
Developer Guide

Amazon Data Firehose

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Data Firehose Developer Guide

Amazon Data Firehose: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Data Firehose Developer Guide

Table of Contents

... ix
What Is Amazon Data Firehose? ... 1

Key Concepts ... 1
Data Flow ... 2

Setting Up .. 4
Sign Up for AWS ... 4
Optional: Download Libraries and Tools ... 4

Creating a Firehose stream ... 6
Source, Destination, and Name ... 6
Record Transformation and Format Conversion .. 8
Destination Settings .. 10

Choose Amazon S3 for Your Destination .. 11
Choose Amazon Redshift for Your Destination .. 14
Choose OpenSearch Service for Your Destination ... 20
Choose OpenSearch Serverless for Your Destination .. 22
Choose HTTP Endpoint for Your Destination ... 23
Choose Datadog for Your Destination .. 25
Choose Honeycomb for Your Destination ... 27
Choose Coralogix for Your Destination .. 28
Choose Dynatrace for Your Destination ... 30
Choose LogicMonitor for Your Destination ... 31
Choose Logz.io for Your Destination .. 33
Choose MongoDB Cloud for Your Destination ... 34
Choose New Relic for Your Destination ... 36
Choose Snowflake for Your Destination .. 37
Choose Splunk for Your Destination .. 40
Choose Splunk Observability Cloud for Your Destination .. 41
Choose Sumo Logic for Your Destination .. 43
Choose Elastic for Your Destination ... 44

Backup and Advanced Settings ... 45
Backup Settings ... 45
Advanced Settings .. 47

Buffering hints .. 49
Testing Your Firehose stream ... 52

iii

Amazon Data Firehose Developer Guide

Prerequisites .. 52
Test Using Amazon S3 as the Destination .. 52
Test Using Amazon Redshift as the Destination ... 53
Test Using OpenSearch Service as the Destination .. 54
Test Using Splunk as the Destination .. 54

Sending Data to a Firehose stream .. 55
Writing Using Kinesis Data Streams ... 55
Writing Using Amazon MSK ... 57
Writing Using the Amazon Data Firehose Agent ... 59

Prerequisites ... 59
Credentials .. 60
Custom Credential Providers .. 60
Download and Install the Agent ... 61
Configure and Start the Agent .. 63
Agent Configuration Settings ... 64
Monitor Multiple File Directories and Write to Multiple Streams ... 68
Use the agent to Preprocess Data .. 69
Agent CLI Commands .. 73
FAQ ... 74

Writing Using the AWS SDK .. 75
Single Write Operations Using PutRecord ... 75
Batch Write Operations Using PutRecordBatch .. 76

Writing Using CloudWatch Logs ... 76
Decompression of CloudWatch Logs .. 77
Message extraction after decompression of CloudWatch Logs ... 77
Enabling and disabling decompression .. 78
FAQ ... 74

Writing Using CloudWatch Events .. 82
Writing Using AWS IoT ... 82

Security .. 83
Data Protection ... 84

Server-Side Encryption with Kinesis Data Streams as the Data Source 84
Server-Side Encryption with Direct PUT or Other Data Sources ... 84

Controlling Access .. 86
Grant Your Application Access to Your Amazon Data Firehose Resources 87
Grant Amazon Data Firehose Access to your Private Amazon MSK Cluster 87

iv

Amazon Data Firehose Developer Guide

Allow Amazon Data Firehose to Assume an IAM Role .. 88
Grant Amazon Data Firehose Access to AWS Glue for Data Format Conversion 90
Grant Amazon Data Firehose Access to an Amazon S3 Destination ... 91
Grant Amazon Data Firehose Access to an Amazon Redshift Destination 94
Grant Amazon Data Firehose Access to a Public OpenSearch Service Destination 98
Grant Amazon Data Firehose Access to an OpenSearch Service Destination in a VPC 101
Grant Amazon Data Firehose Access to a Public OpenSearch Serverless Destination 102
Grant Amazon Data Firehose Access to an OpenSearch Serverless Destination in a VPC 105
Grant Amazon Data Firehose Access to a Splunk Destination .. 106
Access to Splunk in VPC ... 108
Access to Snowflake or HTTP end point ... 110
Grant Amazon Data Firehose Access to a Snowflake Destination .. 110
Access to Snowflake in VPC ... 112
Grant Amazon Data Firehose Access to an HTTP Endpoint Destination 115
Cross-Account Delivery from Amazon MSK .. 118
Cross-Account Delivery to an Amazon S3 Destination ... 120
Cross-Account Delivery to an OpenSearch Service Destination .. 122
Using Tags to Control Access ... 123

Manage IAM roles through console ... 126
Choose an existing IAM role .. 127
Create a new IAM role from console .. 127
Edit IAM role from console .. 129

Monitoring ... 130
Compliance Validation .. 130
Resilience ... 131

Disaster Recovery ... 131
Infrastructure Security .. 131

VPC Endpoints (PrivateLink) ... 132
Security Best Practices .. 132

Implement least privilege access .. 132
Use IAM roles .. 132
Implement Server-Side Encryption in Dependent Resources .. 133
Use CloudTrail to Monitor API Calls ... 133

Data Transformation ... 134
Data Transformation Flow ... 134
Data Transformation and Status Model .. 134

v

Amazon Data Firehose Developer Guide

Lambda Blueprints ... 136
Data Transformation Failure Handling .. 137
Duration of a Lambda Invocation .. 138
Source Record Backup .. 139

Dynamic Partitioning .. 140
Partitioning keys .. 140

Creating partitioning keys with inline parsing ... 141
Creating partitioning keys with an AWS Lambda function .. 142

Amazon S3 Bucket Prefix for Dynamic Partitioning ... 145
Dynamic partitioning of aggregated data .. 147
Adding a new line delimiter when delivering data to S3 .. 148
How to enable dynamic partitioning ... 148
Dynamic Partitioning Error Handling .. 149
Data buffering and dynamic partitioning ... 149

Record Format Conversion .. 151
Record Format Conversion Requirements .. 151
Choosing the JSON Deserializer ... 152
Choosing the Serializer ... 153
Converting Input Record Format (Console) .. 153
Converting Input Record Format (API) .. 154
Record Format Conversion Error Handling ... 155
Record Format Conversion Example .. 155

Integration with Managed Service for Apache Flink ... 156
Data Delivery ... 157

Data Delivery Format .. 157
Data Delivery Frequency .. 159
Data Delivery Failure Handling ... 159
Amazon S3 Object Name Format .. 163
Index Rotation for the OpenSearch Service Destination ... 172
Delivery Across AWS Accounts and Across AWS Regions for HTTP Endpoint Destinations 173
Duplicated Records .. 173
How to Pause and Resume a Firehose delivery stream ... 173

Understanding how Firehose handles delivery failures .. 174
Pausing a Firehose delivery stream .. 174
Resuming a Firehose delivery stream .. 175

Monitoring ... 176

vi

Amazon Data Firehose Developer Guide

Best Practices with CloudWatch Alarms ... 176
Monitoring with CloudWatch Metrics .. 177

Dynamic Partitioning CloudWatch Metrics .. 178
Data Delivery CloudWatch Metrics ... 179
Data Ingestion Metrics .. 191
API-Level CloudWatch Metrics ... 198
Data Transformation CloudWatch Metrics .. 201
CloudWatch Logs Decompression Metrics ... 201
Format Conversion CloudWatch Metrics .. 202
Server-Side Encryption (SSE) CloudWatch Metrics .. 202
Dimensions for Amazon Data Firehose .. 203
Amazon Data Firehose Usage Metrics .. 203

Accessing CloudWatch Metrics for Amazon Data Firehose ... 204
Monitoring with CloudWatch Logs .. 205

Data Delivery Errors ... 206
Accessing CloudWatch Logs for Amazon Data Firehose .. 242
Monitoring Agent Health ... 242

Monitoring with CloudWatch ... 243
Logging Amazon Data Firehose API Calls with AWS CloudTrail ... 244

Amazon Data Firehose Information in CloudTrail ... 244
Example: Amazon Data Firehose Log File Entries .. 245

Custom Amazon S3 Prefixes ... 251
The timestamp namespace .. 251
The firehose namespace .. 251
partitionKeyFromLambda and partitionKeyFromQuery namespaces 253
Semantic rules .. 253
Example prefixes .. 254

Using Amazon Data Firehose with AWS PrivateLink ... 256
Interface VPC endpoints (AWS PrivateLink) for Amazon Data Firehose 256
Using interface VPC endpoints (AWS PrivateLink) for Amazon Data Firehose 256
Availability ... 259

Tagging Your Firehose streams .. 261
Tag Basics .. 261
Tracking Costs Using Tagging ... 262
Tag Restrictions .. 263
Tagging Firehose streams Using the Amazon Data Firehose API ... 263

vii

Amazon Data Firehose Developer Guide

Tutorial: Ingest VPC flow logs into Splunk using Amazon Data Firehose 264
Troubleshooting ... 265

Troubleshooting Amazon S3 ... 266
Troubleshooting Amazon Redshift ... 267
Troubleshooting Amazon OpenSearch Service .. 268
Troubleshooting Splunk ... 269
Troubleshooting Snowflake ... 270

Firehose delivery stream creation fails .. 270
Troubleshooting Firehose endpoint reachability ... 272
Troubleshooting HTTP Endpoints .. 273

CloudWatch Logs .. 273
Troubleshooting MSK As Source ... 276

Hose creation fails .. 277
Hose Suspended ... 277
Hose Backpresurred ... 277
Incorrect Data Freshness ... 277
MSK cluster connection issues ... 278

Other ... 280
Delivery Stream Not Available as a Target for CloudWatch Logs, CloudWatch Events, or
AWS IoT Action ... 281
Data Freshness Metric Increasing or Not Emitted ... 281
Record Format Conversion to Apache Parquet Fails ... 282
No Data at Destination Despite Good Metrics ... 283

Quota .. 284
Appendix - HTTP Endpoint Delivery Request and Response Specifications 288

Request Format .. 288
Response Format ... 292
Examples .. 294

Document History .. 296
AWS Glossary ... 299

viii

Amazon Data Firehose Developer Guide

Amazon Data Firehose was previously known as Amazon Kinesis Data Firehose

ix

Amazon Data Firehose Developer Guide

What Is Amazon Data Firehose?

Amazon Data Firehose is a fully managed service for delivering real-time streaming data to
destinations such as Amazon Simple Storage Service (Amazon S3), Amazon Redshift, Amazon
OpenSearch Service, Amazon OpenSearch Serverless, Splunk, and any custom HTTP endpoint or
HTTP endpoints owned by supported third-party service providers, including Datadog, Dynatrace,
LogicMonitor, MongoDB, New Relic, Coralogix, and Elastic. With Amazon Data Firehose, you don't
need to write applications or manage resources. You configure your data producers to send data to
Amazon Data Firehose, and it automatically delivers the data to the destination that you specified.
You can also configure Amazon Data Firehose to transform your data before delivering it.

For more information about AWS big data solutions, see Big Data on AWS. For more information
about AWS streaming data solutions, see What is Streaming Data?

Note

Note the latest AWS Streaming Data Solution for Amazon MSK that provides AWS
CloudFormation templates where data flows through producers, streaming storage,
consumers, and destinations.

Key Concepts

As you get started with Amazon Data Firehose, you can benefit from understanding the following
concepts:

Firehose stream

The underlying entity of Amazon Data Firehose. You use Amazon Data Firehose by creating
a Firehose stream and then sending data to it. For more information, see Creating a Firehose
stream and Sending Data to a Firehose stream.

record

The data of interest that your data producer sends to a Firehose stream. A record can be as
large as 1,000 KB.

Key Concepts 1

http://aws.amazon.com/streaming-data/
http://aws.amazon.com/big-data/
http://aws.amazon.com/streaming-data/
https://aws.amazon.com/solutions/implementations/aws-streaming-data-solution-for-amazon-msk/

Amazon Data Firehose Developer Guide

data producer

Producers send records to Firehose streams. For example, a web server that sends log data
to a Firehose stream is a data producer. You can also configure your Firehose stream to
automatically read data from an existing Kinesis data stream, and load it into destinations. For
more information, see Sending Data to a Firehose stream.

buffer size and buffer interval

Amazon Data Firehose buffers incoming streaming data to a certain size or for a certain period
of time before delivering it to destinations. Buffer Size is in MBs and Buffer Interval is in
seconds.

Data Flow

For Amazon S3 destinations, streaming data is delivered to your S3 bucket. If data transformation
is enabled, you can optionally back up source data to another Amazon S3 bucket.

For Amazon Redshift destinations, streaming data is delivered to your S3 bucket first. Amazon Data
Firehose then issues an Amazon Redshift COPY command to load data from your S3 bucket to your
Amazon Redshift cluster. If data transformation is enabled, you can optionally back up source data
to another Amazon S3 bucket.

Data Flow 2

Amazon Data Firehose Developer Guide

For OpenSearch Service destinations, streaming data is delivered to your OpenSearch Service
cluster, and it can optionally be backed up to your S3 bucket concurrently.

For Splunk destinations, streaming data is delivered to Splunk, and it can optionally be backed up
to your S3 bucket concurrently.

Data Flow 3

Amazon Data Firehose Developer Guide

Setting Up for Amazon Data Firehose

Before you use Amazon Data Firehose for the first time, complete the following tasks.

Tasks

• Sign Up for AWS

• Optional: Download Libraries and Tools

Sign Up for AWS

When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up
for all services in AWS, including Amazon Data Firehose. You are charged only for the services that
you use.

If you have an AWS account already, skip to the next task. If you don't have an AWS account, use
the following procedure to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

Optional: Download Libraries and Tools

The following libraries and tools will help you work with Amazon Data Firehose programmatically
and from the command line:

• The Firehose API Operations is the basic set of operations that Amazon Data Firehose supports.

Sign Up for AWS 4

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_Operations.html

Amazon Data Firehose Developer Guide

• The AWS SDKs for Go, Java, .NET, Node.js, Python, and Ruby include Amazon Data Firehose
support and samples.

If your version of the AWS SDK for Java does not include samples for Amazon Data Firehose, you
can also download the latest AWS SDK from GitHub.

• The AWS Command Line Interface supports Amazon Data Firehose. The AWS CLI enables you to
control multiple AWS services from the command line and automate them through scripts.

Optional: Download Libraries and Tools 5

https://docs.aws.amazon.com/sdk-for-go/api/service/firehose/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-net/
https://aws.amazon.com/sdk-for-javascript/
https://aws.amazon.com/developers/getting-started/python/
https://aws.amazon.com/developers/getting-started/ruby/
https://github.com/aws/aws-sdk-java/tree/master/src/samples
https://docs.aws.amazon.com/cli/latest/userguide/

Amazon Data Firehose Developer Guide

Creating a Firehose stream

You can use the AWS Management Console or an AWS SDK to create a Firehose stream to your
chosen destination.

You can update the configuration of your Firehose stream at any time after it’s created, using
the Amazon Data Firehose console or UpdateDestination. Your Firehose stream remains in the
ACTIVE state while your configuration is updated, and you can continue to send data. The updated
configuration normally takes effect within a few minutes. The version number of a Firehose stream
is increased by a value of 1 after you update the configuration. It is reflected in the delivered
Amazon S3 object name. For more information, see Amazon S3 Object Name Format.

The following topics describe how to create a Firehose stream:

Topics

• Source, Destination, and Name

• Record Transformation and Format Conversion

• Destination Settings

• Backup and Advanced Settings

• Buffering hints

Source, Destination, and Name

1. Sign in to the AWS Management Console and open the Amazon Data Firehose console at
https://console.aws.amazon.com/firehose

2. Choose Create Firehose stream.

3. Enter values for the following fields:

Source

• Direct PUT: Choose this option to create a Firehose stream that producer applications
write to directly. Currently, the following are AWS services and agents and open source
services that are integrated with Direct PUT in Amazon Data Firehose:

• AWS SDK

• AWS Lambda

Source, Destination, and Name 6

https://docs.aws.amazon.com/firehose/latest/APIReference/API_UpdateDestination.html

Amazon Data Firehose Developer Guide

• AWS CloudWatch Logs

• AWS CloudWatch Events

• AWS Cloud Metric Streams

• AWS IOT

• AWS Eventbridge

• Amazon Simple Email Service

• Amazon SNS

• AWS WAF web ACL logs

• Amazon API Gateway - Access logs

• Amazon Pinpoint

• Amazon MSK Broker Logs

• Amazon Route 53 Resolver query logs

• AWS Network Firewall Alerts Logs

• AWS Network Firewall Flow Logs

• Amazon Elasticache Redis SLOWLOG

• Kinesis Agent (linux)

• Kinesis Tap (windows)

• Fluentbit

• Fluentd

• Apache Nifi

• Snowflake

• Kinesis stream: Choose this option to configure a Firehose stream that uses a Kinesis
data stream as a data source. You can then use Amazon Data Firehose to read data easily
from an existing Kinesis data stream and load it into destinations. For more information
about using Kinesis Data Streams as your data source, see Writing to Amazon Data
Firehose Using Kinesis Data Streams.

• Amazon MSK: Choose this option to configure a Firehose stream that uses Amazon MSK
as a data source. You can then use Firehose to read data easily from an existing Amazon
MSK clusters and load it into specified S3 buckets. For more information about using
Amazon MSK as your data source, see Writing to Amazon Data Firehose Using Amazon
MSK.

Source, Destination, and Name 7

https://docs.aws.amazon.com/firehose/latest/dev/writing-with-kinesis-streams.html
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-kinesis-streams.html
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-msk.html
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-msk.html

Amazon Data Firehose Developer Guide

Firehose stream destination

The destination of your Firehose stream. Amazon Data Firehose can send data records
to various destinations, including Amazon Simple Storage Service (Amazon S3), Amazon
Redshift, Amazon OpenSearch Service, and any HTTP endpoint that is owned by you or any
of your third-party service providers. The following are the supported destinations:

• Amazon OpenSearch Service

• Amazon OpenSearch Serverless

• Amazon Redshift

• Amazon S3

• Coralogix

• Datadog

• Dynatrace

• Elastic

• HTTP Endpoint

• Honeycomb

• Logic Monitor

• Logz.io

• MongoDB Cloud

• New Relic

• Splunk

• Splunk Observability Cloud

• Sumo Logic

• Snowflake

Firehose stream name

The name of your Firehose stream.

Record Transformation and Format Conversion

Configure Amazon Data Firehose to transform and convert your record data.

• If you choose Amazon MSK as the source for your delivery stream:
Record Transformation and Format Conversion 8

Amazon Data Firehose Developer Guide

1. In the Transform source records with AWS Lambda section, provide values for the
following field:

Data transformation

To create a Firehose stream that doesn't transform incoming data, do not check the
Enable data transformation checkbox.

To specify a Lambda function for Firehose to invoke and use to transform incoming data
before delivering it, check the Enable data transformation checkbox. You can configure
a new Lambda function using one of the Lambda blueprints or choose an existing
Lambda function. Your Lambda function must contain the status model that is required
by Firehose. For more information, see Amazon Data Firehose Data Transformation.

2. In the Convert record format section, provide values for the following field:

Record format conversion

To create a Firehose stream that doesn't convert the format of the incoming data records,
choose Disabled.

To convert the format of the incoming records, choose Enabled, then specify the output
format you want. You need to specify an AWS Glue table that holds the schema that you
want Firehose to use to convert your record format. For more information, see Record
Format Conversion.

For an example of how to set up record format conversion with AWS CloudFormation, see
AWS::KinesisFirehose::DeliveryStream.

• If you choose Managed Service for Apache Flink or Direct PUT as the source for your delivery
stream, in the Source settings section:

1. Under Transform records, choose one of the following:

a. If your destination is Amazon S3 or Splunk, in the Decompress source records Amazon
CloudWatch Logs section, choose Turn on decompression.

b. In the Transform source records with AWS Lambda section, provide values for the
following field:

Record Transformation and Format Conversion 9

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-kinesisfirehose-deliverystream.html#aws-resource-kinesisfirehose-deliverystream--examples

Amazon Data Firehose Developer Guide

Data transformation

To create a Firehose stream that doesn't transform incoming data, do not check the
Enable data transformation checkbox.

To specify a Lambda function for Amazon Data Firehose to invoke and use to
transform incoming data before delivering it, check the Enable data transformation
checkbox. You can configure a new Lambda function using one of the Lambda
blueprints or choose an existing Lambda function. Your Lambda function must
contain the status model that is required by Amazon Data Firehose. For more
information, see Amazon Data Firehose Data Transformation.

2. In the Convert record format section, provide values for the following field:

Record format conversion

To create a Firehose stream that doesn't convert the format of the incoming data records,
choose Disabled.

To convert the format of the incoming records, choose Enabled, then specify the output
format you want. You need to specify an AWS Glue table that holds the schema that you
want Amazon Data Firehose to use to convert your record format. For more information,
see Record Format Conversion.

For an example of how to set up record format conversion with AWS CloudFormation, see
AWS::KinesisFirehose::DeliveryStream.

Destination Settings

This topic describes the destination settings for your delivery stream. For more information on
buffering hints, see Buffering hints.

Topics

• Choose Amazon S3 for Your Destination

• Choose Amazon Redshift for Your Destination

• Choose OpenSearch Service for Your Destination

• Choose OpenSearch Serverless for Your Destination

• Choose HTTP Endpoint for Your Destination

Destination Settings 10

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-kinesisfirehose-deliverystream.html#aws-resource-kinesisfirehose-deliverystream--examples

Amazon Data Firehose Developer Guide

• Choose Datadog for Your Destination

• Choose Honeycomb for Your Destination

• Choose Coralogix for Your Destination

• Choose Dynatrace for Your Destination

• Choose LogicMonitor for Your Destination

• Choose Logz.io for Your Destination

• Choose MongoDB Cloud for Your Destination

• Choose New Relic for Your Destination

• Choose Snowflake for Your Destination

• Choose Splunk for Your Destination

• Choose Splunk Observability Cloud for Your Destination

• Choose Sumo Logic for Your Destination

• Choose Elastic for Your Destination

Choose Amazon S3 for Your Destination

You must specify the following settings in order to use Amazon S3 as the destination for your
Firehose stream.

• Enter values for the following fields.

S3 bucket

Choose an S3 bucket that you own where the streaming data should be delivered. You can
create a new S3 bucket or choose an existing one.

New line delimiter

You can configure your delivery stream to add a new line delimiter between records in
objects that are delivered to Amazon S3. To do so, choose Enabled. To not add a new line
delimiter between records in objects that are delivered to Amazon S3, choose Disabled. If
you plan to use Athena to query S3 objects with aggregated records, enable this option.

Dynamic partitioning

Choose Enabled to enable and configure dynamic partitioning.

Choose Amazon S3 for Your Destination 11

Amazon Data Firehose Developer Guide

Multi record deaggregation

This is the process of parsing through the records in the delivery stream and separating
them based either on valid JSON or on the specified new line delimiter.

If you aggregate multiple events, logs, or records into a single PutRecord and
PutRecordBatch API call, you can still enable and configure dynamic partitioning. With
aggregated data, when you enable dynamic partitioning, Amazon Data Firehose parses the
records and looks for multiple valid JSON objects within each API call. When the Firehose
stream is configured with Kinesis Data Stream as a source, you can also use the built-in
aggregation in the Kinesis Producer Library (KPL). Data partition functionality is executed
after data is de-aggregated. Therefore, each record in each API call can be delivered to
different Amazon S3 prefixes. You can also leverage the Lambda function integration to
perform any other de-aggregation or any other transformation before the data partitioning
functionality.

Important

If your data is aggregated, dynamic partitioning can be applied only after data
deaggregation is performed. So if you enable dynamic partitioning to your
aggregated data, you must choose Enabled to enable multi record deaggregation.

Firehose stream preforms the following processing steps in the following order: KPL
(protobuf) de-aggregation, JSON or delimiter de-aggregation, Lambda processing, data
partitioning, data format conversion, and Amazon S3 delivery.

Multi record deaggregation type

If you enabled multi record deaggregation, you must specify the method for Firehose to
deaggregate your data. Use the drop-down menu to choose either JSON or Delimited.

Inline parsing

This is one of the supported mechanisms to dynamically partition your data that is bound
for Amazon S3. To use inline parsing for dynamic partitioning of your data, you must
specify data record parameters to be used as partitioning keys and provide a value for each
specified partitioning key. Choose Enabled to enable and configure inline parsing.

Choose Amazon S3 for Your Destination 12

Amazon Data Firehose Developer Guide

Important

If you specified an AWS Lambda function in the steps above for transforming your
source records, you can use this function to dynamically partition your data that
is bound to S3 and you can still create your partitioning keys with inline parsing.
With dynamic partitioning, you can use either inline parsing or your AWS Lambda
function to create your partitioning keys. Or you can use both inline parsing and
your AWS Lambda function at the same time to create your partitioning keys.

Dynamic partitioning keys

You can use the Key and Value fields to specify the data record parameters to be used
as dynamic partitioning keys and jq queries to generate dynamic partitioning key values.
Firehose supports jq 1.6 only. You can specify up to 50 dynamic partitioning keys. You must
enter valid jq expressions for your dynamic partitioning key values in order to successfully
configure dynamic partitioning for your Firehose stream.

S3 bucket prefix

When you enable and configure dynamic partitioning, you must specify the S3 bucket
prefixes to which Amazon Data Firehose is to deliver partitioned data.

In order for dynamic partitioning to be configured correctly, the number of the S3 bucket
prefixes must be identical to the number of the specified partitioning keys.

You can partition your source data with inline parsing or with your specified AWS Lambda
function. If you specified an AWS Lambda function to create partitioning keys for your
source data, you must manually type in the S3 bucket prefix value(s) using the following
format: "partitionKeyFromLambda:keyID". If you are using inline parsing to specify the
partitioning keys for your source data, you can either manually type in the S3 bucket
preview values using the following format: "partitionKeyFromQuery:keyID" or you can
choose the Apply dynamic partitioning keys button to use your dynamic partitioning
key/value pairs to auto-generate your S3 bucket prefixes. While partitioning your data
with either inline parsing or AWS Lambda, you can also use the following expression
forms in your S3 bucket prefix: !{namespace:value}, where namespace can be either
partitionKeyFromQuery or partitionKeyFromLambda.

Choose Amazon S3 for Your Destination 13

Amazon Data Firehose Developer Guide

S3 bucket and S3 error output prefix time zone

Choose a time zone that you want to use for date and time in Custom Prefixes for Amazon
Simple Storage Service Objects. By default, Firehose adds a time prefix in UTC. You can
change the time zone used in S3 prefixes if you want to use different time zone.

Buffering hints

Firehose buffers incoming data before delivering it to the specified destination. The
recommended buffer size for the destination varies from service provider to service
provider.

S3 compression

Choose GZIP, Snappy, Zip, or Hadoop-Compatible Snappy data compression, or no data
compression. Snappy, Zip, and Hadoop-Compatible Snappy compression is not available for
delivery streams with Amazon Redshift as the destination.

S3 file extension format (optional)

Specify a file extension format for objects delivered to Amazon S3 destination bucket.
If you enable this feature, specified file extension will override default file extensions
appended by Data Format Conversion or S3 compression features such as .parquet or .gz.
Make sure if you configured the right file extension when you use this feature with Data
Format Conversion or S3 compression. File extension must start with a period (.) and can
contain allowed characters: 0-9a-z!-_.*‘(). File extension cannot exceed 128 characters.

S3 encryption

Firehose supports Amazon S3 server-side encryption with AWS Key Management Service
(SSE-KMS) for encrypting delivered data in Amazon S3. You can choose to use the default
encryption type specified in the destination S3 bucket or to encrypt with a key from the
list of AWS KMS keys that you own. If you encrypt the data with AWS KMS keys, you can
use either the default AWS managed key (aws/s3) or a customer managed key. For more
information, see Protecting Data Using Server-Side Encryption with AWS KMS-Managed
Keys (SSE-KMS).

Choose Amazon Redshift for Your Destination

This section describes settings for using Amazon Redshift as your Firehose stream destination.

Choose Amazon Redshift for Your Destination 14

https://docs.aws.amazon.com/firehose/latest/dev/s3-prefixes.html
https://docs.aws.amazon.com/firehose/latest/dev/s3-prefixes.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html

Amazon Data Firehose Developer Guide

Choose either of the following procedures based on whether you have an Amazon Redshift
provisioned cluster or an Amazon Redshift Serverless workgroup.

• Amazon Redshift Provisioned Cluster

• Amazon Redshift Serverless Workgroup

Amazon Redshift Provisioned Cluster

This section describes settings for using Amazon Redshift provisioned cluster as your Firehose
stream destination.

• Enter values for the following fields:

Cluster

The Amazon Redshift cluster to which S3 bucket data is copied. Configure the Amazon
Redshift cluster to be publicly accessible and unblock Amazon Data Firehose IP addresses.
For more information, see Grant Amazon Data Firehose Access to an Amazon Redshift
Destination .

User name

An Amazon Redshift user with permissions to access the Amazon Redshift cluster. This user
must have the Amazon Redshift INSERT permission for copying data from the S3 bucket to
the Amazon Redshift cluster.

Password

The password for the user who has permissions to access the cluster.

Database

The Amazon Redshift database to where the data is copied.

Table

The Amazon Redshift table to where the data is copied.

Columns

(Optional) The specific columns of the table to which the data is copied. Use this option
if the number of columns defined in your Amazon S3 objects is less than the number of
columns within the Amazon Redshift table.

Choose Amazon Redshift for Your Destination 15

Amazon Data Firehose Developer Guide

Intermediate S3 destination

Firehose delivers your data to your S3 bucket first and then issues an Amazon Redshift
COPY command to load the data into your Amazon Redshift cluster. Specify an S3 bucket
that you own where the streaming data should be delivered. Create a new S3 bucket, or
choose an existing bucket that you own.

Firehose doesn't delete the data from your S3 bucket after loading it to your Amazon
Redshift cluster. You can manage the data in your S3 bucket using a lifecycle configuration.
For more information, see Object Lifecycle Management in the Amazon Simple Storage
Service User Guide.

Intermediate S3 prefix

(Optional) To use the default prefix for Amazon S3 objects, leave this option blank. Firehose
automatically uses a prefix in "YYYY/MM/dd/HH" UTC time format for delivered Amazon
S3 objects. You can add to the start of this prefix. For more information, see Amazon S3
Object Name Format.

COPY options

Parameters that you can specify in the Amazon Redshift COPY command. These might
be required for your configuration. For example, "GZIP" is required if Amazon S3 data
compression is enabled. "REGION" is required if your S3 bucket isn't in the same AWS
Region as your Amazon Redshift cluster. For more information, see COPY in the Amazon
Redshift Database Developer Guide.

COPY command

The Amazon Redshift COPY command. For more information, see COPY in the Amazon
Redshift Database Developer Guide.

Retry duration

Time duration (0–7200 seconds) for Firehose to retry if data COPY to your Amazon Redshift
cluster fails. Firehose retries every 5 minutes until the retry duration ends. If you set the
retry duration to 0 (zero) seconds, Firehose does not retry upon a COPY command failure.

Buffering hints

Firehose buffers incoming data before delivering it to the specified destination. The
recommended buffer size for the destination varies from service provider to service
provider.

Choose Amazon Redshift for Your Destination 16

https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html
https://docs.aws.amazon.com/redshift/latest/dg/r_COPY.html
https://docs.aws.amazon.com/redshift/latest/dg/r_COPY.html

Amazon Data Firehose Developer Guide

S3 compression

Choose GZIP, Snappy, Zip, or Hadoop-Compatible Snappy data compression, or no data
compression. Snappy, Zip, and Hadoop-Compatible Snappy compression is not available for
delivery streams with Amazon Redshift as the destination.

S3 file extension format (optional)

S3 file extension format (optional) – Specify a file extension format for objects delivered
to Amazon S3 destination bucket. If you enable this feature, specified file extension will
override default file extensions appended by Data Format Conversion or S3 compression
features such as .parquet or .gz. Make sure if you configured the right file extension when
you use this feature with Data Format Conversion or S3 compression. File extension must
start with a period (.) and can contain allowed characters: 0-9a-z!-_.*‘(). File extension
cannot exceed 128 characters.

S3 encryption

Firehose supports Amazon S3 server-side encryption with AWS Key Management Service
(SSE-KMS) for encrypting delivered data in Amazon S3. You can choose to use the default
encryption type specified in the destination S3 bucket or to encrypt with a key from the
list of AWS KMS keys that you own. If you encrypt the data with AWS KMS keys, you can
use either the default AWS managed key (aws/s3) or a customer managed key. For more
information, see Protecting Data Using Server-Side Encryption with AWS KMS-Managed
Keys (SSE-KMS).

Amazon Redshift Serverless Workgroup

This section describes settings for using Amazon Redshift Serverless workgroup as your Firehose
stream destination.

• Enter values for the following fields:

Workgroup name

The Amazon Redshift Serverless workgroup to which S3 bucket data is copied. Configure
the Amazon Redshift Serverless workgroup to be publicly accessible and unblock the
Firehose IP addresses. For more information, see the Connect to a publicly accessible

Choose Amazon Redshift for Your Destination 17

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html

Amazon Data Firehose Developer Guide

Amazon Redshift Serverless instance section in Connecting to Amazon Redshift Serverless
and also Grant Amazon Data Firehose Access to an Amazon Redshift Destination .

User name

An Amazon Redshift user with permissions to access the Amazon Redshift Serverless
workgroup. This user must have the Amazon Redshift INSERT permission for copying data
from the S3 bucket to the Amazon Redshift Serverless workgroup.

Password

The password for the user who has permissions to access the Amazon Redshift Serverless
workgroup.

Database

The Amazon Redshift database to where the data is copied.

Table

The Amazon Redshift table to where the data is copied.

Columns

(Optional) The specific columns of the table to which the data is copied. Use this option
if the number of columns defined in your Amazon S3 objects is less than the number of
columns within the Amazon Redshift table.

Intermediate S3 destination

Amazon Data Firehose delivers your data to your S3 bucket first and then issues an
Amazon Redshift COPY command to load the data into your Amazon Redshift Serverless
workgroup. Specify an S3 bucket that you own where the streaming data should be
delivered. Create a new S3 bucket, or choose an existing bucket that you own.

Firehose doesn't delete the data from your S3 bucket after loading it to your Amazon
Redshift Serverless workgroup. You can manage the data in your S3 bucket using a lifecycle
configuration. For more information, see Object Lifecycle Management in the Amazon
Simple Storage Service User Guide.

Intermediate S3 prefix

(Optional) To use the default prefix for Amazon S3 objects, leave this option blank. Firehose
automatically uses a prefix in "YYYY/MM/dd/HH" UTC time format for delivered Amazon

Choose Amazon Redshift for Your Destination 18

https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-connecting.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html

Amazon Data Firehose Developer Guide

S3 objects. You can add to the start of this prefix. For more information, see Amazon S3
Object Name Format.

COPY options

Parameters that you can specify in the Amazon Redshift COPY command. These might
be required for your configuration. For example, "GZIP" is required if Amazon S3 data
compression is enabled. "REGION" is required if your S3 bucket isn't in the same AWS
Region as your Amazon Redshift Serverless workgroup. For more information, see COPY in
the Amazon Redshift Database Developer Guide.

COPY command

The Amazon Redshift COPY command. For more information, see COPY in the Amazon
Redshift Database Developer Guide.

Retry duration

Time duration (0–7200 seconds) for Firehose to retry if data COPY to your Amazon Redshift
Serverless workgroup fails. Firehose retries every 5 minutes until the retry duration ends.
If you set the retry duration to 0 (zero) seconds, Firehose does not retry upon a COPY
command failure.

Buffering hints

Firehose buffers incoming data before delivering it to the specified destination. The
recommended buffer size for the destination varies from service provider to service
provider.

S3 compression

Choose GZIP, Snappy, Zip, or Hadoop-Compatible Snappy data compression, or no data
compression. Snappy, Zip, and Hadoop-Compatible Snappy compression is not available for
delivery streams with Amazon Redshift as the destination.

S3 file extension format (optional)

S3 file extension format (optional) – Specify a file extension format for objects delivered
to Amazon S3 destination bucket. If you enable this feature, specified file extension will
override default file extensions appended by Data Format Conversion or S3 compression
features such as .parquet or .gz. Make sure if you configured the right file extension when
you use this feature with Data Format Conversion or S3 compression. File extension must

Choose Amazon Redshift for Your Destination 19

https://docs.aws.amazon.com/redshift/latest/dg/r_COPY.html
https://docs.aws.amazon.com/redshift/latest/dg/r_COPY.html

Amazon Data Firehose Developer Guide

start with a period (.) and can contain allowed characters: 0-9a-z!-_.*‘(). File extension
cannot exceed 128 characters.

S3 encryption

Firehose supports Amazon S3 server-side encryption with AWS Key Management Service
(SSE-KMS) for encrypting delivered data in Amazon S3. You can choose to use the default
encryption type specified in the destination S3 bucket or to encrypt with a key from the
list of AWS KMS keys that you own. If you encrypt the data with AWS KMS keys, you can
use either the default AWS managed key (aws/s3) or a customer managed key. For more
information, see Protecting Data Using Server-Side Encryption with AWS KMS-Managed
Keys (SSE-KMS).

Choose OpenSearch Service for Your Destination

This section describes options for using OpenSearch Service for your destination.

• Enter values for the following fields:

OpenSearch Service domain

The OpenSearch Service domain to which your data is delivered.

Index

The OpenSearch Service index name to be used when indexing data to your OpenSearch
Service cluster.

Index rotation

Choose whether and how often the OpenSearch Service index should be rotated. If index
rotation is enabled, Amazon Data Firehose appends the corresponding timestamp to
the specified index name and rotates. For more information, see Index Rotation for the
OpenSearch Service Destination.

Type

The OpenSearch Service type name to be used when indexing data to your OpenSearch
Service cluster. For Elasticsearch 7.x and OpenSearch 1.x, there can be only one type per
index. If you try to specify a new type for an existing index that already has another type,
Firehose returns an error during runtime.

Choose OpenSearch Service for Your Destination 20

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html

Amazon Data Firehose Developer Guide

For Elasticsearch 7.x, leave this field empty.

Retry duration

Time duration for Firehose to retry if an index request to OpenSearch fails. In this case,
Firehose retries every 5 mins until the retry duration expires. For retry duration, you can set
any value between 0-7200 seconds.

After the retry duration expires, Firehose delivers the data to Dead Letter Queue (DLQ), a
configured S3 error bucket. For data delivered to DLQ, you have to re-drive the data back
from configured S3 error bucket to OpenSearch destination.

If you want to block Firehose stream from delivering data to DLQ due to downtime or
maintenance of OpenSearch clusters, you can configure the retry duration to a higher value
in seconds. You can increase the retry duration value above to 7200 seconds by contacting
the AWS support.

DocumentID type

Indicates the method for setting up document ID. The supported methods are Firehose-
generated document ID and OpenSearch Service-generated document ID. Firehose-
generated document ID is the default option when the document ID value is not set.
OpenSearch Service-generated document ID is the recommended option because it
supports write-heavy operations, including log analytics and observability, consuming
fewer CPU resources at the OpenSearch Service domain and thus, resulting in improved
performance.

Destination VPC connectivity

If your OpenSearch Service domain is in a private VPC, use this section to specify that
VPC. Also specify the subnets and subgroups that you want Amazon Data Firehose to use
when it sends data to your OpenSearch Service domain. You can use the same security
groups that the OpenSearch Service domain is using. If you specify different security
groups, ensure that they allow outbound HTTPS traffic to the OpenSearch Service domain's
security group. Also ensure that the OpenSearch Service domain's security group allows
HTTPS traffic from the security groups that you specified when you configured your
Firehose stream. If you use the same security group for both your Firehose stream and the
OpenSearch Service domain, make sure the security group's inbound rule allows HTTPS
traffic. For more information about security group rules, see Security group rules in the
Amazon VPC documentation.

Choose OpenSearch Service for Your Destination 21

https://aws.amazon.com/contact-us/
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#SecurityGroupRules

Amazon Data Firehose Developer Guide

Important

When you specify subnets for delivering data to the destination in a private VPC,
make sure you have enough number of free IP addresses in chosen subnets. If there
is no available free IP address in a specified subnet, Firehose cannot create or add
ENIs for the data delivery in the private VPC, and the delivery will be degraded or
fail.

Buffer hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies from service provider
to service provider.

Choose OpenSearch Serverless for Your Destination

This section describes options for using OpenSearch Serverless for your destination.

• Enter values for the following fields:

OpenSearch Serverless collection

The endpoint for a group of OpenSearch Serverless indexes to which your data is delivered.

Index

The OpenSearch Serverless index name to be used when indexing data to your OpenSearch
Serverless collection.

Destination VPC connectivity

If your OpenSearch Serverless collection is in a private VPC, use this section to specify that
VPC. Also specify the subnets and subgroups that you want Amazon Data Firehose to use
when it sends data to your OpenSearch Serverless collection.

Choose OpenSearch Serverless for Your Destination 22

Amazon Data Firehose Developer Guide

Important

When you specify subnets for delivering data to the destination in a private VPC,
make sure you have enough number of free IP addresses in chosen subnets. If there
is no available free IP address in a specified subnet, Firehose cannot create or add
ENIs for the data delivery in the private VPC, and the delivery will be degraded or
fail.

Retry duration

Time duration for Firehose to retry if an index request to OpenSearch Serverless fails. In
this case, Firehose retries every 5 mins until the retry duration expires. For retry duration,
you can set any value between 0-7200 seconds.

After the retry duration expires, Firehose delivers the data to Dead Letter Queue (DLQ), a
configured S3 error bucket. For data delivered to DLQ, you have to re-drive the data back
from configured S3 error bucket to OpenSearch Serverless destination.

If you want to block Firehose stream from delivering data to DLQ due to downtime or
maintenance of OpenSearch Serverless clusters, you can configure the retry duration to a
higher value in seconds. You can increase the retry duration value above to 7200 seconds
by contacting the AWS support.

Buffer hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies from service provider
to service provider.

Choose HTTP Endpoint for Your Destination

This section describes options for using HTTP endpoint for your destination.

Important

If you choose an HTTP endpoint as your destination, review and follow the instructions in
Appendix - HTTP Endpoint Delivery Request and Response Specifications.

Choose HTTP Endpoint for Your Destination 23

https://aws.amazon.com/contact-us/

Amazon Data Firehose Developer Guide

• Provide values for the following fields:

HTTP endpoint name - optional

Specify a user friendly name for the HTTP endpoint. For example, My HTTP Endpoint
Destination.

HTTP endpoint URL

Specify the URL for the HTTP endpoint in the following format: https://
xyz.httpendpoint.com. The URL must be an HTTPS URL.

Access key - optional

Contact the endpoint owner to obtain the access key (if it is required) to enable data
delivery to their endpoint from Firehose.

Content encoding

Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. Choose GZIP or Disabled to enable/disable content encoding
of your request.

Retry duration

Specify how long Amazon Data Firehose retries sending data to the selected HTTP
endpoint.

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within
the acknowledgment timeout period, Amazon Data Firehose starts the retry duration
counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in

Choose HTTP Endpoint for Your Destination 24

Amazon Data Firehose Developer Guide

the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies from service provider
to service provider.

Important

For the HTTP endpoint destinations, if you are seeing 413 response codes from the
destination endpoint in CloudWatch Logs, lower the buffering hint size on your
Firehose stream and try again.

Choose Datadog for Your Destination

This section describes options for using Datadog for your destination. For more information about
Datadog, see https://docs.datadoghq.com/integrations/amazon_web_services/.

• Provide values for the following fields:

HTTP endpoint URL

Choose the HTTP endpoint URL from the following options in the drop down menu:

• Datadog logs - US1

• Datadog logs - US5

• Datadog logs - EU

• Datadog logs - GOV

• Datadog metrics - US

• Datadog metrics - EU

Choose Datadog for Your Destination 25

https://docs.datadoghq.com/integrations/amazon_web_services/

Amazon Data Firehose Developer Guide

API key

Contact Datadog to obtain the API key required to enable data delivery to this endpoint
from Amazon Data Firehose.

Content encoding

Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. Choose GZIP or Disabled to enable/disable content encoding
of your request.

Retry duration

Specify how long Amazon Data Firehose retries sending data to the selected HTTP
endpoint.

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within
the acknowledgment timeout period, Amazon Data Firehose starts the retry duration
counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Choose Datadog for Your Destination 26

Amazon Data Firehose Developer Guide

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies from service provider
to service provider.

Choose Honeycomb for Your Destination

This section describes options for using Honeycomb for your destination. For more information
about Honeycomb, see https://docs.honeycomb.io/getting-data-in/metrics/aws-cloudwatch-
metrics/ .

• Provide values for the following fields:

Honeycomb Kinesis endpoint

Specify the URL for the HTTP endpoint in the following format: https://
api.honeycomb.io/1/kinesis_events/{{dataset}}

API key

Contact Honeycomb to obtain the API key required to enable data delivery to this endpoint
from Amazon Data Firehose.

Content encoding

Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. Choose GZIP to enable content encoding of your request. This
is the recommended option for the Honeycomb destination.

Retry duration

Specify how long Amazon Data Firehose retries sending data to the selected HTTP
endpoint.

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within
the acknowledgment timeout period, Amazon Data Firehose starts the retry duration
counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Choose Honeycomb for Your Destination 27

https://docs.honeycomb.io/getting-data-in/metrics/aws-cloudwatch-metrics/
https://docs.honeycomb.io/getting-data-in/metrics/aws-cloudwatch-metrics/

Amazon Data Firehose Developer Guide

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies from service provider
to service provider.

Choose Coralogix for Your Destination

This section describes options for using Coralogix for your destination. For more information about
Coralogix, see https://coralogix.com/integrations/aws-firehose .

• Provide values for the following fields:

HTTP endpoint URL

Choose the HTTP endpoint URL from the following options in the drop down menu:

• Coralogix - US

• Coralogix - SINGAPORE

• Coralogix - IRELAND

• Coralogix - INDIA

• Coralogix - STOCKHOLM
Choose Coralogix for Your Destination 28

https://coralogix.com/integrations/aws-firehose

Amazon Data Firehose Developer Guide

Private key

Contact Coralogix to obtain the private key required to enable data delivery to this
endpoint from Amazon Data Firehose.

Content encoding

Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. Choose GZIP to enable content encoding of your request. This
is the recommended option for the Coralogix destination.

Retry duration

Specify how long Amazon Data Firehose retries sending data to the selected HTTP
endpoint.

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within
the acknowledgment timeout period, Amazon Data Firehose starts the retry duration
counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

• applicationName: the environment where you are running Data Firehose

• subsystemName: the name of the Data Firehose integration

• computerName: the name of the Firehose stream in use
Choose Coralogix for Your Destination 29

Amazon Data Firehose Developer Guide

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies from service provider
to service provider.

Choose Dynatrace for Your Destination

This section describes options for using Dynatrace for your destination. For more information, see
https://www.dynatrace.com/support/help/technology-support/cloud-platforms/amazon-web-
services/integrations/cloudwatch-metric-streams/.

• Choose options to use Dynatrace as the destination for your Firehose delivery stream:

Ingestion type

Choose whether you want to deliver Metrics or Logs (default) in Dynatrace for further
analysis and processing.

HTTP endpoint URL

Choose the HTTP endpoint URL (Dynatrace US, Dynatrace EU, or Dynatrace Global) from
the drop-down menu.

API token

Generate the Dynatrace API token required for data delivery from Firehose. For more
information on how to generate this token, see Dynatrace API - Tokens and authentication.

API URL

Provide the API URL of your Dynatrace environment.

Content encoding

Choose whether you want to enable content encoding to compress body of the request.
Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. When enabled, the content it compressed in the GZIP format.

Retry duration

Specify how long Firehose retries sending data to the selected HTTP endpoint.

Choose Dynatrace for Your Destination 30

https://www.dynatrace.com/support/help/technology-support/cloud-platforms/amazon-web-services/integrations/cloudwatch-metric-streams/
https://www.dynatrace.com/support/help/technology-support/cloud-platforms/amazon-web-services/integrations/cloudwatch-metric-streams/
https://www.dynatrace.com/support/help/dynatrace-api/basics/dynatrace-api-authentication/

Amazon Data Firehose Developer Guide

After sending data, Firehose first waits for an acknowledgment from the HTTP endpoint. If
an error occurs or the acknowledgment doesn’t arrive within the acknowledgment timeout
period, Firehose starts the retry duration counter. It keeps retrying until the retry duration
expires. After that, Firehose considers it a data delivery failure and backs up the data to
your Amazon S3 bucket.

Every time that Firehose sends data to the HTTP endpoint, either during the initial attempt
or after retrying, it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Firehose still waits for the acknowledgment until it
receives it or the acknowledgement timeout period is reached. If the acknowledgment
times out, Firehose determines whether there's time left in the retry counter. If there is
time left, it retries again and repeats the logic until it receives an acknowledgment or
determines that the retry time has expired.

If you don't want Firehose to retry sending data, set this value to 0.

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The buffer hints include the buffer size and interval for your streams. The
recommended buffer size for the destination varies according to the service provider.

Choose LogicMonitor for Your Destination

This section describes options for using LogicMonitor for your destination. For more information,
see https://www.logicmonitor.com.

• Provide values for the following fields:

Choose LogicMonitor for Your Destination 31

https://www.logicmonitor.com

Amazon Data Firehose Developer Guide

HTTP endpoint URL

Specify the URL for the HTTP endpoint in the following format: https://
ACCOUNT.logicmonitor.com

API key

Contact LogicMonitor to obtain the API key required to enable data delivery to this
endpoint from Amazon Data Firehose.

Content encoding

Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. Choose GZIP or Disabled to enable/disable content encoding
of your request.

Retry duration

Specify how long Amazon Data Firehose retries sending data to the selected HTTP
endpoint.

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within
the acknowledgment timeout period, Amazon Data Firehose starts the retry duration
counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Choose LogicMonitor for Your Destination 32

Amazon Data Firehose Developer Guide

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies from service provider
to service provider.

Choose Logz.io for Your Destination

This section describes options for using Logz.io for your destination. For more information, see
https://logz.io/.

Note

In the Europe (Milan) region, Logz.io is not supported as an Amazon Data Firehose
destination.

• Provide values for the following fields:

HTTP endpoint URL

Specify the URL for the HTTP endpoint in the following format: https://listener-
aws-metrics-stream-<region>.logz.io/. For example, https://listener-aws-
metrics-stream-us.logz.io/. The URL must be an HTTPS URL.

Content encoding

Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. Choose GZIP or Disabled to enable/disable content encoding
of your request.

Retry duration

Specify how long Amazon Data Firehose retries sending data to Logz.io.

Choose Logz.io for Your Destination 33

https://logz.io/

Amazon Data Firehose Developer Guide

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within
the acknowledgment timeout period, Amazon Data Firehose starts the retry duration
counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies from service provider
to service provider.

Choose MongoDB Cloud for Your Destination

This section describes options for using MongoDB Cloud for your destination. For more
information, see https://www.mongodb.com.

• Provide values for the following fields:

Choose MongoDB Cloud for Your Destination 34

https://www.mongodb.com

Amazon Data Firehose Developer Guide

MongoDB Realm webhook URL

Specify the URL for the HTTP endpoint in the following format: https://
webhooks.mongodb-realm.com. The URL must be an HTTPS URL.

API key

Contact MongoDB Cloud to obtain the API key required to enable data delivery to this
endpoint from Amazon Data Firehose.

Content encoding

Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. Choose GZIP or Disabled to enable/disable content encoding
of your request.

Retry duration

Specify how long Amazon Data Firehose retries sending data to the selected third-party
provider.

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within
the acknowledgment timeout period, Amazon Data Firehose starts the retry duration
counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Choose MongoDB Cloud for Your Destination 35

Amazon Data Firehose Developer Guide

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies from service provider
to service provider.

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Choose New Relic for Your Destination

This section describes options for using New Relic for your destination. For more information, see
https://newrelic.com.

• Provide values for the following fields:

HTTP endpoint URL

Choose the HTTP endpoint URL from the following options in the drop down menu:

• New Relic logs - US

• New Relic metrics - US

• New Relic metrics - EU

API key

Enter your License Key (40-characters hexadecimal string) from your New Relic One
Account settings. This API key is required to enable data delivery to this endpoint from
Firehose.

Content encoding

Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. Choose GZIP or Disabled to enable/disable content encoding
of your request.

Retry duration

Specify how long Amazon Data Firehose retries sending data to the New Relic HTTP
endpoint.

Choose New Relic for Your Destination 36

https://newrelic.com

Amazon Data Firehose Developer Guide

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within
the acknowledgment timeout period, Amazon Data Firehose starts the retry duration
counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies from service provider
to service provider.

Choose Snowflake for Your Destination

This section describes options for using Snowflake for your destination.

Note

Firehose integration with Snowflake is available in the US East (N. Virginia), US West
(Oregon), Europe (Ireland) , US East (Ohio), Asia Pacific (Tokyo), and Europe (Frankfurt) AWS
Regions.

Choose Snowflake for Your Destination 37

Amazon Data Firehose Developer Guide

Connection settings

• Provide values for the following fields:

Snowflake account URL

Specify a Snowflake account URL. For example: xy12345.us-
east-1.aws.snowflakecomputing.com. Refer to Snowflake documentation on how
to determine your account URL. Note that you mustn't specify the port number, whereas
protocol (https://) is optional.

User login

Specify the Snowflake user to be used for loading data. Make sure the user has access to
insert data into the Snowflake table.

Private key

Specify the user’s private key of the key pair used for authentication with Snowflake. Make
sure the private key is in PKCS8 format. Do not include PEM header and footer as part of
Private Key. If the key is split across multiple lines, remove the line breaks.

Passphrase

Passphrase to decrypt the private key when the key is encrypted. Leave this field empty
if private key is not encrypted. For information, see Using Key Pair Authentication & Key
Rotation.

Role configuration

Use default Snowflake role – If this option is selected, Firehose will not pass any role to
Snowflake. Default role is assumed to load data. Please make sure the default role has
permission to insert data in to Snowflake table.

Use custom Snowflake role – Enter a non-default Snowflake role to be assumed by Firehose
when loading data into Snowflake table.

Snowflake connectivity

Options are Private or Public.

Choose Snowflake for Your Destination 38

https://docs.snowflake.com/en/user-guide/admin-account-identifier#format-2-legacy-account-locator-in-a-region
https://docs.snowflake.com/en/user-guide/data-load-snowpipe-streaming-configuration#using-key-pair-authentication-key-rotation
https://docs.snowflake.com/en/user-guide/data-load-snowpipe-streaming-configuration#using-key-pair-authentication-key-rotation

Amazon Data Firehose Developer Guide

Private VPCE ID (optional)

The VPCE ID for Firehose to privately connect with Snowflake. The ID format is
com.amazonaws.vpce.[region].vpce-svc-[id]. For more information, see AWS PrivateLink &
Snowflake.

Note

Make sure that your Snowflake network permits access to Firehose. To gain access,
either contact AWS Support to add a Firehose VPC endpoint to your allow list, or
consider disabling the network policy on your Snowflake cluster.

Database configuration

• You must specify the following settings in order to use Snowflake as the destination for your
Firehose delivery stream:

• Snowflake database – All data in Snowflake is maintained in databases.

• Snowflake schema – Each database consists of one or more schemas, which are logical
groupings of database objects, such as tables and views

• Snowflake table – All data in Snowflake is stored in database tables, logically structured as
collections of columns and rows.

Data loading options for your Snowflake table

• Use JSON keys as column names

• Use VARIANT columns

• Content column name – Specify a column name in the table, where the raw data has to be
loaded.

• Metadata column name (optional) – Specify a column name in the table, where the metadata
information has to be loaded.

Retry duration

Time duration (0–7200 seconds) for Firehose to retry if either opening channel or delivery to
Snowflake fails due to Snowflake service issues. Firehose retries with exponential backoff until the

Choose Snowflake for Your Destination 39

https://docs.snowflake.com/en/user-guide/admin-security-privatelink
https://docs.snowflake.com/en/user-guide/admin-security-privatelink

Amazon Data Firehose Developer Guide

retry duration ends. If you set the retry duration to 0 (zero) seconds, Firehose does not retry upon
Snowflake failures and routes data to Amazon S3 error bucket.

Choose Splunk for Your Destination

This section describes options for using Splunk for your destination.

Note

Firehose delivers data to Splunk clusters configured with Classic Load Balancer or an
Application Load Balancer.

• Provide values for the following fields:

Splunk cluster endpoint

To determine the endpoint, see Configure Amazon Data Firehose to Send Data to the
Splunk Platform in the Splunk documentation.

Splunk endpoint type

Choose Raw endpoint in most cases. Choose Event endpoint if you preprocessed your
data using AWS Lambda to send data to different indexes by event type. For information
about what endpoint to use, see Configure Amazon Data Firehose to send data to the
Splunk platform in the Splunk documentation.

Authentication token

To set up a Splunk endpoint that can receive data from Amazon Data Firehose, see
Installation and configuration overview for the Splunk Add-on for Amazon Data Firehose in
the Splunk documentation. Save the token that you get from Splunk when you set up the
endpoint for this Firehose stream, and add it here.

HEC acknowledgement timeout

Specify how long Amazon Data Firehose waits for the index acknowledgement from
Splunk. If Splunk doesn’t send the acknowledgment before the timeout is reached, Amazon
Data Firehose considers it a data delivery failure. Amazon Data Firehose then either retries
or backs up the data to your Amazon S3 bucket, depending on the retry duration value that
you set.

Choose Splunk for Your Destination 40

http://docs.splunk.com/Documentation/AddOns/latest/Firehose/ConfigureFirehose
http://docs.splunk.com/Documentation/AddOns/latest/Firehose/ConfigureFirehose
http://docs.splunk.com/Documentation/AddOns/released/Firehose/ConfigureFirehose
http://docs.splunk.com/Documentation/AddOns/released/Firehose/ConfigureFirehose
http://docs.splunk.com/Documentation/AddOns/released/Firehose/Installationoverview

Amazon Data Firehose Developer Guide

Retry duration

Specify how long Amazon Data Firehose retries sending data to Splunk.

After sending data, Amazon Data Firehose first waits for an acknowledgment from Splunk.
If an error occurs or the acknowledgment doesn’t arrive within the acknowledgment
timeout period, Amazon Data Firehose starts the retry duration counter. It keeps retrying
until the retry duration expires. After that, Amazon Data Firehose considers it a data
delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to Splunk (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from Splunk.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Choose Splunk Observability Cloud for Your Destination

This section describes options for using Splunk Observability Cloud for your destination. For more
information, see https://docs.splunk.com/observability/en/gdi/get-data-in/connect/aws/aws-
apiconfig.html#connect-to-aws-using-the-splunk-observability-cloud-api.

• Provide values for the following fields:

Cloud Ingest Endpoint URL

You can find your Splunk Observability Cloud’s Real-time Data Ingest URL in Profile >
Organizations > Real-time Data Ingest Endpoint in Splunk Observability console.

Access Token

Copy your Splunk Observability access token with INGEST authorization scope from
Settings > Access Tokens in Splunk Observability console

Choose Splunk Observability Cloud for Your Destination 41

https://docs.splunk.com/Observability/gdi/get-data-in/connect/aws/aws-apiconfig.html#connect-to-aws-using-the-splunk-observability-cloud-api
https://docs.splunk.com/Observability/gdi/get-data-in/connect/aws/aws-apiconfig.html#connect-to-aws-using-the-splunk-observability-cloud-api

Amazon Data Firehose Developer Guide

Content Encoding

Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. Choose GZIP or Disabled to enable/disable content encoding
of your request.

Retry duration

Specify how long Amazon Data Firehose retries sending data to the selected HTTP
endpoint.

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within
the acknowledgment timeout period, Amazon Data Firehose starts the retry duration
counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies from service provider
to service provider.

Choose Splunk Observability Cloud for Your Destination 42

Amazon Data Firehose Developer Guide

Choose Sumo Logic for Your Destination

This section describes options for using Sumo Logic for your destination. For more information, see
https://www.sumologic.com.

• Provide values for the following fields:

HTTP endpoint URL

Specify the URL for the HTTP endpoint in the following format: https://deployment
name.sumologic.net/receiver/v1/kinesis/dataType/access token. The URL
must be an HTTPS URL.

Content encoding

Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. Choose GZIP or Disabled to enable/disable content encoding
of your request.

Retry duration

Specify how long Amazon Data Firehose retries sending data to Sumo Logic.

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within
the acknowledgment timeout period, Amazon Data Firehose starts the retry duration
counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Choose Sumo Logic for Your Destination 43

https://www.sumologic.com

Amazon Data Firehose Developer Guide

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the Elastic destination varies from service
provider to service provider.

Choose Elastic for Your Destination

This section describes options for using Elastic for your destination.

• Provide values for the following fields:

Elastic endpoint URL

Specify the URL for the HTTP endpoint in the following format: https://<cluster-
id>.es.<region>.aws.elastic-cloud.com. The URL must be an HTTPS URL.

API key

Contact Elastic service to obtain the API key required to enable data delivery to their
service from Amazon Data Firehose.

Content encoding

Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. Choose GZIP (which is what selected by default) or Disabled
to enable/disable content encoding of your request.

Retry duration

Specify how long Amazon Data Firehose retries sending data to Elastic.

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within
the acknowledgment timeout period, Amazon Data Firehose starts the retry duration
counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Choose Elastic for Your Destination 44

Amazon Data Firehose Developer Guide

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the Elastic destination is 1 MiB.

Backup and Advanced Settings

This topic describes how to configure the backup and the advanced settings for your Firehose
stream.

Backup Settings

Amazon Data Firehose uses Amazon S3 to backup all or failed only data that it attempts to deliver
to your chosen destination.

Important

• Backup settings are only supported if the source for your Firehose stream is Direct PUT or
Kinesis Data Streams.

• Zero buffering feature is only available for the application destinations and is not
available for Amazon S3 backup destination.

Backup and Advanced Settings 45

Amazon Data Firehose Developer Guide

You can specify the S3 backup settings for your Firehose stream if you made one of the following
choices:

• If you set Amazon S3 as the destination for your Amazon Data Firehose Firehose stream and you
choose to specify an AWS Lambda function to transform data records or if you choose to convert
data record formats for your delivery stream.

• If you set Amazon Redshift as the destination for your Amazon Data Firehose Firehose stream
and you choose to specify an AWS Lambda function to transform data records.

• If you set any of the following services as the destination for your Firehose Firehose stream:
Amazon OpenSearch Service, Datadog, Dynatrace, HTTP Endpoint, LogicMonitor, MongoDB
Cloud, New Relic, Splunk, or Sumo Logic.

The following are the backup settings for your Amazon Data Firehose delivery stream:

• Source record backup in Amazon S3 - if S3 or Amazon Redshift is your selected destination, this
setting indicates whether you want to enable source data backup or keep it disabled. If any other
supported service (other than S3 or Amazon Redshift) is set as your selected destination, then
this setting indicates if you want to backup all your source data or failed data only.

• S3 backup bucket - this is the S3 bucket where Amazon Data Firehose backs up your data.

• S3 backup bucket prefix - this is the prefix where Amazon Data Firehose backs up your data.

• S3 backup bucket error output prefix - all failed data is backed up in the this S3 bucket error
output prefix.

• Buffering hints, compression and encryption for backup - Amazon Data Firehose uses Amazon S3
to backup all or failed only data that it attempts to deliver to your chosen destination. Amazon
Data Firehose buffers incoming data before delivering it (backing it up) to Amazon S3. You can
choose a buffer size of 1–128 MiBs and a buffer interval of 60–900 seconds. The condition that is
satisfied first triggers data delivery to Amazon S3. If you enable data transformation, the buffer
interval applies from the time transformed data is received by Amazon Data Firehose to the
data delivery to Amazon S3. If data delivery to the destination falls behind data writing to the
Firehose stream, Amazon Data Firehose raises the buffer size dynamically to catch up. This action
helps ensure that all data is delivered to the destination.

• S3 compression - choose GZIP, Snappy, Zip, or Hadoop-Compatible Snappy data compression, or
no data compression. Snappy, Zip, and Hadoop-Compatible Snappy compression is not available
for delivery streams with Amazon Redshift as the destination.

Backup Settings 46

Amazon Data Firehose Developer Guide

• S3 file extension format (optional) – Specify a file extension format for objects delivered to
Amazon S3 destination bucket. If you enable this feature, specified file extension will override
default file extensions appended by Data Format Conversion or S3 compression features such
as .parquet or .gz. Make sure if you configured the right file extension when you use this feature
with Data Format Conversion or S3 compression. File extension must start with a period (.) and
can contain allowed characters: 0-9a-z!-_.*‘(). File extension cannot exceed 128 characters.

• Firehose supports Amazon S3 server-side encryption with AWS Key Management Service (SSE-
KMS) for encrypting delivered data in Amazon S3. You can choose to use the default encryption
type specified in the destination S3 bucket or to encrypt with a key from the list of AWS KMS
keys that you own. If you encrypt the data with AWS KMS keys, you can use either the default
AWS managed key (aws/s3) or a customer managed key. For more information, see Protecting
Data Using Server-Side Encryption with AWS KMS-Managed Keys (SSE-KMS).

Advanced Settings

The following are the advanced settings for your Amazon Data Firehose delivery stream:

• Server-side encryption - Amazon Data Firehose supports Amazon S3 server-side encryption with
AWS Key Management Service (AWS KMS) for encrypting delivered data in Amazon S3. For more
information, see Protecting Data Using Server-Side Encryption with AWS KMS–Managed Keys
(SSE-KMS).

• Error logging - Amazon Data Firehose logs errors related to processing and delivery. Additionally,
when data transformation is enabled, it can log Lambda invocations and send data delivery
errors to CloudWatch Logs. For more information, see Monitoring Amazon Data Firehose Using
CloudWatch Logs.

Important

While optional, enabling Amazon Data Firehose error logging during Firehose stream
creation is strongly recommended. This practice ensures that you can access error details
in case of record processing or delivery failures.

• Permissions - Amazon Data Firehose uses IAM roles for all the permissions that the Firehose
stream needs. You can choose to create a new role where required permissions are assigned
automatically, or choose an existing role created for Amazon Data Firehose. The role is used
to grant Firehose access to various services, including your S3 bucket, AWS KMS key (if data

Advanced Settings 47

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/firehose/latest/dev/monitoring-with-cloudwatch-logs.html
https://docs.aws.amazon.com/firehose/latest/dev/monitoring-with-cloudwatch-logs.html

Amazon Data Firehose Developer Guide

encryption is enabled), and Lambda function (if data transformation is enabled). The console
might create a role with placeholders. For more information, see What is IAM?.

• Tags - You can add tags to organize your AWS resources, track costs, and control access.

If you specify tags in the CreateDeliveryStream action, Amazon Data Firehose performs an
additional authorization on the firehose:TagDeliveryStream action to verify if users have
permissions to create tags. If you do not provide this permission, requests to create new Firehose
delivery streams with IAM resource tags will fail with an AccessDeniedException such as
following.

AccessDeniedException
User: arn:aws:sts::x:assumed-role/x/x is not authorized to perform:
 firehose:TagDeliveryStream on resource: arn:aws:firehose:us-east-1:x:deliverystream/
x with an explicit deny in an identity-based policy.

The following example demonstrates a policy that allows users to create a delivery stream and
apply tags.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "firehose:CreateDeliveryStream",
 "Resource": "*",
 }
 },
 {
 "Effect": "Allow",
 "Action": "firehose:TagDeliveryStream",
 "Resource": "*",
 }
 }
]
}

Once you've chosen your backup and advanced settings, review your choices, and then choose
Create Firehose stream.

Advanced Settings 48

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

Amazon Data Firehose Developer Guide

The new Firehose stream takes a few moments in the Creating state before it is available. After
your Firehose stream is in an Active state, you can start sending data to it from your producer.

Buffering hints

Amazon Data Firehose buffers incoming streaming data in memory to a certain size (buffering
size) and for a certain period of time (buffering interval) before delivering it to the specified
destinations. You would use buffering hints when you want to deliver optimal sized files to Amazon
S3 and get better performance from data processing applications or to adjust Firehose delivery
rate to match destination speed.

You can configure the buffering size and the buffer interval while creating new delivery streams
or update the buffering size and the buffering interval on your existing delivery streams. Buffering
size is measured in MBs and buffering interval is measured in seconds. However, if you specify a
value for one of them, you must also provide a value for the other. The first buffer condition that is
satisfied triggers Firehose to deliver the data. If you don't configure the buffering values, then the
default values are used.

You can configure Firehose buffering hints through the AWS Management Console, AWS Command
Line Interface, or AWS SDKs. For existing streams, you can reconfigure buffering hints with a value
that suits your use cases using the Edit option in the console or using the UpdateDestination
API. For new streams, you can configure buffering hints as part of new stream creation using the
console or using the CreateDeliveryStream API. To adjust the buffering size, set SizeInMBs and
IntervalInSeconds in the destination specific DestinationConfiguration parameter of the
CreateDeliveryStream or UpdateDestination API.

Note

• To meet lower latencies of real-time use cases, you can use zero buffering interval hint.
When you configure buffering interval as zero seconds, Firehose will not buffer data
and will deliver data within a few seconds. Before you change buffering hints to a lower
value, check with the vendor for recommended buffering hints of Firehose for their
destinations.

• Zero buffering feature is only available for the application destinations and is not
available for Amazon S3 backup destination.

Buffering hints 49

https://docs.aws.amazon.com/firehose/latest/APIReference/API_UpdateDestination.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_UpdateDestination.html

Amazon Data Firehose Developer Guide

Note

Firehose uses multi-part upload for S3 destination when you configure a buffer time
interval less than 60 seconds to offer lower latencies. Due to multi-part upload for S3
destination, you will see some increase in S3 PUT API costs if you choose a buffer time
interval less than 60 seconds.

For destination specific buffering hint ranges and default values, see the following table:

Destination Buffering size in MB (default in parenthesis) Buffering
interval in
seconds (default
in parenthesis)

S3 1-128 (5) 0-900 (300)

Redshift 1-128 (5) 0-900 (300)

OpenSearch
Serverless

1-100 (5) 0-900 (300)

OpenSearch 1-100 (5) 0-900 (300)

Splunk 1-5(5) 0-60 (60)

Datadog 1-4 (4) 0-900 (60)

Coralogix 1-64 (6) 0-900 (60)

Dynatrace 1-64 (5) 0-900 (60)

Elastic 1 0-900 (60)

Honeycomb 1-64 (15) 0-900 (60)

HTTP endpoint 1-64 (5) 0-900 (60)

LogicMonitor 1-64 (5) 0-900 (60)

Buffering hints 50

Amazon Data Firehose Developer Guide

Destination Buffering size in MB (default in parenthesis) Buffering
interval in
seconds (default
in parenthesis)

Logzio 1-64 (5) 0-900 (60)

mongoDB 1-16 (5) 0-900 (60)

newRelic 1-64 (5) 0-900 (60)

sumoLogic 1-64 (1) 0-900 (60)

Splunk Observabi
lity Cloud

1-64(1) 0-900 (60)

Buffering hints 51

Amazon Data Firehose Developer Guide

Testing Your Firehose stream Using Sample Data

You can use the AWS Management Console to ingest simulated stock ticker data. The console runs
a script in your browser to put sample records in your Firehose stream. This enables you to test the
configuration of your Firehose stream without having to generate your own test data.

The following is an example from the simulated data:

{"TICKER_SYMBOL":"QXZ","SECTOR":"HEALTHCARE","CHANGE":-0.05,"PRICE":84.51}

Note that standard Amazon Data Firehose charges apply when your Firehose stream transmits the
data, but there is no charge when the data is generated. To stop incurring these charges, you can
stop the sample stream from the console at any time.

Contents

• Prerequisites

• Test Using Amazon S3 as the Destination

• Test Using Amazon Redshift as the Destination

• Test Using OpenSearch Service as the Destination

• Test Using Splunk as the Destination

Prerequisites

Before you begin, create a Firehose stream. For more information, see Creating a Firehose stream.

Test Using Amazon S3 as the Destination

Use the following procedure to test your Firehose stream using Amazon Simple Storage Service
(Amazon S3) as the destination.

To test a Firehose stream using Amazon S3

1. Open the Firehose console at https://console.aws.amazon.com/firehose/.

2. Choose the Firehose stream.

3. Under Test with demo data, choose Start sending demo data to generate sample stock ticker
data.

Prerequisites 52

https://console.aws.amazon.com/firehose/

Amazon Data Firehose Developer Guide

4. Follow the onscreen instructions to verify that data is being delivered to your S3 bucket.
Note that it might take a few minutes for new objects to appear in your bucket, based on the
buffering configuration of your bucket.

5. When the test is complete, choose Stop sending demo data to stop incurring usage charges.

Test Using Amazon Redshift as the Destination

Use the following procedure to test your Firehose stream using Amazon Redshift as the
destination.

To test a Firehose stream using Amazon Redshift

1. Your Firehose stream expects a table to be present in your Amazon Redshift cluster. Connect
to Amazon Redshift through a SQL interface and run the following statement to create a table
that accepts the sample data.

create table firehose_test_table
(
 TICKER_SYMBOL varchar(4),
 SECTOR varchar(16),
 CHANGE float,
 PRICE float
);

2. Open the Firehose console at https://console.aws.amazon.com/firehose/.

3. Choose the Firehose stream.

4. Edit the destination details for your Firehose stream to point to the newly created
firehose_test_table table.

5. Under Test with demo data, choose Start sending demo data to generate sample stock ticker
data.

6. Follow the onscreen instructions to verify that data is being delivered to your table. Note
that it might take a few minutes for new rows to appear in your table, based on the buffering
configuration.

7. When the test is complete, choose Stop sending demo data to stop incurring usage charges.

8. Edit the destination details for your Firehose stream to point to another table.

9. (Optional) Delete the firehose_test_table table.

Test Using Amazon Redshift as the Destination 53

https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-to-cluster.html
https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-to-cluster.html
https://console.aws.amazon.com/firehose/

Amazon Data Firehose Developer Guide

Test Using OpenSearch Service as the Destination

Use the following procedure to test your Firehose stream using Amazon OpenSearch Service as the
destination.

To test a Firehose stream using OpenSearch Service

1. Open the Firehose console at https://console.aws.amazon.com/firehose/.

2. Choose the Firehose stream.

3. Under Test with demo data, choose Start sending demo data to generate sample stock ticker
data.

4. Follow the onscreen instructions to verify that data is being delivered to your OpenSearch
Service domain. For more information, see Searching Documents in an OpenSearch Service
Domain in the Amazon OpenSearch Service Developer Guide.

5. When the test is complete, choose Stop sending demo data to stop incurring usage charges.

Test Using Splunk as the Destination

Use the following procedure to test your Firehose stream using Splunk as the destination.

To test a Firehose stream using Splunk

1. Open the Firehose console at https://console.aws.amazon.com/firehose/.

2. Choose the Firehose stream.

3. Under Test with demo data, choose Start sending demo data to generate sample stock ticker
data.

4. Check whether the data is being delivered to your Splunk index. Example search terms in
Splunk are sourcetype="aws:firehose:json" and index="name-of-your-splunk-
index". For more information about how to search for events in Splunk, see Search Manual in
the Splunk documentation.

If the test data doesn't appear in your Splunk index, check your Amazon S3 bucket for failed
events. Also see Data Not Delivered to Splunk.

5. When you finish testing, choose Stop sending demo data to stop incurring usage charges.

Test Using OpenSearch Service as the Destination 54

https://console.aws.amazon.com/firehose/
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/es-gsg-search.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/es-gsg-search.html
https://console.aws.amazon.com/firehose/
http://docs.splunk.com/Documentation/Splunk/latest/Search/GetstartedwithSearch
https://docs.aws.amazon.com/firehose/latest/dev/troubleshooting.html#data-not-delivered-to-splunk

Amazon Data Firehose Developer Guide

Sending Data to a Firehose stream

You can send data to your Firehose stream using different types of sources: You can use a Kinesis
data stream, the Kinesis Agent, or the Amazon Data Firehose API using the AWS SDK. You can also
use Amazon CloudWatch Logs, CloudWatch Events, or AWS IoT as your data source. If you are new
to Amazon Data Firehose, take some time to become familiar with the concepts and terminology
presented in What Is Amazon Data Firehose?.

Note

Some AWS services can only send messages and events to a Firehose stream that is in the
same Region. If your Firehose stream doesn't appear as an option when you're configuring
a target for Amazon CloudWatch Logs, CloudWatch Events, or AWS IoT, verify that your
Firehose stream is in the same Region as your other services.

Topics

• Writing to Amazon Data Firehose Using Kinesis Data Streams

• Writing to Amazon Data Firehose Using Amazon MSK

• Writing to Amazon Data Firehose Using Kinesis Agent

• Writing to Amazon Data Firehose Using the AWS SDK

• Writing to Amazon Data Firehose Using CloudWatch Logs

• Writing to Amazon Data Firehose Using CloudWatch Events

• Writing to Amazon Data Firehose Using AWS IoT

Writing to Amazon Data Firehose Using Kinesis Data Streams

You can configure Amazon Kinesis Data Streams to send information to a Firehose stream.

Important

If you use the Kinesis Producer Library (KPL) to write data to a Kinesis data stream, you
can use aggregation to combine the records that you write to that Kinesis data stream. If
you then use that data stream as a source for your Firehose stream, Amazon Data Firehose

Writing Using Kinesis Data Streams 55

Amazon Data Firehose Developer Guide

de-aggregates the records before it delivers them to the destination. If you configure your
delivery stream to transform the data, Amazon Data Firehose de-aggregates the records
before it delivers them to AWS Lambda. For more information, see Developing Amazon
Kinesis Data Streams Producers Using the Kinesis Producer Library and Aggregation.

1. Sign in to the AWS Management Console and open the Amazon Data Firehose console at
https://console.aws.amazon.com/firehose/.

2. Choose Create Firehose stream. On the Name and source page, provide values for the
following fields:

Firehose stream name

The name of your Firehose stream.

Source

Choose Kinesis stream to configure a Firehose stream that uses a Kinesis data stream as a
data source. You can then use Amazon Data Firehose to read data easily from an existing
data stream and load it into destinations.

To use a Kinesis data stream as a source, choose an existing stream in the Kinesis stream
list, or choose Create new to create a new Kinesis data stream. After you create a new
stream, choose Refresh to update the Kinesis stream list. If you have a large number of
streams, filter the list using Filter by name.

Note

When you configure a Kinesis data stream as the source of a Firehose stream, the
Amazon Data Firehose PutRecord and PutRecordBatch operations are disabled.
To add data to your Firehose stream in this case, use the Kinesis Data Streams
PutRecord and PutRecords operations.

Amazon Data Firehose starts reading data from the LATEST position of your Kinesis stream.
For more information about Kinesis Data Streams positions, see GetShardIterator.

Amazon Data Firehose calls the Kinesis Data Streams GetRecords operation once per
second for each shard. However, when full backup is enabled, Firehose calls the Kinesis

Writing Using Kinesis Data Streams 56

https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/kinesis-kpl-concepts.html#kinesis-kpl-concepts-aggretation
https://console.aws.amazon.com/firehose/
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetShardIterator.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html

Amazon Data Firehose Developer Guide

Data Streams GetRecords operation twice per second for each shard, one for primary
delivery destination and another for full backup.

More than one Firehose stream can read from the same Kinesis stream. Other Kinesis
applications (consumers) can also read from the same stream. Each call from any Firehose
stream or other consumer application counts against the overall throttling limit for the
shard. To avoid getting throttled, plan your applications carefully. For more information
about Kinesis Data Streams limits, see Amazon Kinesis Streams Limits.

3. Choose Next to advance to the Record Transformation and Format Conversion page.

Writing to Amazon Data Firehose Using Amazon MSK

You can configure Amazon MSK to send information to a Firehose stream.

1. Sign in to the AWS Management Console and open the Amazon Data Firehose console at
https://console.aws.amazon.com/firehose/.

2. Choose Create Firehose stream.

In the Choose source and destination section of the page, provide values for the following
fields:

Source

Choose Amazon MSK to configure a Firehose stream that uses Amazon MSK as a data
source. You can choose between MSK provisioned and MSK-Serverless clusters. You can
then use Amazon Data Firehose to read data easily from a specific Amazon MSK cluster and
topic and load it into the specified S3 destination.

Destination

Choose Amazon S3 as the destination for your Firehose stream.

In the Source settings section of the page, provide values for the following fields:

Amazon MSK cluster connectivity

Choose either the Private bootstrap brokers (recommended) or Public bootstrap brokers
option based on your cluster configuration. Bootstrap brokers is what Apache Kafka client
uses as a starting point to connect to the cluster. Public bootstrap brokers are intended

Writing Using Amazon MSK 57

https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://console.aws.amazon.com/firehose/

Amazon Data Firehose Developer Guide

for public access from outside of AWS, while private bootstrap brokers are intended for
access from within AWS. For more information about Amazon MSK, see Amazon Managed
Streaming for Apache Kafka.

To connect to a provisioned or serverless Amazon MSK cluster through private bootstrap
brokers, the cluster must meet all of the following requirements.

• The cluster must be active.

• The cluster must have IAM as one of its access control methods.

• Multi-VPC private connectivity must be enabled for the IAM access control method.

• You must add to this cluster a resource-based policy which grants Amazon Data Firehose
service principal the permission to invoke the Amazon MSK CreateVpcConnection API.

To connect to a provisioned Amazon MSK cluster through public bootstrap brokers, the
cluster must meet all of the following requirements.

• The cluster must be active.

• The cluster must have IAM as one of its access control methods.

• The cluster must be public-accessible.

Amazon MSK cluster

For the same account scenario, specify the ARN of the Amazon MSK cluster from where
your Firehose stream will read data.

For a cross-account scenario, see Cross-Account Delivery from Amazon MSK.

Topic

Specify the Apache Kafka topic from which you want your delivery stream to ingest data.
Once the Firehose stream is created, you cannot update this topic.

In the Firehose stream name section of the page, provide values for the following fields:

Firehose stream name

Specify the name for your Firehose stream.

3. Next, you can complete the optional step of configuring record transformation and record
format conversion. For more information, see Record Transformation and Format Conversion.

Writing Using Amazon MSK 58

https://docs.aws.amazon.com/msk/latest/developerguide/what-is-msk.html
https://docs.aws.amazon.com/msk/latest/developerguide/what-is-msk.html

Amazon Data Firehose Developer Guide

Writing to Amazon Data Firehose Using Kinesis Agent

Amazon Kinesis agent is a standalone Java software application that serves as a reference
implementation to show how you can collect and send data to Firehose. The agent continuously
monitors a set of files and sends new data to your Firehose delivery stream. The agent shows how
you can handle file rotation, checkpointing, and retry upon failures. It shows how you can deliver
your data in a reliable, timely, and simple manner. It also shows how you can emit CloudWatch
metrics to better monitor and troubleshoot the streaming process. To learn more, awslabs/
amazon-kinesis-agent.

By default, records are parsed from each file based on the newline ('\n') character. However, the
agent can also be configured to parse multi-line records (see Agent Configuration Settings).

You can install the agent on Linux-based server environments such as web servers, log servers, and
database servers. After installing the agent, configure it by specifying the files to monitor and the
Firehose stream for the data. After the agent is configured, it durably collects data from the files
and reliably sends it to the Firehose stream.

Topics

• Prerequisites

• Credentials

• Custom Credential Providers

• Download and Install the Agent

• Configure and Start the Agent

• Agent Configuration Settings

• Monitor Multiple File Directories and Write to Multiple Streams

• Use the agent to Preprocess Data

• Agent CLI Commands

• FAQ

Prerequisites

• Your operating system must be Amazon Linux, or Red Hat Enterprise Linux version 7 or later.

• Agent version 2.0.0 or later runs using JRE version 1.8 or later. Agent version 1.1.x runs using JRE
1.7 or later.

Writing Using the Amazon Data Firehose Agent 59

https://github.com/awslabs/amazon-kinesis-agent
https://github.com/awslabs/amazon-kinesis-agent

Amazon Data Firehose Developer Guide

• If you are using Amazon EC2 to run your agent, launch your EC2 instance.

• The IAM role or AWS credentials that you specify must have permission to perform the Amazon
Data Firehose PutRecordBatch operation for the agent to send data to your Firehose stream.
If you enable CloudWatch monitoring for the agent, permission to perform the CloudWatch
PutMetricData operation is also needed. For more information, see Controlling Access with
Amazon Data Firehose, Monitoring Kinesis Agent Health, and Authentication and Access Control
for Amazon CloudWatch.

Credentials

Manage your AWS credentials using one of the following methods:

• Create a custom credentials provider. For details, see the section called “Custom Credential
Providers”.

• Specify an IAM role when you launch your EC2 instance.

• Specify AWS credentials when you configure the agent (see the entries for awsAccessKeyId
and awsSecretAccessKey in the configuration table under the section called “Agent
Configuration Settings”).

• Edit /etc/sysconfig/aws-kinesis-agent to specify your AWS Region and AWS access keys.

• If your EC2 instance is in a different AWS account, create an IAM role to provide access to
the Amazon Data Firehose service. Specify that role when you configure the agent (see
assumeRoleARN and assumeRoleExternalId). Use one of the previous methods to specify the
AWS credentials of a user in the other account who has permission to assume this role.

Custom Credential Providers

You can create a custom credentials provider and give its class name and jar path to the Kinesis
agent in the following configuration settings: userDefinedCredentialsProvider.classname
and userDefinedCredentialsProvider.location. For the descriptions of these two
configuration settings, see the section called “Agent Configuration Settings”.

To create a custom credentials provider, define a class that implements the
AWSCredentialsProvider interface, like the one in the following example.

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.AWSCredentialsProvider;

Credentials 60

https://docs.aws.amazon.com/firehose/latest/APIReference/API_PutRecordBatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/auth-and-access-control-cw.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/auth-and-access-control-cw.html

Amazon Data Firehose Developer Guide

import com.amazonaws.auth.BasicAWSCredentials;

public class YourClassName implements AWSCredentialsProvider {
 public YourClassName() {
 }

 public AWSCredentials getCredentials() {
 return new BasicAWSCredentials("key1", "key2");
 }

 public void refresh() {
 }
}

Your class must have a constructor that takes no arguments.

AWS invokes the refresh method periodically to get updated credentials. If you want your
credentials provider to provide different credentials throughout its lifetime, include code to refresh
the credentials in this method. Alternatively, you can leave this method empty if you want a
credentials provider that vends static (non-changing) credentials.

Download and Install the Agent

First, connect to your instance. For more information, see Connect to Your Instance in the Amazon
EC2 User Guide for Linux Instances. If you have trouble connecting, see Troubleshooting Connecting
to Your Instance in the Amazon EC2 User Guide for Linux Instances.

Next, install the agent using one of the following methods.

• To set up the agent from the Amazon Linux repositories

This method works only for Amazon Linux instances. Use the following command:

sudo yum install –y aws-kinesis-agent

Agent v 2.0.0 or later is installed on computers with operating system Amazon Linux 2 (AL2).
This agent version requires Java 1.8 or later. If required Java version is not yet present, the agent
installation process installs it. For more information regarding Amazon Linux 2 see https://
aws.amazon.com/amazon-linux-2/.

Download and Install the Agent 61

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-connect-to-instance-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html
https://aws.amazon.com/amazon-linux-2/
https://aws.amazon.com/amazon-linux-2/

Amazon Data Firehose Developer Guide

• To set up the agent from the Amazon S3 repository

This method works for Red Hat Enterprise Linux, as well as Amazon Linux 2 instances because
it installs the agent from the publicly available repository. Use the following command to
download and install the latest version of the agent version 2.x.x:

sudo yum install –y https://s3.amazonaws.com/streaming-data-agent/aws-kinesis-agent-
latest.amzn2.noarch.rpm

To install a specific version of the agent, specify the version number in the command. For
example, the following command installs agent v 2.0.1.

sudo yum install –y https://streaming-data-agent.s3.amazonaws.com/aws-kinesis-
agent-2.0.1-1.amzn1.noarch.rpm

If you have Java 1.7 and you don’t want to upgrade it, you can download agent version 1.x.x,
which is compatible with Java 1.7. For example, to download agent v1.1.6, you can use the
following command:

sudo yum install –y https://s3.amazonaws.com/streaming-data-agent/aws-kinesis-
agent-1.1.6-1.amzn1.noarch.rpm

The latest agent v1.x.x can be downloaded using the following command:

sudo yum install –y https://s3.amazonaws.com/streaming-data-agent/aws-kinesis-agent-
latest.amzn1.noarch.rpm

• To set up the agent from the GitHub repo

1. First, make sure that you have required Java version installed, depending on agent version.

2. Download the agent from the awslabs/amazon-kinesis-agent GitHub repo.

Download and Install the Agent 62

https://github.com/awslabs/amazon-kinesis-agent

Amazon Data Firehose Developer Guide

3. Install the agent by navigating to the download directory and running the following
command:

sudo ./setup --install

• To set up the agent in a Docker container

Kinesis Agent can be run in a container as well via the amazonlinux container base. Use the
following Dockerfile and then run docker build.

FROM amazonlinux

RUN yum install -y aws-kinesis-agent which findutils
COPY agent.json /etc/aws-kinesis/agent.json

CMD ["start-aws-kinesis-agent"]

Configure and Start the Agent

To configure and start the agent

1. Open and edit the configuration file (as superuser if using default file access permissions): /
etc/aws-kinesis/agent.json

In this configuration file, specify the files ("filePattern") from which the agent collects
data, and the name of the Firehose stream ("deliveryStream") to which the agent sends
data. The file name is a pattern, and the agent recognizes file rotations. You can rotate files or
create new files no more than once per second. The agent uses the file creation time stamp to
determine which files to track and tail into your Firehose stream. Creating new files or rotating
files more frequently than once per second does not allow the agent to differentiate properly
between them.

{
 "flows": [
 {
 "filePattern": "/tmp/app.log*",
 "deliveryStream": "yourdeliverystream"

Configure and Start the Agent 63

https://docs.aws.amazon.com/AmazonECR/latest/userguide/amazon_linux_container_image.html

Amazon Data Firehose Developer Guide

 }
]
}

The default AWS Region is us-east-1. If you are using a different Region, add the
firehose.endpoint setting to the configuration file, specifying the endpoint for your
Region. For more information, see Agent Configuration Settings.

2. Start the agent manually:

sudo service aws-kinesis-agent start

3. (Optional) Configure the agent to start on system startup:

sudo chkconfig aws-kinesis-agent on

The agent is now running as a system service in the background. It continuously monitors the
specified files and sends data to the specified Firehose stream. Agent activity is logged in /var/
log/aws-kinesis-agent/aws-kinesis-agent.log.

Agent Configuration Settings

The agent supports two mandatory configuration settings, filePattern and deliveryStream,
plus optional configuration settings for additional features. You can specify both mandatory and
optional configuration settings in /etc/aws-kinesis/agent.json.

Whenever you change the configuration file, you must stop and start the agent, using the
following commands:

sudo service aws-kinesis-agent stop
sudo service aws-kinesis-agent start

Alternatively, you could use the following command:

sudo service aws-kinesis-agent restart

The following are the general configuration settings.

Agent Configuration Settings 64

Amazon Data Firehose Developer Guide

Configuration
Setting

Description

assumeRoleARN The Amazon Resource Name (ARN) of the role to be assumed by the
user. For more information, see Delegate Access Across AWS Accounts
Using IAM Roles in the IAM User Guide.

assumeRol
eExternalId

An optional identifier that determines who can assume the role. For
more information, see How to Use an External ID in the IAM User Guide.

awsAccessKeyId AWS access key ID that overrides the default credentials. This setting
takes precedence over all other credential providers.

awsSecret
AccessKey

AWS secret key that overrides the default credentials. This setting takes
precedence over all other credential providers.

cloudwatc
h.emitMetrics

Enables the agent to emit metrics to CloudWatch if set (true).

Default: true

cloudwatc
h.endpoint

The regional endpoint for CloudWatch.

Default: monitoring.us-east-1.amazonaws.com

firehose.
endpoint

The regional endpoint for Amazon Data Firehose.

Default: firehose.us-east-1.amazonaws.com

sts.endpoint The regional endpoint for the AWS Security Token Service.

Default: https://sts.amazonaws.com

userDefin
edCredent
ialsProvi
der.classname

If you define a custom credentials provider, provide its fully-qualified
class name using this setting. Don't include .class at the end of the
class name.

userDefin
edCredent

If you define a custom credentials provider, use this setting to specify
the absolute path of the jar that contains the custom credentials

Agent Configuration Settings 65

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html

Amazon Data Firehose Developer Guide

Configuration
Setting

Description

ialsProvi
der.location

provider. The agent also looks for the jar file in the following location: /
usr/share/aws-kinesis-agent/lib/ .

The following are the flow configuration settings.

Configuration
Setting

Description

aggregate
dRecordSi
zeBytes

To make the agent aggregate records and then put them to the
Firehose stream in one operation, specify this setting. Set it to the size
that you want the aggregate record to have before the agent puts it to
the Firehose stream.

Default: 0 (no aggregation)

dataProce
ssingOptions

The list of processing options applied to each parsed record before it
is sent to the Firehose stream. The processing options are performed
in the specified order. For more information, see Use the agent to
Preprocess Data.

deliveryStream [Required] The name of the Firehose stream.

filePattern [Required] A glob for the files that need to be monitored by the
agent. Any file that matches this pattern is picked up by the agent
automatically and monitored. For all files matching this pattern, grant
read permission to aws-kinesis-agent-user . For the directory
containing the files, grant read and execute permissions to aws-kines
is-agent-user .

Important

The agent picks up any file that matches this pattern. To ensure
that the agent doesn't pick up unintended records, choose this
pattern carefully.

Agent Configuration Settings 66

Amazon Data Firehose Developer Guide

Configuration
Setting

Description

initialPosition The initial position from which the file started to be parsed. Valid
values are START_OF_FILE and END_OF_FILE .

Default: END_OF_FILE

maxBuffer
AgeMillis

The maximum time, in milliseconds, for which the agent buffers data
before sending it to the Firehose stream.

Value range: 1,000–900,000 (1 second to 15 minutes)

Default: 60,000 (1 minute)

maxBuffer
SizeBytes

The maximum size, in bytes, for which the agent buffers data before
sending it to the Firehose stream.

Value range: 1–4,194,304 (4 MB)

Default: 4,194,304 (4 MB)

maxBuffer
SizeRecords

The maximum number of records for which the agent buffers data
before sending it to the Firehose stream.

Value range: 1–500

Default: 500

minTimeBe
tweenFile
PollsMillis

The time interval, in milliseconds, at which the agent polls and parses
the monitored files for new data.

Value range: 1 or more

Default: 100

multiLine
StartPattern

The pattern for identifying the start of a record. A record is made of a
line that matches the pattern and any following lines that don't match
the pattern. The valid values are regular expressions. By default, each
new line in the log files is parsed as one record.

Agent Configuration Settings 67

Amazon Data Firehose Developer Guide

Configuration
Setting

Description

skipHeaderLines The number of lines for the agent to skip parsing at the beginning of
monitored files.

Value range: 0 or more

Default: 0 (zero)

truncated
RecordTer
minator

The string that the agent uses to truncate a parsed record when the
record size exceeds the Amazon Data Firehose record size limit. (1,000
KB)

Default: '\n' (newline)

Monitor Multiple File Directories and Write to Multiple Streams

By specifying multiple flow configuration settings, you can configure the agent to monitor multiple
file directories and send data to multiple streams. In the following configuration example, the
agent monitors two file directories and sends data to a Kinesis data stream and a Firehose stream
respectively. You can specify different endpoints for Kinesis Data Streams and Amazon Data
Firehose so that your data stream and Firehose stream don’t need to be in the same Region.

{
 "cloudwatch.emitMetrics": true,
 "kinesis.endpoint": "https://your/kinesis/endpoint",
 "firehose.endpoint": "https://your/firehose/endpoint",
 "flows": [
 {
 "filePattern": "/tmp/app1.log*",
 "kinesisStream": "yourkinesisstream"
 },
 {
 "filePattern": "/tmp/app2.log*",
 "deliveryStream": "yourfirehosedeliverystream"
 }
]
}

Monitor Multiple File Directories and Write to Multiple Streams 68

Amazon Data Firehose Developer Guide

For more detailed information about using the agent with Amazon Kinesis Data Streams, see
Writing to Amazon Kinesis Data Streams with Kinesis Agent.

Use the agent to Preprocess Data

The agent can pre-process the records parsed from monitored files before sending them to
your Firehose stream. You can enable this feature by adding the dataProcessingOptions
configuration setting to your file flow. One or more processing options can be added, and they are
performed in the specified order.

The agent supports the following processing options. Because the agent is open source, you can
further develop and extend its processing options. You can download the agent from Kinesis Agent.

Processing Options

SINGLELINE

Converts a multi-line record to a single-line record by removing newline characters, leading
spaces, and trailing spaces.

{
 "optionName": "SINGLELINE"
}

CSVTOJSON

Converts a record from delimiter-separated format to JSON format.

{
 "optionName": "CSVTOJSON",
 "customFieldNames": ["field1", "field2", ...],
 "delimiter": "yourdelimiter"
}

customFieldNames

[Required] The field names used as keys in each JSON key value pair. For example, if you
specify ["f1", "f2"], the record "v1, v2" is converted to {"f1":"v1","f2":"v2"}.

delimiter

The string used as the delimiter in the record. The default is a comma (,).

Use the agent to Preprocess Data 69

https://docs.aws.amazon.com/kinesis/latest/dev/writing-with-agents.html
https://github.com/awslabs/amazon-kinesis-agent

Amazon Data Firehose Developer Guide

LOGTOJSON

Converts a record from a log format to JSON format. The supported log formats are Apache
Common Log, Apache Combined Log, Apache Error Log, and RFC3164 Syslog.

{
 "optionName": "LOGTOJSON",
 "logFormat": "logformat",
 "matchPattern": "yourregexpattern",
 "customFieldNames": ["field1", "field2", …]
}

logFormat

[Required] The log entry format. The following are possible values:

• COMMONAPACHELOG — The Apache Common Log format. Each log entry has the
following pattern by default: "%{host} %{ident} %{authuser} [%{datetime}]
\"%{request}\" %{response} %{bytes}".

• COMBINEDAPACHELOG — The Apache Combined Log format. Each log entry has the
following pattern by default: "%{host} %{ident} %{authuser} [%{datetime}]
\"%{request}\" %{response} %{bytes} %{referrer} %{agent}".

• APACHEERRORLOG — The Apache Error Log format. Each log entry has the following
pattern by default: "[%{timestamp}] [%{module}:%{severity}] [pid
%{processid}:tid %{threadid}] [client: %{client}] %{message}".

• SYSLOG — The RFC3164 Syslog format. Each log entry has the following pattern
by default: "%{timestamp} %{hostname} %{program}[%{processid}]:
%{message}".

matchPattern

Overrides the default pattern for the specified log format. Use this setting to extract values
from log entries if they use a custom format. If you specify matchPattern, you must also
specify customFieldNames.

customFieldNames

The custom field names used as keys in each JSON key value pair. You can use this setting to
define field names for values extracted from matchPattern, or override the default field
names of predefined log formats.

Use the agent to Preprocess Data 70

Amazon Data Firehose Developer Guide

Example : LOGTOJSON Configuration

Here is one example of a LOGTOJSON configuration for an Apache Common Log entry converted to
JSON format:

{
 "optionName": "LOGTOJSON",
 "logFormat": "COMMONAPACHELOG"
}

Before conversion:

64.242.88.10 - - [07/Mar/2004:16:10:02 -0800] "GET /mailman/listinfo/hsdivision
 HTTP/1.1" 200 6291

After conversion:

{"host":"64.242.88.10","ident":null,"authuser":null,"datetime":"07/
Mar/2004:16:10:02 -0800","request":"GET /mailman/listinfo/hsdivision
 HTTP/1.1","response":"200","bytes":"6291"}

Example : LOGTOJSON Configuration With Custom Fields

Here is another example LOGTOJSON configuration:

{
 "optionName": "LOGTOJSON",
 "logFormat": "COMMONAPACHELOG",
 "customFieldNames": ["f1", "f2", "f3", "f4", "f5", "f6", "f7"]
}

With this configuration setting, the same Apache Common Log entry from the previous example is
converted to JSON format as follows:

{"f1":"64.242.88.10","f2":null,"f3":null,"f4":"07/Mar/2004:16:10:02 -0800","f5":"GET /
mailman/listinfo/hsdivision HTTP/1.1","f6":"200","f7":"6291"}

Example : Convert Apache Common Log Entry

The following flow configuration converts an Apache Common Log entry to a single-line record in
JSON format:

Use the agent to Preprocess Data 71

Amazon Data Firehose Developer Guide

{
 "flows": [
 {
 "filePattern": "/tmp/app.log*",
 "deliveryStream": "my-delivery-stream",
 "dataProcessingOptions": [
 {
 "optionName": "LOGTOJSON",
 "logFormat": "COMMONAPACHELOG"
 }
]
 }
]
}

Example : Convert Multi-Line Records

The following flow configuration parses multi-line records whose first line starts with
"[SEQUENCE=". Each record is first converted to a single-line record. Then, values are
extracted from the record based on a tab delimiter. Extracted values are mapped to specified
customFieldNames values to form a single-line record in JSON format.

{
 "flows": [
 {
 "filePattern": "/tmp/app.log*",
 "deliveryStream": "my-delivery-stream",
 "multiLineStartPattern": "\\[SEQUENCE=",
 "dataProcessingOptions": [
 {
 "optionName": "SINGLELINE"
 },
 {
 "optionName": "CSVTOJSON",
 "customFieldNames": ["field1", "field2", "field3"],
 "delimiter": "\\t"
 }
]
 }
]
}

Use the agent to Preprocess Data 72

Amazon Data Firehose Developer Guide

Example : LOGTOJSON Configuration with Match Pattern

Here is one example of a LOGTOJSON configuration for an Apache Common Log entry converted to
JSON format, with the last field (bytes) omitted:

{
 "optionName": "LOGTOJSON",
 "logFormat": "COMMONAPACHELOG",
 "matchPattern": "^([\\d.]+) (\\S+) (\\S+) \\[([\\w:/]+\\s[+\\-]\\d{4})\\] \"(.
+?)\" (\\d{3})",
 "customFieldNames": ["host", "ident", "authuser", "datetime", "request",
 "response"]
}

Before conversion:

123.45.67.89 - - [27/Oct/2000:09:27:09 -0400] "GET /java/javaResources.html HTTP/1.0"
 200

After conversion:

{"host":"123.45.67.89","ident":null,"authuser":null,"datetime":"27/Oct/2000:09:27:09
 -0400","request":"GET /java/javaResources.html HTTP/1.0","response":"200"}

Agent CLI Commands

Automatically start the agent on system startup:

sudo chkconfig aws-kinesis-agent on

Check the status of the agent:

sudo service aws-kinesis-agent status

Stop the agent:

sudo service aws-kinesis-agent stop

Read the agent's log file from this location:

Agent CLI Commands 73

Amazon Data Firehose Developer Guide

/var/log/aws-kinesis-agent/aws-kinesis-agent.log

Uninstall the agent:

sudo yum remove aws-kinesis-agent

FAQ

Is there a Kinesis Agent for Windows?

Kinesis Agent for Windows is different software than Kinesis Agent for Linux platforms.

Why is Kinesis Agent slowing down and/or RecordSendErrors increasing?

This is usually due to throttling from Kinesis. Check the
WriteProvisionedThroughputExceeded metric for Kinesis Data Streams or the
ThrottledRecords metric for Firehose streams. Any increase from 0 in these metrics indicates
that the stream limits need to be increased. For more information, see Kinesis Data Stream limits
and Firehose streams.

Once you rule out throttling, see if the Kinesis Agent is configured to tail a large amount of small
files. There is a delay when Kinesis Agent tails a new file, so Kinesis Agent should be tailing a small
amount of larger files. Try consolidating your log files into larger files.

Why am I getting java.lang.OutOfMemoryError exceptions?

Kinesis Agent does not have enough memory to handle its current workload. Try increasing
JAVA_START_HEAP and JAVA_MAX_HEAP in /usr/bin/start-aws-kinesis-agent and
restarting the agent.

Why am I getting IllegalStateException : connection pool shut down
exceptions?

Kinesis Agent does not have enough connections to handle its current workload. Try increasing
maxConnections and maxSendingThreads in your general agent configuration settings at
/etc/aws-kinesis/agent.json. The default value for these fields is 12 times the runtime
processors available. See AgentConfiguration.java for more about advanced agent configurations
settings.

FAQ 74

https://docs.aws.amazon.com/kinesis-agent-windows/latest/userguide/what-is-kinesis-agent-windows.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/firehose/latest/dev/limits.html
https://github.com/awslabs/amazon-kinesis-agent/blob/master/src/com/amazon/kinesis/streaming/agent/config/AgentConfiguration.java

Amazon Data Firehose Developer Guide

How can I debug another issue with Kinesis Agent?

DEBUG level logs can be enabled in /etc/aws-kinesis/log4j.xml .

How should I configure Kinesis Agent?

The smaller the maxBufferSizeBytes, the more frequently Kinesis Agent will send data. This can
be good as it decreases delivery time of records, but it also increases the requests per second to
Kinesis.

Why is Kinesis Agent sending duplicate records?

This occurs due to a misconfiguration in file tailing. Make sure that each fileFlow’s
filePattern is only matching one file. This can also occur if the logrotate mode being
used is in copytruncate mode. Try changing the mode to the default or create mode to avoid
duplication. For more information on handling duplicate records, see Handling Duplicate Records.

Writing to Amazon Data Firehose Using the AWS SDK

You can use the Amazon Data Firehose API to send data to a Firehose stream using the AWS SDK
for Java, .NET, Node.js, Python, or Ruby. If you are new to Amazon Data Firehose, take some
time to become familiar with the concepts and terminology presented in What Is Amazon Data
Firehose?. For more information, see Start Developing with Amazon Web Services.

These examples do not represent production-ready code, in that they do not check for all possible
exceptions, or account for all possible security or performance considerations.

The Amazon Data Firehose API offers two operations for sending data to your Firehose stream:
PutRecord and PutRecordBatch. PutRecord() sends one data record within one call and
PutRecordBatch() can send multiple data records within one call.

Topics

• Single Write Operations Using PutRecord

• Batch Write Operations Using PutRecordBatch

Single Write Operations Using PutRecord

Putting data requires only the Firehose stream name and a byte buffer (<=1000 KB). Because
Amazon Data Firehose batches multiple records before loading the file into Amazon S3, you may

Writing Using the AWS SDK 75

https://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-duplicates.html
https://docs.aws.amazon.com/firehose/latest/APIReference/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-net/
https://aws.amazon.com/sdk-for-javascript/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-ruby/
http://aws.amazon.com/developers/getting-started/
https://docs.aws.amazon.com/firehose/latest/APIReference/API_PutRecord.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_PutRecordBatch.html

Amazon Data Firehose Developer Guide

want to add a record separator. To put data one record at a time into a Firehose stream, use the
following code:

PutRecordRequest putRecordRequest = new PutRecordRequest();
putRecordRequest.setDeliveryStreamName(deliveryStreamName);

String data = line + "\n";

Record record = new Record().withData(ByteBuffer.wrap(data.getBytes()));
putRecordRequest.setRecord(record);

// Put record into the DeliveryStream
firehoseClient.putRecord(putRecordRequest);

For more code context, see the sample code included in the AWS SDK. For information about
request and response syntax, see the relevant topic in Firehose API Operations.

Batch Write Operations Using PutRecordBatch

Putting data requires only the Firehose stream name and a list of records. Because Amazon Data
Firehose batches multiple records before loading the file into Amazon S3, you may want to add a
record separator. To put data records in batches into a Firehose stream, use the following code:

PutRecordBatchRequest putRecordBatchRequest = new PutRecordBatchRequest();
putRecordBatchRequest.setDeliveryStreamName(deliveryStreamName);
putRecordBatchRequest.setRecords(recordList);

// Put Record Batch records. Max No.Of Records we can put in a
// single put record batch request is 500
firehoseClient.putRecordBatch(putRecordBatchRequest);

recordList.clear();

For more code context, see the sample code included in the AWS SDK. For information about
request and response syntax, see the relevant topic in Firehose API Operations.

Writing to Amazon Data Firehose Using CloudWatch Logs

CloudWatch Logs events can be sent to Firehose using CloudWatch subscription filters. For more
information, see Subscription filters with Amazon Data Firehose.

Batch Write Operations Using PutRecordBatch 76

https://docs.aws.amazon.com/firehose/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SubscriptionFilters.html#FirehoseExample

Amazon Data Firehose Developer Guide

CloudWatch Logs events are sent to Firehose in compressed gzip format. If you want to deliver
decompressed log events to Firehose destinations, you can use the decompression feature in
Firehose to automatically decompress CloudWatch Logs.

Important

Currently, Firehose does not support the delivery of CloudWatch Logs to Amazon
OpenSearch Service destination because Amazon CloudWatch combines multiple log
events into one Firehose record and Amazon OpenSearch Service cannot accept multiple
log events in one record. As an alternative, you can consider Using subscription filter for
Amazon OpenSearch Service in CloudWatch Logs.

Decompression of CloudWatch Logs

If you are using Firehose to deliver CloudWatch Logs and want to deliver decompressed data to
your delivery stream destination, use Firehose Data Format Conversion (Parquet, ORC) or Dynamic
partitioning. You must enable decompression for your Firehose delivery stream.

You can enable decompression using the AWS Management Console, AWS Command Line Interface
or AWS SDKs.

Note

If you enable the decompression feature on a stream, use that stream exclusively for
CloudWatch Logs subscriptions filters, and not for Vended Logs. If you enable the
decompression feature on a stream that is used to ingest both CloudWatch Logs and
Vended Logs, the Vended Logs ingestion to Firehose fails. This decompression feature is
only for CloudWatch Logs.

Message extraction after decompression of CloudWatch Logs

When you enable decompression, you have the option to also enable message extraction. When
using message extraction, Firehose filters out all metadata, such as owner, loggroup, logstream,
and others from the decompressed CloudWatch Logs records and delivers only the content inside
the message fields. If you are delivering data to a Splunk destination, you must turn on message

Decompression of CloudWatch Logs 77

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_OpenSearch_Stream.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_OpenSearch_Stream.html
https://docs.aws.amazon.com/firehose/latest/dev/data-transformation.html
https://docs.aws.amazon.com/firehose/latest/dev/dynamic-partitioning.html
https://docs.aws.amazon.com/firehose/latest/dev/dynamic-partitioning.html

Amazon Data Firehose Developer Guide

extraction for Splunk to parse the data. Following are sample outputs after decompression with
and without message extraction.

Fig 1: Sample output after decompression without message extraction:

{
 "owner": "111111111111",
 "logGroup": "CloudTrail/logs",
 "logStream": "111111111111_CloudTrail/logs_us-east-1",
 "subscriptionFilters": [
 "Destination"
],
 "messageType": "DATA_MESSAGE",
 "logEvents": [
 {
 "id": "31953106606966983378809025079804211143289615424298221568",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":\"Root1\"}"
 },
 {
 "id": "31953106606966983378809025079804211143289615424298221569",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":\"Root2\"}"
 },
 {
 "id": "31953106606966983378809025079804211143289615424298221570",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":\"Root3\"}"
 }
]
}

Fig 2: Sample output after decompression with message extraction:

{"eventVersion":"1.03","userIdentity":{"type":"Root1"}
{"eventVersion":"1.03","userIdentity":{"type":"Root2"}
{"eventVersion":"1.03","userIdentity":{"type":"Root3"}

Enabling and disabling decompression

You can enable and disable decompression using the AWS Management Console, AWS Command
Line Interface or AWS SDKs.

Enabling and disabling decompression 78

Amazon Data Firehose Developer Guide

Enabling decompression on a new data stream using the AWS Management
Console

To enable decompression on a new data stream using the AWS Management Console

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. Choose Amazon Data Firehose in the navigation pane.

3. Choose Create Firehose stream.

4. Under Choose source and destination

Delivery stream source

The source of your Firehose stream. Choose one of the following sources:

• Direct PUT – Choose this option to create a Firehose stream that producer applications
write to directly. For a list of AWS services and agents and open source services that are
integrated with Direct PUT in Firehose, see this section.

• Kinesis stream: Choose this option to configure a Firehose stream that uses a Kinesis
data stream as a data source. You can then use Firehose to read data easily from an
existing Kinesis data stream and load it into destinations. For more information, see
Writing to Firehose Using Kinesis Data Streams

Destination

The destination of your Firehose stream. Choose one of the following:

• Amazon S3

• Splunk

5. Under Firehose stream name, enter a name for your stream.

6. (Optional) Under Transform records:

• In the Decompress source records from Amazon CloudWatch Logs section, choose Turn on
decompression.

• If you want to use message extraction after decompression, choose Turn on message
extraction.

Enabling and disabling decompression 79

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-kinesis-streams.html

Amazon Data Firehose Developer Guide

Enabling decompression on an existing data stream using the AWS Management
Console

If you have a Firehose stream with a Lambda function to perform decompression, you can replace
it with the Firehose decompression feature. Before you proceed, review your Lambda function code
to confirm that it only performs decompression or message extraction. The output of your Lambda
function should look similar to the examples shown in Fig 1 or Fig 2 in the previous section. If the
output looks similar, you can replace the Lambda function using the following steps.

1. Replace your current Lambda function with this blueprint. The new blueprint Lambda function
automatically detects whether the incoming data is compressed or decompressed. It only
performs decompression if its input data is compressed.

2. Turn on decompression using the built-in Firehose option for decompression.

3. Enable CloudWatch metrics for your Firehose stream if it's not already enabled. Monitor
the metric CloudWatchProcessorLambda_IncomingCompressedData and wait until this
metric changes to zero. This confirms that all input data sent to your Lambda function is
decompressed and the Lambda function is no longer required.

4. Remove the Lambda data transformation because you no longer need it to decompress your
stream.

Disabling decompression using the AWS Management Console

To disable decompression on a data stream using the AWS Management Console

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. Choose Amazon Data Firehose in the navigation pane.

3. Choose the Firehose stream you wish to edit.

4. On Firehose stream details page, choose the Configuration tab.

5. In the Transform and convert records section, choose Edit.

6. Under Decompress source records from Amazon CloudWatch Logs, clear Turn on
decompression and then choose Save changes.

Enabling and disabling decompression 80

https://github.com/aws-samples/aws-kinesis-firehose-resources/tree/main/blueprints/kinesis-firehose-cloudwatch-logs-processor
https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis

Amazon Data Firehose Developer Guide

FAQ

What happens to the source data in case of an error during decompression?

If Amazon Data Firehose is not able to decompress the record, the record is delivered as is (in
compressed format) to error S3 bucket you specified during delivery stream creation time. Along
with the record, the delivered object also includes error code and error message and these objects
will be delivered to an S3 bucket prefix called decompression-failed. Firehose will continue to
process other records after a failed decompression of a record.

What happens to the source data in case of an error in the processing pipeline
after successful decompression?

If Amazon Data Firehose errors out in the processing steps after decompression like Dynamic
Partitioning and Data Format Conversion, the record is delivered in compressed format to the error
S3 bucket you specified during delivery stream creation time. Along with the record, the delivered
object also includes error code and error message.

How are you informed in case of an error or an exception?

In case of an error or an exception during decompression, if you configure CloudWatch Logs,
Firehose will log error messages into CloudWatch Logs. Additionally, Firehose sends metrics to
CloudWatch metrics that you can monitor. You can also optionally create alarms based on metrics
emitted by Firehose.

What happens when put operations don't come from CloudWatch Logs?

When customer puts do not come from CloudWatch Logs, then the following error message is
returned:

Put to Firehose failed for AccountId: <accountID>, FirehoseName: <firehosename> because
 the request is not originating from allowed source types.

What metrics does Firehose emit for the decompression feature?

Firehose emits metrics for decompression of every record. You should select the period (1 min),
statistic (sum), date range to get the number of DecompressedRecords failed or succeeded
or DecompressedBytes failed or succeeded. For more information, see CloudWatch Logs
Decompression Metrics.

FAQ 81

Amazon Data Firehose Developer Guide

Writing to Amazon Data Firehose Using CloudWatch Events

You can configure Amazon CloudWatch to send events to a Firehose stream by adding a target to a
CloudWatch Events rule.

To create a target for a CloudWatch Events rule that sends events to an existing delivery stream

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Create rule.

3. On the Step 1: Create rule page, for Targets, choose Add target, and then choose Firehose
Firehose stream.

4. For Firehose stream, choose an existing Amazon Data Firehose delivery stream.

For more information about creating CloudWatch Events rules, see Getting Started with Amazon
CloudWatch Events.

Writing to Amazon Data Firehose Using AWS IoT

You can configure AWS IoT to send information to a Firehose stream by adding an action.

To create an action that sends events to an existing Firehose stream

1. When creating a rule in the AWS IoT console, on the Create a rule page, under Set one or
more actions, choose Add action.

2. Choose Send messages to an Amazon Kinesis Firehose stream.

3. Choose Configure action.

4. For Stream name, choose an existing Firehose stream.

5. For Separator, choose a separator character to be inserted between records.

6. For IAM role name, choose an existing IAM role or choose Create a new role.

7. Choose Add action.

For more information about creating AWS IoT rules, see AWS IoT Rule Tutorials.

Writing Using CloudWatch Events 82

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CWE_GettingStarted.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CWE_GettingStarted.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules-tutorial.html

Amazon Data Firehose Developer Guide

Security in Amazon Data Firehose

Cloud security at AWS is the highest priority. As an AWS customer, you will benefit from a data
center and network architecture built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. The
effectiveness of our security is regularly tested and verified by third-party auditors as part of the
AWS compliance programs. To learn about the compliance programs that apply to Data Firehose,
see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your organization’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Data Firehose. The following topics show you how to configure Data Firehose to meet your
security and compliance objectives. You'll also learn how to use other AWS services that can help
you to monitor and secure your Data Firehose resources.

Topics

• Data Protection in Amazon Data Firehose

• Controlling Access with Amazon Data Firehose

• Manage IAM roles through Amazon Data Firehose console

• Monitoring Amazon Data Firehose

• Compliance Validation for Amazon Data Firehose

• Resilience in Amazon Data Firehose

• Infrastructure Security in Amazon Data Firehose

• Security Best Practices for Amazon Data Firehose

83

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Data Firehose Developer Guide

Data Protection in Amazon Data Firehose

Amazon Data Firehose encrypts all data in transit using TLS protocol. Furthermore, for data
stored in interim storage during processing, Amazon Data Firehose encrypts data using AWS Key
Management Service and verifies data integrity using checksum verification.

If you have sensitive data, you can enable server-side data encryption when you use Amazon Data
Firehose. How you do this depends on the source of your data.

Note

If you require FIPS 140-2 validated cryptographic modules when accessing AWS through
a command line interface or an API, use a FIPS endpoint. For more information about the
available FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

Server-Side Encryption with Kinesis Data Streams as the Data Source

When you send data from your data producers to your data stream, Kinesis Data Streams encrypts
your data using an AWS Key Management Service (AWS KMS) key before storing the data at rest.
When your Amazon Data Firehose Firehose stream reads the data from your data stream, Kinesis
Data Streams first decrypts the data and then sends it to Amazon Data Firehose. Amazon Data
Firehose buffers the data in memory based on the buffering hints that you specify. It then delivers
it to your destinations without storing the unencrypted data at rest.

For information about how to enable server-side encryption for Kinesis Data Streams, see Using
Server-Side Encryption in the Amazon Kinesis Data Streams Developer Guide.

Server-Side Encryption with Direct PUT or Other Data Sources

If you send data to your Firehose stream using PutRecord or PutRecordBatch, or if you send the
data using AWS IoT, Amazon CloudWatch Logs, or CloudWatch Events, you can turn on server-side
encryption by using the StartDeliveryStreamEncryption operation.

To stop server-side-encryption, use the StopDeliveryStreamEncryption operation.

You can also enable SSE when you create the Firehose stream. To do that, specify
DeliveryStreamEncryptionConfigurationInput when you invoke CreateDeliveryStream.

Data Protection 84

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://aws.amazon.com/compliance/fips/
https://docs.aws.amazon.com/streams/latest/dev/server-side-encryption.html
https://docs.aws.amazon.com/streams/latest/dev/server-side-encryption.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_PutRecord.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_PutRecordBatch.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_StartDeliveryStreamEncryption.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_StopDeliveryStreamEncryption.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_DeliveryStreamEncryptionConfigurationInput.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html

Amazon Data Firehose Developer Guide

When the CMK is of type CUSTOMER_MANAGED_CMK, if the Amazon Data Firehose service is unable
to decrypt records because of a KMSNotFoundException, a KMSInvalidStateException,
a KMSDisabledException, or a KMSAccessDeniedException, the service waits up to 24
hours (the retention period) for you to resolve the problem. If the problem persists beyond the
retention period, the service skips those records that have passed the retention period and couldn't
be decrypted, and then discards the data. Amazon Data Firehose provides the following four
CloudWatch metrics that you can use to track the four AWS KMS exceptions:

• KMSKeyAccessDenied

• KMSKeyDisabled

• KMSKeyInvalidState

• KMSKeyNotFound

For more information about these four metrics, see the section called “Monitoring with
CloudWatch Metrics”.

Important

To encrypt your Firehose stream, use symmetric CMKs. Amazon Data Firehose doesn't
support asymmetric CMKs. For information about symmetric and asymmetric CMKs, see
About Symmetric and Asymmetric CMKs in the AWS Key Management Service developer
guide.

Note

When you use a customer managed key (CUSTOMER_MANAGED_CMK) to enable server-
side encryption (SSE) for your Firehose delivery stream, the Firehose service sets an
encryption context whenever it uses your key. Since this encryption context represents an
occurrence where a key owned by your AWS account was used, it is logged as part of AWS
CloudTrail event logs for your AWS account. This encryption context is system generated by
the Firehose service. Your application should not make any assumptions about the format
or content of the encryption context set by the Firehose service.

Server-Side Encryption with Direct PUT or Other Data Sources 85

https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

Amazon Data Firehose Developer Guide

Controlling Access with Amazon Data Firehose

The following sections cover how to control access to and from your Amazon Data Firehose
resources. The information they cover includes how to grant your application access so it can
send data to your Firehose stream. They also describe how you can grant Amazon Data Firehose
access to your Amazon Simple Storage Service (Amazon S3) bucket, Amazon Redshift cluster, or
Amazon OpenSearch Service cluster, as well as the access permissions you need if you use Datadog,
Dynatrace, LogicMonitor, MongoDB, New Relic, Splunk, or Sumo Logic as your destination. Finally,
you'll find in this topic guidance on how to configure Amazon Data Firehose so it can deliver data
to a destination that belongs to a different AWS account. The technology for managing all these
forms of access is AWS Identity and Access Management (IAM). For more information about IAM,
see What is IAM?.

Contents

• Grant Your Application Access to Your Amazon Data Firehose Resources

• Grant Amazon Data Firehose Access to your Private Amazon MSK Cluster

• Allow Amazon Data Firehose to Assume an IAM Role

• Grant Amazon Data Firehose Access to AWS Glue for Data Format Conversion

• Grant Amazon Data Firehose Access to an Amazon S3 Destination

• Grant Amazon Data Firehose Access to an Amazon Redshift Destination

• Grant Amazon Data Firehose Access to a Public OpenSearch Service Destination

• Grant Amazon Data Firehose Access to an OpenSearch Service Destination in a VPC

• Grant Amazon Data Firehose Access to a Public OpenSearch Serverless Destination

• Grant Amazon Data Firehose Access to an OpenSearch Serverless Destination in a VPC

• Grant Amazon Data Firehose Access to a Splunk Destination

• Access to Splunk in VPC

• Access to Snowflake or HTTP end point

• Grant Amazon Data Firehose Access to a Snowflake Destination

• Access to Snowflake in VPC

• Grant Amazon Data Firehose Access to an HTTP Endpoint Destination

• Cross-Account Delivery from Amazon MSK

• Cross-Account Delivery to an Amazon S3 Destination

• Cross-Account Delivery to an OpenSearch Service Destination

Controlling Access 86

https://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_Introduction.html

Amazon Data Firehose Developer Guide

• Using Tags to Control Access

Grant Your Application Access to Your Amazon Data Firehose Resources

To give your application access to your Firehose stream, use a policy similar to this example. You
can adjust the individual API operations to which you grant access by modifying the Action
section, or grant access to all operations with "firehose:*".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "firehose:DeleteDeliveryStream",
 "firehose:PutRecord",
 "firehose:PutRecordBatch",
 "firehose:UpdateDestination"
],
 "Resource": [
 "arn:aws:firehose:region:account-id:deliverystream/delivery-stream-
name"
]
 }
]
}

Grant Amazon Data Firehose Access to your Private Amazon MSK
Cluster

If the source of your Firehose stream is a private Amazon MSK cluster, then use a policy similar to
this example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Principal": {
 "Service": [
 "firehose.amazonaws.com"

Grant Your Application Access to Your Amazon Data Firehose Resources 87

Amazon Data Firehose Developer Guide

]
 },
 "Effect": "Allow",
 "Action": [
 "kafka:CreateVpcConnection"
],
 "Resource": "cluster-arn"
 }
]
}

Allow Amazon Data Firehose to Assume an IAM Role

This section describes the permissions and policies that grant Amazon Data Firehose access to
ingest, process, and deliver data from source to destination.

Note

If you use the console to create a Firehose stream and choose the option to create a new
role, AWS attaches the required trust policy to the role. If you want Amazon Data Firehose
to use an existing IAM role or if you create a role on your own, attach the following trust
policies to that role so that Amazon Data Firehose can assume it. Edit the policies to replace
account-id with your AWS account ID. For information about how to modify the trust
relationship of a role, see Modifying a Role.

Amazon Data Firehose uses an IAM role for all the permissions that the delivery stream needs to
process and deliver data. Make sure that the following trust policies are attached to that role so
that Amazon Data Firehose can assume it.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "firehose.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {

Allow Amazon Data Firehose to Assume an IAM Role 88

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html

Amazon Data Firehose Developer Guide

 "sts:ExternalId": "account-id"
 }
 }
 }]
}

This policy uses the sts:ExternalId condition context key to ensure that only Amazon
Data Firehose activity originating from your AWS account can assume this IAM role. For more
information about preventing unauthorized use of IAM roles, see The confused deputy problem in
the IAM User Guide.

If you choose Amazon MSK as the source for your Firehose stream, you must specify another
IAM role that grants Amazon Data Firehose permissions to ingest source data from the specified
Amazon MSK cluster. Make sure that the following trust policies are attached to that role so that
Amazon Data Firehose can assume it.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Principal": {
 "Service": [
 "firehose.amazonaws.com"
]
 },
 "Effect": "Allow",
 "Action": "sts:AssumeRole"
 }
]
}

Make sure that this role that grants Amazon Data Firehose permissions to ingest source data from
the specified Amazon MSK cluster grants the following permissions:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect":"Allow",
 "Action": [

Allow Amazon Data Firehose to Assume an IAM Role 89

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Data Firehose Developer Guide

 "kafka:GetBootstrapBrokers",
 "kafka:DescribeCluster",
 "kafka:DescribeClusterV2",
 "kafka-cluster:Connect"
],
 "Resource": "CLUSTER-ARN"
 },
 {
 "Effect":"Allow",
 "Action": [
 "kafka-cluster:DescribeTopic",
 "kafka-cluster:DescribeTopicDynamicConfiguration",
 "kafka-cluster:ReadData"
],
 "Resource": "TOPIC-ARN"
 }]
}

Grant Amazon Data Firehose Access to AWS Glue for Data Format
Conversion

If your Firehose stream performs data-format conversion, Amazon Data Firehose references table
definitions stored in AWS Glue. To give Amazon Data Firehose the necessary access to AWS Glue,
add the following statement to your policy. For information on how to find the ARN of the table,
see Specifying AWS Glue Resource ARNs.

[{
 "Effect": "Allow",
 "Action": [
 "glue:GetTable",
 "glue:GetTableVersion",
 "glue:GetTableVersions"
],
 "Resource": "table-arn"
}, {
 "Sid": "GetSchemaVersion",
 "Effect": "Allow",
 "Action": [
 "glue:GetSchemaVersion"
],
 "Resource": ["*"]

Grant Amazon Data Firehose Access to AWS Glue for Data Format Conversion 90

https://docs.aws.amazon.com/glue/latest/dg/glue-specifying-resource-arns.html

Amazon Data Firehose Developer Guide

}]

The recommended policy for getting schemas from schema registry has no resource restrictions.
For more information, see IAM examples for deserializers in the AWS Glue Developer Guide.

Note

Currently, AWS Glue is not supported in the Israel (Tel Aviv), Asia Pacific (Jakarta) or Middle
East (UAE) Regions. If you are working with Amazon Data Firehose in the Asia Pacific
(Jakarta) Region or Middle East (UAE) Region, make sure to give your Amazon Data Firehose
access to AWS Glue in one of the Regions where AWS Glue is currently supported. Cross-
region interoperability between Data Firehose and AWS Glue is supported. For more
information on regions where AWS Glue is supported, see https://docs.aws.amazon.com/
general/latest/gr/glue.html

Grant Amazon Data Firehose Access to an Amazon S3 Destination

When you're using an Amazon S3 destination, Amazon Data Firehose delivers data to your S3
bucket and can optionally use an AWS KMS key that you own for data encryption. If error logging
is enabled, Amazon Data Firehose also sends data delivery errors to your CloudWatch log group
and streams. You are required to have an IAM role when creating a Firehose stream. Amazon Data
Firehose assumes that IAM role and gains access to the specified bucket, key, and CloudWatch log
group and streams.

Use the following access policy to enable Amazon Data Firehose to access your S3 bucket and AWS
KMS key. If you don't own the S3 bucket, add s3:PutObjectAcl to the list of Amazon S3 actions.
This grants the bucket owner full access to the objects delivered by Amazon Data Firehose.

{
 "Version": "2012-10-17",
 "Statement":
 [
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",

Grant Amazon Data Firehose Access to an Amazon S3 Destination 91

https://docs.aws.amazon.com/glue/latest/dg/schema-registry-gs.html#schema-registry-gs1b
https://docs.aws.amazon.com/general/latest/gr/glue.html
https://docs.aws.amazon.com/general/latest/gr/glue.html

Amazon Data Firehose Developer Guide

 "s3:ListBucketMultipartUploads",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::bucket-name",
 "arn:aws:s3:::bucket-name/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:ListShards"
],
 "Resource": "arn:aws:kinesis:region:account-id:stream/stream-name"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": [
 "arn:aws:kms:region:account-id:key/key-id"
],
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "s3.region.amazonaws.com"
 },
 "StringLike": {
 "kms:EncryptionContext:aws:s3:arn": "arn:aws:s3:::bucket-name/
prefix*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [

Grant Amazon Data Firehose Access to an Amazon S3 Destination 92

Amazon Data Firehose Developer Guide

 "arn:aws:logs:region:account-id:log-group:log-group-name:log-stream:log-
stream-name"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunctionConfiguration"
],
 "Resource": [
 "arn:aws:lambda:region:account-id:function:function-name:function-
version"
]
 }
]
}

The policy above also has a statement that allows access to Amazon Kinesis Data Streams. If you
don't use Kinesis Data Streams as your data source, you can remove that statement. If you use
Amazon MSK as your source, then you can substitute that statement with the following:

{
 "Sid":"",
 "Effect":"Allow",
 "Action":[
 "kafka:GetBootstrapBrokers",
 "kafka:DescribeCluster",
 "kafka:DescribeClusterV2",
 "kafka-cluster:Connect"
],
 "Resource":"arn:aws:kafka:{{mskClusterRegion}}:{{mskClusterAccount}}:cluster/
{{mskClusterName}}/{{clusterUUID}}"
},
{
 "Sid":"",
 "Effect":"Allow",
 "Action":[
 "kafka-cluster:DescribeTopic",
 "kafka-cluster:DescribeTopicDynamicConfiguration",
 "kafka-cluster:ReadData"
],

Grant Amazon Data Firehose Access to an Amazon S3 Destination 93

Amazon Data Firehose Developer Guide

 "Resource":"arn:aws:kafka:{{mskClusterRegion}}:{{mskClusterAccount}}:topic/
{{mskClusterName}}/{{clusterUUID}}/{{mskTopicName}}"
},
{
 "Sid":"",
 "Effect":"Allow",
 "Action":[
 "kafka-cluster:DescribeGroup"
],
 "Resource":"arn:aws:kafka:{{mskClusterRegion}}:{{mskClusterAccount}}:group/
{{mskClusterName}}/{{clusterUUID}}/*"
}

For more information about allowing other AWS services to access your AWS resources, see
Creating a Role to Delegate Permissions to an AWS Service in the IAM User Guide.

To learn how to grant Amazon Data Firehose access to an Amazon S3 destination in another
account, see the section called “Cross-Account Delivery to an Amazon S3 Destination”.

Grant Amazon Data Firehose Access to an Amazon Redshift Destination

Refer to the following when you are granting access to Amazon Data Firehose when using an
Amazon Redshift destination.

Topics

• IAM Role and Access Policy

• VPC Access to an Amazon Redshift Provisioned Cluster or Amazon Redshift Serverless Workgroup

IAM Role and Access Policy

When you're using an Amazon Redshift destination, Amazon Data Firehose delivers data to your
S3 bucket as an intermediate location. It can optionally use an AWS KMS key you own for data
encryption. Amazon Data Firehose then loads the data from the S3 bucket to your Amazon
Redshift provisioned cluster or Amazon Redshift Serverless workgroup. If error logging is enabled,
Amazon Data Firehose also sends data delivery errors to your CloudWatch log group and streams.
Amazon Data Firehose uses the specified Amazon Redshift user name and password to access your
provisioned cluster or Amazon Redshift Serverless workgroup, and uses an IAM role to access the
specified bucket, key, CloudWatch log group, and streams. You are required to have an IAM role
when creating a Firehose stream.

Grant Amazon Data Firehose Access to an Amazon Redshift Destination 94

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Data Firehose Developer Guide

Use the following access policy to enable Amazon Data Firehose to access your S3 bucket and AWS
KMS key. If you don't own the S3 bucket, add s3:PutObjectAcl to the list of Amazon S3 actions,
which grants the bucket owner full access to the objects delivered by Amazon Data Firehose. This
policy also has a statement that allows access to Amazon Kinesis Data Streams. If you don't use
Kinesis Data Streams as your data source, you can remove that statement.

{
"Version": "2012-10-17",
 "Statement":
 [
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::bucket-name",
 "arn:aws:s3:::bucket-name/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": [
 "arn:aws:kms:region:account-id:key/key-id"
],
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "s3.region.amazonaws.com"
 },
 "StringLike": {
 "kms:EncryptionContext:aws:s3:arn": "arn:aws:s3:::bucket-name/
prefix*"
 }
 }

Grant Amazon Data Firehose Access to an Amazon Redshift Destination 95

Amazon Data Firehose Developer Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:ListShards"
],
 "Resource": "arn:aws:kinesis:region:account-id:stream/stream-name"
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:region:account-id:log-group:log-group-name:log-stream:log-
stream-name"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunctionConfiguration"
],
 "Resource": [
 "arn:aws:lambda:region:account-id:function:function-name:function-
version"
]
 }
]
}

For more information about allowing other AWS services to access your AWS resources, see
Creating a Role to Delegate Permissions to an AWS Service in the IAM User Guide.

VPC Access to an Amazon Redshift Provisioned Cluster or Amazon Redshift
Serverless Workgroup

If your Amazon Redshift provisioned cluster or Amazon Redshift Serverless workgroup is in a
virtual private cloud (VPC), it must be publicly accessible with a public IP address. Also, grant

Grant Amazon Data Firehose Access to an Amazon Redshift Destination 96

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Data Firehose Developer Guide

Amazon Data Firehose access to your Amazon Redshift provisioned cluster or Amazon Redshift
Serverless workgroup by unblocking the Amazon Data Firehose IP addresses. Amazon Data
Firehose currently uses one CIDR block for each available Region:

• 13.58.135.96/27 for US East (Ohio)

• 52.70.63.192/27 for US East (N. Virginia)

• 13.57.135.192/27 for US West (N. California)

• 52.89.255.224/27 for US West (Oregon)

• 18.253.138.96/27 for AWS GovCloud (US-East)

• 52.61.204.160/27 for AWS GovCloud (US-West)

• 35.183.92.128/27 for Canada (Central)

• 40.176.98.192/27 for Canada West (Calgary)

• 18.162.221.32/27 for Asia Pacific (Hong Kong)

• 13.232.67.32/27 for Asia Pacific (Mumbai)

• 18.60.192.128/27 for Asia Pacific (Hyderabad)

• 13.209.1.64/27 for Asia Pacific (Seoul)

• 13.228.64.192/27 for Asia Pacific (Singapore)

• 13.210.67.224/27 for Asia Pacific (Sydney)

• 108.136.221.64/27 for Asia Pacific (Jakarta)

• 13.113.196.224/27 for Asia Pacific (Tokyo)

• 13.208.177.192/27 for Asia Pacific (Osaka)

• 52.81.151.32/27 for China (Beijing)

• 161.189.23.64/27 for China (Ningxia)

• 16.62.183.32/27 for Europe (Zurich)

• 35.158.127.160/27 for Europe (Frankfurt)

• 52.19.239.192/27 for Europe (Ireland)

• 18.130.1.96/27 for Europe (London)

• 35.180.1.96/27 for Europe (Paris)

• 13.53.63.224/27 for Europe (Stockholm)

• 15.185.91.0/27 for Middle East (Bahrain)

• 18.228.1.128/27 for South America (São Paulo)

Grant Amazon Data Firehose Access to an Amazon Redshift Destination 97

Amazon Data Firehose Developer Guide

• 15.161.135.128/27 for Europe (Milan)

• 13.244.121.224/27 for Africa (Cape Town)

• 3.28.159.32/27 for Middle East (UAE)

• 51.16.102.0/27 for Israel (Tel Aviv)

• 16.50.161.128/27 for Asia Pacific (Melbourne)

For more information about how to unblock IP addresses, see the step Authorize Access to the
Cluster in the Amazon Redshift Getting Started Guide guide.

Grant Amazon Data Firehose Access to a Public OpenSearch Service
Destination

When you're using an OpenSearch Service destination, Amazon Data Firehose delivers data to your
OpenSearch Service cluster, and concurrently backs up failed or all documents to your S3 bucket. If
error logging is enabled, Amazon Data Firehose also sends data delivery errors to your CloudWatch
log group and streams. Amazon Data Firehose uses an IAM role to access the specified OpenSearch
Service domain, S3 bucket, AWS KMS key, and CloudWatch log group and streams. You are required
to have an IAM role when creating a Firehose stream.

Use the following access policy to enable Amazon Data Firehose to access your S3 bucket,
OpenSearch Service domain, and AWS KMS key. If you do not own the S3 bucket, add
s3:PutObjectAcl to the list of Amazon S3 actions, which grants the bucket owner full access to
the objects delivered by Amazon Data Firehose. This policy also has a statement that allows access
to Amazon Kinesis Data Streams. If you don't use Kinesis Data Streams as your data source, you can
remove that statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutObject"

Grant Amazon Data Firehose Access to a Public OpenSearch Service Destination 98

https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-authorize-cluster-access.html
https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-authorize-cluster-access.html

Amazon Data Firehose Developer Guide

],
 "Resource": [
 "arn:aws:s3:::bucket-name",
 "arn:aws:s3:::bucket-name/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": [
 "arn:aws:kms:region:account-id:key/key-id"
],
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "s3.region.amazonaws.com"
 },
 "StringLike": {
 "kms:EncryptionContext:aws:s3:arn": "arn:aws:s3:::bucket-name/
prefix*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "es:DescribeDomain",
 "es:DescribeDomains",
 "es:DescribeDomainConfig",
 "es:ESHttpPost",
 "es:ESHttpPut"
],
 "Resource": [
 "arn:aws:es:region:account-id:domain/domain-name",
 "arn:aws:es:region:account-id:domain/domain-name/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "es:ESHttpGet"
],

Grant Amazon Data Firehose Access to a Public OpenSearch Service Destination 99

Amazon Data Firehose Developer Guide

 "Resource": [
 "arn:aws:es:region:account-id:domain/domain-name/_all/_settings",
 "arn:aws:es:region:account-id:domain/domain-name/_cluster/stats",
 "arn:aws:es:region:account-id:domain/domain-name/index-name*/
_mapping/type-name",
 "arn:aws:es:region:account-id:domain/domain-name/_nodes",
 "arn:aws:es:region:account-id:domain/domain-name/_nodes/stats",
 "arn:aws:es:region:account-id:domain/domain-name/_nodes/*/stats",
 "arn:aws:es:region:account-id:domain/domain-name/_stats",
 "arn:aws:es:region:account-id:domain/domain-name/index-name*/_stats",
 "arn:aws:es:region:account-id:domain/domain-name/"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:ListShards"
],
 "Resource": "arn:aws:kinesis:region:account-id:stream/stream-name"
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:region:account-id:log-group:log-group-name:log-stream:log-
stream-name"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunctionConfiguration"
],
 "Resource": [
 "arn:aws:lambda:region:account-id:function:function-name:function-
version"
]
 }

Grant Amazon Data Firehose Access to a Public OpenSearch Service Destination 100

Amazon Data Firehose Developer Guide

]
}

For more information about allowing other AWS services to access your AWS resources, see
Creating a Role to Delegate Permissions to an AWS Service in the IAM User Guide.

To learn how to grant Amazon Data Firehose access to an OpenSearch Service cluster in another
account, see the section called “Cross-Account Delivery to an OpenSearch Service Destination”.

Grant Amazon Data Firehose Access to an OpenSearch Service
Destination in a VPC

If your OpenSearch Service domain is in a VPC, make sure you give Amazon Data Firehose the
permissions that are described in the previous section. In addition, you need to give Amazon Data
Firehose the following permissions to enable it to access your OpenSearch Service domain's VPC.

• ec2:DescribeVpcs

• ec2:DescribeVpcAttribute

• ec2:DescribeSubnets

• ec2:DescribeSecurityGroups

• ec2:DescribeNetworkInterfaces

• ec2:CreateNetworkInterface

• ec2:CreateNetworkInterfacePermission

• ec2:DeleteNetworkInterface

Important

Do not revoke these permissions after you create the delivery stream. If you revoke
these permissions, your Firehose stream will be degraded or stop delivering data to your
OpenSearch service domain whenever the service attempts to query or update ENIs.

Important

When you specify subnets for delivering data to the destination in a private VPC, make sure
you have enough number of free IP addresses in chosen subnets. If there is no available

Grant Amazon Data Firehose Access to an OpenSearch Service Destination in a VPC 101

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Data Firehose Developer Guide

free IP address in a specified subnet, Firehose cannot create or add ENIs for the data
delivery in the private VPC, and the delivery will be degraded or fail.

When you create or update your delivery stream, you specify a security group for Firehose to use
when it sends data to your OpenSearch Service domain. You can use the same security group
that the OpenSearch Service domain uses or a different one. If you specify a different security
group, ensure that it allows outbound HTTPS traffic to the OpenSearch Service domain's security
group. Also ensure that the OpenSearch Service domain's security group allows HTTPS traffic from
the security group you specified when you configured your Firehose stream. If you use the same
security group for both your Firehose stream and the OpenSearch Service domain, make sure the
security group inbound rule allows HTTPS traffic. For more information about security group rules,
see Security group rules in the Amazon VPC documentation.

Grant Amazon Data Firehose Access to a Public OpenSearch Serverless
Destination

When you're using an OpenSearch Serverless destination, Amazon Data Firehose delivers data
to your OpenSearch Serverless collection, and concurrently backs up failed or all documents to
your S3 bucket. If error logging is enabled, Amazon Data Firehose also sends data delivery errors
to your CloudWatch log group and streams. Amazon Data Firehose uses an IAM role to access the
specified OpenSearch Serverless collection, S3 bucket, AWS KMS key, and CloudWatch log group
and streams. You are required to have an IAM role when creating a Firehose stream.

Use the following access policy to enable Amazon Data Firehose to access your S3 bucket,
OpenSearch Serverless domain, and AWS KMS key. If you do not own the S3 bucket, add
s3:PutObjectAcl to the list of Amazon S3 actions, which grants the bucket owner full access to
the objects delivered by Amazon Data Firehose. This policy also has a statement that allows access
to Amazon Kinesis Data Streams. If you don't use Kinesis Data Streams as your data source, you can
remove that statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation",

Grant Amazon Data Firehose Access to a Public OpenSearch Serverless Destination 102

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#SecurityGroupRules

Amazon Data Firehose Developer Guide

 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::bucket-name",
 "arn:aws:s3:::bucket-name/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": [
 "arn:aws:kms:region:account-id:key/key-id"
],
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "s3.region.amazonaws.com"
 },
 "StringLike": {
 "kms:EncryptionContext:aws:s3:arn": "arn:aws:s3:::bucket-name/
prefix*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:ListShards"
],
 "Resource": "arn:aws:kinesis:region:account-id:stream/stream-name"
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],

Grant Amazon Data Firehose Access to a Public OpenSearch Serverless Destination 103

Amazon Data Firehose Developer Guide

 "Resource": [
 "arn:aws:logs:region:account-id:log-group:log-group-name:log-stream:log-
stream-name"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunctionConfiguration"
],
 "Resource": [
 "arn:aws:lambda:region:account-id:function:function-name:function-
version"
]
 },
 {
 "Effect": "Allow",
 "Action": "aoss:APIAccessAll",
 "Resource": "arn:aws:aoss:region:account-id:collection/collection-id"
 }
]
}

In addition to the policy above, you must also configure Amazon Data Firehose to have the
following minimum permissions assigned in a data access policy:

[
 {
 "Rules":[
 {
 "ResourceType":"index",
 "Resource":[
 "index/target-collection/target-index"
],
 "Permission":[
 "aoss:WriteDocument",
 "aoss:UpdateIndex",
 "aoss:CreateIndex"
]
 }
],

Grant Amazon Data Firehose Access to a Public OpenSearch Serverless Destination 104

Amazon Data Firehose Developer Guide

 "Principal":[
 "arn:aws:sts::account-id:assumed-role/firehose-delivery-role-name/*"
]
 }
]

For more information about allowing other AWS services to access your AWS resources, see
Creating a Role to Delegate Permissions to an AWS Service in the IAM User Guide.

Grant Amazon Data Firehose Access to an OpenSearch Serverless
Destination in a VPC

If your OpenSearch Serverless collection is in a VPC, make sure you give Amazon Data Firehose the
permissions that are described in the previous section. In addition, you need to give Amazon Data
Firehose the following permissions to enable it to access your OpenSearch Serverless collection's
VPC.

• ec2:DescribeVpcs

• ec2:DescribeVpcAttribute

• ec2:DescribeSubnets

• ec2:DescribeSecurityGroups

• ec2:DescribeNetworkInterfaces

• ec2:CreateNetworkInterface

• ec2:CreateNetworkInterfacePermission

• ec2:DeleteNetworkInterface

Important

Do not revoke these permissions after you create the delivery stream. If you revoke
these permissions, your Firehose stream will be degraded or stop delivering data to your
OpenSearch service domain whenever the service attempts to query or update ENIs.

Grant Amazon Data Firehose Access to an OpenSearch Serverless Destination in a VPC 105

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Data Firehose Developer Guide

Important

When you specify subnets for delivering data to the destination in a private VPC, make sure
you have enough number of free IP addresses in chosen subnets. If there is no available
free IP address in a specified subnet, Firehose cannot create or add ENIs for the data
delivery in the private VPC, and the delivery will be degraded or fail.

When you create or update your delivery stream, you specify a security group for Firehose to use
when it sends data to your OpenSearch Serverless collection. You can use the same security group
that the OpenSearch Serverless collection uses or a different one. If you specify a different security
group, ensure that it allows outbound HTTPS traffic to the OpenSearch Serverless collection's
security group. Also ensure that the OpenSearch Serverless collection's security group allows
HTTPS traffic from the security group you specified when you configured your Firehose stream.
If you use the same security group for both your Firehose stream and the OpenSearch Serverless
collection, make sure the security group inbound rule allows HTTPS traffic. For more information
about security group rules, see Security group rules in the Amazon VPC documentation.

Grant Amazon Data Firehose Access to a Splunk Destination

When you're using a Splunk destination, Amazon Data Firehose delivers data to your Splunk HTTP
Event Collector (HEC) endpoint. It also backs up that data to the Amazon S3 bucket that you
specify, and you can optionally use an AWS KMS key that you own for Amazon S3 server-side
encryption. If error logging is enabled, Firehose sends data delivery errors to your CloudWatch log
streams. You can also use AWS Lambda for data transformation.

If you use an AWS load balancer, make sure that it is a Classic Load Balancer or an Application Load
Balancer. Also, enable duration-based sticky sessions with cookie expiration disabled for Classic
Load Balancer and expiration is set to the maximum (7 days) for Application Load Balancer. For
information about how to do this, see Duration-Based Session Stickiness for Classic Load Balancer
or an Application Load Balancer.

You are required to have an IAM role when creating a delivery stream. Firehose assumes that IAM
role and gains access to the specified bucket, key, and CloudWatch log group and streams.

Use the following access policy to enable Amazon Data Firehose to access your S3 bucket. If you
don't own the S3 bucket, add s3:PutObjectAcl to the list of Amazon S3 actions, which grants
the bucket owner full access to the objects delivered by Amazon Data Firehose. This policy also

Grant Amazon Data Firehose Access to a Splunk Destination 106

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#SecurityGroupRules
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-sticky-sessions.html#enable-sticky-sessions-duration
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/sticky-sessions.html

Amazon Data Firehose Developer Guide

grants Amazon Data Firehose access to CloudWatch for error logging and to AWS Lambda for
data transformation. The policy also has a statement that allows access to Amazon Kinesis Data
Streams. If you don't use Kinesis Data Streams as your data source, you can remove that statement.
Amazon Data Firehose doesn't use IAM to access Splunk. For accessing Splunk, it uses your HEC
token.

{
 "Version": "2012-10-17",
 "Statement":
 [
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::bucket-name",
 "arn:aws:s3:::bucket-name/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": [
 "arn:aws:kms:region:account-id:key/key-id"
],
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "s3.region.amazonaws.com"
 },
 "StringLike": {
 "kms:EncryptionContext:aws:s3:arn": "arn:aws:s3:::bucket-name/
prefix*"
 }
 }

Grant Amazon Data Firehose Access to a Splunk Destination 107

Amazon Data Firehose Developer Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:ListShards"
],
 "Resource": "arn:aws:kinesis:region:account-id:stream/stream-name"
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:region:account-id:log-group:log-group-name:log-stream:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunctionConfiguration"
],
 "Resource": [
 "arn:aws:lambda:region:account-id:function:function-name:function-
version"
]
 }
]
}

For more information about allowing other AWS services to access your AWS resources, see
Creating a Role to Delegate Permissions to an AWS Service in the IAM User Guide.

Access to Splunk in VPC

If your Splunk platform is in a VPC, it must be publicly accessible with a public IP address. Also,
grant Amazon Data Firehose access to your Splunk platform by unblocking the Amazon Data
Firehose IP addresses. Amazon Data Firehose currently uses the following CIDR blocks.

Access to Splunk in VPC 108

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Data Firehose Developer Guide

• 18.216.68.160/27, 18.216.170.64/27, 18.216.170.96/27 for US East (Ohio)

• 34.238.188.128/26, 34.238.188.192/26, 34.238.195.0/26 for US East (N. Virginia)

• 13.57.180.0/26 for US West (N. California)

• 34.216.24.32/27, 34.216.24.192/27, 34.216.24.224/27 for US West (Oregon)

• 18.253.138.192/26 for AWS GovCloud (US-East)

• 52.61.204.192/26 for AWS GovCloud (US-West)

• 18.162.221.64/26 for Asia Pacific (Hong Kong)

• 13.232.67.64/26 for Asia Pacific (Mumbai)

• 13.209.71.0/26 for Asia Pacific (Seoul)

• 13.229.187.128/26 for Asia Pacific (Singapore)

• 13.211.12.0/26 for Asia Pacific (Sydney)

• 13.230.21.0/27, 13.230.21.32/27 for Asia Pacific (Tokyo)

• 51.16.102.64/26 for Israel (Tel Aviv)

• 35.183.92.64/26 for Canada (Central)

• 40.176.98.128/26 for Canada West (Calgary)

• 18.194.95.192/27, 18.194.95.224/27, 18.195.48.0/27 for Europe (Frankfurt)

• 34.241.197.32/27, 34.241.197.64/27, 34.241.197.96/27 for Europe (Ireland)

• 18.130.91.0/26 for Europe (London)

• 35.180.112.0/26 for Europe (Paris)

• 13.53.191.0/26 for Europe (Stockholm)

• 15.185.91.64/26 for Middle East (Bahrain)

• 18.228.1.192/26 for South America (São Paulo)

• 15.161.135.192/26 for Europe (Milan)

• 13.244.165.128/26 for Africa (Cape Town)

• 13.208.217.0/26 for Asia Pacific (Osaka)

• 52.81.151.64/26 for China (Beijing)

• 161.189.23.128/26 for China (Ningxia)

• 108.136.221.128/26 for Asia Pacific (Jakarta)

Access to Splunk in VPC 109

Amazon Data Firehose Developer Guide

• 3.28.159.64/26 for Middle East (UAE)

• 51.16.102.64/26 for Israel (Tel Aviv)

• 16.62.183.64/26 for Europe (Zurich)

• 18.60.192.192/26 for Asia Pacific (Hyderabad)

• 16.50.161.192/26 for Asia Pacific (Melbourne)

Access to Snowflake or HTTP end point

There is no subset of AWS IP address ranges specific to Amazon Data Firehose when the
destination is HTTP end point or Snowflake public clusters.

To add Firehose to an allow list for public Snowflake clusters or to your public HTTP or HTTPS
endpoints, add all the current AWS IP address ranges to your ingress rules.

Note

Notifications aren't always sourced from IP addresses in the same AWS Region as their
associated topic. You must include the AWS IP address range for all Regions.

Grant Amazon Data Firehose Access to a Snowflake Destination

When you're using Snowflake as a destination, Firehose delivers data to a Snowflake account using
your Snowflake account URL. It also backs up error data to the Amazon Simple Storage Service
bucket that you specify, and you can optionally use an AWS Key Management Service key that you
own for Amazon S3 server-side encryption. If error logging is enabled, Firehose sends data delivery
errors to your CloudWatch Logs streams.

You are required to have an IAM role when creating a delivery stream. Firehose assumes that IAM
role and gains access to the specified bucket, key, and CloudWatch Logs group and streams. Use
the following access policy to enable Firehose to access your S3 bucket. If you don't own the S3
bucket, add s3:PutObjectAcl to the list of Amazon Simple Storage Service actions, which grants
the bucket owner full access to the objects delivered by Firehose. This policy also grants Firehose
access to CloudWatch for error logging. The policy also has a statement that allows access to
Amazon Kinesis Data Streams. If you don't use Kinesis Data Streams as your data source, you can

Access to Snowflake or HTTP end point 110

https://docs.aws.amazon.com/vpc/latest/userguide/aws-ip-ranges.html
https://docs.aws.amazon.com/vpc/latest/userguide/aws-ip-ranges.html

Amazon Data Firehose Developer Guide

remove that statement. Firehose doesn't use IAM to access Snowflake. For accessing Snowflake, it
uses your Snowflake account Url and PrivateLink Vpce Id in the case of a private cluster.

{
"Version": "2012-10-17",
 "Statement":
 [
 {
"Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::bucket-name",
 "arn:aws:s3:::bucket-name/*"
]
 },
 {
"Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": [
 "arn:aws:kms:region:account-id:key/key-id"
],
 "Condition": {
"StringEquals": {
"kms:ViaService": "s3.region.amazonaws.com"
 },
 "StringLike": {
"kms:EncryptionContext:aws:s3:arn": "arn:aws:s3:::bucket-name/prefix*"
 }
 }
 },
 {
"Effect": "Allow",
 "Action": [

Grant Amazon Data Firehose Access to a Snowflake Destination 111

Amazon Data Firehose Developer Guide

 "kinesis:DescribeStream",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:ListShards"
],
 "Resource": "arn:aws:kinesis:region:account-id:stream/stream-name"
 },
 {
"Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:region:account-id:log-group:log-group-name:log-stream:*"
]
 }
]
}

For more information about allowing other AWS services to access your AWS resources, see
Creating a Role to Delegate Permissions to an AWS Service in the IAM User Guide.

Access to Snowflake in VPC

If your Snowflake cluster is private link enabled, Firehose uses VPC Endpoints to deliver data to
your private cluster without going through public internet. For this, create Snowflake network rules
to allow ingress from the following AwsVpceIds for the AWS Region your cluster is in. For more
information, see Creating network rule in Snowflake User Guide.

VPC Endpoint Ids to use based on Regions your cluster is in

AWS Region VPCE IDs

US East (Ohio) vpce-0d96cafcd96a50aeb

vpce-0cec34343d48f537b

US East (N. Virginia) vpce-0b4d7e8478e141ba8

vpce-0b75cd681fb507352

vpce-01c03e63820ec00d8

Access to Snowflake in VPC 112

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.snowflake.com/en/sql-reference/sql/create-network-rule

Amazon Data Firehose Developer Guide

AWS Region VPCE IDs

vpce-0c2cfc51dc2882422

vpce-06ca862f019e4e056

vpce-020cda0cfa63f8d1c

vpce-0b80504a1a783cd70

vpce-0289b9ff0b5259a96

vpce-0d7add8628bd69a12

vpce-02bfb5966cc59b2af

vpce-09e707674af878bf2

vpce-049b52e96cc1a2165

vpce-0bb6c7b7a8a86cdbb

vpce-03b22d599f51e80f3

vpce-01d60dc60fc106fe1

vpce-0186d20a4b24ecbef

vpce-0533906401a36e416

vpce-05111fb13d396710e

vpce-0694613f4fbd6f514

vpce-09b21cb25fe4cc4f4

vpce-06029c3550e4d2399

vpce-00961862a21b033da

vpce-01620b9ae33273587

vpce-078cf4ec226880ac9

Access to Snowflake in VPC 113

Amazon Data Firehose Developer Guide

AWS Region VPCE IDs

vpce-0d711bf076ce56381

vpce-066b7e13cbfca6f6e

vpce-0674541252d9ccc26

vpce-03540b88dedb4b000

vpce-0b1828e79ad394b95

vpce-0dc0e6f001fb1a60d

vpce-0d8f82e71a244098a

vpce-00e374d9e3f1af5ce

vpce-0c1e3d6631ddb442f

US West (Oregon) vpce-0f60f72da4cd1e4e7

vpce-0c60d21eb8b1669fd

vpce-01c4e3e29afdafbef

vpce-0cc6bf2a88da139de

vpce-0797e08e169e50662

vpce-033cbe480381b5c0e

vpce-00debbdd8f9eb10a5

vpce-08ec2f386c809e889

vpce-0856d14310857b545

Europe (Frankfurt) vpce-068dbb7d71c9460fb

vpce-0a7a7f095942d4ec9

Access to Snowflake in VPC 114

Amazon Data Firehose Developer Guide

AWS Region VPCE IDs

Europe (Ireland) vpce-06857e59c005a6276

vpce-04390f4f8778b75f2

vpce-011fd2b1f0aa172fd

Asia Pacific (Tokyo) vpce-06369e5258144e68a

vpce-0f2363cdb8926fbe8

Grant Amazon Data Firehose Access to an HTTP Endpoint Destination

You can use Amazon Data Firehose to deliver data to any HTTP endpoint destination. Amazon Data
Firehose also backs up that data to the Amazon S3 bucket that you specify, and you can optionally
use an AWS KMS key that you own for Amazon S3 server-side encryption. If error logging is
enabled, Amazon Data Firehose sends data delivery errors to your CloudWatch log streams. You
can also use AWS Lambda for data transformation.

You are required to have an IAM role when creating a Firehose stream. Amazon Data Firehose
assumes that IAM role and gains access to the specified bucket, key, and CloudWatch log group and
streams.

Use the following access policy to enable Amazon Data Firehose to access the S3 bucket that you
specified for data backup. If you don't own the S3 bucket, add s3:PutObjectAcl to the list of
Amazon S3 actions, which grants the bucket owner full access to the objects delivered by Amazon
Data Firehose. This policy also grants Amazon Data Firehose access to CloudWatch for error logging
and to AWS Lambda for data transformation. The policy also has a statement that allows access to
Amazon Kinesis Data Streams. If you don't use Kinesis Data Streams as your data source, you can
remove that statement.

Important

Amazon Data Firehose doesn't use IAM to access HTTP endpoint destinations owned by
supported third-party service providers, including Datadog, Dynatrace, LogicMonitor,
MongoDB, New Relic, Splunk, or Sumo Logic. For accessing a specified HTTP endpoint
destination owned by a supported third-party service provider, contact that service

Grant Amazon Data Firehose Access to an HTTP Endpoint Destination 115

Amazon Data Firehose Developer Guide

provider to obtain the API key or the access key that is required to enable data delivery to
that service from Amazon Data Firehose.

{
 "Version": "2012-10-17",
 "Statement":
 [
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::bucket-name",
 "arn:aws:s3:::bucket-name/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": [
 "arn:aws:kms:region:account-id:key/key-id"
],
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "s3.region.amazonaws.com"
 },
 "StringLike": {
 "kms:EncryptionContext:aws:s3:arn": "arn:aws:s3:::bucket-name/
prefix*"
 }
 }
 },
 {

Grant Amazon Data Firehose Access to an HTTP Endpoint Destination 116

Amazon Data Firehose Developer Guide

 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:ListShards"
],
 "Resource": "arn:aws:kinesis:region:account-id:stream/stream-name"
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:region:account-id:log-group:log-group-name:log-stream:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunctionConfiguration"
],
 "Resource": [
 "arn:aws:lambda:region:account-id:function:function-name:function-
version"
]
 }
]
}

For more information about allowing other AWS services to access your AWS resources, see
Creating a Role to Delegate Permissions to an AWS Service in the IAM User Guide.

Important

Currently Amazon Data Firehose does NOT support data delivery to HTTP endpoints in a
VPC.

Grant Amazon Data Firehose Access to an HTTP Endpoint Destination 117

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Data Firehose Developer Guide

Cross-Account Delivery from Amazon MSK

If yours is a cross-account scenario where you're creating a delivery stream from your Firehose
account (for example, Account B) and your source is an MSK cluster in another AWS account
(Account A), you must have the following configurations in place:

Account A:

1. In the Amazon MSK console, choose the provisioned cluster and then choose Properties.

2. Under Network settings, choose Edit and turn on Multi-VPC connectivity.

3. Under Security settings choose Edit cluster policy.

a. If the cluster does not already have a policy configured, check Include Firehose service
principal and Enable Firehose cross-account S3 delivery. The AWS Management Console
will automatically generate a policy with the appropriate permissions.

b. If the cluster already has a policy configured, add the following permissions to the existing
policy:

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::arn:role/mskaasTestDeliveryRole"
 },
 "Action": [
 "kafka:GetBootstrapBrokers",
 "kafka:DescribeCluster",
 "kafka:DescribeClusterV2",
 "kafka-cluster:Connect"
],
 "Resource": "arn:aws:kafka:us-east-1:arn:cluster/DO-NOT-TOUCH-mskaas-
provisioned-privateLink/xxxxxxxxx-2f3a-462a-ba09-xxxxxxxxxx-20" // ARN of the
 cluster
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::arn:role/mskaasTestDeliveryRole"
 },
 "Action": [
 "kafka-cluster:DescribeTopic",
 "kafka-cluster:DescribeTopicDynamicConfiguration",

Cross-Account Delivery from Amazon MSK 118

Amazon Data Firehose Developer Guide

 "kafka-cluster:ReadData"
],
 "Resource": "arn:aws:kafka:us-east-1:arn:topic/DO-NOT-TOUCH-mskaas-
provisioned-privateLink/xxxxxxxxx-2f3a-462a-ba09-xxxxxxxxxx-20/*"//topic of the
 cluster
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::233450236687:role/mskaasTestDeliveryRole"
 },
 "Action": "kafka-cluster:DescribeGroup",
 "Resource": "arn:aws:kafka:us-east-1:arn:group/DO-NOT-TOUCH-mskaas-
provisioned-privateLink/xxxxxxxxx-2f3a-462a-ba09-xxxxxxxxxx-20/*" //topic of
 the cluster
 },
 }

4. Under AWS principal, enter the principal ID from Account B.

5. Under Topic, specify the Apache Kafka topic from which you want your delivery stream to
ingest data. Once the delivery stream is created, you cannot update this topic.

6. Choose Save changes

Account B:

1. In the Firehose console, choose Create delivery stream using Account B.

2. Under Source, choose Amazon Managed Streaming for Apache Kafka.

3. Under Source settings, for the Amazon Managed Streaming for Apache Kafka cluster, enter
the ARN of the Amazon MSK cluster in Account A.

4. Under Topic, specify the Apache Kafka topic from which you want your delivery stream to
ingest data. Once the delivery stream is created, you cannot update this topic.

5. In Delivery stream name specify the name for your delivery stream.

In Account B when you're creating your delivery stream, you must have an IAM role (created by
default when using the AWS Management Console) that grants the delivery stream 'read' access to
the cross-account Amazon MSK cluster for the configured topic.

The following is what gets configured by the AWS Management Console:

Cross-Account Delivery from Amazon MSK 119

Amazon Data Firehose Developer Guide

{
 "Sid": "",
 "Effect": "Allow",
 "Action": [
 "kafka:GetBootstrapBrokers",
 "kafka:DescribeCluster",
 "kafka:DescribeClusterV2",
 "kafka-cluster:Connect"
],
 "Resource": "arn:aws:kafka:us-east-1:arn:cluster/DO-NOT-TOUCH-mskaas-provisioned-
privateLink/xxxxxxxxx-2f3a-462a-ba09-xxxxxxxxxx-20/*" //topic of the cluster
 },
 {
 "Sid": "",
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:DescribeTopic",
 "kafka-cluster:DescribeTopicDynamicConfiguration",
 "kafka-cluster:ReadData"
],
 "Resource": "arn:aws:kafka:us-east-1:arn:topic/DO-NOT-TOUCH-mskaas-provisioned-
privateLink/xxxxxxxxx-2f3a-462a-ba09-xxxxxxxxxx-20/mskaas_test_topic" //topic of the
 cluster
 },
 {
 "Sid": "",
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:DescribeGroup"
],
 "Resource": "arn:aws:kafka:us-east-1:arn:group/DO-NOT-TOUCH-mskaas-provisioned-
privateLink/xxxxxxxxx-2f3a-462a-ba09-xxxxxxxxxx-20/*" //topic of the cluster
 },
 }

Next, you can complete the optional step of configuring record transformation and record format
conversion. For more information, see Record Transformation and Format Conversion.

Cross-Account Delivery to an Amazon S3 Destination

You can use the AWS CLI or the Amazon Data Firehose APIs to create a Firehose stream in one AWS
account with an Amazon S3 destination in a different account. The following procedure shows an

Cross-Account Delivery to an Amazon S3 Destination 120

Amazon Data Firehose Developer Guide

example of configuring a Firehose stream owned by account A to deliver data to an Amazon S3
bucket owned by account B.

1. Create an IAM role under account A using steps described in Grant Firehose Access to an
Amazon S3 Destination.

Note

The Amazon S3 bucket specified in the access policy is owned by account B in this case.
Make sure you add s3:PutObjectAcl to the list of Amazon S3 actions in the access
policy, which grants account B full access to the objects delivered by Amazon Data
Firehose. This permission is required for cross account delivery. Amazon Data Firehose
sets the "x-amz-acl" header on the request to "bucket-owner-full-control".

2. To allow access from the IAM role previously created, create an S3 bucket policy under account
B. The following code is an example of the bucket policy. For more information, see Using
Bucket Policies and User Policies.

{

 "Version": "2012-10-17",
 "Id": "PolicyID",
 "Statement": [
 {
 "Sid": "StmtID",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::accountA-id:role/iam-role-name"
 },
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutObject",
 "s3:PutObjectAcl"
],
 "Resource": [
 "arn:aws:s3:::bucket-name",
 "arn:aws:s3:::bucket-name/*"

Cross-Account Delivery to an Amazon S3 Destination 121

https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-s3
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-s3
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-iam-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-iam-policies.html

Amazon Data Firehose Developer Guide

]
 }
]
}

3. Create a Firehose stream under account A using the IAM role that you created in step 1.

Cross-Account Delivery to an OpenSearch Service Destination

You can use the AWS CLI or the Amazon Data Firehose APIs to create a Firehose stream in one AWS
account with an OpenSearch Service destination in a different account. The following procedure
shows an example of how you can create a Firehose stream under account A and configure it to
deliver data to an OpenSearch Service destination owned by account B.

1. Create an IAM role under account A using the steps described in the section called “Grant
Amazon Data Firehose Access to a Public OpenSearch Service Destination”.

2. To allow access from the IAM role that you created in the previous step, create an OpenSearch
Service policy under account B. The following JSON is an example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::Account-A-ID:role/firehose_delivery_role "
 },
 "Action": "es:ESHttpGet",
 "Resource": [
 "arn:aws:es:us-east-1:Account-B-ID:domain/cross-account-cluster/_all/
_settings",
 "arn:aws:es:us-east-1:Account-B-ID:domain/cross-account-cluster/_cluster/
stats",
 "arn:aws:es:us-east-1:Account-B-ID:domain/cross-account-cluster/roletest*/
_mapping/roletest",
 "arn:aws:es:us-east-1:Account-B-ID:domain/cross-account-cluster/_nodes",
 "arn:aws:es:us-east-1:Account-B-ID:domain/cross-account-cluster/_nodes/
stats",
 "arn:aws:es:us-east-1:Account-B-ID:domain/cross-account-cluster/_nodes/*/
stats",

Cross-Account Delivery to an OpenSearch Service Destination 122

Amazon Data Firehose Developer Guide

 "arn:aws:es:us-east-1:Account-B-ID:domain/cross-account-cluster/_stats",
 "arn:aws:es:us-east-1:Account-B-ID:domain/cross-account-cluster/roletest*/
_stats",
 "arn:aws:es:us-east-1:Account-B-ID:domain/cross-account-cluster/"
]
 }
]
}

3. Create a Firehose stream under account A using the IAM role that you created in step 1. When
you create the Firehose stream, use the AWS CLI or the Amazon Data Firehose APIs and specify
the ClusterEndpoint field instead of DomainARN for OpenSearch Service.

Note

To create a Firehose stream in one AWS account with an OpenSearch Service destination in
a different account, you must use the AWS CLI or the Amazon Data Firehose APIs. You can't
use the AWS Management Console to create this kind of cross-account configuration.

Using Tags to Control Access

You can use the optional Condition element (or Condition block) in an IAM policy to fine-
tune access to Amazon Data Firehose operations based on tag keys and values. The following
subsections describe how to do this for the different Amazon Data Firehose operations. For more
on the use of the Condition element and the operators that you can use within it, see IAM JSON
Policy Elements: Condition.

CreateDeliveryStream

For the CreateDeliveryStream operation, use the aws:RequestTag condition key. In the
following example, MyKey and MyValue represent the key and corresponding value for a tag. For
more information, see Tag Basics

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "firehose:CreateDeliveryStream",

Using Tags to Control Access 123

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon Data Firehose Developer Guide

 "firehose:TagDeliveryStream"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/MyKey": "MyValue"
 }
 }
 }]
}

TagDeliveryStream

For the TagDeliveryStream operation, use the aws:TagKeys condition key. In the following
example, MyKey is an example tag key.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "firehose:TagDeliveryStream",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": "MyKey"
 }
 }
 }
]
}

UntagDeliveryStream

For the UntagDeliveryStream operation, use the aws:TagKeys condition key. In the following
example, MyKey is an example tag key.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Using Tags to Control Access 124

Amazon Data Firehose Developer Guide

 "Action": "firehose:UntagDeliveryStream",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": "MyKey"
 }
 }
 }
]
}

ListDeliveryStreams

You can't use tag-based access control with ListDeliveryStreams.

Other Amazon Data Firehose Operations

For all Amazon Data Firehose operations other than CreateDeliveryStream,
TagDeliveryStream, UntagDeliveryStream, and ListDeliveryStreams, use the
aws:RequestTag condition key. In the following example, MyKey and MyValue represent the key
and corresponding value for a tag.

ListDeliveryStreams, use the firehose:ResourceTag condition key to control access based
on the tags on that Firehose stream.

In the following example, MyKey and MyValue represent the key and corresponding value for a
tag. The policy would only apply to Data Firehose streams having a tag named MyKey with a value
of MyValue. For more information about controlling access based on resource tags, see Controlling
access to AWS resources using tags in the IAM User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "firehose:DescribeDeliveryStream",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "firehose:ResourceTag/MyKey": "MyValue"
 }

Using Tags to Control Access 125

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html#access_tags_control-resources
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html#access_tags_control-resources

Amazon Data Firehose Developer Guide

 }
 }
]
}

Manage IAM roles through Amazon Data Firehose console

Amazon Data Firehose is a fully managed service that delivers real-time streaming data to
destinations. You can also configure Firehose to transform and convert the format of your data
before delivery. To use these features, you must first provide IAM roles to grant permissions
to Firehose when you create or edit a Firehose stream. Firehose uses this IAM role for all the
permissions that the Firehose stream needs.

For example, consider a scenario where you create a Firehose stream that delivers data to Amazon
S3, and this Firehose stream has Transform source records with AWS Lambda feature enabled. In
this case, you must provide IAM roles to grant Firehose permissions to access the S3 bucket and
invoke the Lambda function, as shown in the following.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "lambdaProcessing",
 "Effect": "Allow",
 "Action": ["lambda:InvokeFunction", "lambda:GetFunctionConfiguration"],
 "Resource": "arn:aws:lambda:us-east-1:<account id>:function:<lambda function
 name>:<lambda function version>"
 }, {
 "Sid": "s3Permissions",
 "Effect": "Allow",
 "Action": ["s3:AbortMultipartUpload", "s3:GetBucketLocation", "s3:GetObject",
 "s3:ListBucket", "s3:ListBucketMultipartUploads", "s3:PutObject"],
 "Resource": ["arn:aws:s3:::<bucket name>", "arn:aws:s3:::<bucket name>/*"]
 }]
}

Firehose console allows you to choose how you want to provide these roles. You can choose from
one of the following options.

• Choose an existing IAM role

• Create a new IAM role from console

Manage IAM roles through console 126

Amazon Data Firehose Developer Guide

Choose an existing IAM role

You can choose from an existing IAM role. With this option, make sure that the IAM role you choose
has a proper trust policy and permissions required for your source and destination. For more
information, see Controlling Access with Amazon Data Firehose.

Create a new IAM role from console

Alternatively, you could also use the Firehose console to create a new role on your behalf.

When Firehose creates an IAM role on your behalf, the role automatically includes all permission
and trust policies that grant the required permissions based on the Firehose stream configuration.

For example, if you didn’t enable Transform source records with AWS Lambda feature then
console generates the following statement in the permission policy.

{
 "Sid": "lambdaProcessing",
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunctionConfiguration"
],
 "Resource": "arn:aws:lambda:us-east-1:<account id>:function:
%FIREHOSE_POLICY_TEMPLATE_PLACEHOLDER%"
}

Note

It's safe to ignore the policy statements that contain
%FIREHOSE_POLICY_TEMPLATE_PLACEHOLDER% as they don't grant permissions on any
resources.

The console create and edit Firehose stream workflows also create a trust policy and attach it to
the IAM role. The trust policy allows Firehose to assume the IAM role. Following is a example of a
trust policy.

{
 "Version": "2012-10-17",

Choose an existing IAM role 127

Amazon Data Firehose Developer Guide

 "Statement": [{
 "Sid": "firehoseAssume",
 "Effect": "Allow",
 "Principal": {
 "Service": "firehose.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }]
}

Important

• You should avoid using the same console-managed IAM role for multiple Firehose
streams. Otherwise, the IAM role could become overly permissive or result in errors.

• To use different policy statements within a permission policy from a console-managed
IAM role, you can create your own IAM role, and copy the policy statements to a
permission policy attached to the new role. To attach the role to the Firehose stream,
select the Choose existing IAM role option in the Service access.

• Console manages any IAM role that contains the string service-role in its ARN. When you
choose the existing IAM role option, make sure to select an IAM role without the service-
role string in its ARN so that console doesn’t make any changes to it.

Steps to create an IAM role from console

1. Open the Firehose console at https://console.aws.amazon.com/firehose/.

2. Choose Create Firehose stream.

3. Choose a source and destination. For more information, see Creating a Firehose stream.

4. Choose the destination settings. For more information, see Destination Settings.

5. Under Advanced settings, for Service access, choose Create or update IAM role.

Note

This is a default option. To use an existing role, select the Choose existing IAM role
option. Firehose console won’t make any changes to your own role.

6. Choose Create Firehose stream.

Create a new IAM role from console 128

https://console.aws.amazon.com/firehose/

Amazon Data Firehose Developer Guide

Edit IAM role from console

When you edit a Firehose stream, Firehose updates the corresponding permission policy
accordingly to reflect the configuration and permission changes.

For example, when you edit the Firehose stream and enable Transform source records with AWS
Lambda feature using the latest version of Lambda function as exampleLambdaFunction, you
get the following policy statement in the permission policy.

{
 "Sid": "lambdaProcessing",
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunctionConfiguration"
],
 "Resource": "arn:aws:lambda:us-east-1:<account id>:function:exampleLambdaFunction:
$LATEST"
}

Important

A console-managed IAM role is designed to be autonomous. We don't recommend that you
modify the permission policy or trust policy outside of the console.

Edit IAM role from console

1. Open the Firehose console at https://console.aws.amazon.com/firehose/.

2. Choose Firehose streams and choose the name of a Firehose stream you want to update.

3. On the Configuration tab, in the Server access section, choose Edit.

4. Update the IAM role option.

Note

By default, the console always updates an IAM role with the pattern service-role in its
ARN. When you choose the existing IAM role option, make sure to select an IAM role

Edit IAM role from console 129

https://console.aws.amazon.com/firehose/

Amazon Data Firehose Developer Guide

without the service-role string in its ARN so that console doesn’t make any changes to
it.

5. Choose Save changes.

Monitoring Amazon Data Firehose

Amazon Data Firehose provides monitoring functionality for your Firehose streams. For more
information, see Monitoring.

Compliance Validation for Amazon Data Firehose

Third-party auditors assess the security and compliance of Amazon Data Firehose as part of
multiple AWS compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and others.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using Data Firehose is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. If your use
of Data Firehose is subject to compliance with standards such as HIPAA, PCI, or FedRAMP, AWS
provides resources to help:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper – This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Config – This AWS service assesses how well your resource configurations comply with
internal practices, industry guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

Monitoring 130

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/pdfs/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.pdf
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

Amazon Data Firehose Developer Guide

Resilience in Amazon Data Firehose

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between Availability
Zones without interruption. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, Data Firehose offers several features to help support
your data resiliency and backup needs.

Disaster Recovery

Amazon Data Firehose runs in a serverless mode, and takes care of host degradations, Availability
Zone availability, and other infrastructure related issues by performing automatic migration. When
this happens, Amazon Data Firehose ensures that the Firehose stream is migrated without any loss
of data.

Infrastructure Security in Amazon Data Firehose

As a managed service, Amazon Data Firehose is protected by AWS global network security. For
information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access Firehose through the network. Clients must support the
following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Resilience 131

https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html

Amazon Data Firehose Developer Guide

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Note

For outgoing HTTPS requests, Amazon Data Firehose uses an HTTP library that
automatically selects the highest TLS protocol version supported at the destination side.

VPC Endpoints (PrivateLink)

Amazon Data Firehose provides support for VPC endpoints (PrivateLink). For more information, see
Using Amazon Data Firehose with AWS PrivateLink.

Security Best Practices for Amazon Data Firehose

Amazon Data Firehose provides a number of security features to consider as you develop and
implement your own security policies. The following best practices are general guidelines and don’t
represent a complete security solution. Because these best practices might not be appropriate or
sufficient for your environment, treat them as helpful considerations rather than prescriptions.

Implement least privilege access

When granting permissions, you decide who is getting what permissions to which Amazon
Data Firehose resources. You enable specific actions that you want to allow on those resources.
Therefore you should grant only the permissions that are required to perform a task. Implementing
least privilege access is fundamental in reducing security risk and the impact that could result from
errors or malicious intent.

Use IAM roles

Producer and client applications must have valid credentials to access Amazon Data Firehose
delivery streams, and your Firehose stream must have valid credentials to access destinations. You
should not store AWS credentials directly in a client application or in an Amazon S3 bucket. These
are long-term credentials that are not automatically rotated and could have a significant business
impact if they are compromised.

VPC Endpoints (PrivateLink) 132

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon Data Firehose Developer Guide

Instead, you should use an IAM role to manage temporary credentials for your producer and client
applications to access Firehose streams. When you use a role, you don't have to use long-term
credentials (such as a user name and password or access keys) to access other resources.

For more information, see the following topics in the IAM User Guide:

• IAM Roles

• Common Scenarios for Roles: Users, Applications, and Services

Implement Server-Side Encryption in Dependent Resources

Data at rest and data in transit can be encrypted in Amazon Data Firehose. For more information,
see Data Protection in Amazon Amazon Data Firehose.

Use CloudTrail to Monitor API Calls

Amazon Data Firehose is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service in Amazon Data Firehose.

Using the information collected by CloudTrail, you can determine the request that was made to
Amazon Data Firehose, the IP address from which the request was made, who made the request,
when it was made, and additional details.

For more information, see the section called “Logging Amazon Data Firehose API Calls with AWS
CloudTrail”.

Implement Server-Side Encryption in Dependent Resources 133

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios.html
https://docs.aws.amazon.com/firehose/latest/dev/encryption.html

Amazon Data Firehose Developer Guide

Amazon Data Firehose Data Transformation

Amazon Data Firehose can invoke your Lambda function to transform incoming source data
and deliver the transformed data to destinations. You can enable Amazon Data Firehose data
transformation when you create your Firehose stream.

Data Transformation Flow

When you enable Firehose data transformation, Firehose buffers incoming data. The buffering
size hint ranges between 0.2 MB and 3MB. The default Lambda buffering size hint is 1 MB for
all destinations, except Splunk and Snowflake. For Splunk and Snowflake, the default buffering
hint is 256 KB. The Lambda buffering interval hint ranges between 0 and 900 seconds. The
default Lambda buffering interval hint is sixty seconds for all destinations except Snowflake. For
Snowflake, the default buffering hint interval is 30 seconds. To adjust the buffering size, set the
ProcessingConfiguration parameter of the CreateDeliveryStream or UpdateDestination API with
the ProcessorParameter called BufferSizeInMBs and IntervalInSeconds. Firehose then
invokes the specified Lambda function asynchronously with each buffered batch using the AWS
Lambda synchronous invocation mode. The transformed data is sent from Lambda to Firehose.
Firehose then sends it to the destination when the specified destination buffering size or buffering
interval is reached, whichever happens first.

Important

The Lambda synchronous invocation mode has a payload size limit of 6 MB for both the
request and the response. Make sure that your buffering size for sending the request to
the function is less than or equal to 6 MB. Also ensure that the response that your function
returns doesn't exceed 6 MB.

Data Transformation and Status Model

All transformed records from Lambda must contain the following parameters, or Amazon Data
Firehose rejects them and treats that as a data transformation failure.

For Kinesis Data Streams and Direct PUT:

Data Transformation Flow 134

https://docs.aws.amazon.com/firehose/latest/APIReference/API_ProcessingConfiguration.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_UpdateDestination.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ProcessorParameter.html

Amazon Data Firehose Developer Guide

recordId

The record ID is passed from Amazon Data Firehose to Lambda during the invocation. The
transformed record must contain the same record ID. Any mismatch between the ID of the
original record and the ID of the transformed record is treated as a data transformation failure.

result

The status of the data transformation of the record. The possible values are: Ok (the record was
transformed successfully), Dropped (the record was dropped intentionally by your processing
logic), and ProcessingFailed (the record could not be transformed). If a record has a status
of Ok or Dropped, Amazon Data Firehose considers it successfully processed. Otherwise,
Amazon Data Firehose considers it unsuccessfully processed.

data

The transformed data payload, after base64-encoding.

Following is a sample Lambda result output:

 {
 "recordId": "<recordId from the Lambda input>",
 "result": "Ok",
 "data": "<Base64 encoded Transformed data>"
}

For Amazon MSK

recordId

The record ID is passed from Firehose to Lambda during the invocation. The transformed record
must contain the same record ID. Any mismatch between the ID of the original record and the
ID of the transformed record is treated as a data transformation failure.

result

The status of the data transformation of the record. The possible values are: Ok (the record was
transformed successfully), Dropped (the record was dropped intentionally by your processing
logic), and ProcessingFailed (the record could not be transformed). If a record has a status
of Ok or Dropped, Firehose considers it successfully processed. Otherwise, Firehose considers it
unsuccessfully processed.

Data Transformation and Status Model 135

Amazon Data Firehose Developer Guide

KafkaRecordValue

The transformed data payload, after base64-encoding.

Following is a sample Lambda result output:

 {
 "recordId": "<recordId from the Lambda input>",
 "result": "Ok",
 "kafkaRecordValue": "<Base64 encoded Transformed data>"
}

Lambda Blueprints

These blueprints demonstrate how you can create and use AWS Lambda functions to transform
data in your Amazon Data Firehose data streams.

To see the blueprints that are available in the AWS Lambda console

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create function, and then choose Use a blueprint.

3. In the Blueprints field, search for the keyword firehose to find the Amazon Data Firehose
Lambda blueprints.

List of blueprints:

• Process records sent to Amazon Data Firehose stream (Node.js, Python)

This blueprint shows a basic example of how to process data in your Firehose data stream using
AWS Lambda.

Latest release date: November, 2016.

Release notes: none.

• Process CloudWatch logs sent to Firehose

This blueprint is deprecated. For information on processing CloudWatch Logs sent to Firehose,
see Writing to Firehose Using CloudWatch Logs.

Lambda Blueprints 136

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-cloudwatch-logs.html

Amazon Data Firehose Developer Guide

• Convert Amazon Data Firehose stream records in syslog format to JSON (Node.js)

This blueprint shows how you can convert input records in RFC3164 Syslog format to JSON.

Latest release date: Nov, 2016.

Release notes: none.

To see the blueprints that are available in the AWS Serverless Application Repository

1. Go to AWS Serverless Application Repository.

2. Choose Browse all applications.

3. In the Applications field, search for the keyword firehose.

You can also create a Lambda function without using a blueprint. See Getting Started with AWS
Lambda.

Data Transformation Failure Handling

If your Lambda function invocation fails because of a network timeout or because you've reached
the Lambda invocation limit, Amazon Data Firehose retries the invocation three times by default.
If the invocation does not succeed, Amazon Data Firehose then skips that batch of records. The
skipped records are treated as unsuccessfully processed records. You can specify or override the
retry options using the CreateDeliveryStream or UpdateDestination API. For this type of failure,
you can log invocation errors to Amazon CloudWatch Logs. For more information, see Monitoring
Amazon Data Firehose Using CloudWatch Logs.

If the status of the data transformation of a record is ProcessingFailed, Amazon Data Firehose
treats the record as unsuccessfully processed. For this type of failure, you can emit error logs
to Amazon CloudWatch Logs from your Lambda function. For more information, see Accessing
Amazon CloudWatch Logs for AWS Lambda in the AWS Lambda Developer Guide.

If data transformation fails, the unsuccessfully processed records are delivered to your S3 bucket in
the processing-failed folder. The records have the following format:

{
 "attemptsMade": "count",
 "arrivalTimestamp": "timestamp",

Data Transformation Failure Handling 137

https://aws.amazon.com/serverless/serverlessrepo
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_UpdateDestination.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-logs.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-logs.html

Amazon Data Firehose Developer Guide

 "errorCode": "code",
 "errorMessage": "message",
 "attemptEndingTimestamp": "timestamp",
 "rawData": "data",
 "lambdaArn": "arn"
}

attemptsMade

The number of invocation requests attempted.

arrivalTimestamp

The time that the record was received by Amazon Data Firehose.

errorCode

The HTTP error code returned by Lambda.

errorMessage

The error message returned by Lambda.

attemptEndingTimestamp

The time that Amazon Data Firehose stopped attempting Lambda invocations.

rawData

The base64-encoded record data.

lambdaArn

The Amazon Resource Name (ARN) of the Lambda function.

Duration of a Lambda Invocation

Amazon Data Firehose supports a Lambda invocation time of up to 5 minutes. If your Lambda
function takes more than 5 minutes to complete, you get the following error: Firehose encountered
timeout errors when calling AWS Lambda. The maximum supported function timeout is 5 minutes.

For information about what Amazon Data Firehose does if such an error occurs, see the section
called “Data Transformation Failure Handling”.

Duration of a Lambda Invocation 138

Amazon Data Firehose Developer Guide

Source Record Backup

Amazon Data Firehose can back up all untransformed records to your S3 bucket concurrently while
delivering transformed records to the destination. You can enable source record backup when you
create or update your Firehose stream. You cannot disable source record backup after you enable it.

Source Record Backup 139

Amazon Data Firehose Developer Guide

Dynamic Partitioning in Amazon Data Firehose

Dynamic partitioning enables you to continuously partition streaming data in Firehose by using
keys within data (for example, customer_id or transaction_id) and then deliver the data
grouped by these keys into corresponding Amazon Simple Storage Service (Amazon S3) prefixes.
This makes it easier to run high performance, cost-efficient analytics on streaming data in Amazon
S3 using various services such as Amazon Athena, Amazon EMR, Amazon Redshift Spectrum, and
Amazon QuickSight. In addition, AWS Glue can perform more sophisticated extract, transform, and
load (ETL) jobs after the dynamically partitioned streaming data is delivered to Amazon S3, in use-
cases where additional processing is required.

Partitioning your data minimizes the amount of data scanned, optimizes performance, and reduces
costs of your analytics queries on Amazon S3. It also increases granular access to your data.
Firehose streams are traditionally used in order to capture and load data into Amazon S3. To
partition a streaming data set for Amazon S3-based analytics, you would need to run partitioning
applications between Amazon S3 buckets prior to making the data available for analysis, which
could become complicated or costly.

With dynamic partitioning, Firehose continuously groups in-transit data using dynamically or
statically defined data keys, and delivers the data to individual Amazon S3 prefixes by key. This
reduces time-to-insight by minutes or hours. It also reduces costs and simplifies architectures.

Topics

• Partitioning keys

• Amazon S3 Bucket Prefix for Dynamic Partitioning

• Dynamic partitioning of aggregated data

• Adding a new line delimiter when delivering data to S3

• How to enable dynamic partitioning

• Dynamic Partitioning Error Handling

• Data buffering and dynamic partitioning

Partitioning keys

With dynamic partitioning, you create targeted data sets from the streaming S3 data by
partitioning the data based on partitioning keys. Partitioning keys enable you to filter your

Partitioning keys 140

Amazon Data Firehose Developer Guide

streaming data based on specific values. For example, if you need to filter your data based on
customer ID and country, you can specify the data field of customer_id as one partitioning key
and the data field of country as another partitioning key. Then, you specify the expressions (using
the supported formats) to define the S3 bucket prefixes to which the dynamically partitioned data
records are to be delivered.

The following are the supported methods of creating partitioning keys:

• Inline parsing - this method uses Firehose built-in support mechanism, a jq parser, for extracting
the keys for partitioning from data records that are in JSON format. Currently, we only support
jq 1.6 version.

• AWS Lambda function - this method uses a specified AWS Lambda function to extract and
return the data fields needed for partitioning.

Important

When you enable dynamic partitioning, you must configure at least one of these methods
to partition your data. You can configure either of these methods to specify your
partitioning keys or both of them at the same time.

Creating partitioning keys with inline parsing

To configure inline parsing as the dynamic partitioning method for your streaming data, you
must choose data record parameters to be used as partitioning keys and provide a value for each
specified partitioning key.

Let's look at the following sample data record and see how you can define partitioning keys for it
with inline parsing:

{
 "type": {
 "device": "mobile",
 "event": "user_clicked_submit_button"
 },
 "customer_id": "1234567890",
 "event_timestamp": 1565382027, #epoch timestamp
 "region": "sample_region"
}

Creating partitioning keys with inline parsing 141

https://stedolan.github.io/jq/

Amazon Data Firehose Developer Guide

For example, you can choose to partition your data based on the customer_id parameter or
the event_timestamp parameter. This means that you want the value of the customer_id
parameter or the event_timestamp parameter in each record to be used in determining the S3
prefix to which the record is to be delivered. You can also choose a nested parameter, like device
with an expression .type.device. Your dynamic partitioning logic can depend on multiple
parameters.

After selecting data parameters for your partitioning keys, you then map each parameter to a valid
jq expression. The following table shows such a mapping of parameters to jq expressions:

Parameter jq expression

customer_id .customer_id

device .type.device

year .event_timestamp| strftime("%Y")

month .event_timestamp| strftime("%m")

day .event_timestamp| strftime("%d")

hour .event_timestamp| strftime("%H")

At runtime, Firehose uses the right column above to evaluate the parameters based on the data in
each record.

Creating partitioning keys with an AWS Lambda function

For compressed or encrypted data records, or data that is in any file format other than JSON, you
can use the integrated AWS Lambda function with your own custom code to decompress, decrypt,
or transform the records in order to extract and return the data fields needed for partitioning. This
is an expansion of the existing transform Lambda function that is available today with Firehose.
You can transform, parse and return the data fields that you can then use for dynamic partitioning
using the same Lambda function.

The following is an example Firehose stream processing Lambda function in Python that replays
every read record from input to output and extracts partitioning keys from the records.

Creating partitioning keys with an AWS Lambda function 142

Amazon Data Firehose Developer Guide

from __future__ import print_function
import base64
import json
import datetime

Signature for all Lambda functions that user must implement
def lambda_handler(firehose_records_input, context):
 print("Received records for processing from DeliveryStream: " +
 firehose_records_input['deliveryStreamArn']
 + ", Region: " + firehose_records_input['region']
 + ", and InvocationId: " + firehose_records_input['invocationId'])

 # Create return value.
 firehose_records_output = {'records': []}

 # Create result object.
 # Go through records and process them

 for firehose_record_input in firehose_records_input['records']:
 # Get user payload
 payload = base64.b64decode(firehose_record_input['data'])
 json_value = json.loads(payload)

 print("Record that was received")
 print(json_value)
 print("\n")
 # Create output Firehose record and add modified payload and record ID to it.
 firehose_record_output = {}
 event_timestamp = datetime.datetime.fromtimestamp(json_value['eventTimestamp'])
 partition_keys = {"customerId": json_value['customerId'],
 "year": event_timestamp.strftime('%Y'),
 "month": event_timestamp.strftime('%m'),
 "date": event_timestamp.strftime('%d'),
 "hour": event_timestamp.strftime('%H'),
 "minute": event_timestamp.strftime('%M')
 }

 # Create output Firehose record and add modified payload and record ID to it.
 firehose_record_output = {'recordId': firehose_record_input['recordId'],
 'data': firehose_record_input['data'],
 'result': 'Ok',
 'metadata': { 'partitionKeys': partition_keys }}

Creating partitioning keys with an AWS Lambda function 143

Amazon Data Firehose Developer Guide

 # Must set proper record ID
 # Add the record to the list of output records.

 firehose_records_output['records'].append(firehose_record_output)

 # At the end return processed records
 return firehose_records_output

The following is an example Firehose stream processing Lambda function in Go that replays every
read record from input to output and extracts partitioning keys from the records.

package main

import (
 "fmt"
 "encoding/json"
 "time"
 "strconv"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

type DataFirehoseEventRecordData struct {
 CustomerId string `json:"customerId"`
}

func handleRequest(evnt events.DataFirehoseEvent) (events.DataFirehoseResponse, error)
 {

 fmt.Printf("InvocationID: %s\n", evnt.InvocationID)
 fmt.Printf("DeliveryStreamArn: %s\n", evnt.DeliveryStreamArn)
 fmt.Printf("Region: %s\n", evnt.Region)

 var response events.DataFirehoseResponse

 for _, record := range evnt.Records {
 fmt.Printf("RecordID: %s\n", record.RecordID)
 fmt.Printf("ApproximateArrivalTimestamp: %s\n", record.ApproximateArrivalTimestamp)

 var transformedRecord events.DataFirehoseResponseRecord

Creating partitioning keys with an AWS Lambda function 144

Amazon Data Firehose Developer Guide

 transformedRecord.RecordID = record.RecordID
 transformedRecord.Result = events.DataFirehoseTransformedStateOk
 transformedRecord.Data = record.Data

 var metaData events.DataFirehoseResponseRecordMetadata
 var recordData DataFirehoseEventRecordData
 partitionKeys := make(map[string]string)

 currentTime := time.Now()
 json.Unmarshal(record.Data, &recordData)
 partitionKeys["customerId"] = recordData.CustomerId
 partitionKeys["year"] = strconv.Itoa(currentTime.Year())
 partitionKeys["month"] = strconv.Itoa(int(currentTime.Month()))
 partitionKeys["date"] = strconv.Itoa(currentTime.Day())
 partitionKeys["hour"] = strconv.Itoa(currentTime.Hour())
 partitionKeys["minute"] = strconv.Itoa(currentTime.Minute())
 metaData.PartitionKeys = partitionKeys
 transformedRecord.Metadata = metaData

 response.Records = append(response.Records, transformedRecord)
 }

 return response, nil
}

func main() {
 lambda.Start(handleRequest)
}

Amazon S3 Bucket Prefix for Dynamic Partitioning

When you create a Firehose stream that uses Amazon S3 as the destination, you must specify an
Amazon S3 bucket where Firehose is to deliver your data. Amazon S3 bucket prefixes are used to
organize the data that you store in your S3 buckets. An Amazon S3 bucket prefix is similar to a
directory that enables you to group similar objects together.

With dynamic partitioning, your partitioned data is delivered into the specified Amazon S3 prefixes.
If you don't enable dynamic partitioning, specifying an S3 bucket prefix for your Firehose stream
is optional. However, if you choose to enable dynamic partitioning, you must specify the S3 bucket
prefixes to which Firehose delivers partitioned data.

Amazon S3 Bucket Prefix for Dynamic Partitioning 145

Amazon Data Firehose Developer Guide

In every Firehose stream where you enable dynamic partitioning, the S3 bucket prefix value
consists of expressions based on the specified partitioning keys for that delivery stream. Using
the above data record example again, you can build the following S3 prefix value that consists of
expressions based on the partitioning keys defined above:

"ExtendedS3DestinationConfiguration": {
"BucketARN": "arn:aws:s3:::my-logs-prod",
"Prefix": "customer_id=!{partitionKeyFromQuery:customer_id}/
 device=!{partitionKeyFromQuery:device}/
 year=!{partitionKeyFromQuery:year}/
 month=!{partitionKeyFromQuery:month}/
 day=!{partitionKeyFromQuery:day}/
 hour=!{partitionKeyFromQuery:hour}/"
}

Firehose evaluates the above expression at runtime. It groups records that match the same
evaluated S3 prefix expression into a single data set. Firehose then delivers each data set to the
evaluated S3 prefix. The frequency of data set delivery to S3 is determined by the Firehose stream
buffer setting. As a result, the record in this example is delivered to the following S3 object key:

s3://my-logs-prod/customer_id=1234567890/device=mobile/year=2019/month=08/day=09/
hour=20/my-delivery-stream-2019-08-09-23-55-09-a9fa96af-e4e4-409f-bac3-1f804714faaa

For dynamic partitioning, you must use the following expression format in your S3 bucket
prefix: !{namespace:value}, where namespace can be either partitionKeyFromQuery or
partitionKeyFromLambda, or both. If you are using inline parsing to create the partitioning
keys for your source data, you must specify an S3 bucket prefix value that consists of expressions
specified in the following format: "partitionKeyFromQuery:keyID". If you are using
an AWS Lambda function to create partitioning keys for your source data, you must specify
an S3 bucket prefix value that consists of expressions specified in the following format:
"partitionKeyFromLambda:keyID".

Amazon S3 Bucket Prefix for Dynamic Partitioning 146

Amazon Data Firehose Developer Guide

Note

You can also specify the S3 bucket prefix value using the hive style format, for example
customer_id=!{partitionKeyFromQuery:customer_id}.

For more information, see the "Choose Amazon S3 for Your Destination" in Creating an Amazon
Firehose stream and Custom Prefixes for Amazon S3 Objects.

Dynamic partitioning of aggregated data

You can apply dynamic partitioning to aggregated data (for example, multiple events, logs, or
records aggregated into a single PutRecord and PutRecordBatch API call) but this data must
first be deaggregated. You can deaggregate your data by enabling multi record deaggregation -
the process of parsing through the records in the Firehose stream and separating them.

Multi record deaggregation can either be of JSON type, meaning that the separation of records is
based on consecutive JSON objects. Deaggregation can also be of the type Delimited, meaning
that the separation of records is performed based on a specified custom delimiter. This custom
delimiter must be a base-64 encoded string. For example, if you want to use the following string as
your custom delimiter ####, you must specify it in the base-64 encoded format, which translates it
to IyMjIw==.

Note

When deaggregating JSON records, make sure that your input is still presented in the
supported JSON format. JSON objects must be on a single line with no delimiter or
newline-delimited (JSONL) only. An array of JSON objects is not a valid input.
These are examples of correct input: {"a":1}{"a":2} and {"a":1}\n{"a":2}
This is an example of the incorrect input: [{"a":1}, {"a":2}]

With aggregated data, when you enable dynamic partitioning, Firehose parses the records and
looks for either valid JSON objects or delimited records within each API call based on the specified
multi record deaggregation type.

Dynamic partitioning of aggregated data 147

https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://docs.aws.amazon.com/firehose/latest/dev/s3-prefixes.html

Amazon Data Firehose Developer Guide

Important

If your data is aggregated, dynamic partitioning can be only be applied if your data is first
deaggregated.

Important

When you use Data Transformation feature in Firehose, the deaggregation will be applied
before the Data Transformation. Data coming into Firehose will be processed in the
following order: Deaggregation → Data Transformation via Lambda → Partitioning Keys.

Adding a new line delimiter when delivering data to S3

You can enable New Line Delimiter to add a new line delimiter between records in objects that
are delivered to Amazon S3. This can be helpful for parsing objects in Amazon S3. This is also
particularly useful when dynamic partitioning is applied to aggregated data because multi-
record deaggregation (which must be applied to aggregated data before it can be dynamically
partitioned) removes new lines from records as part of the parsing process.

How to enable dynamic partitioning

You can configure dynamic partitioning for your Firehose streams through the Amazon Data
Firehose Management Console, CLI, or the APIs.

Important

You can enable dynamic partitioning only when you create a new Firehose stream. You
cannot enable dynamic partitioning for an existing Firehose stream that does not have
dynamic partitioning already enabled.

For detailed steps on how to enable and configure dynamic partitioning through the Firehose
management console while creating a new Firehose stream, see Creating an Amazon Firehose
stream. When you get to the task of specifying the destination for your Firehose stream, make sure

Adding a new line delimiter when delivering data to S3 148

https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html

Amazon Data Firehose Developer Guide

to follow the steps in the Choose Amazon S3 for Your Destination section, since currently, dynamic
partitioning is only supported for Firehose streams that use Amazon S3 as the destination.

Once dynamic partitioning on an active Firehose stream is enabled, you can update the
configuration by adding new or removing or updating existing partitioning keys and the S3 prefix
expressions. Once updated, Firehose starts using the new keys and the new S3 prefix expressions.

Important

Once you enable dynamic partitioning on a Firehose stream, it cannot be disabled on this
Firehose stream.

Dynamic Partitioning Error Handling

If Amazon Data Firehose is not able to parse data records in your Firehose stream or it fails to
extract the specified partitioning keys, or to evaluate the expressions included in the S3 prefix
value, these data records are delivered to the S3 error bucket prefix that you must specify when
you create the Firehose stream where you enable dynamic partitioning. The S3 error bucket prefix
contains all the records that Firehose is not able to deliver to the specified S3 destination. These
records are organized based on the error type. Along with the record, the delivered object also
includes information about the error to help understand and resolve the error.

You must specify an S3 error bucket prefix for a Firehose stream if you want to enable dynamic
partitioning for this Firehose stream. If you don't want to enable dynamic partitioning for a
Firehose stream, specifying an S3 error bucket prefix is optional.

Data buffering and dynamic partitioning

Amazon Data Firehose buffers incoming streaming data to a certain size and for a certain period
of time before delivering it to the specified destinations. You can configure the buffer size and
the buffer interval while creating new Firehose streams or update the buffer size and the buffer
interval on your existing Firehose streams. A buffer size is measured in MBs and a buffer interval is
measured in seconds.

When dynamic partitioning is enabled, Firehose internally buffers records that belong to a given
partition based on the configured buffering hint (size and time) before delivering these records
to your Amazon S3 bucket. In order to deliver maximum size objects, Firehose uses multi-stage

Dynamic Partitioning Error Handling 149

https://docs.aws.amazon.com/firehose/latest/dev/create-destination.html#create-destination-s3

Amazon Data Firehose Developer Guide

buffering internally. Therefore, end-to-end delay of a batch of records might be 1.5 times of the
configured buffering hint time. This affects the data freshness of a Firehose stream.

The active partition count is the total number of active partitions within the delivery buffer.
For example, if the dynamic partitioning query constructs 3 partitions per second and you have
a buffer hint configuration triggering delivery every 60 seconds, then on average you would
have 180 active partitions. If Firehose cannot deliver the data in a partition to a destination, this
partition is counted as active in the delivery buffer until it can be delivered.

A new partition is created when an S3 prefix is evaluated to a new value based on the record
data fields and the S3 prefix expressions. A new buffer is created for each active partition. Every
subsequent record with the same evaluated S3 prefix is delivered to that buffer. Once the buffer
meets the buffer size limit or the buffer time interval, Firehose creates an object with the buffer
data and delivers it to the specified Amazon S3 prefix. Once the object is delivered, the buffer for
that partition and the partition itself are deleted and removed from the active partitions count.
Firehose delivers each buffer data as a single object once the buffer size or interval are met for
each partition separately. Once the number of active partitions reaches the limit of 500 per deliver
stream, the rest of the records in the Firehose stream are delivered to the specified S3 error bucket
prefix.

Data buffering and dynamic partitioning 150

Amazon Data Firehose Developer Guide

Converting Your Input Record Format in Firehose

Amazon Data Firehose can convert the format of your input data from JSON to Apache Parquet or
Apache ORC before storing the data in Amazon S3. Parquet and ORC are columnar data formats
that save space and enable faster queries compared to row-oriented formats like JSON. If you
want to convert an input format other than JSON, such as comma-separated values (CSV) or
structured text, you can use AWS Lambda to transform it to JSON first. For more information, see
Data Transformation.

Topics

• Record Format Conversion Requirements

• Choosing the JSON Deserializer

• Choosing the Serializer

• Converting Input Record Format (Console)

• Converting Input Record Format (API)

• Record Format Conversion Error Handling

• Record Format Conversion Example

Record Format Conversion Requirements

Amazon Data Firehose requires the following three elements to convert the format of your record
data:

• A deserializer to read the JSON of your input data – You can choose one of two types of
deserializers: Apache Hive JSON SerDe or OpenX JSON SerDe.

Note

When combining multiple JSON documents into the same record, make sure that your
input is still presented in the supported JSON format. An array of JSON documents is not
a valid input.
For example, this is the correct input: {"a":1}{"a":2}
And this is the incorrect input: [{"a":1}, {"a":2}]

Record Format Conversion Requirements 151

https://parquet.apache.org/
https://orc.apache.org/
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-JSON
https://github.com/rcongiu/Hive-JSON-Serde

Amazon Data Firehose Developer Guide

• A schema to determine how to interpret that data – Use AWS Glue to create a schema in the
AWS Glue Data Catalog. Amazon Data Firehose then references that schema and uses it to
interpret your input data. You can use the same schema to configure both Amazon Data Firehose
and your analytics software. For more information, see Populating the AWS Glue Data Catalog in
the AWS Glue Developer Guide.

Note

The schema created in AWS Glue Data Catalog should match the input data structure.
Otherwise, the converted data will not contain attributes that are not specified in the
schema. If you use nested JSON, use a STRUCT type in the schema that mirrors the
structure of your JSON data. See this example for how to handle nested JSON with a
STRUCT type.

• A serializer to convert the data to the target columnar storage format (Parquet or ORC) – You
can choose one of two types of serializers: ORC SerDe or Parquet SerDe.

Important

If you enable record format conversion, you can't set your Amazon Data Firehose
destination to be Amazon OpenSearch Service, Amazon Redshift, or Splunk. With format
conversion enabled, Amazon S3 is the only destination that you can use for your Firehose
stream.

You can convert the format of your data even if you aggregate your records before sending them
to Amazon Data Firehose.

Choosing the JSON Deserializer

Choose the OpenX JSON SerDe if your input JSON contains time stamps in the following formats:

• yyyy-MM-dd'T'HH:mm:ss[.S]'Z', where the fraction can have up to 9 digits – For example,
2017-02-07T15:13:01.39256Z.

• yyyy-[M]M-[d]d HH:mm:ss[.S], where the fraction can have up to 9 digits – For example,
2017-02-07 15:13:01.14.

• Epoch seconds – For example, 1518033528.

Choosing the JSON Deserializer 152

https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html
https://docs.aws.amazon.com/glue/latest/dg/populate-data-catalog.html
https://docs.aws.amazon.com/athena/latest/ug/openx-json-serde.html#nested-json-serde-example
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC
https://cwiki.apache.org/confluence/display/Hive/Parquet
https://github.com/rcongiu/Hive-JSON-Serde

Amazon Data Firehose Developer Guide

• Epoch milliseconds – For example, 1518033528123.

• Floating point epoch seconds – For example, 1518033528.123.

The OpenX JSON SerDe can convert periods (.) to underscores (_). It can also convert JSON keys
to lowercase before deserializing them. For more information about the options that are available
with this deserializer through Amazon Data Firehose, see OpenXJsonSerDe.

If you're not sure which deserializer to choose, use the OpenX JSON SerDe, unless you have time
stamps that it doesn't support.

If you have time stamps in formats other than those listed previously, use the Apache Hive JSON
SerDe. When you choose this deserializer, you can specify the time stamp formats to use. To do
this, follow the pattern syntax of the Joda-Time DateTimeFormat format strings. For more
information, see Class DateTimeFormat.

You can also use the special value millis to parse time stamps in epoch milliseconds. If you don't
specify a format, Amazon Data Firehose uses java.sql.Timestamp::valueOf by default.

The Hive JSON SerDe doesn't allow the following:

• Periods (.) in column names.

• Fields whose type is uniontype.

• Fields that have numerical types in the schema, but that are strings in the JSON. For example, if
the schema is (an int), and the JSON is {"a":"123"}, the Hive SerDe gives an error.

The Hive SerDe doesn't convert nested JSON into strings. For example, if you have {"a":
{"inner":1}}, it doesn't treat {"inner":1} as a string.

Choosing the Serializer

The serializer that you choose depends on your business needs. To learn more about the two
serializer options, see ORC SerDe and Parquet SerDe.

Converting Input Record Format (Console)

You can enable data format conversion on the console when you create or update a Firehose
stream. With data format conversion enabled, Amazon S3 is the only destination that you

Choosing the Serializer 153

https://docs.aws.amazon.com/firehose/latest/APIReference/API_OpenXJsonSerDe.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-JSON
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-JSON
https://www.joda.org/joda-time/apidocs/org/joda/time/format/DateTimeFormat.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC
https://cwiki.apache.org/confluence/display/Hive/Parquet

Amazon Data Firehose Developer Guide

can configure for the Firehose stream. Also, Amazon S3 compression gets disabled when you
enable format conversion. However, Snappy compression happens automatically as part of the
conversion process. The framing format for Snappy that Amazon Data Firehose uses in this case
is compatible with Hadoop. This means that you can use the results of the Snappy compression
and run queries on this data in Athena. For the Snappy framing format that Hadoop relies on, see
BlockCompressorStream.java.

To enable data format conversion for a data Firehose stream

1. Sign in to the AWS Management Console, and open the Amazon Data Firehose console at
https://console.aws.amazon.com/firehose/.

2. Choose a Firehose stream to update, or create a new Firehose stream by following the steps in
Creating a Firehose stream.

3. Under Convert record format, set Record format conversion to Enabled.

4. Choose the output format that you want. For more information about the two options, see
Apache Parquet and Apache ORC.

5. Choose an AWS Glue table to specify a schema for your source records. Set the Region,
database, table, and table version.

Converting Input Record Format (API)

If you want Amazon Data Firehose to convert the format of your input data from JSON
to Parquet or ORC, specify the optional DataFormatConversionConfiguration element in
ExtendedS3DestinationConfiguration or in ExtendedS3DestinationUpdate. If you specify
DataFormatConversionConfiguration, the following restrictions apply:

• In BufferingHints, you can't set SizeInMBs to a value less than 64 if you enable record format
conversion. Also, when format conversion isn't enabled, the default value is 5. The value
becomes 128 when you enable it.

• You must set CompressionFormat in ExtendedS3DestinationConfiguration
or in ExtendedS3DestinationUpdate to UNCOMPRESSED. The default value for
CompressionFormat is UNCOMPRESSED. Therefore, you can also leave it unspecified in
ExtendedS3DestinationConfiguration. The data still gets compressed as part of the serialization
process, using Snappy compression by default. The framing format for Snappy that Amazon Data
Firehose uses in this case is compatible with Hadoop. This means that you can use the results of
the Snappy compression and run queries on this data in Athena. For the Snappy framing format

Converting Input Record Format (API) 154

https://github.com/apache/hadoop/blob/f67237cbe7bc48a1b9088e990800b37529f1db2a/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/io/compress/BlockCompressorStream.java
https://console.aws.amazon.com/firehose/
https://parquet.apache.org/
https://orc.apache.org/
https://docs.aws.amazon.com/firehose/latest/APIReference/API_DataFormatConversionConfiguration.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ExtendedS3DestinationConfiguration.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ExtendedS3DestinationUpdate.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_DataFormatConversionConfiguration.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_BufferingHints.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ExtendedS3DestinationConfiguration.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ExtendedS3DestinationUpdate.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ExtendedS3DestinationConfiguration.html

Amazon Data Firehose Developer Guide

that Hadoop relies on, see BlockCompressorStream.java. When you configure the serializer, you
can choose other types of compression.

Record Format Conversion Error Handling

When Amazon Data Firehose can't parse or deserialize a record (for example, when the data doesn't
match the schema), it writes it to Amazon S3 with an error prefix. If this write fails, Amazon Data
Firehose retries it forever, blocking further delivery. For each failed record, Amazon Data Firehose
writes a JSON document with the following schema:

{
 "attemptsMade": long,
 "arrivalTimestamp": long,
 "lastErrorCode": string,
 "lastErrorMessage": string,
 "attemptEndingTimestamp": long,
 "rawData": string,
 "sequenceNumber": string,
 "subSequenceNumber": long,
 "dataCatalogTable": {
 "catalogId": string,
 "databaseName": string,
 "tableName": string,
 "region": string,
 "versionId": string,
 "catalogArn": string
 }
}

Record Format Conversion Example

For an example of how to set up record format conversion with AWS CloudFormation, see
AWS::DataFirehose::DeliveryStream.

Record Format Conversion Error Handling 155

https://github.com/apache/hadoop/blob/f67237cbe7bc48a1b9088e990800b37529f1db2a/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/io/compress/BlockCompressorStream.java
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-kinesisfirehose-deliverystream.html#aws-resource-kinesisfirehose-deliverystream--examples

Amazon Data Firehose Developer Guide

Using Amazon Managed Service for Apache Flink

With Amazon Managed Service for Apache Flink, you can use Java, Scala, or SQL to process and
analyze streaming data. The service enables you to author and run code against streaming sources
to perform time-series analytics, feed real-time dashboards, and create real-time metrics.

For an example of integrating with Amazon Managed Service for Apache Flink, see Example:
Writing to Amazon Data Firehose.

In this exercise, you create an Apache Flink application that has a Kinesis data stream as a source
and a Firehose stream as a sink. Using the sink, you can verify the output of the application in an
Amazon S3 bucket.

Before you begin, set up the required prerequisites:

• Components of Managed Service for Apache Flink Application

• Prerequisites for Completing the Exercise

156

https://docs.aws.amazon.com/managed-flink/latest/java/get-started-exercise-fh.html
https://docs.aws.amazon.com/managed-flink/latest/java/get-started-exercise-fh.html
https://docs.aws.amazon.com/managed-flink/latest/java/getting-started.html#getting-started-components
https://docs.aws.amazon.com/managed-flink/latest/java/getting-started.html#setting-up-prerequisites

Amazon Data Firehose Developer Guide

Amazon Data Firehose Data Delivery

After data is sent to your Firehose stream, it is automatically delivered to the destination you
choose.

Important

If you use the Kinesis Producer Library (KPL) to write data to a Kinesis data stream, you
can use aggregation to combine the records that you write to that Kinesis data stream. If
you then use that data stream as a source for your Firehose stream, Amazon Data Firehose
de-aggregates the records before it delivers them to the destination. If you configure your
Firehose stream to transform the data, Amazon Data Firehose de-aggregates the records
before it delivers them to AWS Lambda. For more information, see Developing Amazon
Kinesis Data Streams Producers Using the Kinesis Producer Library and Aggregation in the
Amazon Kinesis Data Streams Developer Guide.

Topics

• Data Delivery Format

• Data Delivery Frequency

• Data Delivery Failure Handling

• Amazon S3 Object Name Format

• Index Rotation for the OpenSearch Service Destination

• Delivery Across AWS Accounts and Across AWS Regions for HTTP Endpoint Destinations

• Duplicated Records

• How to Pause and Resume a Firehose delivery stream

Data Delivery Format

For data delivery to Amazon Simple Storage Service (Amazon S3), Firehose concatenates multiple
incoming records based on the buffering configuration of your delivery stream. It then delivers
the records to Amazon S3 as an Amazon S3 object. By default, Firehose concatenates data without
any delimiters. If you want to have new line delimiters between records, you can add new line
delimiters by enabling the feature in the Firehose console configuration or API parameter.

Data Delivery Format 157

https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/kinesis-kpl-concepts.html#kinesis-kpl-concepts-aggretation
https://docs.aws.amazon.com/firehose/latest/dev/create-destination.html#create-destination-s3
https://docs.aws.amazon.com/firehose/latest/APIReference/API_Processor.html

Amazon Data Firehose Developer Guide

For data delivery to Amazon Redshift, Firehose first delivers incoming data to your S3 bucket in the
format described earlier. Firehose then issues an Amazon Redshift COPY command to load the data
from your S3 bucket to your Amazon Redshift provisioned cluster or Amazon Redshift Serverless
workgroup. Ensure that after Amazon Data Firehose concatenates multiple incoming records to
an Amazon S3 object, the Amazon S3 object can be copied to your Amazon Redshift provisioned
cluster or Amazon Redshift Serverless workgroup. For more information, see Amazon Redshift
COPY Command Data Format Parameters.

For data delivery to OpenSearch Service and OpenSearch Serverless, Amazon Data Firehose buffers
incoming records based on the buffering configuration of your Firehose stream. It then generates
an OpenSearch Service or OpenSearch Serverless bulk request to index multiple records to your
OpenSearch Service cluster or OpenSearch Serverless collection. Make sure that your record is
UTF-8 encoded and flattened to a single-line JSON object before you send it to Amazon Data
Firehose. Also, the rest.action.multi.allow_explicit_index option for your OpenSearch
Service cluster must be set to true (default) to take bulk requests with an explicit index that is set
per record. For more information, see OpenSearch Service Configure Advanced Options in the
Amazon OpenSearch Service Developer Guide.

For data delivery to Splunk, Amazon Data Firehose concatenates the bytes that you send. If you
want delimiters in your data, such as a new line character, you must insert them yourself. Make sure
that Splunk is configured to parse any such delimiters.

When delivering data to an HTTP endpoint owned by a supported third-party service provider, you
can use the integrated Amazon Lambda service to create a function to transform the incoming
record(s) to the format that matches the format the service provider's integration is expecting.
Contact the third-party service provider whose HTTP endpoint you've chosen for your destination
to learn more about their accepted record format.

For data delivery to Snowflake, Amazon Data Firehose internally buffers data for one second and
uses Snowflake streaming API operations to insert data to Snowflake. By default, records that
you insert are flushed and committed to the Snowflake table every second. After you make the
insert call, Firehose emits a CloudWatch metric that measures how long it took for the data to be
committed to Snowflake. Firehose currently supports only single JSON item as record payload and
doesn’t support JSON arrays. Make sure that your input payload is a valid JSON object and is well
formed without any extra double quotes, quotes, or escape characters.

Data Delivery Format 158

https://docs.aws.amazon.com/redshift/latest/dg/copy-parameters-data-format.html
https://docs.aws.amazon.com/redshift/latest/dg/copy-parameters-data-format.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/es-createupdatedomains.html#es-createdomain-configure-advanced-options

Amazon Data Firehose Developer Guide

Data Delivery Frequency

Each Firehose destination has its own data delivery frequency. For more information, see Buffering
hints.

Data Delivery Failure Handling

Each Amazon Data Firehose destination has its own data delivery failure handling.

Amazon S3

Data delivery to your S3 bucket might fail for various reasons. For example, the bucket might
not exist anymore, the IAM role that Amazon Data Firehose assumes might not have access to
the bucket, the network failed, or similar events. Under these conditions, Amazon Data Firehose
keeps retrying for up to 24 hours until the delivery succeeds. The maximum data storage time
of Amazon Data Firehose is 24 hours. If data delivery fails for more than 24 hours, your data is
lost.

Amazon Redshift

For an Amazon Redshift destination, you can specify a retry duration (0–7200 seconds) when
creating a Firehose stream.

Data delivery to your Amazon Redshift provisioned cluster or Amazon Redshift Serverless
workgroup might fail for several reasons. For example, you might have an incorrect cluster
configuration of your Firehose stream, a cluster or workgroup under maintenance, or a network
failure. Under these conditions, Amazon Data Firehose retries for the specified time duration
and skips that particular batch of Amazon S3 objects. The skipped objects' information is
delivered to your S3 bucket as a manifest file in the errors/ folder, which you can use for
manual backfill. For information about how to COPY data manually with manifest files, see
Using a Manifest to Specify Data Files.

Amazon OpenSearch Service and OpenSearch Serverless

For the OpenSearch Service and OpenSearch Serverless destination, you can specify a retry
duration (0–7200 seconds) when creating a delivery stream.

Data delivery to your OpenSearch Service cluster or OpenSearch Serverless collection might
fail for several reasons. For example, you might have an incorrect OpenSearch Service cluster or
OpenSearch Serverless collection configuration of your Firehose stream, an OpenSearch Service

Data Delivery Frequency 159

https://docs.aws.amazon.com/redshift/latest/dg/loading-data-files-using-manifest.html

Amazon Data Firehose Developer Guide

cluster or OpenSearch Serverless collection under maintenance, a network failure, or similar
events. Under these conditions, Amazon Data Firehose retries for the specified time duration
and then skips that particular index request. The skipped documents are delivered to your S3
bucket in the AmazonOpenSearchService_failed/ folder, which you can use for manual
backfill.

For OpenSearch Service, each document has the following JSON format:

{
 "attemptsMade": "(number of index requests attempted)",
 "arrivalTimestamp": "(the time when the document was received by Firehose)",
 "errorCode": "(http error code returned by OpenSearch Service)",
 "errorMessage": "(error message returned by OpenSearch Service)",
 "attemptEndingTimestamp": "(the time when Firehose stopped attempting index
 request)",
 "esDocumentId": "(intended OpenSearch Service document ID)",
 "esIndexName": "(intended OpenSearch Service index name)",
 "esTypeName": "(intended OpenSearch Service type name)",
 "rawData": "(base64-encoded document data)"
}

For OpenSearch Serverless, each document has the following JSON format:

{
 "attemptsMade": "(number of index requests attempted)",
 "arrivalTimestamp": "(the time when the document was received by Firehose)",
 "errorCode": "(http error code returned by OpenSearch Serverless)",
 "errorMessage": "(error message returned by OpenSearch Serverless)",
 "attemptEndingTimestamp": "(the time when Firehose stopped attempting index
 request)",
 "osDocumentId": "(intended OpenSearch Serverless document ID)",
 "osIndexName": "(intended OpenSearch Serverless index name)",
 "rawData": "(base64-encoded document data)"
}

Splunk

When Amazon Data Firehose sends data to Splunk, it waits for an acknowledgment from
Splunk. If an error occurs, or the acknowledgment doesn’t arrive within the acknowledgment
timeout period, Amazon Data Firehose starts the retry duration counter. It keeps retrying until

Data Delivery Failure Handling 160

Amazon Data Firehose Developer Guide

the retry duration expires. After that, Amazon Data Firehose considers it a data delivery failure
and backs up the data to your Amazon S3 bucket.

Every time Amazon Data Firehose sends data to Splunk, whether it's the initial attempt or a
retry, it restarts the acknowledgement timeout counter. It then waits for an acknowledgement
to arrive from Splunk. Even if the retry duration expires, Amazon Data Firehose still waits for
the acknowledgment until it receives it or the acknowledgement timeout is reached. If the
acknowledgment times out, Amazon Data Firehose checks to determine whether there's time
left in the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

A failure to receive an acknowledgement isn't the only type of data delivery error that can
occur. For information about the other types of data delivery errors, see Splunk Data Delivery
Errors. Any data delivery error triggers the retry logic if your retry duration is greater than 0.

The following is an example error record.

{
 "attemptsMade": 0,
 "arrivalTimestamp": 1506035354675,
 "errorCode": "Splunk.AckTimeout",
 "errorMessage": "Did not receive an acknowledgement from HEC before the HEC
 acknowledgement timeout expired. Despite the acknowledgement timeout, it's possible
 the data was indexed successfully in Splunk. Amazon Data Firehose backs up in
 Amazon S3 data for which the acknowledgement timeout expired.",
 "attemptEndingTimestamp": 13626284715507,
 "rawData":
 "MiAyNTE2MjAyNzIyMDkgZW5pLTA1ZjMyMmQ1IDIxOC45Mi4xODguMjE0IDE3Mi4xNi4xLjE2NyAyNTIzMyAxNDMzIDYgMSA0MCAxNTA2MDM0NzM0IDE1MDYwMzQ3OTQgUkVKRUNUIE9LCg==",
 "EventId": "49577193928114147339600778471082492393164139877200035842.0"
}

HTTP endpoint destination

When Amazon Data Firehose sends data to an HTTP endpoint destination, it waits for a
response from this destination. If an error occurs, or the response doesn’t arrive within the
response timeout period, Amazon Data Firehose starts the retry duration counter. It keeps
retrying until the retry duration expires. After that, Amazon Data Firehose considers it a data
delivery failure and backs up the data to your Amazon S3 bucket.

Every time Amazon Data Firehose sends data to an HTTP endpoint destination, whether it's the
initial attempt or a retry, it restarts the response timeout counter. It then waits for a response

Data Delivery Failure Handling 161

https://docs.aws.amazon.com/firehose/latest/dev/monitoring-with-cloudwatch-logs.html#monitoring-splunk-errors
https://docs.aws.amazon.com/firehose/latest/dev/monitoring-with-cloudwatch-logs.html#monitoring-splunk-errors

Amazon Data Firehose Developer Guide

to arrive from the HTTP endpoint destination. Even if the retry duration expires, Amazon Data
Firehose still waits for the response until it receives it or the response timeout is reached. If
the response times out, Amazon Data Firehose checks to determine whether there's time left
in the retry counter. If there is time left, it retries again and repeats the logic until it receives a
response or determines that the retry time has expired.

A failure to receive a response isn't the only type of data delivery error that can occur. For
information about the other types of data delivery errors, see HTTP Endpoint Data Delivery
Errors

The following is an example error record.

{
 "attemptsMade":5,
 "arrivalTimestamp":1594265943615,
 "errorCode":"HttpEndpoint.DestinationException",
 "errorMessage":"Received the following response from the endpoint destination.
 {"requestId": "109777ac-8f9b-4082-8e8d-b4f12b5fc17b", "timestamp": 1594266081268,
 "errorMessage": "Unauthorized"}",
 "attemptEndingTimestamp":1594266081318,
 "rawData":"c2FtcGxlIHJhdyBkYXRh",
 "subsequenceNumber":0,
 "dataId":"49607357361271740811418664280693044274821622880012337186.0"
}

Snowflake destination

For Snowflake destination, when you create a Firehose stream, you can specify an optional retry
duration (0-7200 seconds). The default value for retry duration is 60 seconds.

Data delivery to your Snowflake table might fail for several reasons like an incorrect Snowflake
destination configuration, Snowflake outage, a network failure, etc. The retry policy doesn’t
apply to non-retriable errors. For example, if Snowflake rejects your JSON payload because it
had an extra column that's missing in the table, Firehose doesn’t attempt to deliver it again.
Instead, it creates a back up for all the insert failures due to JSON payload issues to your S3
error bucket.

Similarly, if delivery fails due to an incorrect role, table, or database, Firehose doesn’t retry and
writes the data to your S3 bucket. Retry duration only applies to failure due to a Snowflake
service issue, transient network glitches, etc. Under these conditions, Firehose retries for

Data Delivery Failure Handling 162

https://docs.aws.amazon.com/firehose/latest/dev/monitoring-with-cloudwatch-logs.html#monitoring-http-errors
https://docs.aws.amazon.com/firehose/latest/dev/monitoring-with-cloudwatch-logs.html#monitoring-http-errors

Amazon Data Firehose Developer Guide

the specified time duration before delivering them to S3. The failed records are delivered in
snowflake-failed/ folder, which you can use for manual backfill.

The following is an example JSON for each record that you deliver to S3.

{
 "attemptsMade": 3,
 "arrivalTimestamp": 1594265943615,
 "errorCode": "Snowflake.InvalidColumns",
 "errorMessage": "Snowpipe Streaming does not support columns of type
 AUTOINCREMENT, IDENTITY, GEO, or columns with a default value or collation",
 "attemptEndingTimestamp": 1712937865543,
 "rawData": "c2FtcGxlIHJhdyBkYXRh"
}

Amazon S3 Object Name Format

When Firehose delivers data to Amazon S3, S3 object key name follows the format <evaluated
prefix><suffix>, where the suffix has the format <delivery stream name>-<delivery stream version>-
<year>-<month>-<day>-<hour>-<minute>-<second>-<uuid><file extension> <delivery stream
version> begins with 1 and increases by 1 for every configuration change of the Firehose delivery
stream. You can change delivery stream configurations (for example, the name of the S3 bucket,
buffering hints, compression, and encryption). You can do so by using the Firehose console or the
UpdateDestination API operation.

For <evaluated prefix>, Firehose adds a default time prefix in the format YYYY/MM/dd/HH. This
prefix creates a logical hierarchy in the bucket, where each forward slash (/) creates a level in the
hierarchy. You can modify this structure by specifying a custom prefix that includes expressions
that are evaluated at runtime. For information about how to specify a custom prefix, see Custom
Prefixes for Amazon Simple Storage Service Objects.

By default, the time zone used for time prefix and suffix is in UTC, but you can change it to a
time zone that you prefer. For example, to use Japan Standard Time instead of UTC, you can
configure the time zone to Asia/Tokyo in the AWS Management Console or in API parameter
setting (CustomTimeZone). The following list contains time zones that Firehose supports for S3
prefix configuration.

Amazon S3 Object Name Format 163

https://docs.aws.amazon.com/firehose/latest/APIReference/API_UpdateDestination.html
https://docs.aws.amazon.com/firehose/latest/dev/s3-prefixes.html
https://docs.aws.amazon.com/firehose/latest/dev/s3-prefixes.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ExtendedS3DestinationConfiguration.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ExtendedS3DestinationConfiguration.html

Amazon Data Firehose Developer Guide

Time zones supported for S3 prefix configuration in Firehose

Africa

Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmera
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena

Amazon S3 Object Name Format 164

Amazon Data Firehose Developer Guide

Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Timbuktu
Africa/Tripoli
Africa/Tunis
Africa/Windhoek

America

America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Aruba
America/Asuncion
America/Barbados
America/Belize
America/Bogota
America/Buenos_Aires
America/Caracas
America/Cayenne
America/Cayman
America/Chicago
America/Costa_Rica
America/Cuiaba
America/Curacao
America/Dawson_Creek
America/Denver
America/Dominica
America/Edmonton
America/El_Salvador
America/Fortaleza
America/Godthab
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax

Amazon S3 Object Name Format 165

Amazon Data Firehose Developer Guide

America/Havana
America/Indianapolis
America/Jamaica
America/La_Paz
America/Lima
America/Los_Angeles
America/Managua
America/Manaus
America/Martinique
America/Mazatlan
America/Mexico_City
America/Miquelon
America/Montevideo
America/Montreal
America/Montserrat
America/Nassau
America/New_York
America/Noronha
America/Panama
America/Paramaribo
America/Phoenix
America/Port_of_Spain
America/Port-au-Prince
America/Porto_Acre
America/Puerto_Rico
America/Regina
America/Rio_Branco
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Tegucigalpa
America/Thule
America/Tijuana
America/Tortola
America/Vancouver
America/Winnipeg

Amazon S3 Object Name Format 166

Amazon Data Firehose Developer Guide

Antarctica

Antarctica/Casey
Antarctica/DumontDUrville
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer

Asia

Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Ashkhabad
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Calcutta
Asia/Colombo
Asia/Dacca
Asia/Damascus
Asia/Dhaka
Asia/Dubai
Asia/Dushanbe
Asia/Hong_Kong
Asia/Irkutsk
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Katmandu
Asia/Krasnoyarsk
Asia/Kuala_Lumpur

Amazon S3 Object Name Format 167

Amazon Data Firehose Developer Guide

Asia/Kuwait
Asia/Macao
Asia/Magadan
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novosibirsk
Asia/Phnom_Penh
Asia/Pyongyang
Asia/Qatar
Asia/Rangoon
Asia/Riyadh
Asia/Saigon
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Thimbu
Asia/Thimphu
Asia/Tokyo
Asia/Ujung_Pandang
Asia/Ulaanbaatar
Asia/Ulan_Bator
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yekaterinburg
Asia/Yerevan

Atlantic

Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faeroe
Atlantic/Jan_Mayen
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena

Amazon S3 Object Name Format 168

Amazon Data Firehose Developer Guide

Atlantic/Stanley

Australia

Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Darwin
Australia/Hobart
Australia/Lord_Howe
Australia/Perth
Australia/Sydney

Europe

Europe/Amsterdam
Europe/Andorra
Europe/Athens
Europe/Belgrade
Europe/Berlin
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Helsinki
Europe/Istanbul
Europe/Kaliningrad
Europe/Kiev
Europe/Lisbon
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Oslo
Europe/Paris
Europe/Prague
Europe/Riga

Amazon S3 Object Name Format 169

Amazon Data Firehose Developer Guide

Europe/Rome
Europe/Samara
Europe/Simferopol
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Vaduz
Europe/Vienna
Europe/Vilnius
Europe/Warsaw
Europe/Zurich

Indian

Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion

Pacific

Pacific/Apia
Pacific/Auckland
Pacific/Chatham
Pacific/Easter
Pacific/Efate
Pacific/Enderbury
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu

Amazon S3 Object Name Format 170

Amazon Data Firehose Developer Guide

Pacific/Kiritimati
Pacific/Kosrae
Pacific/Majuro
Pacific/Marquesas
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Ponape
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Truk
Pacific/Wake
Pacific/Wallis

You cannot change the suffix field except <file extension>. When you enable data format
conversion or compression, Firehose will append a file extension based on the configuration. The
following table explains the default file extension appended by Firehose:

Configuration File extension

Data Format Conversion:
Parquet

.parquet

Data Format Conversion:
ORC

.orc

Compression: Gzip .gz

Compression: Zip .zip

Compression: Snappy .snappy

Amazon S3 Object Name Format 171

Amazon Data Firehose Developer Guide

Configuration File extension

Compression: Hadoop-
Snappy

.hsnappy

You can also specify a file extension that you prefer in the Firehose console or API. File extension
must start with a period (.) and can contain allowed characters: 0-9a-z!-_.*‘(). File extension cannot
exceed 128 characters.

Note

When you specify a file extension, it will override the default file extension that Firehose
adds when data format conversion or compression is enabled.

Index Rotation for the OpenSearch Service Destination

For the OpenSearch Service destination, you can specify a time-based index rotation option from
one of the following five options: NoRotation, OneHour, OneDay, OneWeek, or OneMonth.

Depending on the rotation option you choose, Amazon Data Firehose appends a portion of
the UTC arrival timestamp to your specified index name. It rotates the appended timestamp
accordingly. The following example shows the resulting index name in OpenSearch Service for each
index rotation option, where the specified index name is myindex and the arrival timestamp is
2016-02-25T13:00:00Z.

RotationPeriod IndexName

NoRotation myindex

OneHour myindex-2016-02-25-13

OneDay myindex-2016-02-25

OneWeek myindex-2016-w08

OneMonth myindex-2016-02

Index Rotation for the OpenSearch Service Destination 172

https://docs.aws.amazon.com/firehose/latest/dev/record-format-conversion.html

Amazon Data Firehose Developer Guide

Note

With the OneWeek option, Data Firehose auto-create indexes using the format of <YEAR>-
w<WEEK NUMBER> (for example, 2020-w33), where the week number is calculated using
UTC time and according to the following US conventions:

• A week starts on Sunday

• The first week of the year is the first week that contains a Saturday in this year

Delivery Across AWS Accounts and Across AWS Regions for
HTTP Endpoint Destinations

Amazon Data Firehose supports data delivery to HTTP endpoint destinations across AWS accounts.
The Firehose stream and the HTTP endpoint that you choose as your destination can belong to
different AWS accounts.

Amazon Data Firehose also supports data delivery to HTTP endpoint destinations across AWS
regions. You can deliver data from a Firehose stream in one AWS region to an HTTP endpoint
in another AWS region. You can also delivery data from a Firehose stream to an HTTP endpoint
destination outside of AWS regions, for example to your own on-premises server by setting the
HTTP endpoint URL to your desired destination. For these scenarios, additional data transfer
charges are added to your delivery costs. For more information, see the Data Transfer section in the
"On-Demand Pricing" page.

Duplicated Records

Amazon Data Firehose uses at-least-once semantics for data delivery. In some circumstances,
such as when data delivery times out, delivery retries by Amazon Data Firehose might introduce
duplicates if the original data-delivery request eventually goes through. This applies to all
destination types that Amazon Data Firehose supports.

How to Pause and Resume a Firehose delivery stream

After you setup a delivery stream in Firehose, data available in the stream source is continuously
delivered to the destination. If you encounter situations where your stream destination is
temporarily unavailable (for example, during planned maintenance operations), you may want to

Delivery Across AWS Accounts and Across AWS Regions for HTTP Endpoint Destinations 173

https://aws.amazon.com/ec2/pricing/on-demand/#Data_Transfer

Amazon Data Firehose Developer Guide

temporarily pause data delivery, and resume when the destination becomes available again. The
following sections show how you can accomplish this:

Important

When you use the approach described below to pause and resume a stream, after you
resume the stream, you will see that few records get delivered to the error bucket in
Amazon S3 while the rest of the stream continues to get delivered to the destination. This
is a known limitation of the approach, and it occurs because a small number of records that
could not be previously delivered to the destination after multiple retries are tracked as
failed.

Understanding how Firehose handles delivery failures

When you setup a delivery stream in Firehose, for many destinations such as OpenSearch, Splunk,
and HTTP endpoints, you also setup an S3 bucket where data that fails to be delivered can be
backed up. For more information about how Firehose backs up data in case of failed deliveries,
see Data Delivery Failure Handling. For more information about how to grant access to S3 buckets
where data that fails to be delivered can be backed up, see Grant Firehose Access to an Amazon S3
Destination. When Firehose (a) fails to deliver data to the stream destination, and (b) fails to write
data to the backup S3 bucket for failed deliveries, it effectively pauses stream delivery until such
time that data can either be delivered to the destination or written to the backup S3 location.

Pausing a Firehose delivery stream

To pause stream delivery in Firehose, first remove permissions for Firehose to write to the S3
backup location for failed deliveries. For example, if you want to pause the delivery stream with an
OpenSearch destination, you can do this by updating permissions. For more information, see Grant
Firehose Access to a Public OpenSearch Service Destination.

Remove the "Effect": "Allow" permission for the action s3:PutObject, and explicitly add
a statement that applies Effect": "Deny" permission on the action s3:PutObject for the S3
bucket used for backing up failed deliveries. Next, turn off the stream destination (for example,
turning off the destination OpenSearch domain), or remove permissions for Firehose to write to the
destination. To update permissions for other destinations, check the section for your destination in
Controlling Access with Amazon Data Firehose. After you complete these two actions, Firehose will
stop delivering streams, and you can monitor this using CloudWatch metrics for Firehose.

Understanding how Firehose handles delivery failures 174

https://docs.aws.amazon.com/firehose/latest/dev/basic-deliver.html#retry
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-s3
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-s3
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-es
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-es
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html
https://docs.aws.amazon.com/firehose/latest/dev/cloudwatch-metrics.html

Amazon Data Firehose Developer Guide

Important

When you pause stream delivery in Firehose, you need to ensure that the source of
the stream (for example, in Kinesis Data Streams or in Managed Service for Kafka) is
configured to retain data until stream delivery is resumed and the data gets delivered to
the destination. If the source is DirectPUT, Firehose will retain data for 24 hours. Data loss
could happen if you do not resume the stream and deliver the data before the expiration of
data retention period.

Resuming a Firehose delivery stream

To resume delivery, first revert the change made earlier to the stream destination by turning on the
destination and ensuring that Firehose has permissions to deliver the stream to the destination.
Next, revert the changes made earlier to permissions applied to the S3 bucket for backing up failed
deliveries. That is, apply "Effect": "Allow" permission for the action s3:PutObject, and
remove "Effect": "Deny" permission on the action s3:PutObject for the S3 bucket used
for backing up failed deliveries. Finally, monitor using CloudWatch metrics for Firehose to confirm
that the stream is being delivered to the destination. To view and troubleshoot errors, use Amazon
CloudWatch Logs monitoring for Firehose.

Resuming a Firehose delivery stream 175

https://docs.aws.amazon.com/firehose/latest/dev/cloudwatch-metrics.html
https://docs.aws.amazon.com/firehose/latest/dev/monitoring-with-cloudwatch-logs.html
https://docs.aws.amazon.com/firehose/latest/dev/monitoring-with-cloudwatch-logs.html

Amazon Data Firehose Developer Guide

Monitoring Amazon Data Firehose

You can monitor Amazon Data Firehose using the following features:

Topics

• Best Practices with CloudWatch Alarms

• Monitoring Amazon Data Firehose Using CloudWatch Metrics

• Accessing CloudWatch Metrics for Amazon Data Firehose

• Monitoring Amazon Data Firehose Using CloudWatch Logs

• Accessing CloudWatch Logs for Amazon Data Firehose

• Monitoring Kinesis Agent Health

• Logging Amazon Data Firehose API Calls with AWS CloudTrail

Best Practices with CloudWatch Alarms

Add CloudWatch alarms for when the following metrics exceed the buffering limit (a maximum of
15 minutes):

• DeliveryToS3.DataFreshness

• DeliveryToSplunk.DataFreshness

• DeliveryToAmazonOpenSearchService.DataFreshness

• DeliveryToAmazonOpenSearchServerless.DataFreshness

• DeliveryToHttpEndpoint.DataFreshness

Also, create alarms based on the following metric math expressions.

• IncomingBytes (Sum per 5 Minutes) / 300 approaches a percentage of
BytesPerSecondLimit.

• IncomingRecords (Sum per 5 Minutes) / 300 approaches a percentage of
RecordsPerSecondLimit.

• IncomingPutRequests (Sum per 5 Minutes) / 300 approaches a percentage of
PutRequestsPerSecondLimit.

Best Practices with CloudWatch Alarms 176

Amazon Data Firehose Developer Guide

Another metric for which we recommend an alarm is ThrottledRecords.

For information about troubleshooting when alarms go to the ALARM state, see Troubleshooting.

Monitoring Amazon Data Firehose Using CloudWatch Metrics

Important

Be sure to enable alarms on all CloudWatch metrics that belong to your destination in
order to identify errors in timely manner.

Amazon Data Firehose integrates with Amazon CloudWatch metrics so that you can collect, view,
and analyze CloudWatch metrics for your Firehose streams. For example, you can monitor the
IncomingBytes and IncomingRecords metrics to keep track of data ingested into Amazon Data
Firehose from data producers.

Amazon Data Firehose collects and publishes CloudWatch metrics every minute. However, if bursts
of incoming data occur only for a few seconds, they may not be fully captured or visible in the one-
minute metrics. This is because CloudWatch metrics are aggregated from Amazon Data Firehose
over one-minute intervals.

The metrics collected for Firehose streams are free of charge. For information about Kinesis agent
metrics, see Monitoring Kinesis Agent Health.

Topics

• Dynamic Partitioning CloudWatch Metrics

• Data Delivery CloudWatch Metrics

• Data Ingestion Metrics

• API-Level CloudWatch Metrics

• Data Transformation CloudWatch Metrics

• CloudWatch Logs Decompression Metrics

• Format Conversion CloudWatch Metrics

• Server-Side Encryption (SSE) CloudWatch Metrics

• Dimensions for Amazon Data Firehose

• Amazon Data Firehose Usage Metrics

Monitoring with CloudWatch Metrics 177

Amazon Data Firehose Developer Guide

Dynamic Partitioning CloudWatch Metrics

If dynamic partitioning is enabled, the AWS/Firehose namespace includes the following metrics.

Metric Description

ActivePartitionsLimit The maximum number of active partitions that a
Firehose stream processes before sending data to the
error bucket.

Units: Count

PartitionCount The number of partitions that are being processed, in
other words, the active partition count. This number
varies between 1 and the partition count limit of 500
(default).

Units: Count

PartitionCountExceeded This metric indicates if you are exceeding the partition
count limit. It emits 1 or 0 based on whether limit is
breached or not.

JQProcessing.Duration Returns the amount of time it took to execute JQ
expression in the JQ Lambda function.

Units: Milliseconds

PerPartitionThroughput Indicates the throughtput that is being processed per
partition. This metric enables you to monitor the per
partition throughput.

Units: StandardUnit.BytesSecond

DeliveryToS3.ObjectCount Indicates the number of objects that are being delivered
to your S3 bucket.

Units: Count

Dynamic Partitioning CloudWatch Metrics 178

https://docs.aws.amazon.com/firehose/latest/dev/dynamic-partitioning.html

Amazon Data Firehose Developer Guide

Data Delivery CloudWatch Metrics

The AWS/Firehose namespace includes the following service-level metrics. If you see
small drops in the average for BackupToS3.Success, DeliveryToS3.Success,
DeliveryToSplunk.Success, DeliveryToAmazonOpenSearchService.Success, or
DeliveryToRedshift.Success, that doesn't indicate that there's data loss. Amazon Data
Firehose retries delivery errors and doesn't move forward until the records are successfully
delivered either to the configured destination or to the backup S3 bucket.

Topics

• Delivery to OpenSearch Service

• Delivery to OpenSearch Serverless

• Delivery to Amazon Redshift

• Delivery to Amazon S3

• Delivery to Snowflake

• Delivery to Splunk

• Delivery to HTTP Endpoints

Delivery to OpenSearch Service

Metric Description

DeliveryToAmazonOp
enSearchService.Bytes

The number of bytes indexed to OpenSearch Service
over the specified time period.

Units: Bytes

DeliveryToAmazonOp
enSearchService.Da
taFreshness

The age (from getting into Amazon Data Firehose to
now) of the oldest record in Amazon Data Firehose.
Any record older than this age has been delivered to
OpenSearch Service.

Units: Seconds

DeliveryToAmazonOp
enSearchService.Records

The number of records indexed to OpenSearch Service
over the specified time period.

Data Delivery CloudWatch Metrics 179

Amazon Data Firehose Developer Guide

Metric Description

Units: Count

DeliveryToAmazonOp
enSearchService.Success

The sum of the successfully indexed records over the
sum of records that were attempted.

DeliveryToS3.Bytes The number of bytes delivered to Amazon S3 over the
specified time period. Amazon Data Firehose emits this
metric only when you enable backup for all documents.

Units: Count

DeliveryToS3.DataF
reshness

The age (from getting into Amazon Data Firehose to
now) of the oldest record in Amazon Data Firehose. Any
record older than this age has been delivered to the S3
bucket. Amazon Data Firehose emits this metric only
when you enable backup for all documents.

Units: Seconds

DeliveryToS3.Records The number of records delivered to Amazon S3 over the
specified time period. Amazon Data Firehose emits this
metric only when you enable backup for all documents.

Units: Count

DeliveryToS3.Success The sum of successful Amazon S3 put commands over
the sum of all Amazon S3 put commands. Amazon Data
Firehose always emits this metric regardless of whether
backup is enabled for failed documents only or for all
documents.

DeliveryToAmazonOp
enSearchService.Au
thFailure

Authentication/authorization error. Verify the OS/ES
cluster policy and role permissions.

0 indicates that there is no issue. 1 indicates authentic
ation failure.

Data Delivery CloudWatch Metrics 180

Amazon Data Firehose Developer Guide

Metric Description

DeliveryToAmazonOp
enSearchService.De
liveryRejected

Delivery rejected error. Verify the OS/ES cluster policy
and role permissions.

0 indicates that there is no issue. 1 indicates that there's
a delivery failure.

Delivery to OpenSearch Serverless

Metric Description

DeliveryToAmazonOp
enSearchServerless.Bytes

The number of bytes indexed to OpenSearch Serverless
over the specified time period.

Units: Bytes

DeliveryToAmazonOp
enSearchServerless
.DataFreshness

The age (from getting into Amazon Data Firehose to
now) of the oldest record in Amazon Data Firehose.
Any record older than this age has been delivered to
OpenSearch Serverless.

Units: Seconds

DeliveryToAmazonOp
enSearchServerless
.Records

The number of records indexed to OpenSearch Serverles
s over the specified time period.

Units: Count

DeliveryToAmazonOp
enSearchServerless
.Success

The sum of the successfully indexed records over the
sum of records that were attempted.

DeliveryToS3.Bytes The number of bytes delivered to Amazon S3 over the
specified time period. Amazon Data Firehose emits this
metric only when you enable backup for all documents.

Units: Count

Data Delivery CloudWatch Metrics 181

Amazon Data Firehose Developer Guide

Metric Description

DeliveryToS3.DataF
reshness

The age (from getting into Amazon Data Firehose to
now) of the oldest record in Amazon Data Firehose. Any
record older than this age has been delivered to the S3
bucket. Amazon Data Firehose emits this metric only
when you enable backup for all documents.

Units: Seconds

DeliveryToS3.Records The number of records delivered to Amazon S3 over the
specified time period. Amazon Data Firehose emits this
metric only when you enable backup for all documents.

Units: Count

DeliveryToS3.Success The sum of successful Amazon S3 put commands over
the sum of all Amazon S3 put commands. Amazon Data
Firehose always emits this metric regardless of whether
backup is enabled for failed documents only or for all
documents.

DeliveryToAmazonOp
enSearchServerless
.AuthFailure

Authentication/authorization error. Verify the OS/ES
cluster policy and role permissions.

0 indicates that there is no issue. 1 indicates that there is
an authentication failure.

DeliveryToAmazonOp
enSearchServerless
.DeliveryRejected

Delivery rejected error. Verify the OS/ES cluster policy
and role permissions.

0 indicates that there is no issue. 1 indicates that there is
a delivery failure.

Data Delivery CloudWatch Metrics 182

Amazon Data Firehose Developer Guide

Delivery to Amazon Redshift

Metric Description

DeliveryToRedshift.Bytes The number of bytes copied to Amazon Redshift over
the specified time period.

Units: Count

DeliveryToRedshift
.Records

The number of records copied to Amazon Redshift over
the specified time period.

Units: Count

DeliveryToRedshift
.Success

The sum of successful Amazon Redshift COPY
commands over the sum of all Amazon Redshift COPY
commands.

DeliveryToS3.Bytes The number of bytes delivered to Amazon S3 over the
specified time period.

Units: Bytes

DeliveryToS3.DataF
reshness

The age (from getting into Amazon Data Firehose to
now) of the oldest record in Amazon Data Firehose. Any
record older than this age has been delivered to the S3
bucket.

Units: Seconds

DeliveryToS3.Records The number of records delivered to Amazon S3 over the
specified time period.

Units: Count

DeliveryToS3.Success The sum of successful Amazon S3 put commands over
the sum of all Amazon S3 put commands.

Data Delivery CloudWatch Metrics 183

Amazon Data Firehose Developer Guide

Metric Description

BackupToS3.Bytes The number of bytes delivered to Amazon S3 for backup
over the specified time period. Amazon Data Firehose
emits this metric when backup to Amazon S3 is enabled.

Units: Count

BackupToS3.DataFreshness Age (from getting into Amazon Data Firehose to now) of
the oldest record in Amazon Data Firehose. Any record
older than this age has been delivered to the Amazon
S3 bucket for backup. Amazon Data Firehose emits this
metric when backup to Amazon S3 is enabled.

Units: Seconds

BackupToS3.Records The number of records delivered to Amazon S3 for
backup over the specified time period. Amazon Data
Firehose emits this metric when backup to Amazon S3 is
enabled.

Units: Count

BackupToS3.Success Sum of successful Amazon S3 put commands for backup
over sum of all Amazon S3 backup put commands.
Amazon Data Firehose emits this metric when backup to
Amazon S3 is enabled.

Delivery to Amazon S3

The metrics in the following table are related to delivery to Amazon S3 when it is the main
destination of the Firehose stream.

Metric Description

DeliveryToS3.Bytes The number of bytes delivered to Amazon S3 over the
specified time period.

Data Delivery CloudWatch Metrics 184

Amazon Data Firehose Developer Guide

Metric Description

Units: Bytes

DeliveryToS3.DataF
reshness

The age (from getting into Amazon Data Firehose to
now) of the oldest record in Amazon Data Firehose. Any
record older than this age has been delivered to the S3
bucket.

Units: Seconds

DeliveryToS3.Records The number of records delivered to Amazon S3 over the
specified time period.

Units: Count

DeliveryToS3.Success The sum of successful Amazon S3 put commands over
the sum of all Amazon S3 put commands.

BackupToS3.Bytes The number of bytes delivered to Amazon S3 for backup
over the specified time period. Amazon Data Firehose
emits this metric when backup is enabled (which is only
possible when data transformation is also enabled).

Units: Count

BackupToS3.DataFreshness Age (from getting into Amazon Data Firehose to now) of
the oldest record in Amazon Data Firehose. Any record
older than this age has been delivered to the Amazon
S3 bucket for backup. Amazon Data Firehose emits this
metric when backup is enabled (which is only possible
when data transformation is also enabled).

Units: Seconds

Data Delivery CloudWatch Metrics 185

Amazon Data Firehose Developer Guide

Metric Description

BackupToS3.Records The number of records delivered to Amazon S3 for
backup over the specified time period. Amazon Data
Firehose emits this metric when backup is enabled
(which is only possible when data transformation is also
enabled).

Units: Count

BackupToS3.Success Sum of successful Amazon S3 put commands for backup
over sum of all Amazon S3 backup put commands.
Amazon Data Firehose emits this metric when backup
is enabled (which is only possible when data transform
ation is also enabled).

Delivery to Snowflake

Metric Description

DeliveryToSnowflake.Bytes The number of bytes delivered to Snowflake over the
specified time period.

Units: Bytes

DeliveryToSnowflak
e.DataFreshness

Age (from getting into Firehose to now) of the oldest
record in Firehose. Any record older than this age has
been delivered to Snowflake. Note that it can take a few
seconds to commit data to Snowflake after Firehose
insert call is successful. For the time it takes to commit
data to Snowflake, refer to the DeliveryToSnowflak
e.DataCommitLatency metric.

Units: Seconds

DeliveryToSnowflak
e.DataCommitLatency

The time it takes for the data to be committed to
Snowflake after Firehose inserted records successfully.

Data Delivery CloudWatch Metrics 186

Amazon Data Firehose Developer Guide

Metric Description

Units: Seconds

DeliveryToSnowflak
e.Records

The number of records delivered to Snowflake over the
specified time period.

Units: Count

DeliveryToSnowflak
e.Success

The sum of successful insert calls made to Snowflake
over the sum of insert calls that were attempted.

DeliveryToS3.Bytes The number of bytes delivered to Amazon S3 over the
specified time period. This metric is only available when
delivery to Snowflake fails and Firehose attempts to
backup failed data to S3.

Units: Bytes

DeliveryToS3.Records The number of records delivered to Amazon S3 over the
specified time period. This metric is only available when
delivery to Snowflake fails and Firehose attempts to
backup failed data to S3.

Units: Count

DeliveryToS3.Success The sum of successful Amazon S3 put commands over
the sum of all Amazon S3 put commands. This metric
is only available when delivery to Snowflake fails and
Firehose attempts to backup failed data to S3.

BackupToS3.DataFreshness Age (from into Firehose to now) of the oldest record in
Firehose. Any record older than this age is backed up to
the Amazon S3 bucket. This metric is available when the
Firehose stream is configured to back up all data.

Units: Seconds

Data Delivery CloudWatch Metrics 187

Amazon Data Firehose Developer Guide

Metric Description

BackupToS3.Records The number of records delivered to Amazon S3 for
backup over the specified time period. This metric is
available when the Firehose stream is configured to back
up all data.

Units: Count

BackupToS3.Bytes The number of bytes delivered to Amazon S3 for backup
over the specified time period. This metric is available
when the Firehose stream is configured to back up all
data.

Units: Count

BackupToS3.Success The sum of successful Amazon S3 put commands
for backup over sum of all Amazon S3 backup put
commands. Firehose emits this metric when the Firehose
stream is configured to back up all data.

Delivery to Splunk

Metric Description

DeliveryToSplunk.Bytes The number of bytes delivered to Splunk over the
specified time period.

Units: Bytes

DeliveryToSplunk.D
ataAckLatency

The approximate duration it takes to receive an
acknowledgement from Splunk after Amazon Data
Firehose sends it data. The increasing or decreasing
trend for this metric is more useful than the absolute
approximate value. Increasing trends can indicate slower
indexing and acknowledgement rates from Splunk
indexers.

Data Delivery CloudWatch Metrics 188

Amazon Data Firehose Developer Guide

Metric Description

Units: Seconds

DeliveryToSplunk.D
ataFreshness

Age (from getting into Amazon Data Firehose to now) of
the oldest record in Amazon Data Firehose. Any record
older than this age has been delivered to Splunk.

Units: Seconds

DeliveryToSplunk.Records The number of records delivered to Splunk over the
specified time period.

Units: Count

DeliveryToSplunk.Success The sum of the successfully indexed records over the
sum of records that were attempted.

DeliveryToS3.Success The sum of successful Amazon S3 put commands over
the sum of all Amazon S3 put commands. This metric is
emitted when backup to Amazon S3 is enabled.

BackupToS3.Bytes The number of bytes delivered to Amazon S3 for backup
over the specified time period. Amazon Data Firehose
emits this metric when the Firehose stream is configured
to back up all documents.

Units: Count

BackupToS3.DataFreshness Age (from getting into Amazon Data Firehose to now) of
the oldest record in Amazon Data Firehose. Any record
older than this age has been delivered to the Amazon
S3 bucket for backup. Amazon Data Firehose emits this
metric when the Firehose stream is configured to back
up all documents.

Units: Seconds

Data Delivery CloudWatch Metrics 189

Amazon Data Firehose Developer Guide

Metric Description

BackupToS3.Records The number of records delivered to Amazon S3 for
backup over the specified time period. Amazon Data
Firehose emits this metric when the Firehose stream is
configured to back up all documents.

Units: Count

BackupToS3.Success Sum of successful Amazon S3 put commands for backup
over sum of all Amazon S3 backup put commands.
Amazon Data Firehose emits this metric when the
Firehose stream is configured to back up all documents.

Delivery to HTTP Endpoints

Metric Description

DeliveryToHttpEndp
oint.Bytes

The number of bytes delivered successfully to the HTTP
endpoint.

Units: Bytes

DeliveryToHttpEndp
oint.Records

The number of records delivered successfully to the
HTTP endpoint.

Units: Counts

DeliveryToHttpEndp
oint.DataFreshness

Age of the oldest record in Amazon Data Firehose.

Units: Seconds

DeliveryToHttpEndp
oint.Success

The sum of all successful data delivery requests to the
HTTP endpoint

Units: Count

DeliveryToHttpEndp
oint.ProcessedBytes

The number of attempted processed bytes, including
 retries.

Data Delivery CloudWatch Metrics 190

Amazon Data Firehose Developer Guide

Metric Description

DeliveryToHttpEndp
oint.ProcessedRecords

The number of attempted records including retries.

Data Ingestion Metrics

Topics

• Data Ingestion Through Kinesis Data Streams

• Data Ingestion Through Direct PUT

• Data Ingestion From MSK

Data Ingestion Through Kinesis Data Streams

Metric Description

DataReadFromKinesi
sStream.Bytes

When the data source is a Kinesis data stream, this
metric indicates the number of bytes read from that
data stream. This number includes rereads due to
failovers.

Units: Bytes

DataReadFromKinesi
sStream.Records

When the data source is a Kinesis data stream, this
metric indicates the number of records read from that
data stream. This number includes rereads due to
failovers.

Units: Count

ThrottledDescribeStream The total number of times the DescribeStream
operation is throttled when the data source is a Kinesis
data stream.

Units: Count

Data Ingestion Metrics 191

Amazon Data Firehose Developer Guide

Metric Description

ThrottledGetRecords The total number of times the GetRecords operation
is throttled when the data source is a Kinesis data
stream.

Units: Count

ThrottledGetShardIterator The total number of times the GetShardIterator
operation is throttled when the data source is a Kinesis
data stream.

Units: Count

Data Ingestion Through Direct PUT

Metric Description

BackupToS3.Bytes The number of bytes delivered to Amazon S3 for backup
over the specified time period. Amazon Data Firehose
emits this metric when data transformation is enabled
for Amazon S3 or Amazon Redshift destinations.

Units: Bytes

BackupToS3.DataFreshness Age (from getting into Amazon Data Firehose to now) of
the oldest record in Amazon Data Firehose. Any record
older than this age has been delivered to the Amazon
S3 bucket for backup. Amazon Data Firehose emits this
metric when data transformation is enabled for Amazon
S3 or Amazon Redshift destinations.

Units: Seconds

BackupToS3.Records The number of records delivered to Amazon S3 for
backup over the specified time period. Amazon Data
Firehose emits this metric when data transformation is

Data Ingestion Metrics 192

Amazon Data Firehose Developer Guide

Metric Description

enabled for Amazon S3 or Amazon Redshift destinati
ons.

Units: Count

BackupToS3.Success Sum of successful Amazon S3 put commands for backup
over sum of all Amazon S3 backup put commands.
Amazon Data Firehose emits this metric when data
transformation is enabled for Amazon S3 or Amazon
Redshift destinations.

BytesPerSecondLimit The current maximum number of bytes per second
that a Firehose stream can ingest before throttling. To
request an increase to this limit, go to the AWS Support
Center and choose Create case, then choose Service
limit increase.

DataReadFromKinesi
sStream.Bytes

When the data source is a Kinesis data stream, this
metric indicates the number of bytes read from that
data stream. This number includes rereads due to
failovers.

Units: Bytes

DataReadFromKinesi
sStream.Records

When the data source is a Kinesis data stream, this
metric indicates the number of records read from that
data stream. This number includes rereads due to
failovers.

Units: Count

DeliveryToAmazonOp
enSearchService.Bytes

The number of bytes indexed to OpenSearch Service
over the specified time period.

Units: Bytes

Data Ingestion Metrics 193

https://console.aws.amazon.com/support/home
https://console.aws.amazon.com/support/home

Amazon Data Firehose Developer Guide

Metric Description

DeliveryToAmazonOp
enSearchService.Da
taFreshness

The age (from getting into Amazon Data Firehose to
now) of the oldest record in Amazon Data Firehose.
Any record older than this age has been delivered to
OpenSearch Service.

Units: Seconds

DeliveryToAmazonOp
enSearchService.Records

The number of records indexed to OpenSearch Service
over the specified time period.

Units: Count

DeliveryToAmazonOp
enSearchService.Success

The sum of the successfully indexed records over the
sum of records that were attempted.

DeliveryToRedshift.Bytes The number of bytes copied to Amazon Redshift over
the specified time period.

Units: Bytes

DeliveryToRedshift
.Records

The number of records copied to Amazon Redshift over
the specified time period.

Units: Count

DeliveryToRedshift
.Success

The sum of successful Amazon Redshift COPY
commands over the sum of all Amazon Redshift COPY
commands.

DeliveryToS3.Bytes The number of bytes delivered to Amazon S3 over the
specified time period.

Units: Bytes

Data Ingestion Metrics 194

Amazon Data Firehose Developer Guide

Metric Description

DeliveryToS3.DataF
reshness

The age (from getting into Amazon Data Firehose to
now) of the oldest record in Amazon Data Firehose. Any
record older than this age has been delivered to the S3
bucket.

Units: Seconds

DeliveryToS3.Records The number of records delivered to Amazon S3 over the
specified time period.

Units: Count

DeliveryToS3.Success The sum of successful Amazon S3 put commands over
the sum of all Amazon S3 put commands.

DeliveryToSplunk.Bytes The number of bytes delivered to Splunk over the
specified time period.

Units: Bytes

DeliveryToSplunk.D
ataAckLatency

The approximate duration it takes to receive an
acknowledgement from Splunk after Amazon Data
Firehose sends it data. The increasing or decreasing
trend for this metric is more useful than the absolute
approximate value. Increasing trends can indicate slower
indexing and acknowledgement rates from Splunk
indexers.

Units: Seconds

DeliveryToSplunk.D
ataFreshness

Age (from getting into Amazon Data Firehose to now) of
the oldest record in Amazon Data Firehose. Any record
older than this age has been delivered to Splunk.

Units: Seconds

Data Ingestion Metrics 195

Amazon Data Firehose Developer Guide

Metric Description

DeliveryToSplunk.Records The number of records delivered to Splunk over the
specified time period.

Units: Count

DeliveryToSplunk.Success The sum of the successfully indexed records over the
sum of records that were attempted.

IncomingBytes The number of bytes ingested successfully into the
delivery stream over the specified time period. Data
ingestion could be throttled when it exceeds one of
the delivery stream limits. Throttled data will not be
counted for IncomingBytes .

Units: Bytes

IncomingPutRequests The number of successful PutRecord and PutRecord
Batch requests over a specified period of time.

Units: Count

IncomingRecords The number of records ingested successfully into the
delivery stream over the specified time period. Data
ingestion could be throttled when it exceeds one of
the delivery stream limits. Throttled data will not be
counted for IncomingRecords .

Units: Count

KinesisMillisBehindLatest When the data source is a Kinesis data stream, this
metric indicates the number of milliseconds that the last
read record is behind the newest record in the Kinesis
data stream.

Units: Millisecond

Data Ingestion Metrics 196

Amazon Data Firehose Developer Guide

Metric Description

RecordsPerSecondLimit The current maximum number of records per second
that a Firehose stream can ingest before throttling.

Units: Count

ThrottledRecords The number of records that were throttled because data
ingestion exceeded one of the Firehose stream limits.

Units: Count

Data Ingestion From MSK

Metric Description

DataReadFromSource
.Records

The number of records read from the source Kafka
Topic.

Units: Count

DataReadFromSource.Bytes The number of bytes read from the source Kafka Topic.

Units: Bytes

SourceThrottled.Delay The amount of time that the source Kafka cluster is
delayed in returning the records from the source Kafka
Topic.

Units: Milliseconds

BytesPerSecondLimit Current limit of throughput at which Firehose is going to
read from each partition of the source Kafka Topic.

Units: Bytes/sec

KafkaOffsetLag The difference between the largest offset of the record
that Firehose has read from the source Kafka Topic and

Data Ingestion Metrics 197

Amazon Data Firehose Developer Guide

Metric Description

the largest offset of the record available from the source
Kafka Topic.

Units: Count

FailedValidation.Records The number of records that failed record validation.

Units: Count

FailedValidation.Bytes The number of bytes that failed record validation.

Units: Bytes

DataReadFromSource
.Backpressured

Indicates that a Firehose stream is delayed in reading
records from the source partition either because
BytesPerSecondLimit per partition has exceeded or that
the normal flow of delivery is slow or has stopped

Units: Boolean

API-Level CloudWatch Metrics

The AWS/Firehose namespace includes the following API-level metrics.

Metric Description

DescribeDeliverySt
ream.Latency

The time taken per DescribeDeliveryStream
operation, measured over the specified time period.

Units: Milliseconds

DescribeDeliverySt
ream.Requests

The total number of DescribeDeliveryStream
requests.

Units: Count

ListDeliveryStream
s.Latency

The time taken per ListDeliveryStream operation
, measured over the specified time period.

API-Level CloudWatch Metrics 198

Amazon Data Firehose Developer Guide

Metric Description

Units: Milliseconds

ListDeliveryStream
s.Requests

The total number of ListFirehose requests.

Units: Count

PutRecord.Bytes The number of bytes put to the Firehose stream using
PutRecord over the specified time period.

Units: Bytes

PutRecord.Latency The time taken per PutRecord operation, measured
over the specified time period.

Units: Milliseconds

PutRecord.Requests The total number of PutRecord requests, which is
equal to total number of records from PutRecord
operations.

Units: Count

PutRecordBatch.Bytes The number of bytes put to the Firehose stream using
PutRecordBatch over the specified time period.

Units: Bytes

PutRecordBatch.Latency The time taken per PutRecordBatch operation,
measured over the specified time period.

Units: Milliseconds

PutRecordBatch.Records The total number of records from PutRecordBatch
operations.

Units: Count

API-Level CloudWatch Metrics 199

Amazon Data Firehose Developer Guide

Metric Description

PutRecordBatch.Requests The total number of PutRecordBatch requests.

Units: Count

PutRequestsPerSecondLimit The maximum number of put requests per second
that a Firehose stream can handle before throttling.
This number includes PutRecord and PutRecordBatch
requests.

Units: Count

ThrottledDescribeStream The total number of times the DescribeStream
operation is throttled when the data source is a Kinesis
data stream.

Units: Count

ThrottledGetRecords The total number of times the GetRecords operation
is throttled when the data source is a Kinesis data
stream.

Units: Count

ThrottledGetShardIterator The total number of times the GetShardIterator
operation is throttled when the data source is a Kinesis
data stream.

Units: Count

UpdateDeliveryStre
am.Latency

The time taken per UpdateDeliveryStream
operation, measured over the specified time period.

Units: Milliseconds

UpdateDeliveryStre
am.Requests

The total number of UpdateDeliveryStream
requests.

Units: Count

API-Level CloudWatch Metrics 200

Amazon Data Firehose Developer Guide

Data Transformation CloudWatch Metrics

If data transformation with Lambda is enabled, the AWS/Firehose namespace includes the
following metrics.

Metric Description

ExecutePr
ocessing.
Duration

The time it takes for each Lambda function invocation performed by
Firehose.

Units: Milliseconds

ExecutePr
ocessing.
Success

The sum of the successful Lambda function invocations over the sum of
the total Lambda function invocations.

SucceedPr
ocessing.
Records

The number of successfully processed records over the specified time
period.

Units: Count

SucceedPr
ocessing.Bytes

The number of successfully processed bytes over the specified time
period.

Units: Bytes

CloudWatch Logs Decompression Metrics

If decompression is enabled for CloudWatch Logs delivery, the AWS/Firehose namespace includes
the following metrics.

Metric Description

OutputDecompressed
Bytes.Success

Successful decompressed data in bytes

Units: Bytes

OutputDecompressed
Bytes.Failed

Failed decompressed data in bytes

Data Transformation CloudWatch Metrics 201

Amazon Data Firehose Developer Guide

Metric Description

Units: Bytes

OutputDecompressed
Records.Success

Number of successful decompressed records

Units: Count

OutputDecompressed
Records.Failed

Number of failed decompressed records

Units: Count

Format Conversion CloudWatch Metrics

If format conversion is enabled, the AWS/Firehose namespace includes the following metrics.

Metric Description

SucceedCo
nversion.
Records

The number of successfully converted records.

Units: Count

SucceedCo
nversion.Bytes

The size of the successfully converted records.

Units: Bytes

FailedCon
version.R
ecords

The number of records that could not be converted.

Units: Count

FailedCon
version.Bytes

The size of the records that could not be converted.

Units: Bytes

Server-Side Encryption (SSE) CloudWatch Metrics

The AWS/Firehose namespace includes the following metrics that are related to SSE.

Format Conversion CloudWatch Metrics 202

Amazon Data Firehose Developer Guide

Metric Description

KMSKeyAccessDenied The number of times the service encounters a
KMSAccessDeniedException for the delivery
stream.

Units: Count

KMSKeyDisabled The number of times the service encounters a
KMSDisabledException for the delivery stream.

Units: Count

KMSKeyInvalidState The number of times the service encounters a
KMSInvalidStateException for the delivery
stream.

Units: Count

KMSKeyNotFound The number of times the service encounters a
KMSNotFoundException for the delivery stream.

Units: Count

Dimensions for Amazon Data Firehose

To filter metrics by Firehose stream, use the DeliveryStreamName dimension.

Amazon Data Firehose Usage Metrics

You can use CloudWatch usage metrics to provide visibility into your account's usage of resources.
Use these metrics to visualize your current service usage on CloudWatch graphs and dashboards.

Service quota usage metrics are in the AWS/Usage namespace and are collected every minute.

Currently, the only metric name in this namespace that CloudWatch publishes is ResourceCount.
This metric is published with the dimensions Service, Class, Type, and Resource.

Dimensions for Amazon Data Firehose 203

Amazon Data Firehose Developer Guide

Metric Description

ResourceCount The number of the specified resources running in your
account. The resources are defined by the dimensions
associated with the metric.

The most useful statistic for this metric is MAXIMUM,
which represents the maximum number of resources
used during the 1-minute period.

The following dimensions are used to refine the usage metrics that are published by Amazon Data
Firehose.

Dimension Description

Service The name of the AWS service containing the resource.
For Amazon Data Firehose usage metrics, the value for
this dimension is Firehose.

Class The class of resource being tracked. Amazon Data
Firehose API usage metrics use this dimension with a
value of None.

Type The type of resource being tracked. Currently, when the
Service dimension is Firehose, the only valid value for
Type is Resource.

Resource The name of the AWS resource. Currently, when the
Service dimension is Firehose, the only valid value for
Resource is DeliveryStreams .

Accessing CloudWatch Metrics for Amazon Data Firehose

You can monitor metrics for Amazon Data Firehose using the CloudWatch console, command line,
or CloudWatch API. The following procedures show you how to access metrics using these different
methods.

Accessing CloudWatch Metrics for Amazon Data Firehose 204

Amazon Data Firehose Developer Guide

To access metrics using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. On the navigation bar, choose a region.

3. In the navigation pane, choose Metrics.

4. Choose the Firehose namespace.

5. Choose Firehose stream Metrics or Firehose Metrics.

6. Select a metric to add to the graph.

To access metrics using the AWS CLI

Use the list-metrics and get-metric-statistics commands.

aws cloudwatch list-metrics --namespace "AWS/Firehose"

aws cloudwatch get-metric-statistics --namespace "AWS/Firehose" \
--metric-name DescribeDeliveryStream.Latency --statistics Average --period 3600 \
--start-time 2017-06-01T00:00:00Z --end-time 2017-06-30T00:00:00Z

Monitoring Amazon Data Firehose Using CloudWatch Logs

Amazon Data Firehose integrates with Amazon CloudWatch Logs so that you can view the specific
error logs when the Lambda invocation for data transformation or data delivery fails. You can
enable Amazon Data Firehose error logging when you create your Firehose stream.

If you enable Amazon Data Firehose error logging in the Amazon Data Firehose console,
a log group and corresponding log streams are created for the Firehose stream on your
behalf. The format of the log group name is /aws/kinesisfirehose/delivery-stream-
name, where delivery-stream-name is the name of the corresponding Firehose stream.
DestinationDelivery is log stream that is created and used to log any errors related to the
delivery to the primary destination. Another log stream called BackupDelivery is created only
if S3 backup is enabled for the destination. The BackupDelivery log stream is used to log any
errors related to the delivery to the S3 backup.

For example, if you create a Firehose stream "MyStream" with Amazon Redshift as the
destination and enable Amazon Data Firehose error logging, the following are created on your

Monitoring with CloudWatch Logs 205

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/list-metrics.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-statistics.html

Amazon Data Firehose Developer Guide

behalf: a log group named aws/kinesisfirehose/MyStream and two log streams named
DestinationDelivery and BackupDelivery. In this example, DestinationDelivery will be
used to log any errors related to the delivery to the Amazon Redshift destination and also to the
intermediate S3 destination. BackupDelivery, in case S3 backup is enabled, will be used to log
any errors related to the delivery to the S3 backup bucket.

You can enable Amazon Data Firehose error logging through the AWS CLI, the API, or AWS
CloudFormation using the CloudWatchLoggingOptions configuration. To do so, create a log
group and a log stream in advance. We recommend reserving that log group and log stream for
Amazon Data Firehose error logging exclusively. Also ensure that the associated IAM policy has
"logs:putLogEvents" permission. For more information, see Controlling Access with Amazon
Data Firehose.

Note that Amazon Data Firehose does not guarantee that all delivery error logs are sent to
CloudWatch Logs. In circumstances where delivery failure rate is high, Amazon Data Firehose
samples delivery error logs before sending them to CloudWatch Logs.

There is a nominal charge for error logs sent to CloudWatch Logs. For more information, see
Amazon CloudWatch Pricing.

Contents

• Data Delivery Errors

Data Delivery Errors

The following is a list of data delivery error codes and messages for each Amazon Data Firehose
destination. Each error message also describes the proper action to take to fix the issue.

Errors

• Amazon S3 Data Delivery Errors

• Amazon Redshift Data Delivery Errors

• Snowflake Data Delivery Errors

• Splunk Data Delivery Errors

• ElasticSearch Data Delivery Errors

• HTTPS Endpoint Data Delivery Errors

• Amazon OpenSearch Service Data Delivery Errors

Data Delivery Errors 206

https://aws.amazon.com/cloudwatch/pricing/

Amazon Data Firehose Developer Guide

• Lambda Invocation Errors

• Kinesis Invocation Errors

• Kinesis DirectPut Invocation Errors

• AWS Glue Invocation Errors

• DataFormatConversion Invocation Errors

Amazon S3 Data Delivery Errors

Amazon Data Firehose can send the following Amazon S3-related errors to CloudWatch Logs.

Error Code Error Message and Information

S3.KMS.No
tFoundExc
eption

"The provided AWS KMS key was not found. If you are using what you
believe to be a valid AWS KMS key with the correct role, check if there
is a problem with the account to which the AWS KMS key is attached."

S3.KMS.Re
questLimi
tExceeded

"The KMS request per second limit was exceeded while attempting to
encrypt S3 objects. Increase the request per second limit."

For more information, see Limits in the AWS Key Management Service
Developer Guide.

S3.AccessDenied "Access was denied. Ensure that the trust policy for the provided IAM
role allows Amazon Data Firehose to assume the role, and the access
policy allows access to the S3 bucket."

S3.Accoun
tProblem

"There is a problem with your AWS account that prevents the operation
from completing successfully. Contact AWS Support."

S3.AllAcc
essDisabled

"Access to the account provided has been disabled. Contact AWS
Support."

S3.InvalidPayer "Access to the account provided has been disabled. Contact AWS
Support."

S3.NotSignedUp "The account is not signed up for Amazon S3. Sign the account up or
use a different account."

Data Delivery Errors 207

https://docs.aws.amazon.com/kms/latest/developerguide/limits.html

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

S3.NoSuchBucket "The specified bucket does not exist. Create the bucket or use a
different bucket that does exist."

S3.Method
NotAllowed

"The specified method is not allowed against this resource. Modify the
bucket’s policy to allow the correct Amazon S3 operation permissions."

InternalError "An internal error occurred while attempting to deliver data. Delivery
will be retried; if the error persists, then it will be reported to AWS for
resolution."

S3.KMS.Ke
yDisabled

"The provided KMS key is disabled. Enable the key or use a different
key."

S3.KMS.In
validStat
eException

"The provided KMS key is in an invalid state. Please use a different key."

KMS.Inval
idStateEx
ception

"The provided KMS key is in an invalid state. Please use a different key."

KMS.Disab
ledException

"The provided KMS key is disabled. Please fix the key or use a different
key."

S3.SlowDown "The rate of put request to the specified bucket was too high. Increase
Firehose stream buffer size or reduce put requests from other applicati
ons."

S3.Subscr
iptionRequired

"Access was denied when calling S3. Ensure that the IAM role and the
KMS Key (if provided) passed in has Amazon S3 subscription."

S3.InvalidToken "The provided token is malformed or otherwise invalid. Please check
the credentials provided."

S3.KMS.Ke
yNotConfigured

"KMS key not configured. Configure your KMSMasterKeyID, or disable
encryption for your S3 bucket."

Data Delivery Errors 208

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

S3.KMS.As
ymmetricC
MKNotSupported

"Amazon S3 supports only symmetric CMKs. You cannot use an
asymmetric CMK to encrypt your data in Amazon S3. To get the type of
your CMK, use the KMS DescribeKey operation."

S3.Illega
lLocation
Constrain
tException

"Firehose currently uses s3 global endpoint for data delivery to the
configured s3 bucket. The region of the configured s3 bucket doesn't
support s3 global endpoint. Please create a Firehose stream in the
same region as the s3 bucket or use s3 bucket in the region that
supports global endpoint."

S3.Invali
dPrefixCo
nfigurati
onException

"The custom s3 prefix used for the timestamp evaluation is invalid.
Check your s3 prefix contains valid expressions for the current date and
time of the year."

DataForma
tConversi
on.Malfor
medData

"Illegal character found between tokens."

Amazon Redshift Data Delivery Errors

Amazon Data Firehose can send the following Amazon Redshift-related errors to CloudWatch Logs.

Error Code Error Message and Information

Redshift.
TableNotFound

"The table to which to load data was not found. Ensure that the
specified table exists."

The destination table in Amazon Redshift to which data should be
copied from S3 was not found. Note that Amazon Data Firehose does
not create the Amazon Redshift table if it does not exist.

Redshift.
SyntaxError

"The COPY command contains a syntax error. Retry the command."

Data Delivery Errors 209

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Redshift.
Authentic
ationFailed

"The provided user name and password failed authentication. Provide a
valid user name and password."

Redshift.
AccessDenied

"Access was denied. Ensure that the trust policy for the provided IAM
role allows Amazon Data Firehose to assume the role."

Redshift.
S3BucketA
ccessDenied

"The COPY command was unable to access the S3 bucket. Ensure that
the access policy for the provided IAM role allows access to the S3
bucket."

Redshift.
DataLoadFailed

"Loading data into the table failed. Check STL_LOAD_ERRORS system
table for details."

Redshift.
ColumnNotFound

"A column in the COPY command does not exist in the table. Specify a
valid column name."

Redshift.
DatabaseN
otFound

"The database specified in the Amazon Redshift destination configura
tion or JDBC URL was not found. Specify a valid database name."

Redshift.
Incorrect
CopyOptions

"Conflicting or redundant COPY options were provided. Some options
are not compatible in certain combinations. Check the COPY command
reference for more info."

For more information, see the Amazon Redshift COPY command in the
Amazon Redshift Database Developer Guide.

Redshift.
MissingColumn

"There is a column defined in the table schema as NOT NULL without
a DEFAULT value and not included in the column list. Exclude this
column, ensure that the loaded data always provides a value for this
column, or add a default value to the Amazon Redshift schema for this
table."

Data Delivery Errors 210

https://docs.aws.amazon.com/redshift/latest/dg/r_COPY.html

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Redshift.
Connectio
nFailed

"The connection to the specified Amazon Redshift cluster failed. Ensure
that security settings allow Amazon Data Firehose connections, that
the cluster or database specified in the Amazon Redshift destination
configuration or JDBC URL is correct, and that the cluster is available."

Redshift.
ColumnMismatch

"The number of jsonpaths in the COPY command and the number of
columns in the destination table should match. Retry the command."

Redshift.
Incorrect
OrMissing
Region

"Amazon Redshift attempted to use the wrong region endpoint for
accessing the S3 bucket. Either specify a correct region value in the
COPY command options or ensure that the S3 bucket is in the same
region as the Amazon Redshift database."

Redshift.
Incorrect
JsonPathsFile

"The provided jsonpaths file is not in a supported JSON format. Retry
the command."

Redshift.
MissingS3File

"One or more S3 files required by Amazon Redshift have been removed
from the S3 bucket. Check the S3 bucket policies to remove any
automatic deletion of S3 files."

Redshift.
Insuffici
entPrivilege

"The user does not have permissions to load data into the table. Check
the Amazon Redshift user permissions for the INSERT privilege."

Redshift.
ReadOnlyC
luster

"The query cannot be executed because the system is in resize mode.
Try the query again later."

Redshift.
DiskFull

"Data could not be loaded because the disk is full. Increase the capacity
of the Amazon Redshift cluster or delete unused data to free disk
space."

InternalError "An internal error occurred while attempting to deliver data. Delivery
will be retried; if the error persists, then it will be reported to AWS for
resolution."

Data Delivery Errors 211

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Redshift.
ArgumentN
otSupported

"The COPY command contains unsupported options."

Redshift.
AnalyzeTa
bleAccess
Denied

"Access denied. Copy from S3 to Redshift is failing because analyze
table can only be done by table or database owner."

Redshift.
SchemaNotFound

"The schema specified in the DataTableName of Amazon Redshift
destination configuration was not found. Specify a valid schema name."

Redshift.
ColumnSpe
cifiedMor
eThanOnce

"There is a column specified more than once in the column list. Ensure
that duplicate columns are removed."

Redshift.
ColumnNot
NullWitho
utDefault

"There is a non-null column without DEFAULT that is not included in
the column list. Ensure that such columns are included in the column
list."

Redshift.
Incorrect
BucketRegion

"Redshift attempted to use a bucket in a different region from the
cluster. Please specify a bucket within the same region as the cluster."

Redshift.
S3SlowDown

"High request rate to S3. Reduce the rate to avoid getting throttled."

Redshift.
InvalidCo
pyOptionF
orJson

"Please use either auto or a valid S3 path for json copyOption."

Data Delivery Errors 212

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Redshift.
InvalidCo
pyOptionJ
SONPathFormat

"COPY failed with error \"Invalid JSONPath format. Array index is out of
range\". Please rectify the JSONPath expression."

Redshift.
InvalidCo
pyOptionR
BACAclNot
Allowed

"COPY failed with error \"Cannot use RBAC acl framework while
permission propagation is not enabled.\"

Redshift.
DiskSpace
QuotaExceeded

"Transaction aborted due to disk space quota exceed. Free up disk
space or request increased quota for the schema(s)."

Redshift.
Connectio
nsLimitEx
ceeded

"Connection limit exceeded for user."

Redshift.
SslNotSup
ported

"The connection to the specified Amazon Redshift cluster failed
because the server does not support SSL. Please check your cluster
settings."

Redshift.
HoseNotFound

"The hose has been deleted. Please check the status of your hose."

Redshift.
Delimiter

"The copyOptions delimiter in the copyCommand is invalid. Ensure that
it is a single character."

Redshift.
QueryCancelled

"The user has canceled the COPY operation."

Redshift.
Compressi
onMismatch

"Hose is configured with UNCOMPRESSED, but copyOption includes a
compression format."

Data Delivery Errors 213

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Redshift.
Encryptio
nCredentials

"The ENCRYPTED option requires credentials in the format: 'aws_iam_
role=...;master_symmetric_key=...' or 'aws_access_key_id=...;aws_
secret_access_key=...[;token=...];master_symmetric_key=...'"

Redshift.
InvalidCo
pyOptions

"Invalid COPY configuration options."

Redshift.
InvalidMe
ssageFormat

"Copy command contains an invalid character."

Redshift.
Transacti
onIdLimit
Reached

"Transaction ID limit reached."

Redshift.
Destinati
onRemoved

"Please verify that the redshift destination exists and is configured
correctly in the Firehose configuration."

Redshift.
OutOfMemory

"The Redshift cluster is running out of memory. Please ensure the
cluster has sufficient capacity."

Redshift.
CannotFor
kProcess

"The Redshift cluster is running out of memory. Please ensure the
cluster has sufficient capacity."

Redshift.
SslFailure

"The SSL connection closed during the handshake."

Redshift.Resize "The Redshift cluster is resizing. Firehose will not be able to deliver
data while the cluster is resizing."

Redshift.
ImproperQ
ualifiedName

"The qualified name is improper (too many dotted names)."

Data Delivery Errors 214

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Redshift.
InvalidJs
onPathFormat

"Invalid JSONPath Format."

Redshift.
TooManyCo
nnections
Exception

"Too many connections to Redshift."

Redshift.
PSQLException

"PSQlException observed from Redshift."

Redshift.
Duplicate
SecondsSp
ecification

"Duplicate seconds specification in date/time format."

Redshift.
RelationC
ouldNotBe
Opened

"Encountered Redshift error, relation could not be opened. Check
Redshift logs for the specified DB."

Redshift.
TooManyClients

"Encountered too many clients exception from Redshift. Revisit max
connections to the database if there are multiple producers writing to it
simultaneously."

Snowflake Data Delivery Errors

Firehose can send the following Snowflake-related errors to CloudWatch Logs.

Error Code Error Message and Information

Snowflake
.InvalidUrl

"Firehose is unable to connect to Snowflake. Please make sure that
Account url is specified correctly in Snowflake destination configura
tion."

Data Delivery Errors 215

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Snowflake
.InvalidUser

"Firehose is unable to connect to Snowflake. Please make sure that
User is specified correctly in Snowflake destination configuration."

Snowflake
.InvalidRole

"The specified snowflake role does not exist or is not authorized. Please
make sure that the role is granted to the user specified"

Snowflake
.InvalidTable

"The supplied table does not exist or is not authorized"

Snowflake
.InvalidSchema

"The supplied schema does not exist or is not authorized"

Snowflake
.InvalidD
atabase

"The supplied database does not exist or is not authorized"

Snowflake
.InvalidP
rivateKey
OrPassphrase

"The specified private key or passphrase is not valid. Note that the
private key provided should be a valid PEM RSA private key"

Snowflake
.MissingC
olumns

"The insert request is rejected due to missing columns in input payload.
Make sure that values are specified for all non-nullable columns"

Snowflake
.ExtraColumns

"The insert request is rejected due to extra columns. Columns not
present in table shouldn't be specified"

Snowflake
.InvalidInput

"Delivery failed due to invalid input format. Make sure that the input
payload provided is in the JSON format acceptable"

Snowflake
.Incorrec
tValue

"Delivery failed due to incorrect data type in the input payload. Make
sure that the JSON values specified in input payload adhere to the
datatype declared in Snowflake table definition"

Data Delivery Errors 216

Amazon Data Firehose Developer Guide

Splunk Data Delivery Errors

Amazon Data Firehose can send the following Splunk-related errors to CloudWatch Logs.

Error Code Error Message and Information

Splunk.Pr
oxyWithou
tStickySe
ssions

"If you have a proxy (ELB or other) between Amazon Data Firehose and
the HEC node, you must enable sticky sessions to support HEC ACKs."

Splunk.Di
sabledToken

"The HEC token is disabled. Enable the token to allow data delivery to
Splunk."

Splunk.In
validToken

"The HEC token is invalid. Update Amazon Data Firehose with a valid
HEC token."

Splunk.In
validData
Format

"The data is not formatted correctly. To see how to properly format
data for Raw or Event HEC endpoints, see Splunk Event Data."

Splunk.In
validIndex

"The HEC token or input is configured with an invalid index. Check your
index configuration and try again."

Splunk.Se
rverError

"Data delivery to Splunk failed due to a server error from the HEC node.
Amazon Data Firehose will retry sending the data if the retry duration
in your Amazon Data Firehose is greater than 0. If all the retries fail,
Amazon Data Firehose backs up the data to Amazon S3."

Splunk.Di
sabledAck

"Indexer acknowledgement is disabled for the HEC token. Enable
indexer acknowledgement and try again. For more info, see Enable
indexer acknowledgement."

Splunk.Ac
kTimeout

"Did not receive an acknowledgement from HEC before the HEC
acknowledgement timeout expired. Despite the acknowledgement
timeout, it's possible the data was indexed successfully in Splunk.
Amazon Data Firehose backs up in Amazon S3 data for which the
acknowledgement timeout expired."

Data Delivery Errors 217

http://dev.splunk.com/view/event-collector/SP-CAAAE6P#data
http://dev.splunk.com/view/event-collector/SP-CAAAE8X#enable
http://dev.splunk.com/view/event-collector/SP-CAAAE8X#enable

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Splunk.Ma
xRetriesFailed

"Failed to deliver data to Splunk or to receive acknowledgment. Check
your HEC health and try again."

Splunk.Co
nnectionT
imeout

"The connection to Splunk timed out. This might be a transient error
and the request will be retried. Amazon Data Firehose backs up the
data to Amazon S3 if all retries fail."

Splunk.In
validEndpoint

"Could not connect to the HEC endpoint. Make sure that the HEC
endpoint URL is valid and reachable from Amazon Data Firehose."

Splunk.Co
nnectionClosed

"Unable to send data to Splunk due to a connection failure. This might
be a transient error. Increasing the retry duration in your Amazon Data
Firehose configuration might guard against such transient failures."

Splunk.SS
LUnverified

"Could not connect to the HEC endpoint. The host does not match the
certificate provided by the peer. Make sure that the certificate and the
host are valid."

Splunk.SS
LHandshake

"Could not connect to the HEC endpoint. Make sure that the certificate
and the host are valid."

Splunk.UR
LNotFound

"The requested URL was not found on the Splunk server. Please check
the Splunk cluster and make sure it is configured correctly."

Splunk.Se
rverError
.ContentT
ooLarge

"Data delivery to Splunk failed due to a server error with a statusCod
e: 413, message: the request your client sent was too large. See splunk
docs to configure max_content_length."

Splunk.In
dexerBusy

"Data delivery to Splunk failed due to a server error from the HEC node.
Make sure HEC endpoint or the Elastic Load Balancer is reachable and is
healthy."

Splunk.Co
nnectionR
ecycled

"The connection from Firehose to Splunk has been recycled. Delivery
will be retried."

Data Delivery Errors 218

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Splunk.Ac
knowledge
mentsDisabled

"Could not get acknowledgements on POST. Make sure that acknowled
gements are enabled on HEC endpoint."

Splunk.In
validHecR
esponseCh
aracter

"Invalid characters found in HEC response, make sure to check to the
service and HEC configuration."

ElasticSearch Data Delivery Errors

Amazon Data Firehose can send the following ElasticSearch errors to CloudWatch Logs.

Error Code Error Message and Information

ES.AccessDenied "Access was denied. Ensure that the provided IAM role associated with
firehose is not deleted."

ES.Resour
ceNotFound

"The specified AWS Elasticsearch domain does not exist."

HTTPS Endpoint Data Delivery Errors

Amazon Data Firehose can send the following HTTP Endpoint-related errors to CloudWatch Logs.
If none of these errors are a match to the problem that you're experiencing, the default error is the
following: "An internal error occurred while attempting to deliver data. Delivery will be retried; if
the error persists, then it will be reported to AWS for resolution."

Error Code Error Message and Information

HttpEndpo
int.Reque
stTimeout

The delivery timed out before a response was received and will be
retried. If this error persists, contact the AWS Firehose service team.

Data Delivery Errors 219

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

HttpEndpo
int.Respo
nseTooLarge

"The response received from the endpoint is too large. Contact the
owner of the endpoint to resolve this issue."

HttpEndpo
int.Inval
idRespons
eFromDest
ination

"The response received from the specified endpoint is invalid. Contact
the owner of the endpoint to resolve the issue."

HttpEndpo
int.Desti
nationExc
eption

"The following response was received from the endpoint destination."

HttpEndpo
int.Conne
ctionFailed

"Unable to connect to the destination endpoint. Contact the owner of
the endpoint to resolve this issue."

HttpEndpo
int.Conne
ctionReset

"Unable to maintain connection with the endpoint. Contact the owner
of the endpoint to resolve this issue."

HttpEndpo
int.Conne
ctionReset

"Trouble maintaining connection with the endpoint. Please reach out to
the owner of the endpoint."

HttpEndpo
int.Respo
nseReason
PhraseExc
eededLimit

"The response reason phrase received from the endpoint exceed the
configured limit of 64 characters."

Data Delivery Errors 220

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

HttpEndpo
int.Inval
idRespons
eFromDest
ination

"The response received from the endpoint is invalid. See Troublesh
ooting HTTP Endpoints in the Firehose documentation for more
information. Reason: "

HttpEndpo
int.Desti
nationExc
eption

"Delivery to the endpoint was unsuccessful. See Troubleshooting
HTTP Endpoints in the Firehose documentation for more information.
Response received with status code "

HttpEndpo
int.Inval
idStatusCode

"Received an invalid response status code."

HttpEndpo
int.SSLHa
ndshakeFailure

"Unable to complete an SSL Handshake with the endpoint. Contact the
owner of the endpoint to resolve this issue."

HttpEndpo
int.SSLHa
ndshakeFailure

"Unable to complete an SSL Handshake with the endpoint. Contact the
owner of the endpoint to resolve this issue."

HttpEndpo
int.SSLFailure

"Unable to complete TLS handshake with the endpoint. Contact the
owner of the endpoint to resolve this issue."

HttpEndpo
int.SSLHa
ndshakeCe
rtificate
PathFailure

"Unable to complete an SSL Handshake with the endpoint due to
invalid certification path. Contact the owner of the endpoint to resolve
this issue."

Data Delivery Errors 221

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

HttpEndpo
int.SSLHa
ndshakeCe
rtificate
PathValid
ationFailure

"Unable to complete an SSL Handshake with the endpoint due to
certification path validation failure. Contact the owner of the endpoint
to resolve this issue."

HttpEndpo
int.MakeR
equestFai
lure.Ille
galUriExc
eption

"HttpEndpoint request failed due to invalid input in URI. Please make
sure all the characters in the input URI are valid."

HttpEndpo
int.MakeR
equestFai
lure.Ille
galCharac
terInHead
erValue

"HttpEndpoint request failed due to illegal response error. Illegal
character '\n' in header value."

HttpEndpo
int.Illeg
alRespons
eFailure

"HttpEndpoint request failed due to illegal response error. HTTP
message must not contain more than one Content-Type header."

HttpEndpo
int.Illeg
alMessageStart

"HttpEndpoint request failed due to illegal response error. Illegal HTTP
message start. See Troubleshooting HTTP Endpoints in the Firehose
documentation for more information."

Amazon OpenSearch Service Data Delivery Errors

For the OpenSearch Service destination, Amazon Data Firehose sends errors to CloudWatch Logs as
they are returned by OpenSearch Service.

Data Delivery Errors 222

Amazon Data Firehose Developer Guide

In addition to errors that may return from OpenSearch clusters, you may encounter the following
two errors:

• Authentication/authorization error occurs during attempt to deliver data to destination
OpenSearch Service cluster. This can happen due to any permission issues and/or intermittently
when your Amazon Data Firehose target OpenSearch Service domain configuration is modified.
Please check the cluster policy and role permissions.

• Data couldn’t be delivered to destination OpenSearch Service cluster due to authentication/
authorization failures. This can happen due to any permission issues and/or intermittently when
your Amazon Data Firehose target OpenSearch Service domain configuration is modified. Please
check the cluster policy and role permissions.

Error Code Error Message and Information

OS.AccessDenied "Access was denied. Ensure that the trust policy for the provided IAM
role allows Firehose to assume the role, and the access policy allows
access to the Amazon OpenSearch Service API."

OS.AccessDenied "Access was denied. Ensure that the trust policy for the provided IAM
role allows Firehose to assume the role, and the access policy allows
access to the Amazon OpenSearch Service API."

OS.AccessDenied "Access was denied. Ensure that the provided IAM role associated with
firehose is not deleted."

OS.AccessDenied "Access was denied. Ensure that the provided IAM role associated with
firehose is not deleted."

OS.Resour
ceNotFound

"The specified Amazon OpenSearch Service domain does not exist."

OS.Resour
ceNotFound

"The specified Amazon OpenSearch Service domain does not exist."

OS.AccessDenied "Access was denied. Ensure that the trust policy for the provided IAM
role allows Firehose to assume the role, and the access policy allows
access to the Amazon OpenSearch Service API."

Data Delivery Errors 223

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

OS.Reques
tTimeout

"Request to the Amazon OpenSearch Service cluster or OpenSearch
Serverless collection timed out. Ensure that the cluster or collection has
sufficient capacity for the current workload."

OS.ClusterError "The Amazon OpenSearch Service cluster returned an unspecified
error."

OS.Reques
tTimeout

"Request to the Amazon OpenSearch Service cluster timed out. Ensure
that the cluster has sufficient capacity for the current workload."

OS.Connec
tionFailed

"Trouble connecting to the Amazon OpenSearch Service cluster or
OpenSearch Serverless collection. Ensure that the cluster or collection
is healthy and reachable."

OS.Connec
tionReset

"Unable to maintain connection with the Amazon OpenSearch Service
cluster or OpenSearch Serverless collection. Contact the owner of the
cluster or collection to resolve this issue."

OS.Connec
tionReset

"Trouble maintaining connection with the Amazon OpenSearch Service
cluster or OpenSearch Serverless collection. Ensure that the cluster
or collection is healthy and has sufficient capacity for the current
workload."

OS.Connec
tionReset

"Trouble maintaining connection with the Amazon OpenSearch Service
cluster or OpenSearch Serverless collection. Ensure that the cluster
or collection is healthy and has sufficient capacity for the current
workload."

OS.AccessDenied "Access was denied. Ensure that the access policy on the Amazon
OpenSearch Service cluster grants access to the configured IAM role."

OS.Valida
tionException

"The OpenSearch cluster returned a ESServiceException. One of the
reasons is that the cluster has been upgraded to OS 2.x or higher, but
the hose still has the TypeName parameter configured. Update the
hose configuration by setting the TypeName to an empty string, or
change the endpoint to the cluster, that supports the Type parameter."

Data Delivery Errors 224

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

OS.Valida
tionException

"Member must satisfy regular expression pattern: [a-z][a-z0-9\\-]+

OS.JsonPa
rseException

"The Amazon OpenSearch Service cluster returned a JsonParse
Exception. Ensure that the data being put is valid."

OS.Amazon
OpenSearc
hServiceP
arseException

"The Amazon OpenSearch Service cluster returned an AmazonOpe
nSearchServiceParseException. Ensure that the data being put is valid."

OS.Explic
itIndexIn
BulkNotAllowed

"Ensure rest.action.multi.allow_explicit_index is set to true on the
Amazon OpenSearch Service cluster."

OS.ClusterError "The Amazon OpenSearch Service cluster or OpenSearch Serverless
collection returned an unspecified error."

OS.Cluste
rBlockExc
eption

"The cluster returned a ClusterBlockException. It may be overloaded."

OS.InvalidARN "The Amazon OpenSearch Service ARN provided is invalid. Please check
your DeliveryStream configuration."

OS.Malfor
medData

"One or more records are malformed. Please ensure that each record is
single valid JSON object and that it does not contain newlines."

OS.Intern
alError

"An internal error occurred when attempting to deliver data. Delivery
will be retried; if the error persists, it will be reported to AWS for
resolution."

OS.AliasW
ithMultip
leIndices
NotAllowed

"Alias has more than one indices associated with it. Ensure that the alias
has only one index associated with it."

Data Delivery Errors 225

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

OS.Unsupp
ortedVersion

"Amazon OpenSearch Service 6.0 is not currently supported by Amazon
Data Firehose. Contact AWS Support for more information."

OS.CharCo
nversionE
xception

"One or more records contained an invalid character."

OS.Invali
dDomainNa
meLength

"The domain name length is not within valid OS limits."

OS.VPCDom
ainNotSup
ported

"Amazon OpenSearch Service domains within VPCs are currently not
supported."

OS.Connec
tionError

"The http server closed the connection unexpectedly, please verify
the health of the Amazon OpenSearch Service cluster or OpenSearch
Serverless collection."

OS.LargeF
ieldData

"The Amazon OpenSearch Service cluster aborted the request as it
contained a field data larger than allowed."

OS.BadGateway "The Amazon OpenSearch Service cluster or OpenSearch Serverless
collection aborted the request with a response: 502 Bad Gateway."

OS.Servic
eException

"Error received from the Amazon OpenSearch Service cluster or
OpenSearch Serverless collection. If the cluster or collection is behind a
VPC, ensure network configuration allows connectivity."

OS.Gatewa
yTimeout

"Firehose encountered timeout errors when connecting to the Amazon
OpenSearch Service cluster or OpenSearch Serverless collection."

OS.Malfor
medData

"Amazon Data Firehose does not support Amazon OpenSearch Service
Bulk API commands inside the Firehose record."

Data Delivery Errors 226

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

OS.Respon
seEntryCo
untMismatch

"The response from the Bulk API contained more entries than the
number of records sent. Ensure that each record contains only one
JSON object and that there are no newlines."

Lambda Invocation Errors

Amazon Data Firehose can send the following Lambda invocation errors to CloudWatch Logs.

Error Code Error Message and Information

Lambda.As
sumeRoleA
ccessDenied

"Access was denied. Ensure that the trust policy for the provided IAM
role allows Amazon Data Firehose to assume the role."

Lambda.In
vokeAcces
sDenied

"Access was denied. Ensure that the access policy allows access to the
Lambda function."

Lambda.Js
onProcess
ingException

"There was an error parsing returned records from the Lambda
function. Ensure that the returned records follow the status model
required by Amazon Data Firehose."

For more information, see Data Transformation and Status Model.

Lambda.In
vokeLimit
Exceeded

"The Lambda concurrent execution limit is exceeded. Increase the
concurrent execution limit."

For more information, see AWS Lambda Limits in the AWS Lambda
Developer Guide.

Lambda.Du
plicatedR
ecordId

"Multiple records were returned with the same record ID. Ensure that
the Lambda function returns unique record IDs for each record."

For more information, see Data Transformation and Status Model.

Lambda.Mi
ssingRecordId

"One or more record IDs were not returned. Ensure that the Lambda
function returns all received record IDs."

Data Delivery Errors 227

https://docs.aws.amazon.com/lambda/latest/dg/limits.html

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

For more information, see Data Transformation and Status Model.

Lambda.Re
sourceNotFound

"The specified Lambda function does not exist. Use a different function
that does exist."

Lambda.In
validSubn
etIDException

"The specified subnet ID in the Lambda function VPC configuration is
invalid. Ensure that the subnet ID is valid."

Lambda.In
validSecu
rityGroup
IDException

"The specified security group ID in the Lambda function VPC configura
tion is invalid. Ensure that the security group ID is valid."

Lambda.Su
bnetIPAdd
ressLimit
ReachedEx
ception

"AWS Lambda was not able to set up the VPC access for the Lambda
function because one or more configured subnets have no available IP
addresses. Increase the IP address limit."

For more information, see Amazon VPC Limits - VPC and Subnets in the
Amazon VPC User Guide.

Lambda.EN
ILimitRea
chedException

"AWS Lambda was not able to create an Elastic Network Interface (ENI)
in the VPC, specified as part of the Lambda function configuration,
because the limit for network interfaces has been reached. Increase the
network interface limit."

For more information, see Amazon VPC Limits - Network Interfaces in
the Amazon VPC User Guide.

Lambda.Fu
nctionTimedOut

The Lambda function invocation timed out. Increase the Timeout
setting in the Lambda function. For more information, see Configuring
function timeout.

Data Delivery Errors 228

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Appendix_Limits.html#vpc-limits-vpcs-subnets
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Appendix_Limits.html#vpc-limits-enis
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Lambda.Fu
nctionError

This can be due to any of the following errors:

• Invalid output structure. Check your function and make sure the
output is in the required format. Also, make sure the processed
records contain a valid result status of Dropped, Ok, or Processin
gFailed .

• The Lambda function was successfully invoked but it returned an
error result.

• Lambda was unable to decrypt the environment variables because
KMS access was denied. Check the function's KMS key settings as
well as the key policy. For more information, see Troubleshooting Key
Access.

Lambda.Fu
nctionReq
uestTimedOut

Amazon Data Firehose encountered Request did not complete before
the request timeout configuration error when invoking Lambda. Revisit
the Lambda code to check if the Lambda code is meant to run beyond
the configured timeout. If so, consider tuning Lambda configura
tion settings, including memory, timeout. For more information, see
Configuring Lambda function options.

Lambda.Ta
rgetServe
rFailedTo
Respond

Amazon Data Firehose encountered an error. Target server failed to
respond error when calling the AWS Lambda service.

Lambda.In
validZipF
ileException

Amazon Data Firehose encountered InvalidZipFileException when
invoking the Lambda function. Check your Lambda function configura
tion settings and the Lambda code zip file.

Lambda.In
ternalSer
verError

"Amazon Data Firehose encountered InternalServerError when calling
the AWS Lambda service. Amazon Data Firehose will retry sending data
a fixed number of times. You can specify or override the retry options
using the CreateDeliveryStream or UpdateDestination APIs.
If the error persists, contact AWS Lambda support team.

Data Delivery Errors 229

https://docs.aws.amazon.com/kms/latest/developerguide/policy-evaluation.html
https://docs.aws.amazon.com/kms/latest/developerguide/policy-evaluation.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Lambda.Se
rviceUnav
ailable

Amazon Data Firehose encountered ServiceUnavailableException when
calling the AWS Lambda service. Amazon Data Firehose will retry
sending data a fixed number of times. You can specify or override the
retry options using the CreateDeliveryStream or UpdateDes
tination APIs. If the error persists, contact AWS Lambda support.

Lambda.In
validSecu
rityToken

Cannot invoke Lambda function due to invalid security token. Cross
partition Lambda invocation is not supported.

Lambda.In
vocationF
ailure

This can be due to any of the following errors:

• Amazon Data Firehose encountered errors when calling AWS
Lambda. The operation will be retried; if the error persists, it will be
reported to AWS for resolution."

• Amazon Data Firehose encountered a KMSInvalidStateException
from Lambda. Lambda was unable to decrypt the environment
variables because the KMS key used is in an invalid state for Decrypt.
Check the lambda function's KMS key.

• Amazon Data Firehose encountered an AWSLambdaException from
Lambda. Lambda was unable to initialize the provided container
image. Verify the image.

• Amazon Data Firehose encountered timeout errors when calling AWS
Lambda. The maximum supported function timeout is 5 minutes. For
more information, see Data Transformation Execution Duration.

Lambda.Js
onMapping
Exception

There was an error parsing returned records from the Lambda function.
Ensure that data field is base-64 encoded.

Kinesis Invocation Errors

Amazon Data Firehose can send the following Kinesis invocation errors to CloudWatch Logs.

Data Delivery Errors 230

https://docs.aws.amazon.com/firehose/latest/dev/data-transformation.html#data-transformation-execution-duration

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Kinesis.A
ccessDenied

"Access was denied when calling Kinesis. Ensure the access policy on the
IAM role used allows access to the appropriate Kinesis APIs."

Kinesis.R
esourceNo
tFound

"Firehose failed to read from the stream. If the Firehose is attached
with Kinesis Stream, the stream may not exist, or the shard may have
been merged or split. If the Firehose is of DirectPut type, the Firehose
may not exist any more."

Kinesis.S
ubscripti
onRequired

"Access was denied when calling Kinesis. Ensure that the IAM role
passed for Kinesis stream access has AWS Kinesis subscription."

Kinesis.T
hrottling

"Throttling error encountered when calling Kinesis. This can be due
to other applications calling the same APIs as the Firehose stream, or
because you have created too many Firehose streams with the same
Kinesis stream as the source."

Kinesis.T
hrottling

"Throttling error encountered when calling Kinesis. This can be due
to other applications calling the same APIs as the Firehose stream, or
because you have created too many Firehose streams with the same
Kinesis stream as the source."

Kinesis.A
ccessDenied

"Access was denied when calling Kinesis. Ensure the access policy on the
IAM role used allows access to the appropriate Kinesis APIs."

Kinesis.A
ccessDenied

"Access was denied while trying to call API operations on the underlyin
g Kinesis Stream. Ensure that the IAM role is propagated and valid."

Kinesis.K
MS.Access
DeniedExc
eption

"Firehose does not have access to the KMS Key used to encrypt/decrypt
the Kinesis Stream. Please grant the Firehose delivery role access to the
key."

Kinesis.K
MS.KeyDisabled

"Firehose is unable to read from the source Kinesis Stream because the
KMS key used to encrypt/decrypt it is disabled. Enable the key so that
reads can proceed."

Data Delivery Errors 231

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Kinesis.K
MS.Invali
dStateExc
eption

"Firehose is unable to read from the source Kinesis Stream because the
KMS key used to encrypt it is in an invalid state."

Kinesis.K
MS.NotFou
ndException

"Firehose is unable to read from the source Kinesis Stream because the
KMS key used to encrypt it was not found."

Kinesis DirectPut Invocation Errors

Amazon Data Firehose can send the following Kinesis DirectPut invocation errors to CloudWatch
Logs.

Error Code Error Message and Information

Firehose.
KMS.Acces
sDeniedEx
ception

"Firehose does not have access to the KMS Key. Please check the key
policy."

Firehose.
KMS.Inval
idStateEx
ception

"Firehose is unable to decrypt the data because the KMS key used to
encrypt it is in an invalid state."

Firehose.
KMS.NotFo
undException

"Firehose is unable to decrypt the data because the KMS key used to
encrypt it was not found."

Firehose.
KMS.KeyDi
sabled

"Firehose is unable to decrypt the data because the KMS key used to
encrypt the data is disabled. Enable the key so that data delivery can
proceed."

Data Delivery Errors 232

Amazon Data Firehose Developer Guide

AWS Glue Invocation Errors

Amazon Data Firehose can send the following AWS Glue invocation errors to CloudWatch Logs.

Error Code Error Message and Information

DataForma
tConversi
on.Invali
dSchema

"The schema is invalid."

DataForma
tConversi
on.Entity
NotFound

"The specified table/database could not be found. Please ensure that
the table/database exists and that the values provided in the schema
configuration are correct, especially with regards to casing."

DataForma
tConversi
on.Invali
dInput

"Could not find a matching schema from glue. Please make sure the
specified database with the supplied catalog ID exists."

DataForma
tConversi
on.Invali
dInput

"Could not find a matching schema from glue. Please make sure the
passed ARN is in the correct format."

DataForma
tConversi
on.Invali
dInput

"Could not find a matching schema from glue. Please make sure the
catalogId provided is valid."

DataForma
tConversi
on.Invali
dVersionId

"Could not find a matching schema from glue. Please make sure the
specified version of the table exists."

Data Delivery Errors 233

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

DataForma
tConversi
on.NonExi
stentColumns

"Could not find a matching schema from glue. Please make sure the
table is configured with a non-null storage descriptor containing the
target columns."

DataForma
tConversi
on.Access
Denied

"Access was denied when assuming role. Please ensure that the role
specified in the data format conversion configuration has granted the
Firehose service permission to assume it."

DataForma
tConversi
on.Thrott
ledByGlue

"Throttling error encountered when calling Glue. Either increase the
request rate limit or reduce the current rate of calling glue through
other applications."

DataForma
tConversi
on.Access
Denied

"Access was denied when calling Glue. Please ensure that the role
specified in the data format conversion configuration has the necessary
permissions."

DataForma
tConversi
on.Invali
dGlueRole

"Invalid role. Please ensure that the role specified in the data format
conversion configuration exists."

DataForma
tConversi
on.Invali
dGlueRole

"The security token included in the request is invalid. Ensure that the
provided IAM role associated with firehose is not deleted."

DataForma
tConversi
on.GlueNo
tAvailabl
eInRegion

"AWS Glue is not yet available in the region you have specified; please
specify a different region."

Data Delivery Errors 234

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

DataForma
tConversi
on.GlueEn
cryptionE
xception

"There was an error retrieving the master key. Ensure that the key exists
and has the correct access permissions."

DataForma
tConversi
on.Schema
Validatio
nTimeout

"Timed out while retrieving table from Glue. If you have a large number
of Glue table versions, please add 'glue:GetTableVersion' permission
(recommended) or delete unused table versions. If you do not have a
large number of tables in Glue, please contact AWS Support."

DataFireh
ose.Inter
nalError

"Timed out while retrieving table from Glue. If you have a large number
of Glue table versions, please add 'glue:GetTableVersion' permission
(recommended) or delete unused table versions. If you do not have a
large number of tables in Glue, please contact AWS Support."

DataForma
tConversi
on.GlueEn
cryptionE
xception

"There was an error retrieving the master key. Ensure that the key exists
and state is correct."

DataFormatConversion Invocation Errors

Amazon Data Firehose can send the following DataFormatConversion invocation errors to
CloudWatch Logs.

Error Code Error Message and Information

DataForma
tConversi
on.Invali
dSchema

"The schema is invalid."

Data Delivery Errors 235

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

DataForma
tConversi
on.Valida
tionException

"Column names and types must be non-empty strings."

DataForma
tConversi
on.ParseError

"Encountered malformed JSON."

DataForma
tConversi
on.Malfor
medData

"Data does not match the schema."

DataForma
tConversi
on.Malfor
medData

"Length of json key must not be greater than 262144"

DataForma
tConversi
on.Malfor
medData

"The data cannot be decoded as UTF-8."

DataForma
tConversi
on.Malfor
medData

"Illegal character found between tokens."

DataForma
tConversi
on.Invali
dTypeFormat

"The type format is invalid. Check the type syntax."

Data Delivery Errors 236

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

DataForma
tConversi
on.Invali
dSchema

"Invalid Schema. Please ensure that there are no special characters or
white spaces in column names."

DataForma
tConversi
on.Invali
dRecord

"Record is not as per schema. One or more map keys were invalid for
map<string,string>."

DataForma
tConversi
on.Malfor
medData

"The input JSON contained a primitive at the top level. The top level
must be an object or array."

DataForma
tConversi
on.Malfor
medData

"The input JSON contained a primitive at the top level. The top level
must be an object or array."

DataForma
tConversi
on.Malfor
medData

"The record was empty or contained only whitespace."

DataForma
tConversi
on.Malfor
medData

"Encountered invalid characters."

DataForma
tConversi
on.Malfor
medData

"Encountered invalid or unsupported timestamp format. Please see the
Firehose developer guide for supported timestamp formats."

Data Delivery Errors 237

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

DataForma
tConversi
on.Malfor
medData

"A scalar type was found in the data but a complex type was specified
on the schema."

DataForma
tConversi
on.Malfor
medData

"Data does not match the schema."

DataForma
tConversi
on.Malfor
medData

"A scalar type was found in the data but a complex type was specified
on the schema."

DataForma
tConversi
on.Conver
sionFailu
reException

"ConversionFailureException"

DataForma
tConversi
on.DataFo
rmatConve
rsionCust
omerError
Exception

"DataFormatConversionCustomerErrorException"

Data Delivery Errors 238

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

DataForma
tConversi
on.DataFo
rmatConve
rsionCust
omerError
Exception

"DataFormatConversionCustomerErrorException"

DataForma
tConversi
on.Malfor
medData

"Data does not match the schema."

DataForma
tConversi
on.Invali
dSchema

"The schema is invalid."

DataForma
tConversi
on.Malfor
medData

"Data does not match the schema. Invalid format for one or more
dates."

DataForma
tConversi
on.Malfor
medData

"Data contains a highly nested JSON structure that is not supported."

DataForma
tConversi
on.Entity
NotFound

"The specified table/database could not be found. Please ensure that
the table/database exists and that the values provided in the schema
configuration are correct, especially with regards to casing."

Data Delivery Errors 239

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

DataForma
tConversi
on.Invali
dInput

"Could not find a matching schema from glue. Please make sure the
specified database with the supplied catalog ID exists."

DataForma
tConversi
on.Invali
dInput

"Could not find a matching schema from glue. Please make sure the
passed ARN is in the correct format."

DataForma
tConversi
on.Invali
dInput

"Could not find a matching schema from glue. Please make sure the
catalogId provided is valid."

DataForma
tConversi
on.Invali
dVersionId

"Could not find a matching schema from glue. Please make sure the
specified version of the table exists."

DataForma
tConversi
on.NonExi
stentColumns

"Could not find a matching schema from glue. Please make sure the
table is configured with a non-null storage descriptor containing the
target columns."

DataForma
tConversi
on.Access
Denied

"Access was denied when assuming role. Please ensure that the role
specified in the data format conversion configuration has granted the
Firehose service permission to assume it."

DataForma
tConversi
on.Thrott
ledByGlue

"Throttling error encountered when calling Glue. Either increase the
request rate limit or reduce the current rate of calling glue through
other applications."

Data Delivery Errors 240

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

DataForma
tConversi
on.Access
Denied

"Access was denied when calling Glue. Please ensure that the role
specified in the data format conversion configuration has the necessary
permissions."

DataForma
tConversi
on.Invali
dGlueRole

"Invalid role. Please ensure that the role specified in the data format
conversion configuration exists."

DataForma
tConversi
on.GlueNo
tAvailabl
eInRegion

"AWS Glue is not yet available in the region you have specified; please
specify a different region."

DataForma
tConversi
on.GlueEn
cryptionE
xception

"There was an error retrieving the master key. Ensure that the key exists
and has the correct access permissions."

DataForma
tConversi
on.Schema
Validatio
nTimeout

"Timed out while retrieving table from Glue. If you have a large number
of Glue table versions, please add 'glue:GetTableVersion' permission
(recommended) or delete unused table versions. If you do not have a
large number of tables in Glue, please contact AWS Support."

DataFireh
ose.Inter
nalError

"Timed out while retrieving table from Glue. If you have a large number
of Glue table versions, please add 'glue:GetTableVersion' permission
(recommended) or delete unused table versions. If you do not have a
large number of tables in Glue, please contact AWS Support."

Data Delivery Errors 241

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

DataForma
tConversi
on.Malfor
medData

"One or more fields have incorrect format."

Accessing CloudWatch Logs for Amazon Data Firehose

You can view the error logs related to Amazon Data Firehose data delivery failure using the
Amazon Data Firehose console or the CloudWatch console. The following procedures show you
how to access error logs using these two methods.

To access error logs using the Amazon Data Firehose console

1. Sign in to the AWS Management Console and open the Firehose console at https://
console.aws.amazon.com/firehose

2. On the navigation bar, choose an AWS Region.

3. Choose a Firehose stream name to go to the Firehose stream details page.

4. Choose Error Log to view a list of error logs related to data delivery failure.

To access error logs using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. On the navigation bar, choose a Region.

3. In the navigation pane, choose Logs.

4. Choose a log group and log stream to view a list of error logs related to data delivery failure.

Monitoring Kinesis Agent Health

Kinesis Agent publishes custom CloudWatch metrics with a namespace of AWSKinesisAgent. It
helps assess whether the agent is healthy, submitting data into Amazon Data Firehose as specified,
and consuming the appropriate amount of CPU and memory resources on the data producer.

Accessing CloudWatch Logs for Amazon Data Firehose 242

https://console.aws.amazon.com/cloudwatch/

Amazon Data Firehose Developer Guide

Metrics such as number of records and bytes sent are useful to understand the rate at which
the agent is submitting data to the Firehose stream. When these metrics fall below expected
thresholds by some percentage or drop to zero, it could indicate configuration issues, network
errors, or agent health issues. Metrics such as on-host CPU and memory consumption and
agent error counters indicate data producer resource usage, and provide insights into potential
configuration or host errors. Finally, the agent also logs service exceptions to help investigate
agent issues.

The agent metrics are reported in the region specified in the agent configuration setting
cloudwatch.endpoint. For more information, see Agent Configuration Settings.

Cloudwatch metrics published from multiple Kinesis Agents are aggregated or combined.

There is a nominal charge for metrics emitted from Kinesis Agent, which are enabled by default.
For more information, see Amazon CloudWatch Pricing.

Monitoring with CloudWatch

Kinesis Agent sends the following metrics to CloudWatch.

Metric Description

BytesSent The number of bytes sent to the Firehose stream over the specified
time period.

Units: Bytes

RecordSen
dAttempts

The number of records attempted (either first time, or as a retry) in a
call to PutRecordBatch over the specified time period.

Units: Count

RecordSen
dErrors

The number of records that returned failure status in a call to
PutRecordBatch , including retries, over the specified time period.

Units: Count

ServiceErrors The number of calls to PutRecordBatch that resulted in a service
error (other than a throttling error) over the specified time period.

Monitoring with CloudWatch 243

https://aws.amazon.com/cloudwatch/pricing/

Amazon Data Firehose Developer Guide

Metric Description

Units: Count

Logging Amazon Data Firehose API Calls with AWS CloudTrail

Amazon Data Firehose is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service in Amazon Data Firehose. CloudTrail captures all API
calls for Amazon Data Firehose as events. The calls captured include calls from the Amazon Data
Firehose console and code calls to the Amazon Data Firehose API operations. If you create a trail,
you can enable continuous delivery of CloudTrail events to an Amazon S3 bucket, including events
for Amazon Data Firehose. If you don't configure a trail, you can still view the most recent events
in the CloudTrail console in Event history. Using the information collected by CloudTrail, you can
determine the request that was made to Amazon Data Firehose, the IP address from which the
request was made, who made the request, when it was made, and additional details.

To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail
User Guide.

Amazon Data Firehose Information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When supported event
activity occurs in Amazon Data Firehose, that activity is recorded in a CloudTrail event along with
other AWS service events in Event history. You can view, search, and download recent events in
your AWS account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Amazon Data Firehose,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,
when you create a trail in the console, the trail applies to all AWS Regions. The trail logs events
from all Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you
specify. Additionally, you can configure other AWS services to further analyze and act upon the
event data collected in CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

Logging Amazon Data Firehose API Calls with AWS CloudTrail 244

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html

Amazon Data Firehose Developer Guide

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

Amazon Data Firehose supports logging the following actions as events in CloudTrail log files:

• CreateDeliveryStream

• DeleteDeliveryStream

• DescribeDeliveryStream

• ListDeliveryStreams

• ListTagsForDeliveryStream

• TagDeliveryStream

• StartDeliveryStreamEncryption

• StopDeliveryStreamEncryption

• UntagDeliveryStream

• UpdateDestination

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Example: Amazon Data Firehose Log File Entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

Example: Amazon Data Firehose Log File Entries 245

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_DeleteDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_DescribeDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ListDeliveryStreams.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ListTagsForDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_TagDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_StartDeliveryStreamEncryption.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_StopDeliveryStreamEncryption.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_UntagDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_UpdateDestination.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Data Firehose Developer Guide

The following example shows a CloudTrail log entry that demonstrates the
CreateDeliveryStream, DescribeDeliveryStream, ListDeliveryStreams,
UpdateDestination, and DeleteDeliveryStream actions.

{
 "Records":[
 {
 "eventVersion":"1.02",
 "userIdentity":{
 "type":"IAMUser",
 "principalId":"AKIAIOSFODNN7EXAMPLE",
 "arn":"arn:aws:iam::111122223333:user/CloudTrail_Test_User",
 "accountId":"111122223333",
 "accessKeyId":"AKIAI44QH8DHBEXAMPLE",
 "userName":"CloudTrail_Test_User"
 },
 "eventTime":"2016-02-24T18:08:22Z",
 "eventSource":"firehose.amazonaws.com",
 "eventName":"CreateDeliveryStream",
 "awsRegion":"us-east-1",
 "sourceIPAddress":"127.0.0.1",
 "userAgent":"aws-internal/3",
 "requestParameters":{
 "deliveryStreamName":"TestRedshiftStream",
 "redshiftDestinationConfiguration":{
 "s3Configuration":{
 "compressionFormat":"GZIP",
 "prefix":"prefix",
 "bucketARN":"arn:aws:s3:::firehose-cloudtrail-test-bucket",
 "roleARN":"arn:aws:iam::111122223333:role/Firehose",
 "bufferingHints":{
 "sizeInMBs":3,
 "intervalInSeconds":900
 },
 "encryptionConfiguration":{
 "kMSEncryptionConfig":{
 "aWSKMSKeyARN":"arn:aws:kms:us-east-1:key"
 }
 }
 },
 "clusterJDBCURL":"jdbc:redshift://example.abc123.us-
west-2.redshift.amazonaws.com:5439/dev",
 "copyCommand":{

Example: Amazon Data Firehose Log File Entries 246

Amazon Data Firehose Developer Guide

 "copyOptions":"copyOptions",
 "dataTableName":"dataTable"
 },
 "password":"",
 "username":"",
 "roleARN":"arn:aws:iam::111122223333:role/Firehose"
 }
 },
 "responseElements":{
 "deliveryStreamARN":"arn:aws:firehose:us-
east-1:111122223333:deliverystream/TestRedshiftStream"
 },
 "requestID":"958abf6a-db21-11e5-bb88-91ae9617edf5",
 "eventID":"875d2d68-476c-4ad5-bbc6-d02872cfc884",
 "eventType":"AwsApiCall",
 "recipientAccountId":"111122223333"
 },
 {
 "eventVersion":"1.02",
 "userIdentity":{
 "type":"IAMUser",
 "principalId":"AKIAIOSFODNN7EXAMPLE",
 "arn":"arn:aws:iam::111122223333:user/CloudTrail_Test_User",
 "accountId":"111122223333",
 "accessKeyId":"AKIAI44QH8DHBEXAMPLE",
 "userName":"CloudTrail_Test_User"
 },
 "eventTime":"2016-02-24T18:08:54Z",
 "eventSource":"firehose.amazonaws.com",
 "eventName":"DescribeDeliveryStream",
 "awsRegion":"us-east-1",
 "sourceIPAddress":"127.0.0.1",
 "userAgent":"aws-internal/3",
 "requestParameters":{
 "deliveryStreamName":"TestRedshiftStream"
 },
 "responseElements":null,
 "requestID":"aa6ea5ed-db21-11e5-bb88-91ae9617edf5",
 "eventID":"d9b285d8-d690-4d5c-b9fe-d1ad5ab03f14",
 "eventType":"AwsApiCall",
 "recipientAccountId":"111122223333"
 },
 {
 "eventVersion":"1.02",

Example: Amazon Data Firehose Log File Entries 247

Amazon Data Firehose Developer Guide

 "userIdentity":{
 "type":"IAMUser",
 "principalId":"AKIAIOSFODNN7EXAMPLE",
 "arn":"arn:aws:iam::111122223333:user/CloudTrail_Test_User",
 "accountId":"111122223333",
 "accessKeyId":"AKIAI44QH8DHBEXAMPLE",
 "userName":"CloudTrail_Test_User"
 },
 "eventTime":"2016-02-24T18:10:00Z",
 "eventSource":"firehose.amazonaws.com",
 "eventName":"ListDeliveryStreams",
 "awsRegion":"us-east-1",
 "sourceIPAddress":"127.0.0.1",
 "userAgent":"aws-internal/3",
 "requestParameters":{
 "limit":10
 },
 "responseElements":null,
 "requestID":"d1bf7f86-db21-11e5-bb88-91ae9617edf5",
 "eventID":"67f63c74-4335-48c0-9004-4ba35ce00128",
 "eventType":"AwsApiCall",
 "recipientAccountId":"111122223333"
 },
 {
 "eventVersion":"1.02",
 "userIdentity":{
 "type":"IAMUser",
 "principalId":"AKIAIOSFODNN7EXAMPLE",
 "arn":"arn:aws:iam::111122223333:user/CloudTrail_Test_User",
 "accountId":"111122223333",
 "accessKeyId":"AKIAI44QH8DHBEXAMPLE",
 "userName":"CloudTrail_Test_User"
 },
 "eventTime":"2016-02-24T18:10:09Z",
 "eventSource":"firehose.amazonaws.com",
 "eventName":"UpdateDestination",
 "awsRegion":"us-east-1",
 "sourceIPAddress":"127.0.0.1",
 "userAgent":"aws-internal/3",
 "requestParameters":{
 "destinationId":"destinationId-000000000001",
 "deliveryStreamName":"TestRedshiftStream",
 "currentDeliveryStreamVersionId":"1",
 "redshiftDestinationUpdate":{

Example: Amazon Data Firehose Log File Entries 248

Amazon Data Firehose Developer Guide

 "roleARN":"arn:aws:iam::111122223333:role/Firehose",
 "clusterJDBCURL":"jdbc:redshift://example.abc123.us-
west-2.redshift.amazonaws.com:5439/dev",
 "password":"",
 "username":"",
 "copyCommand":{
 "copyOptions":"copyOptions",
 "dataTableName":"dataTable"
 },
 "s3Update":{
 "bucketARN":"arn:aws:s3:::firehose-cloudtrail-test-bucket-update",
 "roleARN":"arn:aws:iam::111122223333:role/Firehose",
 "compressionFormat":"GZIP",
 "bufferingHints":{
 "sizeInMBs":3,
 "intervalInSeconds":900
 },
 "encryptionConfiguration":{
 "kMSEncryptionConfig":{
 "aWSKMSKeyARN":"arn:aws:kms:us-east-1:key"
 }
 },
 "prefix":"arn:aws:s3:::firehose-cloudtrail-test-bucket"
 }
 }
 },
 "responseElements":null,
 "requestID":"d549428d-db21-11e5-bb88-91ae9617edf5",
 "eventID":"1cb21e0b-416a-415d-bbf9-769b152a6585",
 "eventType":"AwsApiCall",
 "recipientAccountId":"111122223333"
 },
 {
 "eventVersion":"1.02",
 "userIdentity":{
 "type":"IAMUser",
 "principalId":"AKIAIOSFODNN7EXAMPLE",
 "arn":"arn:aws:iam::111122223333:user/CloudTrail_Test_User",
 "accountId":"111122223333",
 "accessKeyId":"AKIAI44QH8DHBEXAMPLE",
 "userName":"CloudTrail_Test_User"
 },
 "eventTime":"2016-02-24T18:10:12Z",
 "eventSource":"firehose.amazonaws.com",

Example: Amazon Data Firehose Log File Entries 249

Amazon Data Firehose Developer Guide

 "eventName":"DeleteDeliveryStream",
 "awsRegion":"us-east-1",
 "sourceIPAddress":"127.0.0.1",
 "userAgent":"aws-internal/3",
 "requestParameters":{
 "deliveryStreamName":"TestRedshiftStream"
 },
 "responseElements":null,
 "requestID":"d85968c1-db21-11e5-bb88-91ae9617edf5",
 "eventID":"dd46bb98-b4e9-42ff-a6af-32d57e636ad1",
 "eventType":"AwsApiCall",
 "recipientAccountId":"111122223333"
 }
]
}

Example: Amazon Data Firehose Log File Entries 250

Amazon Data Firehose Developer Guide

Custom Prefixes for Amazon S3 Objects

Objects delivered to Amazon S3 follow the name format of <evaluated prefix><suffix>. You can
specify your custom prefix that includes expressions that are evaluated at runtime. Custom prefix
you specify will override the default prefix of YYYY/MM/dd/HH.

You can use expressions of the following forms in your custom prefix: !{namespace:value},
where namespace can be one of the following, as explained in the following sections.

• firehose

• timestamp

• partitionKeyFromQuery

• partitionKeyFromLambda

If a prefix ends with a slash, it appears as a folder in the Amazon S3 bucket. For more information,
see Amazon S3 Object Name Format in the Amazon Data FirehoseDeveloper Guide.

The timestamp namespace

Valid values for this namespace are strings that are valid Java DateTimeFormatter strings. As an
example, in the year 2018, the expression !{timestamp:yyyy} evaluates to 2018.

When evaluating timestamps, Firehose uses the approximate arrival timestamp of the oldest record
that's contained in the Amazon S3 object being written.

By default, timestamp is in UTC. But, you can specify a time zone that you prefer. For example, you
can configure the time zone to Asia/Tokyo in the AWS Management Console or in API parameter
setting (CustomTimeZone) if you want to use Japan Standard Time instead of UTC. To see the list
of supported time zones, see Amazon S3 Object Name Format.

If you use the timestamp namespace more than once in the same prefix expression, every instance
evaluates to the same instant in time.

The firehose namespace

There are two values that you can use with this namespace: error-output-type and random-
string. The following table explains how to use them.

The timestamp namespace 251

https://docs.aws.amazon.com/firehose/latest/dev/basic-deliver.html#s3-object-namekey
https://docs.aws.amazon.com/firehose/latest/dev/basic-deliver.html#s3-object-name
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ExtendedS3DestinationConfiguration.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-deliver.html#s3-object-name

Amazon Data Firehose Developer Guide

The firehose namespace values

Conversion Description Example input Example output Notes

error-out
put-type

Evaluates to one
of the following
strings,
depending on
the configura
tion of your
delivery stream,
and the reason
of failure:
{processi
ng-failed,
AmazonOpe
nSearchService-
failed, splunk-fa
iled, format-co
nversion-failed,
http-endpoint-
failed}.

If you use it
more than once
in the same
expression,
every instance
evaluates to
the same error
string..

myPrefix/
result=!{
firehose:
error-out
put-type}
/!{timest
amp:yyyy/
MM/dd}

myPrefix/
result=pr
ocessing-
failed/20
18/08/03

The error-out
put-type value
can only be used
in the ErrorOutp
utPrefix field.

random-st
ring

Evaluates to a
random string of
11 characters. If
you use it more
than once in the
same expressio

myPrefix/
!{firehos
e:random-
string}/

myPrefix/
046b6c7f-
0b/

You can use it
with both prefix
types.

You can place it
at the beginning

The firehose namespace 252

Amazon Data Firehose Developer Guide

Conversion Description Example input Example output Notes

n, every instance
evaluates to a
new random
string.

of the format
string to get
a randomized
prefix, which
is sometimes
necessary
for attaining
extremely high
throughput with
Amazon S3.

partitionKeyFromLambda and partitionKeyFromQuery
namespaces

For dynamic partitioning, you must use the following expression format in your S3 bucket
prefix: !{namespace:value}, where namespace can be either partitionKeyFromQuery or
partitionKeyFromLambda, or both. If you are using inline parsing to create the partitioning
keys for your source data, you must specify an S3 bucket prefix value that consists of expressions
specified in the following format: "partitionKeyFromQuery:keyID". If you are using
an AWS Lambda function to create partitioning keys for your source data, you must specify
an S3 bucket prefix value that consists of expressions specified in the following format:
"partitionKeyFromLambda:keyID". For more information, see the "Choose Amazon S3 for
Your Destination" in Creating an Amazon Data FirehoseDelivery Stream.

Semantic rules

The following rules apply to Prefix and ErrorOutputPrefix expressions.

• For the timestamp namespace, any character that isn't in single quotes is evaluated. In other
words, any string escaped with single quotes in the value field is taken literally.

• If you specify a prefix that doesn't contain a timestamp namespace expression, Firehose appends
the expression !{timestamp:yyyy/MM/dd/HH/}to the value in the Prefix field.

• The sequence !{ can only appear in !{namespace:value} expressions.

partitionKeyFromLambda and partitionKeyFromQuery namespaces 253

https://docs.aws.amazon.com/firehose/latest/dev/dynamic-partitioning.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html

Amazon Data Firehose Developer Guide

• ErrorOutputPrefix can be null only if Prefix contains no expressions. In this case, Prefix
evaluates to <specified-prefix>yyyy/MM/DDD/HH/ and ErrorOutputPrefix evaluates to
<specified-prefix><error-output-type>YYYY/MM/DDD/HH/. DDD represents the day of
the year.

• If you specify an expression for ErrorOutputPrefix, you must include at least one instance of
!{firehose:error-output-type}.

• Prefix can't contain !{firehose:error-output-type}.

• Neither Prefix nor ErrorOutputPrefix can be greater than 512 characters after they're
evaluated.

• If the destination is Amazon Redshift, Prefix must not contain expressions and
ErrorOutputPrefix must be null.

• When the destination is Amazon OpenSearch Service or Splunk, and no ErrorOutputPrefix is
specified, Firehose uses the Prefix field for failed records.

• When the destination is Amazon S3, the Prefix and ErrorOutputPrefix in the Amazon S3
destination configuration are used for successful records and failed records, respectively. If you
use the AWS CLI or the API, you can use ExtendedS3DestinationConfiguration to specify
an Amazon S3 backup configuration with its own Prefix and ErrorOutputPrefix.

• When you use the AWS Management Console and set the destination to Amazon S3, Firehose
uses the Prefix and ErrorOutputPrefix in the destination configuration for successful
records and failed records, respectively. If you specify a prefix but no error prefix, Firehose
automatically sets the error prefix to !{firehose:error-output-type}/.

• When you use ExtendedS3DestinationConfiguration with the AWS CLI, the API, or AWS
CloudFormation, if you specify a S3BackupConfiguration, Firehose doesn't provide a default
ErrorOutputPrefix.

• You cannot use partitionKeyFromLambda and partitionKeyFromQuery namespaces when
creating ErrorOutputPrefix expressions.

Example prefixes

Prefix and ErrorOutputPrefix examples

Input Evaluated prefix (at 10:30 AM UTC on Aug
27, 2018)

Prefix: Unspecified Prefix: 2018/08/27/10

Example prefixes 254

Amazon Data Firehose Developer Guide

Input Evaluated prefix (at 10:30 AM UTC on Aug
27, 2018)

ErrorOutputPrefix : myFirehos
eFailures/!{firehose:error-
output-type}/

ErrorOutputPrefix : myFirehos
eFailures/processing-failed/

Prefix: !{timestamp:yyyy/MM/dd}

ErrorOutputPrefix : Unspecified

Invalid input: ErrorOutputPrefix can't be
null when Prefix contains expressions

Prefix: myFirehose/DeliveredYear=!
{timestamp:yyyy}/anyMonth/ra
nd=!{firehose:random-string}

ErrorOutputPrefix : myFirehos
eFailures/!{firehose:error-
output-type}/!{timestamp:yyyy}/
anyMonth/!{timestamp:dd}

Prefix: myFirehose/Deliver
edYear=2018/anyMonth/rand=5
abf82daaa5

ErrorOutputPrefix : myFirehos
eFailures/processing-failed
/2018/anyMonth/10

Prefix: myPrefix/year=!{ti
mestamp:yyyy}/month=!{times
tamp:MM}/day=!{timestamp:dd}/
hour=!{timestamp:HH}/

ErrorOutputPrefix : myErrorPrefix/
year=!{timestamp:yyyy}/month=!
{timestamp:MM}/day=!{timesta
mp:dd}/hour=!{timestamp:HH}/!
{firehose:error-output-type}

Prefix: myPrefix/year=2018/
month=07/day=06/hour=23/

ErrorOutputPrefix : myErrorPrefix/
year=2018/month=07/day=06/hour=
23/processing-failed

Prefix: myFirehosePrefix/

ErrorOutputPrefix : Unspecified

Prefix: myFirehosePrefix/2
018/08/27/

ErrorOutputPrefix : myFirehos
ePrefix/processing-failed/2
018/08/27/

Example prefixes 255

Amazon Data Firehose Developer Guide

Using Amazon Data Firehose with AWS PrivateLink

Interface VPC endpoints (AWS PrivateLink) for Amazon Data
Firehose

You can use an interface VPC endpoint to keep traffic between your Amazon VPC and Amazon
Data Firehose from leaving the Amazon network. Interface VPC endpoints don't require an internet
gateway, NAT device, VPN connection, or AWS Direct Connect connection. Interface VPC endpoints
are powered by AWS PrivateLink, an AWS technology that enables private communication between
AWS services using an elastic network interface with private IPs in your Amazon VPC. For more
information, see Amazon Virtual Private Cloud.

Using interface VPC endpoints (AWS PrivateLink) for Amazon
Data Firehose

To get started, create an interface VPC endpoint in order for your Amazon Data Firehose traffic
from your Amazon VPC resources to start flowing through the interface VPC endpoint. When you
create an endpoint, you can attach an endpoint policy to it that controls access to Amazon Data
Firehose. For more about using policies to control access from a VPC endpoint to Amazon Data
Firehose, see Controlling Access to Services with VPC Endpoints.

The following example shows how you can set up an AWS Lambda function in a VPC and create
a VPC endpoint to allow the function to communicate securely with the Amazon Data Firehose
service. In this example, you use a policy that allows the Lambda function to list the Firehose
streams in the current Region but not to describe any Firehose stream.

Create a VPC endpoint

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc/.

2. In the VPC Dashboard choose Endpoints.

3. Choose Create Endpoint.

4. In the list of service names, choose com.amazonaws.your_region.kinesis-firehose.

5. Choose the VPC and one or more subnets in which to create the endpoint.

6. Choose one or more security groups to associate with the endpoint.

Interface VPC endpoints (AWS PrivateLink) for Amazon Data Firehose 256

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

Amazon Data Firehose Developer Guide

7. For Policy, choose Custom and paste the following policy:

{
 "Statement": [
 {
 "Sid": "Allow-only-specific-PrivateAPIs",
 "Principal": "*",
 "Action": [
 "firehose:ListDeliveryStreams"
],
 "Effect": "Allow",
 "Resource": [
 "*"
]
 },
 {
 "Sid": "Allow-only-specific-PrivateAPIs",
 "Principal": "*",
 "Action": [
 "firehose:DescribeDeliveryStream"
],
 "Effect": "Deny",
 "Resource": [
 "*"
]
 }
]
}

8. Choose Create endpoint.

Create an IAM role to use with the Lambda function

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the left pane, chose Roles and then choose Create role.

3. Under Select type of trusted entity, leave the default selection AWS service.

4. Under Choose the service that will use this role, choose Lambda.

5. Choose Next: Permissions.

6. In the list of policies, search for and add the two policies named
AWSLambdaVPCAccessExecutionRole and AmazonDataFirehoseReadOnlyAccess.

Using interface VPC endpoints (AWS PrivateLink) for Amazon Data Firehose 257

https://console.aws.amazon.com/iam/

Amazon Data Firehose Developer Guide

Important

This is an example. You might need stricter policies for your production environment.

7. Choose Next: Tags. You don't need to add tags for the purpose of this exercise. Choose Next:
Review.

8. Enter a name for the role, then choose Create role.

Create a Lambda function inside the VPC

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Choose Create function.

3. Choose Author from scratch.

4. Enter a name for the function, then set Runtime to Python 3.9 or higher.

5. Under Permissions, expand Choose or create an execution role.

6. In the Execution role list, choose Use an existing role.

7. In the Existing role list, choose the role you created above.

8. Choose Create function.

9. Under Function code, paste the following code.

 import json
 import boto3
 import os
 from botocore.exceptions import ClientError

 def lambda_handler(event, context):
 REGION = os.environ['AWS_REGION']
 client = boto3.client(
 'firehose',
 REGION

)
 print("Calling list_delivery_streams with ListDeliveryStreams allowed
 policy.")
 delivery_stream_request = client.list_delivery_streams()
 print("Successfully returned list_delivery_streams request %s." % (

Using interface VPC endpoints (AWS PrivateLink) for Amazon Data Firehose 258

https://console.aws.amazon.com/lambda/

Amazon Data Firehose Developer Guide

 delivery_stream_request
))
 describe_access_denied = False
 try:
 print("Calling describe_delivery_stream with DescribeDeliveryStream
 denied policy.")
 delivery_stream_info =
 client.describe_delivery_stream(DeliveryStreamName='test-describe-denied')
 except ClientError as e:
 error_code = e.response['Error']['Code']
 print ("Caught %s." % (error_code))
 if error_code == 'AccessDeniedException':
 describe_access_denied = True

 if not describe_access_denied:
 raise
 else:
 print("Access denied test succeeded.")

10. Under Basic settings, set the timeout to 1 minute.

11. Under Network, choose the VPC where you created the endpoint above, then choose the
subnets and security group that you associated with the endpoint when you created it.

12. Near the top of the page, choose Save.

13. Choose Test.

14. Enter an event name, then choose Create.

15. Choose Test again. This causes the function to run. After the execution result appears, expand
Details and compare the log output to the function code. Successful results show a list of the
Firehose streams in the Region, as well as the following output:

Calling describe_delivery_stream.

AccessDeniedException

Access denied test succeeded.

Availability

Interface VPC endpoints are currently supported within the following Regions:

• US East (Ohio)

Availability 259

Amazon Data Firehose Developer Guide

• US East (N. Virginia)

• US West (N. California)

• US West (Oregon)

• Asia Pacific (Mumbai)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Asia Pacific (Hong Kong)

• Canada (Central)

• Canada West (Calgary)

• China (Beijing)

• China (Ningxia)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Paris)

• South America (São Paulo)

• AWS GovCloud (US-East)

• AWS GovCloud (US-West)

• Europe (Spain)

• Middle East (UAE)

• Asia Pacific (Jakarta)

• Asia Pacific (Osaka)

• Israel (Tel Aviv)

Availability 260

Amazon Data Firehose Developer Guide

Tagging Your Firehose streams in Amazon Data Firehose

You can assign your own metadata to Firehose streams that you create in Amazon Data Firehose in
the form of tags. A tag is a key-value pair that you define for a stream. Using tags is a simple yet
powerful way to manage AWS resources and organize data, including billing data.

Topics

• Tag Basics

• Tracking Costs Using Tagging

• Tag Restrictions

• Tagging Firehose streams Using the Amazon Data Firehose API

Tag Basics

You can use the Amazon Data Firehose API to complete the following tasks:

• Add tags to a Firehose stream.

• List the tags for your Firehose streams.

• Remove tags from a Firehose stream.

You can use tags to categorize your Firehose streams. For example, you can categorize Firehose
streams by purpose, owner, or environment. Because you define the key and value for each tag, you
can create a custom set of categories to meet your specific needs. For example, you might define a
set of tags that helps you track Firehose streams by owner and associated application.

The following are several examples of tags:

• Project: Project name

• Owner: Name

• Purpose: Load testing

• Application: Application name

• Environment: Production

Tag Basics 261

Amazon Data Firehose Developer Guide

If you specify tags in the CreateDeliveryStream action, Amazon Data Firehose performs an
additional authorization on the firehose:TagDeliveryStream action to verify if users have
permissions to create tags. If you do not provide this permission, requests to create new Firehose
delivery streams with IAM resource tags will fail with an AccessDeniedException such as
following.

AccessDeniedException
User: arn:aws:sts::x:assumed-role/x/x is not authorized to perform:
 firehose:TagDeliveryStream on resource: arn:aws:firehose:us-east-1:x:deliverystream/x
 with an explicit deny in an identity-based policy.

The following example demonstrates a policy that allows users to create a delivery stream and
apply tags.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "firehose:CreateDeliveryStream",
 "Resource": "*",
 }
 },
 {
 "Effect": "Allow",
 "Action": "firehose:TagDeliveryStream",
 "Resource": "*",
 }
 }
]
}

Tracking Costs Using Tagging

You can use tags to categorize and track your AWS costs. When you apply tags to your AWS
resources, including Firehose streams, your AWS cost allocation report includes usage and costs
aggregated by tags. You can organize your costs across multiple services by applying tags that
represent business categories (such as cost centers, application names, or owners). For more
information, see Use Cost Allocation Tags for Custom Billing Reports in the AWS Billing User Guide.

Tracking Costs Using Tagging 262

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon Data Firehose Developer Guide

Tag Restrictions

The following restrictions apply to tags in Amazon Data Firehose.

Basic restrictions

• The maximum number of tags per resource (stream) is 50.

• Tag keys and values are case-sensitive.

• You can't change or edit tags for a deleted stream.

Tag key restrictions

• Each tag key must be unique. If you add a tag with a key that's already in use, your new tag
overwrites the existing key-value pair.

• You can't start a tag key with aws: because this prefix is reserved for use by AWS. AWS creates
tags that begin with this prefix on your behalf, but you can't edit or delete them.

• Tag keys must be between 1 and 128 Unicode characters in length.

• Tag keys must consist of the following characters: Unicode letters, digits, white space, and the
following special characters: _ . / = + - @.

Tag value restrictions

• Tag values must be between 0 and 255 Unicode characters in length.

• Tag values can be blank. Otherwise, they must consist of the following characters: Unicode
letters, digits, white space, and any of the following special characters: _ . / = + - @.

Tagging Firehose streams Using the Amazon Data Firehose API

You can specify tags when you invoke CreateDeliveryStream to create a new Firehose stream. For
existing delivery streams, you can add, list, and remove tags using the following three operations:

• TagDeliveryStream

• ListTagsForDeliveryStream

• UntagDeliveryStream

Tag Restrictions 263

https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_TagDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ListTagsForDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_UntagDeliveryStream.html

Amazon Data Firehose Developer Guide

Tutorial: Ingest VPC flow logs into Splunk using Amazon
Data Firehose

For a tutorial, see Ingest VPC flow logs into Splunk using Amazon Data Firehose.

264

https://www.splunk.com/en_us/blog/partners/streamline-your-amazon-vpc-flow-logs-ingestion-to-splunk.html

Amazon Data Firehose Developer Guide

Troubleshooting Amazon Data Firehose

If Firehose encounters errors while delivering or processing data, it retries until the configured retry
duration expires. If the retry duration ends before the data is delivered successfully, Firehose backs
up the data to the configured S3 backup bucket. If the destination is Amazon S3 and delivery fails
or if delivery to the backup S3 bucket fails, Firehose keeps retrying until the retention period ends.
For DirectPut delivery streams, Firehose retains the records for 24 hours. For a delivery stream
whose data source is a Kinesis data stream, you can change the retention period as described in
Changing the Data Retention Period.

If the data source is a Kinesis data stream, Firehose retries the following operations indefinitely:
DescribeStream, GetRecords, and GetShardIterator.

If the delivery stream uses DirectPut, check the IncomingBytes and IncomingRecords
metrics to see if there's incoming traffic. If you are using the PutRecord or PutRecordBatch,
make sure you catch exceptions and retry. We recommend a retry policy with exponential back-
off with jitter and several retries. Also, if you use the PutRecordBatch API, make sure your code
checks the value of FailedPutCount in the response even when the API call succeeds.

If the delivery stream uses a Kinesis data stream as its source, check the IncomingBytes
and IncomingRecords metrics for the source data stream. Additionally, ensure that the
DataReadFromKinesisStream.Bytes and DataReadFromKinesisStream.Records metrics
are being emitted for the delivery stream.

For information about tracking delivery errors using CloudWatch, see the section called
“Monitoring with CloudWatch Logs”.

Issues

• Troubleshooting Amazon S3

• Troubleshooting Amazon Redshift

• Troubleshooting Amazon OpenSearch Service

• Troubleshooting Splunk

• Troubleshooting Snowflake

• Troubleshooting Firehose endpoint reachability

• Troubleshooting HTTP Endpoints

• Troubleshooting MSK As Source

265

https://docs.aws.amazon.com/streams/latest/dev/kinesis-extended-retention.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_PutRecordBatch.html#Firehose-PutRecordBatch-response-FailedPutCount

Amazon Data Firehose Developer Guide

• Other

Troubleshooting Amazon S3

Check the following if data is not delivered to your Amazon Simple Storage Service (Amazon S3)
bucket.

• Check the Firehose IncomingBytes and IncomingRecords metrics to make sure that data is
sent to your Firehose stream successfully. For more information, see Monitoring Amazon Data
Firehose Using CloudWatch Metrics.

• If data transformation with Lambda is enabled, check the Firehose
ExecuteProcessingSuccess metric to make sure that Firehose has tried to invoke your
Lambda function. For more information, see Monitoring Amazon Data Firehose Using
CloudWatch Metrics.

• Check the Firehose DeliveryToS3.Success metric to make sure that Firehose has tried
putting data to your Amazon S3 bucket. For more information, see Monitoring Amazon Data
Firehose Using CloudWatch Metrics.

• Enable error logging if it is not already enabled, and check error logs for delivery failure. For
more information, see Monitoring Amazon Data Firehose Using CloudWatch Logs.

• If you see an error message in the log saying “Firehose encountered InternalServerError when
calling Amazon S3 service. The operation will be retried; if the error persists, please contact S3 for
resolution.”, it could be due to the significant increase in request rates on a single partition in S3.
You can optimize S3 prefix design patterns to mitigate the issue. For more information, see Best
practices design patterns: optimizing Amazon S3 performance. If this does not resolve the issue,
contact AWS Support for further assistance.

• Make sure that the Amazon S3 bucket that is specified in your Firehose stream still exists.

• If data transformation with Lambda is enabled, make sure that the Lambda function that is
specified in your delivery stream still exists.

• Make sure that the IAM role that is specified in your Firehose stream has access to your S3 bucket
and your Lambda function (if data transformation is enabled). Also, make sure that the IAM role
has access to CloudWatch log group and log streams to check error logs. For more information,
see Grant Amazon Data Firehose Access to an Amazon S3 Destination.

• If you're using data transformation, make sure that your Lambda function never returns
responses whose payload size exceeds 6 MB. For more information, see Amazon Data
FirehoseData Transformation.

Troubleshooting Amazon S3 266

https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://docs.aws.amazon.com/firehose/latest/dev/data-transformation.html
https://docs.aws.amazon.com/firehose/latest/dev/data-transformation.html

Amazon Data Firehose Developer Guide

Troubleshooting Amazon Redshift

Check the following if data is not delivered to your Amazon Redshift provisioned cluster or Amazon
Redshift Serverless workgroup.

Data is delivered to your S3 bucket before loading into Amazon Redshift. If the data was not
delivered to your S3 bucket, see Troubleshooting Amazon S3.

• Check the Firehose DeliveryToRedshift.Success metric to make sure that Firehose has
tried to copy data from your S3 bucket to the Amazon Redshift provisioned cluster or Amazon
Redshift Serverless workgroup. For more information, see Monitoring Amazon Data Firehose
Using CloudWatch Metrics.

• Enable error logging if it is not already enabled, and check error logs for delivery failure. For
more information, see Monitoring Amazon Data Firehose Using CloudWatch Logs.

• Check the Amazon Redshift STL_CONNECTION_LOG table to see if Firehose can make successful
connections. In this table, you should be able to see connections and their status based on a
user name. For more information, see STL_CONNECTION_LOG in the Amazon Redshift Database
Developer Guide.

• If the previous check shows that connections are being established, check the Amazon Redshift
STL_LOAD_ERRORS table to verify the reason for the COPY failure. For more information, see
STL_LOAD_ERRORS in the Amazon Redshift Database Developer Guide.

• Make sure that the Amazon Redshift configuration in your Firehose stream is accurate and valid.

• Make sure that the IAM role that is specified in your Firehose stream can access the S3 bucket
that Amazon Redshift copies data from, and also the Lambda function for data transformation
(if data transformation is enabled). Also, make sure that the IAM role has access to CloudWatch
log group and log streams to check error logs. For more information, see Grant Amazon Data
Firehose Access to an Amazon Redshift Destination .

• If your Amazon Redshift provisioned cluster or Amazon Redshift Serverless workgroup is
in a virtual private cloud (VPC), make sure that the cluster allows access from Firehose IP
addresses. For more information, see Grant Amazon Data Firehose Access to an Amazon Redshift
Destination .

• Make sure that the Amazon Redshift provisioned cluster or Amazon Redshift Serverless
workgroup is publicly available.

• If you're using data transformation, make sure that your Lambda function never returns
responses whose payload size exceeds 6 MB. For more information, see Amazon Data
FirehoseData Transformation.

Troubleshooting Amazon Redshift 267

https://docs.aws.amazon.com/redshift/latest/dg/r_STL_CONNECTION_LOG.html
https://docs.aws.amazon.com/redshift/latest/dg/r_STL_LOAD_ERRORS.html
https://docs.aws.amazon.com/firehose/latest/dev/data-transformation.html
https://docs.aws.amazon.com/firehose/latest/dev/data-transformation.html

Amazon Data Firehose Developer Guide

Troubleshooting Amazon OpenSearch Service

Check the following if data is not delivered to your OpenSearch Service domain.

Data can be backed up to your Amazon S3 bucket concurrently. If data was not delivered to your S3
bucket, see Troubleshooting Amazon S3.

• Check the Firehose IncomingBytes and IncomingRecords metrics to make sure that data is
sent to your Firehose stream successfully. For more information, see Monitoring Amazon Data
Firehose Using CloudWatch Metrics.

• If data transformation with Lambda is enabled, check the Firehose
ExecuteProcessingSuccess metric to make sure that Firehose has tried to invoke your
Lambda function. For more information, see Monitoring Amazon Data Firehose Using
CloudWatch Metrics.

• Check the Firehose DeliveryToAmazonOpenSearchService.Success metric to make sure
that Firehose has tried to index data to the OpenSearch Service cluster. For more information,
see Monitoring Amazon Data Firehose Using CloudWatch Metrics.

• Enable error logging if it is not already enabled, and check error logs for delivery failure. For
more information, see Monitoring Amazon Data Firehose Using CloudWatch Logs.

• Make sure that the OpenSearch Service configuration in your delivery stream is accurate and
valid.

• If data transformation with Lambda is enabled, make sure that the Lambda function that is
specified in your delivery stream still exists. Also, make sure that the IAM role has access to
CloudWatch log group and log streams to check error logs. For more information, see Grant
FirehoseAccess to a Public OpenSearch Service Destination.

• Make sure that the IAM role that is specified in your delivery stream can access your OpenSearch
Service cluster, S3 backup bucket, and Lambda function (if data transformation is enabled). Also,
make sure that the IAM role has access to CloudWatch log group and log streams to check error
logs. For more information, see Grant FirehoseAccess to a Public OpenSearch Service Destination.

• If you're using data transformation, make sure that your Lambda function never returns
responses whose payload size exceeds 6 MB. For more information, see Amazon Data
FirehoseData Transformation.

• Amazon Data Firehosecurrently does not support the delivery of CloudWatch Logs to Amazon
OpenSearch Service destination because Amazon CloudWatch combines multiple log events
into one Firehose record and Amazon OpenSearch Service cannot accept multiple log events in

Troubleshooting Amazon OpenSearch Service 268

https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-es
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-es
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-es
https://docs.aws.amazon.com/firehose/latest/dev/data-transformation.html
https://docs.aws.amazon.com/firehose/latest/dev/data-transformation.html

Amazon Data Firehose Developer Guide

one record. As an alternative, you can consider Using subscription filter for Amazon OpenSearch
Service in CloudWatch Logs.

Troubleshooting Splunk

Check the following if data is not delivered to your Splunk endpoint.

• If your Splunk platform is in a VPC, make sure that Firehose can access it. For more information,
see Access to Splunk in VPC.

• If you use an AWS load balancer, make sure that it is a Classic Load Balancer or an Application
Load Balancer. Also, enable duration-based sticky sessions with cookie expiration disabled
for Classic Load Balancer and expiration is set to the maximum (7 days) for Application Load
Balancer. For information about how to do this, see Duration-Based Session Stickiness for Classic
Load Balancer or an Application Load Balancer.

• Review the Splunk platform requirements. The Splunk add-on for Firehose requires Splunk
platform version 6.6.X or later. For more information, see Splunk Add-on for Amazon Kinesis
Firehose.

• If you have a proxy (Elastic Load Balancing or other) between Firehose and the HTTP Event
Collector (HEC) node, enable sticky sessions to support HEC acknowledgements (ACKs).

• Make sure that you are using a valid HEC token.

• Ensure that the HEC token is enabled. See Enable and disable Event Collector tokens.

• Check whether the data that you're sending to Splunk is formatted correctly. For more
information, see Format events for HTTP Event Collector.

• Make sure that the HEC token and input event are configured with a valid index.

• When an upload to Splunk fails due to a server error from the HEC node, the request is
automatically retried. If all retries fail, the data gets backed up to Amazon S3. Check if your data
appears in Amazon S3, which is an indication of such a failure.

• Make sure that you enabled indexer acknowledgment on your HEC token. For more information,
see Enable indexer acknowledgement.

• Increase the value of HECAcknowledgmentTimeoutInSeconds in the Splunk destination
configuration of your Firehose delivery stream.

• Increase the value of DurationInSeconds under RetryOptions in the Splunk destination
configuration of your Firehose delivery stream.

Troubleshooting Splunk 269

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_OpenSearch_Stream.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_OpenSearch_Stream.html
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-splunk-vpc
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-sticky-sessions.html#enable-sticky-sessions-duration
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-sticky-sessions.html#enable-sticky-sessions-duration
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/sticky-sessions.html
http://docs.splunk.com/Documentation/AddOns/released/Firehose/Hardwareandsoftwarerequirements
http://docs.splunk.com/Documentation/AddOns/released/Firehose/Hardwareandsoftwarerequirements
http://docs.splunk.com/Documentation/SplunkCloud/7.0.0/Data/UsetheHTTPEventCollector#Enable_and_disable_Event_Collector_tokens
http://docs.splunk.com/Documentation/Splunk/7.0.3/Data/FormateventsforHTTPEventCollector
http://dev.splunk.com/view/event-collector/SP-CAAAE8X#enable

Amazon Data Firehose Developer Guide

• Check your HEC health.

• If you're using data transformation, make sure that your Lambda function never returns
responses whose payload size exceeds 6 MB. For more information, see Amazon Data
FirehoseData Transformation.

• Make sure that the Splunk parameter named ackIdleCleanup is set to true. It is false by
default. To set this parameter to true, do the following:

• For a managed Splunk Cloud deployment, submit a case using the Splunk support portal. In
this case, ask Splunk support to enable the HTTP event collector, set ackIdleCleanup to
true in inputs.conf, and create or modify a load balancer to use with this add-on.

• For a distributed Splunk Enterprise deployment, set the ackIdleCleanup parameter to true
in the inputs.conf file. For *nix users, this file is located under $SPLUNK_HOME/etc/apps/
splunk_httpinput/local/. For Windows users, it is under %SPLUNK_HOME%\etc\apps
\splunk_httpinput\local\.

• For a single-instance Splunk Enterprise deployment, set the ackIdleCleanup parameter to
true in the inputs.conf file. For *nix users, this file is located under $SPLUNK_HOME/etc/
apps/splunk_httpinput/local/. For Windows users, it is under %SPLUNK_HOME%\etc
\apps\splunk_httpinput\local\.

• Make sure that the IAM role that is specified in your Firehosedelivery stream can access the
S3 backup bucket and the Lambda function for data transformation (if data transformation
is enabled). Also, make sure that the IAM role has access to CloudWatch Logs group and log
streams to check error logs. For more information, see Grant FirehoseAccess to a Splunk
Destination.

• See Troubleshoot the Splunk Add-on for Amazon Kinesis Firehose.

Troubleshooting Snowflake

This section describes common troubleshooting steps while using Snowflake as a destination

Firehose delivery stream creation fails

If delivery stream creation fails for a stream delivering data to a PrivateLink-enabled Snowflake
Cluster, it indicates that the VPCE-ID is not reachable by Firehose. This can be due to one of the
following reasons:

• Incorrect VPCE-ID. Confirm that there are no typographic errors.

Troubleshooting Snowflake 270

https://docs.aws.amazon.com/firehose/latest/dev/data-transformation.html
https://docs.aws.amazon.com/firehose/latest/dev/data-transformation.html
http://docs.splunk.com/Documentation/AddOns/released/Firehose/RequestFirehose
http://docs.splunk.com/Documentation/AddOns/released/Firehose/ConfigureHECdistributed
http://docs.splunk.com/Documentation/AddOns/released/Firehose/ConfigureHECsingle
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-splunk
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-splunk
http://docs.splunk.com/Documentation/AddOns/released/Firehose/Troubleshoot

Amazon Data Firehose Developer Guide

• Firehose does not support region-less Snowflake URLs in preview. Provide the URL using
Snowflake Account Locator. See Snowflake documentation for more details.

• Confirm that the Firehose delivery stream is created in the same AWS Region as the Snowflake
Region.

• If the issue persists, reach out to AWS support.

Delivery failures

Check the following if data is not getting delivered to your Snowflake table. Snowflake delivery
failed data will be delivered to the S3 error bucket along with an error code and an error message
that corresponds to the payload. Following are few a common error scenarios. For the entire list of
error codes, see Snowflake Data Delivery Errors.

• Error code: Snowflake.DefaultRoleMissing: Indicates that snowflake role is not configured while
creating delivery stream. If Snowflake role is not configured, make sure you set a default role to
the Snowflake user specified.

• Error code: Snowflake.ExtraColumns: Indicates that insert to Snowflake is rejected due to
extra columns in the input payload. Columns not present in table shouldn’t be specified. Note
that Snowflake column names are case-sensitive. If the delivery is failing with this error despite
column being present in table, make sure that the case of the column name in input payload
matches the column name declared in table definition.

• Error code: Snowflake.MissingColumns: Indicates that insert to Snowflake is rejected due
to missing columns in input payload. Make sure that values are specified for all non-nullable
columns.

• Error code: Snowflake.InvalidInput: This could happen when Firehose failed to parse the input
payload provided into valid JSON format. Make sure that the json payload is well formed, doesn’t
have extra double quotes, quotes, escape characters etc. Currently Firehose supports only single
JSON item as record payload, JSON arrays are not supported.

• Error code: Snowflake.InvalidValue: Indicates that delivery failed due to incorrect data type
in the input payload. Make sure that the JSON values specified in input payload adhere to the
datatype declared in Snowflake table definition.

• Error code: Snowflake.InvalidTableType: Indicates that table type configured in the delivery
stream is not supported. Refer to the limitations at Limitations) of snowpipe streaming for the
supported tables, columns and data types.

Firehose delivery stream creation fails 271

https://docs.snowflake.com/en/user-guide/admin-account-identifier#format-2-legacy-account-locator-in-a-region
https://docs.snowflake.com/en/user-guide/data-load-snowpipe-streaming-overview#limitations

Amazon Data Firehose Developer Guide

Note

For any reason, if the table definition or role permissions are changed on your Snowflake
destination after creating the delivery stream, it can take several minutes for Firehose
to detect those changes. If you are seeing delivery errors due to this, try deleting and
recreating the delivery stream.

Troubleshooting Firehose endpoint reachability

If the Firehose API encounters a timeout, perform the following steps to test endpoint reachability:

• Check if API requests are made from a host in a VPC. All traffic from a VPC requires setting up a
Firehose VPC endpoint. For more information, see Using Firehose with AWS PrivateLink.

• If traffic is coming from a public network or VPC with the Firehose VPC endpoint set up in a
particular subnet, run the following commands from the host to check network connectivity. The
Firehose endpoint can be found at Firehose endpoints and quotas.

• Use tools like traceroute or tcping to check if the network setup is correct. If that fails, check
your network setting:

For example:

traceroute firehose.us-east-2.amazonaws.com

or

tcping firehose.us-east-2.amazonaws.com 443

• If it appears the network setting is correct and the following command fails, check whether the
Amazon CA (Certficate Authority) is in the trust chain.

For example:

curl firehose.us-east-2.amazonaws.com

If the above commands succeed, try the API again to see if there is a response returned from the
API.

Troubleshooting Firehose endpoint reachability 272

https://docs.aws.amazon.com/firehose/latest/dev/vpc.html
https://docs.aws.amazon.com/general/latest/gr/fh.html
https://docs.aws.amazon.com/acm/latest/userguide/acm-overview.html

Amazon Data Firehose Developer Guide

Troubleshooting HTTP Endpoints

This section describes common troubleshooting steps when dealing with Amazon Data Firehose
delivering data to generic HTTP Endpoints destinations and to partner destinations, including
Datadog, Dynatrace, LogicMonitor, MongoDB, New Relic, Splunk, or Sumo Logic. For the purposes
of this section, all applicable destinations are referred to as HTTP endpoints. Make sure that the
IAM role that is specified in your Firehose delivery stream can access the S3 backup bucket and the
Lambda function for data transformation (if data transformation is enabled). Also, make sure that
the IAM role has access to CloudWatch log group and log streams to check error logs. For more
information, see Grant Firehose Access to an HTTP Endpoint Destination.

Note

The information in this section does not apply to the following destinations: Splunk,
OpenSearch Service, S3, and Redshift.

CloudWatch Logs

It is highly recommended that you enable CloudWatch Logging for Firehose. Logs are only
published when there are errors delivering to your destination.

Destination Exceptions

ErrorCode: HttpEndpoint.DestinationException

{
 "deliveryStreamARN": "arn:aws:firehose:us-east-1:123456789012:deliverystream/
ronald-test",
 "destination": "custom.firehose.endpoint.com...",
 "deliveryStreamVersionId": 1,
 "message": "The following response was received from the endpoint destination.
 413: {\"requestId\": \"43b8e724-dbac-4510-adb7-ef211c6044b9\", \"timestamp\":
 1598556019164, \"errorMessage\": \"Payload too large\"}",
 "errorCode": "HttpEndpoint.DestinationException",
 "processor": "arn:aws:lambda:us-east-1:379522611494:function:httpLambdaProcessing"
}

Troubleshooting HTTP Endpoints 273

https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-http
https://docs.aws.amazon.com/firehose/latest/dev/monitoring-with-cloudwatch-logs.html

Amazon Data Firehose Developer Guide

Destination exceptions indicate that Firehose is able to establish a connection to your endpoint
and make an HTTP request, but did not receive a 200 response code. 2xx responses that are not
200s will also result in a destination exception. Amazon Data Firehose logs the response code and
a truncated response payload received from the configured endpoint to CloudWatch Logs. Because
Amazon Data Firehose logs the response code and payload without modification or interpretation,
it is up to the endpoint to provide the exact reason why it rejected Amazon Data Firehose's HTTP
delivery request. The following are the most common troubleshooting recommendations for these
exceptions:

• 400: Indicates that you are sending a bad request due to a misconfiguration of your Amazon
Data Firehose. Make sure that you have the correct url, common attributes, content encoding,
access key, and buffering hints for your destination. See the destination specific documentation
on the required configuration.

• 401: Indicates that the access key you configured for your Firehose stream is incorrect or missing.

• 403: Indicates that the access key you configured for your Firehose stream does not have
permissions to deliver data to the configured endpoint.

• 413: Indicates that the request payload that Amazon Data Firehose sends to the endpoint is too
large for the endpoint to handle. Try lowering the buffering hint to the recommended size for
your destination.

• 429: Indicates that Amazon Data Firehose is sending requests at a greater rate than the
destination can handle. Fine tune your buffering hint by increasing your buffering time and/or
increasing your buffering size (but still within the limit of your destination).

• 5xx: Indicates that there is a problem with the destination. The Amazon Data Firehose service is
still working properly.

Important

Important: While these are the common troubleshooting recommendations, specific
endpoints may have different reasons for providing the response codes and the endpoint
specific recommendations should be followed first.

Invalid Response

ErrorCode: HttpEndpoint.InvalidResponseFromDestination

CloudWatch Logs 274

https://docs.aws.amazon.com/firehose/latest/APIReference/API_HttpEndpointConfiguration.html#Firehose-Type-HttpEndpointConfiguration-Url
https://docs.aws.amazon.com/firehose/latest/APIReference/API_HttpEndpointRequestConfiguration.html#Firehose-Type-HttpEndpointRequestConfiguration-CommonAttributes
https://docs.aws.amazon.com/firehose/latest/APIReference/API_HttpEndpointRequestConfiguration.html#Firehose-Type-HttpEndpointRequestConfiguration-ContentEncoding
https://docs.aws.amazon.com/firehose/latest/APIReference/API_HttpEndpointConfiguration.html#Firehose-Type-HttpEndpointConfiguration-AccessKey
https://docs.aws.amazon.com/firehose/latest/APIReference/API_HttpEndpointDestinationConfiguration.html#Firehose-Type-HttpEndpointDestinationConfiguration-BufferingHints
https://docs.aws.amazon.com/firehose/latest/APIReference/API_HttpEndpointBufferingHints.html#Firehose-Type-HttpEndpointBufferingHints-SizeInMBs

Amazon Data Firehose Developer Guide

{
 "deliveryStreamARN": "arn:aws:firehose:us-east-1:123456789012:deliverystream/
ronald-test",
 "destination": "custom.firehose.endpoint.com...",
 "deliveryStreamVersionId": 1,
 "message": "The response received from the specified endpoint is invalid.
 Contact the owner of the endpoint to resolve the issue. Response for request
 2de9e8e9-7296-47b0-bea6-9f17b133d847 is not recognized as valid JSON or has unexpected
 fields. Raw response received: 200 {\"requestId\": null}",
 "errorCode": "HttpEndpoint.InvalidResponseFromDestination",
 "processor": "arn:aws:lambda:us-east-1:379522611494:function:httpLambdaProcessing"
}

Invalid response exceptions indicate that Amazon Data Firehose received an invalid response from
the endpoint destination. The response must conform to the response specifications or Amazon
Data Firehose will consider the delivery attempt a failure and will redeliver the same data until the
configured retry duration is exceeded. Amazon Data Firehose treats responses that do not follow
the response specifications as failures even if the response has a 200 status. If you are developing
a Amazon Data Firehose compatible endpoint, follow the response specifications to ensure data is
successfully delivered.

Below are some of the common types of invalid responses and how to fix them:

• Invalid JSON or Unexpected Fields: Indicates that the response can not be properly deserialized
as JSON or has unexpected fields. Ensure that the response is not content-encoded.

• Missing RequestId: Indicates that the response does not contain a requestId.

• RequestId does not match: Indicates that the requestId in the response does not match the
outgoing requestId.

• Missing Timestamp: Indicates that the response does not contain a timestamp field. The
timestamp field must be a number and not a string.

• Missing Content-Type Header: Indicates that the response does not contain a “content-type:
application/json” header. No other content-type is accepted.

Important

Important: Amazon Data Firehose can only deliver data to endpoints that follow the
Firehose request and response specifications. If you are configuring your destination

CloudWatch Logs 275

https://docs.aws.amazon.com/firehose/latest/dev/httpdeliveryrequestresponse.html
https://docs.aws.amazon.com/firehose/latest/dev/httpdeliveryrequestresponse.html

Amazon Data Firehose Developer Guide

to a third party service, ensure that you are using the correct Amazon Data Firehose
compatible endpoint which will likely be different than the public ingestion endpoint.
For example Datadog’s Amazon Data Firehose endpoint is https://aws-kinesis-http-
intake.logs.datadoghq.com/ while its public endpoint is https://api.datadoghq.com/.

Other Common Errors

Additional error codes and definitions are listed below.

• Error Code: HttpEndpoint.RequestTimeout - Indicates that the endpoint took longer than 3
minutes to respond. If you are the owner of the destination, decrease the response time of the
destination endpoint. If you are not the owner of the destination, contact the owner and ask if
anything can be done to lower the response time (i.e. decrease the buffering hint so there is less
data being processed per request).

• Error Code: HttpEndpoint.ResponseTooLarge - Indicates that the response is too large. The
response must be less than 1 MiB including headers.

• Error Code: HttpEndpoint.ConnectionFailed - Indicates a connection could not be established
with the configured endpoint. This could be due to a typo in the configured url, the endpoint
not being accessible to Amazon Data Firehose, or the endpoint taking too long to respond to the
connection request.

• Error Code: HttpEndpoint.ConnectionReset - Indicates a connection was made but reset or
prematurely closed by the endpoint.

• Error Code: HttpEndpoint.SSLHandshakeFailure - Indicates an SSL handshake could not be
successfully completed with the configured endpoint.

Troubleshooting MSK As Source

This section describes common troubleshooting steps while using MSK As Source

Note

For troubleshooting processing, transformation or S3 delivery issues, please refer the
earlier sections

Troubleshooting MSK As Source 276

http://aws-kinesis-http-intake.logs.datadoghq.com/
http://aws-kinesis-http-intake.logs.datadoghq.com/
https://api.datadoghq.com/

Amazon Data Firehose Developer Guide

Hose creation fails

Check the following if your hose with MSK As Source is failing creation

• Check that the source MSK cluster is in Active state.

• If you are using Private connectivity, ensure that Private Link on the cluster is turned on

If you are using Public connectivity, ensure that Public access on the cluster is turned on

• If you are using Private connectivity, make sure that you add a resource based policy that allows
Firehose to create Private Link. Also refer: MSK cross account permissions

• Ensure that the role in source configuration has permission to ingest data from cluster's Topic

• Ensure that your VPC security groups allow incoming traffic on ports used by the cluster's
bootstrap servers

Hose Suspended

Check the following if your hose is in SUSPENDED state

• Check that the source MSK cluster is in Active state.

• Check that the source topic exists. In case the topic was deleted and re-created, you will have to
delete and re-create the Firehose Firehose stream as well.

Hose Backpresurred

The value of DataReadFromSource.Backpressured will be 1 when BytesPerSecondLimit per
partition is exceeded or that the normal flow of delivery is slow or stopped.

• If you are hitting BytesPerSecondLimit please check DataReadFromSource.Bytes metric and
request a limit increase.

• Check the CloudWatch logs, destination metrics, Data Transformation metrics and Format
Conversion metrics to identify the bottlenecks.

Incorrect Data Freshness

Data freshness seems incorrect

Hose creation fails 277

https://docs.aws.amazon.com/msk/latest/developerguide/aws-access-mult-vpc.html
https://docs.aws.amazon.com/msk/latest/developerguide/public-access.html
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#access-to-msk
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#access-to-msk
https://docs.aws.amazon.com/msk/latest/developerguide/mvpc-cross-account-permissions.html
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#firehose-assume-role
https://docs.aws.amazon.com/msk/latest/developerguide/port-info.html
https://docs.aws.amazon.com/msk/latest/developerguide/port-info.html

Amazon Data Firehose Developer Guide

• Firehose calculates the data freshness based on the timestamp of the consumed record.
To ensure that this timestamp is correctly recorded when the producer record is persisted
in the Kafka's broker logs, set the Kafka topic timestamp type configuration to be
message.timestamp.type=LogAppendTime.

MSK cluster connection issues

The following procedure explain how you can validate connectivity to MSK clusters. For details
about setting up aneifjcbevlkrdcl Amazon MSK client, see Getting started using Amazon MSK in the
Amazon Managed Streaming for Apache Kafka Developer Guide.

To validate connectivity to MSK clusters

1. Create a Unix-based (preferably AL2) Amazon EC2 instance. If you have only VPC connectivity
enabled on your cluster then make sure your EC2 instance runs in the same VPC. SSH into the
instance once its available. For more information, see this tutorial in the Amazon EC2 User
Guide for Linux Instances.

2. Install Java using the Yum package manager by running the following command. For more
information, see the installation instructions in the Amazon Corretto 8 User Guide.

sudo yum install java-1.8.0

3. Install the AWS client by running the following command.

curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"
unzip awscliv2.zip
sudo ./aws/install

4. Download the Apache Kafka client 2.6* version by running the following command.

wget https://archive.apache.org/dist/kafka/2.6.2/kafka_2.12-2.6.2.tgz
tar -xzf kafka_2.12-2.6.2.tgz

5. Go to the kafka_2.12-2.6.2/libs directory, then run the following command to download
the Amazon MSK IAM JAR file.

wget https://github.com/aws/aws-msk-iam-auth/releases/download/v1.1.3/aws-msk-iam-
auth-1.1.3-all.jar

MSK cluster connection issues 278

https://docs.aws.amazon.com/msk/latest/developerguide/getting-started.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://aws.amazon.com/cli/

Amazon Data Firehose Developer Guide

6. Create client.properties file in Kafka bin folder.

7. Replace awsRoleArn with the role ARN that you have used in your Firehose
SourceConfiguration and verify the cert location. Allow your AWS client user to assume
role awsRoleArn. AWS client user will attempt to assume the role that you specified here.

[ec2-user@ip-xx-xx-xx-xx bin]$ cat client.properties
security.protocol=SASL_SSL
sasl.mechanism=AWS_MSK_IAM
sasl.jaas.config=software.amazon.msk.auth.iam.IAMLoginModule required
 awsRoleArn="<role arn>" awsStsRegion="<region name>";
sasl.client.callback.handler.class=software.amazon.msk.auth.iam.IAMClientCallbackHandler
awsDebugCreds=true
ssl.truststore.location=/usr/lib/jvm/java-1.8.0-
openjdk-1.8.0.342.b07-1.amzn2.0.1.x86_64/jre/lib/security/cacerts
ssl.truststore.password=changeit

8. Run the following Kafka command to list topics. If your connection is public, use the public
endpoint Bootstrap servers. If your connection is private, use the private endpoint Bootstrap
servers.

bin/kafka-topics.sh --list --bootstrap-server <bootstrap servers> --command-config
 bin/client.properties

If the request is successful, you should see an output similar to the following example.

[ec2-user@ip-xx-xx-xx-xx kafka_2.12-2.6.2]$ bin/kafka-topics.sh --list --bootstrap-
server <bootstrap servers> --command-config bin/client.properties

[xxxx-xx-xx 05:49:50,877] WARN The configuration 'awsDebugCreds' was supplied but
 isn't a known config. (org.apache.kafka.clients.admin.AdminClientConfig)
[xxxx-xx-xx 05:49:50,878] WARN The configuration 'ssl.truststore.location' was
 supplied but isn't a known config.
 (org.apache.kafka.clients.admin.AdminClientConfig)
[xxxx-xx-xx 05:49:50,878] WARN The configuration 'sasl.jaas.config' was supplied
 but isn't a known config. (org.apache.kafka.clients.admin.AdminClientConfig)
[xxxx-xx-xx 05:49:50,878] WARN The configuration
 'sasl.client.callback.handler.class' was supplied but isn't a known config.
 (org.apache.kafka.clients.admin.AdminClientConfig)

MSK cluster connection issues 279

Amazon Data Firehose Developer Guide

[xxxx-xx-xx 05:49:50,878] WARN The configuration 'ssl.truststore.password' was
 supplied but isn't a known config.
 (org.apache.kafka.clients.admin.AdminClientConfig)
[xxxx-xx-xx 05:50:21,629] WARN [AdminClient clientId=adminclient-1] Connection to
 node...
__amazon_msk_canary
__consumer_offsets

9. If you have any issues running the previous script, verify that the bootstrap servers you
provided are reachable on the specified port. To do this, you could download and use telnet or
a similar utility as shown in the following command.

sudo yum install telnet
telnet <bootstrap servers><port>

If the request is successful, you will get the following output. This means that you're able to
connect to your MSK cluster within your local VPC and bootstrap servers are healthy on the
specified port.

Connected to ..

10. If the request is unsuccessful, check inbound rules on your VPC security group. As an example,
you could use the following properties on the inbound rule.

Type: All traffic
Port: Port used by the bootstrap server (e.g. 14001)
Source: 0.0.0.0/0

Retry the telnet connection as shown in the previous step. If you're still unable to connect or
your Firehose connection is still failing, contact the AWS support.

Other

Topics

• Delivery Stream Not Available as a Target for CloudWatch Logs, CloudWatch Events, or AWS IoT
Action

• Data Freshness Metric Increasing or Not Emitted

• Record Format Conversion to Apache Parquet Fails

Other 280

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-group-rules.html
https://aws.amazon.com/contact-us/

Amazon Data Firehose Developer Guide

• No Data at Destination Despite Good Metrics

Delivery Stream Not Available as a Target for CloudWatch Logs,
CloudWatch Events, or AWS IoT Action

Some AWS services can only send messages and events to a Firehose delivery stream that is in the
same AWS Region. Verify that your Firehose delivery stream is located in the same Region as your
other services.

Data Freshness Metric Increasing or Not Emitted

Data freshness is a measure of how current your data is within your delivery stream. It is the age of
the oldest data record in the delivery stream, measured from the time that Firehose ingested the
data to the present time. Firehose provides metrics that you can use to monitor data freshness. To
identify the data-freshness metric for a given destination, see the section called “Monitoring with
CloudWatch Metrics”.

If you enable backup for all events or all documents, monitor two separate data-freshness metrics:
one for the main destination and one for the backup.

If the data-freshness metric isn't being emitted, this means that there is no active delivery for
the delivery stream. This happens when data delivery is completely blocked or when there's no
incoming data.

If the data-freshness metric is constantly increasing, this means that data delivery is falling behind.
This can happen for one of the following reasons.

• The destination can't handle the rate of delivery. If Firehose encounters transient errors due to
high traffic, then the delivery might fall behind. This can happen for destinations other than
Amazon S3 (it can happen for OpenSearch Service, Amazon Redshift, or Splunk). Ensure that
your destination has enough capacity to handle the incoming traffic.

• The destination is slow. Data delivery might fall behind if Firehose encounters high latency.
Monitor the destination's latency metric.

• The Lambda function is slow. This might lead to a data delivery rate that is less than the data
ingestion rate for the delivery stream. If possible, improve the efficiency of the Lambda function.
For instance, if the function does network IO, use multiple threads or asynchronous IO to
increase parallelism. Also, consider increasing the memory size of the Lambda function so that

Delivery Stream Not Available as a Target for CloudWatch Logs, CloudWatch Events, or AWS IoT Action 281

Amazon Data Firehose Developer Guide

the CPU allocation can increase accordingly. This might lead to faster Lambda invocations. For
information about configuring Lambda functions, see Configuring AWS Lambda Functions.

• There are failures during data delivery. For information about how to monitor errors using
Amazon CloudWatch Logs, see the section called “Monitoring with CloudWatch Logs”.

• If the data source of the delivery stream is a Kinesis data stream, throttling might be
happening. Check the ThrottledGetRecords, ThrottledGetShardIterator, and
ThrottledDescribeStream metrics. If there are multiple consumers attached to the Kinesis
data stream, consider the following:

• If the ThrottledGetRecords and ThrottledGetShardIterator metrics are high, we
recommend you increase the number of shards provisioned for the data stream.

• If the ThrottledDescribeStream is high, we recommend you
add the kinesis:listshards permission to the role configured in
KinesisStreamSourceConfiguration.

• Low buffering hints for the destination. This might increase the number of round trips that
Firehose needs to make to the destination, which might cause delivery to fall behind. Consider
increasing the value of the buffering hints. For more information, see BufferingHints.

• A high retry duration might cause delivery to fall behind when the errors are frequent. Consider
reducing the retry duration. Also, monitor the errors and try to reduce them. For information
about how to monitor errors using Amazon CloudWatch Logs, see the section called “Monitoring
with CloudWatch Logs”.

• If the destination is Splunk and DeliveryToSplunk.DataFreshness is high but
DeliveryToSplunk.Success looks good, the Splunk cluster might be busy. Free the Splunk
cluster if possible. Alternatively, contact AWS Support and request an increase in the number of
channels that Firehose is using to communicate with the Splunk cluster.

Record Format Conversion to Apache Parquet Fails

This happens if you take DynamoDB data that includes the Set type, stream it through Lambda
to a delivery stream, and use an AWS Glue Data Catalog to convert the record format to Apache
Parquet.

When the AWS Glue crawler indexes the DynamoDB set data types (StringSet, NumberSet,
and BinarySet), it stores them in the data catalog as SET<STRING>, SET<BIGINT>, and
SET<BINARY>, respectively. However, for Firehose to convert the data records to the Apache
Parquet format, it requires Apache Hive data types. Because the set types aren't valid Apache Hive

Record Format Conversion to Apache Parquet Fails 282

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html#Firehose-CreateDeliveryStream-request-KinesisStreamSourceConfiguration
https://docs.aws.amazon.com/firehose/latest/APIReference/API_BufferingHints.html

Amazon Data Firehose Developer Guide

data types, conversion fails. To get conversion to work, update the data catalog with Apache Hive
data types. You can do that by changing set to array in the data catalog.

To change one or more data types from set to array in an AWS Glue data catalog

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the left pane, under the Data catalog heading, choose Tables.

3. In the list of tables, choose the name of the table where you need to modify one or more data
types. This takes you to the details page for the table.

4. Choose the Edit schema button in the top right corner of the details page.

5. In the Data type column choose the first set data type.

6. In the Column type drop-down list, change the type from set to array.

7. In the ArraySchema field, enter array<string>, array<int>, or array<binary>,
depending on the appropriate type of data for your scenario.

8. Choose Update.

9. Repeat the previous steps to convert other set types to array types.

10. Choose Save.

No Data at Destination Despite Good Metrics

If there are no data ingestion problems and the metrics emitted for the delivery stream look good,
but you don't see the data at the destination, check the reader logic. Make sure your reader is
correctly parsing out all data.

No Data at Destination Despite Good Metrics 283

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

Amazon Data Firehose Developer Guide

Amazon Data Firehose Quota

Amazon Data Firehose has the following quota.

• With Amazon MSK as the source for the Firehose stream, each Firehose stream has a default
quota of 10 MB/sec of read throughput per partition and 10MB max record size. You can use
the Service quota increase to request an increase on the default quota of 10 MB/sec of read
throughput per partition.

• With Amazon MSK as the source for the Firehose stream, there is a 6Mb maximum record size
if AWS Lambda is enabled, and 10Mb maximum record size if Lambda is disabled. AWS Lambda
caps its incoming record to 6 MB, and Amazon Data Firehose forwards records above 6Mb to an
error S3 bucket. If Lambda is disabled, Firehose cap its incoming record to 10 MB. If Amazon Data
Firehose receives a record size from Amazon MSK that is larger than 10MB, then Amazon Data
Firehose delivers this record to S3 error bucket and emits Cloudwatch metrics to your account.
For more information on AWS Lambda limits, see: https://docs.aws.amazon.com/lambda/latest/
dg/gettingstarted-limits.html.

• When dynamic partitioning on a delivery stream is enabled, there is a default quota of 500 active
partitions that can be created for that delivery stream. The active partition count is the total
number of active partitions within the delivery buffer. For example, if the dynamic partitioning
query constructs 3 partitions per second and you have a buffer hint configuration that triggers
delivery every 60 seconds, then, on average, you would have 180 active partitions. Once data
is delivered in a partition, then this partition is no longer active. You can use the Amazon Data
Firehose Limits form to request an increase of this quota up to 5000 active partitions per given
delivery stream. If you need more partitions, you can create more delivery streams and distribute
the active partitions across them.

• When dynamic partitioning on a delivery stream is enabled, a max throughput of 1 GB per
second is supported for each active partition.

• Each account will have following quota for the number of Firehose delivery streams per Region:

• US East (N. Virginia), US East (Ohio), US West (Oregon), Europe (Ireland), Asia Pacific (Tokyo):
5,000 delivery streams

• Europe (Frankfurt), Europe (London), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific
(Seoul), Asia Pacific (Mumbai), AWS GovCloud (US-West), Canada (West), Canada (Central):
2,000 delivery streams

284

https://support.console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=kinesis-firehose-limits
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/firehose/latest/dev/dynamic-partitioning.html
https://support.console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=kinesis-firehose-limits
https://support.console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=kinesis-firehose-limits
https://docs.aws.amazon.com/firehose/latest/dev/dynamic-partitioning.html

Amazon Data Firehose Developer Guide

• Europe (Paris), Europe (Milan), Europe (Stockholm), Asia Pacific (Hong Kong), Asia Pacific
(Osaka), South America (Sao Paulo), China (Ningxia), China (Beijing), Middle East (Bahrain),
AWS GovCloud (US-East), Africa (Cape Town): 500 delivery streams

• Europe (Zurich), Europe (Spain), Asia Pacific (Hyderabad), Asia Pacific (Jakarta), Asia Pacific
(Melbourne), Middle East (UAE), Israel (Tel Aviv), Canada West (Calgary), Canada (Central): 100
delivery streams

• If you exceed this number, a call to CreateDeliveryStream results in a
LimitExceededException exception. To increase this quota, you can use Service Quotas
if it's available in your Region. For information about using Service Quotas, see Requesting a
Quota Increase. If Service Quotas aren't available in your Region, you can use the Amazon Data
Firehose Limits form to request an increase.

• When Direct PUT is configured as the data source, each Firehose stream provides the following
combined quota for PutRecord and PutRecordBatch requests:

• For US East (N. Virginia), US West (Oregon), and Europe (Ireland): 500,000 records/second,
2,000 requests/second, and 5 MiB/second.

• For US East (Ohio), US West (N. California), AWS GovCloud (US-East), AWS GovCloud (US-
West), Asia Pacific (Hong Kong), Asia Pacific (Mumbai), Asia Pacific (Seoul), Asia Pacific
(Singapore), China (Beijing), China (Ningxia), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada
(Central), Canada West (Calgary), Europe (Frankfurt), Europe (London), Europe (Paris), Europe
(Stockholm), Middle East (Bahrain), South America (São Paulo), Africa (Cape Town), and Europe
(Milan): 100,000 records/second, 1,000 requests/second, and 1 MiB/second.

To request an increase in quota, use the Amazon Data Firehose Limits form. The three quota
scale proportionally. For example, if you increase the throughput quota in US East (N. Virginia),
US West (Oregon), or Europe (Ireland) to 10 MiB/second, the other two quota increase to 4,000
requests/second and 1,000,000 records/second.

Important

If the increased quota is much higher than the running traffic, it causes small delivery
batches to destinations. This is inefficient and can result in higher costs at the destination
services. Be sure to increase the quota only to match current running traffic, and increase
the quota further if traffic increases.

285

https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html
https://console.aws.amazon.com/servicequotas/
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-increase.html
https://support.console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=kinesis-firehose-limits
https://support.console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=kinesis-firehose-limits
https://docs.aws.amazon.com/firehose/latest/APIReference/API_PutRecord.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_PutRecordBatch.html
https://support.console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=kinesis-firehose-limits

Amazon Data Firehose Developer Guide

Important

Note that smaller data records can lead to higher costs. Firehose ingestion pricing is
based on the number of data records you send to the service, times the size of each
record rounded up to the nearest 5KB (5120 bytes). So, for the same volume of incoming
data (bytes), if there is a greater number of incoming records, the cost incurred would be
higher. For example, if the total incoming data volume is 5MiB, sending 5MiB of data over
5,000 records costs more compared to sending the same amount of data using 1,000
records. For more information, see Amazon Data Firehose in the AWS Calculator.

Note

When Kinesis Data Streams is configured as the data source, this quota doesn't apply, and
Amazon Data Firehose scales up and down with no limit.

• Each Firehose stream stores data records for up to 24 hours in case the delivery destination is
unavailable and if the source is DirectPut. If the source is Kinesis Data Streams (KDS) and the
destination is unavailable, then the data will be retained based on your KDS configuration.

• The maximum size of a record sent to Amazon Data Firehose, before base64-encoding, is 1,000
KiB.

• The PutRecordBatch operation can take up to 500 records per call or 4 MiB per call, whichever is
smaller. This quota cannot be changed.

• The following operations can provide up to five invocations per second
(this is a hard limit): CreateDeliveryStream, DeleteDeliveryStream,
DescribeDeliveryStream, ListDeliveryStreams, UpdateDestination,
TagDeliveryStream, UntagDeliveryStream, ListTagsForDeliveryStream,
StartDeliveryStreamEncryption, StopDeliveryStreamEncryption.

• The buffer interval hints range from 60 seconds to 900 seconds.

• For delivery from Amazon Data Firehose to Amazon Redshift, only publicly accessible Amazon
Redshift clusters are supported.

• The retry duration range is from 0 seconds to 7,200 seconds for Amazon Redshift and
OpenSearch Service delivery.

286

https://aws.amazon.com/kinesis/data-firehose/pricing/
https://calculator.aws/#/createCalculator
https://docs.aws.amazon.com/firehose/latest/APIReference/API_PutRecordBatch.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_DeleteDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_DescribeDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ListDeliveryStreams.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_UpdateDestination.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_TagDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_UntagDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ListTagsForDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_StartDeliveryStreamEncryption.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_StopDeliveryStreamEncryption.html

Amazon Data Firehose Developer Guide

• Firehose supports Elasticsearch versions 1.5, 2.3, 5.1, 5.3, 5.5, 5.6, as well as all 6.* and 7.*
versions and Amazon OpenSearch Service 2.x up to 2.11.

• When the destination is Amazon S3, Amazon Redshift, or OpenSearch Service, Amazon Data
Firehose allows up to 5 outstanding Lambda invocations per shard. For Splunk, the quota is 10
outstanding Lambda invocations per shard.

• You can use a CMK of type CUSTOMER_MANAGED_CMK to encrypt up to 500 delivery streams.

287

Amazon Data Firehose Developer Guide

Appendix - HTTP Endpoint Delivery Request and
Response Specifications

For Amazon Data Firehose to successfully deliver data to custom HTTP endpoints, these endpoints
must accept requests and send responses using certain Amazon Data Firehose request and
response formats. This section describes the format specifications of the HTTP requests that
the Amazon Data Firehose service sends to custom HTTP endpoints, as well as the format
specifications of the HTTP responses that the Amazon Data Firehose service expects. HTTP
endpoints have 3 minutes to respond to a request before Amazon Data Firehose times out that
request. Amazon Data Firehose treats responses that do not adhere to the proper format as
delivery failures.

Topics

• Request Format

• Response Format

• Examples

Request Format

Path and URL Parameters

These are configured directly by you as part of a single URL field. Amazon Data Firehose
sends them as configured without modification. Only https destinations are supported. URL
restrictions are applied during delivery-stream configuration.

Note

Currently, only port 443 is supported for HTTP endpoint data delivery.

HTTP Headers - X-Amz-Firehose-Protocol-Version

This header is used to indicate the version of the request/response formats. Currently the only
version is 1.0.

Request Format 288

Amazon Data Firehose Developer Guide

HTTP Headers - X-Amz-Firehose-Request-Id

The value of this header is an opaque GUID that can be used for debugging and deduplication
purposes. Endpoint implementations should log the value of this header if possible, for both
successful and unsuccessful requests. The request ID is kept the same between multiple
attempts of the same request.

HTTP Headers - Content-Type

The value of the Content-Type header is always application/json.

HTTP Headers - Content-Encoding

A Firehose stream can be configured to use GZIP to compress the body when sending requests.
When this compression is enabled, the value of the Content-Encoding header is set to gzip, as
per standard practice. If compression is not enabled, the Content-Encoding header is absent
altogether.

HTTP Headers - Content-Length

This is used in the standard way.

HTTP Headers - X-Amz-Firehose-Source-Arn:

The ARN of the Firehose stream represented in ASCII string format. The ARN encodes
region, AWS account ID and the stream name. For example, arn:aws:firehose:us-
east-1:123456789:deliverystream/testStream.

HTTP Headers - X-Amz-Firehose-Access-Key

This header carries an API key or other credentials. You have the ability to create or update the
API-key (aka authorization token) when creating or updating your delivery-stream. Amazon
Data Firehose restricts the size of the access key to 4096 bytes. Amazon Data Firehose does not
attempt to interpret this key in any way. The configured key is copied verbatim into the value of
this header.

The contents can be arbitrary and can potentially represent a JWT token or an ACCESS_KEY. If
an endpoint requires multi-field credentials (for example, username and password), the values
of all of the fields should be stored together within a single access-key in a format that the
endpoint understands (JSON or CSV). This field can be base-64 encoded if the original contents
are binary. Amazon Data Firehose does not modifiy and/or encode the configured value and
uses the contents as is.

Request Format 289

Amazon Data Firehose Developer Guide

HTTP Headers - X-Amz-Firehose-Common-Attributes

This header carries the common attributes (metadata) that pertain to the entire request, and/or
to all records within the request. These are configured directly by you when creating a Firehose
stream. The value of this attribute is encoded as a JSON object with the following schema:

"$schema": http://json-schema.org/draft-07/schema#

properties:
 commonAttributes:
 type: object
 minProperties: 0
 maxProperties: 50
 patternProperties:
 "^.{1,256}$":
 type: string
 minLength: 0
 maxLength: 1024

Here's an example:

"commonAttributes": {
 "deployment -context": "pre-prod-gamma",
 "device-types": ""
 }

Body - Max Size

The maximum body size is configured by you, and can be up to a maximum of 64 MiB, before
compression.

Body - Schema

The body carries a single JSON document with the following JSON Schema (written in YAML):

"$schema": http://json-schema.org/draft-07/schema#

title: FirehoseCustomHttpsEndpointRequest
description: >

Request Format 290

Amazon Data Firehose Developer Guide

 The request body that the Firehose service sends to
 custom HTTPS endpoints.
type: object
properties:
 requestId:
 description: >
 Same as the value in the X-Amz-Firehose-Request-Id header,
 duplicated here for convenience.
 type: string
 timestamp:
 description: >
 The timestamp (milliseconds since epoch) at which the Firehose
 server generated this request.
 type: integer
 records:
 description: >
 The actual records of the Firehose stream, carrying
 the customer data.
 type: array
 minItems: 1
 maxItems: 10000
 items:
 type: object
 properties:
 data:
 description: >
 The data of this record, in Base64. Note that empty
 records are permitted in Firehose. The maximum allowed
 size of the data, before Base64 encoding, is 1024000
 bytes; the maximum length of this field is therefore
 1365336 chars.
 type: string
 minLength: 0
 maxLength: 1365336

required:
 - requestId
 - records

Here's an example:

Request Format 291

Amazon Data Firehose Developer Guide

{
 "requestId": "ed4acda5-034f-9f42-bba1-f29aea6d7d8f",
 "timestamp": 1578090901599
 "records": [
 {
 "data": "aGVsbG8="
 },
 {
 "data": "aGVsbG8gd29ybGQ="
 }
]
}

Response Format

Default Behavior on Error

If a response fails to conform to the requirements below, the Firehose server treats it as though
it had a 500 status code with no body.

Status Code

The HTTP status code MUST be in the 2XX, 4XX or 5XX range.

The Amazon Data Firehose server does NOT follow redirects (3XX status codes). Only response
code 200 is considered as a successful delivery of the records to HTTP/EP. Response code
413 (size exceeded) is considered as a permanent failure and the record batch is not sent to
error bucket if configured. All other response codes are considered as retriable errors and are
subjected to back-off retry algorithm explained later.

Headers - Content Type

The only acceptable content type is application/json.

HTTP Headers - Content-Encoding

Content-Encoding MUST NOT be used. The body MUST be uncompressed.

HTTP Headers - Content-Length

The Content-Length header MUST be present if the response has a body.

Response Format 292

Amazon Data Firehose Developer Guide

Body - Max Size

The response body must be 1 MiB or less in size.

"$schema": http://json-schema.org/draft-07/schema#

title: FirehoseCustomHttpsEndpointResponse

description: >
 The response body that the Firehose service sends to
 custom HTTPS endpoints.
type: object
properties:
 requestId:
 description: >
 Must match the requestId in the request.
 type: string

 timestamp:
 description: >
 The timestamp (milliseconds since epoch) at which the
 server processed this request.
 type: integer

 errorMessage:
 description: >
 For failed requests, a message explaining the failure.
 If a request fails after exhausting all retries, the last
 Instance of the error message is copied to error output
 S3 bucket if configured.
 type: string
 minLength: 0
 maxLength: 8192
required:
 - requestId
 - timestamp

Here's an example:

Failure Case (HTTP Response Code 4xx or 5xx)

Response Format 293

Amazon Data Firehose Developer Guide

{
 "requestId": "ed4acda5-034f-9f42-bba1-f29aea6d7d8f",
 "timestamp": "1578090903599",
 "errorMessage": "Unable to deliver records due to unknown error."
}
Success case (HTTP Response Code 200)
{
 "requestId": "ed4acda5-034f-9f42-bba1-f29aea6d7d8f",
 "timestamp": 1578090903599
}

Error Response Handling

In all error cases the Amazon Data Firehose server reattempts delivery of the same batch of
records using an exponential back-off algorithm. The retries are backed off using an initial back-
off time (1 second) with a jitter factor of (15%) and each subsequent retry is backed off using
the formula (initial-backoff-time * (multiplier(2) ^ retry_count)) with added jitter. The backoff
time is capped by a maximum interval of 2 minutes. For example on the ‘n’-th retry the back off
time is = MAX(120, 2^n) * random(0.85, 1.15).

The parameters specified in the previous equation are subject to change. Refer to the AWS
Firehose documentation for exact initial back off time, max backoff time, multiplier and jitter
percentages used in exponential back off algorithm.

In each subsequent retry attempt the access key and/or destination to which records are
delivered might change based on updated configuration of the Firehose stream. Amazon Data
Firehose service uses the same request-id across retries in a best-effort manner. This last feature
can be used for deduplication purpose by the HTTP end point server. If the request is still not
delivered after the maximum time allowed (based on Firehose stream configuration) the batch
of records can optionally be delivered to an error bucket based on stream configuration.

Examples

Example of a CWLog sourced request:

{
 "requestId": "ed4acda5-034f-9f42-bba1-f29aea6d7d8f",
 "timestamp": 1578090901599,

Examples 294

Amazon Data Firehose Developer Guide

 "records": [
 {
 "data": {
 "messageType": "DATA_MESSAGE",
 "owner": "123456789012",
 "logGroup": "log_group_name",
 "logStream": "log_stream_name",
 "subscriptionFilters": [
 "subscription_filter_name"
],
 "logEvents": [
 {
 "id": "0123456789012345678901234567890123456789012345",
 "timestamp": 1510109208016,
 "message": "log message 1"
 },
 {
 "id": "0123456789012345678901234567890123456789012345",
 "timestamp": 1510109208017,
 "message": "log message 2"
 }
]
 }
 }
]
}

Examples 295

Amazon Data Firehose Developer Guide

Document History

The following table describes the important changes to the Amazon Data Firehose documentation.

Change Description Date Changed

Added support for
ingesting logs for
Dynatrace

You can now send logs and events to Dynatrace for
further analysis. See, the section called “Choose
Dynatrace for Your Destination”

April 18, 2024

General Availabil
ity (GA) release
for Snowflake as a
destination

Snowflake is now generally available as a destinati
on. See the section called “Choose Snowflake for
Your Destination”.

April 17, 2024

Amazon Kinesis
Data Firehose is
now known as
Amazon Data
Firehose

Amazon Kinesis Data Firehose has rebranded to
Amazon Data Firehose. See What Is Amazon Data
Firehose?

February 9, 2024

Added Snowflake
as a destination
(public preview)

You can create a delivery stream with Snowflake
as the destination. See the section called “Choose
Snowflake for Your Destination”.

January 19, 2024

Added automatic
decompression of
CloudWatch Logs

You can enable decompression on new or existing
streams to send decompressed CloudWatch Logs
data to Firehose destinations. See the section called
“Writing Using CloudWatch Logs”.

December 15,
2023

Added Splunk
Observabi
lity Cloud as a
destination

You can create a Firehose stream with Splunk
Observability Cloud as the destination. See the
section called “Choose Splunk Observability Cloud
for Your Destination”.

October 3, 2023

Added Amazon
Managed
Streaming for

You can now configure Amazon MSK to send
information to a Firehose stream. See the section
called “Writing Using Amazon MSK”.

September 26th,
2023

296

Amazon Data Firehose Developer Guide

Change Description Date Changed

Apache Kafka as a
data source

Added support for
DocumentID type
for the OpenSearc
h Service destinati
on

If OpenSearch Service is your Firehose stream's
destination, DocumentID type indicates the method
for setting up document ID. The supported methods
are Firehose generated document ID and OpenSearc
h Service generated document ID. See the section
called “Destination Settings”.

May 10th, 2023

Added support
dynamic partition
ing

Added support for continuous dynamic partitioning
of the streaming data in Amazon Data Firehose. See
Dynamic Partitioning.

August 31, 2021

Added a topic on
custom prefixes.

Added a topic about the expressions that you can
use when building a custom prefix for data that is
delivered to Amazon S3. See Custom Amazon S3
Prefixes.

December 20,
2018

Added New
Amazon Data
Firehose Tutorial

Added a tutorial that demonstrates how to send
Amazon VPC flow logs to Splunk through Amazon
Data Firehose. See Tutorial: Ingest VPC flow logs into
Splunk using Amazon Data Firehose.

October 30, 2018

Added Four New
Amazon Data
Firehose Regions

Added Paris, Mumbai, Sao Paulo, and London. For
more information, see Amazon Data Firehose Quota.

June 27, 2018

Added Two New
Amazon Data
Firehose Regions

Added Seoul and Montreal. For more information,
see Amazon Data Firehose Quota.

June 13, 2018

New Kinesis
Streams as Source
feature

Added Kinesis Streams as a potential source for
records for a Data Firehose Firehose stream. For
more information, see Source, Destination, and
Name.

August 18, 2017

297

Amazon Data Firehose Developer Guide

Change Description Date Changed

Update to console
documentation

The Firehose stream creation wizard was updated.
For more information, see Creating a Firehose
stream.

July 19, 2017

New data
transformation

You can configure Amazon Data Firehose to
transform your data before data delivery. For
more information, see Amazon Data Firehose Data
Transformation.

December 19,
2016

New Amazon
Redshift COPY
retry

You can configure Amazon Data Firehose to retry a
COPY command to your Amazon Redshift cluster if it
fails. For more information, see Creating a Firehose
stream, Amazon Data Firehose Data Delivery, and
Amazon Data Firehose Quota.

May 18, 2016

New Amazon Data
Firehose destinati
on, Amazon
OpenSearch
Service

You can create a Firehose stream with Amazon
OpenSearch Service as the destination. For more
information, see Creating a Firehose stream, Amazon
Data Firehose Data Delivery, and Grant Amazon
Data Firehose Access to a Public OpenSearch Service
Destination.

April 19, 2016

New enhanced
CloudWatch
metrics and
troubleshooting
features

Updated Monitoring Amazon Data Firehose and
Troubleshooting Amazon Data Firehose.

April 19, 2016

New enhanced
Kinesis agent

Updated Writing to Amazon Data Firehose Using
Kinesis Agent.

April 11, 2016

New Kinesis agents Added Writing to Amazon Data Firehose Using
Kinesis Agent.

October 2, 2015

Initial release Initial release of the Amazon Data Firehose Developer
Guide.

October 4, 2015

298

Amazon Data Firehose Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

299

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon Data Firehose
	Table of Contents
	
	What Is Amazon Data Firehose?
	Key Concepts
	Data Flow

	Setting Up for Amazon Data Firehose
	Sign Up for AWS
	Optional: Download Libraries and Tools

	Creating a Firehose stream
	Source, Destination, and Name
	Record Transformation and Format Conversion
	Destination Settings
	Choose Amazon S3 for Your Destination
	Choose Amazon Redshift for Your Destination
	Amazon Redshift Provisioned Cluster
	Amazon Redshift Serverless Workgroup

	Choose OpenSearch Service for Your Destination
	Choose OpenSearch Serverless for Your Destination
	Choose HTTP Endpoint for Your Destination
	Choose Datadog for Your Destination
	Choose Honeycomb for Your Destination
	Choose Coralogix for Your Destination
	Choose Dynatrace for Your Destination
	Choose LogicMonitor for Your Destination
	Choose Logz.io for Your Destination
	Choose MongoDB Cloud for Your Destination
	Choose New Relic for Your Destination
	Choose Snowflake for Your Destination
	Choose Splunk for Your Destination
	Choose Splunk Observability Cloud for Your Destination
	Choose Sumo Logic for Your Destination
	Choose Elastic for Your Destination

	Backup and Advanced Settings
	Backup Settings
	Advanced Settings

	Buffering hints

	Testing Your Firehose stream Using Sample Data
	Prerequisites
	Test Using Amazon S3 as the Destination
	Test Using Amazon Redshift as the Destination
	Test Using OpenSearch Service as the Destination
	Test Using Splunk as the Destination

	Sending Data to a Firehose stream
	Writing to Amazon Data Firehose Using Kinesis Data Streams
	Writing to Amazon Data Firehose Using Amazon MSK
	Writing to Amazon Data Firehose Using Kinesis Agent
	Prerequisites
	Credentials
	Custom Credential Providers
	Download and Install the Agent
	Configure and Start the Agent
	Agent Configuration Settings
	Monitor Multiple File Directories and Write to Multiple Streams
	Use the agent to Preprocess Data
	Agent CLI Commands
	FAQ
	Is there a Kinesis Agent for Windows?
	Why is Kinesis Agent slowing down and/or RecordSendErrors increasing?
	Why am I getting java.lang.OutOfMemoryError exceptions?
	Why am I getting IllegalStateException : connection pool shut down exceptions?
	How can I debug another issue with Kinesis Agent?
	How should I configure Kinesis Agent?
	Why is Kinesis Agent sending duplicate records?

	Writing to Amazon Data Firehose Using the AWS SDK
	Single Write Operations Using PutRecord
	Batch Write Operations Using PutRecordBatch

	Writing to Amazon Data Firehose Using CloudWatch Logs
	Decompression of CloudWatch Logs
	Message extraction after decompression of CloudWatch Logs
	Enabling and disabling decompression
	Enabling decompression on a new data stream using the AWS Management Console
	Enabling decompression on an existing data stream using the AWS Management Console
	Disabling decompression using the AWS Management Console

	FAQ
	What happens to the source data in case of an error during decompression?
	What happens to the source data in case of an error in the processing pipeline after successful decompression?
	How are you informed in case of an error or an exception?
	What happens when put operations don't come from CloudWatch Logs?
	What metrics does Firehose emit for the decompression feature?

	Writing to Amazon Data Firehose Using CloudWatch Events
	Writing to Amazon Data Firehose Using AWS IoT

	Security in Amazon Data Firehose
	Data Protection in Amazon Data Firehose
	Server-Side Encryption with Kinesis Data Streams as the Data Source
	Server-Side Encryption with Direct PUT or Other Data Sources

	Controlling Access with Amazon Data Firehose
	Grant Your Application Access to Your Amazon Data Firehose Resources
	Grant Amazon Data Firehose Access to your Private Amazon MSK Cluster
	Allow Amazon Data Firehose to Assume an IAM Role
	Grant Amazon Data Firehose Access to AWS Glue for Data Format Conversion
	Grant Amazon Data Firehose Access to an Amazon S3 Destination
	Grant Amazon Data Firehose Access to an Amazon Redshift Destination
	IAM Role and Access Policy
	VPC Access to an Amazon Redshift Provisioned Cluster or Amazon Redshift Serverless Workgroup

	Grant Amazon Data Firehose Access to a Public OpenSearch Service Destination
	Grant Amazon Data Firehose Access to an OpenSearch Service Destination in a VPC
	Grant Amazon Data Firehose Access to a Public OpenSearch Serverless Destination
	Grant Amazon Data Firehose Access to an OpenSearch Serverless Destination in a VPC
	Grant Amazon Data Firehose Access to a Splunk Destination
	Access to Splunk in VPC
	Access to Snowflake or HTTP end point
	Grant Amazon Data Firehose Access to a Snowflake Destination
	Access to Snowflake in VPC
	Grant Amazon Data Firehose Access to an HTTP Endpoint Destination
	Cross-Account Delivery from Amazon MSK
	Cross-Account Delivery to an Amazon S3 Destination
	Cross-Account Delivery to an OpenSearch Service Destination
	Using Tags to Control Access
	CreateDeliveryStream
	TagDeliveryStream
	UntagDeliveryStream
	ListDeliveryStreams
	Other Amazon Data Firehose Operations

	Manage IAM roles through Amazon Data Firehose console
	Choose an existing IAM role
	Create a new IAM role from console
	Steps to create an IAM role from console

	Edit IAM role from console
	Edit IAM role from console

	Monitoring Amazon Data Firehose
	Compliance Validation for Amazon Data Firehose
	Resilience in Amazon Data Firehose
	Disaster Recovery

	Infrastructure Security in Amazon Data Firehose
	VPC Endpoints (PrivateLink)

	Security Best Practices for Amazon Data Firehose
	Implement least privilege access
	Use IAM roles
	Implement Server-Side Encryption in Dependent Resources
	Use CloudTrail to Monitor API Calls

	Amazon Data Firehose Data Transformation
	Data Transformation Flow
	Data Transformation and Status Model
	Lambda Blueprints
	Data Transformation Failure Handling
	Duration of a Lambda Invocation
	Source Record Backup

	Dynamic Partitioning in Amazon Data Firehose
	Partitioning keys
	Creating partitioning keys with inline parsing
	Creating partitioning keys with an AWS Lambda function

	Amazon S3 Bucket Prefix for Dynamic Partitioning
	Dynamic partitioning of aggregated data
	Adding a new line delimiter when delivering data to S3
	How to enable dynamic partitioning
	Dynamic Partitioning Error Handling
	Data buffering and dynamic partitioning

	Converting Your Input Record Format in Firehose
	Record Format Conversion Requirements
	Choosing the JSON Deserializer
	Choosing the Serializer
	Converting Input Record Format (Console)
	Converting Input Record Format (API)
	Record Format Conversion Error Handling
	Record Format Conversion Example

	Using Amazon Managed Service for Apache Flink
	Amazon Data Firehose Data Delivery
	Data Delivery Format
	Data Delivery Frequency
	Data Delivery Failure Handling
	Amazon S3 Object Name Format
	Time zones supported for S3 prefix configuration in Firehose

	Index Rotation for the OpenSearch Service Destination
	Delivery Across AWS Accounts and Across AWS Regions for HTTP Endpoint Destinations
	Duplicated Records
	How to Pause and Resume a Firehose delivery stream
	Understanding how Firehose handles delivery failures
	Pausing a Firehose delivery stream
	Resuming a Firehose delivery stream

	Monitoring Amazon Data Firehose
	Best Practices with CloudWatch Alarms
	Monitoring Amazon Data Firehose Using CloudWatch Metrics
	Dynamic Partitioning CloudWatch Metrics
	Data Delivery CloudWatch Metrics
	Delivery to OpenSearch Service
	Delivery to OpenSearch Serverless
	Delivery to Amazon Redshift
	Delivery to Amazon S3
	Delivery to Snowflake
	Delivery to Splunk
	Delivery to HTTP Endpoints

	Data Ingestion Metrics
	Data Ingestion Through Kinesis Data Streams
	Data Ingestion Through Direct PUT
	Data Ingestion From MSK

	API-Level CloudWatch Metrics
	Data Transformation CloudWatch Metrics
	CloudWatch Logs Decompression Metrics
	Format Conversion CloudWatch Metrics
	Server-Side Encryption (SSE) CloudWatch Metrics
	Dimensions for Amazon Data Firehose
	Amazon Data Firehose Usage Metrics

	Accessing CloudWatch Metrics for Amazon Data Firehose
	Monitoring Amazon Data Firehose Using CloudWatch Logs
	Data Delivery Errors
	Amazon S3 Data Delivery Errors
	Amazon Redshift Data Delivery Errors
	Snowflake Data Delivery Errors
	Splunk Data Delivery Errors
	ElasticSearch Data Delivery Errors
	HTTPS Endpoint Data Delivery Errors
	Amazon OpenSearch Service Data Delivery Errors
	Lambda Invocation Errors
	Kinesis Invocation Errors
	Kinesis DirectPut Invocation Errors
	AWS Glue Invocation Errors
	DataFormatConversion Invocation Errors

	Accessing CloudWatch Logs for Amazon Data Firehose
	Monitoring Kinesis Agent Health
	Monitoring with CloudWatch

	Logging Amazon Data Firehose API Calls with AWS CloudTrail
	Amazon Data Firehose Information in CloudTrail
	Example: Amazon Data Firehose Log File Entries

	Custom Prefixes for Amazon S3 Objects
	The timestamp namespace
	The firehose namespace
	partitionKeyFromLambda and partitionKeyFromQuery namespaces
	Semantic rules
	Example prefixes

	Using Amazon Data Firehose with AWS PrivateLink
	Interface VPC endpoints (AWS PrivateLink) for Amazon Data Firehose
	Using interface VPC endpoints (AWS PrivateLink) for Amazon Data Firehose
	Availability

	Tagging Your Firehose streams in Amazon Data Firehose
	Tag Basics
	Tracking Costs Using Tagging
	Tag Restrictions
	Tagging Firehose streams Using the Amazon Data Firehose API

	Tutorial: Ingest VPC flow logs into Splunk using Amazon Data Firehose
	Troubleshooting Amazon Data Firehose
	Troubleshooting Amazon S3
	Troubleshooting Amazon Redshift
	Troubleshooting Amazon OpenSearch Service
	Troubleshooting Splunk
	Troubleshooting Snowflake
	Firehose delivery stream creation fails
	Delivery failures

	Troubleshooting Firehose endpoint reachability
	Troubleshooting HTTP Endpoints
	CloudWatch Logs
	Destination Exceptions
	Invalid Response
	Other Common Errors

	Troubleshooting MSK As Source
	Hose creation fails
	Hose Suspended
	Hose Backpresurred
	Incorrect Data Freshness
	MSK cluster connection issues

	Other
	Delivery Stream Not Available as a Target for CloudWatch Logs, CloudWatch Events, or AWS IoT Action
	Data Freshness Metric Increasing or Not Emitted
	Record Format Conversion to Apache Parquet Fails
	No Data at Destination Despite Good Metrics

	Amazon Data Firehose Quota
	Appendix - HTTP Endpoint Delivery Request and Response Specifications
	Request Format
	Response Format
	Examples

	Document History
	AWS Glossary

