
Developer Guide for version 1.x

AWS SDK for Java 1.x

AWS SDK for Java 1.x Developer Guide for version 1.x

AWS SDK for Java 1.x: Developer Guide for version 1.x

AWS SDK for Java 1.x Developer Guide for version 1.x

Table of Contents

... viii
AWS SDK for Java 1.x .. 1

Version 2 of the SDK released ... 1
Additional Documentation and Resources .. 1
Eclipse IDE Support .. 2
Developing Applications for Android ... 2
Viewing the SDK’s Revision History .. 2
Building Java Reference Documentation for Earlier SDK versions ... 2

Getting Started .. 4
Basic setup ... 4

Overview ... 4
Sign-in ability to the AWS access portal .. 5
Set up shared configuration files .. 5
Install a Java Development Environment .. 7

Ways to get the AWS SDK for Java .. 7
Prerequisites ... 7
Use a build tool ... 8
Download prebuilt jar .. 8
Build from source .. 9

Use build tools .. 9
Use the SDK with Apache Maven .. 10
Use the SDK with Gradle .. 13

Temporary credentials and Region ... 16
Configure temporary credentials ... 17
Refreshing IMDS credentials ... 18
Set the AWS Region ... 18

Using the AWS SDK for Java .. 20
Best Practices for AWS Development with the AWS SDK for Java .. 20

S3 .. 20
Creating Service Clients .. 21

Obtaining a Client Builder .. 21
Creating Async Clients ... 23
Using DefaultClient .. 23
Client Lifecycle .. 24

iii

AWS SDK for Java 1.x Developer Guide for version 1.x

Provide temporary credentials .. 24
Using the Default Credential Provider Chain .. 24
Specify a credential provider or provider chain ... 28
Explicitly specify temporary credentials .. 28
More Info .. 29

AWS Region Selection ... 29
Checking for Service Availability in a Region ... 29
Choosing a Region .. 30
Choosing a Specific Endpoint .. 30
Automatically Determine the Region from the Environment .. 31

Exception Handling .. 32
Why Unchecked Exceptions? .. 32
AmazonServiceException (and Subclasses) ... 33
AmazonClientException ... 33

Asynchronous Programming .. 34
Java Futures ... 34
Asynchronous Callbacks .. 36
Best Practices ... 37

Logging AWS SDK for Java Calls .. 38
Download the Log4J JAR .. 38
Setting the Classpath ... 39
Service-Specific Errors and Warnings ... 39
Request/Response Summary Logging .. 40
Verbose Wire Logging .. 41
Latency Metrics Logging ... 41

Client Configuration .. 42
Proxy Configuration .. 42
HTTP Transport Configuration ... 42
TCP Socket Buffer Size Hints ... 44

Access Control Policies .. 44
Amazon S3 Example .. 45
Amazon SQS Example ... 45
Amazon SNS Example .. 46

Set the JVM TTL for DNS name lookups .. 46
How to set the JVM TTL ... 47

Enabling Metrics for the AWS SDK for Java ... 47

iv

AWS SDK for Java 1.x Developer Guide for version 1.x

How to Enable Java SDK Metric Generation ... 48
Available Metric Types ... 49
More Information .. 52

Code Examples ... 53
AWS SDK for Java 2.x ... 53
Amazon CloudWatch Examples ... 53

Getting Metrics from CloudWatch .. 54
Publishing Custom Metric Data ... 55
Working with CloudWatch Alarms .. 57
Using Alarm Actions in CloudWatch ... 60
Sending Events to CloudWatch ... 61

Amazon DynamoDB Examples ... 64
Working with Tables in DynamoDB .. 65
Working with Items in DynamoDB .. 72

Amazon EC2 Examples .. 78
Tutorial: Starting an EC2 Instance .. 79
Using IAM Roles to Grant Access to AWS Resources on Amazon EC2 .. 84
Tutorial: Amazon EC2 Spot Instances ... 90
Tutorial: Advanced Amazon EC2 Spot Request Management ... 101
Managing Amazon EC2 Instances ... 118
Using Elastic IP Addresses in Amazon EC2 ... 123
Use regions and availability zones .. 127
Working with Amazon EC2 Key Pairs ... 130
Working with Security Groups in Amazon EC2 .. 132

AWS Identity and Access Management (IAM) Examples ... 135
Managing IAM Access Keys ... 136
Managing IAM Users .. 140
Using IAM Account Aliases ... 143
Working with IAM Policies .. 146
Working with IAM Server Certificates .. 150

Amazon Lambda Examples .. 154
Service operations .. 154

Amazon Pinpoint Examples .. 158
Creating and Deleting Apps in Amazon Pinpoint .. 159
Creating Endpoints in Amazon Pinpoint ... 160
Creating Segments in Amazon Pinpoint .. 162

v

AWS SDK for Java 1.x Developer Guide for version 1.x

Creating Campaigns in Amazon Pinpoint .. 164
Updating Channels in Amazon Pinpoint .. 166

Amazon S3 Examples .. 167
Creating, Listing, and Deleting Amazon S3 Buckets ... 167
Performing Operations on Amazon S3 Objects ... 172
Managing Amazon S3 Access Permissions for Buckets and Objects .. 177
Managing Access to Amazon S3 Buckets Using Bucket Policies ... 181
Using TransferManager for Amazon S3 Operations .. 185
Configuring an Amazon S3 Bucket as a Website ... 197
Use Amazon S3 client-side encryption .. 201

Amazon SQS Examples ... 207
Working with Amazon SQS Message Queues ... 208
Sending, Receiving, and Deleting Amazon SQS Messages ... 211
Enabling Long Polling for Amazon SQS Message Queues ... 213
Setting Visibility Timeout in Amazon SQS .. 215
Using Dead Letter Queues in Amazon SQS .. 218

Amazon SWF Examples ... 220
SWF basics ... 221
Building a Simple Amazon SWF Application .. 222
Lambda Tasks .. 242
Shutting Down Activity and Workflow Workers Gracefully ... 246
Registering Domains .. 249
Listing Domains .. 250

Code Samples included with the SDK ... 251
How to Get the Samples .. 251
Building and Running the Samples Using the Command Line ... 251
Building and Running the Samples Using the Eclipse IDE ... 252

Security .. 254
Data protection .. 254
Enforcing a minimum TLS version ... 255

How to check the TLS version ... 255
Enforcing a minimum TLS version .. 256

Identity and Access Management .. 256
Audience ... 257
Authenticating with identities ... 257
Managing access using policies ... 261

vi

AWS SDK for Java 1.x Developer Guide for version 1.x

How AWS services work with IAM .. 263
Troubleshooting AWS identity and access .. 263

Compliance Validation .. 265
Resilience ... 266
Infrastructure Security .. 267
S3 Encryption Client Migration ... 268

Prerequisites .. 268
Migration Overview .. 268
Update Existing Clients to Read New Formats ... 268
Migrate Encryption and Decryption Clients to V2 ... 270
Additional Examples .. 272

OpenPGP key ... 274
Current key .. 274

Document History .. 276

vii

AWS SDK for Java 1.x Developer Guide for version 1.x

We announced the upcoming end-of-support for AWS SDK for Java (v1). We recommend that you
migrate to AWS SDK for Java v2. For dates, additional details, and information on how to migrate,
please refer to the linked announcement.

viii

https://aws.amazon.com/blogs/developer/announcing-end-of-support-for-aws-sdk-for-java-v1-x-on-december-31-2025/
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/home.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Developer Guide - AWS SDK for Java 1.x

The AWS SDK for Java provides a Java API for AWS services. Using the SDK, you can easily build
Java applications that work with Amazon S3, Amazon EC2, DynamoDB, and more. We regularly add
support for new services to the AWS SDK for Java. For a list of the supported services and their API
versions that are included with each release of the SDK, view the release notes for the version that
you’re working with.

Version 2 of the SDK released

Take a look at the new AWS SDK for Java 2.x at https://github.com/aws/aws-sdk-java-v2/. It
includes much awaited features, such as a way to plug in an HTTP implementation. To get started,
see the AWS SDK for Java 2.x Developer Guide.

Additional Documentation and Resources

In addition to this guide, the following are valuable online resources for AWS SDK for Java
developers:

• AWS SDK for Java API Reference

• Java developer blog

• Java developer forums

• GitHub:

• Documentation source

• Documentation issues

• SDK source

• SDK issues

• SDK samples

• Gitter channel

• The AWS Code Sample Catalog

• @awsforjava (Twitter)

• release notes

Version 2 of the SDK released 1

https://aws.amazon.com/sdk-for-java/
https://github.com/aws/aws-sdk-java#release-notes
https://github.com/aws/aws-sdk-java-v2/
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
https://aws.amazon.com/blogs/developer/category/java
https://forums.aws.amazon.com/forum.jspa?forumID=70
https://github.com/awsdocs/aws-java-developer-guide
https://github.com/awsdocs/aws-java-developer-guide/issues
https://github.com/aws/aws-sdk-java
https://github.com/aws/aws-sdk-java/issues
https://github.com/aws/aws-sdk-java/tree/master/src/samples
https://gitter.im/aws/aws-sdk-java
http://docs.aws.amazon.com/code-samples/latest/catalog/
https://twitter.com/awsforjava
https://github.com/aws/aws-sdk-java#release-notes

AWS SDK for Java 1.x Developer Guide for version 1.x

Eclipse IDE Support

If you develop code using the Eclipse IDE, you can use the AWS Toolkit for Eclipse to add the AWS
SDK for Java to an existing Eclipse project or to create a new AWS SDK for Java project. The toolkit
also supports creating and uploading Lambda functions, launching and monitoring Amazon EC2
instances, managing IAM users and security groups, a AWS CloudFormation template editor, and
more.

See the AWS Toolkit for Eclipse User Guide for full documentation.

Developing Applications for Android

If you’re an Android developer, Amazon Web Services publishes an SDK made specifically for
Android development: the Amplify Android (AWS Mobile SDK for Android).

Viewing the SDK’s Revision History

To view the release history of the AWS SDK for Java, including changes and supported services per
SDK version, see the SDK’s release notes.

Building Java Reference Documentation for Earlier SDK
versions

The AWS SDK for Java API Reference represents the most recent build of version 1.x of the SDK.
If you’re using an earlier build of the 1.x version, you might want to access the SDK reference
documentation that matches the version you’re using.

The easiest way to build the documentation is using Apache’s Maven build tool. Download and
install Maven first if you don’t already have it on your system, then use the following instructions to
build the reference documentation.

1. Locate and select the SDK version that you’re using on the releases page of the SDK repository
on GitHub.

2. Choose either the zip (most platforms, including Windows) or tar.gz (Linux, macOS, or Unix)
link to download the SDK to your computer.

3. Unpack the archive to a local directory.

Eclipse IDE Support 2

https://aws.amazon.com/eclipse/
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/
https://docs.aws.amazon.com/sdk-for-android/index.html
https://github.com/aws/aws-sdk-java#release-notes
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
https://maven.apache.org/
https://github.com/aws/aws-sdk-java/releases

AWS SDK for Java 1.x Developer Guide for version 1.x

4. On the command line, navigate to the directory where you unpacked the archive, and type the
following.

mvn javadoc:javadoc

5. After building is complete, you’ll find the generated HTML documentation in the aws-java-
sdk/target/site/apidocs/ directory.

Building Java Reference Documentation for Earlier SDK versions 3

AWS SDK for Java 1.x Developer Guide for version 1.x

Getting Started

This section provides information about how to install, set up, and use the AWS SDK for Java.

Topics

• Basic setup to work with AWS services

• Ways to get the AWS SDK for Java

• Use build tools

• Set up AWS temporary credentials and AWS Region for development

Basic setup to work with AWS services

Overview

To successfully develop applications that access AWS services using the AWS SDK for Java, the
following conditions are required:

• You must be able to sign in to the AWS access portal available in the AWS IAM Identity Center.

• The permissions of the IAM role configured for the SDK must allow access to the AWS services
that your application requires. The permissions associated with the PowerUserAccess AWS
managed policy are sufficient for most development needs.

• A development environment with the following elements:

• Shared configuration files that are set up in the following way:

• The config file contains a default profile that specifies an AWS Region.

• The credentials file contains temporary credentials as part of a default profile.

• A suitable installation of Java.

• A build automation tool such as Maven or Gradle.

• A text editor to work with code.

• (Optional, but recommended) An IDE (integrated development environment) such as IntelliJ
IDEA, Eclipse, or NetBeans.

When you use an IDE, you can also integrate AWS Toolkits to more easily work with AWS
services. The AWS Toolkit for IntelliJ and AWS Toolkit for Eclipse are two toolkits that you can
use for Java development.

Basic setup 4

https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html
https://maven.apache.org/download.cgi
https://gradle.org/install/
https://www.jetbrains.com/idea/download/#section=windows
https://www.jetbrains.com/idea/download/#section=windows
https://www.eclipse.org/ide/
https://netbeans.org/downloads/
https://docs.aws.amazon.com/toolkit-for-jetbrains/latest/userguide/welcome.html
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/welcome.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Important

The instructions in this setup section assume that you or organization uses IAM Identity
Center. If your organization uses an external identity provider that works independently of
IAM Identity Center, find out how you can get temporary credentials for the SDK for Java to
use. Follow these instructions to add temporary credentials to the ~/.aws/credentials
file.
If your identity provider adds temporary credentials automatically to the ~/.aws/
credentials file, make sure that the profile name is [default] so that you do not need
to provide a profile name to the SDK or AWS CLI.

Sign-in ability to the AWS access portal

The AWS access portal is the web location where you manually sign in to the IAM
Identity Center. The format of the URL is d-xxxxxxxxxx.awsapps.com/startor
your_subdomain.awsapps.com/start.

If you are not familiar with the AWS access portal, follow the guidance for account access in Step 1
of the IAM Identity Center authentication topic in the AWS SDKs and Tools Reference Guide. Do not
follow the Step 2 because the AWS SDK for Java 1.x does not support automatic token refresh and
automatic retrieval of temporary credentials for the SDK that Step 2 describes.

Set up shared configuration files

The shared configuration files reside on your development workstation and contain basic settings
used by all AWS SDKs and the AWS Command Line Interface (CLI). The shared configuration files
can contain a number of settings, but these instructions set up the basic elements that are required
to work with the SDK.

Set up the shared config file

The following example shows content of a shared config file.

[default]
region=us-east-1
output=json

Sign-in ability to the AWS access portal 5

https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html#idcGettingStarted
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html#idcGettingStarted
https://docs.aws.amazon.com/sdkref/latest/guide/settings-reference.html

AWS SDK for Java 1.x Developer Guide for version 1.x

For development purposes, use the AWS Region nearest to where you plan to run your code. For a
listing of region codes to use in the config file see the Amazon Web Services General Reference
guide. The json setting for the output format is one of several possible values.

Follow the guidance in this section to create the config file.

Set up temporary credentials for the SDK

After you have access to an AWS account and IAM role through the AWS access portal, configure
your development environment with temporary credentials for the SDK to access.

Steps to set up a local credentials file with temporary credentials

1. Create a shared credentials file.

2. In the credentials file, paste the following placeholder text until you paste in working
temporary credentials.

[default]
aws_access_key_id=<value from AWS access portal>
aws_secret_access_key=<value from AWS access portal>
aws_session_token=<value from AWS access portal>

3. Save the file. The file ~/.aws/credentials should now exist on your local development
system. This file contains the [default] profile that the SDK for Java uses if a specific named
profile is not specified.

4. Sign in to the AWS access portal.

5. Follow these instructions under the Manual credential refresh heading to copy IAM role
credentials from the AWS access portal.

a. For step 4 in the linked instructions, choose the IAM role name that grants access for your
development needs. This role typically has a name like PowerUserAccess or Developer.

b. For step 7, select the Manually add a profile to your AWS credentials file option and
copy the contents.

6. Paste the copied credentials into your local credentials file and remove any profile name
that was pasted. Your file should resemble the following:

[default]
aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Set up shared configuration files 6

https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://docs.aws.amazon.com/general/latest/gr/rande.html#region-names-codes
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-output-format.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html#file-format-profile
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtosignin.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html#how-to-get-temp-credentials

AWS SDK for Java 1.x Developer Guide for version 1.x

aws_session_token=IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZVERYLONGSTRINGEXAMPLE

7. Save the credentials file

The SDK for Java will access these temporary credentials when it create a service client and use
them for each request. The settings for the IAM role chosen in step 5a determine how long the
temporary credentials are valid. The maximum duration is twelve hours.

After the temporary credentials expire, repeat steps 4 through 7.

Install a Java Development Environment

The AWS SDK for Java requires J2SE Development Kit 6.0 or later. You can download the latest
Java software from http://www.oracle.com/technetwork/java/javase/downloads/.

Important

Java version 1.6 (JS2E 6.0) did not have built-in support for SHA256-signed SSL
certificates, which are required for all HTTPS connections with AWS after September 30,
2015.
Java versions 1.7 or newer are packaged with updated certificates and are unaffected by
this issue.

Choosing a JVM

For the best performance of your server-based applications with the AWS SDK for Java, we
recommend that you use the 64-bit version of the Java Virtual Machine (JVM). This JVM runs only in
server mode, even if you specify the -Client option at run time.

Using the 32-bit version of the JVM with the -Server option at run time should provide
comparable performance to the 64-bit JVM.

Ways to get the AWS SDK for Java

Prerequisites

To use the AWS SDK for Java, you must have:

• You must be able to sign in to the AWS access portal available in the AWS IAM Identity Center.

Install a Java Development Environment 7

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtosessionduration.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtosessionduration.html
http://www.oracle.com/technetwork/java/javase/downloads/

AWS SDK for Java 1.x Developer Guide for version 1.x

• A suitable installation of Java.

• Temporary credentials set up in your local shared credentials file.

See the the section called “Basic setup” topic for instructions on how to get set up to use the SDK
for Java.

Use a build tool to manage dependencies for the SDK for Java

We recommend using Apache Maven or Gradle with your project to access required dependencies
of the SDK for Java. This section describes how to use those tools.

Download and extract the SDK (not recommended)

We recommend that you use a build tool to access the SDK for your project, You can, however,
download a prebuilt jar of latest version of the SDK .

Note

For information about how to download and build previous versions of the SDK, see
Installing previous versions of the SDK.

1. Download the SDK from https://sdk-for-java.amazonwebservices.com/latest/aws-java-sdk.zip.

2. After downloading the SDK, extract the contents into a local directory.

The SDK contains the following directories:

• documentation- contains the API documentation (also available on the web: AWS SDK for Java
API Reference).

• lib- contains the SDK .jar files.

• samples- contains working sample code that demonstrates how to use the SDK.

• third-party/lib- contains third-party libraries that are used by the SDK, such as Apache
commons logging, AspectJ and the Spring framework.

To use the SDK, add the full path to the lib and third-party directories to the dependencies in
your build file, and add them to your java CLASSPATH to run your code.

Use a build tool 8

https://sdk-for-java.amazonwebservices.com/latest/aws-java-sdk.zip
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/

AWS SDK for Java 1.x Developer Guide for version 1.x

Build previous versions of the SDK from source (not recommended)

Only the latest version of the complete SDK is provided in pre-built form as a downloadable jar.
However, you can build a previous version of the SDK using Apache Maven (open source). Maven
will download all necessary dependencies, build and install the SDK in one step. Visit http://
maven.apache.org/ for installation instructions and more information.

1. Go to the SDK’s GitHub page at: AWS SDK for Java (GitHub).

2. Choose the tag corresponding to the version number of the SDK that you want. For example,
1.6.10.

3. Click the Download ZIP button to download the version of the SDK you selected.

4. Unzip the file to a directory on your development system. On many systems, you can use your
graphical file manager to do this, or use the unzip utility in a terminal window.

5. In a terminal window, navigate to the directory where you unzipped the SDK source.

6. Build and install the SDK with the following command (Maven required):

mvn clean install -Dgpg.skip=true

The resulting .jar file is built into the target directory.

7. (Optional) Build the API Reference documentation using the following command:

mvn javadoc:javadoc

The documentation is built into the target/site/apidocs/ directory.

Use build tools

The use of build tools helps manage the development of Java projects. Several build tools are
available, but we show how to get up and running with two popular build tools--Maven and Gradle.
This topic shows you how to use these build tools manage the SDK for Java dependencies that you
need for your projects.

Topics

• Use the SDK with Apache Maven

• Use the SDK with Gradle

Build from source 9

http://maven.apache.org/
http://maven.apache.org/
https://github.com/aws/aws-sdk-java
https://maven.apache.org/

AWS SDK for Java 1.x Developer Guide for version 1.x

Use the SDK with Apache Maven

You can use Apache Maven to configure and build AWS SDK for Java projects, or to build the SDK
itself.

Note

You must have Maven installed to use the guidance in this topic. If it isn’t already installed,
visit http://maven.apache.org/ to download and install it.

Create a new Maven package

To create a basic Maven package, open a terminal (command-line) window and run:

mvn -B archetype:generate \
 -DarchetypeGroupId=org.apache.maven.archetypes \
 -DgroupId=org.example.basicapp \
 -DartifactId=myapp

Replace org.example.basicapp with the full package namespace of your application, and myapp with
the name of your project (this will become the name of the directory for your project).

By default, creates a project template for you using the quickstart archetype, which is a good
starting place for many projects. There are more archetypes available; visit the Maven archetypes
page for a list of archetypes packaged with . You can choose a particular archetype to use by
adding the -DarchetypeArtifactId argument to the archetype:generate command. For
example:

mvn archetype:generate \
 -DarchetypeGroupId=org.apache.maven.archetypes \
 -DarchetypeArtifactId=maven-archetype-webapp \
 -DgroupId=org.example.webapp \
 -DartifactId=mywebapp

Note

Much more information about creating and configuring projects is provided in the Maven
Getting Started Guide.

Use the SDK with Apache Maven 10

https://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/archetypes/maven-archetype-quickstart/
https://maven.apache.org/archetypes/index.html
https://maven.apache.org/guides/getting-started/
https://maven.apache.org/guides/getting-started/

AWS SDK for Java 1.x Developer Guide for version 1.x

Configure the SDK as a Maven dependency

To use the AWS SDK for Java in your project, you’ll need to declare it as a dependency in your
project’s pom.xml file. Beginning with version 1.9.0, you can import individual components or the
entire SDK.

Specifying individual SDK modules

To select individual SDK modules, use the AWS SDK for Java bill of materials (BOM) for Maven,
which will ensure that the modules you specify use the same version of the SDK and that they’re
compatible with each other.

To use the BOM, add a <dependencyManagement> section to your application’s pom.xml file,
adding aws-java-sdk-bom as a dependency and specifying the version of the SDK you want to
use:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.11.1000</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

To view the latest version of the AWS SDK for Java BOM that is available on Maven Central, visit:
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom. You can also use this
page to see which modules (dependencies) are managed by the BOM that you can include within
the <dependencies> section of your project’s pom.xml file.

You can now select individual modules from the SDK that you use in your application. Because you
already declared the SDK version in the BOM, you don’t need to specify the version number for
each component.

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>

Use the SDK with Apache Maven 11

https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom

AWS SDK for Java 1.x Developer Guide for version 1.x

 <artifactId>aws-java-sdk-s3</artifactId>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-dynamodb</artifactId>
 </dependency>
</dependencies>

You can also refer to the AWS Code Sample Catalog to learn what dependencies to use for a
given AWS service. Refer to the POM file under a specific service example. For example, if you are
interested in the dependencies for the AWS S3 service, see the complete example on GitHub. (Look
at the pom under /java/example_code/s3).

Importing all SDK modules

If you would like to pull in the entire SDK as a dependency, don’t use the BOM method, but simply
declare it in your pom.xml like this:

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk</artifactId>
 <version>1.11.1000</version>
 </dependency>
</dependencies>

Build your project

Once you have your project set up, you can build it using Maven’s package command:

mvn package

This will create your 0jar file in the target directory.

Build the SDK with Maven

You can use Apache Maven to build the SDK from source. To do so, download the SDK code from
GitHub, unpack it locally, and then execute the following Maven command:

mvn clean install

Use the SDK with Apache Maven 12

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetAcl.java
https://github.com/aws/aws-sdk-java
https://github.com/aws/aws-sdk-java

AWS SDK for Java 1.x Developer Guide for version 1.x

Use the SDK with Gradle

To manage SDK dependencies for your Gradle project, import the Maven BOM for the AWS SDK for
Java into the application's build.gradle file.

Note

In the following examples, replace 1.12.529 in the build file with a valid version of the
AWS SDK for Java. Find the latest version in the Maven central repository.

Project setup for Gradle 4.6 or higher

Since Gradle 4.6, you can use Gradle’s improved POM support feature to import bill of materials
(BOM) files by declaring a dependency on a BOM.

1. If you’re using Gradle 5.0 or later, skip to step 2. Otherwise, enable the
IMPROVED_POM_SUPPORT feature in the settings.gradle file.

enableFeaturePreview('IMPROVED_POM_SUPPORT')

2. Add the BOM to the dependencies section of the application's build.gradle file.

...
dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.12.529')

 // Declare individual SDK dependencies without version
 ...
}

3. Specify the SDK modules to use in the dependencies section. For example, the following includes
a dependency for Amazon Simple Storage Service (Amazon S3).

...
dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.12.529')
 implementation 'com.amazonaws:aws-java-sdk-s3'
 ...
}

Use the SDK with Gradle 13

https://gradle.com/
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest
https://docs.gradle.org/4.6/release-notes.html#bom-import

AWS SDK for Java 1.x Developer Guide for version 1.x

Gradle automatically resolves the correct version of your SDK dependencies by using the
information from the BOM.

The following is an example of a complete build.gradle file that includes a dependency for
Amazon S3.

group 'aws.test'
version '1.0-SNAPSHOT'

apply plugin: 'java'

sourceCompatibility = 1.8

repositories {
 mavenCentral()
}

dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.12.529')
 implementation 'com.amazonaws:aws-java-sdk-s3'
}

Note

In the previous example, replace the dependency for Amazon S3 with the dependencies
of the AWS services you will use in your project. The modules (dependencies) that are
managed by the AWS SDK for Java BOM are listed on Maven central repository.

Project setup for Gradle versions earlier than 4.6

Gradle versions earlier than 4.6 lack native BOM support. To manage AWS SDK for Java
dependencies for your project, use Spring’s dependency management plugin for Gradle to import
the Maven BOM for the SDK.

1. Add the dependency management plugin to your application's build.gradle file.

buildscript {
 repositories {
 mavenCentral()
 }

Use the SDK with Gradle 14

https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest
https://github.com/spring-gradle-plugins/dependency-management-plugin

AWS SDK for Java 1.x Developer Guide for version 1.x

 dependencies {
 classpath "io.spring.gradle:dependency-management-plugin:1.0.9.RELEASE"
 }
}

apply plugin: "io.spring.dependency-management"

2. Add the BOM to the dependencyManagement section of the file.

dependencyManagement {
 imports {
 mavenBom 'com.amazonaws:aws-java-sdk-bom:1.12.529'
 }
}

3. Specify the SDK modules that you’ll use in the dependencies section. For example, the following
includes a dependency for Amazon S3.

dependencies {
 compile 'com.amazonaws:aws-java-sdk-s3'
}

Gradle automatically resolves the correct version of your SDK dependencies by using the
information from the BOM.

The following is an example of a complete build.gradle file that includes a dependency for
Amazon S3.

group 'aws.test'
version '1.0'

apply plugin: 'java'

sourceCompatibility = 1.8

repositories {
 mavenCentral()
}

buildscript {
 repositories {
 mavenCentral()

Use the SDK with Gradle 15

AWS SDK for Java 1.x Developer Guide for version 1.x

 }
 dependencies {
 classpath "io.spring.gradle:dependency-management-plugin:1.0.9.RELEASE"
 }
}

apply plugin: "io.spring.dependency-management"

dependencyManagement {
 imports {
 mavenBom 'com.amazonaws:aws-java-sdk-bom:1.12.529'
 }
}

dependencies {
 compile 'com.amazonaws:aws-java-sdk-s3'
 testCompile group: 'junit', name: 'junit', version: '4.11'
}

Note

In the previous example, replace the dependency for Amazon S3 with the dependencies of
the AWS service you will use in your project. The modules (dependencies) that are managed
by the AWS SDK for Java BOM are listed on Maven central repository.

For more information about specifying SDK dependencies by using the BOM, see Using the SDK
with Apache Maven.

Set up AWS temporary credentials and AWS Region for
development

To connect to any of the supported services with the AWS SDK for Java, you must provide AWS
temporary credentials. The AWS SDKs and CLIs use provider chains to look for AWS temporary
credentials in a number of different places, including system/user environment variables and local
AWS configuration files.

This topic provides basic information about setting up your AWS temporary credentials for local
application development using the AWS SDK for Java. If you need to set up credentials for use

Temporary credentials and Region 16

https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest

AWS SDK for Java 1.x Developer Guide for version 1.x

within an EC2 instance or if you’re using the Eclipse IDE for development, refer to the following
topics instead:

• When using an EC2 instance, create an IAM role and then give your EC2 instance access to that
role as shown in Using IAM Roles to Grant Access to AWS Resources on Amazon EC2.

• Set up AWS credentials within Eclipse using the AWS Toolkit for Eclipse. See Set up AWS
Credentials in the AWS Toolkit for Eclipse User Guide for more information.

Configure temporary credentials

You can configure temporary credentials for the AWS SDK for Java in a number of ways, but here
are the recommended approaches:

• Set temporary credentials in the AWS credentials profile file on your local system, located at:

• ~/.aws/credentials on Linux, macOS, or Unix

• C:\Users\USERNAME\.aws\credentials on Windows

See the the section called “Set up temporary credentials for the SDK” in this guide for
instructions on how to get your temporary credentials.

• Set the AWS_ACCESS_KEY_ID,AWS_SECRET_ACCESS_KEY, and AWS_SESSION_TOKEN
environment variables.

To set these variables on Linux, macOS, or Unix, use :

export AWS_ACCESS_KEY_ID=your_access_key_id
export AWS_SECRET_ACCESS_KEY=your_secret_access_key
export AWS_SESSION_TOKEN=your_session_token

To set these variables on Windows, use:

set AWS_ACCESS_KEY_ID=your_access_key_id
set AWS_SECRET_ACCESS_KEY=your_secret_access_key
set AWS_SESSION_TOKEN=your_session_token

• For an EC2 instance, specify an IAM role and then give your EC2 instance access to that role.
See IAM Roles for Amazon EC2 in the Amazon EC2 User Guide for Linux Instances for a detailed
discussion about how this works.

Configure temporary credentials 17

https://aws.amazon.com/eclipse/
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/setup-credentials.html
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/setup-credentials.html
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Once you have set your AWS temporary credentials using one of these methods, they will be
loaded automatically by the AWS SDK for Java by using the default credential provider chain. For
further information about working with AWS credentials in your Java applications, see Working
with AWS Credentials.

Refreshing IMDS credentials

The AWS SDK for Java supports opt-in refreshing IMDS credentials in the background every 1
minute, regardless of the credential expiration time. This allows you to refresh credentials more
frequently and reduces the chance that not reaching IMDS impacts the perceived AWS availability.

 1. // Refresh credentials using a background thread, automatically every minute. This
 will log an error if IMDS is down during
 2. // a refresh, but your service calls will continue using the cached credentials
 until the credentials are refreshed
 3. // again one minute later.
 4.
 5. InstanceProfileCredentialsProvider credentials =
 6. InstanceProfileCredentialsProvider.createAsyncRefreshingProvider(true);
 7.
 8. AmazonS3Client.builder()
 9. .withCredentials(credentials)
 10. .build();
 11.
 12. // This is new: When you are done with the credentials provider, you must close it
 to release the background thread.
 13. credentials.close();

Set the AWS Region

You should set a default AWS Region that will be used for accessing AWS services with the AWS
SDK for Java. For the best network performance, choose a region that’s geographically close to
you (or to your customers). For a list of regions for each service, see Regions and Endpoints in the
Amazon Web Services General Reference.

Note

If you don’t select a region, then us-east-1 will be used by default.

You can use similar techniques to setting credentials to set your default AWS region:

Refreshing IMDS credentials 18

https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS SDK for Java 1.x Developer Guide for version 1.x

• Set the AWS Region in the AWS config file on your local system, located at:

• ~/.aws/config on Linux, macOS, or Unix

• C:\Users\USERNAME\.aws\config on Windows

This file should contain lines in the following format:

+

[default]
region = your_aws_region

+

Substitute your desired AWS Region (for example, "us-east-1") for your_aws_region.

• Set the AWS_REGION environment variable.

On Linux, macOS, or Unix, use :

export AWS_REGION=your_aws_region

On Windows, use :

set AWS_REGION=your_aws_region

Where your_aws_region is the desired AWS Region name.

Set the AWS Region 19

AWS SDK for Java 1.x Developer Guide for version 1.x

Using the AWS SDK for Java

This section provides important general information about programming with the AWS SDK for
Java that applies to all services you might use with the SDK.

For service-specific programming information and examples (for Amazon EC2, Amazon S3, Amazon
SWF, etc.), see AWS SDK for Java Code Examples.

Topics

• Best Practices for AWS Development with the AWS SDK for Java

• Creating Service Clients

• Provide temporary credentials to the AWS SDK for Java

• AWS Region Selection

• Exception Handling

• Asynchronous Programming

• Logging AWS SDK for Java Calls

• Client Configuration

• Access Control Policies

• Set the JVM TTL for DNS name lookups

• Enabling Metrics for the AWS SDK for Java

Best Practices for AWS Development with the AWS SDK for Java

The following best practices can help you avoid issues or trouble as you develop AWS applications
with the AWS SDK for Java. We’ve organized best practices by service.

S3

Avoid ResetExceptions

When you upload objects to Amazon S3 by using streams (either through an AmazonS3 client or
TransferManager), you might encounter network connectivity or timeout issues. By default, the
AWS SDK for Java attempts to retry failed transfers by marking the input stream before the start of
a transfer and then resetting it before retrying.

Best Practices for AWS Development with the AWS SDK for Java 20

AWS SDK for Java 1.x Developer Guide for version 1.x

If the stream doesn’t support mark and reset, the SDK throws a ResetException when there are
transient failures and retries are enabled.

Best Practice

We recommend that you use streams that support mark and reset operations.

The most reliable way to avoid a ResetException is to provide data by using a File or
FileInputStream, which the AWS SDK for Java can handle without being constrained by mark and
reset limits.

If the stream isn’t a FileInputStream but does support mark and reset, you can set the mark limit
by using the setReadLimit method of RequestClientOptions. Its default value is 128 KB. Setting
the read limit value to one byte greater than the size of stream will reliably avoid a ResetException.

For example, if the maximum expected size of a stream is 100,000 bytes, set the read limit to
100,001 (100,000 + 1) bytes. The mark and reset will always work for 100,000 bytes or less. Be
aware that this might cause some streams to buffer that number of bytes into memory.

Creating Service Clients

To make requests to Amazon Web Services, you first create a service client object. The
recommended way is to use the service client builder.

Each AWS service has a service interface with methods for each action in the service API. For
example, the service interface for DynamoDB is named AmazonDynamoDBClient. Each service
interface has a corresponding client builder you can use to construct an implementation of the
service interface. The client builder class for DynamoDB is named AmazonDynamoDBClientBuilder.

Obtaining a Client Builder

To obtain an instance of the client builder, use the static factory method standard, as shown in
the following example.

AmazonDynamoDBClientBuilder builder = AmazonDynamoDBClientBuilder.standard();

Once you have a builder, you can customize the client’s properties by using many fluent setters in
the builder API. For example, you can set a custom region and a custom credentials provider, as
follows.

Creating Service Clients 21

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ResetException.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ResetException.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/FileInputStream.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/FileInputStream.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/RequestClientOptions.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ResetException.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/AmazonDynamoDBClient.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDBClientBuilder.html

AWS SDK for Java 1.x Developer Guide for version 1.x

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"))
 .build();

Note

The fluent withXXX methods return the builder object so that you can chain the method
calls for convenience and for more readable code. After you configure the properties you
want, you can call the build method to create the client. Once a client is created, it’s
immutable and any calls to setRegion or setEndpoint will fail.

A builder can create multiple clients with the same configuration. When you’re writing your
application, be aware that the builder is mutable and not thread-safe.

The following code uses the builder as a factory for client instances.

public class DynamoDBClientFactory {
 private final AmazonDynamoDBClientBuilder builder =
 AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"));

 public AmazonDynamoDB createClient() {
 return builder.build();
 }
}

The builder also exposes fluent setters for ClientConfiguration and RequestMetricCollector, and a
custom list of RequestHandler2.

The following is a complete example that overrides all configurable properties.

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"))
 .withClientConfiguration(new ClientConfiguration().withRequestTimeout(5000))
 .withMetricsCollector(new MyCustomMetricsCollector())
 .withRequestHandlers(new MyCustomRequestHandler(), new
 MyOtherCustomRequestHandler)

Obtaining a Client Builder 22

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/metrics/RequestMetricCollector.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/handlers/RequestHandler2.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 .build();

Creating Async Clients

The AWS SDK for Java has asynchronous (or async) clients for every service (except for Amazon S3),
and a corresponding async client builder for every service.

To create an async DynamoDB client with the default ExecutorService

AmazonDynamoDBAsync ddbAsync = AmazonDynamoDBAsyncClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"))
 .build();

In addition to the configuration options that the synchronous (or sync) client builder supports, the
async client enables you to set a custom ExecutorFactory to change the ExecutorService that
the async client uses. ExecutorFactory is a functional interface, so it interoperates with Java 8
lambda expressions and method references.

To create an async client with a custom executor

AmazonDynamoDBAsync ddbAsync = AmazonDynamoDBAsyncClientBuilder.standard()
 .withExecutorFactory(() -> Executors.newFixedThreadPool(10))
 .build();

Using DefaultClient

Both the sync and async client builders have another factory method named defaultClient.
This method creates a service client with the default configuration, using the default provider chain
to load credentials and the AWS Region. If credentials or the region can’t be determined from the
environment that the application is running in, the call to defaultClient fails. See Working with
AWS Credentials and AWS Region Selection for more information about how credentials and region
are determined.

To create a default service client

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

Creating Async Clients 23

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/client/builder/ExecutorFactory.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Client Lifecycle

Service clients in the SDK are thread-safe and, for best performance, you should treat them as
long-lived objects. Each client has its own connection pool resource. Explicitly shut down clients
when they are no longer needed to avoid resource leaks.

To explicitly shut down a client, call the shutdown method. After calling shutdown, all client
resources are released and the client is unusable.

To shut down a client

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();
ddb.shutdown();
// Client is now unusable

Provide temporary credentials to the AWS SDK for Java

To make requests to Amazon Web Services, you must supply AWS temporary credentials for the
AWS SDK for Java to use when it calls the services. You can do this in the following ways:

• Use the default credential provider chain (recommended).

• Use a specific credential provider or provider chain (or create your own).

• Supply the temporary credentials yourself in code.

Using the Default Credential Provider Chain

When you initialize a new service client without supplying any arguments, the AWS SDK for Java
attempts to find temporary credentials by using the default credential provider chain implemented
by the DefaultAWSCredentialsProviderChain class. The default credential provider chain looks for
credentials in this order:

1. Environment variables-AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and
AWS_SESSION_TOKEN. The AWS SDK for Java uses the EnvironmentVariableCredentialsProvider
class to load these credentials.

2. Java system properties-aws.accessKeyId, aws.secretKey, and aws.sessionToken. The
AWS SDK for Java uses the SystemPropertiesCredentialsProvider to load these credentials.

Client Lifecycle 24

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/DefaultAWSCredentialsProviderChain.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/EnvironmentVariableCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/SystemPropertiesCredentialsProvider.html

AWS SDK for Java 1.x Developer Guide for version 1.x

3. Web Identity Token credentials from the environment or container.

4. The default credential profiles file- typically located at ~/.aws/credentials (location can
vary per platform), and shared by many of the AWS SDKs and by the AWS CLI. The AWS SDK for
Java uses the ProfileCredentialsProvider to load these credentials.

You can create a credentials file by using the aws configure command provided by the
AWS CLI, or you can create it by editing the file with a text editor. For information about the
credentials file format, see AWS Credentials File Format.

5. Amazon ECS container credentials- loaded from the Amazon ECS if the environment variable
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI is set. The AWS SDK for Java uses the
ContainerCredentialsProvider to load these credentials. You can specify the IP address for this
value.

6. Instance profile credentials- used on EC2 instances, and delivered through the Amazon EC2
metadata service. The AWS SDK for Java uses the InstanceProfileCredentialsProvider to load
these credentials. You can specify the IP address for this value.

Note

Instance profile credentials are used only if
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI is not set. See
EC2ContainerCredentialsProviderWrapper for more information.

Set temporary credentials

To be able to use AWS temporary credentials, they must be set in at least one of the preceding
locations. For information about setting credentials, see the following topics:

• To specify credentials in the environment or in the default credential profiles file, see the section
called “Configure temporary credentials” .

• To set Java system properties, see the System Properties tutorial on the official Java Tutorials
website.

• To set up and use instance profile credentials with your EC2 instances, see Using IAM Roles to
Grant Access to AWS Resources on Amazon EC2.

Using the Default Credential Provider Chain 25

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/profile/ProfileCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/ContainerCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/InstanceProfileCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/EC2ContainerCredentialsProviderWrapper.html
http://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Set an alternate credentials profile

The AWS SDK for Java uses the default profile by default, but there are ways to customize which
profile is sourced from the credentials file.

You can use the AWS Profile environment variable to change the profile loaded by the SDK.

For example, on Linux, macOS, or Unix you would run the following command to change the
profile to myProfile.

export AWS_PROFILE="myProfile"

On Windows you would use the following.

set AWS_PROFILE="myProfile"

Setting the AWS_PROFILE environment variable affects credential loading for all officially
supported AWS SDKs and Tools (including the AWS CLI and the AWS Tools for Windows
PowerShell). To change only the profile for a Java application, you can use the system property
aws.profile instead.

Note

The environment variable takes precedence over the system property.

Set an alternate credentials file location

The AWS SDK for Java loads AWS temporary credentials automatically from the default
credentials file location. However, you can also specify the location by setting the
AWS_CREDENTIAL_PROFILES_FILE environment variable with the full path to the credentials file.

You can use this feature to temporarily change the location where the AWS SDK for Java looks
for your credentials file (for example, by setting this variable with the command line). Or you
can set the environment variable in your user or system environment to change it for the user or
systemwide.

Using the Default Credential Provider Chain 26

AWS SDK for Java 1.x Developer Guide for version 1.x

To override the default credentials file location

• Set the AWS_CREDENTIAL_PROFILES_FILE environment variable to the location of your AWS
credentials file.

• On Linux, macOS, or Unix, use:

export AWS_CREDENTIAL_PROFILES_FILE=path/to/credentials_file

• On Windows, use:

set AWS_CREDENTIAL_PROFILES_FILE=path/to/credentials_file

Credentials file format

By following the instructions in the Basic setup of this guide, your credentials file should have the
following basic format.

[default]
aws_access_key_id=<value from AWS access portal>
aws_secret_access_key=<value from AWS access portal>
aws_session_token=<value from AWS access portal>

[profile2]
aws_access_key_id=<value from AWS access portal>
aws_secret_access_key=<value from AWS access portal>
aws_session_token=<value from AWS access portal>

The profile name is specified in square brackets (for example, [default]), followed by
the configurable fields in that profile as key-value pairs. You can have multiple profiles in
your credentials file, which can be added or edited using aws configure --profile
PROFILE_NAME to select the profile to configure.

You can specify additional fields, such as metadata_service_timeout, and
metadata_service_num_attempts. These are not configurable with the CLI—you must edit
the file by hand if you want to use them. For more information about the configuration file and
its available fields, see Configuring the AWS Command Line Interface in the AWS Command Line
Interface User Guide.

Using the Default Credential Provider Chain 27

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Load credentials

After you set temporary credentials, the SDK loads them by using the default credential provider
chain.

To do this, you instantiate an AWS service client without explicitly providing credentials to the
builder, as follows.

AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .build();

Specify a credential provider or provider chain

You can specify a credential provider that is different from the default credential provider chain by
using the client builder.

You provide an instance of a credentials provider or provider chain to a client builder that takes an
AWSCredentialsProvider interface as input. The following example shows how to use environment
credentials specifically.

AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new EnvironmentVariableCredentialsProvider())
 .build();

For the full list of AWS SDK for Java-supplied credential providers and provider chains, see All
Known Implementing Classes in AWSCredentialsProvider.

Note

You can use this technique to supply credential providers or provider chains that you create
by using your own credential provider that implements the AWSCredentialsProvider
interface, or by subclassing the AWSCredentialsProviderChain class.

Explicitly specify temporary credentials

If the default credential chain or a specific or custom provider or provider chain doesn’t work
for your code, you can set credentials that you supply explicitly. If you’ve retrieved temporary
credentials using AWS STS, use this method to specify the credentials for AWS access.

Specify a credential provider or provider chain 28

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProviderChain.html

AWS SDK for Java 1.x Developer Guide for version 1.x

1. Instantiate the BasicSessionCredentials class, and supply it with the AWS access key, AWS secret
key, and AWS session token that the SDK will use for the connection.

2. Create an AWSStaticCredentialsProvider with the AWSCredentials object.

3. Configure the client builder with the AWSStaticCredentialsProvider and build the client.

The following is an example.

BasicSessionCredentials awsCreds = new BasicSessionCredentials("access_key_id",
 "secret_key_id", "session_token");
AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new AWSStaticCredentialsProvider(awsCreds))
 .build();

More Info

• Sign Up for AWS and Create an IAM User

• Set up AWS Credentials and Region for Development

• Using IAM Roles to Grant Access to AWS Resources on Amazon EC2

AWS Region Selection

Regions enable you to access AWS services that physically reside in a specific geographic area. This
can be useful both for redundancy and to keep your data and applications running close to where
you and your users will access them.

Checking for Service Availability in a Region

To see if a particular AWS service is available in a region, use the isServiceSupported method
on the region that you’d like to use.

Region.getRegion(Regions.US_WEST_2)
 .isServiceSupported(AmazonDynamoDB.ENDPOINT_PREFIX);

See the Regions class documentation for the regions you can specify, and use the endpoint prefix
of the service to query. Each service’s endpoint prefix is defined in the service interface. For
example, the DynamoDB endpoint prefix is defined in AmazonDynamoDB.

More Info 29

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/BasicSessionCredentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSStaticCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/regions/Regions.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Choosing a Region

Beginning with version 1.4 of the AWS SDK for Java, you can specify a region name and the SDK
will automatically choose an appropriate endpoint for you. To choose the endpoint yourself, see
Choosing a Specific Endpoint.

To explicitly set a region, we recommend that you use the Regions enum. This is an enumeration
of all publicly available regions. To create a client with a region from the enum, use the following
code.

AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .build();

If the region you are attempting to use isn’t in the Regions enum, you can set the region using a
string that represents the name of the region.

AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .withRegion("{region_api_default}")
 .build();

Note

After you build a client with the builder, it’s immutable and the region cannot be changed.
If you are working with multiple AWS Regions for the same service, you should create
multiple clients—one per region.

Choosing a Specific Endpoint

Each AWS client can be configured to use a specific endpoint within a region by calling the
withEndpointConfiguration method when creating the client.

For example, to configure the Amazon S3 client to use the Europe (Ireland) Region, use the
following code.

AmazonS3 s3 = AmazonS3ClientBuilder.standard()
 .withEndpointConfiguration(new EndpointConfiguration(
 "https://s3.eu-west-1.amazonaws.com",
 "eu-west-1"))

Choosing a Region 30

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/regions/Regions.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 .withCredentials(CREDENTIALS_PROVIDER)
 .build();

See Regions and Endpoints for the current list of regions and their corresponding endpoints for all
AWS services.

Automatically Determine the Region from the Environment

Important

This section applies only when using a client builder to access AWS services. AWS clients
created by using the client constructor will not automatically determine region from the
environment and will, instead, use the default SDK region (USEast1).

When running on Amazon EC2 or Lambda, you might want to configure clients to use the same
region that your code is running on. This decouples your code from the environment it’s running in
and makes it easier to deploy your application to multiple regions for lower latency or redundancy.

You must use client builders to have the SDK automatically detect the region your code is running in.

To use the default credential/region provider chain to determine the region from the environment,
use the client builder’s defaultClient method.

AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

This is the same as using standard followed by build.

AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .build();

If you don’t explicitly set a region using the withRegion methods, the SDK consults the default
region provider chain to try and determine the region to use.

Default Region Provider Chain

The following is the region lookup process:

1. Any explicit region set by using withRegion or setRegion on the builder itself takes
precedence over anything else.

Automatically Determine the Region from the Environment 31

https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS SDK for Java 1.x Developer Guide for version 1.x

2. The AWS_REGION environment variable is checked. If it’s set, that region is used to configure the
client.

Note

This environment variable is set by the Lambda container.

3. The SDK checks the AWS shared configuration file (usually located at ~/.aws/config). If the
region property is present, the SDK uses it.

• The AWS_CONFIG_FILE environment variable can be used to customize the location of the
shared config file.

• The AWS_PROFILE environment variable or the aws.profile system property can be used
to customize the profile that is loaded by the SDK.

4. The SDK attempts to use the Amazon EC2 instance metadata service to determine the region of
the currently running Amazon EC2 instance.

5. If the SDK still hasn’t found a region by this point, client creation fails with an exception.

When developing AWS applications, a common approach is to use the shared configuration file
(described in Using the Default Credential Provider Chain) to set the region for local development,
and rely on the default region provider chain to determine the region when running on AWS
infrastructure. This greatly simplifies client creation and keeps your application portable.

Exception Handling

Understanding how and when the AWS SDK for Java throws exceptions is important to building
high-quality applications using the SDK. The following sections describe the different cases of
exceptions that are thrown by the SDK and how to handle them appropriately.

Why Unchecked Exceptions?

The AWS SDK for Java uses runtime (or unchecked) exceptions instead of checked exceptions for
these reasons:

• To allow developers fine-grained control over the errors they want to handle without forcing
them to handle exceptional cases they aren’t concerned about (and making their code overly
verbose)

• To prevent scalability issues inherent with checked exceptions in large applications

Exception Handling 32

AWS SDK for Java 1.x Developer Guide for version 1.x

In general, checked exceptions work well on small scales, but can become troublesome as
applications grow and become more complex.

For more information about the use of checked and unchecked exceptions, see:

• Unchecked Exceptions—The Controversy

• The Trouble with Checked Exceptions

• Java’s checked exceptions were a mistake (and here’s what I would like to do about it)

AmazonServiceException (and Subclasses)

AmazonServiceException is the most common exception that you’ll experience when using the
AWS SDK for Java. This exception represents an error response from an AWS service. For example,
if you try to terminate an Amazon EC2 instance that doesn’t exist, EC2 will return an error response
and all the details of that error response will be included in the AmazonServiceException that’s
thrown. For some cases, a subclass of AmazonServiceException is thrown to allow developers
fine-grained control over handling error cases through catch blocks.

When you encounter an AmazonServiceException, you know that your request was successfully
sent to the AWS service but couldn’t be successfully processed. This can be because of errors in the
request’s parameters or because of issues on the service side.

AmazonServiceException provides you with information such as:

• Returned HTTP status code

• Returned AWS error code

• Detailed error message from the service

• AWS request ID for the failed request

AmazonServiceException also includes information about whether the failed request was the
caller’s fault (a request with illegal values) or the AWS service's fault (an internal service error).

AmazonClientException

AmazonClientException indicates that a problem occurred inside the Java client code, either
while trying to send a request to AWS or while trying to parse a response from AWS. An
AmazonClientException is generally more severe than an AmazonServiceException,
and indicates a major problem that is preventing the client from making service calls to AWS

AmazonServiceException (and Subclasses) 33

http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
http://www.artima.com/intv/handcuffs2.html
http://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/AmazonServiceException.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/AmazonClientException.html

AWS SDK for Java 1.x Developer Guide for version 1.x

services. For example, the AWS SDK for Java throws an AmazonClientException if no network
connection is available when you try to call an operation on one of the clients.

Asynchronous Programming

You can use either synchronous or asynchronous methods to call operations on AWS services.
Synchronous methods block your thread’s execution until the client receives a response from
the service. Asynchronous methods return immediately, giving control back to the calling thread
without waiting for a response.

Because an asynchronous method returns before a response is available, you need a way to get
the response when it’s ready. The AWS SDK for Java provides two ways: Future objects and callback
methods.

Java Futures

Asynchronous methods in the AWS SDK for Java return a Future object that contains the results of
the asynchronous operation in the future.

Call the Future isDone() method to see if the service has provided a response object yet. When
the response is ready, you can get the response object by calling the Future get() method. You
can use this mechanism to periodically poll for the asynchronous operation’s results while your
application continues to work on other things.

Here is an example of an asynchronous operation that calls a Lambda function, receiving a Future
that can hold an InvokeResult object. The InvokeResult object is retrieved only after isDone()
is true.

import com.amazonaws.services.lambda.AWSLambdaAsyncClient;
import com.amazonaws.services.lambda.model.InvokeRequest;
import com.amazonaws.services.lambda.model.InvokeResult;
import java.nio.ByteBuffer;
import java.util.concurrent.Future;
import java.util.concurrent.ExecutionException;

public class InvokeLambdaFunctionAsync
{
 public static void main(String[] args)
 {
 String function_name = "HelloFunction";
 String function_input = "{\"who\":\"SDK for Java\"}";

Asynchronous Programming 34

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/Future.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/InvokeResult.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 AWSLambdaAsync lambda = AWSLambdaAsyncClientBuilder.defaultClient();
 InvokeRequest req = new InvokeRequest()
 .withFunctionName(function_name)
 .withPayload(ByteBuffer.wrap(function_input.getBytes()));

 Future<InvokeResult> future_res = lambda.invokeAsync(req);

 System.out.print("Waiting for future");
 while (future_res.isDone() == false) {
 System.out.print(".");
 try {
 Thread.sleep(1000);
 }
 catch (InterruptedException e) {
 System.err.println("\nThread.sleep() was interrupted!");
 System.exit(1);
 }
 }

 try {
 InvokeResult res = future_res.get();
 if (res.getStatusCode() == 200) {
 System.out.println("\nLambda function returned:");
 ByteBuffer response_payload = res.getPayload();
 System.out.println(new String(response_payload.array()));
 }
 else {
 System.out.format("Received a non-OK response from {AWS}: %d\n",
 res.getStatusCode());
 }
 }
 catch (InterruptedException | ExecutionException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }

 System.exit(0);
 }
}

Java Futures 35

AWS SDK for Java 1.x Developer Guide for version 1.x

Asynchronous Callbacks

In addition to using the Java Future object to monitor the status of asynchronous requests, the
SDK also enables you to implement a class that uses the AsyncHandler interface. AsyncHandler
provides two methods that are called depending on how the request completed: onSuccess and
onError.

The major advantage of the callback interface approach is that it frees you from having to poll the
Future object to find out when the request has completed. Instead, your code can immediately
start its next activity, and rely on the SDK to call your handler at the right time.

import com.amazonaws.services.lambda.AWSLambdaAsync;
import com.amazonaws.services.lambda.AWSLambdaAsyncClientBuilder;
import com.amazonaws.services.lambda.model.InvokeRequest;
import com.amazonaws.services.lambda.model.InvokeResult;
import com.amazonaws.handlers.AsyncHandler;
import java.nio.ByteBuffer;
import java.util.concurrent.Future;

public class InvokeLambdaFunctionCallback
{
 private class AsyncLambdaHandler implements AsyncHandler<InvokeRequest,
 InvokeResult>
 {
 public void onSuccess(InvokeRequest req, InvokeResult res) {
 System.out.println("\nLambda function returned:");
 ByteBuffer response_payload = res.getPayload();
 System.out.println(new String(response_payload.array()));
 System.exit(0);
 }

 public void onError(Exception e) {
 System.out.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void main(String[] args)
 {
 String function_name = "HelloFunction";
 String function_input = "{\"who\":\"SDK for Java\"}";

Asynchronous Callbacks 36

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/handlers/AsyncHandler.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 AWSLambdaAsync lambda = AWSLambdaAsyncClientBuilder.defaultClient();
 InvokeRequest req = new InvokeRequest()
 .withFunctionName(function_name)
 .withPayload(ByteBuffer.wrap(function_input.getBytes()));

 Future<InvokeResult> future_res = lambda.invokeAsync(req, new
 AsyncLambdaHandler());

 System.out.print("Waiting for async callback");
 while (!future_res.isDone() && !future_res.isCancelled()) {
 // perform some other tasks...
 try {
 Thread.sleep(1000);
 }
 catch (InterruptedException e) {
 System.err.println("Thread.sleep() was interrupted!");
 System.exit(0);
 }
 System.out.print(".");
 }
 }
}

Best Practices

Callback Execution

Your implementation of AsyncHandler is executed inside the thread pool owned by the
asynchronous client. Short, quickly executed code is most appropriate inside your AsyncHandler
implementation. Long-running or blocking code inside your handler methods can cause contention
for the thread pool used by the asynchronous client, and can prevent the client from executing
requests. If you have a long-running task that needs to begin from a callback, have the callback run
its task in a new thread or in a thread pool managed by your application.

Thread Pool Configuration

The asynchronous clients in the AWS SDK for Java provide a default thread pool that should work
for most applications. You can implement a custom ExecutorService and pass it to AWS SDK for
Java asynchronous clients for more control over how the thread pools are managed.

Best Practices 37

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/ExecutorService.html

AWS SDK for Java 1.x Developer Guide for version 1.x

For example, you could provide an ExecutorService implementation that uses a custom
ThreadFactory to control how threads in the pool are named, or to log additional information
about thread usage.

Asynchronous Access

The TransferManager class in the SDK offers asynchronous support for working with Amazon S3.
TransferManager manages asynchronous uploads and downloads, provides detailed progress
reporting on transfers, and supports callbacks into different events.

Logging AWS SDK for Java Calls

The AWS SDK for Java is instrumented with Apache Commons Logging, which is an abstraction
layer that enables the use of any one of several logging systems at runtime.

Supported logging systems include the Java Logging Framework and Apache Log4j, among others.
This topic shows you how to use Log4j. You can use the SDK’s logging functionality without making
any changes to your application code.

To learn more about Log4j, see the Apache website.

Note

This topic focuses on Log4j 1.x. Log4j2 doesn’t directly support Apache Commons Logging,
but provides an adapter that directs logging calls automatically to Log4j2 using the Apache
Commons Logging interface. For more information, see Commons Logging Bridge in the
Log4j2 documentation.

Download the Log4J JAR

To use Log4j with the SDK, you need to download the Log4j JAR from the Apache website. The SDK
doesn’t include the JAR. Copy the JAR file to a location that is on your classpath.

Log4j uses a configuration file, log4j.properties. Example configuration files are shown below. Copy
this configuration file to a directory on your classpath. The Log4j JAR and the log4j.properties file
don’t have to be in the same directory.

The log4j.properties configuration file specifies properties such as logging level, where logging
output is sent (for example, to a file or to the console), and the format of the output. The logging

Logging AWS SDK for Java Calls 38

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/ThreadFactory.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/TransferManager.html
http://commons.apache.org/proper/commons-logging/guide.html
http://logging.apache.org/log4j/2.x/
http://www.apache.org/
https://logging.apache.org/log4j/2.x/log4j-jcl.html
http://logging.apache.org/log4j/2.x/manual/configuration.html#Loggers
http://logging.apache.org/log4j/2.x/manual/appenders.html
http://logging.apache.org/log4j/2.x/manual/layouts.html

AWS SDK for Java 1.x Developer Guide for version 1.x

level is the granularity of output that the logger generates. Log4j supports the concept of multiple
logging hierarchies. The logging level is set independently for each hierarchy. The following two
logging hierarchies are available in the AWS SDK for Java:

• log4j.logger.com.amazonaws

• log4j.logger.org.apache.http.wire

Setting the Classpath

Both the Log4j JAR and the log4j.properties file must be located on your classpath. If you’re using
Apache Ant, set the classpath in the path element in your Ant file. The following example shows a
path element from the Ant file for the Amazon S3 example included with the SDK.

<path id="aws.java.sdk.classpath">
 <fileset dir="../../third-party" includes="**/*.jar"/>
 <fileset dir="../../lib" includes="**/*.jar"/>
 <pathelement location="."/>
</path>

If you’re using the Eclipse IDE, you can set the classpath by opening the menu and navigating to
Project | Properties | Java Build Path.

Service-Specific Errors and Warnings

We recommend that you always leave the "com.amazonaws" logger hierarchy set to "WARN" to
catch any important messages from the client libraries. For example, if the Amazon S3 client
detects that your application hasn’t properly closed an InputStream and could be leaking
resources, the S3 client reports it through a warning message to the logs. This also ensures that
messages are logged if the client has any problems handling requests or responses.

The following log4j.properties file sets the rootLogger to WARN, which causes warning and error
messages from all loggers in the "com.amazonaws" hierarchy to be included. Alternatively, you can
explicitly set the com.amazonaws logger to WARN.

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n

Setting the Classpath 39

http://ant.apache.org/manual/
https://github.com/aws/aws-sdk-java/blob/master/src/samples/AmazonS3/build.xml

AWS SDK for Java 1.x Developer Guide for version 1.x

Or you can explicitly enable WARN and ERROR messages for the {AWS} Java clients
log4j.logger.com.amazonaws=WARN

Request/Response Summary Logging

Every request to an AWS service generates a unique AWS request ID that is useful if you run
into an issue with how an AWS service is handling a request. AWS request IDs are accessible
programmatically through Exception objects in the SDK for any failed service call, and can also be
reported through the DEBUG log level in the "com.amazonaws.request" logger.

The following log4j.properties file enables a summary of requests and responses, including AWS
request IDs.

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
Turn on DEBUG logging in com.amazonaws.request to log
a summary of requests/responses with {AWS} request IDs
log4j.logger.com.amazonaws.request=DEBUG

Here is an example of the log output.

2009-12-17 09:53:04,269 [main] DEBUG com.amazonaws.request - Sending
Request: POST https://rds.amazonaws.com / Parameters: (MaxRecords: 20,
Action: DescribeEngineDefaultParameters, SignatureMethod: HmacSHA256,
AWSAccessKeyId: ACCESSKEYID, Version: 2009-10-16, SignatureVersion: 2,
Engine: mysql5.1, Timestamp: 2009-12-17T17:53:04.267Z, Signature:
q963XH63Lcovl5Rr71APlzlye99rmWwT9DfuQaNznkD,) 2009-12-17 09:53:04,464
[main] DEBUG com.amazonaws.request - Received successful response: 200, {AWS}
Request ID: 694d1242-cee0-c85e-f31f-5dab1ea18bc6 2009-12-17 09:53:04,469
[main] DEBUG com.amazonaws.request - Sending Request: POST
https://rds.amazonaws.com / Parameters: (ResetAllParameters: true, Action:
ResetDBParameterGroup, SignatureMethod: HmacSHA256, DBParameterGroupName:
java-integ-test-param-group-0000000000000, AWSAccessKeyId: ACCESSKEYID,
Version: 2009-10-16, SignatureVersion: 2, Timestamp:
2009-12-17T17:53:04.467Z, Signature:
9WcgfPwTobvLVcpyhbrdN7P7l3uH0oviYQ4yZ+TQjsQ=,)

2009-12-17 09:53:04,646 [main] DEBUG com.amazonaws.request - Received
successful response: 200, {AWS} Request ID:

Request/Response Summary Logging 40

AWS SDK for Java 1.x Developer Guide for version 1.x

694d1242-cee0-c85e-f31f-5dab1ea18bc6

Verbose Wire Logging

In some cases, it can be useful to see the exact requests and responses that the AWS SDK for Java
sends and receives. You shouldn’t enable this logging in production systems because writing out
large requests (e.g., a file being uploaded to Amazon S3) or responses can significantly slow down
an application. If you really need access to this information, you can temporarily enable it through
the Apache HttpClient 4 logger. Enabling the DEBUG level on the org.apache.http.wire logger
enables logging for all request and response data.

The following log4j.properties file turns on full wire logging in Apache HttpClient 4 and should
only be turned on temporarily because it can have a significant performance impact on your
application.

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
Log all HTTP content (headers, parameters, content, etc) for
all requests and responses. Use caution with this since it can
be very expensive to log such verbose data!
log4j.logger.org.apache.http.wire=DEBUG

Latency Metrics Logging

If you are troubleshooting and want to see metrics such as which process is taking the most time
or whether server or client side has the greater latency, the latency logger can be helpful. Set the
com.amazonaws.latency logger to DEBUG to enable this logger.

Note

This logger is only available if SDK metrics is enabled. To learn more about the SDK metrics
package, see Enabling Metrics for the AWS SDK for Java.

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout

Verbose Wire Logging 41

AWS SDK for Java 1.x Developer Guide for version 1.x

log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
log4j.logger.com.amazonaws.latency=DEBUG

Here is an example of the log output.

com.amazonaws.latency - ServiceName=[{S3}], StatusCode=[200],
ServiceEndpoint=[https://list-objects-integ-test-test.s3.amazonaws.com],
RequestType=[ListObjectsV2Request], AWSRequestID=[REQUESTID],
 HttpClientPoolPendingCount=0,
RetryCapacityConsumed=0, HttpClientPoolAvailableCount=0, RequestCount=1,
HttpClientPoolLeasedCount=0, ResponseProcessingTime=[52.154],
 ClientExecuteTime=[487.041],
HttpClientSendRequestTime=[192.931], HttpRequestTime=[431.652],
 RequestSigningTime=[0.357],
CredentialsRequestTime=[0.011, 0.001], HttpClientReceiveResponseTime=[146.272]

Client Configuration

The AWS SDK for Java enables you to change the default client configuration, which is helpful
when you want to:

• Connect to the Internet through proxy

• Change HTTP transport settings, such as connection timeout and request retries

• Specify TCP socket buffer size hints

Proxy Configuration

When constructing a client object, you can pass in an optional ClientConfiguration object to
customize the client’s configuration.

If you connect to the Internet through a proxy server, you’ll need to configure your proxy server
settings (proxy host, port, and username/password) through the ClientConfiguration object.

HTTP Transport Configuration

You can configure several HTTP transport options by using the ClientConfiguration object. New
options are occasionally added; to see the full list of options you can retrieve or set, see the AWS
SDK for Java API Reference.

Client Configuration 42

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Note

Each of the configurable values has a default value defined by a constant. For a list of the
constant values for ClientConfiguration, see Constant Field Values in the AWS SDK for
Java API Reference.

Maximum Connections

You can set the maximum allowed number of open HTTP connections by using the
ClientConfiguration.setMaxConnections method.

Important

Set the maximum connections to the number of concurrent transactions to avoid
connection contentions and poor performance. For the default maximum connections
value, see Constant Field Values in the AWS SDK for Java API Reference.

Timeouts and Error Handling

You can set options related to timeouts and handling errors with HTTP connections.

• Connection Timeout

The connection timeout is the amount of time (in milliseconds) that the HTTP connection will
wait to establish a connection before giving up. The default is 10,000 ms.

To set this value yourself, use the ClientConfiguration.setConnectionTimeout method.

• Connection Time to Live (TTL)

By default, the SDK will attempt to reuse HTTP connections as long as possible. In failure
situations where a connection is established to a server that has been brought out of service,
having a finite TTL can help with application recovery. For example, setting a 15 minute TTL
will ensure that even if you have a connection established to a server that is experiencing issues,
you’ll reestablish a connection to a new server within 15 minutes.

To set the HTTP connection TTL, use the ClientConfiguration.setConnectionTTL method.

• Maximum Error Retries

HTTP Transport Configuration 43

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/constant-values.html
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setMaxConnections-int-
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/constant-values.html
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setConnectionTimeout-int-
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setConnectionTTL-long-

AWS SDK for Java 1.x Developer Guide for version 1.x

The default maximum retry count for retriable errors is 3. You can set a different value by using
the ClientConfiguration.setMaxErrorRetry method.

Local Address

To set the local address that the HTTP client will bind to, use ClientConfiguration.setLocalAddress.

TCP Socket Buffer Size Hints

Advanced users who want to tune low-level TCP parameters can additionally set TCP buffer size
hints through the ClientConfiguration object. The majority of users will never need to tweak these
values, but they are provided for advanced users.

Optimal TCP buffer sizes for an application are highly dependent on network and operating system
configuration and capabilities. For example, most modern operating systems provide auto-tuning
logic for TCP buffer sizes.This can have a big impact on performance for TCP connections that are
held open long enough for the auto-tuning to optimize buffer sizes.

Large buffer sizes (e.g., 2 MB) allow the operating system to buffer more data in memory without
requiring the remote server to acknowledge receipt of that information, and so can be particularly
useful when the network has high latency.

This is only a hint, and the operating system might not honor it. When using this option, users
should always check the operating system’s configured limits and defaults. Most operating systems
have a maximum TCP buffer size limit configured, and won’t let you go beyond that limit unless
you explicitly raise the maximum TCP buffer size limit.

Many resources are available to help with configuring TCP buffer sizes and operating system-
specific TCP settings, including the following:

• Host Tuning

Access Control Policies

AWS access control policies enable you to specify fine-grained access controls on your AWS
resources. An access control policy consists of a collection of statements, which take the form:

Account A has permission to perform action B on resource C where condition D applies.

TCP Socket Buffer Size Hints 44

http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setMaxErrorRetry-int-
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setLocalAddress-java.net.InetAddress-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html
http://fasterdata.es.net/host-tuning/

AWS SDK for Java 1.x Developer Guide for version 1.x

Where:

• A is the principal- The AWS account that is making a request to access or modify one of your AWS
resources.

• B is the action- The way in which your AWS resource is being accessed or modified, such as
sending a message to an Amazon SQS queue, or storing an object in an Amazon S3 bucket.

• C is the resource- The AWS entity that the principal wants to access, such as an Amazon SQS
queue, or an object stored in Amazon S3.

• D is a set of conditions- The optional constraints that specify when to allow or deny access for the
principal to access your resource. Many expressive conditions are available, some specific to each
service. For example, you can use date conditions to allow access to your resources only after or
before a specific time.

Amazon S3 Example

The following example demonstrates a policy that allows anyone access to read all the objects in
a bucket, but restricts access to uploading objects to that bucket to two specific AWS accounts (in
addition to the bucket owner’s account).

Statement allowPublicReadStatement = new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(S3Actions.GetObject)
 .withResources(new S3ObjectResource(myBucketName, "*"));
Statement allowRestrictedWriteStatement = new Statement(Effect.Allow)
 .withPrincipals(new Principal("123456789"), new Principal("876543210"))
 .withActions(S3Actions.PutObject)
 .withResources(new S3ObjectResource(myBucketName, "*"));

Policy policy = new Policy()
 .withStatements(allowPublicReadStatement, allowRestrictedWriteStatement);

AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
s3.setBucketPolicy(myBucketName, policy.toJson());

Amazon SQS Example

One common use of policies is to authorize an Amazon SQS queue to receive messages from an
Amazon SNS topic.

Amazon S3 Example 45

AWS SDK for Java 1.x Developer Guide for version 1.x

Policy policy = new Policy().withStatements(
 new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(SQSActions.SendMessage)
 .withConditions(ConditionFactory.newSourceArnCondition(myTopicArn)));

Map queueAttributes = new HashMap();
queueAttributes.put(QueueAttributeName.Policy.toString(), policy.toJson());

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
sqs.setQueueAttributes(new SetQueueAttributesRequest(myQueueUrl, queueAttributes));

Amazon SNS Example

Some services offer additional conditions that can be used in policies. Amazon SNS provides
conditions for allowing or denying subscriptions to SNS topics based on the protocol (e.g., email,
HTTP, HTTPS, Amazon SQS) and endpoint (e.g., email address, URL, Amazon SQS ARN) of the
request to subscribe to a topic.

Condition endpointCondition =
 SNSConditionFactory.newEndpointCondition("*@mycompany.com");

Policy policy = new Policy().withStatements(
 new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(SNSActions.Subscribe)
 .withConditions(endpointCondition));

AmazonSNS sns = AmazonSNSClientBuilder.defaultClient();
sns.setTopicAttributes(
 new SetTopicAttributesRequest(myTopicArn, "Policy", policy.toJson()));

Set the JVM TTL for DNS name lookups

The Java virtual machine (JVM) caches DNS name lookups. When the JVM resolves a hostname
to an IP address, it caches the IP address for a specified period of time, known as the time-to-live
(TTL).

Because AWS resources use DNS name entries that occasionally change, we recommend that
you configure your JVM with a TTL value of 5 seconds. This ensures that when a resource’s IP

Amazon SNS Example 46

AWS SDK for Java 1.x Developer Guide for version 1.x

address changes, your application will be able to receive and use the resource’s new IP address by
requerying the DNS.

On some Java configurations, the JVM default TTL is set so that it will never refresh DNS entries
until the JVM is restarted. Thus, if the IP address for an AWS resource changes while your
application is still running, it won’t be able to use that resource until you manually restart the JVM
and the cached IP information is refreshed. In this case, it’s crucial to set the JVM’s TTL so that it
will periodically refresh its cached IP information.

How to set the JVM TTL

To modify the JVM’s TTL, set the networkaddress.cache.ttl property value. Use one of the following
methods, depending on your needs:

• globally, for all applications that use the JVM. Set networkaddress.cache.ttl in the
$JAVA_HOME/jre/lib/security/java.security file for Java 8 or $JAVA_HOME/conf/
security/java.security file for Java 11 or higher:

networkaddress.cache.ttl=5

• for your application only, set the networkaddress.cache.ttl system property on startup.

java -Dnetworkaddress.cache.ttl=5 [...] mainClassOfApplication [...]

Enabling Metrics for the AWS SDK for Java

The AWS SDK for Java can generate metrics for visualization and monitoring with Amazon
CloudWatch that measure:

• your application’s performance when accessing AWS

• the performance of your JVMs when used with AWS

• runtime environment details such as heap memory, number of threads, and opened file
descriptors

How to set the JVM TTL 47

https://docs.oracle.com/en/java/javase/17/core/java-networking.html
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/

AWS SDK for Java 1.x Developer Guide for version 1.x

How to Enable Java SDK Metric Generation

You need to add the following Maven dependency to enable the SDK to send metrics to
CloudWatch.

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.12.490*</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>
<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-cloudwatchmetrics</artifactId>
 <scope>provided</scope>
 </dependency>
 <!-- Other SDK dependencies. -->
</dependencies>

*Replace the version number with the latest version of the SDK available at Maven Central.

AWS SDK for Java metrics are disabled by default. To enable it for your local development
environment, include a system property that points to your AWS security credential file when
starting up the JVM. For example:

-Dcom.amazonaws.sdk.enableDefaultMetrics=credentialFile=/path/aws.properties

You need to specify the path to your credential file so that the SDK can upload the gathered
datapoints to CloudWatch for later analysis.

Note

If you are accessing AWS from an Amazon EC2 instance using the Amazon EC2 instance
metadata service, you don’t need to specify a credential file. In this case, you need only
specify:

How to Enable Java SDK Metric Generation 48

https://search.maven.org/search?q=g:com.amazonaws%20a:aws-java-sdk-bom

AWS SDK for Java 1.x Developer Guide for version 1.x

-Dcom.amazonaws.sdk.enableDefaultMetrics

All metrics captured by the AWS SDK for Java are under the namespace AWSSDK/Java, and are
uploaded to the CloudWatch default region (us-east-1). To change the region, specify it by using
the cloudwatchRegion attribute in the system property. For example, to set the CloudWatch
region to us-east-1, use:

-Dcom.amazonaws.sdk.enableDefaultMetrics=credentialFile=/path/
aws.properties,cloudwatchRegion={region_api_default}

Once you enable the feature, every time there is a service request to AWS from the AWS SDK
for Java, metric data points will be generated, queued for statistical summary, and uploaded
asynchronously to CloudWatch about once every minute. Once metrics have been uploaded, you
can visualize them using the AWS Management Console and set alarms on potential problems such
as memory leakage, file descriptor leakage, and so on.

Available Metric Types

The default set of metrics is divided into three major categories:

AWS Request Metrics

• Covers areas such as the latency of the HTTP request/response, number of requests,
exceptions, and retries.

Available Metric Types 49

https://console.aws.amazon.com/console/home

AWS SDK for Java 1.x Developer Guide for version 1.x

AWS service Metrics

• Include AWS service-specific data, such as the throughput and byte count for S3 uploads and
downloads.

Available Metric Types 50

AWS SDK for Java 1.x Developer Guide for version 1.x

Machine Metrics

• Cover the runtime environment, including heap memory, number of threads, and open file
descriptors.

Available Metric Types 51

AWS SDK for Java 1.x Developer Guide for version 1.x

If you want to exclude Machine Metrics, add excludeMachineMetrics to the system
property:

-Dcom.amazonaws.sdk.enableDefaultMetrics=credentialFile=/path/
aws.properties,excludeMachineMetrics

More Information

• See the amazonaws/metrics package summary for a full list of the predefined core metric types.

• Learn about working with CloudWatch using the AWS SDK for Java in CloudWatch Examples
Using the AWS SDK for Java.

• Learn more about performance tuning in Tuning the AWS SDK for Java to Improve Resiliency
blog post.

More Information 52

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/metrics/package-summary.html
https://aws.amazon.com/blogs/developer/tuning-the-aws-sdk-for-java-to-improve-resiliency

AWS SDK for Java 1.x Developer Guide for version 1.x

AWS SDK for Java Code Examples

This section provides tutorials and examples of using the AWS SDK for Java v1 to program AWS
services.

Find the source code for these examples and others in the AWS documentation code examples
repository on GitHub.

To propose a new code example for the AWS documentation team to consider producing, create
a new request. The team is looking to produce code examples that cover broader scenarios and
use cases, versus simple code snippets that cover only individual API calls. For instructions, see the
Contributing guidelines in the code examples respository on GitHub..

AWS SDK for Java 2.x

In 2018, AWS released the AWS SDK for Java 2.x. This guide contains instructions on using the
latest Java SDK along with example code.

Note

See Additional Documentation and Resources for more examples and additional resources
available for AWS SDK for Java developers!

CloudWatch Examples Using the AWS SDK for Java

This section provides examples of programming CloudWatch using the AWS SDK for Java.

Amazon CloudWatch monitors your Amazon Web Services (AWS) resources and the applications
you run on AWS in real time. You can use CloudWatch to collect and track metrics, which
are variables you can measure for your resources and applications. CloudWatch alarms send
notifications or automatically make changes to the resources you are monitoring based on rules
that you define.

For more information about CloudWatch, see the Amazon CloudWatch User Guide.

AWS SDK for Java 2.x 53

https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/CONTRIBUTING.md
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/home.html
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/sdk-for-java/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

AWS SDK for Java 1.x Developer Guide for version 1.x

Note

The examples include only the code needed to demonstrate each technique. The complete
example code is available on GitHub. From there, you can download a single source file or
clone the repository locally to get all the examples to build and run.

Topics

• Getting Metrics from CloudWatch

• Publishing Custom Metric Data

• Working with CloudWatch Alarms

• Using Alarm Actions in CloudWatch

• Sending Events to CloudWatch

Getting Metrics from CloudWatch

Listing Metrics

To list CloudWatch metrics, create a ListMetricsRequest and call the AmazonCloudWatchClient’s
listMetrics method. You can use the ListMetricsRequest to filter the returned metrics by
namespace, metric name, or dimensions.

Note

A list of metrics and dimensions that are posted by AWS services can be found within the
{https---docs-aws-amazon-com-AmazonCloudWatch-latest-monitoring-CW-Support-
For-AWS-html}[Amazon CloudWatch Metrics and Dimensions Reference] in the Amazon
CloudWatch User Guide.

Imports

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.ListMetricsRequest;
import com.amazonaws.services.cloudwatch.model.ListMetricsResult;
import com.amazonaws.services.cloudwatch.model.Metric;

Getting Metrics from CloudWatch 54

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/ListMetricsRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

ListMetricsRequest request = new ListMetricsRequest()
 .withMetricName(name)
 .withNamespace(namespace);

boolean done = false;

while(!done) {
 ListMetricsResult response = cw.listMetrics(request);

 for(Metric metric : response.getMetrics()) {
 System.out.printf(
 "Retrieved metric %s", metric.getMetricName());
 }

 request.setNextToken(response.getNextToken());

 if(response.getNextToken() == null) {
 done = true;
 }
}

The metrics are returned in a ListMetricsResult by calling its getMetrics method. The results may
be paged. To retrieve the next batch of results, call setNextToken on the original request object
with the return value of the ListMetricsResult object’s getNextToken method, and pass the
modified request object back to another call to listMetrics.

More Information

• ListMetrics in the Amazon CloudWatch API Reference.

Publishing Custom Metric Data

A number of AWS services publish their own metrics in namespaces beginning with " AWS " You can
also publish custom metric data using your own namespace (as long as it doesn’t begin with " AWS
").

Publishing Custom Metric Data 55

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/ListMetricsResult.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_ListMetrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Publish Custom Metric Data

To publish your own metric data, call the AmazonCloudWatchClient’s putMetricData method
with a PutMetricDataRequest. The PutMetricDataRequest must include the custom namespace
to use for the data, and information about the data point itself in a MetricDatum object.

Note

You cannot specify a namespace that begins with " AWS ". Namespaces that begin with "
AWS " are reserved for use by Amazon Web Services products.

Imports

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.Dimension;
import com.amazonaws.services.cloudwatch.model.MetricDatum;
import com.amazonaws.services.cloudwatch.model.PutMetricDataRequest;
import com.amazonaws.services.cloudwatch.model.PutMetricDataResult;
import com.amazonaws.services.cloudwatch.model.StandardUnit;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

Dimension dimension = new Dimension()
 .withName("UNIQUE_PAGES")
 .withValue("URLS");

MetricDatum datum = new MetricDatum()
 .withMetricName("PAGES_VISITED")
 .withUnit(StandardUnit.None)
 .withValue(data_point)
 .withDimensions(dimension);

PutMetricDataRequest request = new PutMetricDataRequest()
 .withNamespace("SITE/TRAFFIC")
 .withMetricData(datum);

Publishing Custom Metric Data 56

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/PutMetricDataRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/MetricDatum.html

AWS SDK for Java 1.x Developer Guide for version 1.x

PutMetricDataResult response = cw.putMetricData(request);

More Information

• Using Amazon CloudWatch Metrics in the Amazon CloudWatch User Guide.

• AWS Namespaces in the Amazon CloudWatch User Guide.

• PutMetricData in the Amazon CloudWatch API Reference.

Working with CloudWatch Alarms

Create an Alarm

To create an alarm based on a CloudWatch metric, call the AmazonCloudWatchClient’s
putMetricAlarm method with a PutMetricAlarmRequest filled with the alarm conditions.

Imports

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.ComparisonOperator;
import com.amazonaws.services.cloudwatch.model.Dimension;
import com.amazonaws.services.cloudwatch.model.PutMetricAlarmRequest;
import com.amazonaws.services.cloudwatch.model.PutMetricAlarmResult;
import com.amazonaws.services.cloudwatch.model.StandardUnit;
import com.amazonaws.services.cloudwatch.model.Statistic;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

Dimension dimension = new Dimension()
 .withName("InstanceId")
 .withValue(instanceId);

PutMetricAlarmRequest request = new PutMetricAlarmRequest()
 .withAlarmName(alarmName)
 .withComparisonOperator(
 ComparisonOperator.GreaterThanThreshold)
 .withEvaluationPeriods(1)

Working with CloudWatch Alarms 57

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricData.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/PutMetricAlarmRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 .withMetricName("CPUUtilization")
 .withNamespace("{AWS}/EC2")
 .withPeriod(60)
 .withStatistic(Statistic.Average)
 .withThreshold(70.0)
 .withActionsEnabled(false)
 .withAlarmDescription(
 "Alarm when server CPU utilization exceeds 70%")
 .withUnit(StandardUnit.Seconds)
 .withDimensions(dimension);

PutMetricAlarmResult response = cw.putMetricAlarm(request);

List Alarms

To list the CloudWatch alarms that you have created, call the AmazonCloudWatchClient’s
describeAlarms method with a DescribeAlarmsRequest that you can use to set options for the
result.

Imports

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.DescribeAlarmsRequest;
import com.amazonaws.services.cloudwatch.model.DescribeAlarmsResult;
import com.amazonaws.services.cloudwatch.model.MetricAlarm;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

boolean done = false;
DescribeAlarmsRequest request = new DescribeAlarmsRequest();

while(!done) {

 DescribeAlarmsResult response = cw.describeAlarms(request);

 for(MetricAlarm alarm : response.getMetricAlarms()) {
 System.out.printf("Retrieved alarm %s", alarm.getAlarmName());
 }

Working with CloudWatch Alarms 58

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DescribeAlarmsRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 request.setNextToken(response.getNextToken());

 if(response.getNextToken() == null) {
 done = true;
 }
}

The list of alarms can be obtained by calling getMetricAlarms on the DescribeAlarmsResult that
is returned by describeAlarms.

The results may be paged. To retrieve the next batch of results, call setNextToken on the original
request object with the return value of the DescribeAlarmsResult object’s getNextToken
method, and pass the modified request object back to another call to describeAlarms.

Note

You can also retrieve alarms for a specific metric by using the AmazonCloudWatchClient’s
describeAlarmsForMetric method. Its use is similar to describeAlarms.

Delete Alarms

To delete CloudWatch alarms, call the AmazonCloudWatchClient’s deleteAlarms method with a
DeleteAlarmsRequest containing one or more names of alarms that you want to delete.

Imports

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.DeleteAlarmsRequest;
import com.amazonaws.services.cloudwatch.model.DeleteAlarmsResult;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

DeleteAlarmsRequest request = new DeleteAlarmsRequest()
 .withAlarmNames(alarm_name);

Working with CloudWatch Alarms 59

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DescribeAlarmsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DeleteAlarmsRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

DeleteAlarmsResult response = cw.deleteAlarms(request);

More Information

• Creating Amazon CloudWatch Alarms in the Amazon CloudWatch User Guide

• PutMetricAlarm in the Amazon CloudWatch API Reference

• DescribeAlarms in the Amazon CloudWatch API Reference

• DeleteAlarms in the Amazon CloudWatch API Reference

Using Alarm Actions in CloudWatch

Using CloudWatch alarm actions, you can create alarms that perform actions such as automatically
stopping, terminating, rebooting, or recovering Amazon EC2 instances.

Note

Alarm actions can be added to an alarm by using the PutMetricAlarmRequest's
setAlarmActions method when creating an alarm.

Enable Alarm Actions

To enable alarm actions for a CloudWatch alarm, call the AmazonCloudWatchClient’s
enableAlarmActions with a EnableAlarmActionsRequest containing one or more names of
alarms whose actions you want to enable.

Imports

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.EnableAlarmActionsRequest;
import com.amazonaws.services.cloudwatch.model.EnableAlarmActionsResult;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

EnableAlarmActionsRequest request = new EnableAlarmActionsRequest()

Using Alarm Actions in CloudWatch 60

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_DescribeAlarms.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_DeleteAlarms.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/PutMetricAlarmRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/EnableAlarmActionsRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 .withAlarmNames(alarm);

EnableAlarmActionsResult response = cw.enableAlarmActions(request);

Disable Alarm Actions

To disable alarm actions for a CloudWatch alarm, call the AmazonCloudWatchClient’s
disableAlarmActions with a DisableAlarmActionsRequest containing one or more names of
alarms whose actions you want to disable.

Imports

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.DisableAlarmActionsRequest;
import com.amazonaws.services.cloudwatch.model.DisableAlarmActionsResult;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

DisableAlarmActionsRequest request = new DisableAlarmActionsRequest()
 .withAlarmNames(alarmName);

DisableAlarmActionsResult response = cw.disableAlarmActions(request);

More Information

• Create Alarms to Stop, Terminate, Reboot, or Recover an Instance in the Amazon CloudWatch
User Guide

• PutMetricAlarm in the Amazon CloudWatch API Reference

• EnableAlarmActions in the Amazon CloudWatch API Reference

• DisableAlarmActions in the Amazon CloudWatch API Reference

Sending Events to CloudWatch

CloudWatch Events delivers a near real-time stream of system events that describe changes in AWS
resources to Amazon EC2 instances, Lambda functions, Kinesis streams, Amazon ECS tasks, Step

Sending Events to CloudWatch 61

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DisableAlarmActionsRequest.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/UsingAlarmActions.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_EnableAlarmActions.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_DisableAlarmActions.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Functions state machines, Amazon SNS topics, Amazon SQS queues, or built-in targets. You can
match events and route them to one or more target functions or streams by using simple rules.

Add Events

To add custom CloudWatch events, call the AmazonCloudWatchEventsClient’s putEvents method
with a PutEventsRequest object that contains one or more PutEventsRequestEntry objects that
provide details about each event. You can specify several parameters for the entry such as the
source and type of the event, resources associated with the event, and so on.

Note

You can specify a maximum of 10 events per call to putEvents.

Imports

import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEvents;
import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEventsClientBuilder;
import com.amazonaws.services.cloudwatchevents.model.PutEventsRequest;
import com.amazonaws.services.cloudwatchevents.model.PutEventsRequestEntry;
import com.amazonaws.services.cloudwatchevents.model.PutEventsResult;

Code

final AmazonCloudWatchEvents cwe =
 AmazonCloudWatchEventsClientBuilder.defaultClient();

final String EVENT_DETAILS =
 "{ \"key1\": \"value1\", \"key2\": \"value2\" }";

PutEventsRequestEntry request_entry = new PutEventsRequestEntry()
 .withDetail(EVENT_DETAILS)
 .withDetailType("sampleSubmitted")
 .withResources(resource_arn)
 .withSource("aws-sdk-java-cloudwatch-example");

PutEventsRequest request = new PutEventsRequest()
 .withEntries(request_entry);

PutEventsResult response = cwe.putEvents(request);

Sending Events to CloudWatch 62

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutEventsRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutEventsRequestEntry.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Add Rules

To create or update a rule, call the AmazonCloudWatchEventsClient’s putRule method with a
PutRuleRequest with the name of the rule and optional parameters such as the event pattern, IAM
role to associate with the rule, and a scheduling expression that describes how often the rule is run.

Imports

import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEvents;
import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEventsClientBuilder;
import com.amazonaws.services.cloudwatchevents.model.PutRuleRequest;
import com.amazonaws.services.cloudwatchevents.model.PutRuleResult;
import com.amazonaws.services.cloudwatchevents.model.RuleState;

Code

final AmazonCloudWatchEvents cwe =
 AmazonCloudWatchEventsClientBuilder.defaultClient();

PutRuleRequest request = new PutRuleRequest()
 .withName(rule_name)
 .withRoleArn(role_arn)
 .withScheduleExpression("rate(5 minutes)")
 .withState(RuleState.ENABLED);

PutRuleResult response = cwe.putRule(request);

Add Targets

Targets are the resources that are invoked when a rule is triggered. Example targets include
Amazon EC2 instances, Lambda functions, Kinesis streams, Amazon ECS tasks, Step Functions state
machines, and built-in targets.

To add a target to a rule, call the AmazonCloudWatchEventsClient’s putTargets method with a
PutTargetsRequest containing the rule to update and a list of targets to add to the rule.

Imports

import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEvents;
import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEventsClientBuilder;
import com.amazonaws.services.cloudwatchevents.model.PutTargetsRequest;

Sending Events to CloudWatch 63

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutRuleRequest.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutTargetsRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.services.cloudwatchevents.model.PutTargetsResult;
import com.amazonaws.services.cloudwatchevents.model.Target;

Code

final AmazonCloudWatchEvents cwe =
 AmazonCloudWatchEventsClientBuilder.defaultClient();

Target target = new Target()
 .withArn(function_arn)
 .withId(target_id);

PutTargetsRequest request = new PutTargetsRequest()
 .withTargets(target)
 .withRule(rule_name);

PutTargetsResult response = cwe.putTargets(request);

More Information

• Adding Events with PutEvents in the Amazon CloudWatch Events User Guide

• Schedule Expressions for Rules in the Amazon CloudWatch Events User Guide

• Event Types for CloudWatch Events in the Amazon CloudWatch Events User Guide

• Events and Event Patterns in the Amazon CloudWatch Events User Guide

• PutEvents in the Amazon CloudWatch Events API Reference

• PutTargets in the Amazon CloudWatch Events API Reference

• PutRule in the Amazon CloudWatch Events API Reference

DynamoDB Examples Using the AWS SDK for Java

This section provides examples of programming DynamoDB using the AWS SDK for Java.

Note

The examples include only the code needed to demonstrate each technique. The complete
example code is available on GitHub. From there, you can download a single source file or
clone the repository locally to get all the examples to build and run.

Amazon DynamoDB Examples 64

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/AddEventsPutEvents.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/EventTypes.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutEvents.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutTargets.html
http://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutRule.html
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/sdk-for-java/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java

AWS SDK for Java 1.x Developer Guide for version 1.x

Topics

• Working with Tables in DynamoDB

• Working with Items in DynamoDB

Working with Tables in DynamoDB

Tables are the containers for all items in a DynamoDB database. Before you can add or remove data
from DynamoDB, you must create a table.

For each table, you must define:

• A table name that is unique for your account and region.

• A primary key for which every value must be unique; no two items in your table can have the
same primary key value.

A primary key can be simple, consisting of a single partition (HASH) key, or composite, consisting
of a partition and a sort (RANGE) key.

Each key value has an associated data type, enumerated by the ScalarAttributeType class. The
key value can be binary (B), numeric (N), or a string (S). For more information, see Naming Rules
and Data Types in the Amazon DynamoDB Developer Guide.

• Provisioned throughput values that define the number of reserved read/write capacity units for
the table.

Note

Amazon DynamoDB pricing is based on the provisioned throughput values that you set
on your tables, so reserve only as much capacity as you think you’ll need for your table.

Provisioned throughput for a table can be modified at any time, so you can adjust capacity if your
needs change.

Create a Table

Use the DynamoDB client's createTable method to create a new DynamoDB table. You need to
construct table attributes and a table schema, both of which are used to identify the primary key

Working with Tables in DynamoDB 65

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ScalarAttributeType.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html
https://aws.amazon.com/dynamodb/pricing/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html

AWS SDK for Java 1.x Developer Guide for version 1.x

of your table. You must also supply initial provisioned throughput values and a table name. Only
define key table attributes when creating your DynamoDB table.

Note

If a table with the name you chose already exists, an AmazonServiceException is thrown.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.CreateTableRequest;
import com.amazonaws.services.dynamodbv2.model.CreateTableResult;
import com.amazonaws.services.dynamodbv2.model.KeySchemaElement;
import com.amazonaws.services.dynamodbv2.model.KeyType;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;
import com.amazonaws.services.dynamodbv2.model.ScalarAttributeType;

Create a Table with a Simple Primary Key

This code creates a table with a simple primary key ("Name").

Code

CreateTableRequest request = new CreateTableRequest()
 .withAttributeDefinitions(new AttributeDefinition(
 "Name", ScalarAttributeType.S))
 .withKeySchema(new KeySchemaElement("Name", KeyType.HASH))
 .withProvisionedThroughput(new ProvisionedThroughput(
 new Long(10), new Long(10)))
 .withTableName(table_name);

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 CreateTableResult result = ddb.createTable(request);
 System.out.println(result.getTableDescription().getTableName());
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());

Working with Tables in DynamoDB 66

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/AmazonServiceException.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 System.exit(1);
}

See the complete example on GitHub.

Create a Table with a Composite Primary Key

Add another AttributeDefinition and KeySchemaElement to CreateTableRequest.

Code

CreateTableRequest request = new CreateTableRequest()
 .withAttributeDefinitions(
 new AttributeDefinition("Language", ScalarAttributeType.S),
 new AttributeDefinition("Greeting", ScalarAttributeType.S))
 .withKeySchema(
 new KeySchemaElement("Language", KeyType.HASH),
 new KeySchemaElement("Greeting", KeyType.RANGE))
 .withProvisionedThroughput(
 new ProvisionedThroughput(new Long(10), new Long(10)))
 .withTableName(table_name);

See the complete example on GitHub.

List Tables

You can list the tables in a particular region by calling the DynamoDB client's listTables
method.

Note

If the named table doesn’t exist for your account and region, a ResourceNotFoundException
is thrown.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;

Working with Tables in DynamoDB 67

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/CreateTable.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/AttributeDefinition.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/KeySchemaElement.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/CreateTableRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/CreateTableCompositeKey.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.services.dynamodbv2.model.ListTablesRequest;
import com.amazonaws.services.dynamodbv2.model.ListTablesResult;

Code

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

ListTablesRequest request;

boolean more_tables = true;
String last_name = null;

while(more_tables) {
 try {
 if (last_name == null) {
 request = new ListTablesRequest().withLimit(10);
 }
 else {
 request = new ListTablesRequest()
 .withLimit(10)
 .withExclusiveStartTableName(last_name);
 }

 ListTablesResult table_list = ddb.listTables(request);
 List<String> table_names = table_list.getTableNames();

 if (table_names.size() > 0) {
 for (String cur_name : table_names) {
 System.out.format("* %s\n", cur_name);
 }
 } else {
 System.out.println("No tables found!");
 System.exit(0);
 }

 last_name = table_list.getLastEvaluatedTableName();
 if (last_name == null) {
 more_tables = false;
 }

By default, up to 100 tables are returned per call—use getLastEvaluatedTableName on the
returned ListTablesResult object to get the last table that was evaluated. You can use this value to
start the listing after the last returned value of the previous listing.

Working with Tables in DynamoDB 68

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/model/ListTablesResult.html

AWS SDK for Java 1.x Developer Guide for version 1.x

See the complete example on GitHub.

Describe (Get Information about) a Table

Call the DynamoDB client's describeTable method.

Note

If the named table doesn’t exist for your account and region, a ResourceNotFoundException
is thrown.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughputDescription;
import com.amazonaws.services.dynamodbv2.model.TableDescription;

Code

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 TableDescription table_info =
 ddb.describeTable(table_name).getTable();

 if (table_info != null) {
 System.out.format("Table name : %s\n",
 table_info.getTableName());
 System.out.format("Table ARN : %s\n",
 table_info.getTableArn());
 System.out.format("Status : %s\n",
 table_info.getTableStatus());
 System.out.format("Item count : %d\n",
 table_info.getItemCount().longValue());
 System.out.format("Size (bytes): %d\n",
 table_info.getTableSizeBytes().longValue());

 ProvisionedThroughputDescription throughput_info =

Working with Tables in DynamoDB 69

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/ListTables.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 table_info.getProvisionedThroughput();
 System.out.println("Throughput");
 System.out.format(" Read Capacity : %d\n",
 throughput_info.getReadCapacityUnits().longValue());
 System.out.format(" Write Capacity: %d\n",
 throughput_info.getWriteCapacityUnits().longValue());

 List<AttributeDefinition> attributes =
 table_info.getAttributeDefinitions();
 System.out.println("Attributes");
 for (AttributeDefinition a : attributes) {
 System.out.format(" %s (%s)\n",
 a.getAttributeName(), a.getAttributeType());
 }
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

See the complete example on GitHub.

Modify (Update) a Table

You can modify your table’s provisioned throughput values at any time by calling the DynamoDB
client's updateTable method.

Note

If the named table doesn’t exist for your account and region, a ResourceNotFoundException
is thrown.

Imports

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;
import com.amazonaws.AmazonServiceException;

Code

Working with Tables in DynamoDB 70

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/DescribeTable.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK for Java 1.x Developer Guide for version 1.x

ProvisionedThroughput table_throughput = new ProvisionedThroughput(
 read_capacity, write_capacity);

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.updateTable(table_name, table_throughput);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

See the complete example on GitHub.

Delete a Table

Call the DynamoDB client's deleteTable method and pass it the table’s name.

Note

If the named table doesn’t exist for your account and region, a ResourceNotFoundException
is thrown.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;

Code

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.deleteTable(table_name);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Working with Tables in DynamoDB 71

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/UpdateTable.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK for Java 1.x Developer Guide for version 1.x

See the complete example on GitHub.

More Info

• Guidelines for Working with Tables in the Amazon DynamoDB Developer Guide

• Working with Tables in DynamoDB in the Amazon DynamoDB Developer Guide

Working with Items in DynamoDB

In DynamoDB, an item is a collection of attributes, each of which has a name and a value. An
attribute value can be a scalar, set, or document type. For more information, see Naming Rules and
Data Types in the Amazon DynamoDB Developer Guide.

Retrieve (Get) an Item from a Table

Call the AmazonDynamoDB’s getItem method and pass it a GetItemRequest object with the table
name and primary key value of the item you want. It returns a GetItemResult object.

You can use the returned GetItemResult object’s getItem() method to retrieve a Map of key
(String) and value (AttributeValue) pairs that are associated with the item.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.GetItemRequest;
import java.util.HashMap;
import java.util.Map;

Code

HashMap<String,AttributeValue> key_to_get =
 new HashMap<String,AttributeValue>();

key_to_get.put("DATABASE_NAME", new AttributeValue(name));

GetItemRequest request = null;
if (projection_expression != null) {
 request = new GetItemRequest()

Working with Items in DynamoDB 72

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/DeleteTable.java
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForTables.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/GetItemRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/GetItemResult.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Map.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/AttributeValue.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 .withKey(key_to_get)
 .withTableName(table_name)
 .withProjectionExpression(projection_expression);
} else {
 request = new GetItemRequest()
 .withKey(key_to_get)
 .withTableName(table_name);
}

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 Map<String,AttributeValue> returned_item =
 ddb.getItem(request).getItem();
 if (returned_item != null) {
 Set<String> keys = returned_item.keySet();
 for (String key : keys) {
 System.out.format("%s: %s\n",
 key, returned_item.get(key).toString());
 }
 } else {
 System.out.format("No item found with the key %s!\n", name);
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);

See the complete example on GitHub.

Add a New Item to a Table

Create a Map of key-value pairs that represent the item’s attributes. These must include values for
the table’s primary key fields. If the item identified by the primary key already exists, its fields are
updated by the request.

Note

If the named table doesn’t exist for your account and region, a ResourceNotFoundException
is thrown.

Imports

Working with Items in DynamoDB 73

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/GetItem.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Map.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.ResourceNotFoundException;
import java.util.ArrayList;

Code

HashMap<String,AttributeValue> item_values =
 new HashMap<String,AttributeValue>();

item_values.put("Name", new AttributeValue(name));

for (String[] field : extra_fields) {
 item_values.put(field[0], new AttributeValue(field[1]));
}

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.putItem(table_name, item_values);
} catch (ResourceNotFoundException e) {
 System.err.format("Error: The table \"%s\" can't be found.\n", table_name);
 System.err.println("Be sure that it exists and that you've typed its name
 correctly!");
 System.exit(1);
} catch (AmazonServiceException e) {
 System.err.println(e.getMessage());
 System.exit(1);

See the complete example on GitHub.

Update an Existing Item in a Table

You can update an attribute for an item that already exists in a table by using the
AmazonDynamoDB’s updateItem method, providing a table name, primary key value, and a map
of fields to update.

Working with Items in DynamoDB 74

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/PutItem.java

AWS SDK for Java 1.x Developer Guide for version 1.x

Note

If the named table doesn’t exist for your account and region, or if the item identified by the
primary key you passed in doesn’t exist, a ResourceNotFoundException is thrown.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeAction;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.AttributeValueUpdate;
import com.amazonaws.services.dynamodbv2.model.ResourceNotFoundException;
import java.util.ArrayList;

Code

HashMap<String,AttributeValue> item_key =
 new HashMap<String,AttributeValue>();

item_key.put("Name", new AttributeValue(name));

HashMap<String,AttributeValueUpdate> updated_values =
 new HashMap<String,AttributeValueUpdate>();

for (String[] field : extra_fields) {
 updated_values.put(field[0], new AttributeValueUpdate(
 new AttributeValue(field[1]), AttributeAction.PUT));
}

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.updateItem(table_name, item_key, updated_values);
} catch (ResourceNotFoundException e) {
 System.err.println(e.getMessage());
 System.exit(1);
} catch (AmazonServiceException e) {
 System.err.println(e.getMessage());
 System.exit(1);

Working with Items in DynamoDB 75

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK for Java 1.x Developer Guide for version 1.x

See the complete example on GitHub.

Use the DynamoDBMapper class

The AWS SDK for Java provides a DynamoDBMapper class, allowing you to map your client-
side classes to Amazon DynamoDB tables. To use the DynamoDBMapper class, you define the
relationship between items in a DynamoDB table and their corresponding object instances in
your code by using annotations (as shown in the following code example). The DynamoDBMapper
class enables you to access your tables; perform various create, read, update, and delete (CRUD)
operations; and execute queries.

Note

The DynamoDBMapper class does not allow you to create, update, or delete tables.

Imports

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBAttribute;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBHashKey;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBMapper;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBTable;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBRangeKey;
import com.amazonaws.services.dynamodbv2.model.AmazonDynamoDBException;

Code

The following Java code example shows you how to add content to the Music table by using the
DynamoDBMapper class. After the content is added to the table, notice that an item is loaded by
using the Partition and Sort keys. Then the Awards item is updated. For information on creating the
Music table, see Create a Table in the Amazon DynamoDB Developer Guide.

 AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
 MusicItems items = new MusicItems();

 try{
 // Add new content to the Music table
 items.setArtist(artist);
 items.setSongTitle(songTitle);

Working with Items in DynamoDB 76

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/UpdateItem.java
https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 items.setAlbumTitle(albumTitle);
 items.setAwards(Integer.parseInt(awards)); //convert to an int

 // Save the item
 DynamoDBMapper mapper = new DynamoDBMapper(client);
 mapper.save(items);

 // Load an item based on the Partition Key and Sort Key
 // Both values need to be passed to the mapper.load method
 String artistName = artist;
 String songQueryTitle = songTitle;

 // Retrieve the item
 MusicItems itemRetrieved = mapper.load(MusicItems.class, artistName,
 songQueryTitle);
 System.out.println("Item retrieved:");
 System.out.println(itemRetrieved);

 // Modify the Award value
 itemRetrieved.setAwards(2);
 mapper.save(itemRetrieved);
 System.out.println("Item updated:");
 System.out.println(itemRetrieved);

 System.out.print("Done");
 } catch (AmazonDynamoDBException e) {
 e.getStackTrace();
 }
 }

 @DynamoDBTable(tableName="Music")
 public static class MusicItems {

 //Set up Data Members that correspond to columns in the Music table
 private String artist;
 private String songTitle;
 private String albumTitle;
 private int awards;

 @DynamoDBHashKey(attributeName="Artist")
 public String getArtist() {
 return this.artist;
 }

Working with Items in DynamoDB 77

AWS SDK for Java 1.x Developer Guide for version 1.x

 public void setArtist(String artist) {
 this.artist = artist;
 }

 @DynamoDBRangeKey(attributeName="SongTitle")
 public String getSongTitle() {
 return this.songTitle;
 }

 public void setSongTitle(String title) {
 this.songTitle = title;
 }

 @DynamoDBAttribute(attributeName="AlbumTitle")
 public String getAlbumTitle() {
 return this.albumTitle;
 }

 public void setAlbumTitle(String title) {
 this.albumTitle = title;
 }

 @DynamoDBAttribute(attributeName="Awards")
 public int getAwards() {
 return this.awards;
 }

 public void setAwards(int awards) {
 this.awards = awards;
 }
 }

See the complete example on GitHub.

More Info

• Guidelines for Working with Items in the Amazon DynamoDB Developer Guide

• Working with Items in DynamoDB in the Amazon DynamoDB Developer Guide

Amazon EC2 Examples Using the AWS SDK for Java

This section provides examples of programming Amazon EC2 with the AWS SDK for Java.

Amazon EC2 Examples 78

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/UseDynamoMapping.java
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForItems.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html
https://aws.amazon.com/ec2/

AWS SDK for Java 1.x Developer Guide for version 1.x

Topics

• Tutorial: Starting an EC2 Instance

• Using IAM Roles to Grant Access to AWS Resources on Amazon EC2

• Tutorial: Amazon EC2 Spot Instances

• Tutorial: Advanced Amazon EC2 Spot Request Management

• Managing Amazon EC2 Instances

• Using Elastic IP Addresses in Amazon EC2

• Use regions and availability zones

• Working with Amazon EC2 Key Pairs

• Working with Security Groups in Amazon EC2

Tutorial: Starting an EC2 Instance

This tutorial demonstrates how to use the AWS SDK for Java to start an EC2 instance.

Topics

• Prerequisites

• Create an Amazon EC2 Security Group

• Create a Key Pair

• Run an Amazon EC2 Instance

Prerequisites

Before you begin, be sure that you have created an AWS account and that you have set up your
AWS credentials. For more information, see Getting Started.

Create an Amazon EC2 Security Group

EC2-Classic is retiring

Warning

We are retiring EC2-Classic on August 15, 2022. We recommend that you migrate from
EC2-Classic to a VPC. For more information, see Migrate from EC2-Classic to a VPC in the
Amazon EC2 User Guide for Linux Instances or the Amazon EC2 User Guide for Windows

Tutorial: Starting an EC2 Instance 79

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-migrate.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/vpc-migrate.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Instances. Also see the blog post EC2-Classic-Classic Networking is Retiring – Here's How to
Prepare.

Create a security group, which acts as a virtual firewall that controls the network traffic for one or
more EC2 instances. By default, Amazon EC2 associates your instances with a security group that
allows no inbound traffic. You can create a security group that allows your EC2 instances to accept
certain traffic. For example, if you need to connect to a Linux instance, you must configure the
security group to allow SSH traffic. You can create a security group using the Amazon EC2 console
or the AWS SDK for Java.

You create a security group for use in either EC2-Classic or EC2-VPC. For more information about
EC2-Classic and EC2-VPC, see Supported Platforms in the Amazon EC2 User Guide for Linux
Instances.

For more information about creating a security group using the Amazon EC2 console, see Amazon
EC2 Security Groups in the Amazon EC2 User Guide for Linux Instances.

1. Create and initialize a CreateSecurityGroupRequest instance. Use the withGroupName method
to set the security group name, and the withDescription method to set the security group
description, as follows:

CreateSecurityGroupRequest csgr = new CreateSecurityGroupRequest();
csgr.withGroupName("JavaSecurityGroup").withDescription("My security group");

The security group name must be unique within the AWS region in which you initialize your
Amazon EC2 client. You must use US-ASCII characters for the security group name and
description.

2. Pass the request object as a parameter to the createSecurityGroup method. The method returns
a CreateSecurityGroupResult object, as follows:

CreateSecurityGroupResult createSecurityGroupResult =
 amazonEC2Client.createSecurityGroup(csgr);

If you attempt to create a security group with the same name as an existing security group,
createSecurityGroup throws an exception.

Tutorial: Starting an EC2 Instance 80

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/vpc-migrate.html
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html#withGroupName-java.lang.String-
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html#withDescription-java.lang.String-
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2.html#createSecurityGroup-com.amazonaws.services.ec2.model.CreateSecurityGroupRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupResult.html

AWS SDK for Java 1.x Developer Guide for version 1.x

By default, a new security group does not allow any inbound traffic to your Amazon EC2 instance.
To allow inbound traffic, you must explicitly authorize security group ingress. You can authorize
ingress for individual IP addresses, for a range of IP addresses, for a specific protocol, and for TCP/
UDP ports.

1. Create and initialize an IpPermission instance. Use the withIpv4Ranges method to set the
range of IP addresses to authorize ingress for, and use the withIpProtocol method to set the IP
protocol. Use the withFromPort and withToPort methods to specify range of ports to authorize
ingress for, as follows:

IpPermission ipPermission =
 new IpPermission();

IpRange ipRange1 = new IpRange().withCidrIp("111.111.111.111/32");
IpRange ipRange2 = new IpRange().withCidrIp("150.150.150.150/32");

ipPermission.withIpv4Ranges(Arrays.asList(new IpRange[] {ipRange1, ipRange2}))
 .withIpProtocol("tcp")
 .withFromPort(22)
 .withToPort(22);

All the conditions that you specify in the IpPermission object must be met in order for ingress
to be allowed.

Specify the IP address using CIDR notation. If you specify the protocol as TCP/UDP, you must
provide a source port and a destination port. You can authorize ports only if you specify TCP or
UDP.

2. Create and initialize an AuthorizeSecurityGroupIngressRequest instance. Use the
withGroupName method to specify the security group name, and pass the IpPermission
object you initialized earlier to the withIpPermissions method, as follows:

AuthorizeSecurityGroupIngressRequest authorizeSecurityGroupIngressRequest =
 new AuthorizeSecurityGroupIngressRequest();

authorizeSecurityGroupIngressRequest.withGroupName("JavaSecurityGroup")
 .withIpPermissions(ipPermission);

3. Pass the request object into the authorizeSecurityGroupIngress method, as follows:

Tutorial: Starting an EC2 Instance 81

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withIpv4Ranges-java.util.Collection-
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withIpProtocol-java.lang.String-
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withFromPort-java.lang.Integer-
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withToPort-java.lang.Integer-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupEgressRequest.html
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupEgressRequest.html#withIpPermissions-com.amazonaws.services.ec2.model.IpPermission%E2%80%A6%E2%80%8B-
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#authorizeSecurityGroupIngress-com.amazonaws.services.ec2.model.AuthorizeSecurityGroupIngressRequest-

AWS SDK for Java 1.x Developer Guide for version 1.x

amazonEC2Client.authorizeSecurityGroupIngress(authorizeSecurityGroupIngressRequest);

If you call authorizeSecurityGroupIngress with IP addresses for which ingress
is already authorized, the method throws an exception. Create and initialize a new
IpPermission object to authorize ingress for different IPs, ports, and protocols before calling
AuthorizeSecurityGroupIngress.

Whenever you call the authorizeSecurityGroupIngress or authorizeSecurityGroupEgress methods, a
rule is added to your security group.

Create a Key Pair

You must specify a key pair when you launch an EC2 instance and then specify the private key of
the key pair when you connect to the instance. You can create a key pair or use an existing key pair
that you’ve used when launching other instances. For more information, see Amazon EC2 Key Pairs
in the Amazon EC2 User Guide for Linux Instances.

1. Create and initialize a CreateKeyPairRequest instance. Use the withKeyName method to set the
key pair name, as follows:

CreateKeyPairRequest createKeyPairRequest = new CreateKeyPairRequest();

createKeyPairRequest.withKeyName(keyName);

Important

Key pair names must be unique. If you attempt to create a key pair with the same key
name as an existing key pair, you’ll get an exception.

2. Pass the request object to the createKeyPair method. The method returns a CreateKeyPairResult
instance, as follows:

CreateKeyPairResult createKeyPairResult =
 amazonEC2Client.createKeyPair(createKeyPairRequest);

3. Call the result object’s getKeyPair method to obtain a KeyPair object. Call the KeyPair object’s
getKeyMaterial method to obtain the unencrypted PEM-encoded private key, as follows:

Tutorial: Starting an EC2 Instance 82

http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#authorizeSecurityGroupIngress-com.amazonaws.services.ec2.model.AuthorizeSecurityGroupIngressRequest-
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#authorizeSecurityGroupEgress-com.amazonaws.services.ec2.model.AuthorizeSecurityGroupEgressRequest-
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairRequest.html
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairRequest.html#withKeyName-java.lang.String-
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2.html#createKeyPair-com.amazonaws.services.ec2.model.CreateKeyPairRequest--
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairResult.html
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairResult.html#getKeyPair--
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/KeyPair.html
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/KeyPair.html#getKeyMaterial--

AWS SDK for Java 1.x Developer Guide for version 1.x

KeyPair keyPair = new KeyPair();

keyPair = createKeyPairResult.getKeyPair();

String privateKey = keyPair.getKeyMaterial();

Run an Amazon EC2 Instance

Use the following procedure to launch one or more identically configured EC2 instances from
the same Amazon Machine Image (AMI). After you create your EC2 instances, you can check their
status. After your EC2 instances are running, you can connect to them.

1. Create and initialize a RunInstancesRequest instance. Make sure that the AMI, key pair, and
security group that you specify exist in the region that you specified when you created the client
object.

RunInstancesRequest runInstancesRequest =
 new RunInstancesRequest();

runInstancesRequest.withImageId("ami-a9d09ed1")
 .withInstanceType(InstanceType.T1Micro)
 .withMinCount(1)
 .withMaxCount(1)
 .withKeyName("my-key-pair")
 .withSecurityGroups("my-security-group");

withImageId

• The ID of the AMI. To learn how to find public AMIs provided by Amazon or create your
own, see Amazon Machine Image (AMI).

withInstanceType

• An instance type that is compatible with the specified AMI. For more information, see
Instance Types in the Amazon EC2 User Guide for Linux Instances.

withMinCount

• The minimum number of EC2 instances to launch. If this is more instances than Amazon
EC2 can launch in the target Availability Zone, Amazon EC2 launches no instances.

Tutorial: Starting an EC2 Instance 83

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withImageId-java.lang.String-
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withInstanceType-java.lang.String-
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withMinCount-java.lang.Integer-

AWS SDK for Java 1.x Developer Guide for version 1.x

withMaxCount

• The maximum number of EC2 instances to launch. If this is more instances than Amazon
EC2 can launch in the target Availability Zone, Amazon EC2 launches the largest possible
number of instances above MinCount. You can launch between 1 and the maximum
number of instances you’re allowed for the instance type. For more information, see How
many instances can I run in Amazon EC2 in the Amazon EC2 General FAQ.

withKeyName

• The name of the EC2 key pair. If you launch an instance without specifying a key pair, you
can’t connect to it. For more information, see Create a Key Pair.

withSecurityGroups

• One or more security groups. For more information, see Create an Amazon EC2 Security
Group.

2. Launch the instances by passing the request object to the runInstances method. The method
returns a RunInstancesResult object, as follows:

RunInstancesResult result = amazonEC2Client.runInstances(
 runInstancesRequest);

After your instance is running, you can connect to it using your key pair. For more information, see
Connect to Your Linux Instance. in the Amazon EC2 User Guide for Linux Instances.

Using IAM Roles to Grant Access to AWS Resources on Amazon EC2

All requests to Amazon Web Services (AWS) must be cryptographically signed using credentials
issued by AWS. You can use IAM roles to conveniently grant secure access to AWS resources from
your Amazon EC2 instances.

This topic provides information about how to use IAM roles with Java SDK applications running
on Amazon EC2. For more information about IAM instances, see IAM Roles for Amazon EC2 in the
Amazon EC2 User Guide for Linux Instances.

The default provider chain and EC2 instance profiles

If your application creates an AWS client using the default constructor, then the client will search
for credentials using the default credentials provider chain, in the following order:

1. In the Java system properties: aws.accessKeyId and aws.secretKey.

Using IAM Roles to Grant Access to AWS Resources on Amazon EC2 84

http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withMaxCount-java.lang.Integer-
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withKeyName-java.lang.String-
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withSecurityGroups-java.util.Collection-
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#runInstances-com.amazonaws.services.ec2.model.RunInstancesRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesResult.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

AWS SDK for Java 1.x Developer Guide for version 1.x

2. In system environment variables: AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.

3. In the default credentials file (the location of this file varies by platform).

4. Credentials delivered through the Amazon EC2 container service if the
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI environment variable is set and security
manager has permission to access the variable.

5. In the instance profile credentials, which exist within the instance metadata associated with the
IAM role for the EC2 instance.

6. Web Identity Token credentials from the environment or container.

The instance profile credentials step in the default provider chain is available only when
running your application on an Amazon EC2 instance, but provides the greatest ease of
use and best security when working with Amazon EC2 instances. You can also pass an
InstanceProfileCredentialsProvider instance directly to the client constructor to get instance profile
credentials without proceeding through the entire default provider chain.

For example:

AmazonS3 s3 = AmazonS3ClientBuilder.standard()
 .withCredentials(new InstanceProfileCredentialsProvider(false))
 .build();

When using this approach, the SDK retrieves temporary AWS credentials that have the same
permissions as those associated with the IAM role associated with the Amazon EC2 instance
in its instance profile. Although these credentials are temporary and would eventually expire,
InstanceProfileCredentialsProvider periodically refreshes them for you so that the
obtained credentials continue to allow access to AWS.

Important

The automatic credentials refresh happens only when you use the default client
constructor, which creates its own InstanceProfileCredentialsProvider
as part of the default provider chain, or when you pass an
InstanceProfileCredentialsProvider instance directly to the client constructor. If
you use another method to obtain or pass instance profile credentials, you are responsible
for checking for and refreshing expired credentials.

Using IAM Roles to Grant Access to AWS Resources on Amazon EC2 85

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/InstanceProfileCredentialsProvider.html

AWS SDK for Java 1.x Developer Guide for version 1.x

If the client constructor can’t find credentials using the credentials provider chain, it will throw an
AmazonClientException.

Walkthrough: Using IAM roles for EC2 instances

The following walkthrough shows you how to retrieve an object from Amazon S3 using an IAM role
to manage access.

Create an IAM Role

Create an IAM role that grants read-only access to Amazon S3.

1. Open the IAM console.

2. In the navigation pane, select Roles, then Create New Role.

3. Enter a name for the role, then select Next Step. Remember this name, since you’ll need it when
you launch your Amazon EC2 instance.

4. On the Select Role Type page, under AWS service Roles, select Amazon EC2 .

5. On the Set Permissions page, under Select Policy Template, select Amazon S3 Read Only
Access, then Next Step.

6. On the Review page, select Create Role.

Launch an EC2 Instance and Specify Your IAM Role

You can launch an Amazon EC2 instance with an IAM role using the Amazon EC2 console or the
AWS SDK for Java.

• To launch an Amazon EC2 instance using the console, follow the directions in Getting Started
with Amazon EC2 Linux Instances in the Amazon EC2 User Guide for Linux Instances.

When you reach the Review Instance Launch page, select Edit instance details. In IAM role,
choose the IAM role that you created previously. Complete the procedure as directed.

Note

You’ll need to create or use an existing security group and key pair to connect to the
instance.

• To launch an Amazon EC2 instance with an IAM role using the AWS SDK for Java, see Run an
Amazon EC2 Instance.

Using IAM Roles to Grant Access to AWS Resources on Amazon EC2 86

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/AmazonClientException.html
https://console.aws.amazon.com/iam/home
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Create your Application

Let’s build the sample application to run on the EC2 instance. First, create a directory that you can
use to hold your tutorial files (for example, GetS3ObjectApp).

Next, copy the AWS SDK for Java libraries into your newly-created directory. If you downloaded
the AWS SDK for Java to your ~/Downloads directory, you can copy them using the following
commands:

cp -r ~/Downloads/aws-java-sdk-{1.7.5}/lib .
cp -r ~/Downloads/aws-java-sdk-{1.7.5}/third-party .

Open a new file, call it GetS3Object.java, and add the following code:

import java.io.*;

import com.amazonaws.auth.*;
import com.amazonaws.services.s3.*;
import com.amazonaws.services.s3.model.*;
import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;

public class GetS3Object {
 private static final String bucketName = "text-content";
 private static final String key = "text-object.txt";

 public static void main(String[] args) throws IOException
 {
 AmazonS3 s3Client = AmazonS3ClientBuilder.defaultClient();

 try {
 System.out.println("Downloading an object");
 S3Object s3object = s3Client.getObject(
 new GetObjectRequest(bucketName, key));
 displayTextInputStream(s3object.getObjectContent());
 }
 catch(AmazonServiceException ase) {
 System.err.println("Exception was thrown by the service");
 }
 catch(AmazonClientException ace) {
 System.err.println("Exception was thrown by the client");
 }

Using IAM Roles to Grant Access to AWS Resources on Amazon EC2 87

AWS SDK for Java 1.x Developer Guide for version 1.x

 }

 private static void displayTextInputStream(InputStream input) throws IOException
 {
 // Read one text line at a time and display.
 BufferedReader reader = new BufferedReader(new InputStreamReader(input));
 while(true)
 {
 String line = reader.readLine();
 if(line == null) break;
 System.out.println(" " + line);
 }
 System.out.println();
 }
}

Open a new file, call it build.xml, and add the following lines:

<project name="Get {S3} Object" default="run" basedir=".">
 <path id="aws.java.sdk.classpath">
 <fileset dir="./lib" includes="**/*.jar"/>
 <fileset dir="./third-party" includes="**/*.jar"/>
 <pathelement location="lib"/>
 <pathelement location="."/>
 </path>

 <target name="build">
 <javac debug="true"
 includeantruntime="false"
 srcdir="."
 destdir="."
 classpathref="aws.java.sdk.classpath"/>
 </target>

 <target name="run" depends="build">
 <java classname="GetS3Object" classpathref="aws.java.sdk.classpath" fork="true"/>
 </target>
</project>

Build and run the modified program. Note that there are no credentials are stored in the
program. Therefore, unless you have your AWS credentials specified already, the code will throw
AmazonServiceException. For example:

Using IAM Roles to Grant Access to AWS Resources on Amazon EC2 88

AWS SDK for Java 1.x Developer Guide for version 1.x

$ ant
Buildfile: /path/to/my/GetS3ObjectApp/build.xml

build:
 [javac] Compiling 1 source file to /path/to/my/GetS3ObjectApp

run:
 [java] Downloading an object
 [java] AmazonServiceException

BUILD SUCCESSFUL

Transfer the Compiled Program to Your EC2 Instance

Transfer the program to your Amazon EC2 instance using secure copy (), along with the AWS SDK
for Java libraries. The sequence of commands looks something like the following.

scp -p -i {my-key-pair}.pem GetS3Object.class ec2-user@{public_dns}:GetS3Object.class
scp -p -i {my-key-pair}.pem build.xml ec2-user@{public_dns}:build.xml
scp -r -p -i {my-key-pair}.pem lib ec2-user@{public_dns}:lib
scp -r -p -i {my-key-pair}.pem third-party ec2-user@{public_dns}:third-party

Note

Depending on the Linux distribution that you used, the user name might be "ec2-
user", "root", or "ubuntu". To get the public DNS name of your instance, open the
EC2 console and look for the Public DNS value in the Description tab (for example,
ec2-198-51-100-1.compute-1.amazonaws.com).

In the preceding commands:

• GetS3Object.class is your compiled program

• build.xml is the ant file used to build and run your program

• the lib and third-party directories are the corresponding library folders from the AWS SDK
for Java.

• The -r switch indicates that scp should do a recursive copy of all of the contents of the
library and third-party directories in the AWS SDK for Java distribution.

Using IAM Roles to Grant Access to AWS Resources on Amazon EC2 89

https://console.aws.amazon.com/ec2/home

AWS SDK for Java 1.x Developer Guide for version 1.x

• The -p switch indicates that scp should preserve the permissions of the source files when it
copies them to the destination.

Note

The -p switch works only on Linux, macOS, or Unix. If you are copying files from
Windows, you may need to fix the file permissions on your instance using the following
command:

chmod -R u+rwx GetS3Object.class build.xml lib third-party

Run the Sample Program on the EC2 Instance

To run the program, connect to your Amazon EC2 instance. For more information, see Connect to
Your Linux Instance in the Amazon EC2 User Guide for Linux Instances.

If ant is not available on your instance, install it using the following command:

sudo yum install ant

Then, run the program using ant as follows:

ant run

The program will write the contents of your Amazon S3 object to your command window.

Tutorial: Amazon EC2 Spot Instances

Overview

Spot Instances enable you to bid on unused Amazon Elastic Compute Cloud (Amazon EC2) capacity
t up to 90% versus the On-Demand Instance price and run the acquired instances for as long as
your bid exceeds the current Spot Price. Amazon EC2 changes the Spot Price periodically based on
supply and demand, and customers whose bids meet or exceed it gain access to the available Spot
Instances. Like On-Demand Instances and Reserved Instances, Spot Instances provide you another
option for obtaining more compute capacity.

Tutorial: Amazon EC2 Spot Instances 90

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Spot Instances can significantly lower your Amazon EC2 costs for batch processing, scientific
research, image processing, video encoding, data and web crawling, financial analysis, and testing.
Additionally, Spot Instances give you access to large amounts of additional capacity in situations
where the need for that capacity is not urgent.

To use Spot Instances, place a Spot Instance request specifying the maximum price you are willing
to pay per instance hour; this is your bid. If your bid exceeds the current Spot Price, your request
is fulfilled and your instances will run until either you choose to terminate them or the Spot Price
increases above your bid (whichever is sooner).

It’s important to note:

• You will often pay less per hour than your bid. Amazon EC2 adjusts the Spot Price periodically
as requests come in and available supply changes. Everyone pays the same Spot Price for that
period regardless of whether their bid was higher. Therefore, you might pay less than your bid,
but you will never pay more than your bid.

• If you’re running Spot Instances and your bid no longer meets or exceeds the current Spot
Price, your instances will be terminated. This means that you will want to make sure that your
workloads and applications are flexible enough to take advantage of this opportunistic capacity.

Spot Instances perform exactly like other Amazon EC2 instances while running, and like other
Amazon EC2 instances, Spot Instances can be terminated when you no longer need them. If you
terminate your instance, you pay for any partial hour used (as you would for On-Demand or
Reserved Instances). However, if the Spot Price goes above your bid and your instance is terminated
by Amazon EC2, you will not be charged for any partial hour of usage.

This tutorial shows how to use AWS SDK for Java to do the following.

• Submit a Spot Request

• Determine when the Spot Request becomes fulfilled

• Cancel the Spot Request

• Terminate associated instances

Prerequisites

To use this tutorial you must have the AWS SDK for Java installed, as well as having met its basic
installation prerequisites. See Set up the AWS SDK for Java for more information.

Tutorial: Amazon EC2 Spot Instances 91

AWS SDK for Java 1.x Developer Guide for version 1.x

Step 1: Setting Up Your Credentials

To begin using this code sample, you need to set up AWS credentials. See Set up AWS Credentials
and Region for Development for instructions on how to do that.

Note

We recommend that you use the credentials of an IAM user to provide these values. For
more information, see Sign Up for AWS and Create an IAM User.

Now that you have configured your settings, you can get started using the code in the example.

Step 2: Setting Up a Security Group

A security group acts as a firewall that controls the traffic allowed in and out of a group of
instances. By default, an instance is started without any security group, which means that all
incoming IP traffic, on any TCP port will be denied. So, before submitting our Spot Request, we
will set up a security group that allows the necessary network traffic. For the purposes of this
tutorial, we will create a new security group called "GettingStarted" that allows Secure Shell (SSH)
traffic from the IP address where you are running your application from. To set up a new security
group, you need to include or run the following code sample that sets up the security group
programmatically.

After we create an AmazonEC2 client object, we create a CreateSecurityGroupRequest
object with the name, "GettingStarted" and a description for the security group. Then we call the
ec2.createSecurityGroup API to create the group.

To enable access to the group, we create an ipPermission object with the IP address
range set to the CIDR representation of the subnet for the local computer; the "/10" suffix
on the IP address indicates the subnet for the specified IP address. We also configure the
ipPermission object with the TCP protocol and port 22 (SSH). The final step is to call
ec2.authorizeSecurityGroupIngress with the name of our security group and the
ipPermission object.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Create a new security group.
try {

Tutorial: Amazon EC2 Spot Instances 92

AWS SDK for Java 1.x Developer Guide for version 1.x

 CreateSecurityGroupRequest securityGroupRequest = new
 CreateSecurityGroupRequest("GettingStartedGroup", "Getting Started Security Group");
 ec2.createSecurityGroup(securityGroupRequest);
} catch (AmazonServiceException ase) {
 // Likely this means that the group is already created, so ignore.
 System.out.println(ase.getMessage());
}

String ipAddr = "0.0.0.0/0";

// Get the IP of the current host, so that we can limit the Security
// Group by default to the ip range associated with your subnet.
try {
 InetAddress addr = InetAddress.getLocalHost();

 // Get IP Address
 ipAddr = addr.getHostAddress()+"/10";
} catch (UnknownHostException e) {
}

// Create a range that you would like to populate.
ArrayList<String> ipRanges = new ArrayList<String>();
ipRanges.add(ipAddr);

// Open up port 22 for TCP traffic to the associated IP
// from above (e.g. ssh traffic).
ArrayList<IpPermission> ipPermissions = new ArrayList<IpPermission> ();
IpPermission ipPermission = new IpPermission();
ipPermission.setIpProtocol("tcp");
ipPermission.setFromPort(new Integer(22));
ipPermission.setToPort(new Integer(22));
ipPermission.setIpRanges(ipRanges);
ipPermissions.add(ipPermission);

try {
 // Authorize the ports to the used.
 AuthorizeSecurityGroupIngressRequest ingressRequest =
 new AuthorizeSecurityGroupIngressRequest("GettingStartedGroup",ipPermissions);
 ec2.authorizeSecurityGroupIngress(ingressRequest);
} catch (AmazonServiceException ase) {
 // Ignore because this likely means the zone has
 // already been authorized.
 System.out.println(ase.getMessage());

Tutorial: Amazon EC2 Spot Instances 93

AWS SDK for Java 1.x Developer Guide for version 1.x

}

Note you only need to run this application once to create a new security group.

You can also create the security group using the AWS Toolkit for Eclipse. See Managing Security
Groups from AWS Cost Explorer for more information.

Step 3: Submitting Your Spot Request

To submit a Spot request, you first need to determine the instance type, Amazon Machine Image
(AMI), and maximum bid price you want to use. You must also include the security group we
configured previously, so that you can log into the instance if desired.

There are several instance types to choose from; go to Amazon EC2 Instance Types for a complete
list. For this tutorial, we will use t1.micro, the cheapest instance type available. Next, we will
determine the type of AMI we would like to use. We’ll use ami-a9d09ed1, the most up-to-date
Amazon Linux AMI available when we wrote this tutorial. The latest AMI may change over time, but
you can always determine the latest version AMI by following these steps:

1. Open the Amazon EC2 console.

2. Choose the Launch Instance button.

3. The first window displays the AMIs available. The AMI ID is listed next to each AMI title.
Alternatively, you can use the DescribeImages API, but leveraging that command is outside
the scope of this tutorial.

There are many ways to approach bidding for Spot Instances; to get a broad overview of the
various approaches you should view the Bidding for Spot Instances video. However, to get started,
we’ll describe three common strategies: bid to ensure cost is less than on-demand pricing; bid
based on the value of the resulting computation; bid so as to acquire computing capacity as quickly
as possible.

• Reduce Cost below On-Demand You have a batch processing job that will take a number of hours
or days to run. However, you are flexible with respect to when it starts and when it completes.
You want to see if you can complete it for less cost than with On-Demand Instances. You
examine the Spot Price history for instance types using either the AWS Management Console
or the Amazon EC2 API. For more information, go to Viewing Spot Price History. After you’ve
analyzed the price history for your desired instance type in a given Availability Zone, you have
two alternative approaches for your bid:

Tutorial: Amazon EC2 Spot Instances 94

https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/tke-sg.html
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/tke-sg.html
https://console.aws.amazon.com/ec2/home
https://www.youtube.com/watch?v=WD9N73F3Fao&feature=player_embedded
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances-history.html

AWS SDK for Java 1.x Developer Guide for version 1.x

• You could bid at the upper end of the range of Spot Prices (which are still below the On-
Demand price), anticipating that your one-time Spot request would most likely be fulfilled and
run for enough consecutive compute time to complete the job.

• Or, you could specify the amount you are willing to pay for Spot Instances as a % of the On-
Demand Instance price , and plan to combine many instances launched over time through a
persistent request. If the specified price is exceeded, then the Spot Instance will terminate. (We
will explain how to automate this task later in this tutorial.)

• Pay No More than the Value of the Result You have a data processing job to run. You understand
the value of the job’s results well enough to know how much they are worth in terms of
computing costs. After you’ve analyzed the Spot Price history for your instance type, you choose
a bid price at which the cost of the computing time is no more than the value of the job’s results.
You create a persistent bid and allow it to run intermittently as the Spot Price fluctuates at or
below your bid.

• Acquire Computing Capacity Quickly You have an unanticipated, short-term need for additional
capacity that is not available through On-Demand Instances. After you’ve analyzed the Spot
Price history for your instance type, you bid above the highest historical price to provide a high
likelihood that your request will be fulfilled quickly and continue computing until it completes.

After you choose your bid price, you are ready to request a Spot Instance. For the purposes of
this tutorial, we will bid the On-Demand price ($0.03) to maximize the chances that the bid will
be fulfilled. You can determine the types of available instances and the On-Demand prices for
instances by going to Amazon EC2 Pricing page. While a Spot Instancee is running, you pay the
Spot price that’s in effect for the time period your instances are running. Spot Instance prices are
set by Amazon EC2 and adjust gradually based on long-term trends in supply and demand for Spot
Instance capacity. You can also specify the amount you are willing to pay for a Spot Instance as a %
of the On-Demand Instance price.To request a Spot Instance, you simply need to build your request
with the parameters you chose earlier. We start by creating a RequestSpotInstanceRequest
object. The request object requires the number of instances you want to start and the bid price.
Additionally, you need to set the LaunchSpecification for the request, which includes the
instance type, AMI ID, and security group you want to use. Once the request is populated, you call
the requestSpotInstances method on the AmazonEC2Client object. The following example
shows how to request a Spot Instance.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

Tutorial: Amazon EC2 Spot Instances 95

AWS SDK for Java 1.x Developer Guide for version 1.x

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Setup the specifications of the launch. This includes the
// instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specifications to the request.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);

Running this code will launch a new Spot Instance Request. There are other options you can use
to configure your Spot Requests. To learn more, please visit Tutorial: Advanced Amazon EC2 Spot
Request Management or the RequestSpotInstances class in the AWS SDK for Java API Reference.

Note

You will be charged for any Spot Instances that are actually launched, so make sure that
you cancel any requests and terminate any instances you launch to reduce any associated
fees.

Step 4: Determining the State of Your Spot Request

Next, we want to create code to wait until the Spot request reaches the "active" state
before proceeding to the last step. To determine the state of our Spot request, we poll the
describeSpotInstanceRequests method for the state of the Spot request ID we want to monitor.

Tutorial: Amazon EC2 Spot Instances 96

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RequestSpotInstancesRequest.html
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#describeSpotInstanceRequests

AWS SDK for Java 1.x Developer Guide for version 1.x

The request ID created in Step 2 is embedded in the response to our requestSpotInstances
request. The following example code shows how to gather request IDs from the
requestSpotInstances response and use them to populate an ArrayList.

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);
List<SpotInstanceRequest> requestResponses = requestResult.getSpotInstanceRequests();

// Setup an arraylist to collect all of the request ids we want to
// watch hit the running state.
ArrayList<String> spotInstanceRequestIds = new ArrayList<String>();

// Add all of the request ids to the hashset, so we can determine when they hit the
// active state.
for (SpotInstanceRequest requestResponse : requestResponses) {
 System.out.println("Created Spot Request:
 "+requestResponse.getSpotInstanceRequestId());
 spotInstanceRequestIds.add(requestResponse.getSpotInstanceRequestId());
}

To monitor your request ID, call the describeSpotInstanceRequests method to determine the
state of the request. Then loop until the request is not in the "open" state. Note that we monitor
for a state of not "open", rather a state of, say, "active", because the request can go straight to
"closed" if there is a problem with your request arguments. The following code example provides
the details of how to accomplish this task.

// Create a variable that will track whether there are any
// requests still in the open state.
boolean anyOpen;

do {
 // Create the describeRequest object with all of the request ids
 // to monitor (e.g. that we started).
 DescribeSpotInstanceRequestsRequest describeRequest = new
 DescribeSpotInstanceRequestsRequest();
 describeRequest.setSpotInstanceRequestIds(spotInstanceRequestIds);

 // Initialize the anyOpen variable to false - which assumes there
 // are no requests open unless we find one that is still open.
 anyOpen=false;

 try {

Tutorial: Amazon EC2 Spot Instances 97

AWS SDK for Java 1.x Developer Guide for version 1.x

 // Retrieve all of the requests we want to monitor.
 DescribeSpotInstanceRequestsResult describeResult =
 ec2.describeSpotInstanceRequests(describeRequest);
 List<SpotInstanceRequest> describeResponses =
 describeResult.getSpotInstanceRequests();

 // Look through each request and determine if they are all in
 // the active state.
 for (SpotInstanceRequest describeResponse : describeResponses) {
 // If the state is open, it hasn't changed since we attempted
 // to request it. There is the potential for it to transition
 // almost immediately to closed or cancelled so we compare
 // against open instead of active.
 if (describeResponse.getState().equals("open")) {
 anyOpen = true;
 break;
 }
 }
} catch (AmazonServiceException e) {
 // If we have an exception, ensure we don't break out of
 // the loop. This prevents the scenario where there was
 // blip on the wire.
 anyOpen = true;
 }

 try {
 // Sleep for 60 seconds.
 Thread.sleep(60*1000);
 } catch (Exception e) {
 // Do nothing because it woke up early.
 }
} while (anyOpen);

After running this code, your Spot Instance Request will have completed or will have failed with an
error that will be output to the screen. In either case, we can proceed to the next step to clean up
any active requests and terminate any running instances.

Step 5: Cleaning Up Your Spot Requests and Instances

Lastly, we need to clean up our requests and instances. It is important to both cancel any
outstanding requests and terminate any instances. Just canceling your requests will not terminate
your instances, which means that you will continue to pay for them. If you terminate your
instances, your Spot requests may be canceled, but there are some scenarios such as if you use

Tutorial: Amazon EC2 Spot Instances 98

AWS SDK for Java 1.x Developer Guide for version 1.x

persistent bids where terminating your instances is not sufficient to stop your request from being
re-fulfilled. Therefore, it is a best practice to both cancel any active bids and terminate any running
instances.

The following code demonstrates how to cancel your requests.

try {
 // Cancel requests.
 CancelSpotInstanceRequestsRequest cancelRequest =
 new CancelSpotInstanceRequestsRequest(spotInstanceRequestIds);
 ec2.cancelSpotInstanceRequests(cancelRequest);
} catch (AmazonServiceException e) {
 // Write out any exceptions that may have occurred.
 System.out.println("Error cancelling instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

To terminate any outstanding instances, you will need the instance ID associated with the
request that started them. The following code example takes our original code for monitoring
the instances and adds an ArrayList in which we store the instance ID associated with the
describeInstance response.

// Create a variable that will track whether there are any requests
// still in the open state.
boolean anyOpen;
// Initialize variables.
ArrayList<String> instanceIds = new ArrayList<String>();

do {
 // Create the describeRequest with all of the request ids to
 // monitor (e.g. that we started).
 DescribeSpotInstanceRequestsRequest describeRequest = new
 DescribeSpotInstanceRequestsRequest();
 describeRequest.setSpotInstanceRequestIds(spotInstanceRequestIds);

 // Initialize the anyOpen variable to false, which assumes there
 // are no requests open unless we find one that is still open.
 anyOpen = false;

Tutorial: Amazon EC2 Spot Instances 99

AWS SDK for Java 1.x Developer Guide for version 1.x

 try {
 // Retrieve all of the requests we want to monitor.
 DescribeSpotInstanceRequestsResult describeResult =
 ec2.describeSpotInstanceRequests(describeRequest);

 List<SpotInstanceRequest> describeResponses =
 describeResult.getSpotInstanceRequests();

 // Look through each request and determine if they are all
 // in the active state.
 for (SpotInstanceRequest describeResponse : describeResponses) {
 // If the state is open, it hasn't changed since we
 // attempted to request it. There is the potential for
 // it to transition almost immediately to closed or
 // cancelled so we compare against open instead of active.
 if (describeResponse.getState().equals("open")) {
 anyOpen = true; break;
 }
 // Add the instance id to the list we will
 // eventually terminate.
 instanceIds.add(describeResponse.getInstanceId());
 }
 } catch (AmazonServiceException e) {
 // If we have an exception, ensure we don't break out
 // of the loop. This prevents the scenario where there
 // was blip on the wire.
 anyOpen = true;
 }

 try {
 // Sleep for 60 seconds.
 Thread.sleep(60*1000);
 } catch (Exception e) {
 // Do nothing because it woke up early.
 }
} while (anyOpen);

Using the instance IDs, stored in the ArrayList, terminate any running instances using the
following code snippet.

try {
 // Terminate instances.

Tutorial: Amazon EC2 Spot Instances 100

AWS SDK for Java 1.x Developer Guide for version 1.x

 TerminateInstancesRequest terminateRequest = new
 TerminateInstancesRequest(instanceIds);
 ec2.terminateInstances(terminateRequest);
} catch (AmazonServiceException e) {
 // Write out any exceptions that may have occurred.
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Bringing It All Together

To bring this all together, we provide a more object-oriented approach that combines the
preceding steps we showed: initializing the EC2 Client, submitting the Spot Request, determining
when the Spot Requests are no longer in the open state, and cleaning up any lingering Spot
request and associated instances. We create a class called Requests that performs these actions.

We also create a GettingStartedApp class, which has a main method where we perform the high
level function calls. Specifically, we initialize the Requests object described previously. We submit
the Spot Instance request. Then we wait for the Spot request to reach the "Active" state. Finally, we
clean up the requests and instances.

The complete source code for this example can be viewed or downloaded at GitHub.

Congratulations! You have just completed the getting started tutorial for developing Spot Instance
software with the AWS SDK for Java.

Next Steps

Proceed with Tutorial: Advanced Amazon EC2 Spot Request Management.

Tutorial: Advanced Amazon EC2 Spot Request Management

Amazon EC2 Spot Instances allow you to bid on unused Amazon EC2 capacity and run those
instances for as long as your bid exceeds the current spot price. Amazon EC2 changes the spot price
periodically based on supply and demand. For more information about Spot Instances, see Spot
Instances in the Amazon EC2 User Guide for Linux Instances.

Tutorial: Advanced Amazon EC2 Spot Request Management 101

https://github.com/aws/aws-sdk-java/tree/master/src/samples/AmazonEC2SpotInstances-GettingStarted
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Prerequisites

To use this tutorial you must have the AWS SDK for Java installed, as well as having met its basic
installation prerequisites. See Set up the AWS SDK for Java for more information.

Setting up your credentials

To begin using this code sample, you need to set up AWS credentials. See Set up AWS Credentials
and Region for Development for instructions on how to do that.

Note

We recommend that you use the credentials of an IAM user to provide these values. For
more information, see Sign Up for AWS and Create an IAM User.

Now that you have configured your settings, you can get started using the code in the example.

Setting up a security group

A security group acts as a firewall that controls the traffic allowed in and out of a group of
instances. By default, an instance is started without any security group, which means that all
incoming IP traffic, on any TCP port will be denied. So, before submitting our Spot Request, we
will set up a security group that allows the necessary network traffic. For the purposes of this
tutorial, we will create a new security group called "GettingStarted" that allows Secure Shell (SSH)
traffic from the IP address where you are running your application from. To set up a new security
group, you need to include or run the following code sample that sets up the security group
programmatically.

After we create an AmazonEC2 client object, we create a CreateSecurityGroupRequest
object with the name, "GettingStarted" and a description for the security group. Then we call the
ec2.createSecurityGroup API to create the group.

To enable access to the group, we create an ipPermission object with the IP address
range set to the CIDR representation of the subnet for the local computer; the "/10" suffix
on the IP address indicates the subnet for the specified IP address. We also configure the
ipPermission object with the TCP protocol and port 22 (SSH). The final step is to call
ec2 .authorizeSecurityGroupIngress with the name of our security group and the
ipPermission object.

Tutorial: Advanced Amazon EC2 Spot Request Management 102

AWS SDK for Java 1.x Developer Guide for version 1.x

(The following code is the same as what we used in the first tutorial.)

// Create the AmazonEC2Client object so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .withCredentials(credentials)
 .build();

// Create a new security group.
try {
 CreateSecurityGroupRequest securityGroupRequest =
 new CreateSecurityGroupRequest("GettingStartedGroup",
 "Getting Started Security Group");
 ec2.createSecurityGroup(securityGroupRequest);
} catch (AmazonServiceException ase) {
 // Likely this means that the group is already created, so ignore.
 System.out.println(ase.getMessage());
}

String ipAddr = "0.0.0.0/0";

// Get the IP of the current host, so that we can limit the Security Group
// by default to the ip range associated with your subnet.
try {
 // Get IP Address
 InetAddress addr = InetAddress.getLocalHost();
 ipAddr = addr.getHostAddress()+"/10";
}
catch (UnknownHostException e) {
 // Fail here...
}

// Create a range that you would like to populate.
ArrayList<String> ipRanges = new ArrayList<String>();
ipRanges.add(ipAddr);

// Open up port 22 for TCP traffic to the associated IP from
// above (e.g. ssh traffic).
ArrayList<IpPermission> ipPermissions = new ArrayList<IpPermission> ();
IpPermission ipPermission = new IpPermission();
ipPermission.setIpProtocol("tcp");
ipPermission.setFromPort(new Integer(22));
ipPermission.setToPort(new Integer(22));
ipPermission.setIpRanges(ipRanges);
ipPermissions.add(ipPermission);

Tutorial: Advanced Amazon EC2 Spot Request Management 103

AWS SDK for Java 1.x Developer Guide for version 1.x

try {
 // Authorize the ports to the used.
 AuthorizeSecurityGroupIngressRequest ingressRequest =
 new AuthorizeSecurityGroupIngressRequest(
 "GettingStartedGroup",ipPermissions);
 ec2.authorizeSecurityGroupIngress(ingressRequest);
}
catch (AmazonServiceException ase) {
 // Ignore because this likely means the zone has already
 // been authorized.
 System.out.println(ase.getMessage());
}

You can view this entire code sample in the advanced.CreateSecurityGroupApp.java code
sample. Note you only need to run this application once to create a new security group.

Note

You can also create the security group using the AWS Toolkit for Eclipse. See Managing
Security Groups from AWS Cost Explorer in the AWS Toolkit for Eclipse User Guide for more
information.

Detailed Spot Instance request creation options

As we explained in Tutorial: Amazon EC2 Spot Instances, you need to build your request with an
instance type, an Amazon Machine Image (AMI), and maximum bid price.

Let’s start by creating a RequestSpotInstanceRequest object. The request object
requires the number of instances you want and the bid price. Additionally, we need to set the
LaunchSpecification for the request, which includes the instance type, AMI ID, and security
group you want to use. After the request is populated, we call the requestSpotInstances
method on the AmazonEC2Client object. An example of how to request a Spot Instance follows.

(The following code is the same as what we used in the first tutorial.)

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request

Tutorial: Advanced Amazon EC2 Spot Request Management 104

https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/tke-sg.html
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/tke-sg.html

AWS SDK for Java 1.x Developer Guide for version 1.x

RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the
// instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Persistent vs. one-time requests

When building a Spot request, you can specify several optional parameters. The first is whether
your request is one-time only or persistent. By default, it is a one-time request. A one-time request
can be fulfilled only once, and after the requested instances are terminated, the request will
be closed. A persistent request is considered for fulfillment whenever there is no Spot Instance
running for the same request. To specify the type of request, you simply need to set the Type on
the Spot request. This can be done with the following code.

// Retrieves the credentials from an AWSCredentials.properties file.
AWSCredentials credentials = null;
try {
 credentials = new PropertiesCredentials(
 GettingStartedApp.class.getResourceAsStream("AwsCredentials.properties"));
}
catch (IOException e1) {

Tutorial: Advanced Amazon EC2 Spot Request Management 105

AWS SDK for Java 1.x Developer Guide for version 1.x

 System.out.println(
 "Credentials were not properly entered into AwsCredentials.properties.");
 System.out.println(e1.getMessage());
 System.exit(-1);
}

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest =
 new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set the type of the bid to persistent.
requestRequest.setType("persistent");

// Set up the specifications of the launch. This includes the
// instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Tutorial: Advanced Amazon EC2 Spot Request Management 106

AWS SDK for Java 1.x Developer Guide for version 1.x

Limiting the duration of a request

You can also optionally specify the length of time that your request will remain valid. You
can specify both a starting and ending time for this period. By default, a Spot request will be
considered for fulfillment from the moment it is created until it is either fulfilled or canceled by
you. However you can constrain the validity period if you need to. An example of how to specify
this period is shown in the following code.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set the valid start time to be two minutes from now.
Calendar cal = Calendar.getInstance();
cal.add(Calendar.MINUTE, 2);
requestRequest.setValidFrom(cal.getTime());

// Set the valid end time to be two minutes and two hours from now.
cal.add(Calendar.HOUR, 2);
requestRequest.setValidUntil(cal.getTime());

// Set up the specifications of the launch. This includes
// the instance type (e.g. t1.micro)

// and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon
// Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType("t1.micro");

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.

Tutorial: Advanced Amazon EC2 Spot Request Management 107

AWS SDK for Java 1.x Developer Guide for version 1.x

requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);

Grouping your Amazon EC2 Spot Instance requests

You have the option of grouping your Spot Instance requests in several different ways. We’ll look at
the benefits of using launch groups, Availability Zone groups, and placement groups.

If you want to ensure your Spot Instances are all launched and terminated together, then you have
the option to leverage a launch group. A launch group is a label that groups a set of bids together.
All instances in a launch group are started and terminated together. Note, if instances in a launch
group have already been fulfilled, there is no guarantee that new instances launched with the
same launch group will also be fulfilled. An example of how to set a Launch Group is shown in the
following code example.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 5 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(5));

// Set the launch group.
requestRequest.setLaunchGroup("ADVANCED-DEMO-LAUNCH-GROUP");

// Set up the specifications of the launch. This includes
// the instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

Tutorial: Advanced Amazon EC2 Spot Request Management 108

AWS SDK for Java 1.x Developer Guide for version 1.x

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

If you want to ensure that all instances within a request are launched in the same Availability
Zone, and you don’t care which one, you can leverage Availability Zone groups. An Availability
Zone group is a label that groups a set of instances together in the same Availability Zone. All
instances that share an Availability Zone group and are fulfilled at the same time will start in the
same Availability Zone. An example of how to set an Availability Zone group follows.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 5 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(5));

// Set the availability zone group.
requestRequest.setAvailabilityZoneGroup("ADVANCED-DEMO-AZ-GROUP");

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

Tutorial: Advanced Amazon EC2 Spot Request Management 109

AWS SDK for Java 1.x Developer Guide for version 1.x

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

You can specify an Availability Zone that you want for your Spot Instances. The following code
example shows you how to set an Availability Zone.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Set up the availability zone to use. Note we could retrieve the
// availability zones using the ec2.describeAvailabilityZones() API. For
// this demo we will just use us-east-1a.
SpotPlacement placement = new SpotPlacement("us-east-1b");
launchSpecification.setPlacement(placement);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Tutorial: Advanced Amazon EC2 Spot Request Management 110

AWS SDK for Java 1.x Developer Guide for version 1.x

Lastly, you can specify a placement group if you are using High Performance Computing (HPC) Spot
Instances, such as cluster compute instances or cluster GPU instances. Placement groups provide
you with lower latency and high-bandwidth connectivity between the instances. An example of
how to set a placement group follows.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.

LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Set up the placement group to use with whatever name you desire.
// For this demo we will just use "ADVANCED-DEMO-PLACEMENT-GROUP".
SpotPlacement placement = new SpotPlacement();
placement.setGroupName("ADVANCED-DEMO-PLACEMENT-GROUP");
launchSpecification.setPlacement(placement);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Tutorial: Advanced Amazon EC2 Spot Request Management 111

AWS SDK for Java 1.x Developer Guide for version 1.x

All of the parameters shown in this section are optional. It is also important to
realize that most of these parameters—with the exception of whether your bid
is one-time or persistent—can reduce the likelihood of bid fulfillment. So, it is
important to leverage these options only if you need them. All of the preceding
code examples are combined into one long code sample, which can be found in the
com.amazonaws.codesamples.advanced.InlineGettingStartedCodeSampleApp.java
class.

How to persist a root partition after interruption or termination

One of the easiest ways to manage interruption of your Spot Instances is to ensure that your data
is checkpointed to an Amazon Elastic Block Store (Amazon Amazon EBS) volume on a regular
cadence. By checkpointing periodically, if there is an interruption you will lose only the data
created since the last checkpoint (assuming no other non-idempotent actions are performed in
between). To make this process easier, you can configure your Spot Request to ensure that your
root partition will not be deleted on interruption or termination. We’ve inserted new code in the
following example that shows how to enable this scenario.

In the added code, we create a BlockDeviceMapping object and set its associated Amazon Elastic
Block Store (Amazon EBS) to an Amazon EBS object that we’ve configured to not be deleted if the
Spot Instance is terminated. We then add this BlockDeviceMapping to the ArrayList of mappings
that we include in the launch specification.

// Retrieves the credentials from an AWSCredentials.properties file.
AWSCredentials credentials = null;
try {
 credentials = new PropertiesCredentials(
 GettingStartedApp.class.getResourceAsStream("AwsCredentials.properties"));
}
catch (IOException e1) {
 System.out.println(
 "Credentials were not properly entered into AwsCredentials.properties.");
 System.out.println(e1.getMessage());
 System.exit(-1);
}

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

Tutorial: Advanced Amazon EC2 Spot Request Management 112

AWS SDK for Java 1.x Developer Guide for version 1.x

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Create the block device mapping to describe the root partition.
BlockDeviceMapping blockDeviceMapping = new BlockDeviceMapping();
blockDeviceMapping.setDeviceName("/dev/sda1");

// Set the delete on termination flag to false.
EbsBlockDevice ebs = new EbsBlockDevice();
ebs.setDeleteOnTermination(Boolean.FALSE);
blockDeviceMapping.setEbs(ebs);

// Add the block device mapping to the block list.
ArrayList<BlockDeviceMapping> blockList = new ArrayList<BlockDeviceMapping>();
blockList.add(blockDeviceMapping);

// Set the block device mapping configuration in the launch specifications.
launchSpecification.setBlockDeviceMappings(blockList);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Assuming you wanted to re-attach this volume to your instance on startup, you can also use the
block device mapping settings. Alternatively, if you attached a non-root partition, you can specify

Tutorial: Advanced Amazon EC2 Spot Request Management 113

AWS SDK for Java 1.x Developer Guide for version 1.x

the Amazon Amazon EBS volumes you want to attach to your Spot Instance after it resumes. You
do this simply by specifying a snapshot ID in your EbsBlockDevice and alternative device name
in your BlockDeviceMapping objects. By leveraging block device mappings, it can be easier to
bootstrap your instance.

Using the root partition to checkpoint your critical data is a great way to manage the potential
for interruption of your instances. For more methods on managing the potential of interruption,
please visit the Managing Interruption video.

How to tag your spot requests and instances

Adding tags to Amazon EC2 resources can simplify the administration of your cloud infrastructure.
A form of metadata, tags can be used to create user-friendly names, enhance searchability, and
improve coordination between multiple users. You can also use tags to automate scripts and
portions of your processes. To read more about tagging Amazon EC2 resources, go to Using Tags in
the Amazon EC2 User Guide for Linux Instances.

Tagging requests

To add tags to your spot requests, you need to tag them after they have been requested. The
return value from requestSpotInstances() provides you with a RequestSpotInstancesResult
object that you can use to get the spot request IDs for tagging:

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);
List<SpotInstanceRequest> requestResponses = requestResult.getSpotInstanceRequests();

// A list of request IDs to tag
ArrayList<String> spotInstanceRequestIds = new ArrayList<String>();

// Add the request ids to the hashset, so we can determine when they hit the
// active state.
for (SpotInstanceRequest requestResponse : requestResponses) {
 System.out.println("Created Spot Request:
 "+requestResponse.getSpotInstanceRequestId());
 spotInstanceRequestIds.add(requestResponse.getSpotInstanceRequestId());
}

Once you have the IDs, you can tag the requests by adding their IDs to a CreateTagsRequest and
calling the Amazon EC2 client’s createTags() method:

Tutorial: Advanced Amazon EC2 Spot Request Management 114

https://www.youtube.com/watch?feature=player_embedded&v=wcPNnUo60pc
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RequestSpotInstancesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateTagsRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

// The list of tags to create
ArrayList<Tag> requestTags = new ArrayList<Tag>();
requestTags.add(new Tag("keyname1","value1"));

// Create the tag request
CreateTagsRequest createTagsRequest_requests = new CreateTagsRequest();
createTagsRequest_requests.setResources(spotInstanceRequestIds);
createTagsRequest_requests.setTags(requestTags);

// Tag the spot request
try {
 ec2.createTags(createTagsRequest_requests);
}
catch (AmazonServiceException e) {
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Tagging instances

Similarly to spot requests themselves, you can only tag an instance once it has been created, which
will happen once the spot request has been met (it is no longer in the open state).

You can check the status of your requests by calling the Amazon EC2 client’s
describeSpotInstanceRequests() method with a DescribeSpotInstanceRequestsRequest
object. The returned DescribeSpotInstanceRequestsResult object contains a list of
SpotInstanceRequest objects that you can use to query the status of your spot requests and obtain
their instance IDs once they are no longer in the open state.

Once the spot request is no longer open, you can retrieve its instance ID from the
SpotInstanceRequest object by calling its getInstanceId() method.

boolean anyOpen; // tracks whether any requests are still open

// a list of instances to tag.
ArrayList<String> instanceIds = new ArrayList<String>();

do {
 DescribeSpotInstanceRequestsRequest describeRequest =

Tutorial: Advanced Amazon EC2 Spot Request Management 115

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeSpotInstanceRequestsRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeSpotInstanceRequestsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/SpotInstanceRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 new DescribeSpotInstanceRequestsRequest();
 describeRequest.setSpotInstanceRequestIds(spotInstanceRequestIds);

 anyOpen=false; // assume no requests are still open

 try {
 // Get the requests to monitor
 DescribeSpotInstanceRequestsResult describeResult =
 ec2.describeSpotInstanceRequests(describeRequest);

 List<SpotInstanceRequest> describeResponses =
 describeResult.getSpotInstanceRequests();

 // are any requests open?
 for (SpotInstanceRequest describeResponse : describeResponses) {
 if (describeResponse.getState().equals("open")) {
 anyOpen = true;
 break;
 }
 // get the corresponding instance ID of the spot request
 instanceIds.add(describeResponse.getInstanceId());
 }
 }
 catch (AmazonServiceException e) {
 // Don't break the loop due to an exception (it may be a temporary issue)
 anyOpen = true;
 }

 try {
 Thread.sleep(60*1000); // sleep 60s.
 }
 catch (Exception e) {
 // Do nothing if the thread woke up early.
 }
} while (anyOpen);

Now you can tag the instances that are returned:

// Create a list of tags to create
ArrayList<Tag> instanceTags = new ArrayList<Tag>();
instanceTags.add(new Tag("keyname1","value1"));

// Create the tag request

Tutorial: Advanced Amazon EC2 Spot Request Management 116

AWS SDK for Java 1.x Developer Guide for version 1.x

CreateTagsRequest createTagsRequest_instances = new CreateTagsRequest();
createTagsRequest_instances.setResources(instanceIds);
createTagsRequest_instances.setTags(instanceTags);

// Tag the instance
try {
 ec2.createTags(createTagsRequest_instances);
}
catch (AmazonServiceException e) {
 // Write out any exceptions that may have occurred.
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Canceling spot requests and terminating instances

Canceling a spot request

To cancel a Spot Instance request, call cancelSpotInstanceRequests on the Amazon EC2 client
with a CancelSpotInstanceRequestsRequest object.

try {
 CancelSpotInstanceRequestsRequest cancelRequest = new
 CancelSpotInstanceRequestsRequest(spotInstanceRequestIds);
 ec2.cancelSpotInstanceRequests(cancelRequest);
} catch (AmazonServiceException e) {
 System.out.println("Error cancelling instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Terminating Spot Instances

You can terminate any Spot Instances that are running by passing their IDs to the Amazon EC2
client’s terminateInstances() method.

try {

Tutorial: Advanced Amazon EC2 Spot Request Management 117

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CancelSpotInstanceRequestsRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 TerminateInstancesRequest terminateRequest = new
 TerminateInstancesRequest(instanceIds);
 ec2.terminateInstances(terminateRequest);
} catch (AmazonServiceException e) {
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Bringing it all together

To bring this all together, we provide a more object-oriented approach that combines the steps
we showed in this tutorial into one easy to use class. We instantiate a class called Requests that
performs these actions. We also create a GettingStartedApp class, which has a main method
where we perform the high level function calls.

The complete source code for this example can be viewed or downloaded at GitHub.

Congratulations! You’ve completed the Advanced Request Features tutorial for developing Spot
Instance software with the AWS SDK for Java.

Managing Amazon EC2 Instances

Creating an Instance

Create a new Amazon EC2 instance by calling the AmazonEC2Client’s runInstances method,
providing it with a RunInstancesRequest containing the Amazon Machine Image (AMI) to use and
an instance type.

Imports

import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.InstanceType;
import com.amazonaws.services.ec2.model.RunInstancesRequest;
import com.amazonaws.services.ec2.model.RunInstancesResult;
import com.amazonaws.services.ec2.model.Tag;

Code

RunInstancesRequest run_request = new RunInstancesRequest()

Managing Amazon EC2 Instances 118

https://github.com/aws/aws-sdk-java/tree/master/src/samples/AmazonEC2SpotInstances-Advanced
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 .withImageId(ami_id)
 .withInstanceType(InstanceType.T1Micro)
 .withMaxCount(1)
 .withMinCount(1);

RunInstancesResult run_response = ec2.runInstances(run_request);

String reservation_id =
 run_response.getReservation().getInstances().get(0).getInstanceId();

See the complete example.

Starting an Instance

To start an Amazon EC2 instance, call the AmazonEC2Client’s startInstances method, providing
it with a StartInstancesRequest containing the ID of the instance to start.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.StartInstancesRequest;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

StartInstancesRequest request = new StartInstancesRequest()
 .withInstanceIds(instance_id);

ec2.startInstances(request);

See the complete example.

Stopping an Instance

To stop an Amazon EC2 instance, call the AmazonEC2Client’s stopInstances method, providing
it with a StopInstancesRequest containing the ID of the instance to stop.

Imports

import com.amazonaws.services.ec2.AmazonEC2;

Managing Amazon EC2 Instances 119

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/StartInstancesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/StartStopInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/StopInstancesRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.StopInstancesRequest;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

StopInstancesRequest request = new StopInstancesRequest()
 .withInstanceIds(instance_id);

ec2.stopInstances(request);

See the complete example.

Rebooting an Instance

To reboot an Amazon EC2 instance, call the AmazonEC2Client’s rebootInstances method,
providing it with a RebootInstancesRequest containing the ID of the instance to reboot.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.RebootInstancesRequest;
import com.amazonaws.services.ec2.model.RebootInstancesResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

RebootInstancesRequest request = new RebootInstancesRequest()
 .withInstanceIds(instance_id);

RebootInstancesResult response = ec2.rebootInstances(request);

See the complete example.

Describing Instances

To list your instances, create a DescribeInstancesRequest and call the AmazonEC2Client’s
describeInstances method. It will return a DescribeInstancesResult object that you can use to
list the Amazon EC2 instances for your account and region.

Managing Amazon EC2 Instances 120

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/StartStopInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RebootInstancesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/RebootInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeInstancesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeInstancesResult.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Instances are grouped by reservation. Each reservation corresponds to the call to
startInstances that launched the instance. To list your instances, you must first call the
DescribeInstancesResult class' getReservations' method, and then call
`getInstances on each returned Reservation object.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeInstancesRequest;
import com.amazonaws.services.ec2.model.DescribeInstancesResult;
import com.amazonaws.services.ec2.model.Instance;
import com.amazonaws.services.ec2.model.Reservation;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();
boolean done = false;

DescribeInstancesRequest request = new DescribeInstancesRequest();
while(!done) {
 DescribeInstancesResult response = ec2.describeInstances(request);

 for(Reservation reservation : response.getReservations()) {
 for(Instance instance : reservation.getInstances()) {
 System.out.printf(
 "Found instance with id %s, " +
 "AMI %s, " +
 "type %s, " +
 "state %s " +
 "and monitoring state %s",
 instance.getInstanceId(),
 instance.getImageId(),
 instance.getInstanceType(),
 instance.getState().getName(),
 instance.getMonitoring().getState());
 }
 }

 request.setNextToken(response.getNextToken());

 if(response.getNextToken() == null) {
 done = true;

Managing Amazon EC2 Instances 121

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/Reservation.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 }
}

Results are paged; you can get further results by passing the value returned from the result object’s
getNextToken method to your original request object’s setNextToken method, then using the
same request object in your next call to describeInstances.

See the complete example.

Monitoring an Instance

You can monitor various aspects of your Amazon EC2 instances, such as CPU and network
utilization, available memory, and disk space remaining. To learn more about instance monitoring,
see Monitoring Amazon EC2 in the Amazon EC2 User Guide for Linux Instances.

To start monitoring an instance, you must create a MonitorInstancesRequest with the ID of the
instance to monitor, and pass it to the AmazonEC2Client’s monitorInstances method.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.MonitorInstancesRequest;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

MonitorInstancesRequest request = new MonitorInstancesRequest()
 .withInstanceIds(instance_id);

ec2.monitorInstances(request);

See the complete example.

Stopping Instance Monitoring

To stop monitoring an instance, create an UnmonitorInstancesRequest with the ID of the instance
to stop monitoring, and pass it to the AmazonEC2Client’s unmonitorInstances method.

Imports

Managing Amazon EC2 Instances 122

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeInstances.java
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring_ec2.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/MonitorInstancesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/MonitorInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/UnmonitorInstancesRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.UnmonitorInstancesRequest;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

UnmonitorInstancesRequest request = new UnmonitorInstancesRequest()
 .withInstanceIds(instance_id);

ec2.unmonitorInstances(request);

See the complete example.

More Information

• RunInstances in the Amazon EC2 API Reference

• DescribeInstances in the Amazon EC2 API Reference

• StartInstances in the Amazon EC2 API Reference

• StopInstances in the Amazon EC2 API Reference

• RebootInstances in the Amazon EC2 API Reference

• MonitorInstances in the Amazon EC2 API Reference

• UnmonitorInstances in the Amazon EC2 API Reference

Using Elastic IP Addresses in Amazon EC2

EC2-Classic is retiring

Warning

We are retiring EC2-Classic on August 15, 2022. We recommend that you migrate from
EC2-Classic to a VPC. For more information, see Migrate from EC2-Classic to a VPC in the
Amazon EC2 User Guide for Linux Instances or the Amazon EC2 User Guide for Windows
Instances. Also see the blog post EC2-Classic-Classic Networking is Retiring – Here's How to
Prepare.

Using Elastic IP Addresses in Amazon EC2 123

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/MonitorInstance.java
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_RunInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_StartInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_StopInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_RebootInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_MonitorInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_UnmonitorInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-migrate.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/vpc-migrate.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/vpc-migrate.html
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/

AWS SDK for Java 1.x Developer Guide for version 1.x

Allocating an Elastic IP Address

To use an Elastic IP address, you first allocate one to your account, and then associate it with your
instance or a network interface.

To allocate an Elastic IP address, call the AmazonEC2Client’s allocateAddress method with an
AllocateAddressRequest object containing the network type (classic EC2 or VPC).

The returned AllocateAddressResult contains an allocation ID that you can use to associate the
address with an instance, by passing the allocation ID and instance ID in a AssociateAddressRequest
to the AmazonEC2Client’s associateAddress method.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.AllocateAddressRequest;
import com.amazonaws.services.ec2.model.AllocateAddressResult;
import com.amazonaws.services.ec2.model.AssociateAddressRequest;
import com.amazonaws.services.ec2.model.AssociateAddressResult;
import com.amazonaws.services.ec2.model.DomainType;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

AllocateAddressRequest allocate_request = new AllocateAddressRequest()
 .withDomain(DomainType.Vpc);

AllocateAddressResult allocate_response =
 ec2.allocateAddress(allocate_request);

String allocation_id = allocate_response.getAllocationId();

AssociateAddressRequest associate_request =
 new AssociateAddressRequest()
 .withInstanceId(instance_id)
 .withAllocationId(allocation_id);

AssociateAddressResult associate_response =
 ec2.associateAddress(associate_request);

Using Elastic IP Addresses in Amazon EC2 124

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AllocateAddressRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AllocateAddressResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AssociateAddressRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

See the complete example.

Describing Elastic IP Addresses

To list the Elastic IP addresses assigned to your account, call the AmazonEC2Client’s
describeAddresses method. It returns a DescribeAddressesResult which you can use to get a list
of Address objects that represent the Elastic IP addresses on your account.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.Address;
import com.amazonaws.services.ec2.model.DescribeAddressesResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DescribeAddressesResult response = ec2.describeAddresses();

for(Address address : response.getAddresses()) {
 System.out.printf(
 "Found address with public IP %s, " +
 "domain %s, " +
 "allocation id %s " +
 "and NIC id %s",
 address.getPublicIp(),
 address.getDomain(),
 address.getAllocationId(),
 address.getNetworkInterfaceId());
}

See the complete example.

Releasing an Elastic IP Address

To release an Elastic IP address, call the AmazonEC2Client’s releaseAddress method, passing it a
ReleaseAddressRequest containing the allocation ID of the Elastic IP address you want to release.

Imports

Using Elastic IP Addresses in Amazon EC2 125

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/AllocateAddress.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeAddressesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/Address.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeAddresses.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/ReleaseAddressRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.ReleaseAddressRequest;
import com.amazonaws.services.ec2.model.ReleaseAddressResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

ReleaseAddressRequest request = new ReleaseAddressRequest()
 .withAllocationId(alloc_id);

ReleaseAddressResult response = ec2.releaseAddress(request);

After you release an Elastic IP address, it is released to the AWS IP address pool and might be
unavailable to you afterward. Be sure to update your DNS records and any servers or devices that
communicate with the address. If you attempt to release an Elastic IP address that you already
released, you’ll get an AuthFailure error if the address is already allocated to another AWS account.

If you are using EC2-Classic or a default VPC, then releasing an Elastic IP address automatically
disassociates it from any instance that it’s associated with. To disassociate an Elastic IP address
without releasing it, use the AmazonEC2Client’s disassociateAddress method.

If you are using a non-default VPC, you must use disassociateAddress to disassociate
the Elastic IP address before you try to release it. Otherwise, Amazon EC2 returns an error
(InvalidIPAddress.InUse).

See the complete example.

More Information

• Elastic IP Addresses in the Amazon EC2 User Guide for Linux Instances

• AllocateAddress in the Amazon EC2 API Reference

• DescribeAddresses in the Amazon EC2 API Reference

• ReleaseAddress in the Amazon EC2 API Reference

Using Elastic IP Addresses in Amazon EC2 126

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/ReleaseAddress.java
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AllocateAddress.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeAddresses.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_ReleaseAddress.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Use regions and availability zones

Describe regions

To list the Regions available to your account, call the AmazonEC2Client’s describeRegions
method. It returns a DescribeRegionsResult. Call the returned object’s getRegions method to get
a list of Region objects that represent each Region.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeRegionsResult;
import com.amazonaws.services.ec2.model.Region;
import com.amazonaws.services.ec2.model.AvailabilityZone;
import com.amazonaws.services.ec2.model.DescribeAvailabilityZonesResult;

Code

DescribeRegionsResult regions_response = ec2.describeRegions();

for(Region region : regions_response.getRegions()) {
 System.out.printf(
 "Found region %s " +
 "with endpoint %s",
 region.getRegionName(),
 region.getEndpoint());
}

See the complete example.

Describe availability zones

To list each Availability Zone available to your account, call the AmazonEC2Client’s
describeAvailabilityZones method. It returns a DescribeAvailabilityZonesResult. Call its
getAvailabilityZones method to get a list of AvailabilityZone objects that represent each
Availability Zone.

Imports

import com.amazonaws.services.ec2.AmazonEC2;

Use regions and availability zones 127

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeRegionsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/Region.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeRegionsAndZones.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeAvailabilityZonesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AvailabilityZone.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeRegionsResult;
import com.amazonaws.services.ec2.model.Region;
import com.amazonaws.services.ec2.model.AvailabilityZone;
import com.amazonaws.services.ec2.model.DescribeAvailabilityZonesResult;

Code

DescribeAvailabilityZonesResult zones_response =
 ec2.describeAvailabilityZones();

for(AvailabilityZone zone : zones_response.getAvailabilityZones()) {
 System.out.printf(
 "Found availability zone %s " +
 "with status %s " +
 "in region %s",
 zone.getZoneName(),
 zone.getState(),
 zone.getRegionName());
}

See the complete example.

Describe accounts

To describe your account, call the AmazonEC2Client’s describeAccountAttributes
method. This method returns a DescribeAccountAttributesResult object. Invoke this objects
getAccountAttributes method to get a list of AccountAttribute objects. You can iterate
through the list to retrieve an AccountAttribute object.

You can get your account’s attribute values by invoking the AccountAttribute object’s
getAttributeValues method. This method returns a list of AccountAttributeValue objects.
You can iterate through this second list to display the value of attributes (see the following code
example).

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.AccountAttributeValue;
import com.amazonaws.services.ec2.model.DescribeAccountAttributesResult;

Use regions and availability zones 128

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeRegionsAndZones.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeAccountAttributesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttribute.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttribute.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttribute.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttributeValue.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.services.ec2.model.AccountAttribute;
import java.util.List;
import java.util.ListIterator;

Code

AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

try{
 DescribeAccountAttributesResult accountResults = ec2.describeAccountAttributes();
 List<AccountAttribute> accountList = accountResults.getAccountAttributes();

 for (ListIterator iter = accountList.listIterator(); iter.hasNext();) {

 AccountAttribute attribute = (AccountAttribute) iter.next();
 System.out.print("\n The name of the attribute is
 "+attribute.getAttributeName());
 List<AccountAttributeValue> values = attribute.getAttributeValues();

 //iterate through the attribute values
 for (ListIterator iterVals = values.listIterator(); iterVals.hasNext();) {
 AccountAttributeValue myValue = (AccountAttributeValue) iterVals.next();
 System.out.print("\n The value of the attribute is
 "+myValue.getAttributeValue());
 }
 }
 System.out.print("Done");
}
catch (Exception e)
{
 e.getStackTrace();
}

See the complete example on GitHub.

More information

• Regions and Availability Zones in the Amazon EC2 User Guide for Linux Instances

• DescribeRegions in the Amazon EC2 API Reference

• DescribeAvailabilityZones in the Amazon EC2 API Reference

Use regions and availability zones 129

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeAccount.java
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeRegions.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeAvailabilityZones.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Working with Amazon EC2 Key Pairs

Creating a Key Pair

To create a key pair, call the AmazonEC2Client’s createKeyPair method with a
CreateKeyPairRequest that contains the key’s name.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.CreateKeyPairRequest;
import com.amazonaws.services.ec2.model.CreateKeyPairResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

CreateKeyPairRequest request = new CreateKeyPairRequest()
 .withKeyName(key_name);

CreateKeyPairResult response = ec2.createKeyPair(request);

See the complete example.

Describing Key Pairs

To list your key pairs or to get information about them, call the AmazonEC2Client’s
describeKeyPairs method. It returns a DescribeKeyPairsResult that you can use to access the
list of key pairs by calling its getKeyPairs method, which returns a list of KeyPairInfo objects.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeKeyPairsResult;
import com.amazonaws.services.ec2.model.KeyPairInfo;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

Working with Amazon EC2 Key Pairs 130

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateKeyPair.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeKeyPairsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/KeyPairInfo.html

AWS SDK for Java 1.x Developer Guide for version 1.x

DescribeKeyPairsResult response = ec2.describeKeyPairs();

for(KeyPairInfo key_pair : response.getKeyPairs()) {
 System.out.printf(
 "Found key pair with name %s " +
 "and fingerprint %s",
 key_pair.getKeyName(),
 key_pair.getKeyFingerprint());
}

See the complete example.

Deleting a Key Pair

To delete a key pair, call the AmazonEC2Client’s deleteKeyPair method, passing it a
DeleteKeyPairRequest that contains the name of the key pair to delete.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DeleteKeyPairRequest;
import com.amazonaws.services.ec2.model.DeleteKeyPairResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DeleteKeyPairRequest request = new DeleteKeyPairRequest()
 .withKeyName(key_name);

DeleteKeyPairResult response = ec2.deleteKeyPair(request);

See the complete example.

More Information

• Amazon EC2 Key Pairs in the Amazon EC2 User Guide for Linux Instances

• CreateKeyPair in the Amazon EC2 API Reference

• DescribeKeyPairs in the Amazon EC2 API Reference

• DeleteKeyPair in the Amazon EC2 API Reference

Working with Amazon EC2 Key Pairs 131

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeKeyPairs.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DeleteKeyPairRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DeleteKeyPair.java
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateKeyPair.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeKeyPairs.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DeleteKeyPair.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Working with Security Groups in Amazon EC2

Creating a Security Group

To create a security group, call the AmazonEC2Client’s createSecurityGroup method with a
CreateSecurityGroupRequest that contains the key’s name.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.CreateSecurityGroupRequest;
import com.amazonaws.services.ec2.model.CreateSecurityGroupResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

CreateSecurityGroupRequest create_request = new
 CreateSecurityGroupRequest()
 .withGroupName(group_name)
 .withDescription(group_desc)
 .withVpcId(vpc_id);

CreateSecurityGroupResult create_response =
 ec2.createSecurityGroup(create_request);

See the complete example.

Configuring a Security Group

A security group can control both inbound (ingress) and outbound (egress) traffic to your Amazon
EC2 instances.

To add ingress rules to your security group, use the AmazonEC2Client’s
authorizeSecurityGroupIngress method, providing the name of the security
group and the access rules (IpPermission) you want to assign to it within an
AuthorizeSecurityGroupIngressRequest object. The following example shows how to add IP
permissions to a security group.

Imports

Working with Security Groups in Amazon EC2 132

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateSecurityGroup.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupIngressRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.CreateSecurityGroupRequest;
import com.amazonaws.services.ec2.model.CreateSecurityGroupResult;

Code

IpRange ip_range = new IpRange()
 .withCidrIp("0.0.0.0/0");

IpPermission ip_perm = new IpPermission()
 .withIpProtocol("tcp")
 .withToPort(80)
 .withFromPort(80)
 .withIpv4Ranges(ip_range);

IpPermission ip_perm2 = new IpPermission()
 .withIpProtocol("tcp")
 .withToPort(22)
 .withFromPort(22)
 .withIpv4Ranges(ip_range);

AuthorizeSecurityGroupIngressRequest auth_request = new
 AuthorizeSecurityGroupIngressRequest()
 .withGroupName(group_name)
 .withIpPermissions(ip_perm, ip_perm2);

AuthorizeSecurityGroupIngressResult auth_response =
 ec2.authorizeSecurityGroupIngress(auth_request);

To add an egress rule to the security group, provide similar data in
an AuthorizeSecurityGroupEgressRequest to the AmazonEC2Client’s
authorizeSecurityGroupEgress method.

See the complete example.

Describing Security Groups

To describe your security groups or get information about them, call the AmazonEC2Client’s
describeSecurityGroups method. It returns a DescribeSecurityGroupsResult that you can use
to access the list of security groups by calling its getSecurityGroups method, which returns a
list of SecurityGroup objects.

Working with Security Groups in Amazon EC2 133

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupEgressRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateSecurityGroup.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeSecurityGroupsResult.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/SecurityGroup.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeSecurityGroupsRequest;
import com.amazonaws.services.ec2.model.DescribeSecurityGroupsResult;

Code

final String USAGE =
 "To run this example, supply a group id\n" +
 "Ex: DescribeSecurityGroups <group-id>\n";

if (args.length != 1) {
 System.out.println(USAGE);
 System.exit(1);
}

String group_id = args[0];

See the complete example.

Deleting a Security Group

To delete a security group, call the AmazonEC2Client’s deleteSecurityGroup method, passing it
a DeleteSecurityGroupRequest that contains the ID of the security group to delete.

Imports

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DeleteSecurityGroupRequest;
import com.amazonaws.services.ec2.model.DeleteSecurityGroupResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DeleteSecurityGroupRequest request = new DeleteSecurityGroupRequest()
 .withGroupId(group_id);

Working with Security Groups in Amazon EC2 134

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeSecurityGroups.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DeleteSecurityGroupRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

DeleteSecurityGroupResult response = ec2.deleteSecurityGroup(request);

See the complete example.

More Information

• Amazon EC2 Security Groups in the Amazon EC2 User Guide for Linux Instances

• Authorizing Inbound Traffic for Your Linux Instances in the Amazon EC2 User Guide for Linux
Instances

• CreateSecurityGroup in the Amazon EC2 API Reference

• DescribeSecurityGroups in the Amazon EC2 API Reference

• DeleteSecurityGroup in the Amazon EC2 API Reference

• AuthorizeSecurityGroupIngress in the Amazon EC2 API Reference

IAM Examples Using the AWS SDK for Java

This section provides examples of programming IAM by using the AWS SDK for Java.

AWS Identity and Access Management (IAM) enables you to securely control access to AWS services
and resources for your users. Using IAM, you can create and manage AWS users and groups, and
use permissions to allow and deny their access to AWS resources. For a complete guide to IAM, visit
the IAM User Guide.

Note

The examples include only the code needed to demonstrate each technique. The complete
example code is available on GitHub. From there, you can download a single source file or
clone the repository locally to get all the examples to build and run.

Topics

• Managing IAM Access Keys

• Managing IAM Users

• Using IAM Account Aliases

• Working with IAM Policies

• Working with IAM Server Certificates

AWS Identity and Access Management (IAM) Examples 135

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DeleteSecurityGroup.java
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateSecurityGroup.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSecurityGroups.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DeleteSecurityGroup.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AuthorizeSecurityGroupIngress.html
https://aws.amazon.com/iam/
https://aws.amazon.com/sdk-for-java/
http://docs.aws.amazon.com/IAM/latest/UserGuide/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java

AWS SDK for Java 1.x Developer Guide for version 1.x

Managing IAM Access Keys

Creating an Access Key

To create an IAM access key, call the AmazonIdentityManagementClientcreateAccessKey
method with an CreateAccessKeyRequest object.

CreateAccessKeyRequest has two constructors — one that takes a user name and another with
no parameters. If you use the version that takes no parameters, you must set the user name using
the withUserName setter method before passing it to the createAccessKey method.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateAccessKeyRequest;
import com.amazonaws.services.identitymanagement.model.CreateAccessKeyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreateAccessKeyRequest request = new CreateAccessKeyRequest()
 .withUserName(user);

CreateAccessKeyResult response = iam.createAccessKey(request);

See the complete example on GitHub.

Listing Access Keys

To list the access keys for a given user, create a ListAccessKeysRequest object that contains the user
name to list keys for, and pass it to the AmazonIdentityManagementClient’s listAccessKeys
method.

Note

If you do not supply a user name to listAccessKeys, it will attempt to list access keys
associated with the AWS account that signed the request.

Managing IAM Access Keys 136

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreateAccessKeyRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreateAccessKey.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAccessKeysRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.AccessKeyMetadata;
import com.amazonaws.services.identitymanagement.model.ListAccessKeysRequest;
import com.amazonaws.services.identitymanagement.model.ListAccessKeysResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

boolean done = false;
ListAccessKeysRequest request = new ListAccessKeysRequest()
 .withUserName(username);

while (!done) {

 ListAccessKeysResult response = iam.listAccessKeys(request);

 for (AccessKeyMetadata metadata :
 response.getAccessKeyMetadata()) {
 System.out.format("Retrieved access key %s",
 metadata.getAccessKeyId());
 }

 request.setMarker(response.getMarker());

 if (!response.getIsTruncated()) {
 done = true;
 }
}

The results of listAccessKeys are paged (with a default maximum of 100 records per call). You
can call getIsTruncated on the returned ListAccessKeysResult object to see if the query returned
fewer results then are available. If so, then call setMarker on the ListAccessKeysRequest and
pass it back to the next invocation of listAccessKeys.

See the complete example on GitHub.

Managing IAM Access Keys 137

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAccessKeysResult.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListAccessKeys.java

AWS SDK for Java 1.x Developer Guide for version 1.x

Retrieving an Access Key’s Last Used Time

To get the time an access key was last used, call the AmazonIdentityManagementClient’s
getAccessKeyLastUsed method with the access key’s ID (which can be passed in using a
GetAccessKeyLastUsedRequest object, or directly to the overload that takes the access key ID
directly.

You can then use the returned GetAccessKeyLastUsedResult object to retrieve the key’s last used
time.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.GetAccessKeyLastUsedRequest;
import com.amazonaws.services.identitymanagement.model.GetAccessKeyLastUsedResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

GetAccessKeyLastUsedRequest request = new GetAccessKeyLastUsedRequest()
 .withAccessKeyId(access_id);

GetAccessKeyLastUsedResult response = iam.getAccessKeyLastUsed(request);

System.out.println("Access key was last used at: " +
 response.getAccessKeyLastUsed().getLastUsedDate());

See the complete example on GitHub.

Activating or Deactivating Access Keys

You can activate or deactivate an access key by creating an UpdateAccessKeyRequest object,
providing the access key ID, optionally the user name, and the desired Status, then passing the
request object to the AmazonIdentityManagementClient’s updateAccessKey method.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;

Managing IAM Access Keys 138

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetAccessKeyLastUsedRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetAccessKeyLastUsedResult.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/AccessKeyLastUsed.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateAccessKeyRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/StatusType.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.services.identitymanagement.model.UpdateAccessKeyRequest;
import com.amazonaws.services.identitymanagement.model.UpdateAccessKeyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

UpdateAccessKeyRequest request = new UpdateAccessKeyRequest()
 .withAccessKeyId(access_id)
 .withUserName(username)
 .withStatus(status);

UpdateAccessKeyResult response = iam.updateAccessKey(request);

See the complete example on GitHub.

Deleting an Access Key

To permanently delete an access key, call the AmazonIdentityManagementClient’s deleteKey
method, providing it with a DeleteAccessKeyRequest containing the access key’s ID and username.

Note

Once deleted, a key can no longer be retrieved or used. To temporarily deactivate a key so
that it can be activated again later, use updateAccessKey method instead.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteAccessKeyRequest;
import com.amazonaws.services.identitymanagement.model.DeleteAccessKeyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteAccessKeyRequest request = new DeleteAccessKeyRequest()

Managing IAM Access Keys 139

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/UpdateAccessKey.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DeleteAccessKeyRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 .withAccessKeyId(access_key)
 .withUserName(username);

DeleteAccessKeyResult response = iam.deleteAccessKey(request);

See the complete example on GitHub.

More Information

• CreateAccessKey in the IAM API Reference

• ListAccessKeys in the IAM API Reference

• GetAccessKeyLastUsed in the IAM API Reference

• UpdateAccessKey in the IAM API Reference

• DeleteAccessKey in the IAM API Reference

Managing IAM Users

Creating a User

Create a new IAM user by providing the user name to the AmazonIdentityManagementClient’s
createUser method, either directly or using a CreateUserRequest object containing the user
name.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateUserRequest;
import com.amazonaws.services.identitymanagement.model.CreateUserResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreateUserRequest request = new CreateUserRequest()
 .withUserName(username);

CreateUserResult response = iam.createUser(request);

Managing IAM Users 140

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteAccessKey.java
http://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAccessKeys.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccessKeyLastUsed.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAccessKey.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccessKey.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreateUserRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

See the complete example on GitHub.

Listing Users

To list the IAM users for your account, create a new ListUsersRequest and pass it to the
AmazonIdentityManagementClient’s listUsers method. You can retrieve the list of users by
calling getUsers on the returned ListUsersResult object.

The list of users returned by listUsers is paged. You can check to see there are more results to
retrieve by calling the response object’s getIsTruncated method. If it returns true, then call
the request object’s setMarker() method, passing it the return value of the response object’s
getMarker() method.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListUsersRequest;
import com.amazonaws.services.identitymanagement.model.ListUsersResult;
import com.amazonaws.services.identitymanagement.model.User;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

boolean done = false;
ListUsersRequest request = new ListUsersRequest();

while(!done) {
 ListUsersResult response = iam.listUsers(request);

 for(User user : response.getUsers()) {
 System.out.format("Retrieved user %s", user.getUserName());
 }

 request.setMarker(response.getMarker());

 if(!response.getIsTruncated()) {
 done = true;
 }
}

Managing IAM Users 141

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreateUser.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListUsersRequest.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/identitymanagement/model/ListUsersResult.html

AWS SDK for Java 1.x Developer Guide for version 1.x

See the complete example on GitHub.

Updating a User

To update a user, call the AmazonIdentityManagementClient object’s updateUser method, which
takes a UpdateUserRequest object that you can use to change the user’s name or path.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.UpdateUserRequest;
import com.amazonaws.services.identitymanagement.model.UpdateUserResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

UpdateUserRequest request = new UpdateUserRequest()
 .withUserName(cur_name)
 .withNewUserName(new_name);

UpdateUserResult response = iam.updateUser(request);

See the complete example on GitHub.

Deleting a User

To delete a user, call the AmazonIdentityManagementClient’s deleteUser request with a
UpdateUserRequest object set with the user name to delete.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteConflictException;
import com.amazonaws.services.identitymanagement.model.DeleteUserRequest;

Code

final AmazonIdentityManagement iam =

Managing IAM Users 142

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListUsers.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateUserRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/UpdateUser.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateUserRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteUserRequest request = new DeleteUserRequest()
 .withUserName(username);

try {
 iam.deleteUser(request);
} catch (DeleteConflictException e) {
 System.out.println("Unable to delete user. Verify user is not" +
 " associated with any resources");
 throw e;
}

See the complete example on GitHub.

More Information

• IAM Users in the IAM User Guide

• Managing IAM Users in the IAM User Guide

• CreateUser in the IAM API Reference

• ListUsers in the IAM API Reference

• UpdateUser in the IAM API Reference

• DeleteUser in the IAM API Reference

Using IAM Account Aliases

If you want the URL for your sign-in page to contain your company name or other friendly
identifier instead of your AWS account ID, you can create an alias for your AWS account.

Note

AWS supports exactly one account alias per account.

Creating an Account Alias

To create an account alias, call the AmazonIdentityManagementClient’s createAccountAlias
method with a CreateAccountAliasRequest object that contains the alias name.

Using IAM Account Aliases 143

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteUser.java
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_manage.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateUser.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUsers.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateUser.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteUser.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreateAccountAliasRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateAccountAliasRequest;
import com.amazonaws.services.identitymanagement.model.CreateAccountAliasResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreateAccountAliasRequest request = new CreateAccountAliasRequest()
 .withAccountAlias(alias);

CreateAccountAliasResult response = iam.createAccountAlias(request);

See the complete example on GitHub.

Listing Account Aliases

To list your account’s alias, if any, call the AmazonIdentityManagementClient’s
listAccountAliases method.

Note

The returned ListAccountAliasesResult supports the same getIsTruncated and
getMarker methods as other AWS SDK for Java list methods, but an AWS account can
have only one account alias.

imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListAccountAliasesResult;

code

final AmazonIdentityManagement iam =

Using IAM Account Aliases 144

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreateAccountAlias.java
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/identitymanagement/model/ListAccountAliasesResult.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 AmazonIdentityManagementClientBuilder.defaultClient();

ListAccountAliasesResult response = iam.listAccountAliases();

for (String alias : response.getAccountAliases()) {
 System.out.printf("Retrieved account alias %s", alias);
}

see the complete example on GitHub.

Deleting an account alias

To delete your account’s alias, call the AmazonIdentityManagementClient’s
deleteAccountAlias method. When deleting an account alias, you must supply its name using a
DeleteAccountAliasRequest object.

imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteAccountAliasRequest;
import com.amazonaws.services.identitymanagement.model.DeleteAccountAliasResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteAccountAliasRequest request = new DeleteAccountAliasRequest()
 .withAccountAlias(alias);

DeleteAccountAliasResult response = iam.deleteAccountAlias(request);

See the complete example on GitHub.

More Information

• Your AWS Account ID and Its Alias in the IAM User Guide

• CreateAccountAlias in the IAM API Reference

• ListAccountAliases in the IAM API Reference

• DeleteAccountAlias in the IAM API Reference

Using IAM Account Aliases 145

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListAccountAliases.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DeleteAccountAliasRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteAccountAlias.java
http://docs.aws.amazon.com/IAM/latest/UserGuide/console_account-alias.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccountAlias.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAccountAliases.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccountAlias.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Working with IAM Policies

Creating a Policy

To create a new policy, provide the policy’s name and a JSON-formatted policy document in a
CreatePolicyRequest to the AmazonIdentityManagementClient’s createPolicy method.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreatePolicyRequest;
import com.amazonaws.services.identitymanagement.model.CreatePolicyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreatePolicyRequest request = new CreatePolicyRequest()
 .withPolicyName(policy_name)
 .withPolicyDocument(POLICY_DOCUMENT);

CreatePolicyResult response = iam.createPolicy(request);

IAM policy documents are JSON strings with a well-documented syntax. Here is an example that
provides access to make particular requests to DynamoDB.

public static final String POLICY_DOCUMENT =
 "{" +
 " \"Version\": \"2012-10-17\"," +
 " \"Statement\": [" +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Action\": \"logs:CreateLogGroup\"," +
 " \"Resource\": \"%s\"" +
 " }," +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Action\": [" +
 " \"dynamodb:DeleteItem\"," +

Working with IAM Policies 146

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreatePolicyRequest.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_grammar.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 " \"dynamodb:GetItem\"," +
 " \"dynamodb:PutItem\"," +
 " \"dynamodb:Scan\"," +
 " \"dynamodb:UpdateItem\"" +
 "]," +
 " \"Resource\": \"RESOURCE_ARN\"" +
 " }" +
 "]" +
 "}";

See the complete example on GitHub.

Getting a Policy

To retrieve an existing policy, call the AmazonIdentityManagementClient’s getPolicy method,
providing the policy’s ARN within a GetPolicyRequest object.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.GetPolicyRequest;
import com.amazonaws.services.identitymanagement.model.GetPolicyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

GetPolicyRequest request = new GetPolicyRequest()
 .withPolicyArn(policy_arn);

GetPolicyResult response = iam.getPolicy(request);

See the complete example on GitHub.

Attaching a Role Policy

You can attach a policy to an IAMhttp://docs.aws.amazon.com/IAM/latest/UserGuide/
id_roles.html[role] by calling the AmazonIdentityManagementClient’s attachRolePolicy
method, providing it with the role name and policy ARN in an AttachRolePolicyRequest.

Working with IAM Policies 147

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreatePolicy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetPolicyRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/GetPolicy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/AttachRolePolicyRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.AttachRolePolicyRequest;
import com.amazonaws.services.identitymanagement.model.AttachedPolicy;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

AttachRolePolicyRequest attach_request =
 new AttachRolePolicyRequest()
 .withRoleName(role_name)
 .withPolicyArn(POLICY_ARN);

iam.attachRolePolicy(attach_request);

See the complete example on GitHub.

Listing Attached Role Policies

List attached policies on a role by calling the AmazonIdentityManagementClient’s
listAttachedRolePolicies method. It takes a ListAttachedRolePoliciesRequest object that
contains the role name to list the policies for.

Call getAttachedPolicies on the returned ListAttachedRolePoliciesResult object to get the
list of attached policies. Results may be truncated; if the ListAttachedRolePoliciesResult
object’s getIsTruncated method returns true, call the ListAttachedRolePoliciesRequest
object’s setMarker method and use it to call listAttachedRolePolicies again to get the
next batch of results.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListAttachedRolePoliciesRequest;
import com.amazonaws.services.identitymanagement.model.ListAttachedRolePoliciesResult;
import java.util.ArrayList;

Working with IAM Policies 148

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/AttachRolePolicy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAttachedRolePoliciesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAttachedRolePoliciesResult.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import java.util.List;
import java.util.stream.Collectors;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

ListAttachedRolePoliciesRequest request =
 new ListAttachedRolePoliciesRequest()
 .withRoleName(role_name);

List<AttachedPolicy> matching_policies = new ArrayList<>();

boolean done = false;

while(!done) {
 ListAttachedRolePoliciesResult response =
 iam.listAttachedRolePolicies(request);

 matching_policies.addAll(
 response.getAttachedPolicies()
 .stream()
 .filter(p -> p.getPolicyName().equals(role_name))
 .collect(Collectors.toList()));

 if(!response.getIsTruncated()) {
 done = true;
 }
 request.setMarker(response.getMarker());
}

See the complete example on GitHub.

Detaching a Role Policy

To detach a policy from a role, call the AmazonIdentityManagementClient’s detachRolePolicy
method, providing it with the role name and policy ARN in a DetachRolePolicyRequest.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;

Working with IAM Policies 149

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/AttachRolePolicy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DetachRolePolicyRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DetachRolePolicyRequest;
import com.amazonaws.services.identitymanagement.model.DetachRolePolicyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DetachRolePolicyRequest request = new DetachRolePolicyRequest()
 .withRoleName(role_name)
 .withPolicyArn(policy_arn);

DetachRolePolicyResult response = iam.detachRolePolicy(request);

See the complete example on GitHub.

More Information

• Overview of IAM Policies in the IAM User Guide.

• AWS IAM Policy Reference in the IAM User Guide.

• CreatePolicy in the IAM API Reference

• GetPolicy in the IAM API Reference

• AttachRolePolicy in the IAM API Reference

• ListAttachedRolePolicies in the IAM API Reference

• DetachRolePolicy in the IAM API Reference

Working with IAM Server Certificates

To enable HTTPS connections to your website or application on AWS, you need an SSL/TLS server
certificate. You can use a server certificate provided by AWS Certificate Manager or one that you
obtained from an external provider.

We recommend that you use ACM to provision, manage, and deploy your server certificates. With
ACM you can request a certificate, deploy it to your AWS resources, and let ACM handle certificate
renewals for you. Certificates provided by ACM are free. For more information about ACM , see the
ACM User Guide.

Working with IAM Server Certificates 150

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DetachRolePolicy.java
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_CreatePolicy.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicy.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachRolePolicy.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedRolePolicies.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachRolePolicy.html
https://docs.aws.amazon.com/acm/latest/userguide/

AWS SDK for Java 1.x Developer Guide for version 1.x

Getting a Server Certificate

You can retrieve a server certificate by calling the AmazonIdentityManagementClient’s
getServerCertificate method, passing it a GetServerCertificateRequest with the certificate’s
name.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.GetServerCertificateRequest;
import com.amazonaws.services.identitymanagement.model.GetServerCertificateResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

GetServerCertificateRequest request = new GetServerCertificateRequest()
 .withServerCertificateName(cert_name);

GetServerCertificateResult response = iam.getServerCertificate(request);

See the complete example on GitHub.

Listing Server Certificates

To list your server certificates, call the AmazonIdentityManagementClient’s
listServerCertificates method with a ListServerCertificatesRequest. It returns a
ListServerCertificatesResult.

Call the returned ListServerCertificateResult object’s
getServerCertificateMetadataList method to get a list of ServerCertificateMetadata
objects that you can use to get information about each certificate.

Results may be truncated; if the ListServerCertificateResult object’s getIsTruncated
method returns true, call the ListServerCertificatesRequest object’s setMarker method
and use it to call listServerCertificates again to get the next batch of results.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;

Working with IAM Server Certificates 151

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetServerCertificateRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/GetServerCertificate.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListServerCertificatesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListServerCertificatesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ServerCertificateMetadata.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListServerCertificatesRequest;
import com.amazonaws.services.identitymanagement.model.ListServerCertificatesResult;
import com.amazonaws.services.identitymanagement.model.ServerCertificateMetadata;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

boolean done = false;
ListServerCertificatesRequest request =
 new ListServerCertificatesRequest();

while(!done) {

 ListServerCertificatesResult response =
 iam.listServerCertificates(request);

 for(ServerCertificateMetadata metadata :
 response.getServerCertificateMetadataList()) {
 System.out.printf("Retrieved server certificate %s",
 metadata.getServerCertificateName());
 }

 request.setMarker(response.getMarker());

 if(!response.getIsTruncated()) {
 done = true;
 }
}

See the complete example on GitHub.

Updating a Server Certificate

You can update a server certificate’s name or path by calling the
AmazonIdentityManagementClient’s updateServerCertificate method. It takes a
UpdateServerCertificateRequest object set with the server certificate’s current name and either a
new name or new path to use.

Imports

Working with IAM Server Certificates 152

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListServerCertificates.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateServerCertificateRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.UpdateServerCertificateRequest;
import com.amazonaws.services.identitymanagement.model.UpdateServerCertificateResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

UpdateServerCertificateRequest request =
 new UpdateServerCertificateRequest()
 .withServerCertificateName(cur_name)
 .withNewServerCertificateName(new_name);

UpdateServerCertificateResult response =
 iam.updateServerCertificate(request);

See the complete example on GitHub.

Deleting a Server Certificate

To delete a server certificate, call the AmazonIdentityManagementClient’s
deleteServerCertificate method with a DeleteServerCertificateRequest containing the
certificate’s name.

Imports

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteServerCertificateRequest;
import com.amazonaws.services.identitymanagement.model.DeleteServerCertificateResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteServerCertificateRequest request =
 new DeleteServerCertificateRequest()
 .withServerCertificateName(cert_name);

Working with IAM Server Certificates 153

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/UpdateServerCertificate.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DeleteServerCertificateRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

DeleteServerCertificateResult response =
 iam.deleteServerCertificate(request);

See the complete example on GitHub.

More Information

• Working with Server Certificates in the IAM User Guide

• GetServerCertificate in the IAM API Reference

• ListServerCertificates in the IAM API Reference

• UpdateServerCertificate in the IAM API Reference

• DeleteServerCertificate in the IAM API Reference

• ACM User Guide

Lambda Examples Using the AWS SDK for Java

This section provides examples of programming Lambda using the AWS SDK for Java.

Note

The examples include only the code needed to demonstrate each technique. The complete
example code is available on GitHub. From there, you can download a single source file or
clone the repository locally to get all the examples to build and run.

Topics

• Invoking, Listing, and Deleting Lambda Functions

Invoking, Listing, and Deleting Lambda Functions

This section provides examples of programming with the Lambda service client by using the AWS
SDK for Java. To learn how to create a Lambda function, see How to Create AWS Lambda functions.

Topics

• Invoke a function

Amazon Lambda Examples 154

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteServerCertificate.java
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServerCertificate.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_ListServerCertificates.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateServerCertificate.html
http://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteServerCertificate.html
https://docs.aws.amazon.com/acm/latest/userguide/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/lambda-tutorial.html

AWS SDK for Java 1.x Developer Guide for version 1.x

• List functions

• Delete a function

Invoke a function

You can invoke a Lambda function by creating an AWSLambda object and invoking its invoke
method. Create an InvokeRequest object to specify additional information such as the
function name and the payload to pass to the Lambda function. Function names appear as
arn:aws:lambda:us-east-1:555556330391:function:HelloFunction. You can retrieve the value by
looking at the function in the AWS Management Console.

To pass payload data to a function, invoke the InvokeRequest object’s withPayload method and
specify a String in JSON format, as shown in the following code example.

Imports

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.lambda.AWSLambda;
import com.amazonaws.services.lambda.AWSLambdaClientBuilder;
import com.amazonaws.services.lambda.model.InvokeRequest;
import com.amazonaws.services.lambda.model.InvokeResult;
import com.amazonaws.services.lambda.model.ServiceException;

import java.nio.charset.StandardCharsets;

Code

The following code example demonstrates how to invoke a Lambda function.

 String functionName = args[0];

 InvokeRequest invokeRequest = new InvokeRequest()
 .withFunctionName(functionName)
 .withPayload("{\n" +
 " \"Hello \": \"Paris\",\n" +
 " \"countryCode\": \"FR\"\n" +
 "}");
 InvokeResult invokeResult = null;

 try {

Service operations 155

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambda.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/InvokeRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/InvokeRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 AWSLambda awsLambda = AWSLambdaClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(Regions.US_WEST_2).build();

 invokeResult = awsLambda.invoke(invokeRequest);

 String ans = new String(invokeResult.getPayload().array(),
 StandardCharsets.UTF_8);

 //write out the return value
 System.out.println(ans);

 } catch (ServiceException e) {
 System.out.println(e);
 }

 System.out.println(invokeResult.getStatusCode());

See the complete example on Github.

List functions

Build an AWSLambda object and invoke its listFunctions method. This method returns a
ListFunctionsResult object. You can invoke this object’s getFunctions method to return a list of
FunctionConfiguration objects. You can iterate through the list to retrieve information about the
functions. For example, the following Java code example shows how to get each function name.

Imports

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.lambda.AWSLambda;
import com.amazonaws.services.lambda.AWSLambdaClientBuilder;
import com.amazonaws.services.lambda.model.FunctionConfiguration;
import com.amazonaws.services.lambda.model.ListFunctionsResult;
import com.amazonaws.services.lambda.model.ServiceException;
import java.util.Iterator;
import java.util.List;

Code

The following Java code example demonstrates how to retrieve a list of Lambda function names.

Service operations 156

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/lambda/src/main/java/com/example/lambda/LambdaInvokeFunction.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambda.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/ListFunctionsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/FunctionConfiguration.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 ListFunctionsResult functionResult = null;

 try {
 AWSLambda awsLambda = AWSLambdaClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(Regions.US_WEST_2).build();

 functionResult = awsLambda.listFunctions();

 List<FunctionConfiguration> list = functionResult.getFunctions();

 for (Iterator iter = list.iterator(); iter.hasNext();) {
 FunctionConfiguration config = (FunctionConfiguration)iter.next();

 System.out.println("The function name is "+config.getFunctionName());
 }

 } catch (ServiceException e) {
 System.out.println(e);
 }

See the complete example on Github.

Delete a function

Build an AWSLambda object and invoke its deleteFunction method. Create a
DeleteFunctionRequest object and pass it to the deleteFunction method. This object
contains information such as the name of the function to delete. Function names appear as
arn:aws:lambda:us-east-1:555556330391:function:HelloFunction. You can retrieve the value by
looking at the function in the AWS Management Console.

Imports

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.lambda.AWSLambda;
import com.amazonaws.services.lambda.AWSLambdaClientBuilder;
import com.amazonaws.services.lambda.model.ServiceException;
import com.amazonaws.services.lambda.model.DeleteFunctionRequest;

Code

Service operations 157

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/lambda/src/main/java/com/example/lambda/ListFunctions.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambda.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/DeleteFunctionRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

The following Java code demonstrates how to delete a Lambda function.

 String functionName = args[0];
 try {
 AWSLambda awsLambda = AWSLambdaClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(Regions.US_WEST_2).build();

 DeleteFunctionRequest delFunc = new DeleteFunctionRequest();
 delFunc.withFunctionName(functionName);

 //Delete the function
 awsLambda.deleteFunction(delFunc);
 System.out.println("The function is deleted");

 } catch (ServiceException e) {
 System.out.println(e);
 }

See the complete example on Github.

Amazon Pinpoint Examples Using the AWS SDK for Java

This section provides examples of programming Amazon Pinpoint using the AWS SDK for Java.

Note

The examples include only the code needed to demonstrate each technique. The complete
example code is available on GitHub. From there, you can download a single source file or
clone the repository locally to get all the examples to build and run.

Topics

• Creating and Deleting Apps in Amazon Pinpoint

• Creating Endpoints in Amazon Pinpoint

• Creating Segments in Amazon Pinpoint

• Creating Campaigns in Amazon Pinpoint

• Updating Channels in Amazon Pinpoint

Amazon Pinpoint Examples 158

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/lambda/src/main/java/com/example/lambda/DeleteFunction.java
https://aws.amazon.com/pinpoint/
https://aws.amazon.com/sdk-for-java/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java

AWS SDK for Java 1.x Developer Guide for version 1.x

Creating and Deleting Apps in Amazon Pinpoint

An app is an Amazon Pinpoint project in which you define the audience for a distinct application,
and you engage this audience with tailored messages. The examples on this page demonstrate how
to create a new app or delete an existing one.

Create an App

Create a new app in Amazon Pinpoint by providing an app name to the CreateAppRequest object,
and then passing that object to the AmazonPinpointClient’s createApp method.

Imports

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.CreateAppRequest;
import com.amazonaws.services.pinpoint.model.CreateAppResult;
import com.amazonaws.services.pinpoint.model.CreateApplicationRequest;

Code

CreateApplicationRequest appRequest = new CreateApplicationRequest()
 .withName(appName);

CreateAppRequest request = new CreateAppRequest();
request.withCreateApplicationRequest(appRequest);
CreateAppResult result = pinpoint.createApp(request);

See the complete example on GitHub.

Delete an App

To delete an app, call the AmazonPinpointClient’s deleteApp request with a DeleteAppRequest
object that’s set with the app name to delete.

Imports

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;

Creating and Deleting Apps in Amazon Pinpoint 159

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/CreateAppRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateApp.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/DeleteAppRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Code

DeleteAppRequest deleteRequest = new DeleteAppRequest()
 .withApplicationId(appID);

pinpoint.deleteApp(deleteRequest);

See the complete example on GitHub.

More Information

• Apps in the Amazon Pinpoint API Reference

• App in the Amazon Pinpoint API Reference

Creating Endpoints in Amazon Pinpoint

An endpoint uniquely identifies a user device to which you can send push notifications with
Amazon Pinpoint. If your app is enabled with Amazon Pinpoint support, your app automatically
registers an endpoint with Amazon Pinpoint when a new user opens your app. The following
example demonstrates how to add a new endpoint programmatically.

Create an Endpoint

Create a new endpoint in Amazon Pinpoint by providing the endpoint data in an EndpointRequest
object.

Imports

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.UpdateEndpointRequest;
import com.amazonaws.services.pinpoint.model.UpdateEndpointResult;
import com.amazonaws.services.pinpoint.model.EndpointDemographic;
import com.amazonaws.services.pinpoint.model.EndpointLocation;
import com.amazonaws.services.pinpoint.model.EndpointRequest;
import com.amazonaws.services.pinpoint.model.EndpointResponse;
import com.amazonaws.services.pinpoint.model.EndpointUser;
import com.amazonaws.services.pinpoint.model.GetEndpointRequest;
import com.amazonaws.services.pinpoint.model.GetEndpointResult;

Creating Endpoints in Amazon Pinpoint 160

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/DeleteApp.java
http://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apps.html
http://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-app.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/EndpointRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Code

HashMap<String, List<String>> customAttributes = new HashMap<>();
List<String> favoriteTeams = new ArrayList<>();
favoriteTeams.add("Lakers");
favoriteTeams.add("Warriors");
customAttributes.put("team", favoriteTeams);

EndpointDemographic demographic = new EndpointDemographic()
 .withAppVersion("1.0")
 .withMake("apple")
 .withModel("iPhone")
 .withModelVersion("7")
 .withPlatform("ios")
 .withPlatformVersion("10.1.1")
 .withTimezone("America/Los_Angeles");

EndpointLocation location = new EndpointLocation()
 .withCity("Los Angeles")
 .withCountry("US")
 .withLatitude(34.0)
 .withLongitude(-118.2)
 .withPostalCode("90068")
 .withRegion("CA");

Map<String,Double> metrics = new HashMap<>();
metrics.put("health", 100.00);
metrics.put("luck", 75.00);

EndpointUser user = new EndpointUser()
 .withUserId(UUID.randomUUID().toString());

DateFormat df = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm'Z'"); // Quoted "Z" to
 indicate UTC, no timezone offset
String nowAsISO = df.format(new Date());

EndpointRequest endpointRequest = new EndpointRequest()
 .withAddress(UUID.randomUUID().toString())
 .withAttributes(customAttributes)
 .withChannelType("APNS")
 .withDemographic(demographic)
 .withEffectiveDate(nowAsISO)
 .withLocation(location)

Creating Endpoints in Amazon Pinpoint 161

AWS SDK for Java 1.x Developer Guide for version 1.x

 .withMetrics(metrics)
 .withOptOut("NONE")
 .withRequestId(UUID.randomUUID().toString())
 .withUser(user);

Then create an UpdateEndpointRequest object with that EndpointRequest object. Finally, pass the
UpdateEndpointRequest object to the AmazonPinpointClient’s updateEndpoint method.

Code

UpdateEndpointRequest updateEndpointRequest = new UpdateEndpointRequest()
 .withApplicationId(appId)
 .withEndpointId(endpointId)
 .withEndpointRequest(endpointRequest);

UpdateEndpointResult updateEndpointResponse =
 client.updateEndpoint(updateEndpointRequest);
System.out.println("Update Endpoint Response: " +
 updateEndpointResponse.getMessageBody());

See the complete example on GitHub.

More Information

• Adding Endpoint in the Amazon Pinpoint Developer Guide

• Endpoint in the Amazon Pinpoint API Reference

Creating Segments in Amazon Pinpoint

A user segment represents a subset of your users that’s based on shared characteristics, such
as how recently a user opened your app or which device they use. The following example
demonstrates how to define a segment of users.

Create a Segment

Create a new segment in Amazon Pinpoint by defining dimensions of the segment in a
SegmentDimensions object.

Imports

import com.amazonaws.services.pinpoint.AmazonPinpoint;

Creating Segments in Amazon Pinpoint 162

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/UpdateEndpointRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateEndpoint.java
http://docs.aws.amazon.com/pinpoint/latest/developerguide/endpoints.html
http://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-endpoint.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/SegmentDimensions.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.CreateSegmentRequest;
import com.amazonaws.services.pinpoint.model.CreateSegmentResult;
import com.amazonaws.services.pinpoint.model.AttributeDimension;
import com.amazonaws.services.pinpoint.model.AttributeType;
import com.amazonaws.services.pinpoint.model.RecencyDimension;
import com.amazonaws.services.pinpoint.model.SegmentBehaviors;
import com.amazonaws.services.pinpoint.model.SegmentDemographics;
import com.amazonaws.services.pinpoint.model.SegmentDimensions;
import com.amazonaws.services.pinpoint.model.SegmentLocation;
import com.amazonaws.services.pinpoint.model.SegmentResponse;
import com.amazonaws.services.pinpoint.model.WriteSegmentRequest;

Code

Pinpoint pinpoint =
 AmazonPinpointClientBuilder.standard().withRegion(Regions.US_EAST_1).build();
Map<String, AttributeDimension> segmentAttributes = new HashMap<>();
segmentAttributes.put("Team", new
 AttributeDimension().withAttributeType(AttributeType.INCLUSIVE).withValues("Lakers"));

SegmentBehaviors segmentBehaviors = new SegmentBehaviors();
SegmentDemographics segmentDemographics = new SegmentDemographics();
SegmentLocation segmentLocation = new SegmentLocation();

RecencyDimension recencyDimension = new RecencyDimension();
recencyDimension.withDuration("DAY_30").withRecencyType("ACTIVE");
segmentBehaviors.setRecency(recencyDimension);

SegmentDimensions dimensions = new SegmentDimensions()
 .withAttributes(segmentAttributes)
 .withBehavior(segmentBehaviors)
 .withDemographic(segmentDemographics)
 .withLocation(segmentLocation);

Next set the SegmentDimensions object in a WriteSegmentRequest, which in turn is used to
create a CreateSegmentRequest object. Then pass the CreateSegmentRequest object to the
AmazonPinpointClient’s createSegment method.

Code

WriteSegmentRequest writeSegmentRequest = new WriteSegmentRequest()

Creating Segments in Amazon Pinpoint 163

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/SegmentDimensions.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/WriteSegmentRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/CreateSegmentRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 .withName("MySegment").withDimensions(dimensions);

CreateSegmentRequest createSegmentRequest = new CreateSegmentRequest()
 .withApplicationId(appId).withWriteSegmentRequest(writeSegmentRequest);

CreateSegmentResult createSegmentResult = client.createSegment(createSegmentRequest);

See the complete example on GitHub.

More Information

• Amazon Pinpoint Segments in the Amazon Pinpoint User Guide

• Creating Segments in the Amazon Pinpoint Developer Guide

• Segments in the Amazon Pinpoint API Reference

• Segment in the Amazon Pinpoint API Reference

Creating Campaigns in Amazon Pinpoint

You can use campaigns to help increase engagement between your app and your users. You can
create a campaign to reach out to a particular segment of your users with tailored messages or
special promotions. This example demonstrates how to create a new standard campaign that sends
a custom push notification to a specified segment.

Create a Campaign

Before creating a new campaign, you must define a Schedule and a Message and set these values in
a WriteCampaignRequest object.

Imports

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.CreateCampaignRequest;
import com.amazonaws.services.pinpoint.model.CreateCampaignResult;
import com.amazonaws.services.pinpoint.model.Action;
import com.amazonaws.services.pinpoint.model.CampaignResponse;
import com.amazonaws.services.pinpoint.model.Message;
import com.amazonaws.services.pinpoint.model.MessageConfiguration;
import com.amazonaws.services.pinpoint.model.Schedule;
import com.amazonaws.services.pinpoint.model.WriteCampaignRequest;

Creating Campaigns in Amazon Pinpoint 164

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateSegment.java
https://docs.aws.amazon.com/pinpoint/latest/userguide/segments.html
http://docs.aws.amazon.com/pinpoint/latest/developerguide/segments.html
http://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-segments.html
http://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-segment.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/Schedule.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/Message.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/WriteCampaignRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Code

Schedule schedule = new Schedule()
 .withStartTime("IMMEDIATE");

Message defaultMessage = new Message()
 .withAction(Action.OPEN_APP)
 .withBody("My message body.")
 .withTitle("My message title.");

MessageConfiguration messageConfiguration = new MessageConfiguration()
 .withDefaultMessage(defaultMessage);

WriteCampaignRequest request = new WriteCampaignRequest()
 .withDescription("My description.")
 .withSchedule(schedule)
 .withSegmentId(segmentId)
 .withName("MyCampaign")
 .withMessageConfiguration(messageConfiguration);

Then create a new campaign in Amazon Pinpoint by providing the WriteCampaignRequest
with the campaign configuration to a CreateCampaignRequest object. Finally, pass the
CreateCampaignRequest object to the AmazonPinpointClient’s createCampaign method.

Code

CreateCampaignRequest createCampaignRequest = new CreateCampaignRequest()
 .withApplicationId(appId).withWriteCampaignRequest(request);

CreateCampaignResult result = client.createCampaign(createCampaignRequest);

See the complete example on GitHub.

More Information

• Amazon Pinpoint Campaigns in the Amazon Pinpoint User Guide

• Creating Campaigns in the Amazon Pinpoint Developer Guide

• Campaigns in the Amazon Pinpoint API Reference

• Campaign in the Amazon Pinpoint API Reference

• Campaign Activities in the Amazon Pinpoint API Reference

Creating Campaigns in Amazon Pinpoint 165

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/WriteCampaignRequest.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/pinpoint/model/CreateCampaignRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateApp.java
https://docs.aws.amazon.com/pinpoint/latest/userguide/campaigns.html
http://docs.aws.amazon.com/pinpoint/latest/developerguide/campaigns.html
http://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaigns.html
http://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaign.html
http://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaign-activities.html

AWS SDK for Java 1.x Developer Guide for version 1.x

• Campaign Versions in the Amazon Pinpoint API Reference

• Campaign Version in the Amazon Pinpoint API Reference

Updating Channels in Amazon Pinpoint

A channel defines the types of platforms to which you can deliver messages. This example shows
how to use the APNs channel to send a message.

Update a Channel

Enable a channel in Amazon Pinpoint by providing an app ID and a request object of the
channel type you want to update. This example updates the APNs channel, which requires the
APNSChannelRequest object. Set these in the UpdateApnsChannelRequest and pass that object to
the AmazonPinpointClient’s updateApnsChannel method.

Imports

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.APNSChannelRequest;
import com.amazonaws.services.pinpoint.model.APNSChannelResponse;
import com.amazonaws.services.pinpoint.model.GetApnsChannelRequest;
import com.amazonaws.services.pinpoint.model.GetApnsChannelResult;
import com.amazonaws.services.pinpoint.model.UpdateApnsChannelRequest;
import com.amazonaws.services.pinpoint.model.UpdateApnsChannelResult;

Code

APNSChannelRequest request = new APNSChannelRequest()
 .withEnabled(enabled);

UpdateApnsChannelRequest updateRequest = new UpdateApnsChannelRequest()
 .withAPNSChannelRequest(request)
 .withApplicationId(appId);
UpdateApnsChannelResult result = client.updateApnsChannel(updateRequest);

See the complete example on GitHub.

More Information

• Amazon Pinpoint Channels in the Amazon Pinpoint User Guide

Updating Channels in Amazon Pinpoint 166

http://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaign-versions.html
http://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaign-version.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/APNSChannelRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/UpdateApnsChannelRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/UpdateChannel.java
https://docs.aws.amazon.com/pinpoint/latest/userguide/channels.html

AWS SDK for Java 1.x Developer Guide for version 1.x

• ADM Channel in the Amazon Pinpoint API Reference

• APNs Channel in the Amazon Pinpoint API Reference

• APNs Sandbox Channel in the Amazon Pinpoint API Reference

• APNs VoIP Channel in the Amazon Pinpoint API Reference

• APNs VoIP Sandbox Channel in the Amazon Pinpoint API Reference

• Baidu Channel in the Amazon Pinpoint API Reference

• Email Channel in the Amazon Pinpoint API Reference

• GCM Channel in the Amazon Pinpoint API Reference

• SMS Channel in the Amazon Pinpoint API Reference

Amazon S3 Examples Using the AWS SDK for Java

This section provides examples of programming Amazon S3 using the AWS SDK for Java.

Note

The examples include only the code needed to demonstrate each technique. The complete
example code is available on GitHub. From there, you can download a single source file or
clone the repository locally to get all the examples to build and run.

Topics

• Creating, Listing, and Deleting Amazon S3 Buckets

• Performing Operations on Amazon S3 Objects

• Managing Amazon S3 Access Permissions for Buckets and Objects

• Managing Access to Amazon S3 Buckets Using Bucket Policies

• Using TransferManager for Amazon S3 Operations

• Configuring an Amazon S3 Bucket as a Website

• Use Amazon S3 client-side encryption

Creating, Listing, and Deleting Amazon S3 Buckets

Every object (file) in Amazon S3 must reside within a bucket, which represents a collection
(container) of objects. Each bucket is known by a key (name), which must be unique. For detailed

Amazon S3 Examples 167

http://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-adm-channel.html
http://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apns-channel.html
http://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apns-sandbox-channel.html
http://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apns-voip-channel.html
http://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apns-voip-sandbox-channel.html
http://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-baidu-channel.html
http://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-email-channel.html
http://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-gcm-channel.html
http://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-sms-channel.html
https://aws.amazon.com/s3/
https://aws.amazon.com/sdk-for-java/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java

AWS SDK for Java 1.x Developer Guide for version 1.x

information about buckets and their configuration, see Working with Amazon S3 Buckets in the
Amazon Simple Storage Service User Guide.

Note

Best Practice
We recommend that you enable the AbortIncompleteMultipartUpload lifecycle rule on your
Amazon S3 buckets.
This rule directs Amazon S3 to abort multipart uploads that don’t complete within a
specified number of days after being initiated. When the set time limit is exceeded, Amazon
S3 aborts the upload and then deletes the incomplete upload data.
For more information, see Lifecycle Configuration for a Bucket with Versioning in the
Amazon S3 User Guide.

Note

These code examples assume that you understand the material in Using the AWS SDK for
Java and have configured default AWS credentials using the information in Set up AWS
Credentials and Region for Development.

Create a Bucket

Use the AmazonS3 client’s createBucket method. The new Bucket is returned. The
createBucket method will raise an exception if the bucket already exists.

Note

To check whether a bucket already exists before attempting to create one with the same
name, call the doesBucketExist method. It will return true if the bucket exists, and
false otherwise.

Imports

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

Creating, Listing, and Deleting Amazon S3 Buckets 168

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
http://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-configuration-bucket-with-versioning.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Bucket.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AmazonS3Exception;
import com.amazonaws.services.s3.model.Bucket;

import java.util.List;

Code

if (s3.doesBucketExistV2(bucket_name)) {
 System.out.format("Bucket %s already exists.\n", bucket_name);
 b = getBucket(bucket_name);
} else {
 try {
 b = s3.createBucket(bucket_name);
 } catch (AmazonS3Exception e) {
 System.err.println(e.getErrorMessage());
 }
}
return b;

See the complete example on GitHub.

List Buckets

Use the AmazonS3 client’s listBucket method. If successful, a list of Bucket is returned.

Imports

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.Bucket;

import java.util.List;

Code

List<Bucket> buckets = s3.listBuckets();
System.out.println("Your {S3} buckets are:");
for (Bucket b : buckets) {
 System.out.println("* " + b.getName());
}

Creating, Listing, and Deleting Amazon S3 Buckets 169

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/CreateBucket.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Bucket.html

AWS SDK for Java 1.x Developer Guide for version 1.x

See the complete example on GitHub.

Delete a Bucket

Before you can delete an Amazon S3 bucket, you must ensure that the bucket is empty or an error
will result. If you have a versioned bucket, you must also delete any versioned objects associated
with the bucket.

Note

The complete example includes each of these steps in order, providing a complete solution
for deleting an Amazon S3 bucket and its contents.

Topics

• Remove Objects from an Unversioned Bucket Before Deleting It

• Remove Objects from a Versioned Bucket Before Deleting It

• Delete an Empty Bucket

Remove Objects from an Unversioned Bucket Before Deleting It

Use the AmazonS3 client’s listObjects method to retrieve the list of objects and
deleteObject to delete each one.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.util.Iterator;

Code

System.out.println(" - removing objects from bucket");
ObjectListing object_listing = s3.listObjects(bucket_name);
while (true) {
 for (Iterator<?> iterator =

Creating, Listing, and Deleting Amazon S3 Buckets 170

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/ListBuckets.java
http://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java

AWS SDK for Java 1.x Developer Guide for version 1.x

 object_listing.getObjectSummaries().iterator();
 iterator.hasNext();) {
 S3ObjectSummary summary = (S3ObjectSummary) iterator.next();
 s3.deleteObject(bucket_name, summary.getKey());
 }

 // more object_listing to retrieve?
 if (object_listing.isTruncated()) {
 object_listing = s3.listNextBatchOfObjects(object_listing);
 } else {
 break;
 }
}

See the complete example on GitHub.

Remove Objects from a Versioned Bucket Before Deleting It

If you’re using a versioned bucket, you also need to remove any stored versions of the objects in
the bucket before the bucket can be deleted.

Using a pattern similar to the one used when removing objects within a bucket, remove versioned
objects by using the AmazonS3 client’s listVersions method to list any versioned objects, and
then deleteVersion to delete each one.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.util.Iterator;

Code

System.out.println(" - removing versions from bucket");
VersionListing version_listing = s3.listVersions(
 new ListVersionsRequest().withBucketName(bucket_name));
while (true) {
 for (Iterator<?> iterator =
 version_listing.getVersionSummaries().iterator();

Creating, Listing, and Deleting Amazon S3 Buckets 171

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java
http://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 iterator.hasNext();) {
 S3VersionSummary vs = (S3VersionSummary) iterator.next();
 s3.deleteVersion(
 bucket_name, vs.getKey(), vs.getVersionId());
 }

 if (version_listing.isTruncated()) {
 version_listing = s3.listNextBatchOfVersions(
 version_listing);
 } else {
 break;
 }
}

See the complete example on GitHub.

Delete an Empty Bucket

Once you remove the objects from a bucket (including any versioned objects), you can delete the
bucket itself by using the AmazonS3 client’s deleteBucket method.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.util.Iterator;

Code

System.out.println(" OK, bucket ready to delete!");
s3.deleteBucket(bucket_name);

See the complete example on GitHub.

Performing Operations on Amazon S3 Objects

An Amazon S3 object represents a file or collection of data. Every object must reside within a
bucket.

Performing Operations on Amazon S3 Objects 172

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java

AWS SDK for Java 1.x Developer Guide for version 1.x

Note

These code examples assume that you understand the material in Using the AWS SDK for
Java and have configured default AWS credentials using the information in Set up AWS
Credentials and Region for Development.

Topics

• Upload an Object

• List Objects

• Download an Object

• Copy, Move, or Rename Objects

• Delete an Object

• Delete Multiple Objects at Once

Upload an Object

Use the AmazonS3 client’s putObject method, supplying a bucket name, key name, and file to
upload. The bucket must exist, or an error will result.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

Code

System.out.format("Uploading %s to S3 bucket %s...\n", file_path, bucket_name);
final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.putObject(bucket_name, key_name, new File(file_path));
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Performing Operations on Amazon S3 Objects 173

AWS SDK for Java 1.x Developer Guide for version 1.x

See the complete example on GitHub.

List Objects

To get a list of objects within a bucket, use the AmazonS3 client’s listObjects method,
supplying the name of a bucket.

The listObjects method returns an ObjectListing object that provides information about the
objects in the bucket. To list the object names (keys), use the getObjectSummaries method to
get a List of S3ObjectSummary objects, each of which represents a single object in the bucket.
Then call its getKey method to retrieve the object’s name.

Imports

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.ListObjectsV2Result;
import com.amazonaws.services.s3.model.S3ObjectSummary;

Code

System.out.format("Objects in S3 bucket %s:\n", bucket_name);
final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
ListObjectsV2Result result = s3.listObjectsV2(bucket_name);
List<S3ObjectSummary> objects = result.getObjectSummaries();
for (S3ObjectSummary os : objects) {
 System.out.println("* " + os.getKey());
}

See the complete example on GitHub.

Download an Object

Use the AmazonS3 client’s getObject method, passing it the name of a bucket and object to
download. If successful, the method returns an S3Object. The specified bucket and object key must
exist, or an error will result.

You can get the object’s contents by calling getObjectContent on the S3Object. This returns an
S3ObjectInputStream that behaves as a standard Java InputStream object.

Performing Operations on Amazon S3 Objects 174

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/PutObject.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/ObjectListing.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/S3ObjectSummary.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/ListObjects.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/S3Object.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/S3ObjectInputStream.html

AWS SDK for Java 1.x Developer Guide for version 1.x

The following example downloads an object from S3 and saves its contents to a file (using the
same name as the object’s key).

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.S3Object;
import com.amazonaws.services.s3.model.S3ObjectInputStream;

import java.io.File;

Code

System.out.format("Downloading %s from S3 bucket %s...\n", key_name, bucket_name);
final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 S3Object o = s3.getObject(bucket_name, key_name);
 S3ObjectInputStream s3is = o.getObjectContent();
 FileOutputStream fos = new FileOutputStream(new File(key_name));
 byte[] read_buf = new byte[1024];
 int read_len = 0;
 while ((read_len = s3is.read(read_buf)) > 0) {
 fos.write(read_buf, 0, read_len);
 }
 s3is.close();
 fos.close();
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
} catch (FileNotFoundException e) {
 System.err.println(e.getMessage());
 System.exit(1);
} catch (IOException e) {
 System.err.println(e.getMessage());
 System.exit(1);
}

See the complete example on GitHub.

Performing Operations on Amazon S3 Objects 175

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetObject.java

AWS SDK for Java 1.x Developer Guide for version 1.x

Copy, Move, or Rename Objects

You can copy an object from one bucket to another by using the AmazonS3 client’s copyObject
method. It takes the name of the bucket to copy from, the object to copy, and the destination
bucket name.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;

Code

try {
 s3.copyObject(from_bucket, object_key, to_bucket, object_key);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
System.out.println("Done!");

See the complete example on GitHub.

Note

You can use copyObject with deleteObject to move or rename an object, by first copying
the object to a new name (you can use the same bucket as both the source and destination)
and then deleting the object from its old location.

Delete an Object

Use the AmazonS3 client’s deleteObject method, passing it the name of a bucket and object to
delete. The specified bucket and object key must exist, or an error will result.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;

Code

Performing Operations on Amazon S3 Objects 176

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/CopyObject.java

AWS SDK for Java 1.x Developer Guide for version 1.x

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.deleteObject(bucket_name, object_key);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

See the complete example on GitHub.

Delete Multiple Objects at Once

Using the AmazonS3 client’s deleteObjects method, you can delete multiple objects from
the same bucket by passing their names to the link:sdk-for-java/v1/reference/com/amazonaws/
services/s3/model/DeleteObjectsRequest.html method.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

Code

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 DeleteObjectsRequest dor = new DeleteObjectsRequest(bucket_name)
 .withKeys(object_keys);
 s3.deleteObjects(dor);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

See the complete example on GitHub.

Managing Amazon S3 Access Permissions for Buckets and Objects

You can use access control lists (ACLs) for Amazon S3 buckets and objects for fine-grained control
over your Amazon S3 resources.

Managing Amazon S3 Access Permissions for Buckets and Objects 177

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteObject.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteObjects.java

AWS SDK for Java 1.x Developer Guide for version 1.x

Note

These code examples assume that you understand the material in Using the AWS SDK for
Java and have configured default AWS credentials using the information in Set up AWS
Credentials and Region for Development.

Get the Access Control List for a Bucket

To get the current ACL for a bucket, call the AmazonS3’s getBucketAcl method, passing it the
bucket name to query. This method returns an AccessControlList object. To get each access grant in
the list, call its getGrantsAsList method, which will return a standard Java list of Grant objects.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.Grant;

Code

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 AccessControlList acl = s3.getBucketAcl(bucket_name);
 List<Grant> grants = acl.getGrantsAsList();
 for (Grant grant : grants) {
 System.out.format(" %s: %s\n", grant.getGrantee().getIdentifier(),
 grant.getPermission().toString());
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

See the complete example on GitHub.

Managing Amazon S3 Access Permissions for Buckets and Objects 178

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grant.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetAcl.java

AWS SDK for Java 1.x Developer Guide for version 1.x

Set the Access Control List for a Bucket

To add or modify permissions to an ACL for a bucket, call the AmazonS3’s setBucketAcl method.
It takes an AccessControlList object that contains a list of grantees and access levels to set.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.EmailAddressGrantee;

Code

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 // get the current ACL
 AccessControlList acl = s3.getBucketAcl(bucket_name);
 // set access for the grantee
 EmailAddressGrantee grantee = new EmailAddressGrantee(email);
 Permission permission = Permission.valueOf(access);
 acl.grantPermission(grantee, permission);
 s3.setBucketAcl(bucket_name, acl);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Note

You can provide the grantee’s unique identifier directly using the Grantee class, or use the
EmailAddressGrantee class to set the grantee by email, as we’ve done here.

See the complete example on GitHub.

Managing Amazon S3 Access Permissions for Buckets and Objects 179

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grantee.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/EmailAddressGrantee.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetAcl.java

AWS SDK for Java 1.x Developer Guide for version 1.x

Get the Access Control List for an Object

To get the current ACL for an object, call the AmazonS3’s getObjectAcl method, passing
it the bucket name and object name to query. Like getBucketAcl, this method returns an
AccessControlList object that you can use to examine each Grant.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.Grant;

Code

try {
 AccessControlList acl = s3.getObjectAcl(bucket_name, object_key);
 List<Grant> grants = acl.getGrantsAsList();
 for (Grant grant : grants) {
 System.out.format(" %s: %s\n", grant.getGrantee().getIdentifier(),
 grant.getPermission().toString());
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

See the complete example on GitHub.

Set the Access Control List for an Object

To add or modify permissions to an ACL for an object, call the AmazonS3’s setObjectAcl
method. It takes an AccessControlList object that contains a list of grantees and access levels to set.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

Managing Amazon S3 Access Permissions for Buckets and Objects 180

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grant.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetAcl.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.EmailAddressGrantee;

Code

 try {
 // get the current ACL
 AccessControlList acl = s3.getObjectAcl(bucket_name, object_key);
 // set access for the grantee
 EmailAddressGrantee grantee = new EmailAddressGrantee(email);
 Permission permission = Permission.valueOf(access);
 acl.grantPermission(grantee, permission);
 s3.setObjectAcl(bucket_name, object_key, acl);
 } catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
 }
}

Note

You can provide the grantee’s unique identifier directly using the Grantee class, or use the
EmailAddressGrantee class to set the grantee by email, as we’ve done here.

See the complete example on GitHub.

More Information

• GET Bucket acl in the Amazon S3 API Reference

• PUT Bucket acl in the Amazon S3 API Reference

• GET Object acl in the Amazon S3 API Reference

• PUT Object acl in the Amazon S3 API Reference

Managing Access to Amazon S3 Buckets Using Bucket Policies

You can set, get, or delete a bucket policy to manage access to your Amazon S3 buckets.

Managing Access to Amazon S3 Buckets Using Bucket Policies 181

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grantee.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/EmailAddressGrantee.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetAcl.java
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETacl.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETacl.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTacl.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Set a Bucket Policy

You can set the bucket policy for a particular S3 bucket by:

• Calling the AmazonS3 client’s setBucketPolicy and providing it with a
SetBucketPolicyRequest

• Setting the policy directly by using the setBucketPolicy overload that takes a bucket name
and policy text (in JSON format)

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.policy.Policy;
import com.amazonaws.auth.policy.Principal;

Code

 s3.setBucketPolicy(bucket_name, policy_text);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Use the Policy Class to Generate or Validate a Policy

When providing a bucket policy to setBucketPolicy, you can do the following:

• Specify the policy directly as a string of JSON-formatted text

• Build the policy using the Policy class

By using the Policy class, you don’t have to be concerned about correctly formatting your text
string. To get the JSON policy text from the Policy class, use its toJson method.

Imports

import com.amazonaws.auth.policy.Resource;
import com.amazonaws.auth.policy.Statement;
import com.amazonaws.auth.policy.actions.S3Actions;
import com.amazonaws.regions.Regions;

Managing Access to Amazon S3 Buckets Using Bucket Policies 182

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/SetBucketPolicyRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/policy/Policy.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;

Code

 new Statement(Statement.Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(S3Actions.GetObject)
 .withResources(new Resource(
 "{region-arn}s3:::" + bucket_name + "/*")));
return bucket_policy.toJson();

The Policy class also provides a fromJson method that can attempt to build a policy using a
passed-in JSON string. The method validates it to ensure that the text can be transformed into
a valid policy structure, and will fail with an IllegalArgumentException if the policy text is
invalid.

Policy bucket_policy = null;
try {
 bucket_policy = Policy.fromJson(file_text.toString());
} catch (IllegalArgumentException e) {
 System.out.format("Invalid policy text in file: \"%s\"",
 policy_file);
 System.out.println(e.getMessage());
}

You can use this technique to prevalidate a policy that you read in from a file or other means.

See the complete example on GitHub.

Get a Bucket Policy

To retrieve the policy for an Amazon S3 bucket, call the AmazonS3 client’s getBucketPolicy
method, passing it the name of the bucket to get the policy from.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

Managing Access to Amazon S3 Buckets Using Bucket Policies 183

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetBucketPolicy.java

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.services.s3.AmazonS3ClientBuilder;

Code

 try {
 BucketPolicy bucket_policy = s3.getBucketPolicy(bucket_name);
 policy_text = bucket_policy.getPolicyText();
 } catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
 }

If the named bucket doesn’t exist, if you don’t have access to it, or if it has no bucket policy, an
AmazonServiceException is thrown.

See the complete example on GitHub.

Delete a Bucket Policy

To delete a bucket policy, call the AmazonS3 client’s deleteBucketPolicy, providing it with the
bucket name.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

Code

 try {
 s3.deleteBucketPolicy(bucket_name);
 } catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
 }

This method succeeds even if the bucket doesn’t already have a policy. If you specify a bucket name
that doesn’t exist or if you don’t have access to the bucket, an AmazonServiceException is
thrown.

Managing Access to Amazon S3 Buckets Using Bucket Policies 184

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetBucketPolicy.java

AWS SDK for Java 1.x Developer Guide for version 1.x

See the complete example on GitHub.

More Info

• Access Policy Language Overview in the Amazon Simple Storage Service User Guide

• Bucket Policy Examples in the Amazon Simple Storage Service User Guide

Using TransferManager for Amazon S3 Operations

You can use the AWS SDK for Java TransferManager class to reliably transfer files from
the local environment to Amazon S3 and to copy objects from one S3 location to another.
TransferManager can get the progress of a transfer and pause or resume uploads and
downloads.

Note

Best Practice
We recommend that you enable the AbortIncompleteMultipartUpload lifecycle rule on your
Amazon S3 buckets.
This rule directs Amazon S3 to abort multipart uploads that don’t complete within a
specified number of days after being initiated. When the set time limit is exceeded, Amazon
S3 aborts the upload and then deletes the incomplete upload data.
For more information, see Lifecycle Configuration for a Bucket with Versioning in the
Amazon S3 User Guide.

Note

These code examples assume that you understand the material in Using the AWS SDK for
Java and have configured default AWS credentials using the information in Set up AWS
Credentials and Region for Development.

Upload Files and Directories

TransferManager can upload files, file lists, and directories to any Amazon S3 buckets that you’ve
previously created.

Using TransferManager for Amazon S3 Operations 185

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucketPolicy.java
http://docs.aws.amazon.com/AmazonS3/latest/dev/access-policy-language-overview.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
http://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-configuration-bucket-with-versioning.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Topics

• Upload a Single File

• Upload a List of Files

• Upload a Directory

Upload a Single File

Call TransferManager’s upload method, providing an Amazon S3 bucket name, a key (object)
name, and a standard Java File object that represents the file to upload.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.MultipleFileUpload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;
import com.amazonaws.services.s3.transfer.Upload;

import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;

Code

File f = new File(file_path);
TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 Upload xfer = xfer_mgr.upload(bucket_name, key_name, f);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

The upload method returns immediately, providing an Upload object to use to check the transfer
state or to wait for it to complete.

Using TransferManager for Amazon S3 Operations 186

https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK for Java 1.x Developer Guide for version 1.x

See Wait for a Transfer to Complete for information about using waitForCompletion to
successfully complete a transfer before calling TransferManager’s shutdownNow method. While
waiting for the transfer to complete, you can poll or listen for updates about its status and
progress. See Get Transfer Status and Progress for more information.

See the complete example on GitHub.

Upload a List of Files

To upload multiple files in one operation, call the TransferManageruploadFileList method,
providing the following:

• An Amazon S3 bucket name

• A key prefix to prepend to the names of the created objects (the path within the bucket in which
to place the objects)

• A File object that represents the relative directory from which to create file paths

• A List object containing a set of File objects to upload

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.MultipleFileUpload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;
import com.amazonaws.services.s3.transfer.Upload;

import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;

Code

ArrayList<File> files = new ArrayList<File>();
for (String path : file_paths) {
 files.add(new File(path));
}

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 MultipleFileUpload xfer = xfer_mgr.uploadFileList(bucket_name,

Using TransferManager for Amazon S3 Operations 187

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrUpload.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/List.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 key_prefix, new File("."), files);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

See Wait for a Transfer to Complete for information about using waitForCompletion to
successfully complete a transfer before calling TransferManager’s shutdownNow method. While
waiting for the transfer to complete, you can poll or listen for updates about its status and
progress. See Get Transfer Status and Progress for more information.

The MultipleFileUpload object returned by uploadFileList can be used to query the transfer
state or progress. See Poll the Current Progress of a Transfer and Get Transfer Progress with a
ProgressListener for more information.

You can also use MultipleFileUpload's getSubTransfers method to get the individual
Upload objects for each file being transferred. For more information, see Get the Progress of
Subtransfers.

See the complete example on GitHub.

Upload a Directory

You can use TransferManager’s uploadDirectory method to upload an entire directory of
files, with the option to copy files in subdirectories recursively. You provide an Amazon S3 bucket
name, an S3 key prefix, a File object representing the local directory to copy, and a boolean value
indicating whether you want to copy subdirectories recursively (true or false).

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.MultipleFileUpload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;
import com.amazonaws.services.s3.transfer.Upload;

Using TransferManager for Amazon S3 Operations 188

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrUpload.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;

Code

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 MultipleFileUpload xfer = xfer_mgr.uploadDirectory(bucket_name,
 key_prefix, new File(dir_path), recursive);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

See Wait for a Transfer to Complete for information about using waitForCompletion to
successfully complete a transfer before calling TransferManager’s shutdownNow method. While
waiting for the transfer to complete, you can poll or listen for updates about its status and
progress. See Get Transfer Status and Progress for more information.

The MultipleFileUpload object returned by uploadFileList can be used to query the transfer
state or progress. See Poll the Current Progress of a Transfer and Get Transfer Progress with a
ProgressListener for more information.

You can also use MultipleFileUpload's getSubTransfers method to get the individual
Upload objects for each file being transferred. For more information, see Get the Progress of
Subtransfers.

See the complete example on GitHub.

Download Files or Directories

Use the TransferManager class to download either a single file (Amazon S3 object) or a directory
(an Amazon S3 bucket name followed by an object prefix) from Amazon S3.

Topics

Using TransferManager for Amazon S3 Operations 189

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrUpload.java

AWS SDK for Java 1.x Developer Guide for version 1.x

• Download a Single File

• Download a Directory

Download a Single File

Use the TransferManager’s download method, providing the Amazon S3 bucket name containing
the object you want to download, the key (object) name, and a File object that represents the file
to create on your local system.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.Download;
import com.amazonaws.services.s3.transfer.MultipleFileDownload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;

import java.io.File;

Code

File f = new File(file_path);
TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 Download xfer = xfer_mgr.download(bucket_name, key_name, f);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

See Wait for a Transfer to Complete for information about using waitForCompletion to
successfully complete a transfer before calling TransferManager’s shutdownNow method. While
waiting for the transfer to complete, you can poll or listen for updates about its status and
progress. See Get Transfer Status and Progress for more information.

See the complete example on GitHub.

Using TransferManager for Amazon S3 Operations 190

https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrDownload.java

AWS SDK for Java 1.x Developer Guide for version 1.x

Download a Directory

To download a set of files that share a common key prefix (analogous to a directory on a file
system) from Amazon S3, use the TransferManagerdownloadDirectory method. The method
takes the Amazon S3 bucket name containing the objects you want to download, the object prefix
shared by all of the objects, and a File object that represents the directory to download the files
into on your local system. If the named directory doesn’t exist yet, it will be created.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.Download;
import com.amazonaws.services.s3.transfer.MultipleFileDownload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;

import java.io.File;

Code

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();

try {
 MultipleFileDownload xfer = xfer_mgr.downloadDirectory(
 bucket_name, key_prefix, new File(dir_path));
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

See Wait for a Transfer to Complete for information about using waitForCompletion to
successfully complete a transfer before calling TransferManager’s shutdownNow method. While
waiting for the transfer to complete, you can poll or listen for updates about its status and
progress. See Get Transfer Status and Progress for more information.

See the complete example on GitHub.

Using TransferManager for Amazon S3 Operations 191

https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrDownload.java

AWS SDK for Java 1.x Developer Guide for version 1.x

Copy Objects

To copy an object from one S3 bucket to another, use the TransferManagercopy method.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.Copy;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;

Code

System.out.println("Copying s3 object: " + from_key);
System.out.println(" from bucket: " + from_bucket);
System.out.println(" to s3 object: " + to_key);
System.out.println(" in bucket: " + to_bucket);

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 Copy xfer = xfer_mgr.copy(from_bucket, from_key, to_bucket, to_key);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

See the complete example on GitHub.

Wait for a Transfer to Complete

If your application (or thread) can block until the transfer completes, you can use the Transfer
interface’s waitForCompletion method to block until the transfer is complete or an exception
occurs.

try {
 xfer.waitForCompletion();

Using TransferManager for Amazon S3 Operations 192

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrCopy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Transfer.html

AWS SDK for Java 1.x Developer Guide for version 1.x

} catch (AmazonServiceException e) {
 System.err.println("Amazon service error: " + e.getMessage());
 System.exit(1);
} catch (AmazonClientException e) {
 System.err.println("Amazon client error: " + e.getMessage());
 System.exit(1);
} catch (InterruptedException e) {
 System.err.println("Transfer interrupted: " + e.getMessage());
 System.exit(1);
}

You get progress of transfers if you poll for events before calling waitForCompletion, implement
a polling mechanism on a separate thread, or receive progress updates asynchronously using a
ProgressListener.

See the complete example on GitHub.

Get Transfer Status and Progress

Each of the classes returned by the TransferManagerupload*, download*, and copy methods
returns an instance of one of the following classes, depending on whether it’s a single-file or
multiple-file operation.

Class Returned by

Copy copy

Download download

MultipleFileDownload downloadDirectory

Upload upload

MultipleFileUpload uploadFileList , uploadDirectory

All of these classes implement the Transfer interface. Transfer provides useful methods to get
the progress of a transfer, pause or resume the transfer, and get the transfer’s current or final
status.

Topics

Using TransferManager for Amazon S3 Operations 193

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/event/ProgressListener.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Copy.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Download.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileDownload.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Upload.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Transfer.html

AWS SDK for Java 1.x Developer Guide for version 1.x

• Poll the Current Progress of a Transfer

• Get Transfer Progress with a ProgressListener

• Get the Progress of Subtransfers

Poll the Current Progress of a Transfer

This loop prints the progress of a transfer, examines its current progress while running and, when
complete, prints its final state.

Imports

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.event.ProgressEvent;
import com.amazonaws.event.ProgressListener;
import com.amazonaws.services.s3.transfer.*;
import com.amazonaws.services.s3.transfer.Transfer.TransferState;

import java.io.File;
import java.util.ArrayList;
import java.util.Collection;

Code

// print the transfer's human-readable description
System.out.println(xfer.getDescription());
// print an empty progress bar...
printProgressBar(0.0);
// update the progress bar while the xfer is ongoing.
do {
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 return;
 }
 // Note: so_far and total aren't used, they're just for
 // documentation purposes.
 TransferProgress progress = xfer.getProgress();
 long so_far = progress.getBytesTransferred();
 long total = progress.getTotalBytesToTransfer();
 double pct = progress.getPercentTransferred();

Using TransferManager for Amazon S3 Operations 194

AWS SDK for Java 1.x Developer Guide for version 1.x

 eraseProgressBar();
 printProgressBar(pct);
} while (xfer.isDone() == false);
// print the final state of the transfer.
TransferState xfer_state = xfer.getState();
System.out.println(": " + xfer_state);

See the complete example on GitHub.

Get Transfer Progress with a ProgressListener

You can attach a ProgressListener to any transfer by using the Transfer interface’s
addProgressListener method.

A ProgressListener requires only one method, progressChanged, which takes a ProgressEvent
object. You can use the object to get the total bytes of the operation by calling its getBytes
method, and the number of bytes transferred so far by calling getBytesTransferred.

Imports

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.event.ProgressEvent;
import com.amazonaws.event.ProgressListener;
import com.amazonaws.services.s3.transfer.*;
import com.amazonaws.services.s3.transfer.Transfer.TransferState;

import java.io.File;
import java.util.ArrayList;
import java.util.Collection;

Code

File f = new File(file_path);
TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 Upload u = xfer_mgr.upload(bucket_name, key_name, f);
 // print an empty progress bar...
 printProgressBar(0.0);
 u.addProgressListener(new ProgressListener() {
 public void progressChanged(ProgressEvent e) {
 double pct = e.getBytesTransferred() * 100.0 / e.getBytes();

Using TransferManager for Amazon S3 Operations 195

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/event/ProgressListener.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Transfer.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/event/ProgressListener.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/event/ProgressEvent.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 eraseProgressBar();
 printProgressBar(pct);
 }
 });
 // block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(u);
 // print the final state of the transfer.
 TransferState xfer_state = u.getState();
 System.out.println(": " + xfer_state);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

See the complete example on GitHub.

Get the Progress of Subtransfers

The MultipleFileUpload class can return information about its subtransfers by calling its
getSubTransfers method. It returns an unmodifiable Collection of Upload objects that provide
the individual transfer status and progress of each sub-transfer.

Imports

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.event.ProgressEvent;
import com.amazonaws.event.ProgressListener;
import com.amazonaws.services.s3.transfer.*;
import com.amazonaws.services.s3.transfer.Transfer.TransferState;

import java.io.File;
import java.util.ArrayList;
import java.util.Collection;

Code

Collection<? extends Upload> sub_xfers = new ArrayList<Upload>();
sub_xfers = multi_upload.getSubTransfers();

do {

Using TransferManager for Amazon S3 Operations 196

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Collection.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Upload.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 System.out.println("\nSubtransfer progress:\n");
 for (Upload u : sub_xfers) {
 System.out.println(" " + u.getDescription());
 if (u.isDone()) {
 TransferState xfer_state = u.getState();
 System.out.println(" " + xfer_state);
 } else {
 TransferProgress progress = u.getProgress();
 double pct = progress.getPercentTransferred();
 printProgressBar(pct);
 System.out.println();
 }
 }

 // wait a bit before the next update.
 try {
 Thread.sleep(200);
 } catch (InterruptedException e) {
 return;
 }
} while (multi_upload.isDone() == false);
// print the final state of the transfer.
TransferState xfer_state = multi_upload.getState();
System.out.println("\nMultipleFileUpload " + xfer_state);

See the complete example on GitHub.

More Info

• Object Keys in the Amazon Simple Storage Service User Guide

Configuring an Amazon S3 Bucket as a Website

You can configure an Amazon S3 bucket to behave as a website. To do this, you need to set its
website configuration.

Note

These code examples assume that you understand the material in Using the AWS SDK for
Java and have configured default AWS credentials using the information in Set up AWS
Credentials and Region for Development.

Configuring an Amazon S3 Bucket as a Website 197

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Set a Bucket’s Website Configuration

To set an Amazon S3 bucket’s website configuration, call the AmazonS3’s
setWebsiteConfiguration method with the bucket name to set the configuration for, and a
BucketWebsiteConfiguration object containing the bucket’s website configuration.

Setting an index document is required; all other parameters are optional.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.BucketWebsiteConfiguration;

Code

 String bucket_name, String index_doc, String error_doc) {
BucketWebsiteConfiguration website_config = null;

if (index_doc == null) {
 website_config = new BucketWebsiteConfiguration();
} else if (error_doc == null) {
 website_config = new BucketWebsiteConfiguration(index_doc);
} else {
 website_config = new BucketWebsiteConfiguration(index_doc, error_doc);
}

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.setBucketWebsiteConfiguration(bucket_name, website_config);
} catch (AmazonServiceException e) {
 System.out.format(
 "Failed to set website configuration for bucket '%s'!\n",
 bucket_name);
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Configuring an Amazon S3 Bucket as a Website 198

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/BucketWebsiteConfiguration.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Note

Setting a website configuration does not modify the access permissions for your bucket.
To make your files visible on the web, you will also need to set a bucket policy that allows
public read access to the files in the bucket. For more information, see Managing Access to
Amazon S3 Buckets Using Bucket Policies.

See the complete example on GitHub.

Get a Bucket’s Website Configuration

To get an Amazon S3 bucket’s website configuration, call the AmazonS3’s
getWebsiteConfiguration method with the name of the bucket to retrieve the configuration
for.

The configuration will be returned as a BucketWebsiteConfiguration object. If there is no website
configuration for the bucket, then null will be returned.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.BucketWebsiteConfiguration;

Code

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 BucketWebsiteConfiguration config =
 s3.getBucketWebsiteConfiguration(bucket_name);
 if (config == null) {
 System.out.println("No website configuration found!");
 } else {
 System.out.format("Index document: %s\n",
 config.getIndexDocumentSuffix());
 System.out.format("Error document: %s\n",

Configuring an Amazon S3 Bucket as a Website 199

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetWebsiteConfiguration.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/BucketWebsiteConfiguration.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 config.getErrorDocument());
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.out.println("Failed to get website configuration!");
 System.exit(1);
}

See the complete example on GitHub.

Delete a Bucket’s Website Configuration

To delete an Amazon S3 bucket’s website configuration, call the AmazonS3’s
deleteWebsiteConfiguration method with the name of the bucket to delete the configuration
from.

Imports

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;

Code

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.deleteBucketWebsiteConfiguration(bucket_name);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.out.println("Failed to delete website configuration!");
 System.exit(1);
}

See the complete example on GitHub.

More Information

• PUT Bucket website in the Amazon S3 API Reference

• GET Bucket website in the Amazon S3 API Reference

Configuring an Amazon S3 Bucket as a Website 200

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetWebsiteConfiguration.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteWebsiteConfiguration.java
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTwebsite.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETwebsite.html

AWS SDK for Java 1.x Developer Guide for version 1.x

• DELETE Bucket website in the Amazon S3 API Reference

Use Amazon S3 client-side encryption

Encrypting data using the Amazon S3 encryption client is one way you can provide an additional
layer of protection for sensitive information you store in Amazon S3. The examples in this section
demonstrate how to create and configure the Amazon S3 encryption client for your application.

If you are new to cryptography, see the Cryptography Basics in the AWS KMS Developer Guide for a
basic overview of cryptography terms and algorithms. For information about cryptography support
across all AWS SDKs, see AWS SDK Support for Amazon S3 Client-Side Encryption in the Amazon
Web Services General Reference.

Note

These code examples assume that you understand the material in Using the AWS SDK for
Java and have configured default AWS credentials using the information in Set up AWS
Credentials and Region for Development.

If you are using version 1.11.836 or earlier of the AWS SDK for Java, see Amazon S3 Encryption
Client Migration for information on migrating your applications to later versions. If you cannot
migrate, see this complete example on GitHub.

Otherwise, if you are using version 1.11.837 or later of the AWS SDK for Java, explore the example
topics listed below to use Amazon S3 client-side encryption.

Topics

• Amazon S3 client-side encryption with client master keys

• Amazon S3 client-side encryption with AWS KMS managed keys

Amazon S3 client-side encryption with client master keys

The following examples use the AmazonS3EncryptionClientV2Builder class to create an Amazon
S3 client with client-side encryption enabled. Once enabled, any objects you upload to Amazon
S3 using this client will be encrypted. Any objects you get from Amazon S3 using this client will
automatically be decrypted.

Use Amazon S3 client-side encryption 201

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEwebsite.html
https://docs.aws.amazon.com/kms/latest/developerguide/crypto-intro.html
http://docs.aws.amazon.com/general/latest/gr/aws_sdk_cryptography.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/S3Encrypt.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/AmazonS3EncryptionClientV2Builder.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Note

The following examples demonstrate using the Amazon S3 client-side encryption with
customer-managed client master keys. To learn how to use encryption with AWS KMS
managed keys, see Amazon S3 client-side encryption with AWS KMS managed keys.

You can choose from two encryption modes when enabling client-side Amazon S3 encryption:
strict authenticated or authenticated. The following sections show how to enable each type. To
learn which algorithms each mode uses, see the CryptoMode definition.

Required imports

Import the following classes for these examples.

Imports

import com.amazonaws.ClientConfiguration;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3EncryptionClientV2Builder;
import com.amazonaws.services.s3.AmazonS3EncryptionV2;
import com.amazonaws.services.s3.model.CryptoConfigurationV2;
import com.amazonaws.services.s3.model.CryptoMode;
import com.amazonaws.services.s3.model.EncryptionMaterials;
import com.amazonaws.services.s3.model.StaticEncryptionMaterialsProvider;

Strict authenticated encryption

Strict authenticated encryption is the default mode if no CryptoMode is specified.

To explicitly enable this mode, specify the StrictAuthenticatedEncryption value in the
withCryptoConfiguration method.

Note

To use client-side authenticated encryption, you must include the latest Bouncy Castle jar
file in the classpath of your application.

Code

Use Amazon S3 client-side encryption 202

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/CryptoMode.html
https://www.bouncycastle.org/latest_releases.html

AWS SDK for Java 1.x Developer Guide for version 1.x

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.StrictAuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new StaticEncryptionMaterialsProvider(new
 EncryptionMaterials(secretKey)))
 .build();

s3Encryption.putObject(bucket_name, ENCRYPTED_KEY2, "This is the 2nd content to
 encrypt");

Authenticated encryption mode

When you use AuthenticatedEncryption mode, an improved key wrapping algorithm is
applied during encryption. When decrypting in this mode, the algorithm can verify the integrity
of the decrypted object and throw an exception if the check fails. For more details about how
authenticated encryption works, see the Amazon S3 Client-Side Authenticated Encryption blog
post.

Note

To use client-side authenticated encryption, you must include the latest Bouncy Castle jar
file in the classpath of your application.

To enable this mode, specify the AuthenticatedEncryption value in the
withCryptoConfiguration method.

Code

AmazonS3EncryptionV2 s3EncryptionClientV2 =
 AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.DEFAULT_REGION)
 .withClientConfiguration(new ClientConfiguration())
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode(CryptoMode.AuthenticatedEncryption))
 .withEncryptionMaterialsProvider(new StaticEncryptionMaterialsProvider(new
 EncryptionMaterials(secretKey)))
 .build();

Use Amazon S3 client-side encryption 203

https://aws.amazon.com/blogs/developer/amazon-s3-client-side-authenticated-encryption
https://www.bouncycastle.org/latest_releases.html

AWS SDK for Java 1.x Developer Guide for version 1.x

s3EncryptionClientV2.putObject(bucket_name, ENCRYPTED_KEY1, "This is the 1st content to
 encrypt");

Amazon S3 client-side encryption with AWS KMS managed keys

The following examples use the AmazonS3EncryptionClientV2Builder class to create an Amazon
S3 client with client-side encryption enabled. Once configured, any objects you upload to Amazon
S3 using this client will be encrypted. Any objects you get from Amazon S3 using this client are
automatically decrypted.

Note

The following examples demonstrate how to use the Amazon S3 client-side encryption
with AWS KMS managed keys. To learn how to use encryption with your own keys, see
Amazon S3 client-side encryption with client master keys.

You can choose from two encryption modes when enabling client-side Amazon S3 encryption:
strict authenticated or authenticated. The following sections show how to enable each type. To
learn which algorithms each mode uses, see the CryptoMode definition.

Required imports

Import the following classes for these examples.

Imports

import com.amazonaws.ClientConfiguration;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.kms.AWSKMS;
import com.amazonaws.services.kms.AWSKMSClientBuilder;
import com.amazonaws.services.kms.model.GenerateDataKeyRequest;
import com.amazonaws.services.kms.model.GenerateDataKeyResult;
import com.amazonaws.services.s3.AmazonS3EncryptionClientV2Builder;
import com.amazonaws.services.s3.AmazonS3EncryptionV2;
import com.amazonaws.services.s3.model.CryptoConfigurationV2;
import com.amazonaws.services.s3.model.CryptoMode;
import com.amazonaws.services.s3.model.EncryptionMaterials;
import com.amazonaws.services.s3.model.KMSEncryptionMaterialsProvider;

Use Amazon S3 client-side encryption 204

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/AmazonS3EncryptionClientV2Builder.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/CryptoMode.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Strict authenticated encryption

Strict authenticated encryption is the default mode if no CryptoMode is specified.

To explicitly enable this mode, specify the StrictAuthenticatedEncryption value in the
withCryptoConfiguration method.

Note

To use client-side authenticated encryption, you must include the latest Bouncy Castle jar
file in the classpath of your application.

Code

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.StrictAuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

s3Encryption.putObject(bucket_name, ENCRYPTED_KEY3, "This is the 3rd content to encrypt
 with a key created in the {console}");
System.out.println(s3Encryption.getObjectAsString(bucket_name, ENCRYPTED_KEY3));

Call the putObject method on the Amazon S3 encryption client to upload objects.

Code

s3Encryption.putObject(bucket_name, ENCRYPTED_KEY3, "This is the 3rd content to encrypt
 with a key created in the {console}");

You can retrieve the object using the same client. This example calls the getObjectAsString
method to retrieve the string that was stored.

Code

System.out.println(s3Encryption.getObjectAsString(bucket_name, ENCRYPTED_KEY3));

Use Amazon S3 client-side encryption 205

https://www.bouncycastle.org/latest_releases.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Authenticated encryption mode

When you use AuthenticatedEncryption mode, an improved key wrapping algorithm is
applied during encryption. When decrypting in this mode, the algorithm can verify the integrity
of the decrypted object and throw an exception if the check fails. For more details about how
authenticated encryption works, see the Amazon S3 Client-Side Authenticated Encryption blog
post.

Note

To use client-side authenticated encryption, you must include the latest Bouncy Castle jar
file in the classpath of your application.

To enable this mode, specify the AuthenticatedEncryption value in the
withCryptoConfiguration method.

Code

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.AuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

Configuring the AWS KMS client

The Amazon S3 encryption client creates a AWS KMS client by default, unless one is explicitly
specified.

To set the region for this automatically-created AWS KMS client, set the awsKmsRegion.

Code

Region kmsRegion = Region.getRegion(Regions.AP_NORTHEAST_1);

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withAwsKmsRegion(kmsRegion))

Use Amazon S3 client-side encryption 206

https://aws.amazon.com/blogs/developer/amazon-s3-client-side-authenticated-encryption
https://www.bouncycastle.org/latest_releases.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

Alternatively, you can use your own AWS KMS client to initialize the encryption client.

Code

AWSKMS kmsClient = AWSKMSClientBuilder.standard()
 .withRegion(Regions.US_WEST_2);
 .build();

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withKmsClient(kmsClient)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.AuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

Amazon SQS Examples Using the AWS SDK for Java

This section provides examples of programming Amazon SQS using the AWS SDK for Java.

Note

The examples include only the code needed to demonstrate each technique. The complete
example code is available on GitHub. From there, you can download a single source file or
clone the repository locally to get all the examples to build and run.

Topics

• Working with Amazon SQS Message Queues

• Sending, Receiving, and Deleting Amazon SQS Messages

• Enabling Long Polling for Amazon SQS Message Queues

• Setting Visibility Timeout in Amazon SQS

• Using Dead Letter Queues in Amazon SQS

Amazon SQS Examples 207

https://aws.amazon.com/sqs/
https://aws.amazon.com/sdk-for-java/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java

AWS SDK for Java 1.x Developer Guide for version 1.x

Working with Amazon SQS Message Queues

A message queue is the logical container used for sending messages reliably in Amazon SQS. There
are two types of queues: standard and first-in, first-out (FIFO). To learn more about queues and the
differences between these types, see the Amazon SQS Developer Guide.

This topic describes how to create, list, delete, and get the URL of an Amazon SQS queue by using
the AWS SDK for Java.

Create a Queue

Use the AmazonSQS client’s createQueue method, providing a CreateQueueRequest object that
describes the queue parameters.

Imports

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;
import com.amazonaws.services.sqs.model.CreateQueueRequest;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
CreateQueueRequest create_request = new CreateQueueRequest(QUEUE_NAME)
 .addAttributesEntry("DelaySeconds", "60")
 .addAttributesEntry("MessageRetentionPeriod", "86400");

try {
 sqs.createQueue(create_request);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

You can use the simplified form of createQueue, which needs only a queue name, to create a
standard queue.

sqs.createQueue("MyQueue" + new Date().getTime());

Working with Amazon SQS Message Queues 208

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/CreateQueueRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

See the complete example on GitHub.

Listing Queues

To list the Amazon SQS queues for your account, call the AmazonSQS client’s listQueues
method.

Imports

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.ListQueuesResult;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
ListQueuesResult lq_result = sqs.listQueues();
System.out.println("Your SQS Queue URLs:");
for (String url : lq_result.getQueueUrls()) {
 System.out.println(url);
}

Using the listQueues overload without any parameters returns all queues. You can filter the
returned results by passing it a ListQueuesRequest object.

Imports

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.ListQueuesRequest;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
String name_prefix = "Queue";
lq_result = sqs.listQueues(new ListQueuesRequest(name_prefix));
System.out.println("Queue URLs with prefix: " + name_prefix);
for (String url : lq_result.getQueueUrls()) {
 System.out.println(url);
}

Working with Amazon SQS Message Queues 209

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java

AWS SDK for Java 1.x Developer Guide for version 1.x

See the complete example on GitHub.

Get the URL for a Queue

Call the AmazonSQS client’s getQueueUrl method.

Imports

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
String queue_url = sqs.getQueueUrl(QUEUE_NAME).getQueueUrl();

See the complete example on GitHub.

Delete a Queue

Provide the queue’s URL to the AmazonSQS client’s deleteQueue method.

Imports

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
sqs.deleteQueue(queue_url);

See the complete example on GitHub.

More Info

• How Amazon SQS Queues Work in the Amazon SQS Developer Guide

• CreateQueue in the Amazon SQS API Reference

• GetQueueUrl in the Amazon SQS API Reference

Working with Amazon SQS Message Queues 210

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-how-it-works.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueUrl.html

AWS SDK for Java 1.x Developer Guide for version 1.x

• ListQueues in the Amazon SQS API Reference

• DeleteQueues in the Amazon SQS API Reference

Sending, Receiving, and Deleting Amazon SQS Messages

This topic describes how to send, receive and delete Amazon SQS messages. Messages are always
delivered using an SQS Queue.

Send a Message

Add a single message to an Amazon SQS queue by calling the AmazonSQS client’s sendMessage
method. Provide a SendMessageRequest object that contains the queue’s URL, message body, and
optional delay value (in seconds).

Imports

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.SendMessageRequest;

Code

SendMessageRequest send_msg_request = new SendMessageRequest()
 .withQueueUrl(queueUrl)
 .withMessageBody("hello world")
 .withDelaySeconds(5);
sqs.sendMessage(send_msg_request);

See the complete example on GitHub.

Send Multiple Messages at Once

You can send more than one message in a single request. To send multiple messages, use the
AmazonSQS client’s sendMessageBatch method, which takes a SendMessageBatchRequest
containing the queue URL and a list of messages (each one a SendMessageBatchRequestEntry) to
send. You can also set an optional delay value per message.

Imports

import com.amazonaws.services.sqs.model.SendMessageBatchRequest;

Sending, Receiving, and Deleting Amazon SQS Messages 211

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueues.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SendMessageRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/SendReceiveMessages.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SendMessageBatchRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SendMessageBatchRequestEntry.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.services.sqs.model.SendMessageBatchRequestEntry;

Code

SendMessageBatchRequest send_batch_request = new SendMessageBatchRequest()
 .withQueueUrl(queueUrl)
 .withEntries(
 new SendMessageBatchRequestEntry(
 "msg_1", "Hello from message 1"),
 new SendMessageBatchRequestEntry(
 "msg_2", "Hello from message 2")
 .withDelaySeconds(10));
sqs.sendMessageBatch(send_batch_request);

See the complete example on GitHub.

Receive Messages

Retrieve any messages that are currently in the queue by calling the AmazonSQS client’s
receiveMessage method, passing it the queue’s URL. Messages are returned as a list of Message
objects.

Imports

import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;
import com.amazonaws.services.sqs.model.SendMessageBatchRequest;

Code

List<Message> messages = sqs.receiveMessage(queueUrl).getMessages();

Delete Messages after Receipt

After receiving a message and processing its contents, delete the message from the queue by
sending the message’s receipt handle and queue URL to the AmazonSQS client’s deleteMessage
method.

Code

for (Message m : messages) {

Sending, Receiving, and Deleting Amazon SQS Messages 212

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/SendReceiveMessages.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/Message.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 sqs.deleteMessage(queueUrl, m.getReceiptHandle());
}

See the complete example on GitHub.

More Info

• How Amazon SQS Queues Work in the Amazon SQS Developer Guide

• SendMessage in the Amazon SQS API Reference

• SendMessageBatch in the Amazon SQS API Reference

• ReceiveMessage in the Amazon SQS API Reference

• DeleteMessage in the Amazon SQS API Reference

Enabling Long Polling for Amazon SQS Message Queues

Amazon SQS uses short polling by default, querying only a subset of the servers—based on a
weighted random distribution—to determine whether any messages are available for inclusion in
the response.

Long polling helps reduce your cost of using Amazon SQS by reducing the number of empty
responses when there are no messages available to return in reply to a ReceiveMessage request
sent to an Amazon SQS queue and eliminating false empty responses.

Note

You can set a long polling frequency from 1-20 seconds.

Enabling Long Polling when Creating a Queue

To enable long polling when creating an Amazon SQS queue, set the
ReceiveMessageWaitTimeSeconds attribute on the CreateQueueRequest object before calling
the AmazonSQS class' createQueue method.

Imports

import com.amazonaws.services.sqs.AmazonSQS;

Enabling Long Polling for Amazon SQS Message Queues 213

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/SendReceiveMessages.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-how-it-works.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/CreateQueueRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;
import com.amazonaws.services.sqs.model.CreateQueueRequest;

Code

final AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

// Enable long polling when creating a queue
CreateQueueRequest create_request = new CreateQueueRequest()
 .withQueueName(queue_name)
 .addAttributesEntry("ReceiveMessageWaitTimeSeconds", "20");

try {
 sqs.createQueue(create_request);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

See the complete example on GitHub.

Enabling Long Polling on an Existing Queue

In addition to enabling long polling when creating a queue, you can also enable it on an existing
queue by setting ReceiveMessageWaitTimeSeconds on the SetQueueAttributesRequest before
calling the AmazonSQS class' setQueueAttributes method.

Imports

import com.amazonaws.services.sqs.model.SetQueueAttributesRequest;

Code

SetQueueAttributesRequest set_attrs_request = new SetQueueAttributesRequest()
 .withQueueUrl(queue_url)
 .addAttributesEntry("ReceiveMessageWaitTimeSeconds", "20");
sqs.setQueueAttributes(set_attrs_request);

See the complete example on GitHub.

Enabling Long Polling for Amazon SQS Message Queues 214

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/LongPolling.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SetQueueAttributesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/LongPolling.java

AWS SDK for Java 1.x Developer Guide for version 1.x

Enabling Long Polling on Message Receipt

You can enable long polling when receiving a message by setting the wait time in seconds on the
ReceiveMessageRequest that you supply to the AmazonSQS class' receiveMessage method.

Note

You should make sure that the AWS client’s request timeout is larger than the maximum
long poll time (20s) so that your receiveMessage requests don’t time out while waiting
for the next poll event!

Imports

import com.amazonaws.services.sqs.model.ReceiveMessageRequest;

Code

ReceiveMessageRequest receive_request = new ReceiveMessageRequest()
 .withQueueUrl(queue_url)
 .withWaitTimeSeconds(20);
sqs.receiveMessage(receive_request);

See the complete example on GitHub.

More Info

• Amazon SQS Long Polling in the Amazon SQS Developer Guide

• CreateQueue in the Amazon SQS API Reference

• ReceiveMessage in the Amazon SQS API Reference

• SetQueueAttributes in the Amazon SQS API Reference

Setting Visibility Timeout in Amazon SQS

When a message is received in Amazon SQS, it remains on the queue until it’s deleted in order
to ensure receipt. A message that was received, but not deleted, will be available in subsequent
requests after a given visibility timeout to help prevent the message from being received more than
once before it can be processed and deleted.

Setting Visibility Timeout in Amazon SQS 215

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/LongPolling.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-long-polling.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Note

When using standard queues, visibility timeout isn’t a guarantee against receiving a
message twice. If you are using a standard queue, be sure that your code can handle the
case where the same message has been delivered more than once.

Setting the Message Visibility Timeout for a Single Message

When you have received a message, you can modify its visibility timeout by passing its
receipt handle in a ChangeMessageVisibilityRequest that you pass to the AmazonSQS class'
changeMessageVisibility method.

Imports

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

// Get the receipt handle for the first message in the queue.
String receipt = sqs.receiveMessage(queue_url)
 .getMessages()
 .get(0)
 .getReceiptHandle();

sqs.changeMessageVisibility(queue_url, receipt, timeout);

See the complete example on GitHub.

Setting the Message Visibility Timeout for Multiple Messages at Once

To set the message visibility timeout for multiple messages at once, create a list
of ChangeMessageVisibilityBatchRequestEntry objects, each containing a unique
ID string and a receipt handle. Then, pass the list to the Amazon SQS client class'
changeMessageVisibilityBatch method.

Imports

Setting Visibility Timeout in Amazon SQS 216

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/ChangeMessageVisibilityRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/VisibilityTimeout.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/ChangeMessageVisibilityBatchRequestEntry.html

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.ChangeMessageVisibilityBatchRequestEntry;
import java.util.ArrayList;
import java.util.List;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

List<ChangeMessageVisibilityBatchRequestEntry> entries =
 new ArrayList<ChangeMessageVisibilityBatchRequestEntry>();

entries.add(new ChangeMessageVisibilityBatchRequestEntry(
 "unique_id_msg1",
 sqs.receiveMessage(queue_url)
 .getMessages()
 .get(0)
 .getReceiptHandle())
 .withVisibilityTimeout(timeout));

entries.add(new ChangeMessageVisibilityBatchRequestEntry(
 "unique_id_msg2",
 sqs.receiveMessage(queue_url)
 .getMessages()
 .get(0)
 .getReceiptHandle())
 .withVisibilityTimeout(timeout + 200));

sqs.changeMessageVisibilityBatch(queue_url, entries);

See the complete example on GitHub.

More Info

• Visibility Timeout in the Amazon SQS Developer Guide

• SetQueueAttributes in the Amazon SQS API Reference

• GetQueueAttributes in the Amazon SQS API Reference

• ReceiveMessage in the Amazon SQS API Reference

• ChangeMessageVisibility in the Amazon SQS API Reference

Setting Visibility Timeout in Amazon SQS 217

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/VisibilityTimeout.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html

AWS SDK for Java 1.x Developer Guide for version 1.x

• ChangeMessageVisibilityBatch in the Amazon SQS API Reference

Using Dead Letter Queues in Amazon SQS

Amazon SQS provides support for dead letter queues. A dead letter queue is a queue that other
(source) queues can target for messages that can’t be processed successfully. You can set aside and
isolate these messages in the dead letter queue to determine why their processing did not succeed.

Creating a Dead Letter Queue

A dead letter queue is created the same way as a regular queue, but it has the following
restrictions:

• A dead letter queue must be the same type of queue (FIFO or standard) as the source queue.

• A dead letter queue must be created using the same AWS account and region as the source
queue.

Here we create two identical Amazon SQS queues, one of which will serve as the dead letter queue:

Imports

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;

Code

final AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

// Create source queue
try {
 sqs.createQueue(src_queue_name);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

// Create dead-letter queue
try {

Using Dead Letter Queues in Amazon SQS 218

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibilityBatch.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 sqs.createQueue(dl_queue_name);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

See the complete example on GitHub.

Designating a Dead Letter Queue for a Source Queue

To designate a dead letter queue, you must first create a redrive policy, and then set the policy
in the queue’s attributes. A redrive policy is specified in JSON, and specifies the ARN of the dead
letter queue and the maximum number of times the message can be received and not processed
before it’s sent to the dead letter queue.

To set the redrive policy for your source queue, call the AmazonSQS class' setQueueAttributes
method with a SetQueueAttributesRequest object for which you’ve set the RedrivePolicy
attribute with your JSON redrive policy.

Imports

import com.amazonaws.services.sqs.model.GetQueueAttributesRequest;
import com.amazonaws.services.sqs.model.GetQueueAttributesResult;
import com.amazonaws.services.sqs.model.SetQueueAttributesRequest;

Code

String dl_queue_url = sqs.getQueueUrl(dl_queue_name)
 .getQueueUrl();

GetQueueAttributesResult queue_attrs = sqs.getQueueAttributes(
 new GetQueueAttributesRequest(dl_queue_url)
 .withAttributeNames("QueueArn"));

String dl_queue_arn = queue_attrs.getAttributes().get("QueueArn");

// Set dead letter queue with redrive policy on source queue.
String src_queue_url = sqs.getQueueUrl(src_queue_name)
 .getQueueUrl();

Using Dead Letter Queues in Amazon SQS 219

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/DeadLetterQueues.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SetQueueAttributesRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

SetQueueAttributesRequest request = new SetQueueAttributesRequest()
 .withQueueUrl(src_queue_url)
 .addAttributesEntry("RedrivePolicy",
 "{\"maxReceiveCount\":\"5\", \"deadLetterTargetArn\":\""
 + dl_queue_arn + "\"}");

sqs.setQueueAttributes(request);

See the complete example on GitHub.

More Info

• Using Amazon SQS Dead Letter Queues in the Amazon SQS Developer Guide

• SetQueueAttributes in the Amazon SQS API Reference

Amazon SWF Examples Using the AWS SDK for Java

Amazon SWF is a workflow-management service that helps developers build and scale distributed
workflows that can have parallel or sequential steps consisting of activities, child workflows or
even Lambda tasks.

There are two ways to work with Amazon SWF using the AWS SDK for Java, by using the SWF client
object, or by using the AWS Flow Framework for Java. The AWS Flow Framework for Java is more
difficult to configure initially, since it makes heavy use of annotations and relies on additional
libraries such as AspectJ and the Spring Framework. However, for large or complex projects, you
will save coding time by using the AWS Flow Framework for Java. For more information, see the
AWS Flow Framework for Java Developer Guide.

This section provides examples of programming Amazon SWF by using the AWS SDK for Java client
directly.

Topics

• SWF basics

• Building a Simple Amazon SWF Application

• Lambda Tasks

• Shutting Down Activity and Workflow Workers Gracefully

• Registering Domains

Amazon SWF Examples 220

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/DeadLetterQueues.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://aws.amazon.com/swf/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/

AWS SDK for Java 1.x Developer Guide for version 1.x

• Listing Domains

SWF basics

These are general patterns for working with Amazon SWF using the AWS SDK for Java. It is meant
primarily for reference. For a more complete introductory tutorial, see Building a Simple Amazon
SWF Application.

Dependencies

Basic Amazon SWF applications will require the following dependencies, which are included with
the AWS SDK for Java:

• aws-java-sdk-1.12.*.jar

• commons-logging-1.2.*.jar

• httpclient-4.3.*.jar

• httpcore-4.3.*.jar

• jackson-annotations-2.12.*.jar

• jackson-core-2.12.*.jar

• jackson-databind-2.12.*.jar

• joda-time-2.8.*.jar

Note

The version numbers of these packages will differ depending on the version of the SDK
that you have, but the versions that are supplied with the SDK have been tested for
compatibility, and are the ones you should use.

AWS Flow Framework for Java applications require additional setup, and additional dependencies.
See the AWS Flow Framework for Java Developer Guide for more information about using the
framework.

Imports

In general, you can use the following imports for code development:

SWF basics 221

https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/

AWS SDK for Java 1.x Developer Guide for version 1.x

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

It’s a good practice to import only the classes you require, however. You will likely end up
specifying particular classes in the com.amazonaws.services.simpleworkflow.model
workspace:

import com.amazonaws.services.simpleworkflow.model.PollForActivityTaskRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskCompletedRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskFailedRequest;
import com.amazonaws.services.simpleworkflow.model.TaskList;

If you are using the AWS Flow Framework for Java, you will import classes from the
com.amazonaws.services.simpleworkflow.flow workspace. For example:

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;

Note

The AWS Flow Framework for Java has additional requirements beyond those of the base
AWS SDK for Java. For more information, see the AWS Flow Framework for Java Developer
Guide.

Using the SWF client class

Your basic interface to Amazon SWF is through either the AmazonSimpleWorkflowClient or
AmazonSimpleWorkflowAsyncClient classes. The main difference between these is that the
*AsyncClient class return Future objects for concurrent (asynchronous) programming.

AmazonSimpleWorkflowClient swf = AmazonSimpleWorkflowClientBuilder.defaultClient();

Building a Simple Amazon SWF Application

This topic will introduce you to programming Amazon SWF applications with the AWS SDK for
Java, while presenting a few important concepts along the way.

Building a Simple Amazon SWF Application 222

https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowAsyncClient.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/Future.html
https://aws.amazon.com/swf/

AWS SDK for Java 1.x Developer Guide for version 1.x

About the example

The example project will create a workflow with a single activity that accepts workflow data passed
through the AWS cloud (In the tradition of HelloWorld, it’ll be the name of someone to greet) and
then prints a greeting in response.

While this seems very simple on the surface, Amazon SWF applications consist of a number of
parts working together:

• A domain, used as a logical container for your workflow execution data.

• One or more workflows which represent code components that define logical order of execution
of your workflow’s activities and child workflows.

• A workflow worker, also known as a decider, that polls for decision tasks and schedules activities
or child workflows in response.

• One or more activities, each of which represents a unit of work in the workflow.

• An activity worker that polls for activity tasks and runs activity methods in response.

• One or more task lists, which are queues maintained by Amazon SWF used to issue requests to
the workflow and activity workers. Tasks on a task list meant for workflow workers are called
decision tasks. Those meant for activity workers are called activity tasks.

• A workflow starter that begins your workflow execution.

Behind the scenes, Amazon SWF orchestrates the operation of these components, coordinating
their flow from the AWS cloud, passing data between them, handling timeouts and heartbeat
notifications, and logging workflow execution history.

Prerequisites

Development environment

The development environment used in this tutorial consists of:

• The AWS SDK for Java.

• Apache Maven (3.3.1).

• JDK 1.7 or later. This tutorial was developed and tested using JDK 1.8.0.

• A good Java text editor (your choice).

Building a Simple Amazon SWF Application 223

https://aws.amazon.com/sdk-for-java/
http://maven.apache.org/

AWS SDK for Java 1.x Developer Guide for version 1.x

Note

If you use a different build system than Maven, you can still create a project using the
appropriate steps for your environment and use the concepts provided here to follow
along. More information about configuring and using the AWS SDK for Java with various
build systems is provided in Getting Started.
Likewise, but with more effort, the steps shown here can be implemented using any of the
AWS SDKs with support for Amazon SWF.

All of the necessary external dependencies are included with the AWS SDK for Java, so there’s
nothing additional to download.

AWS Access

To successfully work through this tutorial, you must have access to the AWS access portal as
described in the basic setup section of this guide.

The instructions describe how to access temporary credentials that you copy and paste to your
local shared credentials file. The temporary credentials that you paste must be associated with
an IAM role in AWS IAM Identity Center that has permissions to access Amazon SWF. After pasting
the temporary credentials, your credentials file will look similar to the following.

[default]
aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
aws_session_token=IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZVERYLONGSTRINGEXAMPLE

These temporary credentials are associated with the default profile.

Create a SWF project

1. Start a new project with Maven:

mvn archetype:generate -DartifactId=helloswf \
-DgroupId=aws.example.helloswf -DinteractiveMode=false

This will create a new project with a standard maven project structure:

helloswf

Building a Simple Amazon SWF Application 224

AWS SDK for Java 1.x Developer Guide for version 1.x

pom.xml
src
 ### main
 # ### java
 # ### aws
 # ### example
 # ### helloswf
 # ### App.java
 ### test
 ### ...

You can ignore or delete the test directory and all it contains, we won’t be using it for this
tutorial. You can also delete App.java, since we’ll be replacing it with new classes.

2. Edit the project’s pom.xml file and add the aws-java-sdk-simpleworkflow module by adding a
dependency for it within the <dependencies> block.

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-simpleworkflow</artifactId>
 <version>1.11.1000</version>
 </dependency>
</dependencies>

3. Make sure that Maven builds your project with JDK 1.7+ support. Add the following to your
project (either before or after the <dependencies> block) in pom.xml:

<build>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.6.1</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 </plugins>
</build>

Building a Simple Amazon SWF Application 225

AWS SDK for Java 1.x Developer Guide for version 1.x

Code the project

The example project will consist of four separate applications, which we’ll visit one by one:

• HelloTypes.java--contains the project’s domain, activity and workflow type data, shared with the
other components. It also handles registering these types with SWF.

• ActivityWorker.java--contains the activity worker, which polls for activity tasks and runs
activities in response.

• WorkflowWorker.java--contains the workflow worker (decider), which polls for decision tasks
and schedules new activities.

• WorkflowStarter.java--contains the workflow starter, which starts a new workflow execution,
which will cause SWF to start generating decision and workflow tasks for your workers to
consume.

Common steps for all source files

All of the files that you create to house your Java classes will have a few things in common. In the
interest of time, these steps will be implied every time you add a new file to the project:

1. Create the file in the in the project’s src/main/java/aws/example/helloswf/ directory.

2. Add a package declaration to the beginning of each file to declare its namespace. The example
project uses:

package aws.example.helloswf;

3. Add import declarations for the AmazonSimpleWorkflowClient class and for multiple classes
in the com.amazonaws.services.simpleworkflow.model namespace. To simplify things,
we’ll use:

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

Building a Simple Amazon SWF Application 226

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Register a domain, workflow and activity types

We’ll begin by creating a new executable class, HelloTypes.java. This file will contain shared
data that different parts of your workflow will need to know about, such as the name and version
of your activity and workflow types, the domain name and the task list name.

1. Open your text editor and create the file HelloTypes.java, adding a package declaration and
imports according to the common steps.

2. Declare the HelloTypes class and provide it with values to use for your registered activity and
workflow types:

 public static final String DOMAIN = "HelloDomain";
 public static final String TASKLIST = "HelloTasklist";
 public static final String WORKFLOW = "HelloWorkflow";
 public static final String WORKFLOW_VERSION = "1.0";
 public static final String ACTIVITY = "HelloActivity";
 public static final String ACTIVITY_VERSION = "1.0";

These values will be used throughout the code.

3. After the String declarations, create an instance of the AmazonSimpleWorkflowClient class. This
is the basic interface to the Amazon SWF methods provided by the AWS SDK for Java.

private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();

The previous snippet assumes that temporary credentials are associated with the default
profile. If you use a different profile, modify the code above as follows and replace
profile_name with the name of actual profile name.

private static final AmazonSimpleWorkflow swf =
 AmazonSimpleWorkflowClientBuilder
 .standard()
 .withCredentials(new ProfileCredentialsProvider("profile_name"))
 .withRegion(Regions.DEFAULT_REGION)
 .build();

Building a Simple Amazon SWF Application 227

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

AWS SDK for Java 1.x Developer Guide for version 1.x

4. Add a new function to register a SWF domain. A domain is a logical container for a number of
related SWF activity and workflow types. SWF components can only communicate with each
other if they exist within the same domain.

 try {
 System.out.println("** Registering the domain '" + DOMAIN + "'.");
 swf.registerDomain(new RegisterDomainRequest()
 .withName(DOMAIN)
 .withWorkflowExecutionRetentionPeriodInDays("1"));
 } catch (DomainAlreadyExistsException e) {
 System.out.println("** Domain already exists!");
 }

When you register a domain, you provide it with a name (any set of 1 - 256 characters excluding
:, /, |, control characters or the literal string '`arn') and a retention period, which is the number
of days that Amazon SWF will keep your workflow’s execution history data after a workflow
execution has completed. The maximum workflow execution retention period is 90 days. See
RegisterDomainRequest for more information.

If a domain with that name already exists, a DomainAlreadyExistsException is raised. Because
we’re unconcerned if the domain has already been created, we can ignore the exception.

Note

This code demonstrates a common pattern when working with AWS SDK for Java
methods, data for the method is supplied by a class in the simpleworkflow.model
namespace, which you instantiate and populate using the chainable 0with* methods.

5. Add a function to register a new activity type. An activity represents a unit of work in your
workflow.

 try {
 System.out.println("** Registering the activity type '" + ACTIVITY +
 "-" + ACTIVITY_VERSION + "'.");
 swf.registerActivityType(new RegisterActivityTypeRequest()
 .withDomain(DOMAIN)
 .withName(ACTIVITY)
 .withVersion(ACTIVITY_VERSION)
 .withDefaultTaskList(new TaskList().withName(TASKLIST))
 .withDefaultTaskScheduleToStartTimeout("30")

Building a Simple Amazon SWF Application 228

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterDomainRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainAlreadyExistsException.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 .withDefaultTaskStartToCloseTimeout("600")
 .withDefaultTaskScheduleToCloseTimeout("630")
 .withDefaultTaskHeartbeatTimeout("10"));
 } catch (TypeAlreadyExistsException e) {
 System.out.println("** Activity type already exists!");
 }

An activity type is identified by a name and a version, which are used to uniquely identify the
activity from any others in the domain that it’s registered in. Activities also contain a number of
optional parameters, such as the default task-list used to receive tasks and data from SWF and
a number of different timeouts that you can use to place constraints upon how long different
parts of the activity execution can take. See RegisterActivityTypeRequest for more information.

Note

All timeout values are specified in seconds. See Amazon SWF Timeout Types for a full
description of how timeouts affect your workflow executions.

If the activity type that you’re trying to register already exists, an TypeAlreadyExistsException
is raised. . Add a function to register a new workflow type. A workflow, also known as a decider
represents the logic of your workflow’s execution.

+

 try {
 System.out.println("** Registering the workflow type '" + WORKFLOW +
 "-" + WORKFLOW_VERSION + "'.");
 swf.registerWorkflowType(new RegisterWorkflowTypeRequest()
 .withDomain(DOMAIN)
 .withName(WORKFLOW)
 .withVersion(WORKFLOW_VERSION)
 .withDefaultChildPolicy(ChildPolicy.TERMINATE)
 .withDefaultTaskList(new TaskList().withName(TASKLIST))
 .withDefaultTaskStartToCloseTimeout("30"));
 } catch (TypeAlreadyExistsException e) {
 System.out.println("** Workflow type already exists!");
 }

+

Building a Simple Amazon SWF Application 229

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterActivityTypeRequest.html
https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-timeout-types.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/TypeAlreadyExistsException.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Similar to activity types, workflow types are identified by a name and a version and also have
configurable timeouts. See RegisterWorkflowTypeRequest for more information.

+

If the workflow type that you’re trying to register already exists, an TypeAlreadyExistsException is
raised. . Finally, make the class executable by providing it a main method, which will register the
domain, the activity type, and the workflow type in turn:

+

 registerDomain();
 registerWorkflowType();
 registerActivityType();

You can build and run the application now to run the registration script, or continue with coding
the activity and workflow workers. Once the domain, workflow and activity have been registered,
you won’t need to run this again—these types persist until you deprecate them yourself.

Implement the activity worker

An activity is the basic unit of work in a workflow. A workflow provides the logic, scheduling
activities to be run (or other actions to be taken) in response to decision tasks. A typical workflow
usually consists of a number of activities that can run synchronously, asynchronously, or a
combination of both.

The activity worker is the bit of code that polls for activity tasks that are generated by Amazon
SWF in response to workflow decisions. When it receives an activity task, it runs the corresponding
activity and returns a success/failure response back to the workflow.

We’ll implement a simple activity worker that drives a single activity.

1. Open your text editor and create the file ActivityWorker.java, adding a package declaration
and imports according to the common steps.

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

2. Add the ActivityWorker class to the file, and give it a data member to hold a SWF client that
we’ll use to interact with Amazon SWF:

Building a Simple Amazon SWF Application 230

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterWorkflowTypeRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/TypeAlreadyExistsException.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();

3. Add the method that we’ll use as an activity:

private static String sayHello(String input) throws Throwable {
 return "Hello, " + input + "!";
}

The activity simply takes a string, combines it into a greeting and returns the result. Although
there is little chance that this activity will raise an exception, it’s a good idea to design activities
that can raise an error if something goes wrong.

4. Add a main method that we’ll use as the activity task polling method. We’ll start it by adding
some code to poll the task list for activity tasks:

 System.out.println("Polling for an activity task from the tasklist '"
 + HelloTypes.TASKLIST + "' in the domain '" +
 HelloTypes.DOMAIN + "'.");

 ActivityTask task = swf.pollForActivityTask(
 new PollForActivityTaskRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withTaskList(
 new TaskList().withName(HelloTypes.TASKLIST)));

 String task_token = task.getTaskToken();

The activity receives tasks from Amazon SWF by calling the SWF client’s
pollForActivityTask method, specifying the domain and task list to use in the passed-in
PollForActivityTaskRequest.

Once a task is received, we retrieve a unique identifier for it by calling the task’s getTaskToken
method.

5. Next, write some code to process the tasks that come in. Add the following to your main
method, right after the code that polls for the task and retrieves its task token.

 if (task_token != null) {
 String result = null;

Building a Simple Amazon SWF Application 231

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/PollForActivityTaskRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 Throwable error = null;

 try {
 System.out.println("Executing the activity task with input '" +
 task.getInput() + "'.");
 result = sayHello(task.getInput());
 } catch (Throwable th) {
 error = th;
 }

 if (error == null) {
 System.out.println("The activity task succeeded with result '"
 + result + "'.");
 swf.respondActivityTaskCompleted(
 new RespondActivityTaskCompletedRequest()
 .withTaskToken(task_token)
 .withResult(result));
 } else {
 System.out.println("The activity task failed with the error '"
 + error.getClass().getSimpleName() + "'.");
 swf.respondActivityTaskFailed(
 new RespondActivityTaskFailedRequest()
 .withTaskToken(task_token)
 .withReason(error.getClass().getSimpleName())
 .withDetails(error.getMessage()));
 }
 }

If the task token is not null, then we can start running the activity method (sayHello),
providing it with the input data that was sent with the task.

If the task succeeded (no error was generated), then the worker responds to SWF
by calling the SWF client’s respondActivityTaskCompleted method with a
RespondActivityTaskCompletedRequest object containing the task token and the activity’s result
data.

On the other hand, if the task failed, then we respond by calling the
respondActivityTaskFailed method with a RespondActivityTaskFailedRequest object,
passing it the task token and information about the error.

Building a Simple Amazon SWF Application 232

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RespondActivityTaskCompletedRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RespondActivityTaskFailedRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Note

This activity will not shut down gracefully if killed. Although it is beyond the scope of
this tutorial, an alternative implementation of this activity worker is provided in the
accompanying topic, Shutting Down Activity and Workflow Workers Gracefully.

Implement the workflow worker

Your workflow logic resides in a piece of code known as a workflow worker. The workflow worker
polls for decision tasks that are sent by Amazon SWF in the domain, and on the default tasklist,
that the workflow type was registered with.

When the workflow worker receives a task, it makes some sort of decision (usually whether to
schedule a new activity or not) and takes an appropriate action (such as scheduling the activity).

1. Open your text editor and create the file WorkflowWorker.java, adding a package declaration
and imports according to the common steps.

2. Add a few additional imports to the file:

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;
import java.util.ArrayList;
import java.util.List;
import java.util.UUID;

3. Declare the WorkflowWorker class, and create an instance of the
AmazonSimpleWorkflowClient class used to access SWF methods.

 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();

4. Add the main method. The method loops continuously, polling for decision tasks using the SWF
client’s pollForDecisionTask method. The PollForDecisionTaskRequest provides the details.

 PollForDecisionTaskRequest task_request =
 new PollForDecisionTaskRequest()

Building a Simple Amazon SWF Application 233

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/PollForDecisionTaskRequest.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 .withDomain(HelloTypes.DOMAIN)
 .withTaskList(new TaskList().withName(HelloTypes.TASKLIST));

 while (true) {
 System.out.println(
 "Polling for a decision task from the tasklist '" +
 HelloTypes.TASKLIST + "' in the domain '" +
 HelloTypes.DOMAIN + "'.");

 DecisionTask task = swf.pollForDecisionTask(task_request);

 String taskToken = task.getTaskToken();
 if (taskToken != null) {
 try {
 executeDecisionTask(taskToken, task.getEvents());
 } catch (Throwable th) {
 th.printStackTrace();
 }
 }
 }

Once a task is received, we call its getTaskToken method, which returns a string that can be
used to identify the task. If the returned token is not null, then we process it further in the
executeDecisionTask method, passing it the task token and the list of HistoryEvent objects
sent with the task.

5. Add the executeDecisionTask method, taking the task token (a String) and the
HistoryEvent list.

 List<Decision> decisions = new ArrayList<Decision>();
 String workflow_input = null;
 int scheduled_activities = 0;
 int open_activities = 0;
 boolean activity_completed = false;
 String result = null;

We also set up some data members to keep track of things such as:

• A list of Decision objects used to report the results of processing the task.

• A String to hold workflow input provided by the "WorkflowExecutionStarted" event

• a count of the scheduled and open (running) activities to avoid scheduling the same activity
when it has already been scheduled or is currently running.

Building a Simple Amazon SWF Application 234

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/HistoryEvent.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/Decision.html

AWS SDK for Java 1.x Developer Guide for version 1.x

• a boolean to indicate that the activity has completed.

• A String to hold the activity results, for returning it as our workflow result.

6. Next, add some code to executeDecisionTask to process the HistoryEvent objects that
were sent with the task, based on the event type reported by the getEventType method.

System.out.println("Executing the decision task for the history events: [");
for (HistoryEvent event : events) {
 System.out.println(" " + event);
 switch(event.getEventType()) {
 case "WorkflowExecutionStarted":
 workflow_input =
 event.getWorkflowExecutionStartedEventAttributes()
 .getInput();
 break;
 case "ActivityTaskScheduled":
 scheduled_activities++;
 break;
 case "ScheduleActivityTaskFailed":
 scheduled_activities--;
 break;
 case "ActivityTaskStarted":
 scheduled_activities--;
 open_activities++;
 break;
 case "ActivityTaskCompleted":
 open_activities--;
 activity_completed = true;
 result = event.getActivityTaskCompletedEventAttributes()
 .getResult();
 break;
 case "ActivityTaskFailed":
 open_activities--;
 break;
 case "ActivityTaskTimedOut":
 open_activities--;
 break;
 }
}
System.out.println("]");

For the purposes of our workflow, we are most interested in:

Building a Simple Amazon SWF Application 235

AWS SDK for Java 1.x Developer Guide for version 1.x

• the "WorkflowExecutionStarted" event, which indicates that the workflow execution has
started (typically meaning that you should run the first activity in the workflow), and that
provides the initial input provided to the workflow. In this case, it’s the name portion of our
greeting, so it’s saved in a String for use when scheduling the activity to run.

• the "ActivityTaskCompleted" event, which is sent once the scheduled activity is complete. The
event data also includes the return value of the completed activity. Since we have only one
activity, we’ll use that value as the result of the entire workflow.

The other event types can be used if your workflow requires them. See the HistoryEvent class
description for information about each event type.

+ NOTE: Strings in switch statements were introduced in Java 7. If you’re using an earlier
version of Java, you can make use of the EventType class to convert the String returned by
history_event.getType() to an enum value and then back to a String if necessary:

EventType et = EventType.fromValue(event.getEventType());

1. After the switch statement, add more code to respond with an appropriate decision based on
the task that was received.

if (activity_completed) {
 decisions.add(
 new Decision()
 .withDecisionType(DecisionType.CompleteWorkflowExecution)
 .withCompleteWorkflowExecutionDecisionAttributes(
 new CompleteWorkflowExecutionDecisionAttributes()
 .withResult(result)));
} else {
 if (open_activities == 0 && scheduled_activities == 0) {

 ScheduleActivityTaskDecisionAttributes attrs =
 new ScheduleActivityTaskDecisionAttributes()
 .withActivityType(new ActivityType()
 .withName(HelloTypes.ACTIVITY)
 .withVersion(HelloTypes.ACTIVITY_VERSION))
 .withActivityId(UUID.randomUUID().toString())
 .withInput(workflow_input);

 decisions.add(

Building a Simple Amazon SWF Application 236

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/HistoryEvent.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/model/EventType.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 new Decision()
 .withDecisionType(DecisionType.ScheduleActivityTask)
 .withScheduleActivityTaskDecisionAttributes(attrs));
 } else {
 // an instance of HelloActivity is already scheduled or running. Do nothing,
 another
 // task will be scheduled once the activity completes, fails or times out
 }
}

System.out.println("Exiting the decision task with the decisions " + decisions);

• If the activity hasn’t been scheduled yet, we respond with a ScheduleActivityTask
decision, which provides information in a ScheduleActivityTaskDecisionAttributes structure
about the activity that Amazon SWF should schedule next, also including any data that
Amazon SWF should send to the activity.

• If the activity was completed, then we consider the entire workflow completed
and respond with a CompletedWorkflowExecution decision, filling in a
CompleteWorkflowExecutionDecisionAttributes structure to provide details about the
completed workflow. In this case, we return the result of the activity.

In either case, the decision information is added to the Decision list that was declared at the
top of the method.

2. Complete the decision task by returning the list of Decision objects collected while processing
the task. Add this code at the end of the executeDecisionTask method that we’ve been
writing:

swf.respondDecisionTaskCompleted(
 new RespondDecisionTaskCompletedRequest()
 .withTaskToken(taskToken)
 .withDecisions(decisions));

The SWF client’s respondDecisionTaskCompleted method takes the task token that
identifies the task as well as the list of Decision objects.

Implement the workflow starter

Finally, we’ll write some code to start the workflow execution.

Building a Simple Amazon SWF Application 237

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/ScheduleActivityTaskDecisionAttributes.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/CompleteWorkflowExecutionDecisionAttributes.html

AWS SDK for Java 1.x Developer Guide for version 1.x

1. Open your text editor and create the file WorkflowStarter.java, adding a package
declaration and imports according to the common steps.

2. Add the WorkflowStarter class:

package aws.example.helloswf;

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

public class WorkflowStarter {
 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
 public static final String WORKFLOW_EXECUTION = "HelloWorldWorkflowExecution";

 public static void main(String[] args) {
 String workflow_input = "{SWF}";
 if (args.length > 0) {
 workflow_input = args[0];
 }

 System.out.println("Starting the workflow execution '" + WORKFLOW_EXECUTION +
 "' with input '" + workflow_input + "'.");

 WorkflowType wf_type = new WorkflowType()
 .withName(HelloTypes.WORKFLOW)
 .withVersion(HelloTypes.WORKFLOW_VERSION);

 Run run = swf.startWorkflowExecution(new StartWorkflowExecutionRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withWorkflowType(wf_type)
 .withWorkflowId(WORKFLOW_EXECUTION)
 .withInput(workflow_input)
 .withExecutionStartToCloseTimeout("90"));

 System.out.println("Workflow execution started with the run id '" +
 run.getRunId() + "'.");
 }
}

Building a Simple Amazon SWF Application 238

AWS SDK for Java 1.x Developer Guide for version 1.x

The WorkflowStarter class consists of a single method, main, which takes an optional
argument passed on the command-line as input data for the workflow.

The SWF client method, startWorkflowExecution, takes a StartWorkflowExecutionRequest
object as input. Here, in addition to specifying the domain and workflow type to run, we provide
it with:

• a human-readable workflow execution name

• workflow input data (provided on the command-line in our example)

• a timeout value that represents how long, in seconds, that the entire workflow should take to
run.

The Run object that startWorkflowExecution returns provides a run ID, a value that can be
used to identify this particular workflow execution in Amazon SWF's history of your workflow
executions.

+ NOTE: The run ID is generated by Amazon SWF, and is not the same as the workflow execution
name that you pass in when starting the workflow execution.

Build the example

To build the example project with Maven, go to the helloswf directory and type:

mvn package

The resulting helloswf-1.0.jar will be generated in the target directory.

Run the example

The example consists of four separate executable classes, which are run independently of each
other.

Note

If you are using a Linux, macOS, or Unix system, you can run all of them, one after another,
in a single terminal window. If you are running Windows, you should open two additional
command-line instances and navigate to the helloswf directory in each.

Building a Simple Amazon SWF Application 239

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/StartWorkflowExecutionRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/Run.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Setting the Java classpath

Although Maven has handled the dependencies for you, to run the example, you’ll need to
provide the AWS SDK library and its dependencies on your Java classpath. You can either set the
CLASSPATH environment variable to the location of your AWS SDK libraries and the third-
party/lib directory in the SDK, which includes necessary dependencies:

export CLASSPATH='target/helloswf-1.0.jar:/path/to/sdk/lib/*:/path/to/sdk/third-party/
lib/*'
java example.swf.hello.HelloTypes

or use the java command’s -cp option to set the classpath while running each applications.

java -cp target/helloswf-1.0.jar:/path/to/sdk/lib/*:/path/to/sdk/third-party/lib/* \
 example.swf.hello.HelloTypes

The style that you use is up to you. If you had no trouble building the code, both then try to run
the examples and get a series of "NoClassDefFound" errors, it is likely because the classpath is set
incorrectly.

Register the domain, workflow and activity types

Before running your workers and the workflow starter, you’ll need to register the domain and your
workflow and activity types. The code to do this was implemented in Register a domain workflow
and activity types.

After building, and if you’ve set the CLASSPATH, you can run the registration code by executing the
command:

 echo 'Supply the name of one of the example classes as an argument.'

Start the activity and workflow workers

Now that the types have been registered, you can start the activity and workflow workers. These
will continue to run and poll for tasks until they are killed, so you should either run them in
separate terminal windows, or, if you’re running on Linux, macOS, or Unix you can use the &
operator to cause each of them to spawn a separate process when run.

 echo 'If there are arguments to the class, put them in quotes after the class
 name.'

Building a Simple Amazon SWF Application 240

AWS SDK for Java 1.x Developer Guide for version 1.x

 exit 1

If you’re running these commands in separate windows, omit the final & operator from each line.

Start the workflow execution

Now that your activity and workflow workers are polling, you can start the workflow execution.
This process will run until the workflow returns a completed status. You should run it in a new
terminal window (unless you ran your workers as new spawned processes by using the & operator).

fi

Note

If you want to provide your own input data, which will be passed first to the workflow and
then to the activity, add it to the command-line. For example:

echo "## Running $className..."

Once you begin the workflow execution, you should start seeing output delivered by both workers
and by the workflow execution itself. When the workflow finally completes, its output will be
printed to the screen.

Complete source for this example

You can browse the complete source for this example on Github in the aws-java-developer-guide
repository.

For more information

• The workers presented here can result in lost tasks if they are shutdown while a workflow poll is
still going on. To find out how to shut down workers gracefully, see Shutting Down Activity and
Workflow Workers Gracefully.

• To learn more about Amazon SWF, visit the Amazon SWF home page or view the Amazon SWF
Developer Guide.

• You can use the AWS Flow Framework for Java to write more complex workflows in an elegant
Java style using annotations. To learn more, see the AWS Flow Framework for Java Developer
Guide.

Building a Simple Amazon SWF Application 241

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java/example_code/swf
https://aws.amazon.com/swf/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/

AWS SDK for Java 1.x Developer Guide for version 1.x

Lambda Tasks

As an alternative to, or in conjunction with, Amazon SWF activities, you can use Lambda functions
to represent units of work in your workflows, and schedule them similarly to activities.

This topic focuses on how to implement Amazon SWF Lambda tasks using the AWS SDK for Java.
For more information about Lambda tasks in general, see AWS Lambda Tasks in the Amazon SWF
Developer Guide.

Set up a cross-service IAM role to run your Lambda function

Before Amazon SWF can run your Lambda function, you need to set up an IAM role to give Amazon
SWF permission to run Lambda functions on your behalf. For complete information about how to
do this, see AWS Lambda Tasks.

You will need the Amazon Resource Name (ARN) of this IAM role when you register a workflow that
will use Lambda tasks.

Create a Lambda function

You can write Lambda functions in a number of different languages, including Java. For complete
information about how to author, deploy and use Lambda functions, see the AWS Lambda
Developer Guide.

Note

It doesn’t matter what language you use to write your Lambda function, it can be
scheduled and run by any Amazon SWF workflow, regardless of the language that your
workflow code is written in. Amazon SWF handles the details of running the function and
passing data to and from it.

Here’s a simple Lambda function that could be used in place of the activity in Building a Simple
Amazon SWF Application.

• This version is written in JavaScript, which can be entered directly using the AWS Management
Console:

exports.handler = function(event, context) {

Lambda Tasks 242

https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/lambda-task.html
https://docs.aws.amazon.com/amazonswf/latest/developerguide/lambda-task.html
https://docs.aws.amazon.com/lambda/latest/dg/
https://docs.aws.amazon.com/lambda/latest/dg/
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home

AWS SDK for Java 1.x Developer Guide for version 1.x

 context.succeed("Hello, " + event.who + "!");
};

• Here is the same function written in Java, which you could also deploy and run on Lambda:

package example.swf.hellolambda;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.util.json.JSONException;
import com.amazonaws.util.json.JSONObject;

public class SwfHelloLambdaFunction implements RequestHandler<Object, Object> {
 @Override
 public Object handleRequest(Object input, Context context) {
 String who = "{SWF}";
 if (input != null) {
 JSONObject jso = null;
 try {
 jso = new JSONObject(input.toString());
 who = jso.getString("who");
 } catch (JSONException e) {
 e.printStackTrace();
 }
 }
 return ("Hello, " + who + "!");
 }
}

Note

To learn more about deploying Java functions to Lambda, see Creating a Deployment
Package (Java) in the AWS Lambda Developer Guide. You will also want to look at the
section titled Programming Model for Authoring Lambda Functions in Java.

Lambda functions take an event or input object as the first parameter, and a context object as the
second, which provides information about the request to run the Lambda function. This particular
function expects input to be in JSON, with a who field set to the name used to create the greeting.

Lambda Tasks 243

https://docs.aws.amazon.com/lambda/latest/dg/lambda-java-how-to-create-deployment-package.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-java-how-to-create-deployment-package.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Register a workflow for use with Lambda

For a workflow to schedule a Lambda function, you must provide the name of the IAM role that
provides Amazon SWF with permission to invoke Lambda functions. You can set this during
workflow registration by using the withDefaultLambdaRole or setDefaultLambdaRole
methods of RegisterWorkflowTypeRequest.

System.out.println("** Registering the workflow type '" + WORKFLOW + "-" +
 WORKFLOW_VERSION
 + "'.");
try {
 swf.registerWorkflowType(new RegisterWorkflowTypeRequest()
 .withDomain(DOMAIN)
 .withName(WORKFLOW)
 .withDefaultLambdaRole(lambda_role_arn)
 .withVersion(WORKFLOW_VERSION)
 .withDefaultChildPolicy(ChildPolicy.TERMINATE)
 .withDefaultTaskList(new TaskList().withName(TASKLIST))
 .withDefaultTaskStartToCloseTimeout("30"));
}
catch (TypeAlreadyExistsException e) {

Schedule a Lambda task

Schedule a Lambda task is similar to scheduling an activity. You provide a Decision with a
`ScheduleLambdaFunction`DecisionType and with ScheduleLambdaFunctionDecisionAttributes.

running_functions == 0 && scheduled_functions == 0) {
AWSLambda lam = AWSLambdaClientBuilder.defaultClient();
GetFunctionConfigurationResult function_config =
 lam.getFunctionConfiguration(
 new GetFunctionConfigurationRequest()
 .withFunctionName("HelloFunction"));
String function_arn = function_config.getFunctionArn();

ScheduleLambdaFunctionDecisionAttributes attrs =
 new ScheduleLambdaFunctionDecisionAttributes()
 .withId("HelloFunction (Lambda task example)")
 .withName(function_arn)
 .withInput(workflow_input);

decisions.add(

Lambda Tasks 244

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterWorkflowTypeRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/Decision.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DecisionType.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/ScheduleLambdaFunctionDecisionAttributes.html

AWS SDK for Java 1.x Developer Guide for version 1.x

In the ScheduleLambdaFuntionDecisionAttributes, you must supply a name, which is the
ARN of the Lambda function to call, and an id, which is the name that Amazon SWF will use to
identify the Lambda function in history logs.

You can also provide optional input for the Lambda function and set its start to close timeout value,
which is the number of seconds that the Lambda function is allowed to run before generating a
LambdaFunctionTimedOut event.

Note

This code uses the AWSLambdaClient to retrieve the ARN of the Lambda function, given
the function name. You can use this technique to avoid hard-coding the full ARN (which
includes your AWS account ID) in your code.

Handle Lambda function events in your decider

Lambda tasks will generate a number of events that you can take action on when polling for
decision tasks in your workflow worker, corresponding to the lifecycle of your Lambda task,
with EventType values such as LambdaFunctionScheduled, LambdaFunctionStarted, and
LambdaFunctionCompleted. If the Lambda function fails, or takes longer to run than its set
timeout value, you will receive either a LambdaFunctionFailed or LambdaFunctionTimedOut
event type, respectively.

boolean function_completed = false;
String result = null;

System.out.println("Executing the decision task for the history events: [");
for (HistoryEvent event : events) {
 System.out.println(" " + event);
 EventType event_type = EventType.fromValue(event.getEventType());
 switch(event_type) {
 case WorkflowExecutionStarted:
 workflow_input =
 event.getWorkflowExecutionStartedEventAttributes()
 .getInput();
 break;
 case LambdaFunctionScheduled:
 scheduled_functions++;
 break;
 case ScheduleLambdaFunctionFailed:

Lambda Tasks 245

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambdaClient.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/EventType.html

AWS SDK for Java 1.x Developer Guide for version 1.x

 scheduled_functions--;
 break;
 case LambdaFunctionStarted:
 scheduled_functions--;
 running_functions++;
 break;
 case LambdaFunctionCompleted:
 running_functions--;
 function_completed = true;
 result = event.getLambdaFunctionCompletedEventAttributes()
 .getResult();
 break;
 case LambdaFunctionFailed:
 running_functions--;
 break;
 case LambdaFunctionTimedOut:
 running_functions--;
 break;

Receive output from your Lambda function

When you receive a LambdaFunctionCompleted`EventType, you can
retrieve your 0 function’s return value by first calling
`getLambdaFunctionCompletedEventAttributes on the HistoryEvent to get a
LambdaFunctionCompletedEventAttributes object, and then calling its getResult method to
retrieve the output of the Lambda function:

 LambdaFunctionCompleted:
running_functions--;

Complete source for this example

You can browse the complete source :github:`<awsdocs/aws-java-developer-guide/tree/master/
doc_source/snippets/helloswf_lambda/> for this example on Github in the aws-java-developer-guide
repository.

Shutting Down Activity and Workflow Workers Gracefully

The Building a Simple Amazon SWF Application topic provided a complete implementation of
a simple workflow application consisting of a registration application, an activity and workflow
worker, and a workflow starter.

Shutting Down Activity and Workflow Workers Gracefully 246

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/EventType.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/HistoryEvent.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/LambdaFunctionCompletedEventAttributes.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Worker classes are designed to run continuously, polling for tasks sent by Amazon SWF in order to
run activities or return decisions. Once a poll request is made, Amazon SWF records the poller and
will attempt to assign a task to it.

If the workflow worker is terminated during a long poll, Amazon SWF may still try to send a task to
the terminated worker, resulting in a lost task (until the task times out).

One way to handle this situation is to wait for all long poll requests to return before the worker
terminates.

In this topic, we’ll rewrite the activity worker from helloswf, using Java’s shutdown hooks to
attempt a graceful shutdown of the activity worker.

Here is the complete code:

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.ActivityTask;
import com.amazonaws.services.simpleworkflow.model.PollForActivityTaskRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskCompletedRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskFailedRequest;
import com.amazonaws.services.simpleworkflow.model.TaskList;

public class ActivityWorkerWithGracefulShutdown {

 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
 private static final CountDownLatch waitForTermination = new CountDownLatch(1);
 private static volatile boolean terminate = false;

 private static String executeActivityTask(String input) throws Throwable {
 return "Hello, " + input + "!";
 }

 public static void main(String[] args) {
 Runtime.getRuntime().addShutdownHook(new Thread() {
 @Override
 public void run() {

Shutting Down Activity and Workflow Workers Gracefully 247

AWS SDK for Java 1.x Developer Guide for version 1.x

 try {
 terminate = true;
 System.out.println("Waiting for the current poll request" +
 " to return before shutting down.");
 waitForTermination.await(60, TimeUnit.SECONDS);
 }
 catch (InterruptedException e) {
 // ignore
 }
 }
 });
 try {
 pollAndExecute();
 }
 finally {
 waitForTermination.countDown();
 }
 }

 public static void pollAndExecute() {
 while (!terminate) {
 System.out.println("Polling for an activity task from the tasklist '"
 + HelloTypes.TASKLIST + "' in the domain '" +
 HelloTypes.DOMAIN + "'.");

 ActivityTask task = swf.pollForActivityTask(new
 PollForActivityTaskRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withTaskList(new TaskList().withName(HelloTypes.TASKLIST)));

 String taskToken = task.getTaskToken();

 if (taskToken != null) {
 String result = null;
 Throwable error = null;

 try {
 System.out.println("Executing the activity task with input '"
 + task.getInput() + "'.");
 result = executeActivityTask(task.getInput());
 }
 catch (Throwable th) {
 error = th;
 }

Shutting Down Activity and Workflow Workers Gracefully 248

AWS SDK for Java 1.x Developer Guide for version 1.x

 if (error == null) {
 System.out.println("The activity task succeeded with result '"
 + result + "'.");
 swf.respondActivityTaskCompleted(
 new RespondActivityTaskCompletedRequest()
 .withTaskToken(taskToken)
 .withResult(result));
 }
 else {
 System.out.println("The activity task failed with the error '"
 + error.getClass().getSimpleName() + "'.");
 swf.respondActivityTaskFailed(
 new RespondActivityTaskFailedRequest()
 .withTaskToken(taskToken)
 .withReason(error.getClass().getSimpleName())
 .withDetails(error.getMessage()));
 }
 }
 }
 }
}

In this version, the polling code that was in the main function in the original version has been
moved into its own method, pollAndExecute.

The main function now uses a CountDownLatch in conjunction with a shutdown hook to cause the
thread to wait for up to 60 seconds after its termination is requested before letting the thread shut
down.

Registering Domains

Every workflow and activity in Amazon SWF needs a domain to run in.

1. Create a new RegisterDomainRequest object, providing it with at least the domain name and
workflow execution retention period (these parameters are both required).

2. Call the AmazonSimpleWorkflowClient.registerDomain method with the RegisterDomainRequest
object.

3. Catch the DomainAlreadyExistsException if the domain you’re requesting already exists (in which
case, no action is usually required).

Registering Domains 249

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/CountDownLatch.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/lang/Runtime.html
https://aws.amazon.com/swf/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterDomainRequest.html
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html#registerDomain-com.amazonaws.services.simpleworkflow.model.RegisterDomainRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainAlreadyExistsException.html

AWS SDK for Java 1.x Developer Guide for version 1.x

The following code demonstrates this procedure:

public void register_swf_domain(AmazonSimpleWorkflowClient swf, String name)
{
 RegisterDomainRequest request = new RegisterDomainRequest().withName(name);
 request.setWorkflowExecutionRetentionPeriodInDays("10");
 try
 {
 swf.registerDomain(request);
 }
 catch (DomainAlreadyExistsException e)
 {
 System.out.println("Domain already exists!");
 }
}

Listing Domains

You can list the Amazon SWF domains associated with your account and AWS region by registration
type.

1. Create a ListDomainsRequest object, and specify the registration status of the domains that
you’re interested in—this is required.

2. Call AmazonSimpleWorkflowClient.listDomains with the ListDomainRequest object. Results are
provided in a DomainInfos object.

3. Call getDomainInfos on the returned object to get a list of DomainInfo objects.

4. Call getName on each DomainInfo object to get its name.

The following code demonstrates this procedure:

public void list_swf_domains(AmazonSimpleWorkflowClient swf)
{
 ListDomainsRequest request = new ListDomainsRequest();
 request.setRegistrationStatus("REGISTERED");
 DomainInfos domains = swf.listDomains(request);
 System.out.println("Current Domains:");
 for (DomainInfo di : domains.getDomainInfos())
 {
 System.out.println(" * " + di.getName());

Listing Domains 250

https://aws.amazon.com/swf/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/ListDomainsRequest.html
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html#listDomains-com.amazonaws.services.simpleworkflow.model.ListDomainsRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfos.html
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfos.html#getDomainInfos--
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfo.html
http://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfo.html#getName--

AWS SDK for Java 1.x Developer Guide for version 1.x

 }
}

Code Samples included with the SDK

The AWS SDK for Java comes packaged with code samples that demonstrate many of the features
of the SDK in buildable, runnable programs. You can study or modify these to implement your own
AWS solutions using the AWS SDK for Java.

How to Get the Samples

The AWS SDK for Java code samples are provided in the samples directory of the SDK. If you
downloaded and installed the SDK using the information in Set up the AWS SDK for Java, you
already have the samples on your system.

You can also view the latest samples on the AWS SDK for Java GitHub repository, in the src/
samples directory.

Building and Running the Samples Using the Command Line

The samples include Ant build scripts so that you can easily build and run them from the command
line. Each sample also contains a README file in HTML format that contains information specific to
each sample.

Note

If you’re browsing the sample code on GitHub, click the Raw button in the source code
display when viewing the sample’s README.html file. In raw mode, the HTML will render as
intended in your browser.

Prerequisites

Before running any of the AWS SDK for Java samples, you need to set your AWS credentials in
the environment or with the AWS CLI, as specified in Set up AWS Credentials and Region for
Development. The samples use the default credential provider chain whenever possible. So
by setting your credentials in this way, you can avoid the risky practice of inserting your AWS

Code Samples included with the SDK 251

https://github.com/aws/aws-sdk-java/tree/master/src/samples
https://github.com/aws/aws-sdk-java/tree/master/src/samples
http://ant.apache.org/

AWS SDK for Java 1.x Developer Guide for version 1.x

credentials in files within the source code directory (where they may inadvertently be checked in
and shared publicly).

Running the Samples

1. Change to the directory containing the sample’s code. For example, if you’re in the root directory
of the AWS SDK download and want to run the AwsConsoleApp sample, you would type:

cd samples/AwsConsoleApp

2. Build and run the sample with Ant. The default build target performs both actions, so you can
just enter:

ant

The sample prints information to standard output—for example:

===

Welcome to the {AWS} Java SDK!

===
You have access to 4 Availability Zones.

You have 0 {EC2} instance(s) running.

You have 13 Amazon SimpleDB domain(s) containing a total of 62 items.

You have 23 {S3} bucket(s), containing 44 objects with a total size of 154767691 bytes.

Building and Running the Samples Using the Eclipse IDE

If you use the AWS Toolkit for Eclipse, you can also start a new project in Eclipse based on the AWS
SDK for Java or add the SDK to an existing Java project.

Prerequisites

After installing the AWS Toolkit for Eclipse, we recommend configuring the Toolkit with your
security credentials. You can do this anytime by choosing Preferences from the Window menu in
Eclipse, and then choosing the AWS Toolkit section.

Building and Running the Samples Using the Eclipse IDE 252

AWS SDK for Java 1.x Developer Guide for version 1.x

Running the Samples

1. Open Eclipse.

2. Create a new AWS Java project. In Eclipse, on the File menu, choose New, and then click Project.
The New Project wizard opens.

3. Expand the AWS category, then choose AWS Java Project.

4. Choose Next. The project settings page is displayed.

5. Enter a name in the Project Name box. The AWS SDK for Java Samples group displays the
samples available in the SDK, as described previously.

6. Select the samples you want to include in your project by selecting each check box.

7. Enter your AWS credentials. If you’ve already configured the AWS Toolkit for Eclipse with your
credentials, this is automatically filled in.

8. Choose Finish. The project is created and added to the Project Explorer.

9. Choose the sample .java file you want to run. For example, for the Amazon S3 sample, choose
S3Sample.java.

10.Choose Run from the Run menu.

11.Right-click the project in Project Explorer, point to Build Path, and then choose Add Libraries.

12.Choose AWS Java SDK, choose Next, and then follow the remaining on-screen instructions.

Building and Running the Samples Using the Eclipse IDE 253

AWS SDK for Java 1.x Developer Guide for version 1.x

Security for the AWS SDK for Java

Cloud security at Amazon Web Services (AWS) is the highest priority. As an AWS customer, you
benefit from a data center and network architecture that is built to meet the requirements of the
most security-sensitive organizations. Security is a shared responsibility between AWS and you. The
Shared Responsibility Model describes this as Security of the Cloud and Security in the Cloud.

Security of the Cloud – AWS is responsible for protecting the infrastructure that runs all of the
services offered in the AWS Cloud and providing you with services that you can use securely.
Our security responsibility is the highest priority at AWS, and the effectiveness of our security is
regularly tested and verified by third-party auditors as part of the AWS Compliance Programs.

Security in the Cloud – Your responsibility is determined by the AWS service you are using,
and other factors including the sensitivity of your data, your organization’s requirements, and
applicable laws and regulations.

This AWS product or service follows the shared responsibility model through the specific Amazon
Web Services (AWS) services it supports. For AWS service security information, see the AWS service
security documentation page and AWS services that are in scope of AWS compliance efforts by
compliance program.

Topics

• Data protection in AWS SDK for Java 1.x

• AWS SDK for Java support for TLS

• Identity and Access Management

• Compliance Validation for this AWS Product or Service

• Resilience for this AWS Product or Service

• Infrastructure Security for this AWS Product or Service

• Amazon S3 Encryption Client Migration

Data protection in AWS SDK for Java 1.x

The shared responsibility model applies to data protection in this AWS product or service. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. This content includes the security configuration and management tasks for the

Data protection 254

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model

AWS SDK for Java 1.x Developer Guide for version 1.x

AWS services that you use. For more information about data privacy, see the Data Privacy FAQ. For
information about data protection in Europe, see the AWS Shared Responsibility Model and GDPR
blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set up
individual user accounts with AWS Identity and Access Management (IAM). That way each user is
given only the permissions necessary to fulfill their job duties. We also recommend that you secure
your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing personal data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put sensitive identifying information, such as your
customers' account numbers, into free-form fields such as a Name field. This includes when you
work with this AWS product or service or other AWS services using the console, API, AWS CLI, or
AWS SDKs. Any data that you enter into this AWS product or service or other services might get
picked up for inclusion in diagnostic logs. When you provide a URL to an external server, don’t
include credentials information in the URL to validate your request to that server.

AWS SDK for Java support for TLS

The following information applies only to Java SSL implementation (the default SSL
implementation in the AWS SDK for Java). If you’re using a different SSL implementation, see your
specific SSL implementation to learn how to enforce TLS versions.

How to check the TLS version

Consult your Java virtual machine (JVM) provider's documentation to determine which TLS versions
are supported on your platform. For some JVMs, the following code will print which SSL versions
are supported.

Enforcing a minimum TLS version 255

https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr
https://aws.amazon.com/compliance/fips

AWS SDK for Java 1.x Developer Guide for version 1.x

System.out.println(Arrays.toString(SSLContext.getDefault().getSupportedSSLParameters().getProtocols()));

To see the SSL handshake in action and what version of TLS is used, you can use the system
property javax.net.debug.

java app.jar -Djavax.net.debug=ssl

Note

TLS 1.3 is incompatible with SDK for Java versions 1.9.5 to 1.10.31. For more information,
see the following blog post.
https://aws.amazon.com/blogs/developer/tls-1-3-incompatibility-with-aws-sdk-for-java-
versions-1-9-5-to-1-10-31/

Enforcing a minimum TLS version

The SDK always prefers the latest TLS version supported by the platform and service. If you wish
to enforce a specific minimum TLS version, consult your JVM's documentation. For OpenJDK-based
JVMs, you can use the system property jdk.tls.client.protocols.

java app.jar -Djdk.tls.client.protocols=PROTOCOLS

Consult your JVM's documentation for the supported values of PROTOCOLS.

Identity and Access Management

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AWS resources. IAM is an AWS service that you can use
with no additional charge.

Topics

• Audience

• Authenticating with identities

Enforcing a minimum TLS version 256

https://aws.amazon.com/blogs/developer/tls-1-3-incompatibility-with-aws-sdk-for-java-versions-1-9-5-to-1-10-31/
https://aws.amazon.com/blogs/developer/tls-1-3-incompatibility-with-aws-sdk-for-java-versions-1-9-5-to-1-10-31/

AWS SDK for Java 1.x Developer Guide for version 1.x

• Managing access using policies

• How AWS services work with IAM

• Troubleshooting AWS identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AWS.

Service user – If you use AWS services to do your job, then your administrator provides you with
the credentials and permissions that you need. As you use more AWS features to do your work,
you might need additional permissions. Understanding how access is managed can help you
request the right permissions from your administrator. If you cannot access a feature in AWS, see
Troubleshooting AWS identity and access or the user guide of the AWS service you are using.

Service administrator – If you're in charge of AWS resources at your company, you probably have
full access to AWS. It's your job to determine which AWS features and resources your service users
should access. You must then submit requests to your IAM administrator to change the permissions
of your service users. Review the information on this page to understand the basic concepts of
IAM. To learn more about how your company can use IAM with AWS, see the user guide of the AWS
service you are using.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to AWS. To view example AWS identity-based policies that you
can use in IAM, see the user guide of the AWS service you are using.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Audience 257

AWS SDK for Java 1.x Developer Guide for version 1.x

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For

Authenticating with identities 258

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html

AWS SDK for Java 1.x Developer Guide for version 1.x

information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

Authenticating with identities 259

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

AWS SDK for Java 1.x Developer Guide for version 1.x

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using

Authenticating with identities 260

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

AWS SDK for Java 1.x Developer Guide for version 1.x

an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose

Managing access using policies 261

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

AWS SDK for Java 1.x Developer Guide for version 1.x

between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a

Managing access using policies 262

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

AWS SDK for Java 1.x Developer Guide for version 1.x

service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS services work with IAM

To get a high-level view of how AWS services work with most IAM features, see AWS services that
work with IAM in the IAM User Guide.

To learn how to use a specific AWS service with IAM, see the security section of the relevant
service's User Guide.

Troubleshooting AWS identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with AWS and IAM.

Topics

• I am not authorized to perform an action in AWS

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my AWS resources

How AWS services work with IAM 263

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS SDK for Java 1.x Developer Guide for version 1.x

I am not authorized to perform an action in AWS

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
awes:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 awes:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the awes:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to AWS.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in AWS. However, the action requires the service to have permissions that are
granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

Troubleshooting AWS identity and access 264

AWS SDK for Java 1.x Developer Guide for version 1.x

I want to allow people outside of my AWS account to access my AWS resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether AWS supports these features, see How AWS services work with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

Compliance Validation for this AWS Product or Service

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Compliance Validation 265

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

This AWS product or service follows the shared responsibility model through the specific Amazon
Web Services (AWS) services it supports. For AWS service security information, see the AWS service
security documentation page and AWS services that are in scope of AWS compliance efforts by
compliance program.

Resilience for this AWS Product or Service

The AWS global infrastructure is built around AWS Regions and Availability Zones.

AWS Regions provide multiple physically separated and isolated Availability Zones, which are
connected with low-latency, high-throughput, and highly redundant networking.

Resilience 266

https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

AWS SDK for Java 1.x Developer Guide for version 1.x

With Availability Zones, you can design and operate applications and databases that automatically
fail over between zones without interruption. Availability Zones are more highly available, fault
tolerant, and scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

This AWS product or service follows the shared responsibility model through the specific Amazon
Web Services (AWS) services it supports. For AWS service security information, see the AWS service
security documentation page and AWS services that are in scope of AWS compliance efforts by
compliance program.

Infrastructure Security for this AWS Product or Service

This AWS product or service uses managed services, and therefore is protected by the AWS
global network security. For information about AWS security services and how AWS protects
infrastructure, see AWS Cloud Security. To design your AWS environment using the best practices
for infrastructure security, see Infrastructure Protection in Security Pillar AWS Well‐Architected
Framework.

You use AWS published API calls to access this AWS Product or Service through the network.
Clients must support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

This AWS product or service follows the shared responsibility model through the specific Amazon
Web Services (AWS) services it supports. For AWS service security information, see the AWS service
security documentation page and AWS services that are in scope of AWS compliance efforts by
compliance program.

Infrastructure Security 267

https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

AWS SDK for Java 1.x Developer Guide for version 1.x

Amazon S3 Encryption Client Migration

This topic shows you how to migrate your applications from Version 1 (V1) of the Amazon Simple
Storage Service (Amazon S3) encryption client to Version 2 (V2) and ensure application availability
throughout the migration process.

Prerequisites

Amazon S3 client-side encryption requires the following:

• Java 8 or later installed in your application environment. The AWS SDK for Java works with the
Oracle Java SE Development Kit and with distributions of Open Java Development Kit (OpenJDK)
such as Amazon Corretto, Red Hat OpenJDK, and AdoptOpenJDK.

• The Bouncy Castle Crypto package. You can place the Bouncy Castle .jar file on the classpath of
your application environment, or add a dependency on the artifactId bcprov-ext-jdk15on
(with the groupId of org.bouncycastle) to your Maven pom.xml file.

Migration Overview

This migration happens in two phases:

1. Update existing clients to read new formats. Update your application to use version 1.11.837
or later of the AWS SDK for Java and redeploy the application. This enables the Amazon S3
client-side encryption service clients in your application to decrypt objects created by V2 service
clients. If your application uses multiple AWS SDKs, you must update each SDK separately.

2. Migrate encryption and decryption clients to V2. Once all of your V1 encryption clients can
read V2 encryption formats, update the Amazon S3 client-side encryption and decryption clients
in your application code to use their V2 equivalents.

Update Existing Clients to Read New Formats

The V2 encryption client uses encryption algorithms that older versions of the AWS SDK for Java
do not support.

The first step in the migration is to update your V1 encryption clients to use version 1.11.837 or
later of the AWS SDK for Java. (We recommend that you update to the latest release version, which

S3 Encryption Client Migration 268

https://www.oracle.com/java/technologies/javase-downloads.html
https://aws.amazon.com/corretto/
https://developers.redhat.com/products/openjdk
https://adoptopenjdk.net/
https://bouncycastle.org/latest_releases.html

AWS SDK for Java 1.x Developer Guide for version 1.x

you can find in the Java API Reference version 1.x.) To do so, update the dependency in your project
configuration. After your project configuration is updated, rebuild your project and redeploy it.

Once you have completed these steps, your application’s V1 encryption clients will be able to read
objects written by V2 encryption clients.

Update the Dependency in Your Project Configuration

Modify your project configuration file (for example, pom.xml or build.gradle) to use version
1.11.837 or later of the AWS SDK for Java. Then, rebuild your project and redeploy it.

Completing this step before deploying new application code helps to ensure that encryption and
decryption operations remain consistent across your fleet during the migration process.

Example Using Maven

Snippet from a pom.xml file:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.11.837</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Example Using Gradle

Snippet from a build.gradle file:

dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.11.837')
 implementation 'com.amazonaws:aws-java-sdk-s3'
}

Update Existing Clients to Read New Formats 269

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc

AWS SDK for Java 1.x Developer Guide for version 1.x

Migrate Encryption and Decryption Clients to V2

Once your project has been updated with the latest SDK version, you can modify your application
code to use the V2 client. To do so, first update your code to use the new service client builder.
Then provide encryption materials using a method on the builder that has been renamed, and
configure your service client further as needed.

These code snippets demonstrate how to use client-side encryption with the AWS SDK for Java,
and provide comparisons between the V1 and V2 encryption clients.

V1

// minimal configuration in V1; default CryptoMode.EncryptionOnly.
EncryptionMaterialsProvider encryptionMaterialsProvider = ...
AmazonS3Encryption encryptionClient = AmazonS3EncryptionClient.encryptionBuilder()
 .withEncryptionMaterials(encryptionMaterialsProvider)
 .build();

V2

// minimal configuration in V2; default CryptoMode.StrictAuthenticatedEncryption.
EncryptionMaterialsProvider encryptionMaterialsProvider = ...
AmazonS3EncryptionV2 encryptionClient = AmazonS3EncryptionClientV2.encryptionBuilder()
 .withEncryptionMaterialsProvider(encryptionMaterialsProvider)
 .withCryptoConfiguration(new CryptoConfigurationV2()
 // The following setting allows the client to read V1
 encrypted objects
 .withCryptoMode(CryptoMode.AuthenticatedEncryption)
)
 .build();

The above example sets the cryptoMode to AuthenticatedEncryption. This is a setting that
allows a V2 encryption client to read objects that have been written by a V1 encryption client. If
your client does not need the capability to read objects written by a V1 client, then we recommend
using the default setting of StrictAuthenticatedEncryption instead.

Construct a V2 Encryption Client

The V2 encryption client can be constructed by calling
AmazonS3EncryptionClientV2.encryptionBuilder().

Migrate Encryption and Decryption Clients to V2 270

AWS SDK for Java 1.x Developer Guide for version 1.x

You can replace all of your existing V1 encryption clients with V2 encryption clients. A V2
encryption client will always be able to read any object that has been written by a V1 encryption
client as long as you permit it to do so by configuring the V2 encryption client to use the
`AuthenticatedEncryption`cryptoMode.

Creating a new V2 encryption client is very similar to how you create a V1 encryption client.
However, there are a few differences:

• You will use a CryptoConfigurationV2 object to configure the client instead of a
CryptoConfiguration object. This parameter is required.

• The default cryptoMode setting for the V2 encryption client is
StrictAuthenticatedEncryption. For the V1 encryption client it is EncryptionOnly.

• The method withEncryptionMaterials() on the encryption client builder has been renamed to
withEncryptionMaterialsProvider(). This is merely a cosmetic change that more accurately reflects
the argument type. You must use the new method when you configure your service client.

Note

When decrypting with AES-GCM, read the entire object to the end before you start using
the decrypted data. This is to verify that the object has not been modified since it was
encrypted.

Use Encryption Materials Providers

You can continue to use the same encryption materials providers and encryption materials objects
you are already using with the V1 encryption client. These classes are responsible for providing the
keys the encryption client uses to secure your data. They can be used interchangeably with both
the V2 and the V1 encryption client.

Configure the V2 Encryption Client

The V2 encryption client is configured with a CryptoConfigurationV2 object. This object can be
constructed by calling its default constructor and then modifying its properties as required from
the defaults.

The default values for CryptoConfigurationV2 are:

Migrate Encryption and Decryption Clients to V2 271

AWS SDK for Java 1.x Developer Guide for version 1.x

• cryptoMode = CryptoMode.StrictAuthenticatedEncryption

• storageMode = CryptoStorageMode.ObjectMetadata

• secureRandom = instance of SecureRandom

• rangeGetMode = CryptoRangeGetMode.DISABLED

• unsafeUndecryptableObjectPassthrough = false

Note that EncryptionOnly is not a supported cryptoMode in the V2 encryption client. The V2
encryption client will always encrypt content using authenticated encryption, and protects content
encrypting keys (CEKs) using V2 KeyWrap objects.

The following example demonstrates how to specify the crypto configuration in V1, and how to
instantiate a CryptoConfigurationV2 object to pass to the V2 encryption client builder.

V1

CryptoConfiguration cryptoConfiguration = new CryptoConfiguration()
 .withCryptoMode(CryptoMode.StrictAuthenticatedEncryption);

V2

CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withCryptoMode(CryptoMode.StrictAuthenticatedEncryption);

Additional Examples

The following examples demonstrate how to address specific use cases related to a migration from
V1 to V2.

Configure a Service Client to Read Objects Created by the V1 Encryption Client

To read objects that were previously written using a V1 encryption client, set the cryptoMode
to AuthenticatedEncryption. The following code snippet demonstrates how to construct a
configuration object with this setting.

CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withCryptoMode(CryptoMode.AuthenticatedEncryption);

Additional Examples 272

AWS SDK for Java 1.x Developer Guide for version 1.x

Configure a Service Client to Get Byte Ranges of Objects

To be able to get a range of bytes from an encrypted S3 object, enable the new configuration
setting rangeGetMode. This setting is disabled on the V2 encryption client by default. Note
that even when enabled, a ranged get only works on objects that have been encrypted using
algorithms supported by the cryptoMode setting of the client. For more information, see
CryptoRangeGetMode in the AWS SDK for Java API Reference.

If you plan to use the Amazon S3 TransferManager to perform multipart downloads of encrypted
Amazon S3 objects using the V2 encryption client, then you must first enable the rangeGetMode
setting on the V2 encryption client.

The following code snippet demonstrates how to configure the V2 client for performing a ranged
get.

// Allows range gets using AES/CTR, for V2 encrypted objects only
CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withRangeGetMode(CryptoRangeGetMode.ALL);

// Allows range gets using AES/CTR and AES/CBC, for V1 and V2 objects
CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withCryptoMode(CryptoMode.AuthenticatedEncryption)
 .withRangeGetMode(CryptoRangeGetMode.ALL);

Additional Examples 273

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/CryptoRangeGetMode.html

AWS SDK for Java 1.x Developer Guide for version 1.x

OpenPGP key for the AWS SDK for Java

All publicly available Maven artifacts for the AWS SDK for Java are signed using the OpenPGP
standard. The public key that you need to verify the signature of an artifact is available in the
following section.

Current key

The following table shows OpenPGP key information for the current releases of the SDK for Java
1x and SDK for Java 2.x.

Key ID 0xAC107B386692DADD

Type RSA

Size 4096/4096

Created 2016-06-30

Expires 2024-10-08

User ID AWS SDKs and Tools <aws-dr-tools@amaz
on.com>

Key fingerprint FEB9 209F 2F2F 3F46 6484 1E55 AC10 7B38
6692 DADD

To copy the following OpenPGP public key for the SDK for Java to the clipboard, select the "Copy"
icon in the upper right corner.

-----BEGIN PGP PUBLIC KEY BLOCK-----

xsFNBFd1gAUBEACqbmmFbxdJgz1lD7wrlskQA1LLuSAC4p8ny9u/D2zLR8Ynk3Yz
mzJuQ+Kfjne2t+xTDex6MPJlMYpOviSWsX2psgvdmeyUpW9ap0lrThNYkc+W5fRc
buFehfbi9LSATZGJi8RG0sCCr5FsYVz0gEk85M2+PeM24cXhQIOZtQUjswX/pdk/
KduGtZASqNAYLKROmRODzUuaokLPo24pfm9bnr1RnRtwt5ktPAA5bM9ZZaGKriej
kT2lPffbBjp8F5AZvmGLtNm2Cmg4FKBvI04SQjy2jjrQ3wBzi5Lc9HTxDuHK/rtV
u6PewUe2WPlnxlXenhMZU1UK4YoSB9E9StQ2VxQiySLHSdxR7Ma4WgYdVLn9bOie

Current key 274

AWS SDK for Java 1.x Developer Guide for version 1.x

nj3QxLuQ1ZUKF79ES6JaM4tOz1gGcQeU1+UklgjFLuKwmzWRdEIFfxMyvH6qgKnd
U+DioH5mcUwhwffAAsuIJyAdMIEUYh7IfzJJXQf+fF+XfOCl6byOJFWrIGQkAzMu
CEvaCfwtHC2Lpzo33/WRFeMAuzzd0QJ4uz4xFFvaSOSZHMLHWI9YV/+Pea3X99Ms
0Nlek/LolAJh67MynHeVBOHKrq+fluorWepQivctzN6Y1NOkx5naTPGGaKWK7G2q
TbcY5SMnkIWfLFSougj0Fvmjczq8iZRwYxWA+i+LQvsR9WEXEiQffIWRoQARAQAB
zsFNBFd1gAUBEAC8zNArPWb3dPMThL2xAY+fS60vXdB1SkOtYJpDWpFgvo0d+VQ+
hV6XulGAHAS6xG1WHysPT9KejIRSgLG+e9CaM5yhsxNa1WFGUM4Q9ESo3t+a75Go
7xHIxgFjC046/O6Vh3g9N/PREeuG8zkZ3H2v5fmD+ejyPgk4W9sFL00zjRiZD0FK
VYR/j9uenEC/2NBcLuFy3q6cDfmCoDEOO62kXMnaGz3knzEK/X1SkcjsxRDq7zaQ
lQ1Kou+3dICwy4x5SJQ8jl+eeeEvF2C2/dXmDohb57tqUwioohMUQkmCtvZgEHjy
pUwgp0MTo25gWxkvJlSJKUOb6b1786WNySIzF2gxqlkkEmBl4RAssQkeXjrSmGws
MDyHNqyJeYFusl8sPaSpo+V2n0z+2B070Uq+wmf1S5A5FpegH0PZzzoNZo8I6Qxa
Zje9YSZUijGmZIdEBleRVt3Svhi8MYlnasd4bW2RK1sr7plkBf8QRe6biiQRF3KD
OSn5CbmXpAcHJ1ZHzRRdkXZDNQC6vCJxsy13O0TrhJtAV1Yq347uyUbVi291ISVg
roUVtprsmHoEk5GoOTHbg9SCSt+xi/FiJQC+ubWmIGXoFKMR3UmhDnnzobKcbnbs
/Hd981FdVghYYvq//gTAkJk0WxfGqO30wtXRndPOA0T+qhP3TE+LtGRJ+wARAQAB
wsFlBBgBCgAPBQJXdYAFAhsMBQkHhh+AAAoJEKwQezhmktrdTyEP/0HOVWHwQsaW
jMrGj0OOMFzxGUo8SBmYYTBs29VM8wBGDsPkYCjeZzU16i9iqDpDqxpyqmTigcjH
V8CDx/6xsMBLG2yKaKZ4m3+YnOQf/sQkyCvqiyMF9mS7pDYWy+mPhPuw8TDIfiqg
VhzjSpIMFWPqxVjn6KKbPN/QASr3Pf0cuP6qpHG+NAM6Q5dYkCebyvwzLmg1sVni
l6iSyJd1jBj3D34XrgWS9buyxBB2CjIM76WxfNViJ9zAaPI78X9v6PpDGn0kg6oL
zrusrvBjoZknKQm0SZ+41fx6xvrTPs8uPEzevzJBlkke6kw9+KagY8mrVX1ZenRg
+sY/4vxJreYWQeql67ggx+wFjKDcfhZA7m7OLHODysrGVCLcmuinUBaNlHmLDcGY
XZ+kMCoXfObpuCVByQmNJgEb47EIFlx/+TEeNHKMO+22xL1atFzXfkEVZck+NghL
ZyFDhS3g1bma7puU7r752uiJjA6Iv8+kHDXi+/V7GNpuiEFUYh69QQ2//CS5H51o
sC/Bkb9evSn/Lp8dMubtWAaXDGJMgw9vqZ55N02NK0fvF/IKHnGkvH28rv0OPCvO
WTA/MClv28y0PrSvcvMXnduLtkBEX7TISMPW+n+OTa63/z4YFfEZ7sFLrEm3Q3vJ
MN3mE5i3cw+JGXPSu0nTtgqk/oZv//SS
=Z9u3
-----END PGP PUBLIC KEY BLOCK-----

Current key 275

AWS SDK for Java 1.x Developer Guide for version 1.x

Document History

This topic describes important changes to the AWS SDK for Java Developer Guide over the course
of its history.

This documentation was built on: December 6, 2023

January 12, 2024

Add banner that announces the end of support for AWS SDK for Java v1.x.

December 6, 2023

• Provide current OpenPGP key.

March 14, 2023

• Updated guide to align with the IAM best practices. For more information, see Security best
practices in IAM.

July 28, 2022

• Added an alert that EC2-Classic is retiring on August 15, 2022.

Mar 22, 2018

• Removed managing Tomcat sessions in DynamoDB example as that tool is no longer
supported.

Nov 2, 2017

• Added cryptography examples for Amazon S3 encryption client, including new topics: Use
Amazon S3 client-side encryption and Amazon S3 client-side encryption with AWS KMS
managed keys and Amazon S3 client-side encryption with client master keys.

Apr 14, 2017

• Made a number of updates to the Amazon S3 Examples Using the AWS SDK for Java section,
including new topics: Managing Amazon S3 Access Permissions for Buckets and Objects and
Configuring an Amazon S3 Bucket as a Website.

Apr 04, 2017

• A new topic, Enabling Metrics for the AWS SDK for Java describes how to generate
application and SDK performance metrics for the AWS SDK for Java.

276

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS SDK for Java 1.x Developer Guide for version 1.x

Apr 03, 2017

• Added new CloudWatch examples to the CloudWatch Examples Using the AWS SDK for Java
section: Getting Metrics from CloudWatch, Publishing Custom Metric Data, Working with
CloudWatch Alarms, Using Alarm Actions in CloudWatch, and Sending Events to CloudWatch

Mar 27, 2017

• Added more Amazon EC2 examples to the Amazon EC2 Examples Using the AWS SDK for
Java section: Managing Amazon EC2 Instances, Using Elastic IP Addresses in Amazon EC2,
Use regions and availability zones, Working with Amazon EC2 Key Pairs, and Working with
Security Groups in Amazon EC2.

Mar 21, 2017

• Added a new set of IAM examples to the IAM Examples Using the AWS SDK for Java section:
Managing IAM Access Keys, Managing IAM Users, Using IAM Account Aliases, Working with
IAM Policies, and Working with IAM Server Certificates

Mar 13, 2017

• Added three new topics to the Amazon SQS section: Enabling Long Polling for Amazon SQS
Message Queues, Setting Visibility Timeout in Amazon SQS, and Using Dead Letter Queues in
Amazon SQS.

Jan 26, 2017

• Added a new Amazon S3 topic, Using TransferManager for Amazon S3 Operations, and a new
Best Practices for AWS Development with the AWS SDK for Java topic in the Using the AWS
SDK for Java section.

Jan 16, 2017

• Added a new Amazon S3 topic, Managing Access to Amazon S3 Buckets Using Bucket Policies,
and two new Amazon SQS topics, Working with Amazon SQS Message Queues and Sending
Receiving and Deleting Amazon SQS Messages.

Dec 16, 2016

• Added new example topics for DynamoDB: Working with Tables in DynamoDB and Working
with Items in DynamoDB.

Sep 26, 2016

• The topics in the Advanced section have been moved into Using the AWS SDK for Java, since
they really are central to using the SDK.

277

AWS SDK for Java 1.x Developer Guide for version 1.x

Aug 25, 2016

• A new topic, Creating Service Clients, has been added to Using the AWS SDK for Java, which
demonstrates how to use client builders to simplify the creation of AWS service clients.

The AWS SDK for Java Code Examples section has been updated with new examples for S3
which are backed by a repository on GitHub that contains the complete example code.

May 02, 2016

• A new topic, Asynchronous Programming, has been added to the Using the AWS SDK for
Java section, describing how to work with asynchronous client methods that return Future
objects or that take an AsyncHandler.

Apr 26, 2016

• The SSL Certificate Requirements topic has been removed, since it is no longer relevant.
Support for SHA-1 signed certificates was deprecated in 2015 and the site that housed the
test scripts has been removed.

Mar 14, 2016

• Added a new topic to the Amazon SWF section: Lambda Tasks, which describes how to
implement a Amazon SWF workflow that calls Lambda functions as tasks as an alternative to
using traditional Amazon SWF activities.

Mar 04, 2016

• The Amazon SWF Examples Using the AWS SDK for Java section has been updated with new
content:

• Amazon SWF Basics- Provides basic information about how to include SWF in your projects.

• Building a Simple Amazon SWF Application- A new tutorial that provides step-by-step
guidance for Java developers new to Amazon SWF.

• Shutting Down Activity and Workflow Workers Gracefully- Describes how you can
gracefully shut down Amazon SWF worker classes using Java’s concurrency classes.

Feb 23, 2016

• The source for the AWS SDK for Java Developer Guide has been moved to aws-java-
developer-guide.

Dec 28, 2015

• the section called “Set the JVM TTL for DNS name lookups” has been moved from Advanced
into Using the AWS SDK for Java, and has been rewritten for clarity.

278

https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-java-developer-guide
https://github.com/awsdocs/aws-java-developer-guide

AWS SDK for Java 1.x Developer Guide for version 1.x

Using the SDK with Apache Maven has been updated with information about how to include
the SDK’s bill of materials (BOM) in your project.

Aug 04, 2015

• SSL Certificate Requirements is a new topic in the Getting Started section that describes
AWS' move to SHA256-signed certificates for SSL connections, and how to fix early 1.6 and
previous Java environments to use these certificates, which are required for AWS access after
September 30, 2015.

Note

Java 1.7+ is already capable of working with SHA256-signed certificates.

May 14, 2014

• The introduction and getting started material has been heavily revised to support the new
guide structure and now includes guidance about how to Set up AWS Credentials and Region
for Development.

The discussion of code samples has been moved into its own topic in the Additional
Documentation and Resources section.

Information about how to view the SDK revision history has been moved into the
introduction.

May 9, 2014

• The overall structure of the AWS SDK for Java documentation has been simplified, and the
Getting Started and Additional Documentation and Resources topics have been updated.

New topics have been added:

• Working with AWS Credentials- discusses the various ways that you can specify credentials
for use with the AWS SDK for Java.

• Using IAM Roles to Grant Access to AWS Resources on Amazon EC2- provides information
about how to securely specify credentials for applications running on EC2 instances.

Sep 9, 2013

• This topic, Document History, tracks changes to the AWS SDK for Java Developer Guide. It is
intended as a companion to the release notes history.

279

	AWS SDK for Java 1.x
	Table of Contents
	
	Developer Guide - AWS SDK for Java 1.x
	Version 2 of the SDK released
	Additional Documentation and Resources
	Eclipse IDE Support
	Developing Applications for Android
	Viewing the SDK’s Revision History
	Building Java Reference Documentation for Earlier SDK versions

	Getting Started
	Basic setup to work with AWS services
	Overview
	Sign-in ability to the AWS access portal
	Set up shared configuration files
	Set up the shared config file
	Set up temporary credentials for the SDK

	Install a Java Development Environment
	Choosing a JVM

	Ways to get the AWS SDK for Java
	Prerequisites
	Use a build tool to manage dependencies for the SDK for Java
	Download and extract the SDK (not recommended)
	Build previous versions of the SDK from source (not recommended)

	Use build tools
	Use the SDK with Apache Maven
	Create a new Maven package
	Configure the SDK as a Maven dependency
	Specifying individual SDK modules
	Importing all SDK modules

	Build your project
	Build the SDK with Maven

	Use the SDK with Gradle
	Project setup for Gradle 4.6 or higher
	Project setup for Gradle versions earlier than 4.6

	Set up AWS temporary credentials and AWS Region for development
	Configure temporary credentials
	Refreshing IMDS credentials
	Set the AWS Region

	Using the AWS SDK for Java
	Best Practices for AWS Development with the AWS SDK for Java
	S3
	Avoid ResetExceptions

	Creating Service Clients
	Obtaining a Client Builder
	Creating Async Clients
	To create an async DynamoDB client with the default ExecutorService
	To create an async client with a custom executor

	Using DefaultClient
	To create a default service client

	Client Lifecycle
	To shut down a client

	Provide temporary credentials to the AWS SDK for Java
	Using the Default Credential Provider Chain
	Set temporary credentials
	Set an alternate credentials profile
	Set an alternate credentials file location
	To override the default credentials file location

	Credentials file format
	Load credentials

	Specify a credential provider or provider chain
	Explicitly specify temporary credentials
	More Info

	AWS Region Selection
	Checking for Service Availability in a Region
	Choosing a Region
	Choosing a Specific Endpoint
	Automatically Determine the Region from the Environment
	Default Region Provider Chain

	Exception Handling
	Why Unchecked Exceptions?
	AmazonServiceException (and Subclasses)
	AmazonClientException

	Asynchronous Programming
	Java Futures
	Asynchronous Callbacks
	Best Practices
	Callback Execution
	Thread Pool Configuration
	Asynchronous Access

	Logging AWS SDK for Java Calls
	Download the Log4J JAR
	Setting the Classpath
	Service-Specific Errors and Warnings
	Request/Response Summary Logging
	Verbose Wire Logging
	Latency Metrics Logging

	Client Configuration
	Proxy Configuration
	HTTP Transport Configuration
	Maximum Connections
	Timeouts and Error Handling
	Local Address

	TCP Socket Buffer Size Hints

	Access Control Policies
	Amazon S3 Example
	Amazon SQS Example
	Amazon SNS Example

	Set the JVM TTL for DNS name lookups
	How to set the JVM TTL

	Enabling Metrics for the AWS SDK for Java
	How to Enable Java SDK Metric Generation
	Available Metric Types
	More Information

	AWS SDK for Java Code Examples
	AWS SDK for Java 2.x
	CloudWatch Examples Using the AWS SDK for Java
	Getting Metrics from CloudWatch
	Listing Metrics
	More Information

	Publishing Custom Metric Data
	Publish Custom Metric Data
	More Information

	Working with CloudWatch Alarms
	Create an Alarm
	List Alarms
	Delete Alarms
	More Information

	Using Alarm Actions in CloudWatch
	Enable Alarm Actions
	Disable Alarm Actions
	More Information

	Sending Events to CloudWatch
	Add Events
	Add Rules
	Add Targets
	More Information

	DynamoDB Examples Using the AWS SDK for Java
	Working with Tables in DynamoDB
	Create a Table
	Create a Table with a Simple Primary Key
	Create a Table with a Composite Primary Key

	List Tables
	Describe (Get Information about) a Table
	Modify (Update) a Table
	Delete a Table
	More Info

	Working with Items in DynamoDB
	Retrieve (Get) an Item from a Table
	Add a New Item to a Table
	Update an Existing Item in a Table
	Use the DynamoDBMapper class
	More Info

	Amazon EC2 Examples Using the AWS SDK for Java
	Tutorial: Starting an EC2 Instance
	Prerequisites
	Create an Amazon EC2 Security Group
	EC2-Classic is retiring

	Create a Key Pair
	Run an Amazon EC2 Instance

	Using IAM Roles to Grant Access to AWS Resources on Amazon EC2
	The default provider chain and EC2 instance profiles
	Walkthrough: Using IAM roles for EC2 instances
	Create an IAM Role
	Launch an EC2 Instance and Specify Your IAM Role
	Create your Application
	Transfer the Compiled Program to Your EC2 Instance
	Run the Sample Program on the EC2 Instance

	Tutorial: Amazon EC2 Spot Instances
	Overview
	Prerequisites
	Step 1: Setting Up Your Credentials
	Step 2: Setting Up a Security Group
	Step 3: Submitting Your Spot Request
	Step 4: Determining the State of Your Spot Request
	Step 5: Cleaning Up Your Spot Requests and Instances
	Bringing It All Together
	Next Steps

	Tutorial: Advanced Amazon EC2 Spot Request Management
	Prerequisites
	Setting up your credentials
	Setting up a security group
	Detailed Spot Instance request creation options
	Persistent vs. one-time requests
	Limiting the duration of a request
	Grouping your Amazon EC2 Spot Instance requests
	How to persist a root partition after interruption or termination
	How to tag your spot requests and instances
	Tagging requests
	Tagging instances

	Canceling spot requests and terminating instances
	Canceling a spot request
	Terminating Spot Instances

	Bringing it all together

	Managing Amazon EC2 Instances
	Creating an Instance
	Starting an Instance
	Stopping an Instance
	Rebooting an Instance
	Describing Instances
	Monitoring an Instance
	Stopping Instance Monitoring
	More Information

	Using Elastic IP Addresses in Amazon EC2
	EC2-Classic is retiring
	Allocating an Elastic IP Address
	Describing Elastic IP Addresses
	Releasing an Elastic IP Address
	More Information

	Use regions and availability zones
	Describe regions
	Describe availability zones
	Describe accounts
	More information

	Working with Amazon EC2 Key Pairs
	Creating a Key Pair
	Describing Key Pairs
	Deleting a Key Pair
	More Information

	Working with Security Groups in Amazon EC2
	Creating a Security Group
	Configuring a Security Group
	Describing Security Groups
	Deleting a Security Group
	More Information

	IAM Examples Using the AWS SDK for Java
	Managing IAM Access Keys
	Creating an Access Key
	Listing Access Keys
	Retrieving an Access Key’s Last Used Time
	Activating or Deactivating Access Keys
	Deleting an Access Key
	More Information

	Managing IAM Users
	Creating a User
	Listing Users
	Updating a User
	Deleting a User
	More Information

	Using IAM Account Aliases
	Creating an Account Alias
	Listing Account Aliases
	Deleting an account alias
	More Information

	Working with IAM Policies
	Creating a Policy
	Getting a Policy
	Attaching a Role Policy
	Listing Attached Role Policies
	Detaching a Role Policy
	More Information

	Working with IAM Server Certificates
	Getting a Server Certificate
	Listing Server Certificates
	Updating a Server Certificate
	Deleting a Server Certificate
	More Information

	Lambda Examples Using the AWS SDK for Java
	Invoking, Listing, and Deleting Lambda Functions
	Invoke a function
	List functions
	Delete a function

	Amazon Pinpoint Examples Using the AWS SDK for Java
	Creating and Deleting Apps in Amazon Pinpoint
	Create an App
	Delete an App
	More Information

	Creating Endpoints in Amazon Pinpoint
	Create an Endpoint
	More Information

	Creating Segments in Amazon Pinpoint
	Create a Segment
	More Information

	Creating Campaigns in Amazon Pinpoint
	Create a Campaign
	More Information

	Updating Channels in Amazon Pinpoint
	Update a Channel
	More Information

	Amazon S3 Examples Using the AWS SDK for Java
	Creating, Listing, and Deleting Amazon S3 Buckets
	Create a Bucket
	List Buckets
	Delete a Bucket
	Remove Objects from an Unversioned Bucket Before Deleting It
	Remove Objects from a Versioned Bucket Before Deleting It
	Delete an Empty Bucket

	Performing Operations on Amazon S3 Objects
	Upload an Object
	List Objects
	Download an Object
	Copy, Move, or Rename Objects
	Delete an Object
	Delete Multiple Objects at Once

	Managing Amazon S3 Access Permissions for Buckets and Objects
	Get the Access Control List for a Bucket
	Set the Access Control List for a Bucket
	Get the Access Control List for an Object
	Set the Access Control List for an Object
	More Information

	Managing Access to Amazon S3 Buckets Using Bucket Policies
	Set a Bucket Policy
	Use the Policy Class to Generate or Validate a Policy

	Get a Bucket Policy
	Delete a Bucket Policy
	More Info

	Using TransferManager for Amazon S3 Operations
	Upload Files and Directories
	Upload a Single File
	Upload a List of Files
	Upload a Directory

	Download Files or Directories
	Download a Single File
	Download a Directory

	Copy Objects
	Wait for a Transfer to Complete
	Get Transfer Status and Progress
	Poll the Current Progress of a Transfer
	Get Transfer Progress with a ProgressListener
	Get the Progress of Subtransfers

	More Info

	Configuring an Amazon S3 Bucket as a Website
	Set a Bucket’s Website Configuration
	Get a Bucket’s Website Configuration
	Delete a Bucket’s Website Configuration
	More Information

	Use Amazon S3 client-side encryption
	Amazon S3 client-side encryption with client master keys
	Required imports
	Strict authenticated encryption
	Authenticated encryption mode

	Amazon S3 client-side encryption with AWS KMS managed keys
	Required imports
	Strict authenticated encryption
	Authenticated encryption mode
	Configuring the AWS KMS client

	Amazon SQS Examples Using the AWS SDK for Java
	Working with Amazon SQS Message Queues
	Create a Queue
	Listing Queues
	Get the URL for a Queue
	Delete a Queue
	More Info

	Sending, Receiving, and Deleting Amazon SQS Messages
	Send a Message
	Send Multiple Messages at Once

	Receive Messages
	Delete Messages after Receipt
	More Info

	Enabling Long Polling for Amazon SQS Message Queues
	Enabling Long Polling when Creating a Queue
	Enabling Long Polling on an Existing Queue
	Enabling Long Polling on Message Receipt
	More Info

	Setting Visibility Timeout in Amazon SQS
	Setting the Message Visibility Timeout for a Single Message
	Setting the Message Visibility Timeout for Multiple Messages at Once
	More Info

	Using Dead Letter Queues in Amazon SQS
	Creating a Dead Letter Queue
	Designating a Dead Letter Queue for a Source Queue
	More Info

	Amazon SWF Examples Using the AWS SDK for Java
	SWF basics
	Dependencies
	Imports
	Using the SWF client class

	Building a Simple Amazon SWF Application
	About the example
	Prerequisites
	Development environment
	AWS Access

	Create a SWF project
	Code the project
	Common steps for all source files
	Register a domain, workflow and activity types
	Implement the activity worker
	Implement the workflow worker
	Implement the workflow starter

	Build the example
	Run the example
	Setting the Java classpath
	Register the domain, workflow and activity types
	Start the activity and workflow workers
	Start the workflow execution

	Complete source for this example
	For more information

	Lambda Tasks
	Set up a cross-service IAM role to run your Lambda function
	Create a Lambda function
	Register a workflow for use with Lambda
	Schedule a Lambda task
	Handle Lambda function events in your decider
	Receive output from your Lambda function
	Complete source for this example

	Shutting Down Activity and Workflow Workers Gracefully
	Registering Domains
	Listing Domains

	Code Samples included with the SDK
	How to Get the Samples
	Building and Running the Samples Using the Command Line
	Prerequisites
	Running the Samples

	Building and Running the Samples Using the Eclipse IDE
	Prerequisites
	Running the Samples

	Security for the AWS SDK for Java
	Data protection in AWS SDK for Java 1.x
	AWS SDK for Java support for TLS
	How to check the TLS version
	Enforcing a minimum TLS version

	Identity and Access Management
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS services work with IAM
	Troubleshooting AWS identity and access
	I am not authorized to perform an action in AWS
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my AWS resources

	Compliance Validation for this AWS Product or Service
	Resilience for this AWS Product or Service
	Infrastructure Security for this AWS Product or Service
	Amazon S3 Encryption Client Migration
	Prerequisites
	Migration Overview
	Update Existing Clients to Read New Formats
	Update the Dependency in Your Project Configuration
	Example Using Maven
	Example Using Gradle

	Migrate Encryption and Decryption Clients to V2
	Construct a V2 Encryption Client
	Use Encryption Materials Providers
	Configure the V2 Encryption Client

	Additional Examples
	Configure a Service Client to Read Objects Created by the V1 Encryption Client
	Configure a Service Client to Get Byte Ranges of Objects

	OpenPGP key for the AWS SDK for Java
	Current key

	Document History

