Chicago starting
2016-12-18. Shall | book the reservation?"

User: "yes"

a. The client sends the following PostText request to Amazon Lex:

POST /bot/BookTrip/alias/$LATEST/user/wch89kjqcpkds8seny7dly5x30tq68j3/text

"Content-Type":"application/json"

Details of the Information Flow 296

Amazon Lex V1 Developer Guide

"Content-Encoding":"amz-1.0"

{
"inputText":"Yes",
"sessionAttributes":{
"currentReservation":"{\"ReservationType\":\"Hotel\",
\"Location\":\"Chicago\",
\"RoomType\":\"queen\",
\"CheckInDate\":\"2016-12-18\",
\"Nights\":\"5\"}",
"currentReservationPrice":"1195"
}
}

b. Amazon Lex interprets the inputText in the context of confirming the current intent.
Amazon Lex understands that the user wants to proceed with the reservation. This time
Amazon Lex invokes the Lambda function to fulfill the intent by sending the following
event. By setting the invocationSource to FulfillmentCodeHook in the event,
it sends to the Lambda function. Amazon Lex also sets the confirmationStatus to

Confirmed.
{
"messageVersion": "1.0",
"invocationSource": "FulfillmentCodeHook",

"userId": "wch89kjqcpkds8seny7dly5x30tq68j3",
"sessionAttributes": {

"currentReservation": "{\"ReservationType\":\"Hotel\",\"Location\":
\"Chicago\",\"RoomType\":\"queen\",\"CheckInDate\":\"2016-12-18\",\"Nights\":
\"5\"}",

"currentReservationPrice": "956"

.
"bot": {

"name": "BookTrip",

"alias": null,

"version": "$LATEST"

},

"outputDialogMode": "Text",
"currentIntent": {

"name": "BookHotel",
"slots": {
"RoomType": "queen",

"CheckInDate": "2016-12-18",
IlNightSIl: Il5ll’

Details of the Information Flow 297

Amazon Lex V1 Developer Guide

"Location": "Chicago"

iy

"confirmationStatus": "Confirmed"

(@ Note

e invocationSource - This time, Amazon Lex set this value to
FulfillmentCodeHook, directing the Lambda function to fulfill the intent.

e confirmationStatus —Is set to Confirmed.

c. This time, the Lambda function fulfills the BookHotel intent, Amazon Lex completes the
reservation, and then it returns the following response:

{
"sessionAttributes": {

"lastConfirmedReservation": "{\"ReservationType\":\"Hotel\",\"Location
\":\"Chicago\",\"RoomType\":\"queen\",\"CheckInDate\":\"2016-12-18\",\"Nights
\"\"5\"}"

},
"dialogAction": {

"type": "Close",

"fulfillmentState": "Fulfilled",

"message": {

"contentType": "PlainText",
"content": "Thanks, I have placed your reservation. Please let me
know if you would like to book a car rental, or another hotel."

}

}
}
(® Note

e lastConfirmedReservation —Is a new session attribute that
the Lambda function added (instead of the currentReservation,
currentReservationPrice).

« dialogAction.type - The Lambda function sets this value to Close,
indicating that Amazon Lex to not expect a user response.

Details of the Information Flow 298

Amazon Lex V1 Developer Guide

e dialogAction.fulfillmentState -Issetto Fulfilled and includes an
appropriate message to convey to the user.

d. Amazon Lex reviews the fulfillmentState and sends the following response to the
client:

Headers Cookies Pararms m Tirnings

Filter properties

dialogState: "Fulfilled”
intentMame: "BockHotel"
message: "Thanks, I have placed your reservation. Please let me know if you would like to beck a car rental, or ancther hotel”
responseCard: null
sessionfAttributes: Object

lastConfirmedReservation: "{"ReservationType":"Hotel","Location™:"Chicage”,"ReomType":"queen"”,"CheckInDate™:"2016-12-18","Nights":"5"}"
slotToElicit: null
slots: Object
CheckInDate: "2016-12-18"
Location: "Chicago”
Mights: "5"
ReemType: "queen”

® Note

« dialogState — Amazon Lex sets this value to Fulfilled.

« message - Is the same message that the Lambda function provided.

The client displays the message.

Data Flow: Book Car Intent

The BookTrip bot in this exercise supports two intents (BookHotel and BookCar). After booking a
hotel, the user can continue the conversation to book a car. As long as the session hasn't timed out,
in each subsequent request the client continues to send the session attributes (in this example, the
lastConfirmedReservation). The Lambda function can use this information to initialize slot
data for the BookCar intent. This shows how you can use session attributes in cross-intent data
sharing.

Details of the Information Flow 299

Amazon Lex V1 Developer Guide

Specifically, when the user chooses the BookCar intent, the Lambda function uses relevant

information in the session attribute to prepopulate slots (PickUpDate, ReturnDate, and PickUpCity)
for the BookCar intent.

(® Note

The Amazon Lex console provides the Clear link that you can use to clear any prior session
attributes.

Follow the steps in this procedure to continue the conversation.

1. User: "also book a car"

a. The client sends the following PostText request to Amazon Lex.

POST /bot/BookTrip/alias/$LATEST/user/wch89kjqcpkds8seny7dly5x30tq68j3/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
"inputText":"also book a car",
"sessionAttributes":{
"lastConfirmedReservation":""{\"ReservationType\":\"Hotel\",
\"Location\":\"Chicago\",
\"RoomType\":\"queen\",
\"CheckInDate\":\"2016-12-18\",
\"Nights\":\"5\"}"
}
}

The client includes the 1astConfirmedReservation session attribute.

b. Amazon Lex detects the intent (BookCar) from the inputText. This intent is also
configured to invoke the Lambda function to perform the initialization and validation of
the user data. Amazon Lex invokes the Lambda function with the following event:

"messageVersion": "1.0",
"invocationSource": "DialogCodeHook",

"userId": "wch89kjqcpkds8seny7dly5x30tgq68j3",
"sessionAttributes": {

Details of the Information Flow 300

Amazon Lex V1 Developer Guide

"lastConfirmedReservation": "{\"ReservationType\":\"Hotel\",\"Location
\":\"Chicago\",\"RoomType\":\"queen\",\"CheckInDate\":\"2016-12-18\",\"Nights

\":\"5\"}"
1,
"bot": {
"name": "BookTrip",

"alias": null,
"version": "$LATEST"
},
"outputDialogMode": "Text",
"currentIntent": {
"name": "BookCar",
"slots": {
"PickUpDate": null,
"ReturnDate": null,
"DriverAge": null,
"CarType": null,
"PickUpCity": null
},

"confirmationStatus": "None"

(® Note

« messageVersion - Currently Amazon Lex supports the 1.0 version only.

e invocationSource - Indicates the purpose of invocation is to perform
initialization and user data validation.

e« currentIntent - It includes the intent name and the slots. At this time, all slot
values are null.

¢. The Lambda function notices all null slot values with nothing to validate. However, it uses
session attributes to initialize some of the slot values (PickUpDate, ReturnDate, and
PickUpCity), and then returns the following response:

"sessionAttributes": {

Details of the Information Flow 301

Amazon Lex V1 Developer Guide

"lastConfirmedReservation": "{\"ReservationType\":\"Hotel\",\"Location
\":\"Chicago\",\"RoomType\":\"queen\",\"CheckInDate\":\"2016-12-18\",\"Nights
\":\"5\"}",

"currentReservation": "{\"ReservationType\":\"Car\",\"PickUpCity
\":null,\"PickUpDate\":null,\"ReturnDate\":null,\"CarType\":null}",

"confirmationContext": "AutoPopulate"

},
"dialogAction": {
"type": "ConfirmIntent",
"intentName": "BookCar",
"slots": {
"PickUpCity": "Chicago",
"PickUpDate": "2016-12-18",
"ReturnDate": "2016-12-22",
"CarType": null,
"DriverAge": null

1,
"message": {
"contentType": "PlainText",
"content": "Is this car rental for your 5 night stay in Chicago on
2016-12-18?"
}

(® Note

« In addition to the lastConfirmedReservation, the Lambda
function includes more session attributes (currentReservation and
confirmationContext).

« dialogAction.typeissetto ConfirmIntent, which informs Amazon Lex
that a yes, no reply is expected from the user (the confirmationContext set
to AutoPopulate, the Lambda function knows that the yes/no user reply is to
obtain user confirmation of the initialization the Lambda function performed
(auto populated slot data).

The Lambda function also includes in the response an informative message in
the dialogAction.message for Amazon Lex to return to the client.

Details of the Information Flow 302

Amazon Lex V1 Developer Guide

® Note

The term ConfirmIntent (value of the dialogAction.type) is not
related to any bot intent. In the example, Lambda function uses this
term to direct Amazon Lex to get a yes/no reply from the user.

d. According to the dialogAction.type, Amazon Lex returns the following response to
the client:

. - 4
Headers Cookies Params m Timings

Filter properties

dialogState: "CenfirmIntent”
intentMame: "BookCar”
message: "Is this car rental for your 5 night stay in Chicage on 2016-12-187"
respoenseCard: null
sessicnAttributes: Object
confirmationContext: "AutoPopulate”
currentReservation: "{"ReservationType":"Car","PickUpCity":null,"PickUpDate":null,"ReturnDate":null," CarType":null}”
lastConfirmedReservation: " "ReservationType":"Hotel", "Location™:"Chicage”,"ReomType":"gqueen”,"CheckInDate":"2016-12-18","Nights":"5"}"
slotToElicit: null
slots: Object
CarType: null
DriverfAge: null
PickUpCity: "Chicage”
PickUpDate: "2016-12-18"
ReturnDate: "2016-12-23"

The client displays the message: "Is this car rental for your 5 night stay in Chicago on
2016-12-18?"

2. User: "yes"

a. The client sends the following PostText request to Amazon Lex.

POST /bot/BookTrip/alias/$LATEST/user/wch89kjqcpkds8seny7dly5x30tq68j3/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

"inputText":"yes",

"sessionAttributes":{
"confirmationContext":"AutoPopulate",
"currentReservation":"{\"ReservationType\":\"Car\",

Details of the Information Flow 303

Amazon Lex V1 Developer Guide

\"PickUpCity\":null,
\"PickUpDate\":null,
\"ReturnDate\":null,
\"CarType\":null}",
"lastConfirmedReservation":"{\"ReservationType\":\"Hotel\",
\"Location\":\"Chicago\",
\"RoomType\":\"queen\",
\"CheckInDate\":\"2016-12-18\",
\"Nights\":\"5\"}"

b. Amazon Lex reads the inputText and it knows the context (asked the user to confirm
the auto population). Amazon Lex invokes the Lambda function by sending the following
event:

"messageVersion": "1.0",
"invocationSource": "DialogCodeHook",
"userId": "wch89kjqcpkds8seny7dly5x30tq68j3",
"sessionAttributes": {
"confirmationContext": "AutoPopulate",
"currentReservation": "{\"ReservationType\":\"Car\",\"PickUpCity
\":null,\"PickUpDate\":null,\"ReturnDate\":null,\"CarType\":null}",
"lastConfirmedReservation": "{\"ReservationType\":\"Hotel\",\"Location
\":\"Chicago\",\"RoomType\" :\"queen\",\"CheckInDate\":\"2016-12-18\",\"Nights

\":\"5\"}"
3,
"bot": {
"name": "BookTrip",

"alias": null,
"version": "$LATEST"
},
"outputDialogMode": "Text",
"currentIntent": {
"name": "BookCar",
"slots": {
"PickUpDate": "2016-12-18",
"ReturnDate": "2016-12-22",
"DriverAge": null,
"CarType": null,
"PickUpCity": "Chicago"
},

Details of the Information Flow 304

Amazon Lex V1 Developer Guide

"confirmationStatus": "Confirmed"

Because the user replied Yes, Amazon Lex sets the confirmationStatus to Confirmed.

c. Fromthe confirmationStatus, the Lambda function knows that the prepopulated
values are correct. The Lambda function does the following:

» Updates the currentReservation session attribute to slot value it had prepopulated.
» SetsthedialogAction.typetoElicitSlot

» Setsthe slotToElicit value to DriverAge.

The following response is sent:

"sessionAttributes": {

"currentReservation": "{\"ReservationType\":\"Car\",\"PickUpCity
\":\"Chicago\",\"PickUpDate\":\"2016-12-18\",\"ReturnDate\":\"2016-12-22\",
\"CarType\":null}",

"lastConfirmedReservation": "{\"ReservationType\":\"Hotel\",\"Location
\":\"Chicago\",\"RoomType\":\"queen\",\"CheckInDate\":\"2016-12-18\",\"Nights
\"\"5\"}"

},
"dialogAction": {

"type": "ElicitSlot",

"intentName": "BookCar",

"slots": {

"PickUpDate": "2016-12-18",
"ReturnDate": "2016-12-22",
"DriverAge": null,
"CarType": null,
"PickUpCity": "Chicago"

},

"slotToElicit": "DriverAge",

"message": {

"contentType": "PlainText",
"content": "How old is the driver of this car rental?"

Details of the Information Flow 305

Amazon Lex V1 Developer Guide

d. Amazon Lex returns following response:

3
Headers Cookies Pararns m Timings Security

Filter properties

dialogState: "ElicitSlot”

intentName: "BookCar”

message: "How old is the driver of this car rental?”

responseCard: null

sessionfttributes: Object
currentReservation: "{"ReservationType":"Car","PickUpCity":"Chicago”,"PickUpDate":"2016-12-18", "ReturnDate":" 2016-12-23", " CarType":inull}"
lastConfirmedReservation: "{"ReservationType":"Hotel","Location™ " Chicage”, "ReemType™:"queen”," CheckInDate":"2016-12-18","Mights":"5"}"

slotTeklicit: "DriverAge”

slots: Object

CarType: null

DriverAges null

PickUpCity: "Chicago”

PickUpDate: "2016-12-18"

ReturnDate: "2016-12-23"

The client displays the message "How old is the driver of this car rental?" and the
conversation continues.

Using a Response Card

In this exercise, you extend Getting Started Exercise 1 by adding a response card. You create a bot
that supports the OrderFlowers intent, and then update the intent by adding a response card for

the FlowerType slot. In addition to the following prompt for the FlowerType slot, the user can

choose the type of flowers from the response card:

What type of flowers would you like to order?

The following is the response card:

Example: Using a Response Card 306

Amazon Lex V1 Developer Guide

| would like to order flowers

What type of flowers would you like to order?
L imd ae * 1 "
il it 0=

The bot user can either type the text or choose from the list of flower types. This response card
is configured with an image, which appears in the client as shown. For more information about
response cards, see Response Cards.

To create and test a bot with a response card:

1. Follow Getting Started Exercise 1 to create and test an OrderFlowers bot. You must complete
steps 1, 2, and 3. You don't need to add a Lambda function to test the response card. For
instructions, see Exercise 1: Create an Amazon Lex Bot Using a Blueprint (Console).

2. Update the bot by adding the response card, and then publish a version. When you publish a
version, specify an alias (BETA) to point to it.
a. Inthe Amazon Lex console, choose your bot.
b. Choose the OrderFlowers intent.

c. Choose the settings gear icon next to the "What type of flowers" Prompt to configure a
response card for the FlowerType, as shown in the following image.

Example: Using a Response Card 307

Amazon Lex V1

Developer Guide

£ OrderFlowers\WilhRC

Editor Seitimgys

[+]

OrderFlowers

[+]
#AppaintmentType'value
CarMypealues
Crusts
FloweTypas
Frraking
RoomType\Valies

Sires

Emar Handling

Channaks Maonitoring

OrderFlowers

Sample utlerances

would like to pick up flowsrs

wiold like Bo ofdes Some Mowers

Slois
Pronty Reguired Mame Shol bype
v [FlowseiType Floveer
£ Av PickupDate Aaz
o - ABAAT
3 PickupTime AMAL

Hermove

Pramet

Witual type of Nowe E

Vit day do youw 3

Ad what time do yo &

Save

=]

d. Give the card a title and configure three buttons as shown in the following screen shot.
You can optionally add an image to the response card, provided you have an image URL. If

you are deploying your bot using Twilio SMS, you must provide an image URL.

Example: Using a Response Card

308

Amazon Lex V1

Developer Guide

Prompt response cards

Button title*

Button value®

Button title

Button value

Button title

Button value

Tulips

tulips

Lilies

lilies

Roses

OSEs

Card1 € Preview as. Facebook w
Image URL* e example.com/image.png
Title* | What type of flowers?
Subtitle*

© Addcard

e. Choose Save to save the response card.

f. Choose Save intent to save the intent configuration.

g. To build the bot, choose Build.

h. To publish a bot version, choose Publish. Specify BETA as an alias that points to the bot

version. For information about versioning, see Versioning and Aliases.

3. Deploy the bot on a messaging platform:

Example: Using a Response Card

309

Amazon Lex V1 Developer Guide

» Deploy the bot on the Facebook Messenger platform and test the integration. For
instructions, see Integrating an Amazon Lex Bot with Facebook Messenger. When you order
flowers, the message window shows the response card so you can choose a flower type.

» Deploy the bot on the Slack platform and test the integration. For instructions, see
Integrating an Amazon Lex Bot with Slack . When you order flowers, the message window
shows the response card so you can choose a flower type.

» Deploy the bot on the Twilio SMS platform. For instructions, see Integrating an Amazon
Lex Bot with Twilio Programmable SMS . When you order flowers, the message from Twilio
shows the image from the response card. Twilio SMS does not support buttons in the

response.

Updating Utterances

In this exercise, you add additional utterances to those you created in Getting Started Exercise 1.
You use the Monitoring tab in the Amazon Lex console to view utterances that your bot did not
recognize. To improve the experience for your users, you add those utterances to the bot.

Utterance statistics are not generated under the following conditions:

« The childDirected field was set to true when the bot was created.
» You are using slot obfuscation with one or more slots.

» You opted out of participating in improving Amazon Lex.

(® Note

Utterance statistics are generated once a day. You can see the utterance that was not
recognized, how many times it was heard, and the last date and time that the utterance
was heard. It can take up to 24 hours for missed utterances to appear in the console.

You can see utterances for different versions of your bot. To change the version of your bot that
you are seeing utterances for, choose a different version from the drop-down next to the bot name.

Updating Utterances 310

Amazon Lex V1 Developer Guide

To view and add missed utterances to a bot:

1. Follow the first step of Getting Started Exercise 1 to create and test an OrderFlowers bot.
For instructions, see Exercise 1: Create an Amazon Lex Bot Using a Blueprint (Console).

2. Test the bot by typing the following utterances in the Test Bot window. Type each utterance
several times. The example bot doesn't recognize the following utterances:

Order flowers

Get me flowers

Please order flowers

+ Get me some flowers

3. Wait for Amazon Lex to gather usage data about the missed utterances. Utterance data is
generated once per day, generally overnight.

4. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

5. Choose the OrderFlowers bot.

6. Choose the Monitoring tab, and then choose Utterances from the left menu and then choose
the Missed button. The following pane shows a maximum of 100 missed utterances.

Utterances
-
Filter: Q Filter by keyworc Detected Missed
Utterances Count Status Last said date
| want flowers 5 Missed April 21, 2017 at 10:28:13 A
Order flowers 4 Missed April 21, 2017 at 10:28:05 A
Get me some flowers 2 Missed Aprl 21, 2017 at 102749 A
Get me flowers 2 Missed April 21, 2017 at 102725 A
Please order flowers 1 Missed April 21, 2017 at 10:26:55 A
get me some flowers 1 Missed April 21, 2017 at 10:27:18 A

7. To choose the missed utterances that you want to add to the bot, select the check box next to
them. To add the utterance to the $LATEST version of the intent, choose the down arrow next
to the Add utterance to intent dropdown, and then choose the intent.

Updating Utterances 311

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

8. To rebuild your bot, choose Build and then Build again to re-build your bot.

9. To verify that your bot recognizes the new utterances, use the Test Bot pane.

Integrating with a Web site

In this example you integrate a bot with a Web site using text and voice. You use JavaScript and
AWS services to build an interactive experience for visitors to your Web site. You can choose from
these examples documented on the AWS Al Blog:

» Deploy a Web Ul for Your Chatbot—Demonstrates a full-featured Web Ul that provides a Web
client for Amazon Lex chatbots. You can use this to learn about Web clients, or as a building

block for your own application.

» "Greetings, visitor!"—Engage Your Web Users with Amazon Lex—Demonstrates using Amazon

Lex, the AWS SDK for JavaScript in the Browser, and Amazon Cognito to create a conversational
experience on your Web site.

« Capturing Voice Input in a Browser and Sending it to Amazon Lex—Demonstrates embedding a
voice-based chatbot in a Web site using the SDK for JavaScript in the Browser. The application
records audio, sends the audio to Amazon Lex, and then plays the response.

Call Center Agent Assistant

In this tutorial, you use Amazon Lex with Amazon Kendra to build an agent assist bot that assists
customer support agents and publish it as a web application. Amazon Kendra is an enterprise
search service that uses machine learning to search through documents to find answers. For more
information about Amazon Kendra, see the Amazon Kendra Developer Guide.

Amazon Lex bots are widely used in call centers as the first point of contact for customers. A bot is
often capable of resolving customer questions. When a bot can't answer a question, it transfers the
conversation to a customer support employee.

In this tutorial, we create an Amazon Lex bot that agents use to answer customer queries in real
time. By reading the answers that the bot provides, the agent is spared from looking up answers
manually.

Integrating with a Web site 312

https://aws.amazon.com/blogs/ai/
https://aws.amazon.com/blogs/machine-learning/deploy-a-web-ui-for-your-chatbot/
https://aws.amazon.com/blogs/ai/greetings-visitor-engage-your-web-users-with-amazon-lex/
https://aws.amazon.com/blogs/ai/capturing-voice-input-in-a-browser/
https://docs.aws.amazon.com/kendra/latest/dg/what-is-kendra.html

Amazon Lex V1 Developer Guide

The bot and web application that you create in this tutorial helps agents respond to customers
efficiently and accurately by quickly providing the right resources. The following diagram shows
how the web application works.

Customer talks with When the customer Amazon Kendra searches
support agent Amazon Lex keeps asks a question, the index of documents,
track of the conversation Amazon Lex calls which are stored
the KendraSearchintent intent in Amazon 53
Agent Amazon Lex displays Amazon Kendra Amazon Kendra finds
Customer the answer to Amazon Lex returns the answer Amazon Kendra an answer to Amazon 53
the agent te Amazon Lex the question

The agent answers
the customers question

As the diagram shows, the Amazon Kendra index of documents is stored in an Amazon Simple
Storage Service (Amazon S3) bucket. If you don't already have an S3 bucket, you can set one up
when you create the Amazon Kendra index. In addition to Amazon S3, you will use Amazon Cognito
for this tutorial. Amazon Cognito manages permissions for deploying the bot as a web application.

In this tutorial, you create an Amazon Kendra index that provides answers to customer questions,
create the bot and add intents that allow it to suggest answers based on the conversation with
the customer, set up Amazon Cognito to manage access permissions, and deploy the bot as a web
application.

Estimated time: 75 minutes

Estimated cost: $2.50 per hour for an Amazon Kendra index and $0.75 for 1000 Amazon Lex
requests. Your Amazon Kendra index continues to run after you are finished with this exercise. Be
sure to delete it to avoid unnecessary costs.

Note: Make sure that you choose the same AWS Region for all the services used in this tutorial.

Topics

Step 1: Create an Amazon Kendra Index

Step 2: Create an Amazon Lex Bot

Step 3: Add a Custom and Built-in Intent

Step 4: Set up Amazon Cognito

Step 5: Deploy Your Bot as a Web Application

Call Center Agent Assistant 313

Amazon Lex V1 Developer Guide

» Step 6: Use the Bot

Step 1: Create an Amazon Kendra Index

Begin by creating an Amazon Kendra index of documents that answer customer questions. An
index provides a search API for client queries. You create the index from source documents.
Amazon Kendra returns answers it finds in indexed documents to the bot, which displays them to
the agent.

The quality and accuracy of the responses suggested by Amazon Kendra depend on the documents
that you index. Documents should include files that are frequently accessed by the agent and must
be stored in an S3 bucket. You can index unstructured and semi-structured data in .html, Microsoft
Office (.doc, .ppt), PDF, and text formats.

To create an Amazon Kendra index, see Getting started with an S3 bucket (console) in the Amazon

Kendra Developer Guide.

To add questions and answers (FAQs) that help answer customer queries, see Adding questions and
answers in the Amazon Kendra Developer Guide. For this tutorial, use the ML_FAQ.csv file on GitHub.

Next step

Step 2: Create an Amazon Lex Bot

Step 2: Create an Amazon Lex Bot

Amazon Lex provides an interface between the call center agent and the Amazon Kendra

index. It keeps track of the conversation between the agent and the customer and calls the
AMAZON.KendraSearchIntent intent based on the questions the customer asks. An intent is an
action that the user wants to perform.

Amazon Kendra searches the indexed documents and returns an answer to Amazon Lex that it
displays in the bot. This answer is visible only to the agent.

To create an agent assistant bot

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. In the navigation pane, choose Bots.

3. Choose Create.

Step 1: Create an Amazon Kendra Index 314

https://docs.aws.amazon.com/kendra/latest/dg/gs-console.html
https://docs.aws.amazon.com/kendra/latest/dg/in-creating-faq.html
https://docs.aws.amazon.com/kendra/latest/dg/in-creating-faq.html
https://github.com/awsdocs/amazon-lex-developer-guide/blob/master/example_apps/agent_assistance_bot/ML_FAQ.csv
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

4. Choose Custom bot and configure the bot.

a. Bot name - Enter a name that indicates the bot's purpose, such as AgentAssistBot.
b. Output voice - Choose None.
c. Session timeout - Enter 5.
d. COPPA - Choose No.
5. Choose Create. After creating the bot, Amazon Lex displays the bot editor tab.

Next step

Step 3: Add a Custom and Built-in Intent

Step 3: Add a Custom and Built-in Intent

An intent represents an action that the call center agent wants the bot to perform. In this case, the
agent wants the bot to suggest responses and helpful resources based on the agent's conversation
with the customer.

Amazon Lex has two types of intents: custom intents and built-in intents.
AMAZON.KendraSearchIntent is a built-in intent. The bot uses the
AMAZON.KendraSearchIntent intent to query the index and display the responses suggested by
Amazon Kendra.

The bot in this example doesn't need a custom intent. However, to build the bot, you must create
at least one custom intent with at least one sample utterance. This intent is required only to
build your agent assistant bot. It doesn't perform any other function. The utterance for the
intent must not answer any of the questions that the customer might ask. This ensures that the
AMAZON.KendraSearchIntent is called to answer customer queries. For more information, see
AMAZON.KendraSearchintent.

To create the required custom intent

1. On the Getting started with your bot page, choose Create intent.
2. For Add intent, choose Create intent.

3. In the Create intent dialog box, enter a descriptive name for the intent, such as
RequiredIntent.

4. For Sample utterances, enter a descriptive utterance, such as Required utterance.

Step 3: Add a Custom and Built-in Intent 315

Amazon Lex V1 Developer Guide

5. Choose Save intent.

To add the AMAZON.KendraSearchintent intent and response message

In the navigation pane, choose the plus sign (+) next to Intents.

Choose Search existing intents.

In the Search intents box, enter AMAZON.KendraSeaxrchIntent, then choose it from the list.
Give the intent a descriptive name, such as AgentAssistSearchIntent, then choose Add.
In the intent editor, choose Amazon Kendra query to open the query options.

Choose the index that you want the intent to search,

N o u s~ WD =

In the Response section, add the following three messages to a message group.

I found an answer for the customer query: ((x-amz-lex:kendra-search-response-
question_answer-question-1)) and the answer is ((x-amz-lex:kendra-search-response-
guestion_answer-answer-1)).

I found an excerpt from a helpful document: ((x-amz-lex:kendra-search-response-
document-1)).

I think this answer will help the customer: ((x-amz-lex:kendra-search-response-
answer-1)).

8. Choose Save intent.

9. Choose Build to build the bot.

Next step

Step 4: Set up Amazon Cognito

Step 4: Set up Amazon Cognito

To manage permissions and users for the web application, you need to set up Amazon Cognito.
Amazon Cognito ensures that the web application is secure and has access control. Amazon
Cognito uses identity pools to provide AWS credentials that grant your users access to other AWS
services. For this tutorial, it provides access to Amazon Lex.

When creating an identity pool, Amazon Cognito provides you with AWS Identity and Access
Management (IAM) roles for authenticated and unauthenticated users. You modify the IAM roles by
adding policies that grant access to Amazon Lex.

Step 4: Set up Amazon Cognito 316

Amazon Lex V1 Developer Guide

To set up Amazon Cognito

1. Sign into the AWS Management Console and open the Amazon Cognito console at https://
console.aws.amazon.com/cognito/.

2. Choose Manage Identity Pools.
Choose Create new identity pool.

4. Configure the identity pool.

a. Identity pool name - Enter a name that indicates the pool's purpose, such as BotPool.

b. In the Unauthenticated identities section, choose Enable access to unauthenticated
identities.

Choose Create Pool.

On the Identify the IAM roles to use with your new identity pool page, choose View Details.
Record the IAM role names. You will modify them later.

Choose Allow.

On the Getting Started with Amazon Cognito page, for Platform, choose JavaScript.

= © 0o N oW

= O

In the Get AWS Credentials section, find and record the Identity pool ID.

—

To allow access to Amazon Lex, modify the authenticated and unauthenticated IAM roles.

a. Signin to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

b. Inthe navigation pane, under Access Management, choose Roles.

c. Inthe search box, enter the name of the authenticated IAM role and choose the checkbox
next to it.

i. Choose Attach policies.

ii. Inthe search box, enter AmazonLexRunBotsOnly and choose the checkbox next to
it.

iii. Choose Attach policy.

d. Enter the name of the unauthenticated IAM role in the search box and choose the
checkbox next to it.

i. Choose Attach policies.

ii. Inthe search box, enter AmazonLexRunBotsOnly and choose the checkbox next to
it.

Step 4: Set up Amazon Cognito 317

https://console.aws.amazon.com/cognito
https://console.aws.amazon.com/cognito
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Lex V1 Developer Guide

iii. Choose Attach policy.

Next step

Step 5: Deploy Your Bot as a Web Application

Step 5: Deploy Your Bot as a Web Application

To deploy your bot as a web application

1. Download the repository at https://github.com/awsdocs/amazon-lex-developer-guide/blob/

master/example_apps/agent_assistance_bot/ to your computer.

2. Navigate to the downloaded repository and open the index.html file in an editor.
3. Make the following changes.
a. Inthe AWS.config.credentials section, enter your Region name and your identity
pool ID.
b. Inthe Amazon Lex runtime parameters section, enter the bot name.

c. Save thefile.

Step 6: Use the Bot

For demo purposes, you provide input to the bot as the customer and as the agent. To differentiate
between the two, questions asked by the customer begin with “Customer:” and answers provided
by the agent begin with “Agent:". You can choose from a menu of suggested inputs.

Run your web application by opening index.html to engage in a conversation similar to the
following image with your bot:

Step 5: Deploy Your Bot as a Web Application 318

https://github.com/awsdocs/amazon-lex-developer-guide/blob/master/example_apps/agent_assistance_bot/
https://github.com/awsdocs/amazon-lex-developer-guide/blob/master/example_apps/agent_assistance_bot/

Amazon Lex V1 Developer Guide

Call Center Bot with Agent Assistant

Agent: How can I help you? I found a FAQ question for you: What is Amazon
SageMaker? and the answer is Amazon
Customer: What is Amazon SageMaker? SageMake[isa fully [nanaged service that
. provides every developer and data scientist with

Agent: Amazon SageMaker is a fully managed the ability to build, train, and deploy machine
service that provides every developer and data learning (ML) models quickly. SageMaker
scientist with the ability to build, train, and deploy removes the heavy lifting from each step of the
machine learning (ML) models quickly. machine learning process to make it easier to

develop high quality models..
Customer: When should I use Polly instead of p bigh quality

Lex? I found a FAQ question for you: When do I use
Amazon Polly vs. Amazon Lex? and the answer is
Amazon Polly converts text inputs to speech.
Amazon Lex 1s a service for building
conversational interfaces using voice and text..

Agent: Amazon Polly converts text inputs to
speech. Amazon Lex is a service for building
conversational interfaces using voice and text.

Customer: I have no more questions. Thank yvou.

Conversation Ended.

v Amazon Kendra N

The pushChat () function in the index.html file is explained below.

var endConversationStatement = "Customer: I have no more questions. Thank
you."
// If the agent has to send a message, start the message with 'Agent'
var inputText = document.getElementById('input');
if (inputText && inputText.value && inputText.value.trim().length > 0 &&
inputText.value[@]=='Agent') {
showMessage(inputText.value, 'agentRequest', 'conversation');
inputText.value = "";
}
// If the customer has to send a message, start the message with 'Customer'
if(inputText && inputText.value && inputText.value.trim().length > 0 &&
inputText.value[@]=='Customer') {
// disable input to show we're sending it
var input = inputText.value.trim();
inputText.value = '..."';
inputText.locked = true;
customerInput = input.substring(2);

Step 6: Use the Bot 319

Amazon Lex V1 Developer Guide

// Send it to the Lex runtime
var params = {
botAlias: '$LATEST',
botName: 'KendraTestBot',
inputText: customerInput,
userId: lexUserId,
sessionAttributes: sessionAttributes

i

showMessage(input, 'customerRequest', 'conversation');
if(input== endConversationStatement){
showMessage('Conversation
Ended.', 'conversationEndRequest', 'conversation');

}
lexruntime.postText(params, function(err, data) {
if (err) {
console.log(err, err.stack);
showMessage('Error: ' + err.message + ' (see console for

details)', 'lexError', 'conversationl')

}

if (data &&input!=endConversationStatement) {
// capture the sessionAttributes for the next cycle
sessionAttributes = data.sessionAttributes;

showMessage(data, 'lexResponse', 'conversationl');
}
// re-enable input
inputText.value = '';
inputText.locked = false;
1)
}
// we always cancel form submission
return false;

When you provide input as a customer, the Amazon Lex runtime API sends it to Amazon Lex.

The showMessage(daText, senderRequest, displayWindow) fuction displays the
conversation between the agent and the customer in the chat window. Responses suggested by
Amazon Kendra are shown in an adjacent window. The conversation ends when customer says “I
have no more questions. Thank you.”

Step 6: Use the Bot 320

Amazon Lex V1 Developer Guide

Note: Please delete your Amazon Kendra index when not in use.

Step 6: Use the Bot 321

Amazon Lex V1 Developer Guide

Migrating a bot

The Amazon Lex V2 API uses an updated information architecture that enables simplified resource
versioning and support for multiple languages in a bot. For more information, see the Migration
guide in the Amazon Lex V2 Developer Guide.

To use these new features, you need to migrate your bot. When you migrate a bot, Amazon Lex
provides the following:
» Migration copies your custom intents and slot types to the Amazon Lex V2 bot.

« You can add multiple languages to the same Amazon Lex V2 bot. In Amazon Lex V1 you create
a separate bot for each language. You can migrate multiple Amazon Lex V1 bots, each using a
different language, to one Amazon Lex V2 bot.

« Amazon Lex maps Amazon Lex V1 built-in slot types and intents to Amazon Lex V2 built-in slot
types and intents. If a built-in can't be migrated, Amazon Lex returns a message that tells you
what to do next.

The migration process doesn't migrate the following:

« Aliases

« Amazon Kendra indexes

« AWS Lambda functions

« Conversation log settings

« Messaging channels such as Slack

» Tags

To migrate a bot, your user or role must have IAM permission for both Amazon Lex and Amazon
Lex V2 API operations. For the required permissions, see Allow a user to migrate a bot to Amazon
Lex V2 APls.

Migrating a bot (Console)

Use the Amazon Lex V1 console to migrate the structure of a bot to an Amazon Lex V2 bot.

Migrating a bot (Console) 322

https://docs.aws.amazon.com/lexv2/latest/dg/migration.html
https://docs.aws.amazon.com/lexv2/latest/dg/migration.html

Amazon Lex V1 Developer Guide

To use the console to migrate a bot to the Amazon Lex V2 API

1. Signin to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. From the left menu, choose Migration tool.
3. From the list of bots, choose the bot that you want to migrate and then choose Migrate.

4. Choose the version of the bot that you want to migrate, then enter the name of the bot to
migrate to. If you enter the name of an existing Amazon Lex V2 bot, the Amazon Lex V1
bot is migrated to the language shown in the details and overwrites the Draft version of the
language.

5. Choose Next.

6. Choose the IAM role that Amazon Lex uses to run the Amazon Lex V2 API version of the bot.
You can choose to create a new role with the minimum permissions required to run the bot, or
you can choose an existing IAM role.

7. Choose Next.

8. Review the settings for migration. If they look OK, choose Start migration.

After you start the migration process, you are returned to the migration tool start page. You can
monitor the progress of the migration in the History table. When the Migration status column says
Complete the migration is finished.

Amazon Lex uses the StartImport operation in the Amazon Lex V2 API to import the migrated
bot. You'll see an entry in the Amazon Lex V2 console import history table for each migration.

During the migration, Amazon Lex may find resources in the bot that can't be migrated. You get an
error or warning message for each resource that can't be migrated. Each message includes a link to
documentation that explains how to resolve the issue.

Migrating a Lambda function

Amazon Lex V2 changes the way that Lambda functions are defined for a bot. It only allows one
Lambda function in an alias for each language in a bot. For more information on migrating your
Lambda functions, see Migrating a Lambda function from Amazon Lex V1 to Amazon Lex V2.

Migrating a Lambda function 323

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

Migration messages

During migration, Amazon Lex may find resources, such as built-in slot types, that it can't migrate
to the equivalent Amazon Lex V2 resource. When this happens, Amazon Lex returns a migration
message that describes what happened and provides a link to the documentation that tells you
how to fix the migration issue. The following sections describe the issues that might arise when you
are migrating a bot and how to fix the issue.

Topics

e Built-in intent

 Built-in slot type

« Conversation logs

» Message groups

o Prompts and phrases

o Other Amazon Lex V1 features

Built-in intent

When you use a built-in intent that is not supported in Amazon Lex V2, the intent is mapped to
a custom intent in your Amazon Lex V2 bot. The custom intent doesn't contain utterances. To
continue using the intent, add sample utterances.

Built-in slot type

Any migrated slot that uses a slot type that is not supported in Amazon Lex V2 won't be given a
slot type value. To use this slot:

» Create a custom slot type
« Add slot type values that are expected for the slot type
« Update the slot to use the new custom slot type

Conversation logs

Migration doesn't update the conversation log settings of the Amazon Lex V2 bot.

Migration messages 324

Amazon Lex V1 Developer Guide

To configure conversation logs

1. Open the Amazon Lex V2 console at https://console.aws.amazon.com/lexv2 .

2. From the list of bots, choose the bot whose conversation logs you want to configure.

3. From the left menu, choose Aliases, and then choose an alias from the list.

4. In the Conversation logs section, choose Manage conversation logs to configure conversation

logs for the bot alias.

Message groups

Amazon Lex V2 supports only one message and two alternative messages per message group. If
you have more than three messages per message group in an Amazon Lex V1 bot, only the first
three messages are migrated. To use more messages in a message group, use a Lambda function to
output various messages.

Prompts and phrases

Amazon Lex V2 uses a different mechanism for follow up, clarification, and hang up prompts.
For follow up prompts, use context carryover to switch to a different intent after fulfillment.

For example, suppose that you have an intent to book a car rental that is configured to return a
output context called book_car_fulfilled. When the intent is fulfilled, Amazon Lex sets the
output context variable to book_car_fulfilled. Since book_car_fulfilled is an active
context, an intent with book_car_fulfilled as an input context is considered for recognition,
as long as the user utterance is recognized as an attempt to elicit that intent. You can use this
for intents that only make sense after booking a car, such as emailing a receipt or modifying a
reservation.

Amazon Lex V2 does not support clarification prompts and hang up phrases (abort statements).
Amazon Lex V2 bots contain a default fallback intent that is invoked if no intents are matched. To
send a clarification prompt with retries, configure a Lambda function and enable the dialog code
hook in the fallback intent. The Lambda function can output a clarification prompt as a response
and the retry value in a session attribute. If the retry value exceeds the maximum number of
retries, you can output a hang up phrase and close the conversation.

Message groups 325

https://console.aws.amazon.com/lexv2

Amazon Lex V1 Developer Guide

Other Amazon Lex V1 features

The migration tool supports only migration of Amazon Lex V1 bots and their underlying
intents, slot types, and slots. For other features, see the following topics in the Amazon Lex V2
documentation.

« Bot aliases: Aliases

» Bot channels: Deploying an Amazon Lex V2 bot on a messaging platform

« Conversation log settings: Monitoring with conversation logs

« Amazon Kendra indexes: AMAZON.KendraSearchlntent

o Lambda functions: Using an AWS Lambda function

« Tags: Tagging resources

Migrating a Lambda function from Amazon Lex V1 to Amazon
Lex V2

Amazon Lex V2 allows only one Lambda function for each language in a bot. The Lambda function
and its settings are configured for the bot alias that you use at runtime.

The Lambda function is invoked for all intents in that language if dialog and fulfillment code hooks
are enabled for the intent.

Amazon Lex V2 Lambda functions have a different input and output message format from Amazon
Lex V1. These are the differences in the Lambda function input format.

« Amazon Lex V2 replaces the currentIntent and alternativelntents structures with the
interpretations structure. Each interpretation contains an intent, the NLU confidence score
for the intent, and an optional sentiment analysis.

« Amazon Lex V2 moves the activeContexts, sessionAttributes in Amazon Lex V1 to the
unified sessionState structure. This structure provides information about the current state of
the conversation, including the originating request ID.

« Amazon Lex V2 doesn't return the recentIntentSummaryView. Use the information in the
sessionState structure instead.

« The Amazon Lex V2 input provides the botId and localeId in the bot attribute.

Other Amazon Lex V1 features 326

https://docs.aws.amazon.com/lexv2/latest/dg/aliases.html
https://docs.aws.amazon.com/lexv2/latest/dg/deploying-messaging-platform.html
https://docs.aws.amazon.com/lexv2/latest/dg/monitoring-logs.html
https://docs.aws.amazon.com/lexv2/latest/dg/built-in-intent-kendra-search.html
https://docs.aws.amazon.com/lexv2/latest/dg/lambda.html
https://docs.aws.amazon.com/lexv2/latest/dg/tagging.html

Amazon Lex V1 Developer Guide

« The input structure contains an inputMode attribute that provides information on the type of
input: text, speech, or DTMF.

These are the differences in the Lambda function output format:

 The activeContexts and sessionAttributes structures in Amazon Lex V1 are replaced by
the sessionState structure in Amazon Lex V2.

« The recentIntentSummaryView isn't included in the output.

« The Amazon Lex V1 dialogAction structure is split into two structures, dialogAction
that is part of the sessionState structure, and messages that is required when the
dialogAction.typeis ElicitIntent. Amazon Lex chooses messages from this structure to
show to the user.

When you build a bot with the Amazon Lex V2 APIs, there is only one Lambda function per bot
alias per language instead of a Lambda function for each intent. If you want to continue to use
separate functions, you can create a router function that activates a separate function for each
intent. The following is a router function that you can use or modify for your application.

import os
import json
import boto3

reuse client connection as global
client = boto3.client('lambda')

def router(event):
intent_name = event['sessionState']['intent']['name']
fn_name = os.environ.get(intent_name)
print(f"Intent: {intent_name} -> Lambda: {fn_namel}")
if (fn_name):
invoke lambda and return result
invoke_response = client.invoke(FunctionName=fn_name, Payload =
json.dumps(event))
print(invoke_response)
payload = json.load(invoke_response['Payload'])
return payload
raise Exception('No environment variable for intent: ' + intent_name)

def lambda_handler(event, context):

Migrating a Lambda function 327

Amazon Lex V1 Developer Guide

print(event)
response = router(event)
return response

List of updated fields

The following tables provide detailed information about the updated fields in the Amazon Lex V2
Lambda request and response. You can use these tables to map fields between the versions.

Request
The following fields have been updated in the Lambda function request format.
Active contexts

The activeContexts structure is now part of the sessionState structure.

V1 structure V2 structure
activeContexts sessionState.activeContexts
activeContexts[*].timeToLive sessionState.activeContexts[*].timeToLive

activeContexts[*].timeToLive.timeToLivelnSeco sessionState.activeContexts[*].timeToLive.tim

nds eToLivelnSeconds

activeContexts[*].timeToLive.turnsToLive sessionState.activeContexts[*].timeToLive.tur
nsToLive

activeContexts[*].name sessionState.activeContexts[*].name

activeContexts[*].parameters sessionState.activeContexts[*].contextAttribu
tes

Alternative intents

The interpretations list from index 1 to N contains the list of alternative intents predicted
by Amazon Lex V2, along with their confidence scores. The recentIntentSummaryView
is removed from the request structure in Amazon Lex V2. To see the details from the
recentIntentSummaryView, use the GetSession operation.

List of updated fields 328

Amazon Lex V1 Developer Guide

V1 structure V2 structure
alternativelntents interpretations[1:*]
recentintentSummaryView N/A

Bot

In Amazon Lex V2, bots and aliases have identifiers. The bot ID is part of the codehook input. The
alias ID is included, but not the alias name. Amazon Lex V2 supports multiple locales for the same
bot so the locale ID is included.

V1 structure V2 structure
bot bot
bot.name bot.name
N/A bot.id
bot.alias N/A

N/A bot.aliasld
bot.version bot.version
N/A bot.localeld

Current intent

The sessionState.intent structure contains the details of the active intent. Amazon

Lex V2 also returns a list of all of the intents, including alternative intents, in the
interpretations structure. The first element in the interpretations list is always the same as
sessionState.intent.

List of updated fields 329

Amazon Lex V1 Developer Guide

V1 structure V2 structure

currentintent sessionState.intent OR interpretations[0]
.intent

currentintent.name sessionState.intent.name OR interpret

ations[0].intent.name

currentintent.nluConfidenceScore interpretations[0].nluConfidence.score

Dialog action

The confirmationStatus field is now part of the sessionState structure.

V1 structure V2 structure

currentintent.confirmationStatus sessionState.intent.confirmationState OR
interpretations[0].intent.confirmationState

N/A sessionState.intent.state OR interpretations[*]
.intent.state

Amazon Kendra

The kendraResponse field is now part of the sessionState and interpretations structures.

V1 structure V2 structure

kendraResponse sessionState.intent.kendraResponse OR
interpretations[0].intent.kendraResponse

Sentiment

The sentimentResponse structure is moved to the new interpretations structure.

List of updated fields 330

Amazon Lex V1 Developer Guide

V1 structure V2 structure

sentimentResponse interpretations[0].sentimentResponse

sentimentRespo